2023 ANNUAL GROUNDWATER MONITORING AND CORRECTIVE ACTION REPORT CLASS 3 LANDFILL AREA 2 WINYAH GENERATING STATION

by Santee Cooper Moncks Corner, South Carolina

January 31, 2024

Table of Contents

1.	Annu	al Groundwater Monitoring Report Summary	1
2.	40 CF	R § 257.90 Applicability	2
	2.1 2.2 2.3	40 CFR § 257.90(a) and (c) 40 CFR § 257.90(e) – Summary 2.2.1 Status of the Groundwater Monitoring Program 2.2.2 Key Actions Completed 2.2.3 Problems Encountered 2.2.4 Actions to Resolve Problems 2.2.5 Project Key Activities for Upcoming Year 40 CFR § 257.90(e) – Information 2.3.1 40 CFR § 257.90(e)(1) 2.3.2 40 CFR § 257.90(e)(2) 2.3.3 40 CFR § 257.90(e)(4) 2.3.4 40 CFR § 257.90(e)(5)	2 2 2 3 4 4 5 5 5 6
Table I 1 2	No.	Title Summary of Analytical Results 2023 Synoptic Water Levels for Groundwater Monitoring Wells	
Figure	No.	Title	
1 2 3 4 5		Location of Class 3 Landfill Area 2 Monitoring Wells for CCR Compliance Potentiometric Map February 2023 Potentiometric Map May 2023 Potentiometric Map June 2023 Potentiometric Map November 2023	

Appendix A – Statistical Analysis

Appendix B – Laboratory Analytical Results

Appendix C – Alternate Source Demonstration

1. Annual Groundwater Monitoring Report Summary

The South Carolina Public Service Authority (Santee Cooper) has prepared this 2023 Annual Groundwater Monitoring Corrective Action Report for Class 3 Landfill Area 2 at the Winyah Generating Station (WGS). This 2022 Annual Report was prepared to comply with the United States Environmental Protection Agency (EPA) Hazardous and Solid Waste Management System; Disposal of Coal Combustion Residuals (CCR) from Electric Utilities, Title 40 Code of Federal Regulations (CFR) Part 257, Subpart D dated April 17, 2015 (Rule), specifically subsection § 257.90(e)(1) through (6).

The newly constructed Class 3 Landfill Area 2 at WGS received approval to operate from South Carolina Department of Health and Environmental Control (SCDHEC) on December 20, 2021; subsequently, initial receipt of waste began on March 28, 2022. This new CCR landfill is subject to the groundwater monitoring and corrective action requirements described under § 257.90 through § 257.98. The Class 3 Landfill Area 2 is located within the footprint of Ash Pond A, which is an existing surface impoundment subject to the CCR Rule undergoing closure by removal. A portion of the existing groundwater monitoring network for Ash Pond A is also included in the monitoring network for the Class 3 Landfill Area 2. In addition to the federal CCR rule groundwater monitoring program discussed throughout, a SCDHEC approved groundwater monitoring program is also being implemented in accordance with the SCDHEC Permit #LF3-00042. This document addresses the requirement for the Owner/Operator to prepare an Annual Groundwater Monitoring and Corrective Action Report per § 257.90(e).

In accordance with § 257.90(e)(6), an overview of the current status of groundwater monitoring and corrective action programs for the CCR unit is provided below:

At the start of the current annual reporting period (January 1, 2023), the Class 3 Landfill Area 2 was in a detection monitoring program. In February 2023, statistically significant increases (SSIs) of the following Appendix III constituents were identified: calcium and chloride in monitoring well WLF-A2-6, sulfate in monitoring well WAP-19, pH in WAP-9, and total dissolved solids monitoring wells WAP-9 and WAP-19. An alternate source demonstration (ASD) was completed within 90 days of initially determining these SSIs in 2022. The ASD was completed on March 30, 2023. In June 2023, SSIs of the following Appendix III constituents were again identified: calcium and chloride in monitoring well WLF-A2-6, sulfate in monitoring wells WAP-19 and WLF-A2-6, and total dissolved solids monitoring wells WAP-9 and WAP-19. At the end of the current annual reporting period (December 31, 2023), the Class 3 Landfill Area 2 remained in detection monitoring. The remaining groundwater requirements to initiate assessment monitoring, identify Appendix IV statistically significant levels (SSLs) and establish groundwater protection standards (GWPS), initiate, and complete an assessment of corrective measures, hold a public meeting, select a corrective action remedy, and implement remedial activities are not applicable at this time.

To report on the activities conducted during the prior calendar year and document progress complying with the CCR Rule, the specific requirements listed in § 257.90(e)(1) through (5) are provided in the next section in bold/italic type followed by a short narrative stating how that specific requirement was met.

2. 40 CFR § 257.90 Applicability

2.1 40 CFR § 257.90(a) and (c)

All CCR landfills, CCR surface impoundments, and lateral expansions of CCR units are subject to the groundwater monitoring and corrective action requirements under § 257.90 through § 257.98, except as provided in paragraph (g) of this section.

Once a groundwater monitoring system and groundwater monitoring program has been established at the CCR unit as required by this subpart, the owner or operator must conduct groundwater monitoring and, if necessary, corrective action through the active life and post-closure care period of the CCR unit.

As stated in Section 1, Santee Cooper is complying with the groundwater monitoring and corrective action requirements described under 40 CFR § 257.90 through § 257.98 of the CCR Rule for the WGS Class 3 Landfill Area 2. This document addresses the requirements outlined in § 257.90(e) for the Owner/Operator to prepare an Annual Groundwater Monitoring and Corrective Action Report.

2.2 40 CFR § 257.90(e) - SUMMARY

Annual groundwater monitoring and corrective action report. [...] For new CCR landfills, new CCR surface impoundments, and all lateral expansions of CCR units, the owner or operator must prepare the initial annual groundwater monitoring and corrective action report no later than January 31 of the year following the calendar year a groundwater monitoring system has been established for such CCR unit as required by this subpart, and annually thereafter. For the preceding calendar year, the annual report must document the status of the groundwater monitoring and corrective action program for the CCR unit, summarize key actions completed, describe any problems encountered, discuss actions to resolve the problems, and project key activities for the upcoming year. For purposes of this section, the owner or operator has prepared the annual report when the report is placed in the facility's operating record as required by § 257.105(h)(1).

This Annual Report documents the activities completed in 2023 for the Class 3 Landfill Area 2 at WGS as required by the Rule. Groundwater sampling and analysis was conducted per the requirements described in § 257.93, and the status of the groundwater monitoring program described in § 257.94 is provided in this report.

2.2.1 Status of the Groundwater Monitoring Program

In accordance with § 257.94, additional groundwater monitoring wells were constructed, and baseline sampling of the groundwater monitoring well network was completed for the newly constructed Class 3 Landfill Area 2 at WGS in February 2022 prior to the initial receipt of waste on March 28, 2022.

The initial detection monitoring event occurred in July 2022 during the second semi-annual sampling event and the resulting statistical evaluation identified SSIs. This was consistent with analytical results associated with the monitoring of WGS Ash Pond A which was not unexpected in that the two CCR units share a footprint. An ASD was conducted which evaluated multiple lines of evidence including

comparing groundwater quality conditions downgradient of the Class 3 Landfill Area 2 prior to receiving CCR and compared the data to Appendix III constituent concentrations detected after the Class 3 Landfill Area 2 began operation. It was concluded that Ash Pond A is the alternate source for the Appendix III SSIs detected downgradient of the new Class 3 Landfill Area 2, and that Landfill Area 2 is not a contributing source. The final ASD is provided in Appendix C.

Additionally, two (2) groundwater monitoring wells, WLF-A2-1 and WLF-A2-2, were installed in December 2021 for the next phase of landfill construction. These were installed early enough to allow time to collect a minimum of eight independent baseline samples, which occurred on a monthly basis during 2022, prior to those new cells accepting the initial receipt of waste. In fact, ten (10) independent baseline samples were collected in 2022 for these two monitoring wells. The tenth round of baseline groundwater samples were collected in December 2022 for these two (2) wells, however the analytical results from this sampling round were not received until 2023 and therefore are included in this annual report. The new landfill cells received approval to operate from SCDHEC in December 2022 and began receiving waste in January 2023.

A summary of the groundwater monitoring program for the new Landfill Area 2, including the analytical results for the Appendix III and Appendix IV list of constituents, is presented in Table 1 and the laboratory analytical reports, along with field sampling forms, are provided in Appendix B of this report.

2.2.2 Key Actions Completed

The following key actions were completed in 2023:

- Prepared 2022 Annual Report including:
 - Pursuant to § 257.105(h)(1) the Annual Report was placed in the facility's operating record;
 - Pursuant to § 257.106(h)(1), the notification was sent to the relevant State Director within 30 days of the Annual Report being placed in the facility's operating record [§ 257.106(d)];
 - Pursuant to § 257.107(h)(1), the Annual Report was posted to the CCR Website within 30 days of the Annual Report being placed in the facility's operating record [§ 257.107(d)];
- Collected and analyzed a minimum of two (2) rounds of groundwater samples (February and June) in accordance with § 257.94(b) and recorded the concentrations in the facility's operating record as required by § 257.94(f). Groundwater monitoring results are summarized in Table 1 and laboratory analytical reports are provided in Appendix B.
- Completed statistical evaluation to determine SSIs above background for Appendix III constituents in accordance with § 257.93(h)(2) (Appendix A).
- Completed a successful alternate source demonstration in accordance with § 257.94(e)(2).
- Waste receipt in newly constructed Class 3 Landfill Area 2 cells at WGS began in January 2023.
- Continued to implement improved procedures for potentiometric surface characterization of the uppermost aquifer by:
 - Revising the groundwater elevation measurement procedure by collecting site-wide synoptic rounds of water levels within a 48-hour period prior to initiating semi-annual

- sampling of the groundwater monitoring wells. Groundwater elevation measurements continued to be collected in each well immediately prior to collecting the sample.
- The water surface elevations of unlined ponds were surveyed at approximately the same time as the semi-annual monitoring events. Unlined ponds are sources of hydraulic head and groundwater recharge; therefore, it is appropriate to include pond surface water elevations in the potentiometric interpretation of the uppermost aquifer.
- Continuing quarterly sitewide synoptic water level measurements in conjunction with the semi-annual groundwater monitoring events.
- Evaluated turbidity, oxidation-reduction potential, and well screen submersion trends in sitewide wells and identified wells to be redeveloped by a certified well driller to remove buildup of sediment fines and suspected biofouling on the well screens. A submersible camera was used to investigate wells with unsubmerged screens prior to redevelopment. Camera investigation and well redevelopment were completed in November 2023. Success of redevelopment will be monitored during 2024 sampling events.
- Both the Sampling and Analysis Plan and the Groundwater Monitoring Plan for Winyah Generating Station were updated to reflect changes in site conditions and procedures on August 18th, 2023, and October 2nd, 2023, respectively.

2.2.3 Problems Encountered

No problems were encountered.

2.2.4 Actions to Resolve Problems

Not applicable.

2.2.5 Project Key Activities for Upcoming Year

Key activities to be completed in 2024 include the following:

- Prepare the 2023 annual report; place it in the record as required by § 257.105(h)(1), notify the Relevant State Director [§ 257.106(d)]; and post to the facility's publicly available website [§ 257.107(d)].
- Collect and analyze a minimum of two (2) rounds of groundwater samples in accordance with § 257.94(b) and record the concentrations in the facility's operating record as required by § 257.94(f).
- Conduct statistical analysis of Detection Monitoring analytical data to determine if statistically significant increases (SSIs) over background are present as required by § 257.93(h) and § 257.94.
- Continue improving the potentiometric surface characterization of the uppermost aquifer given changing site conditions by:
 - Installing piezometers on the south side of the Class 3 Landfill Area 2 to monitor groundwater flow direction and determine if groundwater flow is shifting from radial to north-northwest as predicted by the groundwater flow model.

2.3 40 CFR § 257.90(e) - INFORMATION

At a minimum, the annual groundwater monitoring and corrective action report must contain the following information, to the extent available:

2.3.1 40 CFR § 257.90(e)(1)

A map, aerial image, or diagram showing the CCR unit and all background (or upgradient) and downgradient monitoring wells, to include the well identification numbers, that are part of the groundwater monitoring program for the CCR unit;

As required by § 257.90(e)(1), a map showing the location of the CCR unit and associated upgradient and downgradient monitoring wells for the Class 3 Landfill Area 2 is presented as Figure 1.

2.3.2 40 CFR § 257.90(e)(2)

Identification of any monitoring wells that were installed or decommissioned during the preceding year, along with a narrative description of why those actions were taken;

No monitoring wells were installed or decommissioned in 2023.

2.3.3 40 CFR § 257.90(e)(3)

In addition to all the monitoring data obtained under § 257.90 through § 257.98, a summary including the number of groundwater samples that were collected for analysis for each background and downgradient well, the dates the samples were collected, and whether the sample was required by the detection monitoring or assessment monitoring programs;

Two groundwater monitoring wells, WLF-A2-1 and WLF-A2-2 were installed in December 2021 for the next phase of landfill construction. Ten (10) independent baseline samples were collected in 2022 for these two monitoring wells. The tenth round of baseline groundwater samples were collected in December 2022 for these two wells, however the analytical results from this sampling round were received in 2023 and therefore are included in this annual report.

A summary table including the sample names, dates of sample collection, reason for sample collection (Detection), and monitoring data obtained for the groundwater monitoring program for the Class 3 Landfill Area 2 is presented in Table 1 of this report. In addition, and as required by § 257.95(d)(3), the groundwater protection standards are included on Table 1. Laboratory analytical data reports, along with field sampling forms, are provided in Appendix B.

2.3.4 40 CFR § 257.90(e)(4)

A narrative discussion of any transition between monitoring programs (e.g., the date and circumstances for transitioning from detection monitoring to assessment monitoring in addition to identifying the constituent(s) detected at a statistically significant increase over background levels); and

In February 2023, SSIs of the following Appendix III constituents were identified: calcium and chloride in monitoring well WLF-A2-6, sulfate in monitoring well WAP-19, pH in WAP-9, and total dissolved solids monitoring wells WAP-9 and WAP-19. An ASD was completed within 90 days of initially determining these SSIs in 2022. The ASD was completed on March 30, 2023. As noted in the 2023 ASD, the results are not unexpected because the Class 3 Landfill Area 2 is located within the footprint of Ash Pond A, which is currently undergoing corrective action and closure. Ash Pond A was an unlined CCR impoundment that operated for over 40 years. As supported by the 2023 ASD, the former unit is contributing to the elevated concentrations. As such, the Class 3 Landfill Area 2 will remain in detection monitoring.

In June/July 2023, SSIs of the following Appendix III constituents were identified: calcium and chloride in monitoring well WLF-A2-6, sulfate in monitoring wells WAP-19 and WLF-A2-6, and total dissolved solids monitoring wells WAP-9 and WAP-19. These findings were supported by the 2023 ASD discussed above. Therefore, the CCR Unit did not transition between monitoring programs in 2023.

2.3.5 40 CFR § 257.90(e)(5)

Other information required to be included in the annual report as specified in § 257.90 through § 257.98.

This Annual Report documents activities conducted to comply with Sections § 257.90 through § 257.94 of the Rule. There are no applicable requirements from Sections § 257.95 through § 257.98.

Groundwater flow rate and direction are provided as Figures 2, 3, 4, and 5 for each synoptic water level event as specified in § 257.93(c).

As the number of groundwater monitoring wells and associated samples have increased considerably across the site since the promulgation of the CCR Rule in 2015, turnaround times for labs have increased compared to historical expectations. Average turnaround times were approximately 60 days in 2023. Additionally, expansion of the groundwater monitoring networks (i.e., wells and samples) has contributed to a significant increase in data volume and complexity.

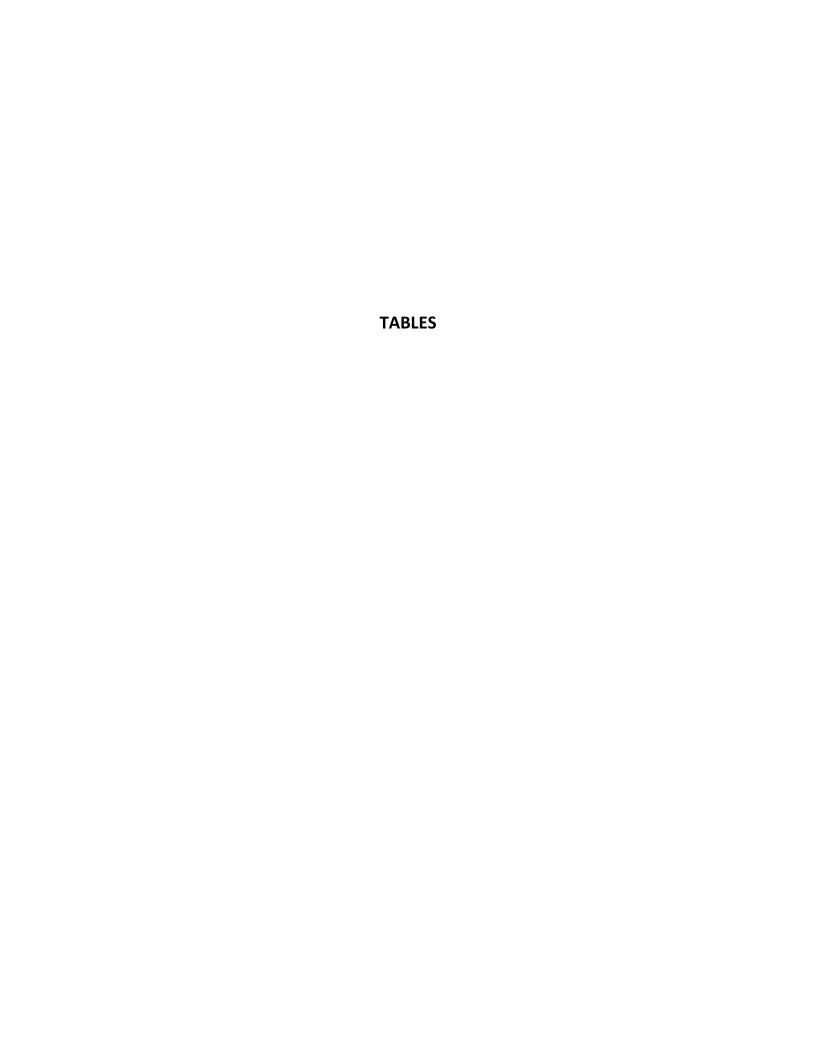


Table 1 - Summary of Analytical Results Winyah Generating Station Class 3 Landfill Area 2 Detection Monitoring 2023

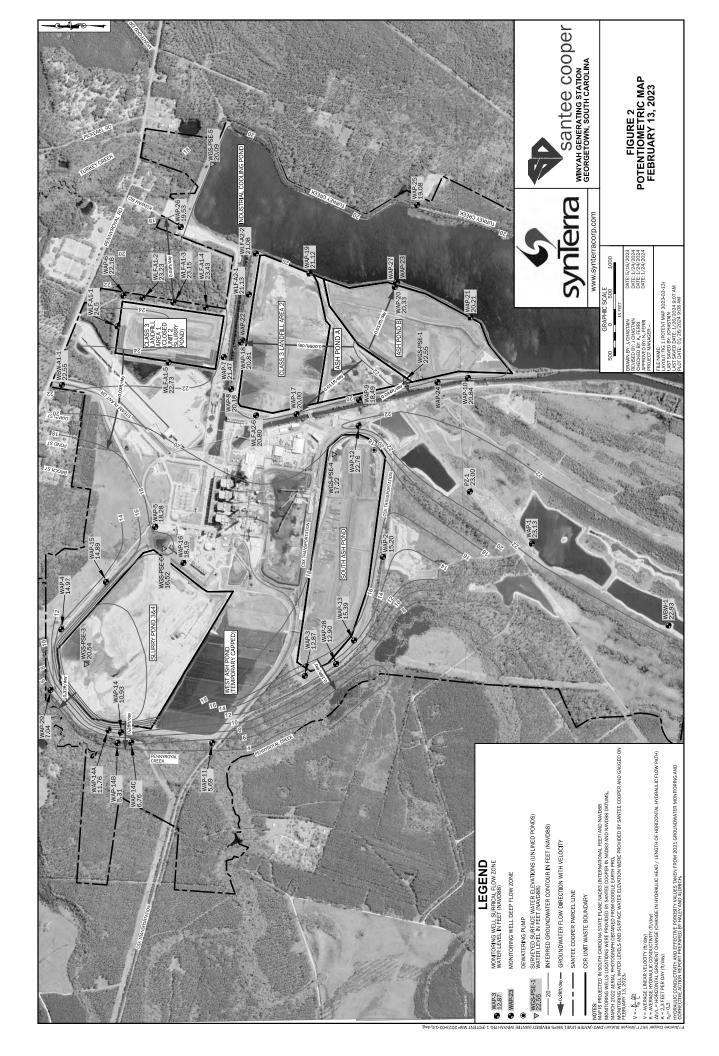
	gen	E					0.720	0.700	2		3.48	0.00	1		0.780	0.740	2	0 780	8	0.650		2		1.02	1.46	7	0.720	0.640	2	1	0.490	0.850	0.680	3	į	0.270	0.690	0.720	က	0.630	000	0.840	
	Dissolved Oxygen	шаа							2	Ц	20	2	L	Ц			01					2		0	0 0				2										9	0			
	Turbidity	NTO			l)	0.100			16.5				9.70	3.80	2	A 70	5	6.20		7		1.80	2.60		328	4.30	,			9.50	2.10	3		4.90	7.70	5.00				4.60	
	Oxidation Reduction Potential	'n	SM2580		l		0.09	26.0	2		181	6			-27.0	-122	2	0.08	2.00	-108		2	į	172	151	7	-54.0	-147	2		17.0	154	-64.0	3		-20.0	12.0	-62.0	3	24.0	0:14	-100	
Parameters	Temperature	O	•				21.0	30.4	2		20.1	20.07	•		23.1	26.5	2	21 5	5:	25.4		2	;	22.8	23.0	7	28.7	28.8	2		21.75	727	26.3	3	1	21.7	24.0	23.4	က	23.6	200	23.7	
Field Parar	₹	Sn					136	103	2		56.0	2.00			1310	1590	2	1790	000	1660		2		637	685	7	2270	2940	2		852	366	375	3		1150	10/0	0611	က	821	3	1040	
	£ S	SU					4.43	4.51	2		3.92	6	•		6.34	6.11	2	6 34	2	6.33		2		5.47	5.28	7	6.49	6.48	2	1	5.13	4 77	5.52	3	-	5.92	6.01	20.02	က	5 99	9	6.21	
	Groundwater Elevation	Feet			;		23.1	22.5	2		22.9	6.22	•		18.1	17.5	2	000	0.03	20.0		2	,	20.3	19.8	7	19.7	20.1	2		20.3	20.5	19.7	3		20.2	20.3	19.8	က	20.8	0.04	20.0	
	Depth to Gro	Feet					6.36	6.93	2		9.04	2.6	•		9.95	10.5	2	88	000	6.91		2	:	10.7	11.3	7	23.7	23.3	2	-	9.72	9.57	10.3	3	-	7.32	7.70	7.7	e	14.4	r F	15.1	
	Hd Gr	SU					4.43	4.51	2		3.92	2	1		6.34	6.11	2	634	5	6.33		2	!	5.47	5.28	7	6.49	6.48	2		5.13	4 77	5.52	3	1	5.92	6.01	20.0	က	5 99	9	6.21	
	Total Dissolved Solids	ma/L	SM 2540C		ļ		100	0.06	2		87.5	2			1168	1136	2	1301	1402	1271	1260	4		521	479	7	2562	2818	2		550	800	306	4		880	1012	nce	က	605	625	685	
	Sulfate Dis	┝	EPA 300.0 SN		ļ		33.6	31.1	2		9.92	2			263	296	2	663	661	651	652	4		232	232	7	1540	1610	2		279	231	119	4		351	342	180	က	133	125	187	
ituents	_	┝	EPA 300.0 EP/		4.00		<0.100	<0.100	2		<0.100	20.10	1		<0.100	0.100	2	V0 100	<0.100	<0.100	<0.100	4		<0.100	<0.100	7	0.210	0.180	2		<0.100 5.450	<0.100	<0.100	4		<0.100	<0.100	<0.100	က	0.110	0.110	0.120	
Appendix III Constituen		H	EPA 300.0 EPA				13.4	10.5	2		6.60	2	1		163	166	2	180	185	105	105	4	!	47.1	54.4	7	45.5	33.5	2		68.2	142	17.3	4		101	98.9	84.8	က	32.7	32.3	48.0	
App	5		100					8.49	1		3 26	3.50			204	232	2	280	260	253	254	4		94.4	92.6	7	601	639	2	***	108	138	62.2	4		184	191	189	က	166	160	193	
	Calcium	_	EPA 6020B EPA 60		<u> </u>		10.5		1		2.79	-			203		1					0			-	>			0					0		1			0				
	Boron	-	EPA 6010D EPA		<u> </u>		37.1	41.0	2		54.7	- 2	-		2630	3250	2	4330	4470	4010	3980	4		1530	1190	7	4200	4320	2		1760	2800	1190	4		2220	2330	2320	က	245	256	309	
	ă		Н							Ц	+							1						1												+	1						
	2.0	Unit	Method	GWPS/	US EPA MCL/RSI	H					1							1																		<u> </u>							
	Laboratory Sample ID Number						AF56394			Ц	AF56431					AF68719		AF56/16							AF68735					4	4	AF56439			_		AF56441	AF68/5/		AF56442		AF68758	
	Date of Sample Event					und Wells	2/14/2023	6/27/2023			2/14/2023	012112020		Area 2 Wells	2/27/2023	6/29/2023		3/8/2023	3/8/2023	7/10/2023	7/10/2023			3/9/2023	7/5/2023		3/7/2023	7/6/2023			12/7/2022	3/1/2022	7/5/2023			12/6/2022	3/1/2023	1/12/2023		2/16/2023	2/16/2023	7/6/2023	
	Purpose					Site Background Wells	Background	Background	total samples		Background	total samples	cold inc mo	Class 3 Landfill Area 2 Wells	Detection	Detection	total samples	Detection	Duplicate	Detection	Duplicate	total samples	:	Detection	Detection	total samples	Detection	Detection	total samples	:	Baseline	Detection	Detection	total samples	:	Baseline	Detection	Detection	total samples	Detection	Duplicate	Detection	
	Well ID						WAP-1	NAP-1	WAP-1		WBW-1				WAP-9	WAP-9	WAP-9	WAD-17	WAP-17	WAP-17		WAP-17 t		WAP-18	WAP-18	ı	WAP-19	WAP-19			WLF-A2-1	WLF-A2-1 WI F-A2-1	F-A2-1	WLF-A2-1 t		ALF-A2-2	WLF-A2-2	WLF-A2-2		WI F-A2-6	WLF-A2-6	WLF-A2-6	

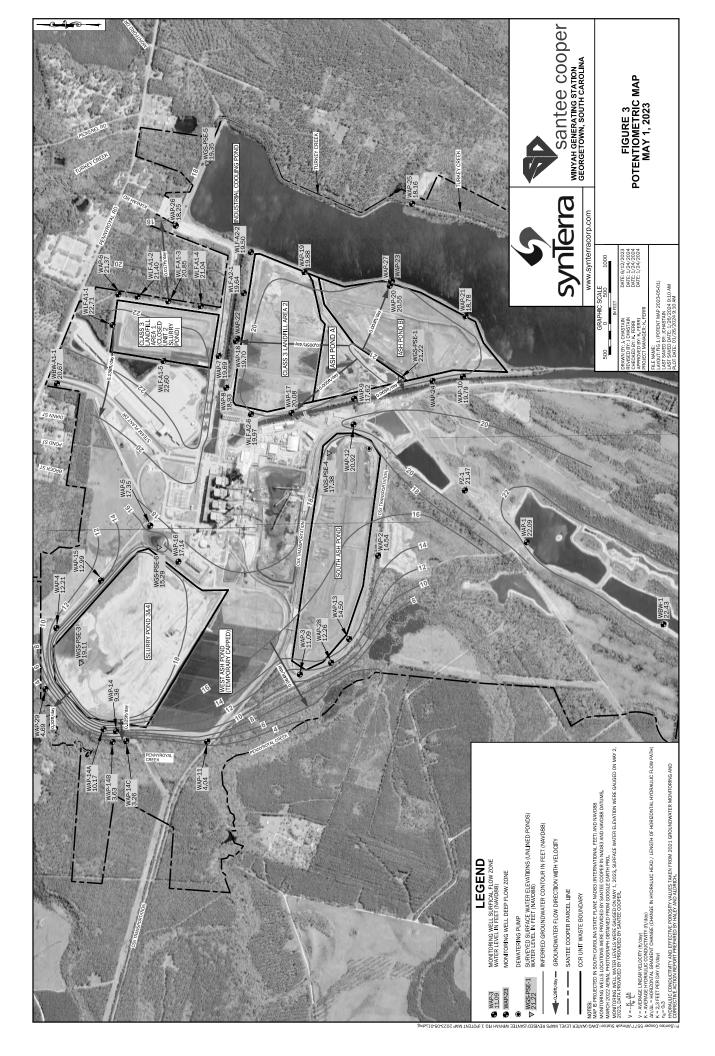
^{1.} All groundwater samples collected from the monitoring wells for Detection Monitoring in 2023 for the constituents listed in Appendix III of the EPA CCR Rule (40 CFR) were analyzed by South Cardification and Partice (20 CFR). GEL Laboratories, Certification # 10120), Test America Laboratories inc. Savannah (Certification # 98001), Rogers & Callcot, Inc. (Certification # 23105001), and Pace Analytical Services LLC (Certification # 99030).
2. All Background and downgradient compliance wells have been sampled to meet § 257.94.

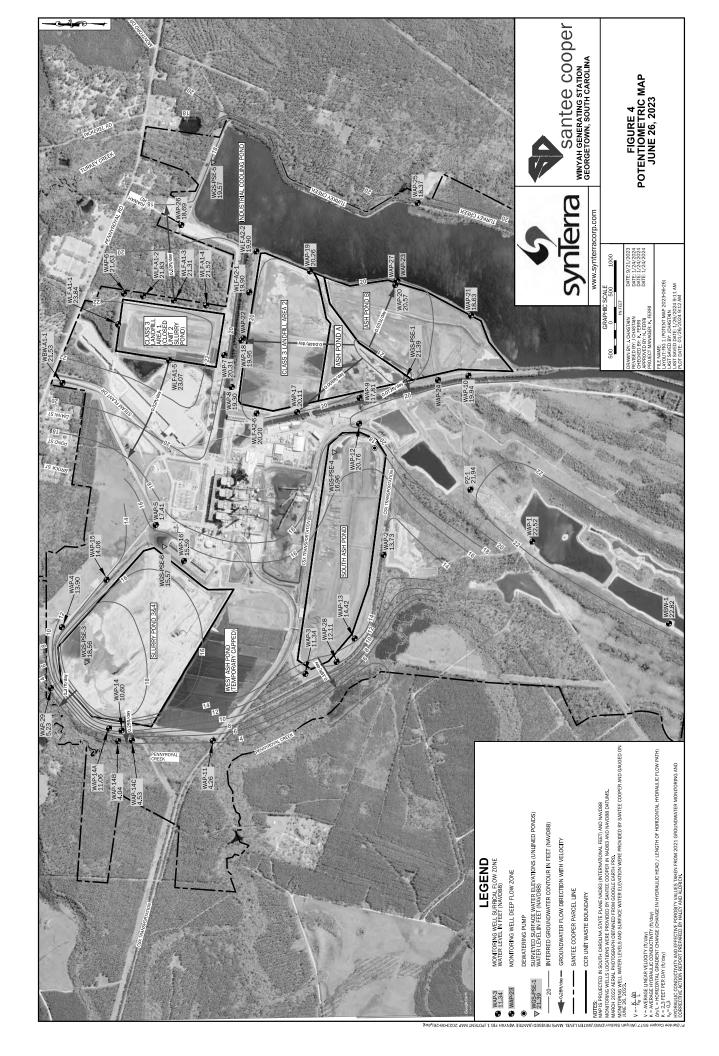
Notes:

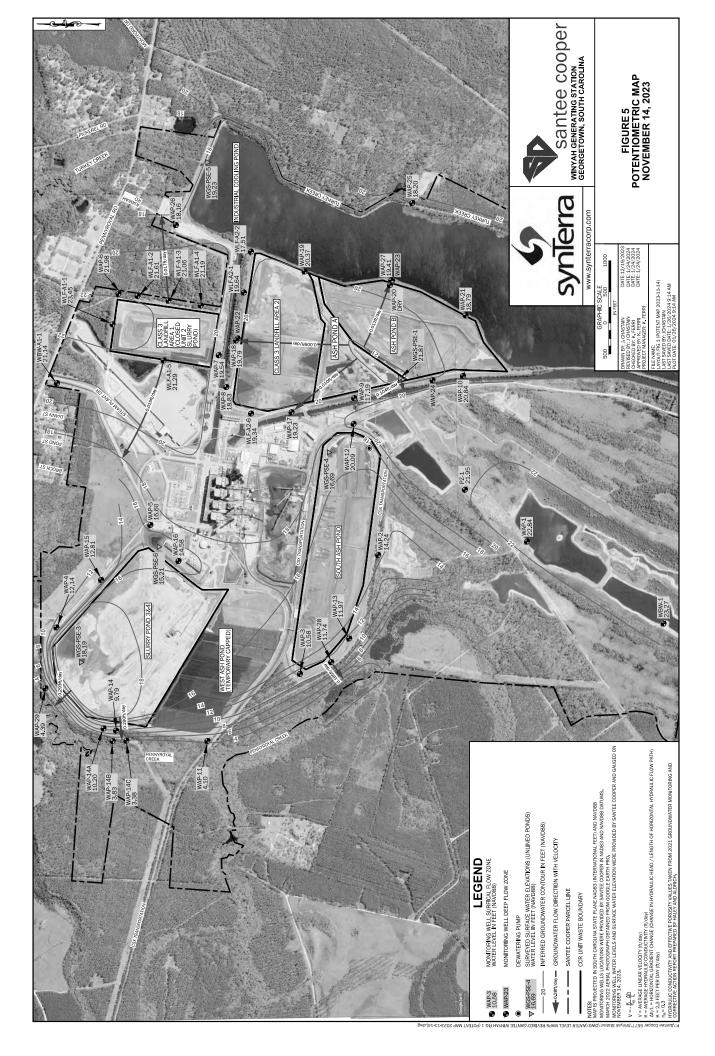
^{3.} Due to challenges with laboratory delays, all groundwater samples were not analyzed by a single laboratory. This accounts for the majority of the reporting limit variability. Matrix interference also contributed to variable RLs.
4. Depth to groundwater is measured below the top of the casing (btoc) to the water surface. Elevation is shown relative to mean sea level (msl).

Table 2
Winyah Generating Station
2023 Synoptic Water Levels for Groundwater Monitoring Wells


1				Water Levels fo			- 1 1		
	1		2/13/2023		- 5/8/2023		7/19/2023	4th Event - 1	1
	Top of Casing	Depth to	Groundwater						
Well Name	Elevation	Groundwater	Elevation	Groundwater	Elevation	Groundwater	Elevation	Groundwater	Elevation
	(ft msl) ²	(ft btoc) ²	(ft msl) ²						
WBW-1	31.97	9.04	22.93	9.54	22.43	9.15	22.82	8.70	23.27
PZ-1	31.25	8.25	23.00	9.78	21.47	9.31	21.94	9.30	21.95
WAP-1	29.44	6.31	23.13	7.35	22.09	6.92	22.52	6.60	22.84
WAP-2	23.69	8.49	15.20	9.15	14.54	9.96	13.73	9.45	14.24
WAP-3	14.56	6.56	8.00	8.34	6.22	8.09	6.47	8.85	10.58
WAP-4	20.34	5.37	14.97	8.13	12.21	6.44	13.90	8.20	12.14
WAP-5 ¹	26.25	7.97	18.28	8.90	17.35	8.84	17.41	9.65	16.60
WAP-6 ¹	30.98	8.82	22.16	9.61	21.37	9.35	21.63	9.00	21.98
WAP-7	29.94	8.47	21.47	10.25	19.69	9.63	20.31	10.40	19.54
WAP-8 ¹	30.38	10.20	20.18	11.45	18.93	11.08	19.30	11.55	18.83
WAP-9	28.04	9.55	18.49	10.42	17.62	10.23	17.81	10.85	17.19
WAP-10	26.11	5.27	20.84	6.32	19.79	6.17	19.94	6.85	19.26
WAP-11 ¹	9.55	3.86	5.69	5.51	4.04	5.29	4.26	5.45	4.10
WAP-12	30.84	8.08	22.76	9.92	20.92	10.08	20.76	10.75	20.09
WAP-13	21.97	6.58	15.39	7.47	14.50	7.55	14.42	10.00	11.97
WAP-14	14.69	3.76	10.93	5.33	9.36	4.09	10.60	4.90	9.79
WAP-14A	13.95	2.19	11.76	3.78	10.17	2.89	11.06	3.75	10.20
WAP-14B	9.23	3.92	5.31	5.60	3.63	5.19	4.04	5.40	3.83
WAP-14C	13.88	7.12	6.76	10.62	3.26	9.35	4.53	10.50	3.38
WAP-15	20.41	5.52	14.89	7.42	12.99	6.35	14.06	7.60	12.81
WAP-16	25.08	6.89	18.19	7.94	17.14	9.49	15.59	10.50	14.58
WAP-17	26.88	6.88	20.00	6.80	20.08	6.77	20.11	7.65	19.23
WAP-18	31.04	10.23	20.81	11.34	19.70	11.09	19.95	11.25	19.79
WAP-19	43.39	22.27	21.12	23.51	19.88	23.13	20.26	23.02	20.37
WAP-20 ⁴	43.08	22.75	20.33	22.53	20.55	22.51	20.57	-	-
WAP-21	43.06	22.85	20.21	24.28	18.78	24.43	18.63	24.27	18.79
WAP-22	30.48	9.61	20.87	12.08	18.40	10.37	20.11	10.75	19.57
WAP-23	43.23	22.78	20.45	24.71	18.52	24.01	19.22	24.33	18.90
WAP-24	28.77	8.24	20.53	9.02	19.75	8.91	19.86	9.45	19.32
WAP-25	27.10	8.02	19.08	8.94	18.16	8.73	18.37	8.90	18.20
WAP-26	27.56	8.03	19.53	9.31	18.25	8.87	18.69	9.40	18.16
WAP-27	43.25	22.40	20.85	24.24	19.01	23.66	19.59	23.77	19.41
WAP-28	23.09	10.19	12.90	10.83	12.26	10.98	12.11	11.35	11.74
WAP-29	12.34	5.30	7.04	7.65	4.69	7.11	5.23	7.95	4.39
WBW-A1-1	28.14	5.59	22.55	7.47	20.67	6.61	21.53	7.00	21.14
WLF-A1-1	41.35	16.85	24.50	18.64	22.71	17.51	23.84	17.90	23.45
WLF-A1-2	29.21	5.98	23.23	7.81	21.40	7.38	21.83	7.60	21.61
WLF-A1-3	28.31	5.16	23.15	7.46	20.85	7.00	21.31	7.25	21.06
WLF-A1-4	28.24	4.81	23.43	7.20	21.04	6.72	21.52	7.05	21.19
WLF-A1-5	37.64	14.91	22.73	15.04	22.60	14.57	23.07	16.35	21.29
WLF-A2-1	30.04	8.91	21.13	10.40	19.64	10.14	19.90	10.40	19.64
WLF-A2-2	27.56	6.48	21.08	8.06	19.50	7.66	19.90	10.05	17.51
WLF-A2-6	35.14	14.34	20.80	15.17	19.97	14.94	20.20	15.80	19.34
WGS-PSE-1 ³	-	-	22.55	-	21.22	-	21.43	-	21.87
WGS-PSE-2 ³	-	-	33.01	-	32.74	-	32.71	-	32.76
WGS-PSE-3 ³	-	-	20.54	-	19.11	-	17.93	-	18.19
WGS-PSE-4 ³	-	-	17.22	-	17.38	-	15.84	-	16.69
WGS-PSE-5 ³	-	-	20.09	-	19.35	-	19.27	-	19.23
WGS-PSE-6 ³	-	_	16.52	_	15.29	-	NA	-	15.21


Notes:


- 1. Additional groundwater monitoring wells used for development of potentiometric maps. These wells monitor groundwater constituent concentration under the SC DHEC Industrial Wastewater Permit #SC0022471 and are not used for CCR constituent concentrations.
- 2. Depth to Groundwater is measured below the top of the casing (btoc) to the water surface. The Top of Casing Elevation and GW Elevation are shown relative to mean sea level (msl).
- 3. Pond surface elevations (PSE) were collected ot aid in the potentiometric surface interpretation. No surface water present at PSE-6 during 3rd event, so unable to collect surface water elevation.
- 4. Unable to collect groundwater data during November event due to the monitoring well going dry.



HALEY & ALDRICH, INC. 400 Augusta Street Suite 100 Greenville, SC 29601 864.214.8750

TECHNICAL MEMORANDUM

July 26, 2023

File No. 132892-100-006-02

SUBJECT: Statistical Evaluation of the February 2023 Semiannual Groundwater Detection

Monitoring Data, Winyah Generating Station, Class 3 Landfill Area 2

Pursuant to Title 40 Code of Federal Regulations (40 CFR) §257.93 and §257.94 (Rule), this memorandum summarizes the statistical evaluation of the groundwater analytical results obtained for the February 2023 semiannual detection monitoring event for the Winyah Generating Station (WGS) Class 3 Landfill Area 2. Data for this groundwater sampling event were validated on May 30, 2023 by Santee Cooper.

BACKGROUND

The results of analytical testing performed on samples collected from the groundwater monitoring network were evaluated to determine whether there has been a statistically significant increase (SSI) over background for one or more detection monitoring constituents. The Class 3 Landfill Area 2 is a new landfill located in the footprint of the excavated Ash Pond A; the first receipt of waste was March 28, 2022. As the elevated levels of detected Appendix III constituents were identified downgradient of Class 3 Landfill Area 2 prior to the placement of CCR into the unit, a successful alternate source demonstration (ASD) was prepared 90 days after SSIs were identified. The ASD supported that Appendix III constituent concentrations downgradient of Class 3 Landfill Area 2 are attributable to the former, colocated Ash Pond A.

Using intrawell evaluations, sample data from the February 2023 semiannual groundwater sampling event for the downgradient monitoring wells were compared to the background limits. The results of the groundwater detection monitoring statistical evaluation are discussed below and provided in Table I.

STATISTICAL EVALUATION

The Rule provides four specific options to statistically evaluate whether water quality downgradient of the CCR unit (§257.93(f) (1-4)) represents a SSI of Appendix III parameters compared to background groundwater quality of the CCR Unit. The selected statistical method used for these evaluations is the upper prediction limit (UPL). This statistical method was certified by Haley & Aldrich, Inc. on December 16, 2021.

An intrawell evaluation was used for statistical analysis, which compares the most recent values from downgradient compliance wells against a background dataset composed of upgradient well data. The results of analytical testing performed on samples collected from the groundwater monitoring network were evaluated to determine whether a SSI exists for Appendix III constituents.

South Carolina Public Service Authority (Santee Cooper) July 26, 2023 Page 2

In order to statistically evaluate the analytical results, the prediction interval procedure uses a concentration limit for each constituent that is established from the distribution of the background data with a specified confidence level (e.g., 95 percent). The upper endpoint of a concentration limit is called the upper prediction limit (UPL). Depending on the background data distribution, parametric or non-parametric prediction limit procedures are used to evaluate groundwater monitoring data using this method. Parametric prediction limits use normally distributed data or normalized data via a transformation of the sample background data. If the data are non-normal and a transformation is not indicated, non-parametric procedures (order statistics or bootstrap methods) are used to calculate the prediction limit. If all the background data are non-detect, a maximum reporting limit (RL) may serve as an approximate UPL.

After testing for outliers, the UPLs were calculated from the background dataset to evaluate whether removal of data was necessary based on sampling or measurement discrepancies. Both visual and statistical outlier tests for the background data were performed. A visual inspection of the data was performed using distribution plots for the downgradient sample data. Based on our review, no sample data were identified as outliers that warranted removal from the dataset.

The groundwater analytical results for each sampling event from the background sample location (WAP-01 and WBW-01) were combined to calculate the UPL for each detected Appendix III constituent. The variability and distribution of the pooled dataset were evaluated to determine the method for UPL calculation.

Per the document Statistical Analysis of Groundwater Monitoring Data at RCRA Facilities, Unified Guidance, March 2009 (the Unified Guidance), background concentrations were based on statistical evaluation of analytical results collected through February 2023 and updated in the Chemstat output. The background dataset will be updated in Table 1 again after four additional data points are collected (second semiannual event of 2025) in accordance with the Unified Guidance.

TREND ANALYSIS

Mann-Kendall trend analyses were performed on datasets of sufficient sample size. Results of the trend analysis are included on Table I. In summary, approximately 96 percent of trends analyzed are identified as stable or decreasing for the compliance wells, whereas 2 percent of compliance wells demonstrated increasing trends. It is important to note that increasing trends are not part of the comparison criteria for triggering a SSI. Trend analysis will continue to be used to monitor and evaluate concentrations in the context of overall site conditions.

RESULTS OF DETECTION MONITORING DOWNGRADIENT STATISTICAL COMPARISONS

The sample concentrations from the downgradient wells for each of the detected Appendix III constituents from the February 2023 detection monitoring event were compared to their respective

¹ Visual and statistical outlier tests for background data were performed using Chemstat 6.3.0.0 and U.S. Environmental Protection Agency's ProUCL 5.1 software.

South Carolina Public Service Authority (Santee Cooper) July 26, 2023 Page 3

background concentration (Table I). A sample concentration greater than the UPL is considered to represent a SSI. Intrawell comparisons were used for all downgradient wells and constituents.

SSIs were identified for the following Appendix III constituents:

- Calcium SSI at WLF-A2-6
- Chloride SSI at WLF-A2-6
- Sulfate SSI at WAP-19
- pH SSI at WAP-9
- Total Dissolved Solids (TDS) SSIs at WAP-09 and WAP-19

Groundwater monitoring wells WLF-A2-1 and WLF-A2-2 have been incorporated into this statistical analysis. WLF-A2-1 and WLF-A2-2 were installed to provide additional groundwater monitoring for new Class 3 Landfill Area 2 cells and baseline sampling was completed in 2022. The February 2023 sampling event was the first detection monitoring event for these two new wells. No SSIs were identified for WLF-A2-1 or WLF-A2-2.

As noted in the 2023 ASD, the results are not unexpected because the Class 3 Landfill Area 2 is located within the footprint of Ash Pond A, which is currently undergoing corrective action and closure. Notably, four constituents with SSIs were identified during the first semimanual event of 2023 (calcium, chloride, sulfate, and TDS), whereas during the second semiannual event of 2022, six were identified (boron, calcium, chloride, fluoride, sulfate, and TDS).

Ash Pond A was an unlined CCR impoundment that operated for over 40 years. As supported by the 2023 ASD, the former unit is contributing to the elevated concentrations. As such, the Class 3 Landfill Area 2 will remain in detection monitoring.

Enclosures:

Table I – WGS Class 3 Landfill Area 2 February 2023 Semiannual Detection Monitoring Data

https://haleyaldrich.sharepoint.com/sites/SanteeCooper2/Shared Documents/0132892.Santee Cooper CCR Consulting Service/0_Winyah Generating Station/Statistical Analysis/2023-01/Class 3 Landfill Area 2/client draft/Client draft 2/2023-0726 HAI WGS Class III LF A2 Detection Monitoring Stats F.docx

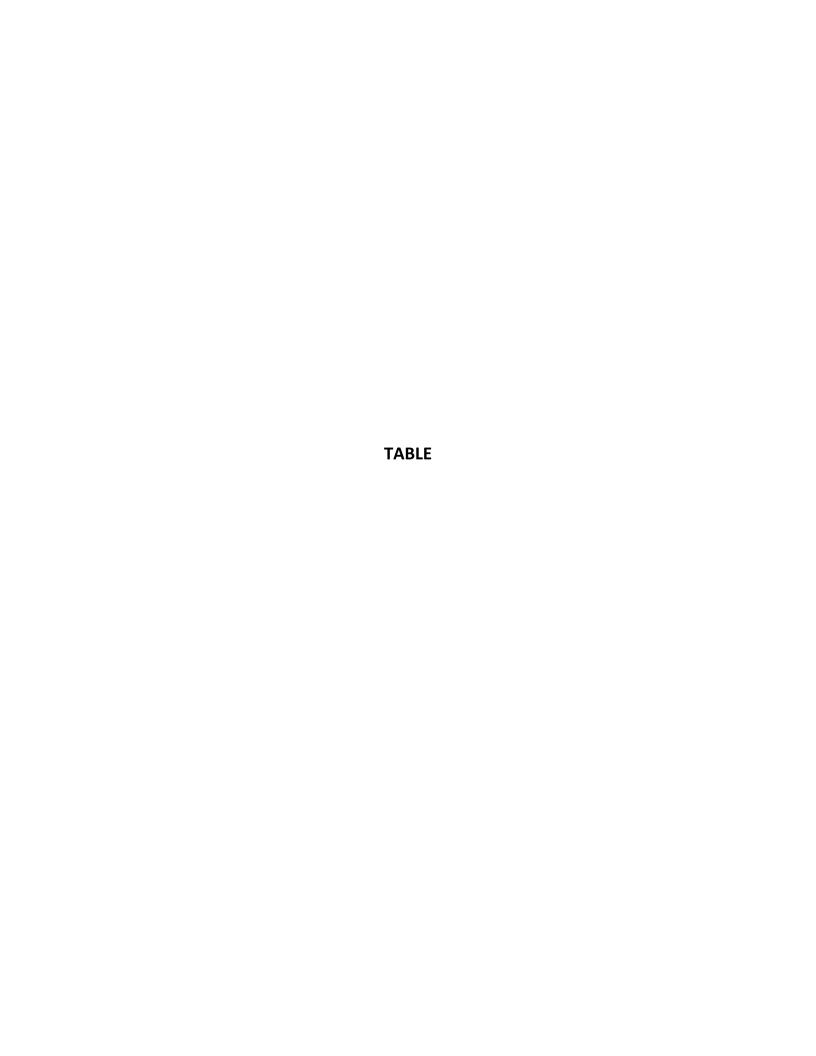


TABLE I WGS CLASS 3 LANDFILL AREA 2 FEBRUARY 2023 SEMIANNUAL DETECTION MONITORING SUMMARY

	SS			No	No	No	No	No	No	No			No	No	No	No	No	No	Yes			No	No	No	No	No	No	Yes			No	No	oN :	ON .	No No	No				Yes	No	No	oN :	NO NO	o N	
Intra-well Analysis	Background Limit Upper Prediction Limit) ug/L			6250.84	14200	11214.7		8841.93	8497.58	740			453000		818016	970000	491000		148725				760235		383377	491000	323422	19500				320	2836.06	230	100	402.712				5.52, 6.27	5.57, 6.53	5.21, 6.8	5.5, 7.06	3.25, 7.1	4.95, 6.55 5.92, 7.01	
Int	Background Limit Background Limit (Upper Prediction (Upper Prediction Limit) ug/L			6.25	14.20		6.36	8.84	8.50	0.74			453.00	569.53	818.02	970.00	491.00	323.42	148.73			229.00	760.24	260.00	383.38	491.00	323.42	19.50			0.11	0.32	2.84	0.58	0.10	0.40				5.52, 6.27	5.57, 6.53	5.21, 6.80	5.50, 7.06	3.25, 7.10	4.95, 6.55 5.92, 7.01	
	B Detect? (L			>	>-	>	>-	>	>-	>			>	>-	>-	>	>-	>-	>-			>	>	>	>-	>-	>-	>			z	z	2 :	> :	zz	>				>	>-	>	> >	> >	> >	
	January 2023 Data			2.63	4.33	1.53	4.20	2.80	2.33	0.25			203.00	260.00	94.40	601.00	138.00	191.00	166.00			163.00	189.00	47.10	45.50	142.00	98.90	32.70			0.10	0.10	0.10	0.21	0.10	0.11				6.34	6.34	5.47	6.49	4.77	5.99	
	Trend	Stable	Stable	Decrease	Decrease	Stable	Stable	Stable	Stable	Stable		Stable	Stable	Decrease	Decrease	Stable	Stable	Stable	Stable	Increase	Increase	Decrease	Decrease	Stable	Decrease	Stable	Stable	Increase	NA	NA	Stable	Stable	Stable	Increase	AN AN	Stable		Stable	Stable	Increase	Stable	Stable	Stable	Decrease	Stable	
	Outlier Removed	- Q	No	No	No	No	No	No	No	No		0 N	No	No	No	No	No	No	No	ON	No	No	No	No	No	No	No	No	No	No	No	No	oN :	NO S	0 N	No		No	No	No	No	No	oN :	NO No	No No	
	Outlier Presence	No.	Yes	Yes	Yes	No	Yes	No	No	Yes		Yes	Yes	Yes		Yes	No	No	Yes	, A	8	9	Yes	No	N _o	N	No	oN N	No.	No	No	No	οN ;	res	0 Z	No.			Yes	Yes	No	No.	Yes	S 8	No	
	Number of Non-Detection Exceedances	0	0	0	0	0	0	0	0	0		0	0	0	0	0	0	0	0	c		0	0	0	0	0	0	0	0	0	0	0	0	5 0	0	0		0	0	0	0	0	0	0	0	
	Number of Detection Exceedances	0	0	0	0	0	0	0	0	0	,	0	0	0	0	0	0	0	0	c	. 0	0	0	0	0	0	0	0	0	0	0	0	0	5 0	0	0		0	0	0	0	0	0	0 0	0 0	
	Detection Exceedances (Y/N)	z	z	z	z	z	z	z	z	z		zz	z	z	z	z	z	z	z	2	z	z	z	z	z	z	z	z	z	z	z	z	z	z :	zz	z		z	z	z	z	z	z :	2 2	zz	
	Report Result Unit	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L		mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	1/200	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	1/8	mg/L	mg/L		pH units	pH units	pH units	pH units	pH units	pH units	pH units	pH units	
	CCR MCL/RSL	A	Ā	NA	AM	NA	NA	NA	NA	NA		ž ž	NA	NA	NA	NA	NA	NA	NA	VIV	NA	A	NA	NA	NA	WA	NA	NA	4	4	4	4	4	4 .	4 4	4		NA	NA	NA	AA	NA :	AN :	A N	A A	
	Coefficient of Variance	0.7475	0.3356	0.1655	0.4925	0.5655	0.2192	0.5056	0.4561	0.3026		1.556	0.4043	0.3335	0.4958	0.4381	0.568	0.2711	0.0916	0.4913	0.3134	0.3268	0.6506	0.8977	0.5197	0.7969	0.5399	0.7453	1.209E-08	0.1053	0.02225	0.4261	0.6671	0.6425	0.3505 2.634E-08	0.2984		0.06318	0.1759	0.02467	0.02311	0.06914	0.03599	0.08343	0.02635	
	Standard Deviation	I (mg/L) 0.02193	0.01015	0.8181	2.625	2.55	0.8748	1.405	1.305	0.1198	aı (mg/L)	91.57 5.78	67.38	100.2	183.5	165.8	90.71	45.73	12.11	2 144	2.553	38.97	180	84.05	85.95	156	52.46	9.131	1.209E-09	0.01089	0.002236	0.0627	0.7064	0.1481	0.0392 2.634E-09	0.06665	H units)	0.2613	0.8223	0.1462	0.1401	0.4337	0.2257	0.4287	0.1883	
	Variance	CCR Appendix-III: Boron, Total (mg/L) 0.085 0.0004809 0.021	0.000103	0.6693	6.891	6.501	0.7653	1.974	1.704	0.01435	CCR Appendix-III: Calcium, 10tal (mg/L)	33.41	4540	10040	33660	27480	8229	2091	166 146.8 1	4 506	6.518	1519	32410	7065	7387	24330	2752	32.7 83.38 9	1.461E-18	0.0001187	0.000005	0.003931	0.4991	0.02193	0.001536 6.939E-18	0.004442	CCR Appendix-III: pH, Field (pH units)	0.06829	0.6762	0.02138	0.01964	0.1881	0.05093	0.1838	0.02857	
	Maximum Detect	CCR Appendi	0.055	2.8	14.2	8.2	6.19	5.5	5.04	0.74	CCK Appendix	26.9	453	280	870	970	353	238	166	10.5	13.4	229	692	260	375	491	188	32.7	0.1	0.14	0.11	0.32	2.51	9:0	0.23	0.31	CCR Appendi	4.77	7.61	6.34	6.35	8.9	6.81	5.7	6.6	
	95th Percentile	0.076	0.0541	5.736	899'6	8.2	4.847	4.89	4.87	0.564		10.45	202.9	431.8	545.1	637.9	314.5	233	149.5	2142	11.79	203.1	621.8	234.8	253.5	477.5	165	56.49	0.1	0.1305	0.1005	0.25	2.026	0.381	0.1	0.3045		4.561	6.143	6.147	6.34	6.73	6.49	5.66	5.39	
	50th Percentile (Median)	0.019	0.0269	5.2	4.615	4.355	4.05	2.66	2.33	0.375	i.	2.15	148.5	306	360	333	128	182	130.5	4 34	8.47	108	244	29	193	139	101	6.595	0.1	0.1	0.1	0.11	1.13	0.1/5	0.1	0.22		4.11	4.58	5.92	6.04	6.37	6.32	5.18	6.425	
	Mean	0.0293	0.0302	4.94	5.33	4.51	3.99	2.78	2.86	0.396		3.72	167	301	370	378	160	169	132	9 4	8.15	119	277	93.6	165	196	97.2	12.3	0.1	0.104	0.101	0.147	1.06	0.231	0.1	0.223		4.14	4.68	5.93	90.9	6.27	6.27	5.14	5.77	
	Range of Non- Detect	0.015-0.075										0.5-0.5																	0.1-0.1	0.1-0.1	0.1-0.1	0.1-0.1	0.1-0.1	0.1-0.1	0.1-0.1											
	Percent Ra Non-Detects	47%		%0	%0	%0	%0	%0	%0	%0	, 1000	9%	%0	%0	%0	%0	%0	%0	%0	700	%0	%0	%0	%0	%0	%0	%0	%0	95%	%06	%56	43%	20%	20%	100%	%0		%0	%0	%0	%0	%0	%0 %	%n 0%	% %	
	Frequency of Detection	10/19	19/19	17/17	20/20	18/18	18/18	11/11	11/11	12/12		70/22	22/22	20/20	19/19	19/19	11/11	11/11	12/12	10/10	22/22	22/22	20/20	19/19	19/19	11/11	11/11	12/12	1/20	2/20	1/20	12/21	16/20	16/20	2/11/	12/12		20/20	22/22	22/22	21/21	21/21	21/21	11/11	11/11	
	Location Id	WBW-1	WAP-01	WAP-09	WAP-17	WAP-18	WAP-19	WLF-A2-1	WLF-A2-2	WLF-A2-6		WBW-1	WAP-09	WAP-17	WAP-18	WAP-19	WLF-A2-1	WLF-A2-2	WLF-A2-6	MADAK. 1	WAP-01	WAP-09	WAP-17	WAP-18	WAP-19	WLF-A2-1	WLF-A2-2	WLF-A2-6	WBW-1	WAP-01	WAP-09	WAP-17	WAP-18	WAP-19	WLF-A2-1	WLF-A2-6		WBW-1	WAP-01	WAP-09	WAP-17	WAP-18	WAP-19	WLF-A2-1	WLF-A2-2 WLF-A2-6	

JULY 2023 HALEY & ALDRICH, INC.

TABLE I WGS CLASS 3 LANDFILL AREA 2 FEBRUARY 2023 SEMIANNUAL DETECTION MONITORING SUMMARY

SS				No	No	No	Yes	No	No	No				Yes	No	No	Yes	No	No	No
Background Limit (Upper Prediction Limit) ug/L				357000	1810000	1662010	1228420	1134040	942939	138347				1112200	3403490	3045880	2321830	2125000	2205370	8156/16
Background Limit (Upper Prediction Limit) mg/L				357.00	1810.00		1228.42	1134.04	942.94	138.35					3403.49	3045.88	2321.83	2125.00		015.55
Detect?				>-	>	>-	>-	>	>	>-				>-	>-	>-	>	>-	>-	>
January 2023 Data				263.00	663.00	232.00	1540.00	278.00	342.00	133.00				1168.00	1301.00	521.20	2562.00	800.00	1012.00	00 303
Trend		Increase	Increase	Stable	Decrease	Decrease	Stable	Stable	Stable	Stable		Increase	Stable	Stable	Decrease	Decrease	Stable	Stable	Stable	Chahla
Outlier		No	No	N	No	No	No	No	No	No		No	No	No	No	N N	No	No	No	
Outlier Presence		Yes	No	Yes	Yes	No	Yes	No	No	No		Yes	No	Yes	Yes	No	Yes	No	No	
Number of Non-Detection Exceedances		0	0	0	0	0	0	0	0	0		0	0	0	0	0	0	0	0	c
Number of Detection Exceedances		0	0	0	0	0	0	0	0	0		0	0	0	0	0	0	0	0	c
Detection Exceedances (Y/N)		z	z	z	z	z	z	z	z	z		z	z	z	z	z	z	z	z	2
Report Result Unit		mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L		mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	1/200
CCR MCL/RSL		NA	ΝΑ	NA	NA	NA	NA	NA	NA	NA		NA	NA	NA	NA	AN	NA	Ν	NA	VN
Coefficient of Variance		0.2949	0.7112	0.4109	0.4097	0.478	0.2777	0.5449	0.4031	0.5744		1.195	0.718	0.4433	0.3159	0.3609	0.1868	0.6043	0.3676	0.104
Standard Deviation	(mg/L)	1.736	8.998	68.17	312.8	336.6	222.9	184.1	138.7	31.47	olids (TDS) (mg/L)	68.12	46.63	416.5	499.3	531.3	303.7	583.1	317.8	50.00
Variance	endix-III: Sulfate	3.015	80.97	4647	97840	113300	49700	33910	19240	990.1	otal Dissolved S	4640	2174	173500	249300	282300	92230	340000	101000	3370
Maximum Detect	CCR App	10.9	33.6	357	1810	1160	1540	739	552	133	Appendix-III: T	292.5	234	2745	3140	2182	2562	2125	1281	5 2 2
95th Percentile		10.02	27.64	262.5	1174	1070	1018	299	540.5	102.5	SS	178.2	131.5	1161	2044	2034	2171	1990	1264	633.1
50th Percentile (Median)		5.34	9.385	138.5	715.5	797	775	279	342	50.45		32.9	51.25	833	1615	1645	1582	718.8	892.5	551.8
Mean		5.89	12.7	166	763	704	803	338	344	54.8		57	64.9	940	1580	1470	1630	365	865	022
Range of Non- Detect			2-2									25-33.3	100-100							
Percent Non-Detects		%0	14%	%0	%0	%0	%0	%0	%0	%0		17%	4%	%0	%0	%0	%0	%0	%0	760
Frequency of Detection		19/19	19/22	22/22	20/20	19/19	19/19	11/11	11/11	12/12		15/18	22/23	22/22	20/20	19/19	19/19	11/11	11/11	12/17
Location Id		WBW-1	WAP-01	WAP-09	WAP-17	WAP-18	WAP-19	WLF-A2-1	WLF-A2-2	WLF-A2-6		WBW-1	WAP-01	WAP-09	WAP-17	WAP-18	WAP-19	WLF-A2-1	WLF-A2-2	W/I E-A 2-6
	Frequency of Percent Range of Non-Mean (Median) Percentile Detect (Median) Percentile (Median) Percentile Detect (Median) Percentile (Med	Frequency of Percent Range of Non-Detects Detect Non-Detection Non-Detects Detect Non-Detect Detect Non-Detect	Frequency of Percent Range of Non-Percent Range of	Fequency of Detection Percent Range of Non-Detection Mean Solth Percentile 95th Detection Maximum Detection Standard Detection Coefficient of Detection Mumber of Detection Number of Detection Number of Detection Outlier of Detection of Det	Frequency of Detection Percention Detection Mon-Detection Number of Detection Number of Detection (Upper Prediction) Number of Detection Number of Detection	Frequency of Peterent Range of Non-Peters Peterent Range of Non-Peters Peters Result Peters Peters	Frequency of Percent Range of Non-Percent Range of Non-Percent	Frequency of Percent Range of Non-Detection Non-Detectio	Frequency of Peterent Range of Non- Detection (Mean)	Frequency of Peterter Range of Mon-Peterter Rang	Frequency of Percent Range of Non-Percention Mon-Percent Range of Non-Percention Mon-Percent Range of Non-Percent Mon-Percent Mon-Percent	Frequency of Percent Percentic Perce	Frequency of Particular Range of Non- Maximum (Non-berted) (Non-berted	Percentic of Percent Percentic of Percen	Percentancy of Percental Range of Non-Detection Annahuran Range of Non-Detection Non-D	Frequency of Percent Range of Norm Percent R	Frequency of the first finite of Nov. No. 1 and	Proceedings Proceeding Pr	Prediction Pre	Protection Pro

HALEY & ALDRICH, INC. 400 Augusta Street Suite 100 Greenville, SC 29601 864.214.8750

TECHNICAL MEMORANDUM

December 19, 2023 File No. 132892-100-006-02

SUBJECT: Statistical Evaluation of the July 2023 Semiannual Groundwater Detection Monitoring

Data, Winyah Generating Station, Class 3 Landfill Area 2

Pursuant to Title 40 Code of Federal Regulations (40 CFR) §257.93 and §257.94 (Rule), this memorandum summarizes the statistical evaluation of the groundwater analytical results obtained for the February 2023 semiannual detection monitoring event for the Winyah Generating Station (WGS) Class 3 Landfill Area 2. Data for this groundwater sampling event were validated on September 20, 2023 by Santee Cooper.

BACKGROUND

The results of analytical testing performed on samples collected from the groundwater monitoring network were evaluated to determine whether there has been a statistically significant increase (SSI) over background for one or more detection monitoring constituents. The Class 3 Landfill Area 2 is a new landfill located in the footprint of the excavated Ash Pond A; the first receipt of waste was March 28, 2022. As the elevated levels of detected Appendix III constituents were identified downgradient of Class 3 Landfill Area 2 prior to the placement of CCR into the unit, a successful alternate source demonstration (ASD) was prepared 90 days after SSIs were identified. The ASD supported that Appendix III constituent concentrations downgradient of Class 3 Landfill Area 2 are attributable to the former, colocated Ash Pond A.

Using intrawell evaluations, sample data from the July 2023 semiannual groundwater sampling event for the downgradient monitoring wells were compared to the background limits. The results of the groundwater detection monitoring statistical evaluation are discussed below and provided in Table I.

STATISTICAL EVALUATION

The Rule provides four specific options to statistically evaluate whether water quality downgradient of the CCR unit (§257.93(f) (1-4)) represents a SSI of Appendix III parameters compared to background groundwater quality of the CCR Unit. The selected statistical method used for these evaluations is the upper prediction limit (UPL). This statistical method was certified by Haley & Aldrich, Inc. on December 16, 2021.

An intrawell evaluation was used for statistical analysis, which compares the most recent values from downgradient compliance wells against a background dataset composed of upgradient well data. The results of analytical testing performed on samples collected from the groundwater monitoring network were evaluated to determine whether a SSI exists for Appendix III constituents.

South Carolina Public Service Authority (Santee Cooper) December 19, 2023 Page 2

In order to statistically evaluate the analytical results, the prediction interval procedure uses a concentration limit for each constituent that is established from the distribution of the background data with a specified confidence level (e.g., 95 percent). The upper endpoint of a concentration limit is called the upper prediction limit (UPL). Depending on the background data distribution, parametric or non-parametric prediction limit procedures are used to evaluate groundwater monitoring data using this method. Parametric prediction limits use normally distributed data or normalized data via a transformation of the sample background data. If the data are non-normal and a transformation is not indicated, non-parametric procedures (order statistics or bootstrap methods) are used to calculate the prediction limit. If all the background data are non-detect, a maximum reporting limit (RL) may serve as an approximate UPL.

After testing for outliers, the UPLs were calculated from the background dataset to evaluate whether removal of data was necessary based on sampling or measurement discrepancies. Both visual and statistical outlier tests for the background data were performed. A visual inspection of the data was performed using distribution plots for the downgradient sample data. Based on our review, no sample data were identified as outliers that warranted removal from the dataset.

The groundwater analytical results for each sampling event from the background sample location (WAP-01 and WBW-01) were combined to calculate the UPL for each detected Appendix III constituent. The variability and distribution of the pooled dataset were evaluated to determine the method for UPL calculation.

Per the document Statistical Analysis of Groundwater Monitoring Data at RCRA Facilities, Unified Guidance, March 2009 (the Unified Guidance), background concentrations were based on statistical evaluation of analytical results collected through July 2023 and updated in the Chemstat output. The background dataset will be updated in Table 1 again after four additional data points are collected (second semiannual event of 2025) in accordance with the Unified Guidance.

TREND ANALYSIS

Mann-Kendall trend analyses were performed on datasets of sufficient sample size. Results of the trend analysis are included on Table I. In summary, approximately 87 percent of trends analyzed are identified as stable or decreasing for the compliance wells, whereas 4 percent of compliance wells demonstrated increasing trends. It is important to note that increasing trends are not part of the comparison criteria for triggering a SSI. Trend analysis will continue to be used to monitor and evaluate concentrations in the context of overall site conditions.

RESULTS OF DETECTION MONITORING DOWNGRADIENT STATISTICAL COMPARISONS

The sample concentrations from the downgradient wells for each of the detected Appendix III constituents from the July 2023 detection monitoring event were compared to their respective

¹ Visual and statistical outlier tests for background data were performed using Chemstat 6.3.0.0 and U.S. Environmental Protection Agency's ProUCL 5.1 software.

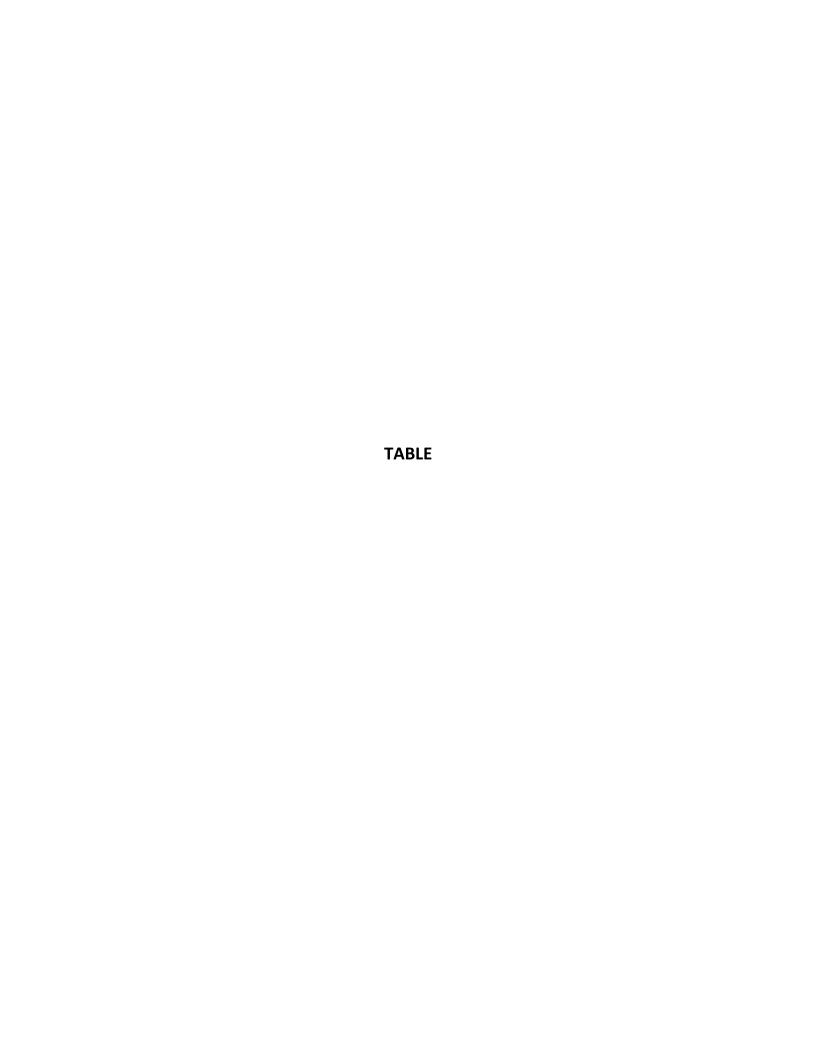
South Carolina Public Service Authority (Santee Cooper) December 19, 2023 Page 3

background concentration (Table I). A sample concentration greater than the UPL is considered to represent a SSI. Intrawell comparisons were used for downgradient wells and constituents.

SSIs were identified for the following Appendix III constituents:

- Calcium SSI at WLF-A2-6
- Chloride SSI at WLF-A2-6
- Sulfate SSI at WAP-19 and WLF-A2-6
- Total Dissolved Solids (TDS) SSIs at WAP-09 and WAP-19

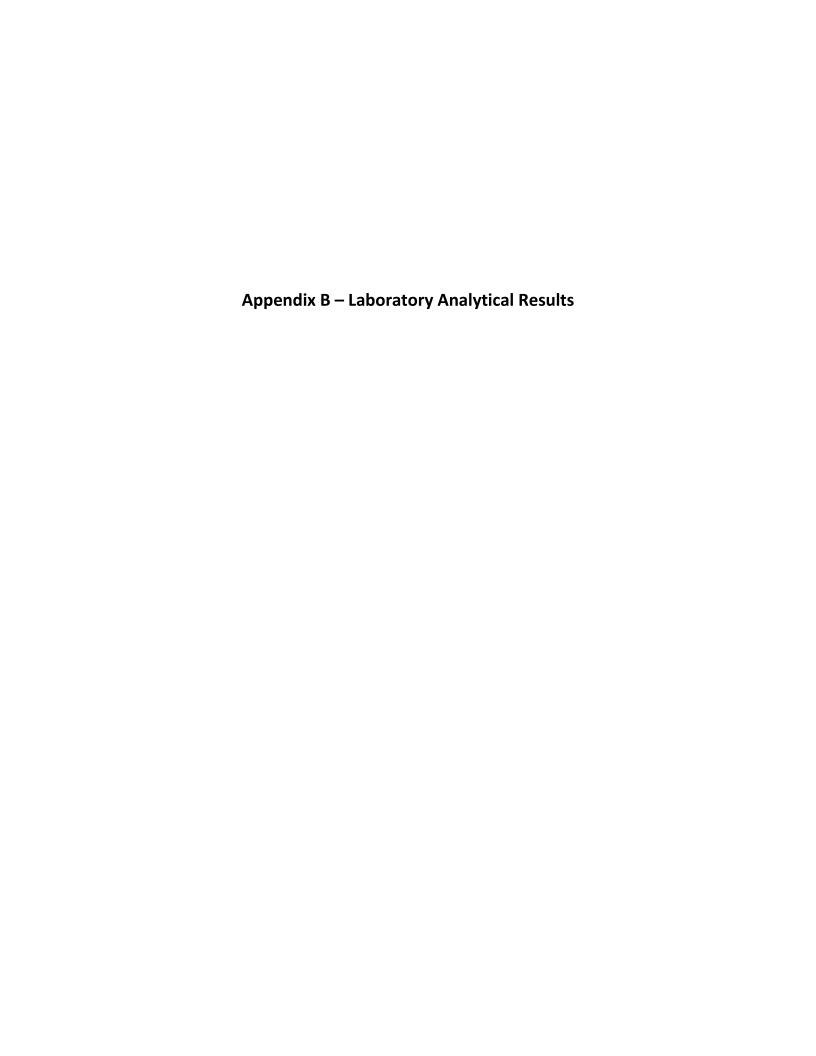
Groundwater monitoring wells WLF-A2-1 and WLF-A2-2 have been incorporated into this statistical analysis. WLF-A2-1 and WLF-A2-2 were installed to provide additional groundwater monitoring for new Class 3 Landfill Area 2 cells and baseline sampling was completed in 2022. The February 2023 sampling event was the first detection monitoring event for these two new wells. No SSIs were identified for WLF-A2-1 or WLF-A2-2.


As noted in the 2023 ASD, the results are not unexpected because the Class 3 Landfill Area 2 is located within the footprint of Ash Pond A, which is currently undergoing corrective action and closure. Ash Pond A was an unlined CCR impoundment that operated for over 40 years. As supported by the 2023 ASD, the former unit is contributing to the elevated concentrations. As such, the Class 3 Landfill Area 2 will remain in detection monitoring.

Enclosures:

Table I – WGS Class 3 Landfill Area 2 July 2023 Semiannual Detection Monitoring Data

https://haleyaldrich.sharepoint.com/sites/SanteeCooper2/Shared Documents/0132892.Santee Cooper CCR Consulting Service/0_Winyah Generating Station/Statistical Analysis/2023-10/Class 3 Landfill Area 2/client final/2023-1219_HAI_WGS_Class III LF A2_Detection Monitoring Stats_F.docx



	ISS				No	No	No	No	No	No	No				No	No	No	No	No	No	Yes				02	0 I	0 N	2 2	ON ON	NO	res			No	No	No.	S 8	2 S	S				No	No	No.	No I	S S	N ON
Intra-well Analysis	Background Limit (Upper Prediction Limit) ug/L				6250.84	14200		6355.05		8497.58					453000	569527	818016	970000	353000		148725				229000	760255	269377	404000	491000	323422	19500				320	2836.06	390	100	402.712				5.52, 6.27	5.57, 6.53	5.21, 6.8	5.5, 7.06	3.25, 7.1 4 95 6 55	5.92, 7.01
Int	Background Limit (Upper Prediction Limit) mg/L				6.25	14.20	11.21	6.36	8.84	8.50	0.74				453.00	569.53	818.02	970.00	353.00	361.28	148.73				229.00	760.24	260.00	202.20	491.00	323.42	19.50			0.11	0.32	2.84	0.58	0.10	0.40	2			5.52, 6.27	5.57, 6.53	5.21, 6.8	5.5, 7.06	3.25, 7.1	5.92, 7.01
	Detect?				>	>-	>	λ.		> :	>-				>	>-	>-	>	>	>	>				-	>	> >		> >	> 3	>-			>	z	z	- 2	2 2	>				>	>	>-	> 3	>- >	- >-
	July 2023 Data				3.25	4.01	1.19	4.32	1.19	2.32	0.31				232.00	253.00	92.60	639.00	62.20	189.00	193.00				166.00	105.00	54.40	23.30	17.30	94.80	48.00			0.10	0.10	0.10	0.18	0.10	0.12				6.11	6.33	5.28	6.48	5.52	6.21
	Trend		Stable	Stable	Decrease	Decrease	Stable	Stable	Stable	Stable	Stable		NA	Stable	Stable	Decrease	Decrease	Stable	Stable	Stable	Stable		Increase	Increase	Decrease	Decrease	Doctores	Decrease	Ceable	Stable	Increase	NA	NA	NA	Stable	Stable	N/A	NA	Stable		Stable	Stable	Increase	Increase	Stable	Stable	Decrease	Decrease
	Outlier Removed		No.	No	No	oN.		No	No	No 1			No	No	oN.	ON.	oN N	No	No	No	No		No	Θ.	0 2	Q 2	0 N	2 2	ON W	0 0		N.	No	No	No	Q :	ON ON	S 8	S		N _o		No	No	oN :	oN -M	S S	0 N
	Outlier Presence		No	No	No			Yes	No	No			Yes	Yes	Yes	Yes	Yes	Yes	No	No	Yes		Yes	No :	Les :	Yes	ON ON	02 2	ON ON	ON No		No	No	No	No	ON S	g 2	0 N	CZ		Yes		Yes	No	No.	Yes	o S	Yes
	Number of Non-Detection Exceedances		0	0	0	0	0	0	0	0 (0		0	0	0	0	0	0	0	0	0		0	0	5 6	0 0	0		5	0	0	0	0	0	0	0 (c		0	0	0	0	0	0	> 0	0
	Number of Detection Exceedances		0	0	0	0	0	0	0	0	0		0	0	0	0	0	0	0	0	0		0	0	5 0		5 0		5 6		9	0	0	0	0	0	0	, 0	c		0	0	0	0	0	0	0	0
	Detection Exceedances (Y/N)		z	z	z	z	z	z	z	z	z		z	z	z	z	z	z	z	z	z		z	z	2 :	2 2	2 2	2 2	2 2	2 2	z	z	z	z	z	z	2 2	2	z		z	z	z	z	z	z	2 2	: z
	Report Result Unit		mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L		mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L		mg/L	mg/L	1/8m	mg/L	mg/L	mg/r	7/8 _m	ng/r	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	1/8/L	mg/L	l/am	ō	pH units	pH units	pH units	pH units	pH units	pH units	pH units	pHunits
	CCR MCL/RSL		AN	NA	NA	A	NA	NA	NA	AN .	NA		NA	NA	NA	A	NA	NA	NA	NA	NA		NA	A :	¥ :	A S	A N	¥ 4	Y Y	A S	NA A	4	4	4	4	4 .		4	4		NA	NA	NA	NA	AN	AN S	AN AN	Y A
	Coefficient of Variance		0.7206	0.3303	0.1832	0.4888	0.5981	0.213	0.5351	0.4453	0.3011		4.258	1.462	0.3966	0.3294	0.5307	0.4383	9.0	0.2582	0.1494		0.4772	0.3082	0.524	0.6682	0.8976	0.5703	0.6702	0.8813	0.8812	1.178E-08	0.103	0.02172	0.4277	0.7102	0.00047	2.246E-08	0.3248		0.06259	0.1722	0.02491	0.02436	0.07599	0.03579	0.08186	0.02681
	Standard Deviation	il (mg/L)	0.022	0.01017	0.8885	2.575	2.592	0.8535	1.416	1.254	0.11/2	al (mg/L)	89.22	5.734	67.22	98.23	189.1	171.5	96'06	44	20.46	(mg/L)	2.201	2.542	59.3	1/9.4	87.78	167.4	50.02	50.03	13.22	1.178E-09	0.01065	0.002182	0.06201	0.7197	0.03753	2.246E-09	0.06995	H units)	0.2583	0.8042	0.1479	0.148	0.4733	0.2247	0.4233	0.1715
	Variance	CCR Appendix-III: Boron, Total (mg/L)	0.0004839	0.0001034	0.7895	6.63	6.719	0.7285	2.005	1.573		c-III: Calcium, Total (mg/L)	1961	32.88	4519	9649	35740	29430	8273	1936	418.4	CCR Appendix-III: Chloride (mg/L)	4.842	6.462	1545	32190	0//9	0007	747/0	2203	48 1/4./ 13.z	1.388E-18	0.0001133	0.000004762	0.003845	0.5179	0.02036	5.046E-18	0.004894	CCR Appendix-III: pH, Field (pH units)	0.0667	0.6467	0.02186	0.02191	0.224	0.05051	0.1792	0.02942
	Maximum Detect	CCR Append	0.085	0.055	5.8	14.2	8.2	6.19	5.5	5.04	0.74	CCR Appendix-	400	26.9	453	280	870	970	353	238	193	CCR Apper	10.5	13.4	677	60/	275	100	164	188	48	0.1	0.14	0.11	0.32	2.51	0.00	3	0.31	CCR Append	4.77	7.61	6.34	6.35	8.8	6.81	5.7	9.9
	95th Percentile		0.0755	0.05405	5.732	9.43	8.2	4.768	4.829	4.853	0.548		23.1	10.41	229.1	424	527	655.5	310.6	232.5	176.8		7.726	11.78	2.102	PT9	233.4	476.1	1.0/4	70.00	38.87	0.1	0.13	0.1	0.249	2	0.30	0.1	0.304		4.55	960'9	6.146	6:339	6.727	6.49	5 988	6.594
	50th Percentile (Median)		0.0205	0.02765	5.18	4.33	3.9	4.1	2.24	2.325	0.3/		0.5	2.2	149	303	359.5	336.5	118	183	131		4.36	8.63	108	657	174	102	12/	58.85	97/7	0.1	0.1	0.1	0.105	1.06	0.10	0.1	0.2		4.08	4.58	5.93	6.04	6.36	6.325	5.775	6.4
	Mean		0.0305	0.0308	4.85	5.27	4.33	4.01	2.65	2.82	0.389		21	3.92	169	298	356	391	152	170	137		4.61	8.25	171	697	91./	181	101	97	q	0.1	0.103	0.1	0.145	1.01	0.228	0.1	0.215		4.13	4.67	5.93	80'9	6.23	6.28	5.76	6.4
	Range of Non- Detect		0.015-0.075										0.5-0.5	0.5-0.5																		0.1-0.1	0.1-0.1	0.1-0.1	0.1-0.1	0.1-0.1	0.1-0.1	0.1-0.1										
	Percent Non-Detects		45%	%0	%0	%0	%0	%0	%0	%0	%		%09	%6	%0	%0	%0	%0	%0	%0	%0		%0	%0	80 8	% %	8 8	86	s 8	%0 80	%	95%	%06	%06	45%	24%	7670	100%	%0		%0	%0	%0	%0	%0	%0	% %	%0
	Frequency of Detection		11/20	20/20	18/18	21/21	19/19	19/19	12/12	12/12	13/13		8/20	21/23	23/23	21/21	20/20	20/20	12/12	12/12	13/13		20/20	23/23	23/23	21/21	20/20	02/02	12/12	12/12	13/13	1/21	2/21	2/21	12/22	16/21	17/21	2/12	13/13	Car fee	21/21	23/23	23/23	22/22	22/22	22/22	12/12	13/13
	Location Id		WBW-1	WAP-01	WAP-09	WAP-17	WAP-18	WAP-19	WLF-A2-1	WLF-A2-2	WLF-AZ-b		WBW-1	WAP-01	WAP-09	WAP-17	WAP-18	WAP-19	WLF-A2-1	WLF-A2-2	WLF-A2-6		WBW-1	WAP-01	WAP-09	WAP-1/	WAP-18	100 100	WLF-A2-1	WLF-A2-2	WLF-A2-6	WBW-1	WAP-01	WAP-09	WAP-17	WAP-18	WAR-19	WLF-A2-2	WIF-A2-6		WBW-1	WAP-01	WAP-09	WAP-17	WAP-18	WAP-19	WLF-A2-1	WLF-A2-6

TABLE I WGS CLASS 3 LANDFILL AREA 2 JULY 2023 SEMIANNUAL GROUNDWATER DETECTION MONITORING DATA

SS				No	No	No	Yes	No	No	Yes				Yes	No	No	Yes	No	No	No
Background Limit (Upper Prediction Limit) ug/L				357000	1810000	1662010	1228420	1134040	942939	138347				1112200	3403490	3045880	2321830	2125000	2205370	815646
Background Limit E (Upper Prediction (Limit) mg/L				357.00	1810.00	1662.01	1228.42	1134.04	942.94	138.35				1112.20	3403.49	3045.88	2321.83	2125.00	2205.37	815.65
Detect? (>-	>-	>-	>-	>-	>	>-				>	>-	>-	>-	>-	>	Υ.
July 2023 Data				296.00	651.00	232.00	1610.00	119.00	391.00	187.00				1136.00	1271.00	478.80	2818.00	306.20	950.00	685.00
Trend		Increase	Increase	Stable	Decrease	Decrease	Stable	Stable	Stable	Increase		Increase	Stable	Stable	Decrease	Decrease	Stable	Stable	Stable	Stable
Outlier Removed		No	No	No	No	Yes	No	No	No	No		No	No	No	No	No	No	No	No	No
Outlier Presence		Yes	No	Yes	Yes	Yes	Yes	No	No	Yes		Yes	Yes	Yes	Yes	No	Yes	No	No	Yes
Number of Non-Detection Exceedances		0	0	0	0	0	0	0	0	0		0	0	0	0	0	0	0	0	0
Number of Detection Exceedances		0	0	0	0	0	0	0	0	0		0	0	0	0	0	0	0	0	0
Detection Exceedances (Y/N)		z	z	z	z	z	z	z	z	z		z	z	z	z	z	z	z	z	Z
Report Result Unit		mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L		mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L
CCR MCL/RSL		NA	AA	NA	AA	A	NA	AA	NA	AA		AA	AA	NA	AA	A	NA	AA	NA	NA
Coefficient of Variance		0.4031	0.7133	0.4192	0.4035	0.5058	0.3348	0.5837	0.382	0.7306		1.178	0.6955	0.4314	0.3138	0.3957	0.2362	0.6457	0.3488	0.1156
Standard Deviation	(mg/L)	2.545	9:296	71.91	305.9	344.2	282.3	186.6	132.9	47.46	lids (TDS) (mg/L)	66.28	45.89	409	491.3	562.8	398.1	587.5	304	65.74
Variance	CCR Appendix-III: Sulfate (mg/	6.479	92.09	5172	93550	118500	79680	34820	17670	2252	CCR Appendix-III: Total Dissolved Solids	4394	2106	167300	241300	316800	158500	345200	92440	4321
Maximum Detect	CCR Appe	14.4	33.6	357	1810	1160	1610	739	552	187	Appendix-III: To	292.5	234	2745	3140	2182	2818	2125	1281	685
95th Percentile		11.07	30.77	292.7	1140	1065	1544	8.659	539.3	154.6	CCR	171.4	129.8	1165	1986	2026	2575	1977	1262	674.5
50th Percentile (Median)		5.34	9.57	144	692	760.5	787.5	278.5	346.5	53		33.3	52.5	838.6	1614	1589	1585	716.9	921.3	552.5
Mean		6.31	13.5	172	758	681	843	320	348	99		56.3	99	948	1570	1420	1690	910	872	569
Range of Non- Detect			2-2									25-33.3	100-100							
Percent Non-Detects		%0	13%	%0	%0	%0	%0	%0	%0	%0		16%	4%	%0	%0	%0	%0	%0	%0	%0
Frequency of Detection		20/20	20/23	23/23	21/21	20/20	20/20	12/12	12/12	13/13		16/19	23/24	23/23	21/21	20/20	20/20	12/12	12/12	13/13
Location Id		WBW-1	WAP-01	WAP-09	WAP-17	WAP-18	WAP-19	WLF-A2-1	WLF-A2-2	WLF-A2-6		WBW-1	WAP-01	WAP-09	WAP-17	WAP-18	WAP-19	WLF-A2-1	WLF-A2-2	WLF-A2-6

SANTEE COOPER ANALYTICAL SERVICES

CERTIFICATE OF ANALYSIS

LAB CERTIFICATION #08552

Sample # AF50602 Location: WGS well WLF-A2-1

Date: 12/07/2022

Sample Collector: WJK/BM

Loc. Code WLF-A2-1

Time: 10:07

Loc. Code VVLF-A2-1			Time: 10:07		
Analysis	Result	Units	Test Date	Analyst	Method
Arsenic	62.1	ug/L	12/13/2022	EUROFINS SAV	EPA 6020B
Barium	62.1	ug/L	12/13/2022	EUROFINS SAV	EPA 6020B
Beryllium	<0.5	ug/L	12/13/2022	EUROFINS SAV	EPA 6020B
Calcium	108.0	ug/L	12/13/2022	EUROFINS SAV	EPA 6010D
Cadmium	<0.5	ug/L	12/13/2022	EUROFINS SAV	EPA 6020B
Cobalt	2.0	ug/L	12/13/2022	EUROFINS SAV	EPA 6020B
Chromium	<5	ug/L	12/13/2022	EUROFINS SAV	EPA 6020B
Iron	1770	ug/L	12/13/2022	EUROFINS SAV	EPA 6010D
Lead	<2.5	ug/L	12/13/2022	EUROFINS SAV	EPA 6020B
Antimony	<5	ug/L	12/13/2022	EUROFINS SAV	EPA 6020B
Selenium	<2.5	ug/L	12/13/2022	EUROFINS SAV	EPA 6020B
Thallium	<1	ug/L	12/13/2022	EUROFINS SAV	EPA 6020B
Boron	1760	ug/L	01/04/2023	SJHATCHE	EPA 6010D
Lithium	27.8	ug/L	01/04/2023	SJHATCHE	EPA 6010D
Molybdenum	<5.00	ug/L	01/04/2023	SJHATCHE	EPA 6010D
Mercury	<0.2	ug/L	12/13/2022	EUROFINS SAV	EPA 7470
Zinc	<20	ug/L	12/13/2022	EUROFINS SAV	EPA 6020B
Copper	<5	ug/L	12/13/2022	EUROFINS SAV	EPA 6020B
Nickel	<5	ug/L	12/13/2022	EUROFINS SAV	EPA 6020B
Fluoride	<0.10	mg/L	12/15/2022	KCWELLS	EPA 300.0
Chloride	68.2	mg/L	12/15/2022	KCWELLS	EPA 300.0
Sulfate	279	mg/L	12/15/2022	KCWELLS	EPA 300.0
Total Dissolved Solids	550.0	mg/L	12/15/2022	SJBROWN	SM 2540C
Radium 226	1.31	pCi/L	12/19/2022	GEL	EPA 903.1 Mod
Radium 228	2.21	pCi/L	12/30/2022	GEL	EPA 904.0
Radium 226/228 Combined Calculation	3.52	pCi/L	01/09/2023	GEL	EPA 903.1 Mod
рН	5.13	SU	12/06/2022	MDG	

Comments:

Independent Laboratory Results: "GEL" - GEL Laboratories LLC - Lab ID # 10120; "Test America" - TestAmerica Laboratories, Inc. - Lab ID# 98001; "DavisBrown"- Davis & Brown Lab ID # 21117; "Shealy"- Shealy Environmental Services, Inc.- Lab ID# 32010 "ROGERSCALLCO"-Rogers & Callcot, Inc.- Lab ID # 23105001

Analysis Validated:

Validation date:

Linda Williams - Manager Analytical Services

SANTEE COOPER ANALYTICAL SERVICES

CERTIFICATE OF ANALYSIS

LAB CERTIFICATION #08552

Sample # AF50603 Location: WGS well WLF-A2-1 Date: 12/07/2022 Sample Collector: WJK/BM

Loc. CodeWLF-A2-1DUPTime: 10:12

Loc. Code VVLF-AZ-1	DUP		11me: 10:12		
Analysis	Result	Units	Test Date	Analyst	Method
Arsenic	69.0	ug/L	12/13/2022	EUROFINS SAV	EPA 6020B
Barium	67.5	ug/L	12/13/2022	EUROFINS SAV	EPA 6020B
Beryllium	<0.5	ug/L	12/13/2022	EUROFINS SAV	EPA 6020B
Calcium	106.0	ug/L	12/13/2022	EUROFINS SAV	EPA 6010D
Cadmium	<0.5	ug/L	12/13/2022	EUROFINS SAV	EPA 6020B
Cobalt	2.2	ug/L	12/13/2022	EUROFINS SAV	EPA 6020B
Chromium	<5	ug/L	12/13/2022	EUROFINS SAV	EPA 6020B
Iron	1670	ug/L	12/13/2022	EUROFINS SAV	EPA 6010D
Lead	<2.5	ug/L	12/13/2022	EUROFINS SAV	EPA 6020B
Antimony	<5	ug/L	12/13/2022	EUROFINS SAV	EPA 6020B
Selenium	<2.5	ug/L	12/13/2022	EUROFINS SAV	EPA 6020B
Thallium	<1	ug/L	12/13/2022	EUROFINS SAV	EPA 6020B
Boron	1700	ug/L	01/04/2023	SJHATCHE	EPA 6010D
Lithium	27.0	ug/L	01/04/2023	SJHATCHE	EPA 6010D
Molybdenum	<5.00	ug/L	01/04/2023	SJHATCHE	EPA 6010D
Mercury	<0.2	ug/L	12/13/2022	EUROFINS SAV	EPA 7470
Zinc	<20	ug/L	12/13/2022	EUROFINS SAV	EPA 6020B
Copper	<5	ug/L	12/13/2022	EUROFINS SAV	EPA 6020B
Nickel	<5	ug/L	12/13/2022	EUROFINS SAV	EPA 6020B
Fluoride	<0.10	mg/L	12/15/2022	KCWELLS	EPA 300.0
Chloride	66.4	mg/L	12/15/2022	KCWELLS	EPA 300.0
Sulfate	291	mg/L	12/15/2022	KCWELLS	EPA 300.0
Total Dissolved Solids	577.5	mg/L	12/15/2022	SJBROWN	SM 2540C
Radium 226	0.922	pCi/L	12/19/2022	GEL	EPA 903.1 Mod
Radium 228	3.11	pCi/L	12/30/2022	GEL	EPA 904.0
Radium 226/228 Combined Calculation	4.03	pCi/L	01/09/2023	GEL	EPA 903.1 Mod

Comments:

Independent Laboratory Results: "GEL" - GEL Laboratories LLC - Lab ID # 10120; "Test America " - TestAmerica Laboratories, Inc. - Lab ID# 98001; "DavisBrown"- Davis & Brown Lab ID # 21117; "Shealy"- Shealy Environmental Services, Inc.- Lab ID# 32010 "ROGERSCALLCO"-Rogers & Callcot, Inc.- Lab ID # 23105001

Analysis Validated:

Validation date:

Linda Williams - Manager Analytical Services

SANTEE COOPER ANALYTICAL SERVICES

CERTIFICATE OF ANALYSIS

LAB CERTIFICATION #08552

Sample # AF50604 Location: WGS well WLF-A2-2

Date: 12/06/2022

Sample Collector: WJK/BM

Loc. Code WLF-A2-2

Time: 14:34

LOC. COUR VVLI -AZ-Z			1111E. 14.54		
Analysis	Result	Units	Test Date	Analyst	Method
Arsenic	186	ug/L	12/13/2022	EUROFINS SAV	EPA 6020B
Barium	84.5	ug/L	12/13/2022	EUROFINS SAV	EPA 6020B
Beryllium	<0.5	ug/L	12/13/2022	EUROFINS SAV	EPA 6020B
Calcium	184.0	ug/L	12/13/2022	EUROFINS SAV	EPA 6010D
Cadmium	<0.5	ug/L	12/13/2022	EUROFINS SAV	EPA 6020B
Cobalt	<0.5	ug/L	12/13/2022	EUROFINS SAV	EPA 6020B
Chromium	<5	ug/L	12/13/2022	EUROFINS SAV	EPA 6020B
Iron	5760	ug/L	12/13/2022	EUROFINS SAV	EPA 6010D
Lead	<2.5	ug/L	12/13/2022	EUROFINS SAV	EPA 6020B
Antimony	<5	ug/L	12/13/2022	EUROFINS SAV	EPA 6020B
Selenium	<2.5	ug/L	12/13/2022	EUROFINS SAV	EPA 6020B
Thallium	<1	ug/L	12/13/2022	EUROFINS SAV	EPA 6020B
Boron	2220	ug/L	01/04/2023	SJHATCHE	EPA 6010D
Lithium	183	ug/L	01/04/2023	SJHATCHE	EPA 6010D
Molybdenum	<5.00	ug/L	01/04/2023	SJHATCHE	EPA 6010D
Mercury	<0.2	ug/L	12/13/2022	EUROFINS SAV	EPA 7470
Zinc	<20	ug/L	12/13/2022	EUROFINS SAV	EPA 6020B
Copper	<5	ug/L	12/13/2022	EUROFINS SAV	EPA 6020B
Nickel	<5	ug/L	12/13/2022	EUROFINS SAV	EPA 6020B
Fluoride	<0.10	mg/L	12/07/2022	KCWELLS	EPA 300.0
Chloride	101	mg/L	12/07/2022	KCWELLS	EPA 300.0
Sulfate	351	mg/L	12/07/2022	KCWELLS	EPA 300.0
Total Dissolved Solids	880.0	mg/L	12/15/2022	SJBROWN	SM 2540C
Radium 226	1.42	pCi/L	12/19/2022	GEL	EPA 903.1 Mod
Radium 228	1.38	pCi/L	12/30/2022	GEL	EPA 904.0
Radium 226/228 Combined Calculation	2.80	pCi/L	01/09/2023	GEL	EPA 903.1 Mod
pH	5.92	SU	12/06/2022	MDG	

Comments:

Independent Laboratory Results: "GEL" - GEL Laboratories LLC - Lab ID # 10120; "Test America" - TestAmerica Laboratories, Inc. - Lab ID# 98001; "DavisBrown"- Davis & Brown Lab ID # 21117; "Shealy"- Shealy Environmental Services, Inc.- Lab ID# 32010 "ROGERSCALLCO"-Rogers & Callcot, Inc.- Lab ID # 23105001

Analysis Validated:

Validation date:

Linda Williams - Manager Analytical Services

SANTEE COOPER ANALYTICAL SERVICES

CERTIFICATE OF ANALYSIS

LAB CERTIFICATION #08552

Sample # AF56394

Location: GW Well WAP-1

Date: 02/14/2023

Sample Collector: ZDM/ML

Loc. Code WAP-1

Time: 1	2:33
---------	------

Loc. Code WAP-1			Time: 12:33		
Analysis	Result	Units	Test Date	Analyst	Method
Aluminum	1.2	mg/L	03/16/2023	SJHATCHE	EPA 6020B
Aluminum - Dissolved	1.31	mg/L	03/20/2023	EUROFINS SAV	EPA 200.7
Arsenic	<5.0	ug/L	03/16/2023	SJHATCHE	EPA 6020B
Arsenic Dissolved	<5.0	ug/L	03/21/2023	SJHATCHE	EPA 6020B
Barium	74.6	ug/L	03/16/2023	SJHATCHE	EPA 6020B
Barium Dissolved	78.9	ug/L	03/21/2023	SJHATCHE	EPA 6020B
Beryllium	<0.50	ug/L	03/16/2023	SJHATCHE	EPA 6020B
Beryllium Dissolved	<0.5	ug/L	03/21/2023	SJHATCHE	EPA 6020B
Calcium	10.5	mg/L	03/16/2023	SJHATCHE	EPA 6020B
Calcium Dissolved	11.2	mg/L	03/21/2023	SJHATCHE	EPA 6020B
Cadmium	<0.5	ug/L	03/16/2023	SJHATCHE	EPA 6020B
Cadmium - Dissolved	<0.5	ug/L	03/20/2023	EUROFINS SAV	EPA 200.8
Cobalt	0.7	ug/L	03/16/2023	SJHATCHE	EPA 6020B
Cobalt Dissolved	0.70	ug/L	03/21/2023	SJHATCHE	EPA 6020B
Chromium	<5.0	ug/L	03/16/2023	SJHATCHE	EPA 6020B
Chromium - Dissolved	<5	ug/L	03/20/2023	EUROFINS SAV	EPA 200.8
Lead	<1.0	ug/L	03/16/2023	SJHATCHE	EPA 6020B
Lead - Dissolved	<2.5	ug/L	03/20/2023	EUROFINS SAV	EPA 200.8
Antimony	<5.0	ug/L	03/16/2023	SJHATCHE	EPA 6020B
Antimony - Dissolved	<5.0	ug/L	03/21/2023	SJHATCHE	EPA 200.8
Selenium	<10.0	ug/L	03/16/2023	SJHATCHE	EPA 6020B
Selenium - Dissolved	<20	ug/L	03/20/2023	EUROFINS SAV	EPA 200.8
Thallium	<1.0	ug/L	03/16/2023	SJHATCHE	EPA 6020B
Thallium - Dissolved	<5.0	ug/L	03/21/2023	SJHATCHE	EPA 200.8
Boron	37.1	ug/L	03/23/2023	SJHATCHE	EPA 6010D
Boron Dissolved	39.7	ug/L	03/23/2023	SJHATCHE	EPA 6010D
Lithium	<5.00	ug/L	03/23/2023	SJHATCHE	EPA 6010D
Lithium Dissolved	<5.00	ug/L	03/23/2023	SJHATCHE	EPA 6010D
Molybdenum	<5.00	ug/L	03/23/2023	SJHATCHE	EPA 6010D
Molybdenum Dissolved	<5.00	ug/L	03/23/2023	SJHATCHE	EPA 6010D
Mercury	<0.2	ug/L	03/20/2023	EUROFINS SAV	EPA 7470
Iron	2930	ug/L	03/16/2023	SJHATCHE	EPA 6020B
Iron - Dissolved	2940	ug/L	03/21/2023	SJHATCHE	EPA 6020B
Potassium	0.6	mg/L	03/16/2023	SJHATCHE	EPA 6020B
Potassium Dissolved	0.70	mg/L	03/21/2023	SJHATCHE	EPA 6020B
Sodium	5.5	mg/L	03/16/2023	SJHATCHE	EPA 6020B
Sodium Dissolved	5.65	mg/L	03/21/2023	EUROFINS SAV	EPA 6020B
Magnesium	1.0	mg/L	03/16/2023	SJHATCHE	EPA 6020B
Magnesium Dissolved	1.1	mg/L	03/21/2023	SJHATCHE	EPA 6020B
Manganese	26.0	ug/L	03/16/2023	SJHATCHE	EPA 6020B
Manganese Dissolved	25.7	ug/L	03/21/2023	SJHATCHE	EPA 6020B
Zinc	29.3	ug/L	03/16/2023	SJHATCHE	EPA 6020B
Zinc Dissolved	28.2	ug/L	03/21/2023	SJHATCHE	EPA 6020B
Copper	<5.0	ug/L	03/16/2023	SJHATCHE	EPA 6020B
Nickel	<0.5	ug/L	03/16/2023	SJHATCHE	EPA 6020B
Nickel - Dissolved	<0.5	ug/L	03/21/2023	SJHATCHE	EPA 200.8
Sulfide	<0.1	mg/L	02/20/2023	GEL	EPA 9034
Total Organic Carbon	1.30	mg/L	02/21/2023	GEL	SM 5310B
Dissoloved Organic Carbon	1.31	mg/L	02/22/2023	GEL.	SM 5310B
					*

SANTEE COOPER ANALYTICAL SERVICES

CERTIFICATE OF ANALYSIS

LAB CERTIFICATION #08552

Sample # AF56394

Location: GW Well WAP-1

Date: 02/14/2023

Sample Collector: ZDM/ML

Loc. Code WAP-1

Time: 12:33

Loc. Jode WAI - I	11me: 12:33				
Analysis	Result	Units	Test Date	Analyst	Method
Nitrite	<0.10	mg/L	02/16/2023	KCWELLS	EPA 300.0
Nitrate	<0.10	mg/L	02/16/2023	KCWELLS	EPA 300.0
Sulfate	33.6	mg/L	02/16/2023	KCWELLS	EPA 300.0
Chloride	13.4	mg/L	02/16/2023	KCWELLS	EPA 300.0
Fluoride	<0.10	mg/L	02/16/2023	KCWELLS	EPA 300.0
Total Dissolved Solids	100.0	mg/L	02/23/2023	SJBROWN	SM 2540C
Radium 226	0.0794	pCi/L	03/16/2023	GEL	EPA 903.1 Mod
Radium 228	1.40	pCi/L	03/14/2023	GEL	EPA 904.0
Radium 226/228 Combined Calculation	1.48	pCi/L	03/16/2023	GEL	EPA 903.1 Mod
Alkalinity as CaCO3	<4	mg/kg	02/23/2023	GEL	SM2320B
Alkalinity	<4	mg/L	02/23/2023	GEL	SM 2320B
Bicarbonate Alkalinity	<4	mg/L	02/23/2023	GEL	SM 2320B
Total Phosphorus	<0.025	mg/L	02/22/2023	KCWELLS	EPA 365.1
SiO2	6060	%	03/30/2023	EUROFINS SAV	ASTM D3682
SiO2 Dissolved	6060	ug/L	03/30/2023	EUROFINS SAV	EPA 200.7
Silver	<1	ug/L	03/21/2023	EUROFINS SAV	EPA 6020B
Silver- Dissolved	<1	ug/L	03/21/2023	EUROFINS SAV	EPA 200.8

Comments:

Independent Laboratory Results: "GEL" - GEL Laboratories LLC - Lab ID # 10120; "Test America" - TestAmerica Laboratories, Inc. - Lab ID# 98001; "DavisBrown"- Davis & Brown Lab ID # 21117; "Shealy"- Shealy Environmental Services, Inc.- Lab ID# 32010 "ROGERSCALLCO"-Rogers & Callcot, Inc.- Lab ID # 23105001

Analysis Validated:

Kindal Illians

Validation date: 05/09/2023

CERTIFICATE OF ANALYSIS

LAB CERTIFICATION #08552

Sample # AF56431 Location: GW Well WBW-1 Date: 02/14/2023 Sample Collector: ZDM/ML

Loc. Code WBW-1 Time: 13:51

Loc. Code VVBVV-1			Time: 13:51		
Analysis	Result	Units	Test Date	Analyst	Method
Aluminum	0.845	mg/L	03/21/2023	EUROFINS SAV	EPA 6020B
Aluminum - Dissolved	0.793	mg/L	03/20/2023	EUROFINS SAV	EPA 200.7
Arsenic	<3	ug/L	03/21/2023	EUROFINS SAV	EPA 6020B
Arsenic Dissolved	<3	ug/L	03/21/2023	EUROFINS SAV	EPA 6020B
Barium	31.7	ug/L	03/21/2023	EUROFINS SAV	EPA 6020B
Barium Dissolved	30.1	ug/L	03/21/2023	EUROFINS SAV	EPA 6020B
Beryllium	<0.5	ug/L	03/22/2023	EUROFINS SAV	EPA 6020B
Beryllium Dissolved	<0.5	ug/L	03/21/2023	EUROFINS SAV	EPA 6020B
Calcium	2.79	mg/L	03/21/2023	EUROFINS SAV	EPA 6020B
Calcium Dissolved	3.56	mg/L	03/21/2023	EUROFINS SAV	EPA 6020B
Cadmium	<0.5	ug/L	03/21/2023	EUROFINS SAV	EPA 6020B
Cadmium - Dissolved	<0.5	ug/L	03/20/2023	EUROFINS SAV	EPA 200.8
Cobalt	1.52	ug/L	03/21/2023	EUROFINS SAV	EPA 6020B
Cobalt Dissolved	1.6	ug/L	03/21/2023	EUROFINS SAV	EPA 6020B
Chromium	<5	ug/L	03/21/2023	EUROFINS SAV	EPA 6020B
Chromium - Dissolved	<5	ug/L	03/20/2023	EUROFINS SAV	EPA 200.8
Lead	<2.5	ug/L	03/21/2023	EUROFINS SAV	EPA 6020B
Lead - Dissolved	<2.5	ug/L	03/20/2023	EUROFINS SAV	EPA 200.8
Antimony	<5	ug/L	03/21/2023	EUROFINS SAV	EPA 6020B
Antimony - Dissolved	<5	ug/L	03/21/2023	EUROFINS SAV	EPA 200.8
Selenium	<20.0	ug/L	03/21/2023	EUROFINS SAV	EPA 6020B
Selenium - Dissolved	<20	ug/L	03/21/2023	EUROFINS SAV	EPA 200.8
Thallium	<1	ug/L	03/21/2023	EUROFINS SAV	EPA 6020B
Thallium - Dissolved	<1	ug/L	03/21/2023	EUROFINS SAV	EPA 200.8
Boron	54.7	ug/L	04/20/2023	LCWILLIA	EPA 6010D
Boron Dissolved	68	ug/L	03/24/2023	EUROFINS SAV	EPA 6010D
Lithium	<5	ug/L	04/20/2023	LCWILLIA	EPA 6010D
Lithium Dissolved	<5	ug/L	03/21/2023	LCWILLIA	EPA 6010D
Molybdenum	<10	ug/L	03/21/2023	EUROFINS SAV	EPA 6010D
Molybdenum Dissolved	<10	ug/L	03/20/2023	EUROFINS SAV	EPA 6010D
Mercury	0.200	ug/L	03/21/2023	EUROFINS SAV	EPA 7470
Iron	251	ug/L	03/21/2023	EUROFINS SAV	EPA 6020B
Iron - Dissolved	<100	ug/L	03/21/2023	EUROFINS SAV	EPA 6020B
Potassium	<1	mg/L	03/21/2023	EUROFINS SAV	EPA 6020B
Potassium Dissolved	<1	mg/L	03/21/2023	EUROFINS SAV	EPA 6020B
Sodium	2.67	mg/L	03/21/2023	EUROFINS SAV	EPA 6020B
Sodium Dissolved	2.72	mg/L	03/21/2023	EUROFINS SAV	EPA 6020B
Magnesium	0.902	mg/L	03/21/2023	EUROFINS SAV	EPA 6020B
Magnesium Dissolved	0.898	mg/L	03/21/2023	EUROFINS SAV	EPA 6020B
Manganese	44.6	ug/L	03/21/2023	EUROFINS SAV	EPA 6020B
Manganese Dissolved	41.0	ug/L	03/24/2023	EUROFINS SAV	EPA 6020B
Zinc	<20	ug/L	03/21/2023	EUROFINS SAV	EPA 6020B
Zinc Dissolved	<20	ug/L	03/21/2023	EUROFINS SAV	EPA 6020B
Copper	<5	ug/L	03/21/2023	EUROFINS SAV	EPA 6020B
Nickel	<5	ug/L	03/21/2023	EUROFINS SAV	EPA 6020B
Nickel - Dissolved	<5	ug/L	03/21/2023	EUROFINS SAV	EPA 200.8
Sulfide	<0.1	mg/L	02/20/2023	GEL	EPA 9034
Total Organic Carbon	<1	mg/L	02/21/2023	GEL	SM 5310B
Dissoloved Organic Carbon	1.01	mg/L	02/22/2023	GEL	SM 5310B

SANTEE COOPER ANALYTICAL SERVICES

CERTIFICATE OF ANALYSIS

LAB CERTIFICATION #08552

Sample # AF56431

Location: GW Well WBW-1

Date: 02/14/2023

Sample Collector: ZDM/ML

Loc.	Code	WBW-1	

Time: 13:51

	11110, 10.01				
Analysis	Result	Units	Test Date	Analyst	Method
Nitrite	<0.10	mg/L	02/16/2023	KCWELLS	EPA 300.0
Nitrate	0.52	mg/L	02/16/2023	KCWELLS	EPA 300.0
Sulfate	9.92	mg/L	02/16/2023	KCWELLS	EPA 300.0
Chloride	6.60	mg/L	02/16/2023	KCWELLS	EPA 300.0
Fluoride	<0.10	mg/L	02/16/2023	KCWELLS	EPA 300.0
Total Dissolved Solids	87.50	mg/L	02/23/2023	SJBROWN	SM 2540C
Radium 226	0.668	pCi/L	03/16/2023	GEL	EPA 903.1 Mod
Radium 228	1.18	pCi/L	03/14/2023	GEL	EPA 904.0
Radium 226/228 Combined Calculation	1.84	pCi/L	03/16/2023	GEL	EPA 903.1 Mod
Alkalinity as CaCO3	<4	mg/kg	02/23/2023	GEL	SM2320B
Alkalinity	<4	mg/L	02/23/2023	GEL	SM 2320B
Bicarbonate Alkalinity	<4	mg/L	02/23/2023	GEL	SM 2320B
Total Phosphorus	<0.025	mg/L	02/22/2023	KCWELLS	EPA 365.1
SiO2	4650	%	03/30/2023	EUROFINS SAV	ASTM D3682
SiO2 Dissolved	4650	ug/L	03/30/2023	EUROFINS SAV	EPA 200.7
Silver	<1	ug/L	03/21/2023	EUROFINS SAV	EPA 6020B
Silver- Dissolved	<1	ug/L	03/21/2023	EUROFINS SAV	EPA 200.8

Comments:

Independent Laboratory Results: "GEL" - GEL Laboratories LLC - Lab ID # 10120; "Test America" - TestAmerica Laboratories, Inc. - Lab ID# 98001; "DavisBrown"- Davis & Brown Lab ID # 21117; "Shealy"- Shealy Environmental Services, Inc.- Lab ID# 32010 "ROGERSCALLCO"-Rogers & Callcot, Inc.- Lab ID # 23105001

Analysis Validated:

Kindal Wellians

Validation date: 05/08/2023

Linda Williams - Manager Analytical Services

CERTIFICATE OF ANALYSIS

LAB CERTIFICATION #08552

Sample # AF56402 Location: GW Well WAP-9 Date: 02/27/2023 Sample Collector: ZDM/ML

Loc. Code WAP-9 Time: 12:47

Loc. Code WAP-9			Time: 12:47		
Analysis	Result	Units	Test Date	Analyst	Method
Aluminum	0.4	mg/L	03/16/2023	SJHATCHE	EPA 6020B
Aluminum - Dissolved	0.330	mg/L	03/20/2023	EUROFINS SAV	EPA 200.7
Arsenic	29.5	ug/L	03/16/2023	SJHATCHE	EPA 6020B
Arsenic Dissolved	30.5	ug/L	03/21/2023	SJHATCHE	EPA 6020B
Barium	78.0	ug/L	03/16/2023	SJHATCHE	EPA 6020B
Barium Dissolved	77.9	ug/L	03/20/2023	EUROFINS SAV	EPA 6020B
Beryllium	<0.50	ug/L	03/16/2023	SJHATCHE	EPA 6020B
Beryllium Dissolved	<0.5	ug/L	03/21/2023	SJHATCHE	EPA 6020B
Calcium	203	mg/L	03/16/2023	SJHATCHE	EPA 6020B
Calcium Dissolved	199	mg/L	03/20/2023	EUROFINS SAV	EPA 6020B
Cadmium	<0.5	ug/L	03/16/2023	SJHATCHE	EPA 6020B
Cadmium - Dissolved	<0.5	ug/L	03/20/2023	EUROFINS SAV	EPA 200.8
Cobalt	<0.5	ug/L	03/16/2023	SJHATCHE	EPA 6020B
Cobalt Dissolved	<0.5	ug/L	03/21/2023	SJHATCHE	EPA 6020B
Chromium	<5.0	ug/L	03/16/2023	SJHATCHE	EPA 6020B
Chromium - Dissolved	<5	ug/L	03/20/2023	EUROFINS SAV	EPA 200.8
Lead	<1.0	ug/L	03/16/2023	SJHATCHE	EPA 6020B
Lead - Dissolved	<2.5	ug/L	03/20/2023	EUROFINS SAV	EPA 200.8
Antimony	<5.0	ug/L	03/16/2023	SJHATCHE	EPA 6020B
Antimony - Dissolved	<5	ug/L	03/20/2023	EUROFINS SAV	EPA 200.8
Selenium	<10.0	ug/L	03/16/2023	SJHATCHE	EPA 6020B
Selenium - Dissolved	<20	ug/L	03/20/2023	EUROFINS SAV	EPA 200.8
Thallium	<1.0	ug/L	03/16/2023	SJHATCHE	EPA 6020B
Thallium - Dissolved	<1	ug/L	03/20/2023	EUROFINS SAV	EPA 200.8
Boron	2630	ug/L	03/23/2023	SJHATCHE	EPA 6010D
Boron Dissolved	2550	ug/L	03/23/2023	EUROFINS SAV	EPA 6010D
Lithium	37.4	ug/L	03/23/2023	SJHATCHE	EPA 6010D
Lithium Dissolved	37.7	ug/L	03/23/2023	SJHATCHE	EPA 6010D
Molybdenum	<5.00	ug/L	03/23/2023	SJHATCHE	EPA 6010D
Molybdenum Dissolved	<10	ug/L	03/20/2023	EUROFINS SAV	EPA 6010D
Mercury	<0.2	ug/L	03/21/2023	EUROFINS SAV	EPA 7470
Iron	22100	ug/L	03/16/2023	SJHATCHE	EPA 6020B
Iron - Dissolved	21600	ug/L	03/21/2023	SJHATCHE	EPA 6020B
Potassium	10.7	mg/L	03/16/2023	SJHATCHE	EPA 6020B
Potassium Dissolved	11.2	mg/L	03/20/2023	EUROFINS SAV	
Sodium	34.5	mg/L	03/16/2023	SJHATCHE	EPA 6020B
Sodium Dissolved	34.6	mg/L	03/10/2023	EUROFINS SAV	EPA 6020B
Magnesium	24.7	mg/L	03/21/2023	SJHATCHE	EPA 6020B
Magnesium Dissolved	23.6	mg/L	03/20/2023		EPA 6020B
Manganese	265	ug/L		EUROFINS SAV	EPA 6020B
Manganese Dissolved	259	_	03/16/2023 03/21/2023	SJHATCHE	EPA 6020B
Zinc	<10.0	ug/L		SJHATCHE	EPA 6020B
Zinc Dissolved	<20	ug/L	03/16/2023	SJHATCHE	EPA 6020B
Copper	<5.0	ug/L	03/20/2023	EUROFINS SAV	EPA 6020B
Nickel	1.0	ug/L	03/16/2023	SJHATCHE	EPA 6020B
		ug/L	03/16/2023	SJHATCHE	EPA 6020B
Nickel - Dissolved Sulfide	<5 <0.1	ug/L	03/20/2023	EUROFINS SAV	EPA 200.8
	<0.1	mg/L	03/06/2023	GEL	EPA 9034
Total Organic Carbon	15.3	mg/L	03/11/2023	GEL	SM 5310B
Dissoloved Organic Carbon	15.8	mg/L	03/10/2023	GEL	SM 5310B

One Riverwood Drive P.O. Box 2946101 Moncks Corner, SC 29461-2901 (843) 761-8000

SANTEE COOPER ANALYTICAL SERVICES

CERTIFICATE OF ANALYSIS

LAB CERTIFICATION #08552

Sample # AF56402 Location: GW Well WAP-9 Date: 02/27/2023

Sample Collector: ZDM/ML

Loc. Code WAP-9			Time: 12:47		
Analysis	Result	Units	Test Date	Analyst	Method
Nitrite	<0.10	mg/L	03/02/2023	KCWELLS	EPA 300.0
Nitrate	<0.10	mg/L	03/02/2023	KCWELLS	EPA 300.0
Sulfate	263	mg/L	03/02/2023	KCWELLS	EPA 300.0
Chloride	163	mg/L	03/02/2023	KCWELLS	EPA 300.0
Fluoride	<0.10	mg/L	03/02/2023	KCWELLS	EPA 300.0
Total Dissolved Solids	1168	mg/L	03/09/2023	SJBROWN	SM 2540C
Radium 226	1.26	pCi/L	04/03/2023	GEL	EPA 903.1 Mod
Radium 228	1.51	pCi/L	03/29/2023	GEL	EPA 904.0
Radium 226/228 Combined Calculation	2.78	pCi/L	04/03/2023	GEL	EPA 903.1 Mod
Alkalinity as CaCO3	<4	mg/kg	03/09/2023	GEL	SM2320B
Alkalinity	208	mg/L	03/09/2023	GEL	SM 2320B
Bicarbonate Alkalinity	208	mg/L	03/09/2023	GEL	SM 2320B
Silver	<1	ug/L	03/20/2023	EUROFINS SAV	EPA 6020B
Silver- Dissolved	<1	ug/L	03/20/2023	EUROFINS SAV	EPA 200.8

Comments:

Independent Laboratory Results: "GEL" - GEL Laboratories LLC - Lab ID # 10120; "Test America" - TestAmerica Laboratories, Inc. - Lab ID# 98001; "DavisBrown" - Davis & Brown Lab ID # 21117; "Shealy" - Shealy Environmental Services, Inc. - Lab ID# 32010 "ROGERSCALLCO" -Rogers & Callcot, Inc.- Lab ID # 23105001

Analysis Validated:

Linda Wellars Linda Williams - Manager Analytical Services

Validation date: 05/08/2023

CERTIFICATE OF ANALYSIS

LAB CERTIFICATION #08552

Sample # AF56416

Location: GW Well WAP-17

Date: 03/08/2023

Sample Collector: ZDM/ML

Loc. Code WAP-17

Time: 10:09

Loc. Code WAI - 17			Time: 10.09		
Analysis Aluminum	Result	Units	Test Date	Analyst	Method
Aluminum - Dissolved	<0.1	mg/L	03/21/2023	EUROFINS SAV	EPA 6020B
Arsenic	<0.1	mg/L	03/20/2023	EUROFINS SAV	EPA 200.7
	85.9	ug/L	03/21/2023	EUROFINS SAV	EPA 6020B
Arsenic Dissolved Barium	74.8	ug/L	03/21/2023	EUROFINS SAV	EPA 6020B
	44.4	ug/L	03/21/2023	EUROFINS SAV	EPA 6020B
Barium Dissolved	42.0	ug/L	03/21/2023	EUROFINS SAV	EPA 6020B
Beryllium	<0.5	ug/L	03/21/2023	EUROFINS SAV	EPA 6020B
Beryllium Dissolved	<0.5	ug/L	03/21/2023	EUROFINS SAV	EPA 6020B
Calcium	260.0	mg/L	03/20/2023	EUROFINS SAV	EPA 6010D
Calcium Dissolved	67	mg/L	03/24/2023	EUROFINS SAV	EPA 6020B
Cadmium	<0.5	ug/L	03/21/2023	EUROFINS SAV	EPA 6020B
Cadmium - Dissolved	<0.5	ug/L	03/20/2023	EUROFINS SAV	EPA 200.8
Cobalt	<0.5	ug/L	03/21/2023	EUROFINS SAV	EPA 6020B
Cobalt Dissolved	<0.5	ug/L	03/21/2023	EUROFINS SAV	EPA 6020B
Chromium	<5	ug/L	03/21/2023	EUROFINS SAV	EPA 6020B
Chromium - Dissolved	<5	ug/L	03/20/2023	EUROFINS SAV	EPA 200.8
Lead	<2.5	ug/L	03/21/2023	EUROFINS SAV	EPA 6020B
Lead - Dissolved	<2.5	ug/L	03/20/2023	EUROFINS SAV	EPA 200.8
Antimony	<5	ug/L	03/21/2023	EUROFINS SAV	EPA 6020B
Antimony - Dissolved	<5	ug/L	03/21/2023	EUROFINS SAV	EPA 200.8
Selenium	<20	ug/L	03/20/2023	EUROFINS SAV	EPA 6010D
Selenium - Dissolved	<20	ug/L	03/24/2023	EUROFINS SAV	EPA 200.8
Thallium	<1	ug/L	03/21/2023	EUROFINS SAV	EPA 6020B
Thallium - Dissolved	<1	ug/L	03/21/2023	EUROFINS SAV	EPA 200.8
Boron	4330	ug/L	04/24/2023	LCWILLIA	EPA 6010D
Boron Dissolved	3870	ug/L	04/06/2023	EUROFINS SAV	EPA 6010D
Lithium	73.3	ug/L	04/20/2023	LCWILLIA	EPA 6010D
Lithium Dissolved	69.8	ug/L	04/19/2023	LCWILLIA	EPA 6010D
Molybdenum	18.0	ug/L	03/21/2023	EUROFINS SAV	EPA 6010D
Molybdenum Dissolved	<10	ug/L	03/24/2023	EUROFINS SAV	EPA 6010D
Mercury	<0.2	ug/L	03/21/2023	EUROFINS SAV	EPA 7470
Iron	1570	ug/L	03/20/2023	EUROFINS SAV	EPA 6010D
Iron - Dissolved	891	ug/L	03/24/2023	EUROFINS SAV	EPA 6020B
Potassium	13.8	mg/L	03/20/2023	EUROFINS SAV	EPA 6010D
Potassium Dissolved	2.2	mg/L	03/24/2023	EUROFINS SAV	EPA 6020B
Sodium	69.7	mg/L	03/20/2023	EUROFINS SAV	EPA 6010D
Sodium Dissolved	11.1	mg/L	03/21/2023	EUROFINS SAV	
Magnesium	38.1	mg/L	03/20/2023	EUROFINS SAV	EPA 6020B
Magnesium Dissolved	2.92	mg/L	03/24/2023		EPA 6010D
Manganese	82.2	-		EUROFINS SAV	EPA 6020B
Manganese Dissolved	73.2	ug/L	03/21/2023	EUROFINS SAV	EPA 6020B
Zinc	413	ug/L	03/24/2023	EUROFINS SAV	EPA 6020B
Zinc Dissolved	182	ug/L	03/21/2023	EUROFINS SAV	EPA 6020B
Copper	162 <5	ug/L	03/21/2023	EUROFINS SAV	EPA 6020B
Nickel		ug/L	03/21/2023	EUROFINS SAV	EPA 6020B
	<5 <5	ug/L	03/21/2023	EUROFINS SAV	EPA 6020B
Nickel - Dissolved	<5	ug/L	03/21/2023	EUROFINS SAV	EPA 200.8
Sulfide Total Organia Carbon	<0.1	mg/L	03/14/2023	SUB_GEL	EPA 9034
Total Organic Carbon	10.1	mg/L	03/21/2023	SUB_GEL	SM 5310B
Dissoloved Organic Carbon	10.1	mg/L	03/16/2023	SUB_GEL	SM 5310B

WAP-17

One Riverwood Drive P.O. Box 2946101 Moncks Corner, SC 29461-2901 (843) 761-8000

SANTEE COOPER ANALYTICAL SERVICES

CERTIFICATE OF ANALYSIS

LAB CERTIFICATION #08552

Sample # AF56416

Loc. Code

Location: GW Well WAP-17

Date: 03/08/2023

Time: 10:09

Sample Collector: ZDM/ML

Analysis	Result	Units	Test Date	Analyst	Method
Nitrite	<0.10	mg/L	03/10/2023	KCWELLS	EPA 300.0
Nitrate	<0.10	mg/L	03/10/2023	KCWELLS	EPA 300.0
Sulfate	663	mg/L	03/10/2023	KCWELLS	EPA 300.0
Chloride	189	mg/L	03/10/2023	KCWELLS	EPA 300.0
Fluoride	<0.10	mg/L	03/10/2023	KCWELLS	EPA 300.0
Total Dissolved Solids	1301	mg/L	03/21/2023	KCWELLS	SM 2540C
Radium 226	0.145	pCi/L	04/11/2023	GEL	EPA 903.1 Mod
Radium 228	0.331	pCi/L	04/04/2023	GEL	EPA 904.0
Radium 226/228 Combined Calculation	0.476	pCi/L	04/11/2023	GEL	EPA 903.1 Mod

Alkalinity as CaCO3	<5.71	mg/kg	03/13/2023	SUB_GEL	SM2320B
Alkalinity	67.4	mg/L	03/13/2023	SUB_GEL	SM 2320B
Bicarbonate Alkalinity	67.4	mg/L	03/13/2023	SUB_GEL	SM 2320B
Total Phosphorus	< 0.025	mg/L	03/28/2023	KCWELLS	EPA 365.1
SiO2	4700	%	03/30/2023	EUROFINS SAV	ASTM D3682
SiO2 Dissolved	4700	ug/L	03/30/2023	EUROFINS SAV	EPA 200.7
Silver	<1	ug/L	03/21/2023	EUROFINS SAV	EPA 6020B
Silver- Dissolved	<1	ug/L	03/21/2023	EUROFINS SAV	EPA 200.8


Comments:

Independent Laboratory Results: "GEL" - GEL Laboratories LLC - Lab ID # 10120; "Test America" - TestAmerica Laboratories, Inc. - Lab ID# 98001; "DavisBrown"- Davis & Brown Lab ID # 21117; "Shealy"- Shealy Environmental Services, Inc.- Lab ID# 32010 "ROGERSCALLCO"-Rogers & Callcot, Inc.- Lab ID # 23105001

Analysis Validated:

Kinda William

Validation date: 05/08/2023

CERTIFICATE OF ANALYSIS

LAB CERTIFICATION #08552

Sample # AF56417

Location: GW Well WAP-17

Date: 03/08/2023

Sample Collector: ZDM/ML

Loc. Code	WAP-17	DUP	Time: 10:14
Loc. Code	AA\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	DUP	I ime: 10:14

Analysis	Result	Unite	T4 D-4-	A 1 . 4	
Aluminum	<0.1	Units mg/L	Test Date 03/21/2023	Analyst	Method
Aluminum - Dissolved	<0.1	mg/L	03/20/2023	EUROFINS SAV EUROFINS SAV	EPA 6020B
Arsenic	85.8	ug/L	03/21/2023		EPA 200.7
Arsenic Dissolved	84.0	ug/L	03/21/2023	EUROFINS SAV	EPA 6020B
Barium	45.4	ug/L	03/21/2023	EUROFINS SAV	EPA 6020B
Barium Dissolved	50.0	ug/L ug/L	03/20/2023	EUROFINS SAV	EPA 6020B
Beryllium	<0.5	ug/L	03/21/2023	EUROFINS SAV	EPA 6020B
Beryllium Dissolved	<0.5	ug/L	03/21/2023	EUROFINS SAV	EPA 6020B
Calcium	260.0	mg/L	03/20/2023	EUROFINS SAV	EPA 6020B
Calcium Dissolved	270	mg/L	03/20/2023	EUROFINS SAV	EPA 6010D
Cadmium	<0.5	ug/L	03/21/2023	EUROFINS SAV	EPA 6020B
Cadmium - Dissolved	<0.5	ug/L	03/20/2023	EUROFINS SAV	EPA 6020B
Cobalt	<0.5	ug/L	03/21/2023	EUROFINS SAV	EPA 200.8
Cobalt Dissolved	<0.5	ug/L	03/21/2023	EUROFINS SAV	EPA 6020B
Chromium	<5	ug/L	03/21/2023	EUROFINS SAV EUROFINS SAV	EPA 6020B
Chromium - Dissolved	<5	ug/L ug/L	03/20/2023		EPA 6020B
Lead	<2.5	ug/L	03/21/2023	EUROFINS SAV	EPA 200.8
Lead - Dissolved	<2.5	ug/L	03/20/2023	EUROFINS SAV	EPA 6020B
Antimony	<5	ug/L	03/21/2023	EUROFINS SAV EUROFINS SAV	EPA 200.8
Antimony - Dissolved	<5	ug/L	03/20/2023	EUROFINS SAV	EPA 6020B
Selenium	<20	ug/L	03/20/2023	EUROFINS SAV	EPA 200.8
Selenium - Dissolved	<20	ug/L	03/20/2023	EUROFINS SAV	EPA 6010D
Thallium	<1	ug/L	03/21/2023	EUROFINS SAV	EPA 200.8
Thallium - Dissolved	<1	ug/L	03/20/2023	EUROFINS SAV	EPA 6020B
Boron	4470	ug/L	04/24/2023	LCWILLIA	EPA 200.8 EPA 6010D
Boron Dissolved	3870	ug/L	03/23/2023	EUROFINS SAV	EPA 6010D
Lithium	73.9	ug/L	04/20/2023	LCWILLIA	EPA 6010D
Lithium Dissolved	70.5	ug/L	03/24/2023	LCWILLIA	EPA 6010D
Molybdenum	21.2	ug/L	03/21/2023	EUROFINS SAV	EPA 6010D
Molybdenum Dissolved	21	ug/L	03/20/2023	EUROFINS SAV	EPA 6010D
Mercury	<0.2	ug/L	03/21/2023	EUROFINS SAV	EPA 7470
Iron	1740	ug/L	03/20/2023	EUROFINS SAV	EPA 6010D
Iron - Dissolved	1940	ug/L	03/21/2023	EUROFINS SAV	EPA 6020B
Potassium	13.8	mg/L	03/20/2023	EUROFINS SAV	EPA 6010D
Potassium Dissolved	14.1	mg/L	03/20/2023	EUROFINS SAV	EPA 6020B
Sodium	69.4	mg/L	03/20/2023	EUROFINS SAV	EPA 6010D
Sodium Dissolved	72.3	mg/L	03/21/2023	EUROFINS SAV	EPA 6020B
Magnesium	37.6	mg/L	03/20/2023	EUROFINS SAV	EPA 6010D
Magnesium Dissolved	38.9	mg/L	03/20/2023	EUROFINS SAV	EPA 6020B
Manganese	84.4	ug/L	03/21/2023	EUROFINS SAV	EPA 6020B
Manganese Dissolved	78.4	ug/L	03/24/2023	EUROFINS SAV	EPA 6020B
Zinc	27.9	ug/L	03/21/2023	EUROFINS SAV	EPA 6020B
Zinc Dissolved	<20	ug/L	03/20/2023	EUROFINS SAV	EPA 6020B
Copper	<5	ug/L	03/21/2023	EUROFINS SAV	EPA 6020B
Nickel	<5	ug/L	03/21/2023	EUROFINS SAV	EPA 6020B
Nickel - Dissolved	<5	ug/L	03/20/2023	EUROFINS SAV	EPA 200.8
Sulfide	<0.1	mg/L	03/14/2023	SUB_GEL	EPA 9034
Total Organic Carbon	10.5	mg/L	03/21/2023	SUB_GEL	SM 5310B
Dissoloved Organic Carbon	10.7	mg/L	03/16/2023	SUB_GEL	SM 5310B
		3		<u>-</u>	

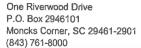
SANTEE COOPER ANALYTICAL SERVICES

CERTIFICATE OF ANALYSIS

LAB CERTIFICATION #08552

Sample # AF56417 Location: GW Well WAP-17 Date: 03/08/2023 Sample Collector: ZDM/ML

WAP-17 Loc. Code DUP Time: 10:14 **Analysis** Result Units **Test Date Analyst** Method **Nitrite** < 0.10 mg/L 03/10/2023 **KCWELLS** EPA 300.0 **Nitrate** < 0.10 mg/L 03/10/2023 **KCWELLS EPA 300.0** Sulfate 661 mg/L 03/10/2023 **KCWELLS** EPA 300.0 Chloride 185 mg/L 03/10/2023 **KCWELLS** EPA 300.0 Fluoride < 0.10 mg/L 03/10/2023 **KCWELLS** EPA 300.0 **Total Dissolved Solids** 1402 mg/L 03/15/2023 **KCWELLS** SM 2540C Radium 226 0.690pCi/L 04/11/2023 EPA 903.1 Mod GEL Radium 228 2.50 pCi/L 04/04/2023 **GEL** EPA 904.0 Radium 226/228 Combined Calculation 3.19 pCi/L 04/11/2023 **GEL** EPA 903.1 Mod Alkalinity as CaCO3 <5.71 mg/kg 03/13/2023 SUB_GEL SM2320B **Alkalinity** 59.4 mg/L 03/13/2023 SUB_GEL SM 2320B Bicarbonate Alkalinity 59.4 mg/L 03/13/2023 SUB_GEL SM 2320B Silver <1 ug/L 03/20/2023 **EUROFINS SAV EPA 6020B** Silver- Dissolved <1 ug/L 03/20/2023 **EUROFINS SAV** EPA 200.8


Comments:

Independent Laboratory Results: "GEL" - GEL Laboratories LLC - Lab ID # 10120; "Test America " - TestAmerica Laboratories, Inc. - Lab ID# 98001; "DavisBrown"- Davis & Brown Lab ID # 21117; "Shealy"- Shealy Environmental Services, Inc.- Lab ID# 32010 "ROGERSCALLCO"-Rogers & Callcot, Inc.- Lab ID # 23105001

Analysis Validated:

Kindal William

Validation date: 05/08/2023

CERTIFICATE OF ANALYSIS

LAB CERTIFICATION #08552

Sample # AF56418 Location:

Location: GW Well WAP-18

Date: 03/09/2023

Sample Collector: ZDM/ML

Loc. Code WAP-18	Time: 12:07
------------------	-------------

LOC. COde WAI - 10			Time: 12:07		
Analysis	Result	Units	Test Date	Analyst	Method
Aluminum	0.134	mg/L	03/21/2023	EUROFINS SAV	EPA 6020B
Aluminum - Dissolved	0.130	mg/L	03/20/2023	EUROFINS SAV	EPA 200.7
Arsenic	249	ug/L	03/21/2023	EUROFINS SAV	EPA 6020B
Arsenic Dissolved	229	ug/L	03/21/2023	EUROFINS SAV	EPA 6020B
Barium	127	ug/L	03/21/2023	EUROFINS SAV	EPA 6020B
Barium Dissolved	133	ug/L	03/21/2023	EUROFINS SAV	EPA 6020B
Beryllium	<0.5	ug/L	03/21/2023	EUROFINS SAV	EPA 6020B
Beryllium Dissolved	<0.5	ug/L	03/21/2023	EUROFINS SAV	EPA 6020B
Calcium	94.40	mg/L	03/20/2023	EUROFINS SAV	EPA 6010D
Calcium Dissolved	96	mg/L	03/21/2023	EUROFINS SAV	EPA 6020B
Cadmium	<0.5	ug/L	03/21/2023	EUROFINS SAV	EPA 6020B
Cadmium - Dissolved	<0.5	ug/L	03/20/2023	EUROFINS SAV	EPA 200.8
Cobalt	2.17	ug/L	03/21/2023	EUROFINS SAV	EPA 6020B
Cobalt Dissolved	2.2	ug/L	03/21/2023	EUROFINS SAV	EPA 6020B
Chromium	<5	ug/L	03/21/2023	EUROFINS SAV	EPA 6020B
Chromium - Dissolved	<5	ug/L	03/20/2023	EUROFINS SAV	EPA 200.8
Lead	<2.5	ug/L	03/21/2023	EUROFINS SAV	EPA 6020B
Lead - Dissolved	<2.5	ug/L	03/20/2023	EUROFINS SAV	EPA 200.8
Antimony	<5	ug/L	03/21/2023	EUROFINS SAV	EPA 6020B
Antimony - Dissolved	<5	ug/L	03/21/2023	EUROFINS SAV	EPA 200.8
Selenium	<20	ug/L	03/20/2023	EUROFINS SAV	EPA 6010D
Selenium - Dissolved	<20	ug/L	03/20/2023	EUROFINS SAV	EPA 200.8
Thallium	<1	ug/L	03/21/2023	EUROFINS SAV	EPA 6020B
Thallium - Dissolved	<1	ug/L	03/21/2023	EUROFINS SAV	EPA 200.8
Boron	1530	ug/L	04/24/2023	LCWILLIA	EPA 6010D
Boron Dissolved	1340	ug/L	03/25/2023	EUROFINS SAV	EPA 6010D
Lithium	76.7	ug/L	03/24/2023	EUROFINS SAV	EPA 6010D
Lithium Dissolved	87.9	ug/L	03/25/2023	EUROFINS SAV	EPA 6010D
Molybdenum	90.2	ug/L	03/21/2023	EUROFINS SAV	EPA 6010D
Molybdenum Dissolved	92	ug/L	03/21/2023	EUROFINS SAV	EPA 6010D
Mercury	<0.2	ug/L	03/21/2023	EUROFINS SAV	EPA 7470
Iron	840	ug/L	03/20/2023	EUROFINS SAV	EPA 6010D
Iron - Dissolved	788	ug/L	03/21/2023	EUROFINS SAV	EPA 6020B
Potassium	7.42	mg/L	03/20/2023	EUROFINS SAV	EPA 6010D
Potassium Dissolved	7.7	mg/L	03/21/2023	EUROFINS SAV	EPA 6020B
Sodium	25.2	mg/L	03/20/2023	EUROFINS SAV	EPA 6010D
Sodium Dissolved	25.3	mg/L	03/21/2023	EUROFINS SAV	EPA 6020B
Magnesium	7.51	mg/L	03/20/2023	EUROFINS SAV	EPA 6010D
Magnesium Dissolved	7.53	mg/L	03/21/2023	EUROFINS SAV	EPA 6020B
Manganese	113	ug/L	03/21/2023	EUROFINS SAV	EPA 6020B
Manganese Dissolved	100	ug/L	03/25/2023	EUROFINS SAV	EPA 6020B
Zinc	<20	ug/L	03/21/2023	EUROFINS SAV	EPA 6020B
Zinc Dissolved	<20	ug/L	03/21/2023	EUROFINS SAV	EPA 6020B
Copper	<5	ug/L	03/21/2023	EUROFINS SAV	EPA 6020B
Nickel	<5	ug/L	03/21/2023	EUROFINS SAV	EPA 6020B
Nickel - Dissolved	<5	ug/L	03/21/2023	EUROFINS SAV	EPA 200.8
Sulfide	<0.1	mg/L	03/14/2023	SUB_GEL	EPA 9034
Total Organic Carbon	10.3	mg/L	03/21/2023	SUB_GEL	SM 5310B
Dissoloved Organic Carbon	10.1	mg/L	03/16/2023	SUB_GEL	SM 5310B
-		5 -			00 100

SANTEE COOPER ANALYTICAL SERVICES

CERTIFICATE OF ANALYSIS

LAB CERTIFICATION #08552

Sample # AF56418

Location: GW Well WAP-18

Date: 03/09/2023

Sample Collector: ZDM/ML

Loc. Code WAP-18

Time: 12:07

Analysis	Result	Units	Test Date	Analyst	Method
Nitrite	<0.10	mg/L	03/17/2023	KCWELLS	EPA 300.0
Nitrate	<0.10	mg/L	03/17/2023	KCWELLS	EPA 300.0
Nitrate-Nitrite Cadmium Reduction	<0.2	mg/L	03/13/2023	GEL	EPA 353.2
Sulfate	232	mg/L	03/23/2023	KCWELLS	EPA 300.0
Chloride	47.1	mg/L	03/23/2023	KCWELLS	EPA 300.0
Fluoride	<0.10	mg/L	03/17/2023	KCWELLS	EPA 300.0
Total Dissolved Solids	521.2	mg/L	03/24/2023	KCWELLS	SM 2540C
Radium 226	1.09	pCi/L	04/11/2023	GEL	EPA 903.1 Mod
Radium 228	0.0769	pCi/L	04/04/2023	GEL	EPA 904.0
Radium 226/228 Combined Calculation	1.17	pCi/L	04/11/2023	GEL	EPA 903.1 Mod
Alkalinity as CaCO3	<5.71	mg/kg	03/13/2023	SUB GEL	SM2320B
Alkalinity	32.0	mg/L	03/13/2023	SUB_GEL	SM 2320B
Bicarbonate Alkalinity	32.0	mg/L	03/13/2023	SUB_GEL	SM 2320B
Total Phosphorus	<0.025	mg/L	03/30/2023	KCWELLS	EPA 365.1
SiO2	5440	%	03/30/2023	EUROFINS SAV	ASTM D3682
SiO2 Dissolved	5440	ug/L	03/30/2023	EUROFINS SAV	EPA 200.7
Silver	<1	ug/L	03/21/2023	EUROFINS SAV	EPA 6020B
Silver- Dissolved	<1	ug/L	03/21/2023	EUROFINS SAV	EPA 200.8
		•			=0010

Comments:

Independent Laboratory Results: "GEL" - GEL Laboratories LLC - Lab ID # 10120; "Test America" - TestAmerica Laboratories, Inc. - Lab ID# 98001; "DavisBrown"- Davis & Brown Lab ID # 21117; "Shealy"- Shealy Environmental Services, Inc.- Lab ID# 32010 "ROGERSCALLCO"-Rogers & Callcot, Inc.- Lab ID # 23105001

Analysis Validated:

Kinda Williams

Validation date: 05/08/2023

CERTIFICATE OF ANALYSIS

LAB CERTIFICATION #08552

Sample # AF56419

Location: GW Well WAP-19

Date: 03/07/2023

Sample Collector: ZDM/ML

Loc. Code WAP-19

Time: 1	4:51
---------	------

Loc. Joue WAI -19			11me: 14:51		
Analysis	Result	Units	Test Date	Analyst	Method
Aluminum	0.672	mg/L	03/21/2023	EUROFINS SAV	EPA 6020B
Aluminum - Dissolved	<0.1	mg/L	03/20/2023	EUROFINS SAV	EPA 200.7
Arsenic	474	ug/L	03/21/2023	EUROFINS SAV	EPA 6020B
Arsenic Dissolved	103	ug/L	03/21/2023	EUROFINS SAV	EPA 6020B
Barium Barium Diagahad	83.9	ug/L	03/21/2023	EUROFINS SAV	EPA 6020B
Barium Dissolved	71.5	ug/L	03/21/2023	EUROFINS SAV	EPA 6020B
Beryllium	<0.5	ug/L	03/21/2023	EUROFINS SAV	EPA 6020B
Beryllium Dissolved	<0.5	ug/L	03/21/2023	EUROFINS SAV	EPA 6020B
Calcium	601.0	mg/L	03/20/2023	EUROFINS SAV	EPA 6010D
Calcium Dissolved	535	mg/L	03/24/2023	EUROFINS SAV	EPA 6020B
Cadmium	<0.5	ug/L	03/21/2023	EUROFINS SAV	EPA 6020B
Cadmium - Dissolved	<0.5	ug/L	03/20/2023	EUROFINS SAV	EPA 200.8
Cobalt	1.29	ug/L	03/21/2023	EUROFINS SAV	EPA 6020B
Cobalt Dissolved	1.3	ug/L	03/21/2023	EUROFINS SAV	EPA 6020B
Chromium	<5	ug/L	03/21/2023	EUROFINS SAV	EPA 6020B
Chromium - Dissolved	<5	ug/L	03/20/2023	EUROFINS SAV	EPA 200.8
Lead	<2.5	ug/L	03/21/2023	EUROFINS SAV	EPA 6020B
Lead - Dissolved	<2.5	ug/L	03/20/2023	EUROFINS SAV	EPA 200.8
Antimony	<5	ug/L	03/21/2023	EUROFINS SAV	EPA 6020B
Antimony - Dissolved	<5	ug/L	03/21/2023	EUROFINS SAV	EPA 200.8
Selenium	<20	ug/L	03/20/2023	EUROFINS SAV	EPA 6010D
Selenium - Dissolved	<20	ug/L	03/24/2023	EUROFINS SAV	EPA 200.8
Thallium	<1	ug/L	03/21/2023	EUROFINS SAV	EPA 6020B
Thallium - Dissolved	<1	ug/L	03/21/2023	EUROFINS SAV	EPA 200.8
Boron	4200	ug/L	04/24/2023	LCWILLIA	EPA 6010D
Boron Dissolved	3430	ug/L	04/06/2023	EUROFINS SAV	EPA 6010D
Lithium	234	ug/L	03/24/2023	EUROFINS SAV	EPA 6010D
Lithium Dissolved	223	ug/L	03/24/2023	EUROFINS SAV	EPA 6010D
Molybdenum	94.7	ug/L	03/21/2023	EUROFINS SAV	EPA 6010D
Molybdenum Dissolved	56	ug/L	03/24/2023	EUROFINS SAV	EPA 6010D
Mercury	<0.2	ug/L	03/21/2023	EUROFINS SAV	EPA 7470
Iron	19700	ug/L	03/20/2023	EUROFINS SAV	EPA 6010D
Iron - Dissolved	1430	ug/L	03/24/2023	EUROFINS SAV	EPA 6020B
Potassium	22.2	mg/L	03/20/2023	EUROFINS SAV	EPA 6010D
Potassium Dissolved	19.7	mg/L	03/24/2023	EUROFINS SAV	EPA 6020B
Sodium	44.9	mg/L	03/20/2023	EUROFINS SAV	EPA 6010D
Sodium Dissolved	41.7	mg/L	03/21/2023	EUROFINS SAV	EPA 6020B
Magnesium	88.7	mg/L	03/20/2023	EUROFINS SAV	EPA 6010D
Magnesium Dissolved	78.8	mg/L	03/24/2023	EUROFINS SAV	EPA 6020B
Manganese	1020	ug/L	03/21/2023	EUROFINS SAV	EPA 6020B
Manganese Dissolved	815	ug/L	03/24/2023	EUROFINS SAV	EPA 6020B
Zinc	24.2	ug/L	03/21/2023	EUROFINS SAV	EPA 6020B
Zinc Dissolved	<20	ug/L	03/21/2023	EUROFINS SAV	EPA 6020B
Copper	<5	ug/L	03/21/2023	EUROFINS SAV	EPA 6020B
Nickel	<5	ug/L	03/21/2023	EUROFINS SAV	EPA 6020B
Nickel - Dissolved	<5	ug/L	03/21/2023	EUROFINS SAV	EPA 200.8
Sulfide	<0.1	mg/L	03/13/2023	GEL	EPA 9034
Total Organic Carbon	10.6	mg/L	03/21/2023	GEL	SM 5310B
Dissoloved Organic Carbon	8.47	mg/L	03/16/2023	GEL	SM 5310B
•	÷:·•	···g. =	557 TOILUZU	OLL	ON 00 10D

SANTEE COOPER ANALYTICAL SERVICES

CERTIFICATE OF ANALYSIS

LAB CERTIFICATION #08552

Sample # AF56419

Location: GW Well WAP-19

Date: 03/07/2023

Sample Collector: ZDM/ML

Loc. Code	WAP-19	Time: 14:51
Loc. Code	VV/I - 13	/ ime: 14:51

		Tillie. 17.01			
Analysis	Result	Units	Test Date	Analyst	Method
Nitrite	<0.10	mg/L	03/10/2023	KCWELLS	EPA 300.0
Nitrate	<0.10	mg/L	03/10/2023	KCWELLS	EPA 300.0
Sulfate	1540	mg/L	03/10/2023	KCWELLS	EPA 300.0
Chloride	45.5	mg/L	03/10/2023	KCWELLS	EPA 300.0
Fluoride	0.21	mg/L	03/10/2023	KCWELLS	EPA 300.0
Total Dissolved Solids	2562	mg/L	03/15/2023	KCWELLS	SM 2540C
Radium 226	0.809	pCi/L	04/11/2023	GEL	EPA 903.1 Mod
Radium 228	1.89	pCi/L	04/04/2023	GEL	EPA 904.0
Radium 226/228 Combined Calculation	2.70	pCi/L	04/11/2023	GEL	EPA 903.1 Mod
Alkalinity as CaCO3	<5.71	mg/kg	03/13/2023	GEL	SM2320B
Alkalinity	222	mg/L	03/13/2023	GEL	SM 2320B
Bicarbonate Alkalinity	222	mg/L	03/13/2023	GEL	SM 2320B
Total Phosphorus	0.28	mg/L	03/28/2023	KCWELLS	EPA 365.1
SiO2	7130	%	03/30/2023	EUROFINS SAV	ASTM D3682
SiO2 Dissolved	7130	ug/L	03/30/2023	EUROFINS SAV	EPA 200.7
Silver	<1	ug/L	03/21/2023	EUROFINS SAV	EPA 6020B
Silver- Dissolved	<1	ug/L	03/21/2023	EUROFINS SAV	EPA 200.8

Comments:

Independent Laboratory Results: "GEL" - GEL Laboratories LLC - Lab ID # 10120; "Test America" - TestAmerica Laboratories, Inc. - Lab ID# 98001; "DavisBrown"- Davis & Brown Lab ID # 21117; "Shealy"- Shealy Environmental Services, Inc.- Lab ID# 32010 "ROGERSCALLCO"-Rogers & Callcot, Inc.- Lab ID # 23105001

Analysis Validated:

Lindalellar

Validation date: 05/08/2023

CERTIFICATE OF ANALYSIS

LAB CERTIFICATION #08552

Sample # AF56439

Location: WGS well WLF-A2-1

Date: 03/01/2023

Sample Collector: ZDM/ML

Loc. Code WLF-A2-1

	ne):	10).ZZ

EGG! GOGC TYE! TE	Time. 10.22						
Analysis Aluminum	Result 1.00	Units	Test Date	Analyst	Method		
Aluminum - Dissolved	0.850	mg/L	03/21/2023	EUROFINS SAV	EPA 6020B		
Arsenic	42.3	mg/L	03/20/2023	EUROFINS SAV	EPA 200.7		
Arsenic Dissolved	42.3	ug/L	03/21/2023	EUROFINS SAV	EPA 6020B		
Barium		ug/L	03/21/2023	EUROFINS SAV	EPA 6020B		
Barium Dissolved	104 90.0	ug/L	03/21/2023	EUROFINS SAV	EPA 6020B		
Beryllium		ug/L	03/20/2023	EUROFINS SAV	EPA 6020B		
Beryllium Dissolved	<0.5	ug/L	03/21/2023	EUROFINS SAV	EPA 6020B		
Calcium	< 0.5	ug/L	03/21/2023	EUROFINS SAV	EPA 6020B		
Calcium Dissolved	138.0	mg/L	03/20/2023	EUROFINS SAV	EPA 6010D		
Cadmium	126	mg/L	03/24/2023	EUROFINS SAV	EPA 6020B		
	<0.5	ug/L	03/21/2023	EUROFINS SAV	EPA 6020B		
Cadmium - Dissolved	<0.5	ug/L	03/20/2023	EUROFINS SAV	EPA 200.8		
Cobalt	6.88	ug/L	03/21/2023	EUROFINS SAV	EPA 6020B		
Cobalt Dissolved	6.6	ug/L	03/21/2023	EUROFINS SAV	EPA 6020B		
Chromium	<5	ug/L	03/21/2023	EUROFINS SAV	EPA 6020B		
Chromium - Dissolved	<5	ug/L	03/20/2023	EUROFINS SAV	EPA 200.8		
Lead	<2.5	ug/L	03/21/2023	EUROFINS SAV	EPA 6020B		
Lead - Dissolved	<2.5	ug/L	03/20/2023	EUROFINS SAV	EPA 200.8		
Antimony	<5	ug/L	03/21/2023	EUROFINS SAV	EPA 6020B		
Antimony - Dissolved	<5	ug/L	03/20/2023	EUROFINS SAV	EPA 200.8		
Selenium	<20	ug/L	03/20/2023	EUROFINS SAV	EPA 6010D		
Selenium - Dissolved	<20	ug/L	03/24/2023	EUROFINS SAV	EPA 200.8		
Thallium	<1	ug/L	03/21/2023	EUROFINS SAV	EPA 6020B		
Thallium - Dissolved	<1	ug/L	03/20/2023	EUROFINS SAV	EPA 200.8		
Boron	2800	ug/L	04/24/2023	LCWILLIA	EPA 6010D		
Boron Dissolved	2470	ug/L	03/23/2023	EUROFINS SAV	EPA 6010D		
Lithium	50.1	ug/L	04/24/2023	LCWILLIA	EPA 6010D		
Lithium Dissolved	49.6	ug/L	04/19/2023	LCWILLIA	EPA 6010D		
Molybdenum	<10	ug/L	03/21/2023	EUROFINS SAV	EPA 6010D		
Molybdenum Dissolved	<10	ug/L	03/24/2023	EUROFINS SAV	EPA 6010D		
Mercury	<0.2	ug/L	03/21/2023	EUROFINS SAV	EPA 7470		
Iron	9540	ug/L	03/20/2023	EUROFINS SAV	EPA 6010D		
Iron - Dissolved	7900	ug/L	03/24/2023	EUROFINS SAV	EPA 6020B		
Potassium	7.79	mg/L	03/20/2023	EUROFINS SAV	EPA 6010D		
Potassium Dissolved	7.0	mg/L	03/24/2023	EUROFINS SAV	EPA 6020B		
Sodium	38.3	mg/L	03/20/2023	EUROFINS SAV	EPA 6010D		
Sodium Dissolved	35.8	mg/L	03/21/2023	EUROFINS SAV	EPA 6020B		
Magnesium	14.6	mg/L	03/20/2023	EUROFINS SAV	EPA 6010D		
Magnesium Dissolved	13.0	mg/L	03/24/2023	EUROFINS SAV	EPA 6020B		
Manganese	167	ug/L	03/21/2023	EUROFINS SAV	EPA 6020B		
Manganese Dissolved	153	ug/L	03/24/2023	EUROFINS SAV	EPA 6020B		
Zinc	67.1	ug/L	03/21/2023	EUROFINS SAV	EPA 6020B		
Zinc Dissolved	43.1	ug/L	03/20/2023	EUROFINS SAV	EPA 6020B		
Copper	<5	ug/L	03/21/2023	EUROFINS SAV	EPA 6020B		
Nickel	<5	ug/L	03/21/2023	EUROFINS SAV	EPA 6020B		
Nickel - Dissolved	<5	ug/L	03/20/2023	EUROFINS SAV	EPA 200.8		
Sulfide	<0.1	mg/L	03/20/2023	SUB_GEL	EPA 200.8 EPA 9034		
Total Organic Carbon	5.31	mg/L	03/11/2023	SUB_GEL			
Dissoloved Organic Carbon	5.75	mg/L	03/10/2023	SUB_GEL	SM 5310B		
	0.10	1119/1	00/10/2020	SOD_GEL	SM 5310B		

SANTEE COOPER ANALYTICAL SERVICES

CERTIFICATE OF ANALYSIS

LAB CERTIFICATION #08552

Sample # AF56439

Location: WGS well WLF-A2-1

Date: 03/01/2023

Sample Collector: ZDM/ML

Loc. Code WLF-A2-1					
Analysis	Result	Units	Test Date	Analyst	Method
Nitrite	<0.10	mg/L	03/02/2023	KCWELLS	EPA 300.0
Nitrate	<0.10	mg/L	03/02/2023	KCWELLS	EPA 300.0
Sulfate	278	mg/L	03/02/2023	KCWELLS	EPA 300.0
Chloride	142	mg/L	03/02/2023	KCWELLS	EPA 300.0
Fluoride	<0.10	mg/L	03/02/2023	KCWELLS	EPA 300.0
Total Dissolved Solids	0.008	mg/L	03/09/2023	SJBROWN	SM 2540C
Radium 226	0.414	pCi/L	04/03/2023	GEL	EPA 903.1 Mod
Radium 228	0.580	pCi/L	03/29/2023	GEL	EPA 904.0
Radium 226/228 Combined Calculation	0.994	pCi/L	04/03/2023	GEL	EPA 903.1 Mod
Alkalinity as CaCO3	<4	mg/kg	03/09/2023	SUB GEL	SM2320B
Alkalinity	12.2	mg/L	03/09/2023	SUB GEL	SM 2320B
Bicarbonate Alkalinity	12.2	mg/L	03/09/2023	SUB GEL	SM 2320B
Silver	<1	ug/L	03/20/2023	EUROFINS SAV	EPA 6020B
Silver- Dissolved	<1	ug/L	03/20/2023	EUROFINS SAV	EPA 200.8

Comments:

Independent Laboratory Results: "GEL" - GEL Laboratories LLC - Lab ID # 10120; "Test America" - TestAmerica Laboratories, Inc. - Lab ID# 98001; "DavisBrown"- Davis & Brown Lab ID # 21117; "Shealy"- Shealy Environmental Services, Inc.- Lab ID# 32010 "ROGERSCALLCO"-Rogers & Callcot, Inc.- Lab ID # 23105001

Analysis Validated:

Kinda William

Validation date: 05/08/2023

SANTEE COOPER ANALYTICAL SERVICES

CERTIFICATE OF ANALYSIS

LAB CERTIFICATION #08552

Sample # AF56441

Location: WGS well WLF-A2-2

Date: 03/01/2023

Sample Collector: ZDM/ML

Loc. Code WLF-A2-2

ECC. COUC TIEL THE E			Time. 11.45		
Analysis	Result	Units	Test Date	Analyst	Method
Aluminum	<0.1	mg/L	03/21/2023	EUROFINS SAV	EPA 6020B
Aluminum - Dissolved	<0.1	mg/L	03/20/2023	EUROFINS SAV	EPA 200.7
Arsenic	182	ug/L	03/21/2023	EUROFINS SAV	EPA 6020B
Arsenic Dissolved	177	ug/L	03/21/2023	EUROFINS SAV	EPA 6020B
Barium	78.6	ug/L	03/21/2023	EUROFINS SAV	EPA 6020B
Barium Dissolved	76.2	ug/L	03/20/2023	EUROFINS SAV	EPA 6020B
Beryllium	<0.5	ug/L	03/21/2023	EUROFINS SAV	EPA 6020B
Beryllium Dissolved	<0.5	ug/L	03/21/2023	EUROFINS SAV	EPA 6020B
Calcium	191.0	mg/L	03/20/2023	EUROFINS SAV	EPA 6010D
Calcium Dissolved	174	mg/L	03/24/2023	EUROFINS SAV	EPA 6020B
Cadmium	<0.5	ug/L	03/21/2023	EUROFINS SAV	EPA 6020B
Cadmium - Dissolved	<0.5	ug/L	03/20/2023	EUROFINS SAV	EPA 200.8
Cobalt	<0.5	ug/L	03/21/2023	EUROFINS SAV	EPA 6020B
Cobalt Dissolved	<0.5	ug/L	03/21/2023	EUROFINS SAV	EPA 6020B
Chromium	<5	ug/L	03/21/2023	EUROFINS SAV	EPA 6020B
Chromium - Dissolved	<5	ug/L	03/20/2023	EUROFINS SAV	EPA 200.8
Lead	<2.5	ug/L	03/21/2023	EUROFINS SAV	EPA 6020B
Lead - Dissolved	<2.5	ug/L	03/20/2023	EUROFINS SAV	EPA 200.8
Antimony	<5	ug/L	03/21/2023	EUROFINS SAV	EPA 6020B
Antimony - Dissolved	<5	ug/L	03/20/2023	EUROFINS SAV	EPA 200.8
Selenium	<20	ug/L	03/20/2023	EUROFINS SAV	EPA 6010D
Selenium - Dissolved	<20	ug/L	03/24/2023	EUROFINS SAV	EPA 200.8
Thallium	<1	ug/L	03/21/2023	EUROFINS SAV	EPA 6020B
Thallium - Dissolved	<1	ug/L	03/20/2023	EUROFINS SAV	EPA 200.8
Boron	2330	ug/L	04/24/2023	LCWILLIA	EPA 6010D
Boron Dissolved	2010	ug/L	03/23/2023	EUROFINS SAV	EPA 6010D
Lithium	121	ug/L	03/24/2023	EUROFINS SAV	EPA 6010D
Lithium Dissolved	140	ug/L	03/24/2023	EUROFINS SAV	EPA 6010D
Molybdenum	<10	ug/L	03/21/2023	EUROFINS SAV	EPA 6010D
Molybdenum Dissolved	<10	ug/L	03/24/2023	EUROFINS SAV	EPA 6010D
Mercury	<0.2	ug/L	03/21/2023	EUROFINS SAV	EPA 7470
Iron	5280	ug/L	03/20/2023	EUROFINS SAV	EPA 6010D
Iron - Dissolved	4580	ug/L	03/24/2023	EUROFINS SAV	EPA 6020B
Potassium	5.50	mg/L	03/20/2023	EUROFINS SAV	EPA 6010D
Potassium Dissolved	5.0	mg/L	03/24/2023	EUROFINS SAV	EPA 6020B
Sodium	24.4	mg/L	03/20/2023	EUROFINS SAV	EPA 6010D
Sodium Dissolved	22.9	mg/L	03/21/2023	EUROFINS SAV	EPA 6020B
Magnesium	10.9	mg/L	03/20/2023	EUROFINS SAV	EPA 6010D
Magnesium Dissolved	9.73	mg/L	03/24/2023	EUROFINS SAV	EPA 6020B
Manganese	324	ug/L	03/21/2023	EUROFINS SAV	EPA 6020B
Manganese Dissolved	299	ug/L	03/24/2023	EUROFINS SAV	EPA 6020B
Zinc	<20	ug/L	03/21/2023	EUROFINS SAV	
Zinc Dissolved	<20	ug/L	03/20/2023		EPA 6020B
Copper	<5	ug/L		EUROFINS SAV	EPA 6020B
Nickel	<5	_	03/21/2023	EUROFINS SAV	EPA 6020B
Nickel - Dissolved	<5	ug/L	03/21/2023	EUROFINS SAV	EPA 6020B
Sulfide		ug/L	03/20/2023	EUROFINS SAV	EPA 200.8
	<0.1	mg/L	03/07/2023	SUB_GEL	EPA 9034
Total Organic Carbon	9.35	mg/L	03/11/2023	SUB_GEL	SM 5310B
Dissoloved Organic Carbon	10.2	mg/L	03/10/2023	SUB_GEL	SM 5310B

SANTEE COOPER ANALYTICAL SERVICES

CERTIFICATE OF ANALYSIS

LAB CERTIFICATION #08552

Sample # AF56441

Location: WGS well WLF-A2-2

Date: 03/01/2023

Sample Collector: ZDM/ML

Loc. Code	WLF-A2-2	Time: 11:45

Analysis	Result	Units	Test Date	Analyst	Method
Nitrite	<0.10	mg/L	03/02/2023	KCWELLS	EPA 300.0
Nitrate	<0.10	mg/L	03/02/2023	KCWELLS	EPA 300.0
Sulfate	342	mg/L	03/02/2023	KCWELLS	EPA 300.0
Chloride	98.9	mg/L	03/02/2023	KCWELLS	EPA 300.0
Fluoride	<0.10	mg/L	03/02/2023	KCWELLS	EPA 300.0
Total Dissolved Solids	1012	mg/L	03/09/2023	SJBROWN	SM 2540C
Radium 226	0.747	pCi/L	04/03/2023	GEL	EPA 903.1 Mod
Radium 228	0.269	pCi/L	03/29/2023	GEL	EPA 904.0
Radium 226/228 Combined Calculation	1.02	pCi/L	04/03/2023	GEL	EPA 903.1 Mod
Alkalinity as CaCO3	<4	mg/kg	03/09/2023	SUB_GEL	SM2320B
Alkalinity	62.8	mg/L	03/09/2023	SUB_GEL	SM 2320B
Bicarbonate Alkalinity	62.8	mg/L	03/09/2023	SUB GEL	SM 2320B
Silver	<1	ug/L	03/20/2023	EUROFINS SAV	EPA 6020B
Silver- Dissolved	<1	ug/L	03/20/2023	EUROFINS SAV	EPA 200.8

Comments:

Independent Laboratory Results: "GEL" - GEL Laboratories LLC - Lab ID # 10120; "Test America" - TestAmerica Laboratories, Inc. - Lab ID# 98001; "DavisBrown"- Davis & Brown Lab ID # 21117; "Shealy"- Shealy Environmental Services, Inc.- Lab ID# 32010 "ROGERSCALLCO"-Rogers & Callcot, Inc.- Lab ID # 23105001

Analysis Validated:

Kindal Wellars

Validation date: 05/08/2023

Linda Williams - Manager Analytical Services

CERTIFICATE OF ANALYSIS

LAB CERTIFICATION #08552

Sample # AF56442 Location: WGS well WLF-A2-6 Date: 02/16/2023 Sample Collector: ZDM/MDG

Loc. Code WLF-A2-6 Time: 14:07

Loc. Code VVLF-A2-6	Time: 14:07						
Analysis	Result	Units	Test Date	Analyst	Method		
Aluminum	<0.1	mg/L	03/21/2023	EUROFINS SAV	EPA 6020B		
Aluminum - Dissolved	<0.1	mg/L	03/20/2023	EUROFINS SAV	EPA 200.7		
Arsenic	<3	ug/L	03/21/2023	EUROFINS SAV	EPA 6020B		
Arsenic Dissolved	3.6	ug/L	03/22/2023	EUROFINS SAV	EPA 6020B		
Barium	32.6	ug/L	03/21/2023	EUROFINS SAV	EPA 6020B		
Barium Dissolved	34.7	ug/L	03/20/2023	EUROFINS SAV	EPA 6020B		
Beryllium	<0.5	ug/L	03/21/2023	EUROFINS SAV	EPA 6020B		
Beryllium Dissolved	<0.5	ug/L	03/21/2023	EUROFINS SAV	EPA 6020B		
Calcium	166.0	mg/L	03/20/2023	EUROFINS SAV	EPA 6010D		
Calcium Dissolved	162	mg/L	03/20/2023	EUROFINS SAV	EPA 6020B		
Cadmium	<0.5	ug/L	03/21/2023	EUROFINS SAV	EPA 6020B		
Cadmium - Dissolved	<0.5	ug/L	03/20/2023	EUROFINS SAV	EPA 200.8		
Cobalt	<0.5	ug/L	03/21/2023	EUROFINS SAV	EPA 6020B		
Cobalt Dissolved	<0.5	ug/L	03/21/2023	EUROFINS SAV	EPA 6020B		
Chromium	<5	ug/L	03/21/2023	EUROFINS SAV	EPA 6020B		
Chromium - Dissolved	<5	ug/L	03/20/2023	EUROFINS SAV	EPA 200.8		
Lead	<2.5	ug/L	03/21/2023	EUROFINS SAV	EPA 6020B		
Lead - Dissolved	<2.5	ug/L	03/20/2023	EUROFINS SAV	EPA 200.8		
Antimony	<5	ug/L	03/21/2023	EUROFINS SAV	EPA 6020B		
Antimony - Dissolved	<5	ug/L	03/20/2023	EUROFINS SAV	EPA 200.8		
Selenium	<20	ug/L	03/20/2023	EUROFINS SAV	EPA 6010D		
Selenium - Dissolved	<20	ug/L	03/20/2023	EUROFINS SAV	EPA 200.8		
Thallium	<1	ug/L	03/21/2023	EUROFINS SAV	EPA 6020B		
Thallium - Dissolved	<1	ug/L	03/20/2023	EUROFINS SAV	EPA 200.8		
Boron	245	ug/L	04/24/2023	LCWILLIA	EPA 6010D		
Boron Dissolved	245	ug/L	03/23/2023	EUROFINS SAV	EPA 6010D		
Lithium	10.9	ug/L	04/24/2023	LCWILLIA	EPA 6010D		
Lithium Dissolved	10.5	ug/L	04/19/2023	LCWILLIA	EPA 6010D		
Molybdenum	<10	ug/L	03/21/2023	EUROFINS SAV	EPA 6010D		
Molybdenum Dissolved	<10	ug/L	03/20/2023	EUROFINS SAV	EPA 6010D		
Mercury	<0.2	ug/L	03/21/2023	EUROFINS SAV	EPA 7470		
Iron	450	ug/L	03/20/2023	EUROFINS SAV	EPA 6010D		
Iron - Dissolved	286	ug/L	03/21/2023	EUROFINS SAV	EPA 6020B		
Potassium	4.29	mg/L	03/20/2023	EUROFINS SAV	EPA 6010D		
Potassium Dissolved	4.2	mg/L	03/20/2023	EUROFINS SAV	EPA 6020B		
Sodium	21.9	mg/L	03/20/2023	EUROFINS SAV	EPA 6010D		
Sodium Dissolved	21.5	mg/L	03/21/2023	EUROFINS SAV	EPA 6020B		
Magnesium	7.73	mg/L	03/20/2023	EUROFINS SAV	EPA 6010D		
Magnesium Dissolved	7.61	mg/L	03/20/2023	EUROFINS SAV	EPA 6020B		
Manganese	58.2	ug/L	03/21/2023	EUROFINS SAV	EPA 6020B		
Manganese Dissolved	52.6	ug/L	03/24/2023	EUROFINS SAV	EPA 6020B		
Zinc	<20	ug/L	03/21/2023	EUROFINS SAV	EPA 6020B		
Zinc Dissolved	<20	ug/L	03/20/2023	EUROFINS SAV	EPA 6020B		
Copper	<5	ug/L	03/21/2023	EUROFINS SAV	EPA 6020B		
Nickel	<5	ug/L	03/21/2023	EUROFINS SAV	EPA 6020B		
Nickel - Dissolved	<5	ug/L	03/20/2023	EUROFINS SAV	EPA 200.8		
Sulfide	<0.1	mg/L	02/20/2023	GEL	EPA 9034		
Total Organic Carbon	15.9	mg/L	02/21/2023	GEL	SM 5310B		
Dissoloved Organic Carbon	15.9	mg/L	02/22/2023	GEL	SM 5310B		
-				OLL.	OW 00 10D		

SANTEE COOPER ANALYTICAL SERVICES

CERTIFICATE OF ANALYSIS

LAB CERTIFICATION #08552

Sample # AF56442

Location: WGS well WLF-A2-6

Date: 02/16/2023

Sample Collector: ZDM/MDG

Loc. Code WLF-A2-6

Time: 14:07

EGC. GOGE WEI -AZ-0	1 ime: 14:07				
Analysis	Result	Units	Test Date	Analyst	Method
Nitrate-Nitrite Cadmium Reduction	<0.2	mg/L	02/22/2023	GEL	EPA 353.2
Sulfate	133	mg/L	02/24/2023	KCWELLS	EPA 300.0
Chloride	32.7	mg/L	02/24/2023	KCWELLS	EPA 300.0
Fluoride	0.11	mg/L	02/24/2023	KCWELLS	EPA 300.0
Total Dissolved Solids	605.0	mg/L	02/23/2023	SJBROWN	SM 2540C
Radium 226	0.206	pCi/L	03/16/2023	GEL	EPA 903.1 Mod
Radium 228	1.77	pCi/L	03/14/2023	GEL	EPA 904.0
Radium 226/228 Combined Calculation	1.98	pCi/L	03/16/2023	GEL	EPA 903.1 Mod
Alkalinity as CaCO3	<4	mg/kg	02/23/2023	GEL	SM2320B
Alkalinity	268	mg/L	02/23/2023	GEL	SM 2320B
Bicarbonate Alkalinity	268	mg/L	02/23/2023	GEL	SM 2320B
Silver	<1	ug/L	03/20/2023	EUROFINS SAV	EPA 6020B
Silver- Dissolved	<1	ug/L	03/20/2023	EUROFINS SAV	EPA 200.8

Comments:

Independent Laboratory Results: "GEL" - GEL Laboratories LLC - Lab ID # 10120; "Test America" - TestAmerica Laboratories, Inc. - Lab ID# 98001; "DavisBrown"- Davis & Brown Lab ID # 21117; "Shealy"- Shealy Environmental Services, Inc.- Lab ID# 32010 "ROGERSCALLCO"-Rogers & Callcot, Inc.- Lab ID # 23105001

Analysis Validated:

Lindal Dellars

Validation date: 05/08/2023

SANTEE COOPER ANALYTICAL SERVICES

CERTIFICATE OF ANALYSIS

LAB CERTIFICATION #08552

Sample # AF56443 Location: WGS well WLF-A2-6 Date: 02/16/2023 Sample Collector: ZDM/MDG

WLF-A2-6 Loc. Code DUP Time: 14:12 **Analysis** Result Units **Test Date Analyst** Method Aluminum < 0.1 ma/L 03/21/2023 **EUROFINS SAV EPA 6020B** Aluminum - Dissolved 0.240 mg/L 03/20/2023 **EUROFINS SAV** EPA 200.7 Arsenic <3 ug/L 03/21/2023 **EUROFINS SAV EPA 6020B** Arsenic Dissolved 4.5 ug/L 03/22/2023 **EUROFINS SAV EPA 6020B** Barium 33.8 ug/L 03/21/2023 **EUROFINS SAV EPA 6020B Barium Dissolved** 39.2 ug/L 03/20/2023 **EUROFINS SAV EPA 6020B** Beryllium < 0.5 ug/L 03/21/2023 **EUROFINS SAV EPA 6020B** Beryllium Dissolved < 0.5 ug/L 03/21/2023 **EUROFINS SAV EPA 6020B** Calcium 160.0 mg/L 03/20/2023 **EUROFINS SAV EPA 6010D** Calcium Dissolved 166 mg/L 03/20/2023 **EUROFINS SAV EPA 6020B** Cadmium < 0.5 ug/L 03/21/2023 **EUROFINS SAV EPA 6020B** Cadmium - Dissolved < 0.5 ug/L 03/20/2023 **EUROFINS SAV** EPA 200.8 Cobalt < 0.5 ug/L 03/21/2023 **EUROFINS SAV EPA 6020B** Cobalt Dissolved 0.72 ug/L 03/21/2023 **EUROFINS SAV EPA 6020B** Chromium <5 ug/L 03/21/2023 **EUROFINS SAV EPA 6020B** Chromium - Dissolved <5 ug/L 03/20/2023 **EUROFINS SAV EPA 200.8** Lead <2.5 ug/L 03/21/2023 **EUROFINS SAV EPA 6020B** Lead - Dissolved < 2.5 ug/L 03/20/2023 **EUROFINS SAV EPA 200.8** Antimony <5 ug/L 03/21/2023 **EUROFINS SAV EPA 6020B** Antimony - Dissolved <5 ug/L 03/20/2023 **EUROFINS SAV** EPA 200.8 Selenium <20 ug/L 03/20/2023 **EUROFINS SAV EPA 6010D** Selenium - Dissolved <20 ug/L 03/20/2023 **EUROFINS SAV** EPA 200.8 **Thallium** <1 ug/L 03/21/2023 **EUROFINS SAV EPA 6020B** Thallium - Dissolved <1 ug/L 03/20/2023 **EUROFINS SAV** EPA 200.8 Boron 256 ug/L 04/24/2023 **LCWILLIA EPA 6010D** Boron Dissolved 253 ug/L 03/23/2023 **EUROFINS SAV EPA 6010D** Lithium 12.0 ug/L 04/24/2023 **LCWILLIA EPA 6010D** Lithium Dissolved 11.4 04/19/2023 ug/L **LCWILLIA EPA 6010D** Molybdenum <10 ug/L 03/21/2023 **EUROFINS SAV EPA 6010D** Molybdenum Dissolved <10 ug/L 03/20/2023 **EUROFINS SAV EPA 6010D** Mercury < 0.2 ug/L 03/21/2023 **EUROFINS SAV EPA 7470** Iron 302 ug/L 03/20/2023 **EUROFINS SAV EPA 6010D** Iron - Dissolved 359 ug/L 03/21/2023 **EUROFINS SAV EPA 6020B** Potassium 4.05 mg/L 03/20/2023 **EUROFINS SAV EPA 6010D** Potassium Dissolved 4.2 mg/L 03/20/2023 **EUROFINS SAV EPA 6020B** Sodium 20.7 mg/L 03/20/2023 **EUROFINS SAV EPA 6010D** Sodium Dissolved 21.5 mg/L 03/21/2023 **EUROFINS SAV EPA 6020B** Magnesium 7.59 mg/L 03/20/2023 **EUROFINS SAV EPA 6010D** Magnesium Dissolved 7.85 mg/L 03/20/2023 **EUROFINS SAV EPA 6020B** Manganese 57.3 ug/L 03/21/2023 **EUROFINS SAV EPA 6020B** Manganese Dissolved 53.2 ug/L 03/24/2023 **EUROFINS SAV EPA 6020B** Zinc <20 ug/L 03/21/2023 **EUROFINS SAV EPA 6020B** Zinc Dissolved <20 ug/L 03/20/2023 **EUROFINS SAV EPA 6020B** Copper <5 ug/L 03/21/2023 **EUROFINS SAV EPA 6020B** Nickel <5 ug/L 03/21/2023 **EUROFINS SAV EPA 6020B** Nickel - Dissolved <5 ug/L 03/20/2023 **EUROFINS SAV EPA 200.8** Sulfide < 0.1 mg/L 02/20/2023 GEL **EPA 9034** Total Organic Carbon 15.7 mg/L 02/21/2023 **GEL** SM 5310B Dissoloved Organic Carbon 15.6 mg/L 02/22/2023 **GEL** SM 5310B

SANTEE COOPER ANALYTICAL SERVICES

CERTIFICATE OF ANALYSIS

LAB CERTIFICATION #08552

Sample # AF56443

Location: WGS well WLF-A2-6

Date: 02/16/2023

Sample Collector: ZDM/MDG

Loc. Code WLF-A2-6	DUP		Time: 14:12		
Analysis	Result	Units	Test Date	Analyst	Method
Nitrate-Nitrite Cadmium Reduction	<0.2	mg/L	02/22/2023	GEL	EPA 353.2
Sulfate	125	mg/L	02/24/2023	KCWELLS	EPA 300.0
Chloride	32.3	mg/L	02/24/2023	KCWELLS	EPA 300.0
Fluoride	0.11	mg/L	02/24/2023	KCWELLS	EPA 300.0
Total Dissolved Solids	625.0	mg/L	02/23/2023	SJBROWN	SM 2540C
Radium 226	0.331	pCi/L	03/16/2023	GEL	EPA 903.1 Mod
Radium 228	0.313	pCi/L	03/14/2023	GEL	EPA 904.0
Radium 226/228 Combined Calculation	0.644	pCi/L	03/16/2023	GEL	EPA 903.1 Mod
Alkalinity as CaCO3	<4	mg/kg	02/23/2023	GEL	SM2320B
Alkalinity	271	mg/L	02/23/2023	GEL	SM 2320B
Bicarbonate Alkalinity	271	mg/L	02/23/2023	GEL	SM 2320B
Silver	<1	ug/L	03/20/2023	EUROFINS SAV	EPA 6020B
Silver- Dissolved	<1	ug/L	03/20/2023	EUROFINS SAV	EPA 200 8

Comments:

Independent Laboratory Results: "GEL" - GEL Laboratories LLC - Lab ID # 10120; "Test America" - TestAmerica Laboratories, Inc. - Lab ID# 98001; "DavisBrown"- Davis & Brown Lab ID # 21117; "Shealy"- Shealy Environmental Services, Inc.- Lab ID# 32010 "ROGERSCALLCO"-Rogers & Callcot, Inc.- Lab ID # 23105001

Analysis Validated:

Linda Whan

Validation date: 05/08/2023

Linda Williams - Manager Analytical Services

SANTEE COOPER ANALYTICAL SERVICES

CERTIFICATE OF ANALYSIS

LAB CERTIFICATION #08552

Sample # AF68711 Location: GW Well WAP-1 Date: 06/27/2023 Sample Collector: WJK/ML

Loc. Code WAP-1 Time: 11:26

Loc. Code WAP-1	Time: 11:26					
Analysis Aluminum	Result 1.14	Units mg/L	Test Date 08/08/2023	Analyst EUROFINS SAV	Method EPA 6020B	
Arsenic	8.50	ug/L	08/08/2023	EUROFINS SAV	EPA 6020B	
Barium	77.1	ug/L ug/L	08/08/2023	EUROFINS SAV	EPA 6020B	
Beryllium	<0.5	ug/L	08/08/2023	EUROFINS SAV	EPA 6020B	
Calcium	8.49	_	08/03/2023	EUROFINS SAV		
Cadmium	<0.5	ug/L			EPA 6010D	
		ug/L	08/08/2023	EUROFINS SAV	EPA 6020B	
Cobalt	0.595	ug/L	08/08/2023	EUROFINS SAV	EPA 6020B	
Chromium	<5	ug/L	08/08/2023	EUROFINS SAV	EPA 6020B	
Iron	2200	ug/L	08/08/2023	EUROFINS SAV	EPA 6020B	
Magnesium	0.733	mg/L	08/08/2023	EUROFINS SAV	EPA 6020B	
Lead	<2.5	ug/L	08/08/2023	EUROFINS SAV	EPA 6020B	
Antimony	<5	ug/L	08/08/2023	EUROFINS SAV	EPA 6020B	
Selenium	<20	ug/L	08/03/2023	EUROFINS SAV	EPA 6010D	
Thallium	<1	ug/L	08/08/2023	EUROFINS SAV	EPA 6020B	
Boron	41.0	ug/L	08/21/2023	SKJACOBS	EPA 6010D	
Lithium	<5.0	ug/L	08/21/2023	SKJACOBS	EPA 6010D	
Molybdenum	<5.0	ug/L	08/21/2023	SKJACOBS	EPA 6010D	
Mercury	<0.2	ug/L	07/11/2023	EUROFINS SAV	EPA 7470	
Zinc	<20	ug/L	08/08/2023	EUROFINS SAV	EPA 6020B	
Copper	<5	ug/L	08/08/2023	EUROFINS SAV	EPA 6020B	
Nickel	<5	ug/L	08/08/2023	EUROFINS SAV	EPA 6020B	
Fluoride	<0.10	mg/L	07/07/2023	KCWELLS	EPA 300.0	
Chloride	10.5	mg/L	07/07/2023	KCWELLS	EPA 300.0	
Sulfate	31.1	mg/L	07/07/2023	KCWELLS	EPA 300.0	
Total Dissolved Solids	90.00	mg/L	07/05/2023	NTCHIN	SM 2540C	
Radium 226	1.85	pCi/L	07/24/2023	GEL	EPA 903.1 Mod	
Radium 228	-0.145	pCi/L	07/17/2023	GEL	EPA 904.0	
Radium 226/228 Combined Calculation	1.85	pCi/L	07/24/2023	GEL	EPA 903.1 Mod	
pH	4.51	SU	06/27/2023	WJK/ML		

Comments:

Independent Laboratory Results: "GEL" - GEL Laboratories LLC - Lab ID # 10120; "Test America" - TestAmerica Laboratories, Inc. - Lab ID# 98001; "DavisBrown"- Davis & Brown Lab ID # 21117; "Shealy"- Shealy Environmental Services, Inc.- Lab ID# 32010 "ROGERSCALLCO"-

Rogers & Callcot, Inc.- Lab ID # 23105001

Analysis Validated:

Validation date:

Linda Williams - Manager Analytical Services

SANTEE COOPER ANALYTICAL SERVICES

CERTIFICATE OF ANALYSIS

LAB CERTIFICATION #08552

Sample # AF68748 Location: GW Well WBW-1 Date: 06/27/2023 Sample Collector: WJK/ML

Loc. Code WBW-1 Time: 10:15

Loc. Code VVDVV-1	lime: 10:15					
Analysis	Result	Units	Test Date	Analyst	Method	
Aluminum	0.938	mg/L	08/07/2023	EUROFINS SAV	EPA 6020B	
Arsenic	<3	ug/L	08/07/2023	EUROFINS SAV	EPA 6020B	
Barium	53.4	ug/L	08/07/2023	EUROFINS SAV	EPA 6020B	
Beryllium	<0.5	ug/L	08/07/2023	EUROFINS SAV	EPA 6020B	
Calcium	3260	ug/L	08/03/2023	EUROFINS SAV	EPA 6010D	
Cadmium	<0.5	ug/L	08/07/2023	EUROFINS SAV	EPA 6020B	
Cobalt	2.00	ug/L	08/07/2023	EUROFINS SAV	EPA 6020B	
Chromium	<5	ug/L	08/07/2023	EUROFINS SAV	EPA 6020B	
Iron	<100	ug/L	08/07/2023	EUROFINS SAV	EPA 6020B	
Magnesium	1.28	mg/L	08/07/2023	EUROFINS SAV	EPA 6020B	
Lead	<2.5	ug/L	08/07/2023	EUROFINS SAV	EPA 6020B	
Antimony	<5	ug/L	08/07/2023	EUROFINS SAV	EPA 6020B	
Selenium	<20	ug/L	08/03/2023	EUROFINS SAV	EPA 6010D	
Thallium	<1	ug/L	08/07/2023	EUROFINS SAV	EPA 6020B	
Boron	53.1	ug/L	08/23/2023	SKJACOBS	EPA 6010D	
Lithium	<5.0	ug/L	08/23/2023	SKJACOBS	EPA 6010D	
Molybdenum	<5.0	ug/L	08/23/2023	SKJACOBS	EPA 6010D	
Mercury	<0.2	ug/L	07/11/2023	EUROFINS SAV	EPA 7470	
Zinc	<20	ug/L	08/07/2023	EUROFINS SAV	EPA 6020B	
Copper	<5	ug/L	08/07/2023	EUROFINS SAV	EPA 6020B	
Nickel	<5	ug/L	08/07/2023	EUROFINS SAV	EPA 6020B	
Fluoride	<0.10	mg/L	07/07/2023	KCWELLS	EPA 300.0	
Chloride	7.58	mg/L	07/07/2023	KCWELLS	EPA 300.0	
Sulfate	14.4	mg/L	07/07/2023	KCWELLS	EPA 300.0	
Total Dissolved Solids	42.50	mg/L	07/05/2023	NTCHIN	SM 2540C	
Radium 226	0.388	pCi/L	07/24/2023	GEL	EPA 903.1 Mod	
Radium 228	3.93	pCi/L	07/19/2023	GEL	EPA 904.0	
Radium 226/228 Combined Calculation	4.32	pCi/L	07/24/2023	GEL	EPA 903.1 Mod	
pH	3.94	SU	06/27/2023	WJK/ML		

Comments:

Independent Laboratory Results: "GEL" - GEL Laboratories LLC - Lab ID # 10120; "Test America" - TestAmerica Laboratories, Inc. - Lab ID# 98001; "DavisBrown"- Davis & Brown Lab ID # 21117; "Shealy"- Shealy Environmental Services, Inc.- Lab ID# 32010 "ROGERSCALLCO"-Rogers & Callcot, Inc.- Lab ID # 23105001

Validation date:

Analysis Validated:

Linda Williams - Manager Analytical Services

o ,

SANTEE COOPER ANALYTICAL SERVICES

CERTIFICATE OF ANALYSIS

LAB CERTIFICATION #08552

Sample # AF68719 Location: GW Well WAP-9 Date: 06/29/2023 Sample Collector: WJK/ML

Loc. Code WAP-9 Time: 10:48

Loc. Code WAP-9	Time: 10:48				
Analysis Aluminum	Result 0.547	Units	Test Date	Analyst EUROFINS SAV	Method
Arsenic	0.547 38.1	mg/L	08/08/2023		EPA 6020B
		ug/L	08/08/2023	EUROFINS SAV	EPA 6020B
Barium	99.1	ug/L	08/08/2023	EUROFINS SAV	EPA 6020B
Beryllium	<0.5	ug/L	08/08/2023	EUROFINS SAV	EPA 6020B
Calcium	232	ug/L	08/03/2023	EUROFINS SAV	EPA 6010D
Cadmium	<0.5	ug/L	08/08/2023	EUROFINS SAV	EPA 6020B
Cobalt	0.660	ug/L	08/08/2023	EUROFINS SAV	EPA 6020B
Chromium	<5	ug/L	08/08/2023	EUROFINS SAV	EPA 6020B
Iron	28500	ug/L	08/08/2023	EUROFINS SAV	EPA 6020B
Magnesium	30.2	mg/L	08/08/2023	EUROFINS SAV	EPA 6020B
Lead	<2.5	ug/L	08/08/2023	EUROFINS SAV	EPA 6020B
Antimony	<5	ug/L	08/08/2023	EUROFINS SAV	EPA 6020B
Selenium	<20	ug/L	08/03/2023	EUROFINS SAV	EPA 6010D
Thallium	<1	ug/L	08/08/2023	EUROFINS SAV	EPA 6020B
Boron	3250	ug/L	08/21/2023	SKJACOBS	EPA 6010D
Lithium	71.8	ug/L	08/21/2023	SKJACOBS	EPA 6010D
Molybdenum	<5.0	ug/L	08/21/2023	SKJACOBS	EPA 6010D
Mercury	<0.2	ug/L	07/11/2023	EUROFINS SAV	EPA 7470
Zinc	<20	ug/L	08/08/2023	EUROFINS SAV	EPA 6020B
Copper	<5	ug/L	08/08/2023	EUROFINS SAV	EPA 6020B
Fluoride	0.1	mg/L	07/07/2023	KCWELLS	EPA 300.0
Chloride	166	mg/L	07/07/2023	KCWELLS	EPA 300.0
Sulfate	296	mg/L	07/07/2023	KCWELLS	EPA 300.0
Total Dissolved Solids	1136	mg/L	07/07/2023	NTCHIN	SM 2540C
Radium 226	1.59	pCi/L	07/24/2023	GEL	EPA 903.1 Mod
Radium 228	3.47	pCi/L	07/17/2023	GEL	EPA 904.0
Radium 226/228 Combined Calculation	5.06	pCi/L	07/24/2023	GEL	EPA 903.1 Mod
рН	6.11	SU	06/29/2023	WJK/ML	

Comments:

Independent Laboratory Results: "GEL" - GEL Laboratories LLC - Lab ID # 10120; "Test America" - TestAmerica Laboratories, Inc. - Lab ID# 98001; "DavisBrown"- Davis & Brown Lab ID # 21117; "Shealy"- Shealy Environmental Services, Inc.- Lab ID# 32010 "ROGERSCALLCO"-Rogers & Callcot, Inc.- Lab ID # 23105001

Validation date:

Analysis Validated:

Linda Williams - Manager Analytical Services

One Riverwood Drive P.O. Box 2946101 Moncks Corner, SC 29461-2901

(843) 761-8000

SANTEE COOPER ANALYTICAL SERVICES

CERTIFICATE OF ANALYSIS

LAB CERTIFICATION #08552

Location: GW Well WAP-17 Sample Collector: WJK/ML **Sample #** AF68733 Date: 07/10/2023

Loc. Code WAP-17 Time: 14:10

Loc. Code WAP-17	Time. 14.10					
Analysis	Result	Units	Test Date	Analyst	Method	
Arsenic	90.8	ug/L	08/10/2023	SKJACOBS	EPA 6020B	
Barium	39.9	ug/L	08/10/2023	SKJACOBS	EPA 6020B	
Beryllium	<0.5	ug/L	08/10/2023	SKJACOBS	EPA 6020B	
Calcium	253000	ug/L	08/10/2023	SKJACOBS	EPA 6010D	
Cadmium	<0.5	ug/L	08/10/2023	SKJACOBS	EPA 6020B	
Cobalt	<0.5	ug/L	08/10/2023	SKJACOBS	EPA 6020B	
Chromium	<5.0	ug/L	08/10/2023	SKJACOBS	EPA 6020B	
Iron	1260	ug/L	08/10/2023	SKJACOBS	EPA 6020B	
Lead	<1.0	ug/L	08/10/2023	SKJACOBS	EPA 6020B	
Antimony	<5.0	ug/L	08/10/2023	SKJACOBS	EPA 6020B	
Selenium	<10.0	ug/L	08/10/2023	SKJACOBS	EPA 6010D	
Thallium	<1.0	ug/L	08/10/2023	SKJACOBS	EPA 6020B	
Boron	4010	ug/L	08/04/2023	SKJACOBS	EPA 6010D	
Lithium	129	ug/L	08/04/2023	SKJACOBS	EPA 6010D	
Molybdenum	39.5	ug/L	08/04/2023	SKJACOBS	EPA 6010D	
Mercury	<0.2	ug/L	07/26/2023	EUROFINS SAV	EPA 7470	
Zinc	<10.0	ug/L	08/10/2023	SKJACOBS	EPA 6020B	
Copper	<5.0	ug/L	08/10/2023	SKJACOBS	EPA 6020B	
Nickel	<0.5	ug/L	08/10/2023	SKJACOBS	EPA 6020B	
Fluoride	<0.10	mg/L	07/13/2023	KCWELLS	EPA 300.0	
Chloride	105	mg/L	07/13/2023	KCWELLS	EPA 300.0	
Sulfate	651	mg/L	07/13/2023	KCWELLS	EPA 300.0	
Total Dissolved Solids	1271	mg/L	07/14/2023	TDHARRIS	SM 2540C	
Radium 226	1.61	pCi/L	08/11/2023	GEL	EPA 903.1 Mod	
Radium 228	1.80	pCi/L	08/10/2023	GEL	EPA 904.0	
Radium 226/228 Combined Calculation	3.41	pCi/L	08/11/2023	GEL	EPA 903.1 Mod	
pH	6.33	SU	07/10/2023	WJK/ML		
-						

Comments:

Independent Laboratory Results: "GEL" - GEL Laboratories LLC - Lab ID # 10120; "Test America" - TestAmerica Laboratories, Inc. - Lab ID# 98001; "DavisBrown"- Davis & Brown Lab ID # 21117; "Shealy"- Shealy Environmental Services, Inc. - Lab ID# 32010 "ROGERSCALLCO"-Rogers & Callcot, Inc.- Lab ID # 23105001

Analysis Validated:

Linda Williams - Manager Analytical Services

Validation date:

SANTEE COOPER ANALYTICAL SERVICES

CERTIFICATE OF ANALYSIS

LAB CERTIFICATION #08552

Sample # AF68734 Location: GW Well WAP-17 Date: 07/10/2023 Sample Collector: WJK/ML

Loc. Code WAP-17 DUP Time: 14:15

Loc. Code WAP-17	DUP	UP Time: 14:15				
Analysis	Result	Units	Test Date	Analyst	Method	
Arsenic	92.0	ug/L	08/10/2023	SKJACOBS	EPA 6020B	
Barium	40.2	ug/L	08/10/2023	SKJACOBS	EPA 6020B	
Beryllium	<0.5	ug/L	08/10/2023	SKJACOBS	EPA 6020B	
Calcium	254000	ug/L	08/10/2023	SKJACOBS	EPA 6010D	
Cadmium	<0.5	ug/L	08/10/2023	SKJACOBS	EPA 6020B	
Cobalt	<0.5	ug/L	08/10/2023	SKJACOBS	EPA 6020B	
Chromium	<5.0	ug/L	08/10/2023	SKJACOBS	EPA 6020B	
Iron	1270	ug/L	08/10/2023	SKJACOBS	EPA 6020B	
Lead	<1.0	ug/L	08/10/2023	SKJACOBS	EPA 6020B	
Antimony	<5.0	ug/L	08/10/2023	SKJACOBS	EPA 6020B	
Selenium	<10.0	ug/L	08/10/2023	SKJACOBS	EPA 6010D	
Thallium	<1.0	ug/L	08/10/2023	SKJACOBS	EPA 6020B	
Boron	3980	ug/L	08/04/2023	SKJACOBS	EPA 6010D	
Lithium	128	ug/L	08/04/2023	SKJACOBS	EPA 6010D	
Molybdenum	39.9	ug/L	08/04/2023	SKJACOBS	EPA 6010D	
Mercury	<0.2	ug/L	07/26/2023	EUROFINS SAV	EPA 7470	
Zinc	<10.0	ug/L	08/10/2023	SKJACOBS	EPA 6020B	
Copper	<5.0	ug/L	08/10/2023	SKJACOBS	EPA 6020B	
Nickel	<0.5	ug/L	08/10/2023	SKJACOBS	EPA 6020B	
Fluoride	<0.10	mg/L	07/13/2023	KCWELLS	EPA 300.0	
Chloride	105	mg/L	07/13/2023	KCWELLS	EPA 300.0	
Sulfate	652	mg/L	07/13/2023	KCWELLS	EPA 300.0	
Total Dissolved Solids	1260	mg/L	07/14/2023	NTCHIN	SM 2540C	
Radium 226	1.38	pCi/L	08/11/2023	GEL	EPA 903.1 Mod	
Radium 228	1.00	pCi/L	08/10/2023	GEL	EPA 904.0	
Radium 226/228 Combined Calculation	2.38	pCi/L	08/11/2023	GEL	EPA 903.1 Mod	

Comments:

Independent Laboratory Results: "GEL" - GEL Laboratories LLC - Lab ID # 10120; "Test America" - TestAmerica Laboratories, Inc. - Lab ID# 98001; "DavisBrown"- Davis & Brown Lab ID # 21117; "Shealy"- Shealy Environmental Services, Inc.- Lab ID# 32010 "ROGERSCALLCO"-Rogers & Callcot, Inc.- Lab ID # 23105001

Analysis Validated:

Linda Williams - Manager Analytical Services

SANTEE COOPER ANALYTICAL SERVICES

CERTIFICATE OF ANALYSIS

LAB CERTIFICATION #08552

Sample # AF68735 Location: GW Well WAP-18

Date: 07/05/2023

Sample Collector: WJK/ML

e: 09:35

Result 216 139	Units ug/L	Test Date 08/08/2023	Analyst EUROFINS SAV	Method
139	_	08/08/2023	ELIDOEING GAV	
	ua/l		EURUFING SAV	EPA 6020B
<0.5	ug/L	08/08/2023	EUROFINS SAV	EPA 6020B
40.5	ug/L	08/08/2023	EUROFINS SAV	EPA 6020B
92600	ug/L	08/07/2023	EUROFINS SAV	EPA 6010D
<0.5	ug/L	08/08/2023	EUROFINS SAV	EPA 6020B
0.780	ug/L	08/08/2023	EUROFINS SAV	EPA 6020B
<5	ug/L	08/08/2023	EUROFINS SAV	EPA 6020B
1040	ug/L	08/08/2023	EUROFINS SAV	EPA 6020B
<2.5	ug/L	08/08/2023	EUROFINS SAV	EPA 6020B
<5	ug/L	08/08/2023	EUROFINS SAV	EPA 6020B
<20	ug/L	08/07/2023	EUROFINS SAV	EPA 6010D
<1	ug/L	08/08/2023	EUROFINS SAV	EPA 6020B
1190	ug/L	08/23/2023	SKJACOBS	EPA 6010D
104	ug/L	08/23/2023	SKJACOBS	EPA 6010D
143	ug/L	08/23/2023	SKJACOBS	EPA 6010D
<0.2	ug/L	07/14/2023	EUROFINS SAV	EPA 7470
<20	ug/L	08/08/2023	EUROFINS SAV	EPA 6020B
<5	ug/L	08/08/2023	EUROFINS SAV	EPA 6020B
<5	ug/L	08/08/2023	EUROFINS SAV	EPA 6020B
<0.10	mg/L	07/07/2023	KCWELLS	EPA 300.0
54.4	mg/L	07/07/2023	KCWELLS	EPA 300.0
232	mg/L	07/07/2023	KCWELLS	EPA 300.0
478.8	mg/L	07/12/2023	NTCHIN	SM 2540C
0.746	pCi/L	08/01/2023	GEL	EPA 903.1 Mod
3.43	pCi/L	07/18/2023	GEL	EPA 904.0
4.18	pCi/L	08/02/2023	GEL	EPA 903.1 Mod
5.28	SU	07/05/2023	WJK/ML	
	<0.5 92600 <0.5 0.780 <5 1040 <2.5 <5 <20 <1 1190 104 143 <0.2 <20 <5 <5 <0.10 54.4 232 478.8 0.746 3.43 4.18	<0.5	<0.5	<0.5

Comments:

Independent Laboratory Results: "GEL" - GEL Laboratories LLC - Lab ID # 10120; "Test America" - TestAmerica Laboratories, Inc. - Lab ID# 98001; "DavisBrown"- Davis & Brown Lab ID # 21117; "Shealy"- Shealy Environmental Services, Inc.- Lab ID# 32010 "ROGERSCALLCO"-Rogers & Callcot, Inc.- Lab ID # 23105001

Analysis Validated:

Linda Williams - Manager Analytical Services

SANTEE COOPER ANALYTICAL SERVICES

CERTIFICATE OF ANALYSIS

LAB CERTIFICATION #08552

Sample # AF68736 Location: GW Well WAP-19 Date: 07/06/2023 Sample Collector: WJK/ML

Loc. Code WAP-19 Time: 11:21

LOC. Code WAP-19					
Analysis Arsenic	Result 173	Units	Test Date	Analyst	Method
Barium	104	ug/L	08/08/2023	EUROFINS SAV	EPA 6020B
Beryllium		ug/L	08/08/2023	EUROFINS SAV	EPA 6020B
Calcium	<0.5	ug/L	08/08/2023	EUROFINS SAV	EPA 6020B
	639000	ug/L	08/03/2023	EUROFINS SAV	EPA 6010D
Cadmium	<0.5	ug/L	08/08/2023	EUROFINS SAV	EPA 6020B
Cobalt	0.640	ug/L	08/08/2023	EUROFINS SAV	EPA 6020B
Chromium	<5	ug/L	08/08/2023	EUROFINS SAV	EPA 6020B
iron	2750	ug/L	08/08/2023	EUROFINS SAV	EPA 6020B
Lead	<2.5	ug/L	08/08/2023	EUROFINS SAV	EPA 6020B
Antimony	<5	ug/L	08/08/2023	EUROFINS SAV	EPA 6020B
Selenium	<20	ug/L	08/03/2023	EUROFINS SAV	EPA 6010D
Thallium	<1	ug/L	08/08/2023	EUROFINS SAV	EPA 6020B
Boron	4320	ug/L	08/23/2023	SKJACOBS	EPA 6010D
Lithium	230	ug/L	08/23/2023	SKJACOBS	EPA 6010D
Molybdenum	20.8	ug/L	08/23/2023	SKJACOBS	EPA 6010D
Mercury	<0.2	ug/L	07/14/2023	EUROFINS SAV	EPA 7470
Zinc	<20	ug/L	08/08/2023	EUROFINS SAV	EPA 6020B
Copper	<5	ug/L	08/08/2023	EUROFINS SAV	EPA 6020B
Nickel	<5	ug/L	08/08/2023	EUROFINS SAV	EPA 6020B
Fluoride	0.18	mg/L	07/13/2023	KCWELLS	EPA 300.0
Chloride	33.5	mg/L	07/13/2023	KCWELLS	EPA 300.0
Sulfate	1610	mg/L	07/16/2023	KCWELLS	EPA 300.0
Total Dissolved Solids	2818	mg/L	07/13/2023	NTCHIN	SM 2540C
Radium 226	0.812	pCi/L	08/01/2023	GEL	EPA 903.1 Mod
Radium 228	4.13	pCi/L	07/18/2023	GEL	EPA 904.0
Radium 226/228 Combined Calculation	4.94	pCi/L	08/02/2023	GEL	EPA 903.1 Mod
pH	6.48	SU	07/06/2023	WJK/ML	

Comments:

Independent Laboratory Results: "GEL" - GEL Laboratories LLC - Lab ID # 10120; "Test America" - TestAmerica Laboratories, Inc. - Lab ID# 98001; "DavisBrown"- Davis & Brown Lab ID # 21117; "Shealy"- Shealy Environmental Services, Inc. - Lab ID# 32010 "ROGERSCALLCO"-Rogers & Callcot, Inc. - Lab ID # 23105001

Analysis Validated:

Linda Williams - Manager Analytical Services

SANTEE COOPER ANALYTICAL SERVICES

CERTIFICATE OF ANALYSIS

LAB CERTIFICATION #08552

Sample # AF68756

Location: WGS well WLF-A2-1

Date: 07/05/2023

Sample Collector: WJK/ML

Loc. Code	WLF-A2-1	Time: 11:39

			Tillie. 11.39		
Analysis	Result	Units	Test Date	Analyst	Method
Arsenic	77.6	ug/L	08/08/2023	EUROFINS SAV	EPA 6020B
Barium	33.3	ug/L	08/08/2023	EUROFINS SAV	EPA 6020B
Beryllium	<0.5	ug/L	08/08/2023	EUROFINS SAV	EPA 6020B
Calcium	62200	ug/L	08/07/2023	EUROFINS SAV	EPA 6010D
Cadmium	<0.5	ug/L	08/08/2023	EUROFINS SAV	EPA 6020B
Cobalt	1.09	ug/L	08/08/2023	EUROFINS SAV	EPA 6020B
Chromium	<5	ug/L	08/08/2023	EUROFINS SAV	EPA 6020B
Iron	1750	ug/L	08/08/2023	EUROFINS SAV	EPA 6020B
Lead	<2.5	ug/L	08/08/2023	EUROFINS SAV	EPA 6020B
Antimony	<5	ug/L	08/08/2023	EUROFINS SAV	EPA 6020B
Selenium	<20	ug/L	08/07/2023	EUROFINS SAV	EPA 6010D
Thallium	<1	ug/L	08/08/2023	EUROFINS SAV	EPA 6020B
Boron	1190	ug/L	08/23/2023	SKJACOBS	EPA 6010D
Lithium	24.1	ug/L	08/23/2023	SKJACOBS	EPA 6010D
Molybdenum	23.6	ug/L	08/23/2023	SKJACOBS	EPA 6010D
Mercury	<0.2	ug/L	07/14/2023	EUROFINS SAV	EPA 7470
Zinc	<20	ug/L	08/08/2023	EUROFINS SAV	EPA 6020B
Copper	<5	ug/L	08/08/2023	EUROFINS SAV	EPA 6020B
Nickel	<5	ug/L	08/08/2023	EUROFINS SAV	EPA 6020B
Fluoride	<0.10	mg/L	07/07/2023	KCWELLS	EPA 300.0
Chloride	17.3	mg/L	07/07/2023	KCWELLS	EPA 300.0
Sulfate	119	mg/L	07/07/2023	KCWELLS	EPA 300.0
Total Dissolved Solids	306.2	mg/L	07/14/2023	NTCHIN	SM 2540C
Radium 226	0.471	pCi/L	08/01/2023	GEL	EPA 903.1 Mod
Radium 228	3.86	pCi/L	07/18/2023	GEL	EPA 904.0
Radium 226/228 Combined Calculation	4.33	pCi/L	08/02/2023	GEL	EPA 903.1 Mod
pH	5.52	SU	07/05/2023	WJK/ML	

Comments:

Independent Laboratory Results: "GEL" - GEL Laboratories LLC - Lab ID # 10120; "Test America" - TestAmerica Laboratories, Inc. - Lab ID# 98001; "DavisBrown"- Davis & Brown Lab ID # 21117; "Shealy"- Shealy Environmental Services, Inc.- Lab ID# 32010 "ROGERSCALLCO"-Rogers & Callcot, Inc.- Lab ID # 23105001

Analysis Validated:

Linda Williams - Manager Analytical Services

Validation date: 9

Authorized Signature Only- Not Valid Unless Signed

SANTEE COOPER ANALYTICAL SERVICES

CERTIFICATE OF ANALYSIS

LAB CERTIFICATION #08552

Sample # AF68757

Location: WGS well WLF-A2-2

Date: 07/12/2023

Sample Collector: WJK/ML

Loc. Code	WI F-A2-2	

Time: 09:51	T	im	e:	09	:51	1
-------------	---	----	----	----	-----	---

Loc. code WEI -AZ-Z					
Analysis	Result	Units	Test Date	Analyst	Method
Arsenic	161	ug/L	08/10/2023	SKJACOBS	EPA 6020B
Barium	80.6	ug/L	08/10/2023	SKJACOBS	EPA 6020B
Beryllium	<0.5	ug/L	08/10/2023	SKJACOBS	EPA 6020B
Calcium	189000	ug/L	08/10/2023	SKJACOBS	EPA 6010D
Cadmium	<0.5	ug/L	08/10/2023	SKJACOBS	EPA 6020B
Cobalt	<0.5	ug/L	08/10/2023	SKJACOBS	EPA 6020B
Chromium	<5.0	ug/L	08/10/2023	SKJACOBS	EPA 6020B
Iron	4350	ug/L	08/10/2023	SKJACOBS	EPA 6020B
Lead	<1.0	ug/L	08/10/2023	SKJACOBS	EPA 6020B
Antimony	<5.0	ug/L	08/10/2023	SKJACOBS	EPA 6020B
Selenium	<10.0	ug/L	08/10/2023	SKJACOBS	EPA 6010D
Thallium	<1.0	ug/L	08/10/2023	SKJACOBS	EPA 6020B
Boron	2320	ug/L	08/04/2023	SKJACOBS	EPA 6010D
Lithium	180	ug/L	08/04/2023	SKJACOBS	EPA 6010D
Molybdenum	<5.0	ug/L	08/04/2023	SKJACOBS	EPA 6010D
Mercury	<0.2	ug/L	07/26/2023	EUROFINS SAV	EPA 7470
Zinc	<10.0	ug/L	08/10/2023	SKJACOBS	EPA 6020B
Copper	<5.0	ug/L	08/10/2023	SKJACOBS	EPA 6020B
Nickel	<0.5	ug/L	08/11/2023	SKJACOBS	EPA 6020B
Fluoride	<0.10	mg/L	07/15/2023	KCWELLS	EPA 300.0
Chloride	94.8	mg/L	07/15/2023	KCWELLS	EPA 300.0
Sulfate	391	mg/L	07/15/2023	KCWELLS	EPA 300.0
Total Dissolved Solids	950.0	mg/L	07/14/2023	NTCHIN	SM 2540C
Radium 226	2.72	pCi/L	08/11/2023	GEL	EPA 903.1 Mod
Radium 228	3.22	pCi/L	08/10/2023	GEL	EPA 904.0
Radium 226/228 Combined Calculation	5.93	pCi/L	08/11/2023	GEL	EPA 903.1 Mod
pH	5.68	su	07/11/2023	WJK/ML	

Comments:

Independent Laboratory Results: "GEL" - GEL Laboratories LLC - Lab ID # 10120; "Test America" - TestAmerica Laboratories, Inc. - Lab ID# 98001; "DavisBrown"- Davis & Brown Lab ID # 21117; "Shealy"- Shealy Environmental Services, Inc.- Lab ID# 32010 "ROGERSCALLCO"-Rogers & Callcot, Inc.- Lab ID # 23105001

Analysis Validated: >

Linda Williams - Manager Analytical Services

SANTEE COOPER ANALYTICAL SERVICES

CERTIFICATE OF ANALYSIS

LAB CERTIFICATION #08552

Sample # AF68758 Location: WGS well WLF-A2-6 Date: 07/06/2023 Sample Collector: WJK/ML

Loc. Code WLF-A2-6 Time: 09:47

		11 me: 09:47		
Result	Units	Test Date	Analyst	Method
	-			EPA 6020B
	•			EPA 6020B
	-			EPA 6020B
	_			EPA 6010D
	-			EPA 6020B
				EPA 6020B
	-			EPA 6020B
	-			EPA 6020B
				EPA 6020B
	-			EPA 6020B
	•			EPA 6010D
•	_			EPA 6020B
	*		SKJACOBS	EPA 6010D
	_	08/23/2023	SKJACOBS	EPA 6010D
	=	08/23/2023	SKJACOBS	EPA 6010D
	ug/L	07/14/2023	EUROFINS SAV	EPA 7470
	ug/L	08/08/2023	EUROFINS SAV	EPA 6020B
<5	ug/L	08/08/2023	EUROFINS SAV	EPA 6020B
<5	ug/L	08/08/2023	EUROFINS SAV	EPA 6020B
	mg/L	07/13/2023	KCWELLS	EPA 300.0
	mg/L	07/13/2023	KCWELLS	EPA 300.0
187	mg/L	07/13/2023	KCWELLS	EPA 300.0
685.0	mg/L	07/13/2023	NTCHIN	SM 2540C
0.542	pCi/L	08/01/2023	GEL	EPA 903.1 Mod
0.938	pCi/L	07/18/2023	GEL	EPA 904.0
1.48	pCi/L	08/02/2023	GEL	EPA 903.1 Mod
6.21	SU	07/06/2023	WJK/ML	
	4.57 41.4 <0.5 193000 <0.5 <0.5 <5 466 <2.5 <5 <20 <1 309 13.2 <5.0 <0.2 <20 <5 <5 <0.2 <20 <1 309 13.2	4.57	Result Units Test Date 4.57 ug/L 08/08/2023 41.4 ug/L 08/08/2023 <0.5	Result Units Test Date Analyst 4.57 ug/L 08/08/2023 EUROFINS SAV 41.4 ug/L 08/08/2023 EUROFINS SAV <0.5

Comments:

Independent Laboratory Results: "GEL" - GEL Laboratories LLC - Lab ID # 10120; "Test America" - TestAmerica Laboratories, Inc. - Lab ID# 98001; "DavisBrown"- Davis & Brown Lab ID # 21117; "Shealy"- Shealy Environmental Services, Inc.- Lab ID# 32010 "ROGERSCALLCO"-Rogers & Callcot, Inc.- Lab ID # 23105001

Analysis Validated:

Linda Williams - Manager Analytical Services

SANTEE COOPER ANALYTICAL SERVICES

CERTIFICATE OF ANALYSIS

LAB CERTIFICATION #08552

Sample # AF68759 Location: WGS well WLF-A2-6 Date: 07/06/2023 Sample Collector: WJK/ML

Loc. Code WLF-A2-6	DUP		Time: 09:52		
Analysis	Result	Units	Test Date	Analyst	Method
Arsenic	4.53	ug/L	08/08/2023	EUROFINS SAV	EPA 6020B
Barium	41.7	ug/L	08/08/2023	EUROFINS SAV	EPA 6020B
Beryllium	<0.5	ug/L	08/08/2023	EUROFINS SAV	EPA 6020B
Calcium	190000	ug/L	08/03/2023	EUROFINS SAV	EPA 6010D
Cadmium	<0.5	ug/L	08/08/2023	EUROFINS SAV	EPA 6020B
Cobalt	<0.5	ug/L	08/08/2023	EUROFINS SAV	EPA 6020B
Chromium	<5	ug/L	08/08/2023	EUROFINS SAV	EPA 6020B
Iron	433	ug/L	08/08/2023	EUROFINS SAV	EPA 6020B
Lead	<2.5	ug/L	08/08/2023	EUROFINS SAV	EPA 6020B
Antimony	<5	ug/L	08/08/2023	EUROFINS SAV	EPA 6020B
Selenium	<20	ug/L	08/03/2023	EUROFINS SAV	EPA 6010D
Thallium	<1	ug/L	08/08/2023	EUROFINS SAV	EPA 6020B
Boron	293	ug/L	08/23/2023	SKJACOBS	EPA 6010D
Lithium	12.4	ug/L	08/23/2023	SKJACOBS	EPA 6010D
Molybdenum	<5.0	ug/L	08/23/2023	SKJACOBS	EPA 6010D
Mercury	<0.2	ug/L	07/14/2023	EUROFINS SAV	EPA 7470
Zinc	<20	ug/L	08/08/2023	EUROFINS SAV	EPA 6020B
Copper	<5	ug/L	08/08/2023	EUROFINS SAV	EPA 6020B
Nickel	<5	ug/L	08/08/2023	EUROFINS SAV	EPA 6020B
Fluoride	0.13	mg/L	07/13/2023	KCWELLS	EPA 300.0
Chloride	48.4	mg/L	07/13/2023	KCWELLS	EPA 300.0
Sulfate	186	mg/L	07/13/2023	KCWELLS	EPA 300.0
Total Dissolved Solids	693.8	mg/L	07/13/2023	NTCHIN	SM 2540C
Radium 226	0.462	pCi/L	08/01/2023	GEL	EPA 903.1 Mod
Radium 228	4.73	pCi/L	07/18/2023	GEL	EPA 904.0
Radium 226/228 Combined Calculation	5.19	pCi/L	08/02/2023	GEL.	EPA 903.1 Mod

Comments:

Independent Laboratory Results: "GEL" - GEL Laboratories LLC - Lab ID # 10120; "Test America" - TestAmerica Laboratories, Inc. - Lab ID# 98001; "DavisBrown"- Davis & Brown Lab ID # 21117; "Shealy"- Shealy Environmental Services, Inc.- Lab ID# 32010 "ROGERSCALLCO"-Rogers & Callcot, Inc.- Lab ID # 23105001

Analysis Validated:

Linda Williams - Manager Analytical Services

gel.com

February 24, 2023

Ms. Jeanette Gilmetti Santee Cooper P.O. Box 2946101 OCO3 Moncks Corner, South Carolina 29461

Re: ABS Lab Analytical Work Order: 611426

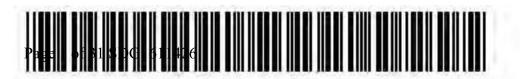
Dear Ms. Gilmetti:

GEL Laboratories, LLC (GEL) appreciates the opportunity to provide the enclosed analytical results for the sample(s) we received on February 17, 2023. This original data report has been prepared and reviewed in accordance with GEL's standard operating procedures.

The samples were delivered with proper chain of custody documentation and signatures. All sample containers arrived without any visible signs of tampering or breakage.

Test results for NELAP or ISO 17025 accredited tests are verified to meet the requirements of those standards, with any exceptions noted. The results reported relate only to the items tested and to the sample as received by the laboratory. These results may not be reproduced except as full reports without approval by the laboratory. Copies of GEL's accreditations and certifications can be found on our website at www.gel.com.

Our policy is to provide high quality, personalized analytical services to enable you to meet your analytical needs on time every time. We trust that you will find everything in order and to your satisfaction. If you have any questions, please do not hesitate to call me at (843) 556-8171, ext. 4289.


Sincerely,

Julie Robinson Project Manager

Indie Robinson

Purchase Order: 398684

Enclosures

2040 Savage Road Charleston SC 29407 - (843) 556-8171 - www.gel.com

Certificate of Analysis Report for

SOOP001 Santee Cooper

Client SDG: 611426 GEL Work Order: 611426

The Qualifiers in this report are defined as follows:

- * A quality control analyte recovery is outside of specified acceptance criteria
- ** Analyte is a Tracer compound
- ** Analyte is a surrogate compound
- J Value is estimated
- U Analyte was analyzed for, but not detected above the MDL, MDA, MDC or LOD.

Where the analytical method has been performed under NELAP certification, the analysis has met all of the requirements of the NELAC standard unless qualified on the Certificate of Analysis.

The designation ND, if present, appears in the result column when the analyte concentration is not detected above the limit as defined in the 'U' qualifier above.

This data report has been prepared and reviewed in accordance with GEL Laboratories LLC standard operating procedures. Please direct any questions to your Project Manager, Julie Robinson.

Reviewed by

2040 Savage Road Charleston SC 29407 - (843) 556-8171 - www.gel.com

Certificate of Analysis

Report Date: February 24, 2023

Company: Santee Cooper Address: P.O. Box 2946101

OCO3

Moncks Corner, South Carolina 29461

Contact: Ms. Jeanette Gilmetti Project: ABS Lab Analytical

Client Sample ID: AF56397
Sample ID: 611426001
Matrix: Ground Water
Collect Date: 16-FEB-23 10:53
Receive Date: 17-FEB-23

Collector:

Client

Client ID: SOOP001

Analyst Comments

Project:

SOOP00119

Parameter	Qualifier	Result	DL	RL	Units	PF	DF	Analy	st Date	Time Batch	Method
Carbon Analysis											
SM 5310 B Total Organ	ic Carbon "A	s Received"									
Total Organic Carbon Averag	e J	0.639	0.330	1.00	mg/L		1	TSM	02/21/23	1803 2386521	1
Nutrient Analysis											
EPA 353.2 Nitrogen, Nitrate/Nitrite "As Received"											
Nitrogen, Nitrate/Nitrite	U	ND	0.0700	0.200	mg/L		10	KLP1	02/22/23	1059 2387499	2
Spectrometric Analysis											
SM 4500-S(2-) D Sulfid	le "As Receiv	/ed"									
Total Sulfide	U	ND	0.0330	0.100	mg/L		1	HH2	02/20/23	1110 2386621	3
Titration and Ion Analys	sis										
SM 2320B Total Alkalii	nity "As Reco	eived"									
Alkalinity, Total as CaCO3	-	91.2	1.45	4.00	mg/L			MS3	02/23/23	1738 2388218	4
Bicarbonate alkalinity (CaCO	3)	91.2	1.45	4.00	mg/L						
Carbonate alkalinity (CaCO3)	U	ND	1.45	4.00	mg/L						
The following Analytic	al Methods v	vere performe	d:								

 Method
 Description

 1
 SM 5310 B

 2
 EPA 353.2 Low Level

 3
 SM 4500-S (2-) D

 4
 SM 2320B

Notes:

Column headers are defined as follows:

DF: Dilution Factor Lc/LC: Critical Level
DL: Detection Limit PF: Prep Factor
MDA: Minimum Detectable Activity RL: Reporting Limit

MDC: Minimum Detectable Concentration SQL: Sample Quantitation Limit

Page 3 of 31 SDG: 611426

2040 Savage Road Charleston SC 29407 - (843) 556-8171 - www.gel.com

Certificate of Analysis

Report Date: February 24, 2023

Company: Address:

Santee Cooper P.O. Box 2946101

OCO3

Moncks Corner, South Carolina 29461

Contact: Project:

Ms. Jeanette Gilmetti ABS Lab Analytical

Client Sample ID: AF56397

Sample ID:

611426002

Matrix: Collect Date: Ground Water 16-FEB-23 10:53

Receive Date: Collector:

17-FEB-23 Client

Parameter

Carbon Analysis SM 5310 B Dissolved Organic Carbon "As Received"

Qualifier

Description

Dissolved Organic Carbon Average

0.794

Result

0.330

1.00

RL

mg/L

TSM 02/24/23 1421 2387199

2386518

2386518

DF Analyst Date

SOOP00119

SOOP001

Time Batch Method

The following Prep Methods were performed:

Method	
EPA 160	

Laboratory Filtration - DOC

Analyst TSM **TSM**

DL

Date 02/21/23 02/23/23

Units

Project:

Client ID:

PF

Time 0845 0848

Prep Batch

Laboratory Filtration - DOC EPA 160 The following Analytical Methods were performed:

Method

Description

Analyst Comments

SM 5310 B

Notes:

Column headers are defined as follows:

DF: Dilution Factor DL: Detection Limit MDA: Minimum Detectable Activity Lc/LC: Critical Level PF: Prep Factor RL: Reporting Limit

MDC: Minimum Detectable Concentration

SQL: Sample Quantitation Limit

Page 4 of 31 SDG: 611426

2040 Savage Road Charleston SC 29407 - (843) 556-8171 - www.gel.com

Certificate of Analysis

Report Date: February 24, 2023

Company: Santee Cooper Address: P.O. Box 2946101

OCO3

Client

Moncks Corner, South Carolina 29461

Contact: Ms. Jeanette Gilmetti Project: ABS Lab Analytical

Client Sample ID: AF56400
Sample ID: 611426003
Matrix: Ground Water
Collect Date: 16-FEB-23 12:55
Receive Date: 17-FEB-23

Collector:

Client ID: SOOP001

Analyst Comments

Project:

SOOP00119

Parameter	Qualifier	Result	DL	RL	Units	PF	DF	Analy	st Date	Time Batch	Method
Carbon Analysis											
SM 5310 B Total Organi	ic Carbon "A	As Received"									
Total Organic Carbon Average	;	6.12	0.330	1.00	mg/L		1	TSM	02/21/23	1824 2386521	1
Nutrient Analysis											
EPA 353.2 Nitrogen, Nitrate/Nitrite "As Received"											
Nitrogen, Nitrate/Nitrite		10.2	0.0700	0.200	mg/L		10	KLP1	02/22/23	1043 2387499	2
Spectrometric Analysis											
SM 4500-S(2-) D Sulfide	e "As Receiv	ved"									
Total Sulfide	U	ND	0.0330	0.100	mg/L		1	HH2	02/20/23	1111 2386621	3
Titration and Ion Analys	is										
SM 2320B Total Alkalin	ity "As Rec	eived"									
Alkalinity, Total as CaCO3		74.2	1.45	4.00	mg/L			MS3	02/23/23	1747 2388218	4
Bicarbonate alkalinity (CaCO3	3)	74.2	1.45	4.00	mg/L						
Carbonate alkalinity (CaCO3)	U	ND	1.45	4.00	mg/L						
The following Analytica	al Methods v	vere performed	:								

 Method
 Description

 1
 SM 5310 B

 2
 EPA 353.2 Low Level

 3
 SM 4500-S (2-) D

 4
 SM 2320B

Notes:

Column headers are defined as follows:

DF: Dilution Factor Lc/LC: Critical Level
DL: Detection Limit PF: Prep Factor
MDA: Minimum Detectable Activity RL: Reporting Limit

MDC: Minimum Detectable Concentration SQL: Sample Quantitation Limit

Page 5 of 31 SDG: 611426

2040 Savage Road Charleston SC 29407 - (843) 556-8171 - www.gel.com

Certificate of Analysis

Report Date: February 24, 2023

Company: Address:

Santee Cooper P.O. Box 2946101

OCO₃

Moncks Corner, South Carolina 29461

Contact: Project:

Ms. Jeanette Gilmetti ABS Lab Analytical

Client Sample ID: AF56400 Sample ID:

611426004

Client

Matrix: Collect Date:

Receive Date:

Collector:

Ground Water 16-FEB-23 12:55 17-FEB-23

Project: Client ID: SOOP00119 SOOP001

Parameter

Qualifier Result

DLRL

Units

PF

DF Analyst Date

Time Batch Method

Carbon Analysis

SM 5310 B Dissolved Organic Carbon "As Received"

Dissolved Organic Carbon Average

0.330

1.00

mg/L

TSM 02/22/23 1659 2387199

The following Prep Methods were performed:

Description EPA 160 Laboratory Filtration - DOC

Analyst TSM

Date 02/21/23 Time 0845

Analyst Comments

Prep Batch

2386518

The following Analytical Methods were performed:

Method Description

SM 5310 B

Notes:

Method

Column headers are defined as follows:

DF: Dilution Factor Lc/LC: Critical Level DL: Detection Limit PF: Prep Factor MDA: Minimum Detectable Activity **RL**: Reporting Limit

MDC: Minimum Detectable Concentration SQL: Sample Quantitation Limit

Page 6 of 31 SDG: 611426

2040 Savage Road Charleston SC 29407 - (843) 556-8171 - www.gel.com

Certificate of Analysis

Report Date: February 24, 2023

Company: Santee Cooper Address: P.O. Box 2946101

OCO3

Moncks Corner, South Carolina 29461

Contact: Ms. Jeanette Gilmetti Project: ABS Lab Analytical

Client Sample ID: AF56442
Sample ID: 611426005
Matrix: Ground Water
Collect Date: 16-FEB-23 14:07
Receive Date: 17-FEB-23

Collector:

Client

Project: SOOP00119 Client ID: SOOP001

Parameter	Qualifier	Result	DL	RL	Units	PF	DF	Analy	st Date	Time Batch	Method
Carbon Analysis											
SM 5310 B Total Orga	nic Carbon "A	As Received"									
Total Organic Carbon Avera	ige	15.9	0.330	1.00	mg/L		1	TSM	02/21/23	1906 2386521	1
Nutrient Analysis											
EPA 353.2 Nitrogen, N	Nitrate/Nitrite	"As Received"									
Nitrogen, Nitrate/Nitrite	U	ND	0.0700	0.200	mg/L		10	KLP1	02/22/23	1100 2387499	2
Spectrometric Analysis	S										
SM 4500-S(2-) D Sulfi	ide "As Recei	ved"									
Total Sulfide	U	ND	0.0330	0.100	mg/L		1	HH2	02/20/23	1111 2386621	3
Titration and Ion Analy	ysis										
SM 2320B Total Alkal	linity "As Rec	eived"									
Alkalinity, Total as CaCO3		268	1.45	4.00	mg/L			MS3	02/23/23	1749 2388218	4
Bicarbonate alkalinity (CaCo	O3)	268	1.45	4.00	mg/L						
Carbonate alkalinity (CaCO:	3) U	ND	1.45	4.00	mg/L						
The following Analyti	ical Methods v	were performed:									
Method	Description	<u> </u>			Analys	st Co	mment	S	<u> </u>		

Method	Description
1	SM 5310 B
2	EPA 353.2 Low Level
3	SM 4500-S (2-) D
4	SM 2320B

Notes:

Column headers are defined as follows:

DF: Dilution Factor Lc/LC: Critical Level
DL: Detection Limit PF: Prep Factor
MDA: Minimum Detectable Activity RL: Reporting Limit

MDC: Minimum Detectable Concentration SQL: Sample Quantitation Limit

Page 7 of 31 SDG: 611426

2040 Savage Road Charleston SC 29407 - (843) 556-8171 - www.gel.com

Certificate of Analysis

Project:

Client ID:

Report Date: February 24, 2023

SOOP00119

SOOP001

Company: Address:

Santee Cooper P.O. Box 2946101

OCO3

Moncks Corner, South Carolina 29461

Contact: Project:

Ms. Jeanette Gilmetti ABS Lab Analytical

Client Sample ID: AF56442

Sample ID: Matrix:

611426006 Ground Water

Collect Date:

16-FEB-23 14:07 17-FEB-23

Receive Date: Collector:

Client

Parameter	Qualifier	Result	DL	RL	Units	PF	DF	Analyst Da	ite	Time Batch	Method
Carbon Analysis											
SM 5310 B Dissol	lved Organic Carbo	on "As Received"									
Dissolved Organic Car	bon Average	15.9	0.330	1.00	mg/L		1	TSM 02/22	2/23	1720 2387199	1
The following Pre	p Methods were pe	erformed:									
Method	Description	n		Analyst	Date		Time	Prep Ba	itch		
EPA 160	Laboratory F	iltration - DOC		TSM	02/21/23		0845	2386518			
The fellowing Am	برواد والمواكر الموالميان										

The following Analytical Methods were performed:

Method Description

Analyst Comments

SM 5310 B

Notes:

Column headers are defined as follows:

DF: Dilution Factor Lc/LC: Critical Level DL: Detection Limit PF: Prep Factor MDA: Minimum Detectable Activity RL: Reporting Limit

SQL: Sample Quantitation Limit MDC: Minimum Detectable Concentration

Page 8 of 31 SDG: 611426

2040 Savage Road Charleston SC 29407 - (843) 556-8171 - www.gel.com

Certificate of Analysis

Report Date: February 24, 2023

Company: Santee Cooper Address: P.O. Box 2946101

OCO3

Moncks Corner, South Carolina 29461

Contact: Ms. Jeanette Gilmetti Project: ABS Lab Analytical

Client Sample ID: AF56443
Sample ID: 611426007
Matrix: Ground Water
Collect Date: 16-FEB-23 14:12
Receive Date: 17-FEB-23

Collector:

Client

Client ID: SOOP001

Analyst Comments

Project:

SOOP00119

Parameter	Qualifier	Result	DL	RL	Units	PF	DF	Analy	st Date	Time Batch	Method
Carbon Analysis											
SM 5310 B Total Organi	ic Carbon "A	As Received"									
Total Organic Carbon Average	•	15.7	0.330	1.00	mg/L		1	TSM	02/21/23	2006 2386521	1
Nutrient Analysis											
EPA 353.2 Nitrogen, Nit	trate/Nitrite	"As Received"									
Nitrogen, Nitrate/Nitrite	U	ND	0.0700	0.200	mg/L		10	KLP1	02/22/23	1101 2387499	2
Spectrometric Analysis											
SM 4500-S(2-) D Sulfid	e "As Receiv	ved"									
Total Sulfide	U	ND	0.0330	0.100	mg/L		1	HH2	02/20/23	1112 2386621	3
Titration and Ion Analys	is										
SM 2320B Total Alkalin	nity "As Rece	eived"									
Alkalinity, Total as CaCO3		271	1.45	4.00	mg/L			MS3	02/23/23	1750 2388218	4
Bicarbonate alkalinity (CaCO3	3)	271	1.45	4.00	mg/L						
Carbonate alkalinity (CaCO3)	U	ND	1.45	4.00	mg/L						
The following Analytica	Γhe following Analytical Methods were performed:										

 Method
 Description

 1
 SM 5310 B

 2
 EPA 353.2 Low Level

 3
 SM 4500-S (2-) D

 4
 SM 2320B

Notes:

Column headers are defined as follows:

DF: Dilution Factor Lc/LC: Critical Level
DL: Detection Limit PF: Prep Factor
MDA: Minimum Detectable Activity RL: Reporting Limit

MDC: Minimum Detectable Concentration SQL: Sample Quantitation Limit

Page 9 of 31 SDG: 611426

2040 Savage Road Charleston SC 29407 - (843) 556-8171 - www.gel.com

Certificate of Analysis

Project:

Client ID:

Report Date: February 24, 2023

SOOP00119

SOOP001

Company: Santee Cooper Address:

P.O. Box 2946101

OCO3

Moncks Corner, South Carolina 29461

Contact: Ms. Jeanette Gilmetti Project: ABS Lab Analytical

Client Sample ID: AF56443 Sample ID: 611426008 Matrix: Ground Water Collect Date: 16-FEB-23 14:12 Receive Date: 17-FEB-23

Collector: Client

Parameter	Qualifier	Result	DL	RL	Units	PF	DF Analyst Date	Time Batch I	Method
Carbon Analysis									
SM 5310 B Dissol	ved Organic Carbo	on "As Received"							

Dissolved Organic Carbon Average 15.6 0.330 1.00 mg/L TSM 02/22/23 1800 2387199

The following Prep Methods were performed:

Method Date Prep Batch Description Analyst Time EPA 160 Laboratory Filtration - DOC TSM 02/21/23 0845 2386518

The following Analytical Methods were performed:

Method Description **Analyst Comments** SM 5310 B

Notes:

Column headers are defined as follows:

DF: Dilution Factor Lc/LC: Critical Level DL: Detection Limit PF: Prep Factor MDA: Minimum Detectable Activity **RL**: Reporting Limit

MDC: Minimum Detectable Concentration SQL: Sample Quantitation Limit

Page 10 of 31 SDG: 611426

2040 Savage Road Charleston SC 29407 - (843) 556-8171 - www.gel.com

Certificate of Analysis

Report Date: February 24, 2023

Company: Santee Cooper Address: P.O. Box 2946101

OCO3

Moncks Corner, South Carolina 29461

Contact: Ms. Jeanette Gilmetti Project: ABS Lab Analytical

Client Sample ID: AF56395
Sample ID: 611426009
Matrix: Ground Water
Collect Date: 15-FEB-23 11:36
Receive Date: 17-FEB-23

Client

Client ID: SOOP001

Analyst Comments

Project:

SOOP00119

Parameter	Qualifier	Result	DL	RL	Units	PF	DF	Analy	st Date	Time	Batch	Method
Carbon Analysis												
SM 5310 B Total Organi	c Carbon "A	s Received"										
Total Organic Carbon Average		3.49	0.330	1.00	mg/L		1	TSM	02/21/23	2026 2	2386521	1
Nutrient Analysis												
EPA 353.2 Nitrogen, Nitr	rate/Nitrite '	'As Received"										
Nitrogen, Nitrate/Nitrite	U	ND	0.0700	0.200	mg/L		10	KLP1	02/22/23	1102 2	2387499	2
Spectrometric Analysis												
SM 4500-S(2-) D Sulfide	"As Receiv	ed"										
Total Sulfide	U	ND	0.0330	0.100	mg/L		1	HH2	02/20/23	1112 2	2386621	3
Titration and Ion Analysi	S											
SM 2320B Total Alkalin	ity "As Rece	eived"										
Alkalinity, Total as CaCO3		77.8	1.45	4.00	mg/L			MS3	02/23/23	1752 2	2388218	4
Bicarbonate alkalinity (CaCO3))	77.8	1.45	4.00	mg/L							
Carbonate alkalinity (CaCO3)	U	ND	1.45	4.00	mg/L							

 Method
 Description

 1
 SM 5310 B

 2
 EPA 353.2 Low Level

 3
 SM 4500-S (2-) D

5 SM 4300-8 (2 4 SM 2320B

The following Analytical Methods were performed:

Collector:

Notes:

Column headers are defined as follows:

DF: Dilution Factor Lc/LC: Critical Level
DL: Detection Limit PF: Prep Factor
MDA: Minimum Detectable Activity RL: Reporting Limit

MDC: Minimum Detectable Concentration SQL: Sample Quantitation Limit

Page 11 of 31 SDG: 611426

2040 Savage Road Charleston SC 29407 - (843) 556-8171 - www.gel.com

Certificate of Analysis

Project:

Client ID:

Report Date: February 24, 2023

SOOP00119

SOOP001

Company: Santee Cooper Address: P.O. Box 2946101

OCO3

Moncks Corner, South Carolina 29461

Contact: Ms. Jeanette Gilmetti Project: ABS Lab Analytical

Client Sample ID: AF56395
Sample ID: 611426010
Matrix: Ground Water
Collect Date: 15-FEB-23 11:36

Receive Date: 17-FEB-23 Collector: Client

Parameter	Qualifier	Result	DL	RL	Units	PF	DF Analyst Date	Time Batch	Method
Carbon Analysis									
CM 5210 D Diggoly	ad Onagania Carla	on II A a Dagairead	,						

SM 5310 B Dissolved Organic Carbon "As Received"

Dissolved Organic Carbon Average 3.45 0.330 1.00 mg/L 1 TSM 02/22/23 1821 2387199

The following Prep Methods were performed:

MethodDescriptionAnalystDateTimePrep BatchEPA 160Laboratory Filtration - DOCTSM02/21/2308452386518

The following Analytical Methods were performed:

 Method
 Description
 Analyst Comments

 1
 SM 5310 B

Notes:

Column headers are defined as follows:

DF: Dilution Factor Lc/LC: Critical Level
DL: Detection Limit PF: Prep Factor
MDA: Minimum Detectable Activity RL: Reporting Limit

MDC: Minimum Detectable Concentration SQL: Sample Quantitation Limit

Page 12 of 31 SDG: 611426

2040 Savage Road Charleston SC 29407 - (843) 556-8171 - www.gel.com

Certificate of Analysis

Project:

Client ID:

Analyst Comments

Report Date: February 24, 2023

SOOP00119

SOOP001

Company: Santee Cooper Address: P.O. Box 2946101

OCO3

Moncks Corner, South Carolina 29461

Contact: Ms. Jeanette Gilmetti Project: ABS Lab Analytical

Client Sample ID: AF56396
Sample ID: 611426011
Matrix: Ground Water
Collect Date: 15-FEB-23 13:21
Receive Date: 17-FEB-23

Collector: Client

Parameter	Qualifier	Result	DL	RL	Units	PF	DF	Analy	st Date	Time Batch	Method
Carbon Analysis											
SM 5310 B Total Organ	ic Carbon "A	As Received"									
Total Organic Carbon Average	e	6.69	0.330	1.00	mg/L		1	TSM	02/21/23	2046 238652	1 1
Nutrient Analysis EPA 353.2 Nitrogen, Ni	trate/Nitrite	"As Received"									
Nitrogen, Nitrate/Nitrite	U	ND	0.0700	0.200	mg/L		10	KLP1	02/22/23	1106 238749	9 2
Spectrometric Analysis											
SM 4500-S(2-) D Sulfid	le "As Receiv	ved"									
Total Sulfide	U	ND	0.0330	0.100	mg/L		1	HH2	02/20/23	1113 238662	1 3
Titration and Ion Analys	sis										
SM 2320B Total Alkalin	nity "As Rec	eived"									
Alkalinity, Total as CaCO3		309	1.45	4.00	mg/L			MS3	02/23/23	1754 238821	8 4
Bicarbonate alkalinity (CaCO	3)	309	1.45	4.00	mg/L						
Carbonate alkalinity (CaCO3)	U	ND	1.45	4.00	mg/L						
The following Analytic	al Methods v	were performed:									

Method	Description
1	SM 5310 B
2	EPA 353.2 Low Level
3	SM 4500-S (2-) D
1	SM 2320B

Notes:

Column headers are defined as follows:

DF: Dilution Factor Lc/LC: Critical Level
DL: Detection Limit PF: Prep Factor
MDA: Minimum Detectable Activity RL: Reporting Limit

MDC: Minimum Detectable Concentration SQL: Sample Quantitation Limit

Page 13 of 31 SDG: 611426

2040 Savage Road Charleston SC 29407 - (843) 556-8171 - www.gel.com

Certificate of Analysis

Report Date: February 24, 2023

Company: Address:

Santee Cooper P.O. Box 2946101

OCO3

Moncks Corner, South Carolina 29461

Contact: Project:

Ms. Jeanette Gilmetti ABS Lab Analytical

Client Sample ID: AF56396

Sample ID:

611426012

Matrix: Collect Date: Ground Water 15-FEB-23 13:21

Receive Date: Collector:

17-FEB-23 Client

Parameter
Carbon Analysis

SM 5310 B Dissolved Organic Carbon "As Received"

Qualifier

Dissolved Organic Carbon Average

Result

0.330

DL

1.00

RL

mg/L

Units

Project:

Client ID:

PF

TSM 02/22/23 1841 2387199

SOOP00119

SOOP001

Time Batch Method

The following Prep Methods were performed: Method Description

EPA 160 Laboratory Filtration - DOC

Analyst TSM

Date 02/21/23 Time 0845

Analyst Comments

Prep Batch 2386518

DF Analyst Date

The following Analytical Methods were performed:

Method

Description

SM 5310 B

Notes:

Column headers are defined as follows:

DF: Dilution Factor Lc/LC: Critical Level DL: Detection Limit PF: Prep Factor MDA: Minimum Detectable Activity **RL**: Reporting Limit

MDC: Minimum Detectable Concentration SQL: Sample Quantitation Limit

Page 14 of 31 SDG: 611426

2040 Savage Road Charleston SC 29407 - (843) 556-8171 - www.gel.com

Certificate of Analysis

Report Date: February 24, 2023

SOOP00119

Analyst Comments

Company: Santee Cooper Address: P.O. Box 2946101

OCO3

Client

Moncks Corner, South Carolina 29461

Contact: Ms. Jeanette Gilmetti Project: ABS Lab Analytical

Client Sample ID: AF56394 Sample ID: 611426013 Matrix: Ground Water Collect Date: 14-FEB-23 12:33 Receive Date: 17-FEB-23

Project: Client ID: SOOP001

Parameter	Qualifier	Result	DL	RL	Units	PF	DF	Analy	st Date	Time Batch	Method
Carbon Analysis											
SM 5310 B Total Organi	c Carbon "A	As Received"									
Total Organic Carbon Average		1.30	0.330	1.00	mg/L		1	TSM	02/21/23	2106 2386521	1
Spectrometric Analysis											
SM 4500-S(2-) D Sulfide "As Received"											
Total Sulfide	U	ND	0.0330	0.100	mg/L		1	HH2	02/20/23	1114 2386621	2
Titration and Ion Analys	is										
SM 2320B Total Alkalin	ity "As Rec	eived"									
Alkalinity, Total as CaCO3	J	2.40	1.45	4.00	mg/L			MS3	02/23/23	1756 2388218	3
Bicarbonate alkalinity (CaCO3) J	2.40	1.45	4.00	mg/L						
Carbonate alkalinity (CaCO3)	U	ND	1.45	4.00	mg/L						
The following Analytica	ıl Methods v	vere performed	1:								

Method Description SM 5310 B SM 4500-S (2-) D 2 SM 2320B

Collector:

Notes:

Column headers are defined as follows:

DF: Dilution Factor Lc/LC: Critical Level DL: Detection Limit PF: Prep Factor MDA: Minimum Detectable Activity **RL**: Reporting Limit

MDC: Minimum Detectable Concentration SQL: Sample Quantitation Limit

Page 15 of 31 SDG: 611426

2040 Savage Road Charleston SC 29407 - (843) 556-8171 - www.gel.com

Certificate of Analysis

Project:

Client ID:

Report Date: February 24, 2023

SOOP00119

SOOP001

Company: Standards: Address:

Santee Cooper P.O. Box 2946101

OCO3

Moncks Corner, South Carolina 29461

Contact: Ms. Jeanette Gilmetti Project: ABS Lab Analytical

Client Sample ID: AF56394
Sample ID: 611426014
Matrix: Ground Water
Collect Date: 14-FEB-23 12:33
Receive Date: 17-FEB-23

Collector: Client

Parameter	Qualifier	Result	DL	RL	Units	PF	DF Anal	yst Date	Time Batch	Method
Carbon Analysis										
SM 5310 B Dissolv	ed Organic Carbo	on "As Received"								
Dissolved Organic Carbo	on Average	1.31	0.330	1.00	mg/L		1 TSM	02/22/23	1901 2387199	1

Dissolved Organic Carbon Average 1.31 0.330 1.00 mg/L 1 18M 02/22/23 1901 238/199

The following Prep Methods were performed:

MethodDescriptionAnalystDateTimePrep BatchEPA 160Laboratory Filtration - DOCTSM02/21/2308452386518

The following Analytical Methods were performed:

MethodDescriptionAnalyst Comments1SM 5310 B

Notes:

Column headers are defined as follows:

DF: Dilution Factor Lc/LC: Critical Level
DL: Detection Limit PF: Prep Factor
MDA: Minimum Detectable Activity RL: Reporting Limit

MDC: Minimum Detectable Concentration SQL: Sample Quantitation Limit

Page 16 of 31 SDG: 611426

2040 Savage Road Charleston SC 29407 - (843) 556-8171 - www.gel.com

Certificate of Analysis

Project:

Client ID:

Report Date: February 24, 2023

SOOP00119

SOOP001

Company: Santee Cooper Address: P.O. Box 2946101

OCO3

Moncks Corner, South Carolina 29461

Contact: Ms. Jeanette Gilmetti Project: ABS Lab Analytical

Client Sample ID: AF56431
Sample ID: 611426015
Matrix: Ground Water
Collect Date: 14-FEB-23 13:51

Receive Date: 17-FEB-23 Collector: Client

Parameter	Qualifier	Result	DL	RL	Units	PF	DF	Analy	yst Date	Time	Batch	Method
Carbon Analysis												
SM 5310 B Total Organi	c Carbon "A	As Received"										
Total Organic Carbon Average	J	0.928	0.330	1.00	mg/L		1	TSM	02/21/23	2125	2386521	1
Spectrometric Analysis												
SM 4500-S(2-) D Sulfide	e "As Receiv	ved"										
Total Sulfide	U	ND	0.0330	0.100	mg/L		1	HH2	02/20/23	1114	2386621	2
Titration and Ion Analysi	is											
SM 2320B Total Alkalin	ity "As Rece	eived"										
Alkalinity, Total as CaCO3	U	ND	1.45	4.00	mg/L			MS3	02/23/23	1757	2388218	3
Bicarbonate alkalinity (CaCO3) U	ND	1.45	4.00	mg/L							
Carbonate alkalinity (CaCO3)	U	ND	1.45	4.00	mg/L							
The following Analytica	ıl Methods v	vere performed:										
Method	Description				1	Analys	st Co	mment	S			

 Method
 Description

 1
 SM 5310 B

 2
 SM 4500-S (2-) D

 3
 SM 2320B

Notes:

Column headers are defined as follows:

DF: Dilution Factor Lc/LC: Critical Level
DL: Detection Limit PF: Prep Factor
MDA: Minimum Detectable Activity RL: Reporting Limit

MDC: Minimum Detectable Concentration SQL: Sample Quantitation Limit

Page 17 of 31 SDG: 611426

2040 Savage Road Charleston SC 29407 - (843) 556-8171 - www.gel.com

Certificate of Analysis

Project:

Client ID:

Report Date: February 24, 2023

SOOP00119

SOOP001

Company: Santee Cooper Address: P.O. Box 2946101

OCO3

Moncks Corner, South Carolina 29461

Contact: Ms. Jeanette Gilmetti Project: ABS Lab Analytical

Client Sample ID: AF56431
Sample ID: 611426016
Matrix: Ground Water
Collect Date: 14-FEB-23 13:51
Receive Date: 17-FEB-23

Collector: Client

		Result	DL	RL	Units	PF	DF	Analyst Date	Time Batch	Method
Carbon Analysis										
SM 5310 B Dissolved C	rganic Carbo	on "As Received"								
Dissolved Organic Carbon Av	erage	1.01	0.330	1.00	mg/L		1	TSM 02/22/23	1922 2387199	1
The following Prep Met	hods were pe	erformed:								
Method	Description	1		Analyst	Date		Time	Prep Batch		
EPA 160	Laboratory Fil	ltration - DOC	,	TSM	02/21/23		0845	2386518		

The following Analytical Methods were performed:

MethodDescriptionAnalyst Comments1SM 5310 B

Notes:

Column headers are defined as follows:

DF: Dilution Factor Lc/LC: Critical Level
DL: Detection Limit PF: Prep Factor
MDA: Minimum Detectable Activity RL: Reporting Limit

MDC: Minimum Detectable Concentration SQL: Sample Quantitation Limit

Page 18 of 31 SDG: 611426

2040 Savage Road Charleston SC 29407 - (843) 556-8171 - www.gel.com

Certificate of Analysis

Report Date: February 24, 2023

SOOP00119

Analyst Comments

Company: Santee Cooper Address: P.O. Box 2946101

OCO3

Client

Moncks Corner, South Carolina 29461

Contact: Ms. Jeanette Gilmetti Project: ABS Lab Analytical

Client Sample ID: AF56432 Sample ID: 611426017 Matrix: Ground Water Collect Date: 14-FEB-23 15:22 Receive Date: 17-FEB-23

Project: Client ID: SOOP001

Parameter	Qualifier	Result	DL	RL	Units	PF	DF	Analy	yst Date	Time Batch	Method
Carbon Analysis											
SM 5310 B Total Organi	c Carbon "A	s Received"									
Total Organic Carbon Average		3.16	0.330	1.00	mg/L		1	TSM	02/21/23	2145 238652	1 1
Spectrometric Analysis											
SM 4500-S(2-) D Sulfide	e "As Receiv	ed"									
Total Sulfide	U	ND	0.0330	0.100	mg/L		1	HH2	02/20/23	1115 238662	1 2
Titration and Ion Analysi	S										
SM 2320B Total Alkalin	ity "As Rece	eived"									
Alkalinity, Total as CaCO3	J	2.20	1.45	4.00	mg/L			MS3	02/23/23	1758 238821	8 3
Bicarbonate alkalinity (CaCO3) J	2.20	1.45	4.00	mg/L						
Carbonate alkalinity (CaCO3)	U	ND	1.45	4.00	mg/L						
The following Analytica	l Methods w	vere performed:									

Method Description $SM\ 5310\ B$ SM 4500-S (2-) D 2 SM 2320B

Collector:

Notes:

Column headers are defined as follows:

DF: Dilution Factor Lc/LC: Critical Level DL: Detection Limit PF: Prep Factor MDA: Minimum Detectable Activity **RL**: Reporting Limit

MDC: Minimum Detectable Concentration SQL: Sample Quantitation Limit

Page 19 of 31 SDG: 611426

2040 Savage Road Charleston SC 29407 - (843) 556-8171 - www.gel.com

Certificate of Analysis

Report Date: February 24, 2023

Company: Address:

Santee Cooper P.O. Box 2946101

OCO3

Moncks Corner, South Carolina 29461

Contact: Project:

Ms. Jeanette Gilmetti ABS Lab Analytical

Client Sample ID: AF56432 Sample ID:

611426018

Matrix: Collect Date: Ground Water 14-FEB-23 15:22

Receive Date: Collector:

17-FEB-23 Client

Parameter	Qualifier	Result	DL	RL	Units	PF	DF Analyst Date	Time Batch Method
Carbon Analysis								

Carbon Analysis

SM 5310 B Dissolved Organic Carbon "As Received"

Dissolved Organic Carbon Average

0.330

1.00

mg/L

Project:

Client ID:

TSM 02/22/23 1942 2387199

SOOP00119

SOOP001

The following Prep Methods were performed:

Method	Description	Analyst	Date	Time	Prep Batch
EPA 160	Laboratory Filtration - DOC	TSM	02/21/23	0845	2386518

The following Analytical Methods were performed:

Method	Description	Analyst Comments
1	SM 5310 B	•

Notes:

Column headers are defined as follows:

DF: Dilution Factor Lc/LC: Critical Level DL: Detection Limit PF: Prep Factor RL: Reporting Limit MDA: Minimum Detectable Activity

MDC: Minimum Detectable Concentration SQL: Sample Quantitation Limit

Page 20 of 31 SDG: 611426

2040 Savage Road Charleston, SC 29407 - (843) 556-8171 - www.gel.com

QC Summary

Report Date: February 24, 2023

Page 1 of 4

Santee Cooper P.O. Box 2946101

OCO3

Moncks Corner, South Carolina

Contact: Ms. Jeanette Gilmetti

Workorder: 611426

Parmname	NOM	Sample Qual	QC	Units	RPD% REC	% Range Anls	t Date Time
Carbon Analysis Batch 2386521 ———							
QC1205325283 611426005 DUP Total Organic Carbon Average		15.9	15.8	mg/L	1.1	(0%-20%) TS	M 02/21/23 19:26
QC1205325282 LCS Total Organic Carbon Average	10.0		9.56	mg/L	95.6	(80%-120%)	02/21/23 15:46
QC1205325281 MB Total Organic Carbon Average		U	ND	mg/L			02/21/23 15:36
QC1205325285 611426005 PS Total Organic Carbon Average	10.0	15.9	24.0	mg/L	81.1	(65%-120%)	02/21/23 19:46
Batch 2387199 ——							
QC1205325262 611426002 DUP Dissolved Organic Carbon Average	J	0.794 J	0.777	mg/L	2.16 ^	(+/-1.00) TS	M 02/24/23 14:41
QC1205325261 FLTB Dissolved Organic Carbon Average		J	0.372	mg/L			02/24/23 14:10
Dissolved Organic Carbon Average		U	ND	mg/L			02/22/23 14:17
QC1205326621 LCS Dissolved Organic Carbon Average	10.0		9.58	mg/L	95.8	(80%-120%)	02/22/23 14:27
QC1205326620 MB Dissolved Organic Carbon Average		U	ND	mg/L			02/22/23 14:07
QC1205325263 611426002 PS Dissolved Organic Carbon Average	10.0 J	0.794	11.0	mg/L	102	(65%-120%)	02/24/23 15:01

2040 Savage Road Charleston, SC 29407 - (843) 556-8171 - www.gel.com

QC Summary

Workorder: 611426 Page 2 of 4 **Parmname** NOM Sample Qual QC Units RPD% REC% Range Anlst Date Time **Nutrient Analysis** 2387499 Batch QC1205327254 611426009 DUP U ND U ND mg/L N/A KLP1 02/22/23 11:03 Nitrogen, Nitrate/Nitrite QC1205327253 LCS Nitrogen, Nitrate/Nitrite 1.00 0.943 mg/L 94.3 (90%-110%) 02/22/23 10:41 QC1205327252 MB U ND 02/22/23 10:40 Nitrogen, Nitrate/Nitrite mg/L QC1205327255 611426009 PS 1.00 U ND 1.23 123* (90%-110%) 02/22/23 11:05 Nitrogen, Nitrate/Nitrite mg/L Spectrometric Analysis Batch QC1205325529 LCS 0.400 0.410 Total Sulfide mg/L 103 (85%-115%) HH2 02/20/23 11:08 QC1205325528 MBU Total Sulfide ND mg/L 02/20/23 11:08 QC1205325530 611426001 PS ND 0.374 Total Sulfide 0.400 U mg/L 93.5 (75%-125%) 02/20/23 11:10 QC1205325531 611426001 PSD Total Sulfide 0.400 U ND 0.386 02/20/23 11:11 mg/L 3.06 96.4 (0%-15%)Titration and Ion Analysis 2388218 QC1205328367 611426001 DUP Alkalinity, Total as CaCO3 91.2 92.2 mg/L 1.09 (0%-20%)MS3 02/23/23 17:40 Bicarbonate alkalinity (CaCO3) 91.2 92.2 mg/L 1.09 (0%-20%) Carbonate alkalinity (CaCO3) U ND U ND mg/L N/A

Page 22 of 31 SDG: 611426

2040 Savage Road Charleston, SC 29407 - (843) 556-8171 - www.gel.com

QC Summary

611426 Page 3 of 4 Parmname NOM Sample Qual **OC** Units RPD% REC% Range Anlst Date Time **Titration and Ion Analysis** Batch 2388218 QC1205328366 LCS 103 100 mg/L 103 MS3 02/23/23 17:36 Alkalinity, Total as CaCO3 (90%-110%) QC1205328368 611426001 MS 100 91.2 198 Alkalinity, Total as CaCO3 mg/L 107 (80%-120%) 02/23/23 17:44

Notes:

Workorder:

The Qualifiers in this report are defined as follows:

- U Analyte was analyzed for, but not detected above the MDL, MDA, MDC or LOD.
- J Value is estimated
- X Consult Case Narrative, Data Summary package, or Project Manager concerning this qualifier
- Н Analytical holding time was exceeded
- < Result is less than value reported
- Result is greater than value reported
- h Preparation or preservation holding time was exceeded
- R Sample results are rejected
- Z Paint Filter Test--Particulates passed through the filter, however no free liquids were observed.
- d 5-day BOD--The 2:1 depletion requirement was not met for this sample
- Λ RPD of sample and duplicate evaluated using +/-RL. Concentrations are <5X the RL. Qualifier Not Applicable for Radiochemistry.
- N/A RPD or %Recovery limits do not apply.
- ND Analyte concentration is not detected above the detection limit
- NJ Consult Case Narrative, Data Summary package, or Project Manager concerning this qualifier
- Ε General Chemistry--Concentration of the target analyte exceeds the instrument calibration range
- Q One or more quality control criteria have not been met. Refer to the applicable narrative or DER.
- N1See case narrative
- R Per section 9.3.4.1 of Method 1664 Revision B, due to matrix spike recovery issues, this result may not be reported or used for regulatory compliance purposes.
- В The target analyte was detected in the associated blank.
- 5-day BOD--Test replicates show more than 30% difference between high and low values. The data is qualified per the method and can be used for e reporting purposes
- J See case narrative for an explanation

Page 23 of 31 SDG: 611426

2040 Savage Road Charleston, SC 29407 - (843) 556-8171 - www.gel.com

QC Summary

Page 4 of 4 Parmname NOM QC Units RPD% REC% Range Anlst Date Time

Sample Qual

N/A indicates that spike recovery limits do not apply when sample concentration exceeds spike conc. by a factor of 4 or more or %RPD not applicable.

Workorder:

611426

For PS, PSD, and SDILT results, the values listed are the measured amounts, not final concentrations.

Where the analytical method has been performed under NELAP certification, the analysis has met all of the requirements of the NELAC standard unless qualified on the QC Summary.

Page 24 of 31 SDG: 611426

[^] The Relative Percent Difference (RPD) obtained from the sample duplicate (DUP) is evaluated against the acceptance criteria when the sample is greater than five times (5X) the contract required detection limit (RL). In cases where either the sample or duplicate value is less than 5X the RL, a control limit of +/- the RL is used to evaluate the DUP result.

^{*} Indicates that a Quality Control parameter was not within specifications.

General Chemistry Technical Case Narrative Santee Cooper SDG #: 611426

<u>Product:</u> Carbon, Total Organic <u>Analytical Method:</u> SM 5310 B

Analytical Procedure: GL-GC-E-093 REV# 21

Analytical Batch: 2386521

The following samples were analyzed using the above methods and analytical procedure(s).

GEL Sample ID#	Client Sample Identification
611426001	AF56397
611426003	AF56400
611426005	AF56442
611426007	AF56443
611426009	AF56395
611426011	AF56396
611426013	AF56394
611426015	AF56431
611426017	AF56432
1205325281	Method Blank (MB)
1205325282	Laboratory Control Sample (LCS)
1205325283	611426005(AF56442) Sample Duplicate (DUP)
1205325285	611426005(AF56442) Post Spike (PS)

The samples in this SDG were analyzed on an "as received" basis.

Data Summary:

There are no exceptions, anomalies or deviations from the specified methods. All sample data provided in this report met the acceptance criteria specified in the analytical methods and procedures for initial calibration, continuing calibration, instrument controls and process controls where applicable.

Product: Carbon, Dissolved Organic Analytical Method: SM 5310 B

Analytical Procedure: GL-GC-E-093 REV# 21

Analytical Batch: 2387199

Filtration Method: EPA 160

Filtration Procedure: GL-LB-E-034 REV# 4

Filtration Batch: 2386518

The following samples were analyzed using the above methods and analytical procedure(s).

Client Sample Identification
AF56397
AF56400
AF56442
AF56443

Page 25 of 31 SDG: 611426

611426010	AF56395
611426012	AF56396
611426014	AF56394
611426016	AF56431
611426018	AF56432
1205325261	Filtration Blank (FLTB)
1205325262	611426002(AF56397) Sample Duplicate (DUP)
1205325263	611426002(AF56397) Post Spike (PS)
1205326620	Method Blank (MB)
1205326621	Laboratory Control Sample (LCS)

The samples in this SDG were analyzed on an "as received" basis.

Data Summary:

All sample data provided in this report met the acceptance criteria specified in the analytical methods and procedures for initial calibration, continuing calibration, instrument controls and process controls where applicable, with the following exceptions.

Technical Information

Sample Re-analysis

Samples 1205325262 (AF56397DUP) and 611426002 (AF56397) were reanalyzed due to PS failure. The reanalysis data was reported.

Product: Nitrate/Nitrite Cad Redux Low Level Analytical Method: EPA 353.2 Low Level Analytical Procedure: GL-GC-E-128 REV# 11

Analytical Batch: 2387499

The following samples were analyzed using the above methods and analytical procedure(s).

GEL Sample ID#	Client Sample Identification
611426001	AF56397
611426003	AF56400
611426005	AF56442
611426007	AF56443
611426009	AF56395
611426011	AF56396
1205327252	Method Blank (MB)
1205327253	Laboratory Control Sample (LCS)
1205327254	611426009(AF56395) Sample Duplicate (DUP)
1205327255	611426009(AF56395) Post Spike (PS)

The samples in this SDG were analyzed on an "as received" basis.

Data Summary:

All sample data provided in this report met the acceptance criteria specified in the analytical methods and procedures for initial calibration, continuing calibration, instrument controls and process controls where applicable, with the following exceptions.

Quality Control (QC) Information

Matrix Spike (MS)/Post Spike (PS) Recovery Statement

Page 26 of 31 SDG: 611426

The percent recoveries (%R) obtained from the spike analyses are evaluated when the sample concentration is less than four times (4X) the spike concentration added. The matrix spike recovered outside of the established acceptance limits due to matrix interference and/or non-homogeneity.

Analyte	Sample	Value
Nitrogen, Nitrate/Nitrite	1205327255 (AF56395PS)	123* (90%-110%)

Technical Information

Sample Dilutions

The following sample 611426003 (AF56400) was diluted because target analyte concentrations exceeded the calibration range. The following samples 1205327254 (AF56395DUP), 1205327255 (AF56395PS), 611426001 (AF56397), 611426005 (AF56442), 611426007 (AF56443), 611426009 (AF56395) and 611426011 (AF56396) in this sample group were diluted due to matrix interference. Dilutions may be required for many reasons, including to minimize matrix interferences or to bring over range target analyte concentrations into the linear calibration range.

A a last -	611426									
Analyte	001	003	005	007	009	011				
Nitrogen, Nitrate/Nitrite	10X	10X	10X	10X	10X	10X				

Product: Sulfide, Total

Analytical Method: SM 4500-S (2-) D

Analytical Procedure: GL-GC-E-052 REV# 12

Analytical Batch: 2386621

The following samples were analyzed using the above methods and analytical procedure(s).

GEL Sample ID#	Client Sample Identification
611426001	AF56397
611426003	AF56400
611426005	AF56442
611426007	AF56443
611426009	AF56395
611426011	AF56396
611426013	AF56394
611426015	AF56431
611426017	AF56432
1205325528	Method Blank (MB)
1205325529	Laboratory Control Sample (LCS)
1205325530	611426001(AF56397) Post Spike (PS)
1205325531	611426001(AF56397) Post Spike Duplicate (PSD)

The samples in this SDG were analyzed on an "as received" basis.

Data Summary:

There are no exceptions, anomalies or deviations from the specified methods. All sample data provided in this report met the acceptance criteria specified in the analytical methods and procedures for initial calibration, continuing calibration, instrument controls and process controls where applicable.

Page 27 of 31 SDG: 611426

Product: Alkalinity

Analytical Method: SM 2320B

Analytical Procedure: GL-GC-E-033 REV# 14

Analytical Batch: 2388218

The following samples were analyzed using the above methods and analytical procedure(s).

GEL Sample ID#	Client Sample Identification
611426001	AF56397
611426003	AF56400
611426005	AF56442
611426007	AF56443
611426009	AF56395
611426011	AF56396
611426013	AF56394
611426015	AF56431
611426017	AF56432
1205328366	Laboratory Control Sample (LCS)
1205328367	611426001(AF56397) Sample Duplicate (DUP)
1205328368	611426001(AF56397) Matrix Spike (MS)

The samples in this SDG were analyzed on an "as received" basis.

Data Summary:

There are no exceptions, anomalies or deviations from the specified methods. All sample data provided in this report met the acceptance criteria specified in the analytical methods and procedures for initial calibration, continuing calibration, instrument controls and process controls where applicable.

Certification Statement

Where the analytical method has been performed under NELAP certification, the analysis has met all of the requirements of the NELAC standard unless otherwise noted in the analytical case narrative.

Page 28 of 31 SDG: 611426

GEL Contract Lab Info: _

2 / 27 / 23 Send report to lcwillia@santeecooper.com & sibrown@santeecooper.com & sibrown.com & <a href="mailto:sibrown.co ____ Contract Lab Due Date (Lab Only):___

Chain of Custody

santee cooper®

TITSS

GOFER

Santee Cooper One Riverwood Drive Moncks Corner, SC 29461 Phone: (843)761-8000 Ext. 5148 Fax: (843)761-4175 Project/Task/Unit #: Date Results Needed by: Rerun request for any flagged QC LCWILLIA 125915 / JM02.09. GOI.1 / 36500 Yes No @santeecooper.com **Analysis Group** Labworks ID # Sample Location/ Comments Matrix(see below, Collection Time see Method # Description (Internal use Collecto (Glas BIGHKB, Total # of contain Preservative (: below) only) Reporting limit 0 Bottle type: (6/Plastic-P) SULFIDE Collection Grab (G) or Composite (224 Misc. sample info Sample Any other notes 大 ZDM PA * 2 2/16/23 2 1053 6 GW * SULFIDE HAS SHORT HOLD. WAP-4 AP56397 MDG G 1255 400 WAP-7 WLF- 42-6 * PRESERVATIVES 1407 442 TOC HZSO4 443 WLF-AZ-6 DUP 1412 SULFIDE ZINC ACEPATE, NOOH RAD HNO3 ZDM 2/15/23 1136 <4°C AF 56395 WAP-2 ML 1321 96 WAP 3 2 2 2/14/23 1233 6 ALKAL-TOTAL BICARB, CARB AF56394 WAP-1 RAD - INCLUDE TOTAL CALCULATIO 431 WBW-1 1351 1522 432 WBW-AI-1 Sample Receiving (Internal Use Only) Time Received by: Employee # Date Time Relinquished by: Employee# Date TEMP (°C): Initial: 0950 2/17/23 0950 35594 2/17/23 GEL Symour Correct pH: Yes Relinquished by: Employee# Date Time Employee # Date Time Preservative Lot#: Relinquished by: Time Employee# Received by: Émployee # Date/Time/Init for preservative: ☐ METALS (all) **Nutrients** MISC. Gypsum Coal Oil Flyash □ Ag □ Cu □ Sb Trans. Oil Qual. TOC ☐ Wallboard BTEX □ Ultimate ☐ Ammonia □ A1 □ Fe □ Se 3 %Moisture □ Napthalene Gypsum(all DOC □ % Moisture TLOI □ THM/HAA Color □ As $\Box K$ □ Sn below) TP/TPO4 ☐ Ash ☐ % Carbon Acidity DVOC □ AIM □ NH3-N □ Sulfur ☐ Mineral □В □ Li □ Sr □ Oil & Grease Dielectric Strength □ TOC □ BTUs Analysis IFT □ E. Coli ☐ Total metals □ Ba □ Mg □ Ti 01 ☐ Volatile Matter ☐ Sieve Dissolved Gases ☐ Total Coliform ☐ Soluble Metals □ Be □ Mn □ T1 NO₂ □ CHN ☐ % Moisture Used Oil □pH ☐ Purity (CaSO4) Other Tests: ☐ Flashpoint Br ☐ Dissolved As □ % Moisture □ Ca $\square V$ □ Mo Metals in oil ☐ Dissolved Fe ☐ XRF Scan NO3 □ Sulfites **NPDES** (As,Cd,Cr,Ni,Pb □ Rad 226 □HGI □ Cd □ Na □ Zn □рН SO4 Hg) □ Oil & Grease ☐ Rad 228 ☐ Chlorides ☐ Fineness □ Co □ Ni □Hg □ PCB ☐ Particulate Matter □ As TX ☐ Particle Size

Matrix codes: GW-groundwater, DW-drinking water, SW-surface water, WW-waste water, BW-boiler water, L-limestone, Oil-oil, S-Soil, SL-solid, C-coal, G-gypsum, FA-flyash, BA-bottom ash, M-misc (describe in comment section)
Preservative code- 1=<4°C 2=HNO₃ 3=H₂SO₄ 4-HCl 5=Na₂S₂O₃ 6-Other (SP)
Page 29 of 31 SDG: 611426 5=Na₂S₂O₃ 6-Other (Specify)

Sulfur

□Pb

□ CrVI

□ Cr

lient:	QCSS			gn/	SAMPLE RECEIPT & REVIEW FORM,)
`	ed By:MVH			T	te Received:
				,,,,	Circle Applicable: FedEx Express FedEx Ground UPS Field Services Courier Other
Ca	rrier and Tracking Number			C	Wile 1-18°
Suspect	ed Hazard Information	Yes	ž	*If I	Net Counts > 100cpm on samples not marked "radioactive", contact the Radiation Safety Group for further investigation.
A)Shipp	ed as a DOT Hazardous?		V	Haz	ard Class Shipped: UN#: If UN2910, Is the Radioactive Shipment Survey Compliant? YesNo
	he client designate the samples are to be as radioactive?		V	coc	C notation or radioactive stickers on containers equal client designation.
C) Did ti adioacti	he RSO classify the samples as ve?		V	Max	cimum Net Counts Observed* (Observed Counts - Area Background Counts): CPMY mR/Hr Classified as: Rad 1 Rad 2 Rad 3
Did t	he client designate samples are hazardous?		V	٠	C notation or hazard labels on containers equal client designation.
E) Did ti	ne RSO identify possible hazards?		V	If D	or E is yes, select Hazards below. PCB's Flammable Foreign Soil RCRA Asbestos Beryllium Other:
	Sample Receipt Criteria	Yes	ž	ž	Comments/Qualifiers (Required for Non-Conforming Items)
	pping containers received intact and led?	1			Circle Applicable: Seals broken Damaged container Leaking container Other (describe)
	nin of custody documents included h shipment?	V			Circle Applicable: Client contacted and provided COC COC created upon receipt
	nples requiring cold preservation hin $(0 \le 6 \text{ deg. C})$?*	V			Preservation Method: Wet Ice Ice Packs Dry Ice None Other: *all temperatures are recorded in Celsius TEMP:
	ily check performed and passed on IR perature gun?	٧			Temperature Device Serial #: <u>IR2-21</u> Secondary Temperature Device Serial # (If Applicable):
5 Sai	nple containers intact and sealed?	V			Circle Applicable: Seals broken Damaged container Leaking container Other (describe)
	mples requiring chemical preservation proper pH?	√			Sample 4D's and Containers Affected: If Preservation added, Lot#:
7	Do any samples require Volatile Analysis?				If Yes, are Encores or Soil Kits present for solids? YesNoNA(If yes, take to VOA Freezer) Do liquid VOA vials contain acid preservation? YesNoNA(If unknown, select No) Are liquid VOA vials free of headspace? YesNoNA Sample ID's and containers affected:
8 Sai	nples received within holding time?	V	 		TD's and tests affected:
u ı	nple ID's on COC match ID's on tles?	V			ID's and containers affected:
	te & time on COC match date & time bottles?	V			Circle Applicable: No dates on containers No times on containers COC missing info Other (describe)
nur	mber of containers received match mber indicated on COC?			\	Circle Applicable: No container count on COC Other (describe)
GE GE	e sample containers identifiable as LL provided by use of GEL labels? C form is properly signed in				Circle Applicable: Not relinquished Other (describe)
Įreli	nquished/received sections? ats (Use Continuation Form if needed):	Ļ	55	L	

List of current GEL Certifications as of 24 February 2023

State	Certification						
Alabama	42200						
Alaska	17-018						
Alaska Drinking Water	SC00012						
Arkansas	88-0651						
CLIA	42D0904046						
California	2940						
Colorado	SC00012						
Connecticut	PH-0169						
DoD ELAP/ ISO17025 A2LA	2567.01						
Florida NELAP	E87156						
Foreign Soils Permit	P330-15-00283, P330-15-00253						
Georgia	SC00012						
Georgia SDWA	967						
Hawaii	SC00012						
Idaho	SC00012						
Illinois NELAP	200029						
Indiana	C-SC-01						
Kansas NELAP	E-10332						
Kentucky SDWA	90129						
Kentucky Wastewater	90129						
Louisiana Drinking Water	LA024						
Louisiana NELAP	03046 (AI33904)						
Maine	2019020						
Maryland	270						
Massachusetts	M-SC012						
Massachusetts PFAS Approv	Letter						
Michigan	9976						
Mississippi	SC00012						
Nebraska	NE-OS-26-13						
Nevada	SC000122023-4						
New Hampshire NELAP	2054						
New Jersey NELAP	SC002						
New Mexico	SC002 SC00012						
New York NELAP	11501						
North Carolina	233						
North Carolina SDWA	45709						
North Dakota	R-158						
Oklahoma	2022-160						
Pennsylvania NELAP	68-00485						
Pennsylvania NELAP Puerto Rico	SC00012						
S. Carolina Radiochem	10120002						
Sanitation Districts of L	9255651						
South Carolina Chemistry	10120001						
Tennessee Teves NEL A P	TN 02934						
Texas NELAP	T104704235-22-20						
Utah NELAP	SC000122022-37						
Vermont	VT87156						
Virginia NELAP	460202						
Washington	C780						

gel.com

March 16, 2023

Ms. Jeanette Gilmetti Santee Cooper P.O. Box 2946101 OCO3 Moncks Corner, South Carolina 29461

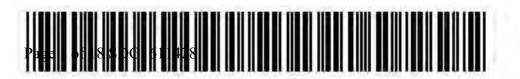
Re: ABS Lab Analytical Work Order: 611428

Dear Ms. Gilmetti:

GEL Laboratories, LLC (GEL) appreciates the opportunity to provide the enclosed analytical results for the sample(s) we received on February 17, 2023. This original data report has been prepared and reviewed in accordance with GEL's standard operating procedures.

The samples were delivered with proper chain of custody documentation and signatures. All sample containers arrived without any visible signs of tampering or breakage. There are no additional comments concerning sample receipt.

Test results for NELAP or ISO 17025 accredited tests are verified to meet the requirements of those standards, with any exceptions noted. The results reported relate only to the items tested and to the sample as received by the laboratory. These results may not be reproduced except as full reports without approval by the laboratory. Copies of GEL's accreditations and certifications can be found on our website at www.gel.com.


Our policy is to provide high quality, personalized analytical services to enable you to meet your analytical needs on time every time. We trust that you will find everything in order and to your satisfaction. If you have any questions, please do not hesitate to call me at (843) 556-8171, ext. 4289.

Sincerely,

Heather Millar for Julie Robinson Project Manager

Purchase Order: 398684

Enclosures

2040 Savage Road Charleston SC 29407 - (843) 556-8171 - www.gel.com

Certificate of Analysis Report for

SOOP001 Santee Cooper

Client SDG: 611428 GEL Work Order: 611428

The Qualifiers in this report are defined as follows:

- * A quality control analyte recovery is outside of specified acceptance criteria
- ** Analyte is a Tracer compound
- ** Analyte is a surrogate compound
- U Analyte was analyzed for, but not detected above the MDL, MDA, MDC or LOD.

Where the analytical method has been performed under NELAP certification, the analysis has met all of the requirements of the NELAC standard unless qualified on the Certificate of Analysis.

The designation ND, if present, appears in the result column when the analyte concentration is not detected above the limit as defined in the 'U' qualifier above.

This data report has been prepared and reviewed in accordance with GEL Laboratories LLC standard operating procedures. Please direct any questions to your Project Manager, Julie Robinson.

Reviewed by

Page 2 of 18 SDG: 611428

2040 Savage Road Charleston SC 29407 - (843) 556-8171 - www.gel.com

Certificate of Analysis

Project:

Client ID:

Report Date: March 16, 2023

SOOP00119

SOOP001

Company: Santee Cooper Address: P.O. Box 2946101

OCO3

Moncks Corner, South Carolina 29461

Contact: Ms. Jeanette Gilmetti Project: ABS Lab Analytical

Client Sample ID: AF56397
Sample ID: 611428001
Matrix: Ground Water
Collect Date: 16-FEB-23 10:53

Receive Date: 17-FEB-23
Collector: Client

Parameter	Qualifier	Result	Uncertainty	MDC	RL	Units	PF	DF Analy	st Date	Time Batch	Method
Rad Gas Flow Proportion	nal Counting										
GFPC, Ra228, Liquid "A	As Received"										
Radium-228	U	1.13	+/-1.35	2.28	3.00	pCi/L		JE1	03/14/23	1216 2390110	1
Radium-226+Radium-228 Calculation "See Parent Products"											
Radium-226+228 Sum		1.80	+/-1.38			pCi/L		NXL1	03/16/23	1404 2394229	2
Rad Radium-226											
Lucas Cell, Ra226, Liqu	iid "As Recei	ved"									
Radium-226		0.677	+/-0.308	0.295	1.00	pCi/L		LXP1	03/16/23	1008 2390103	3
The following Analytic	al Methods w	ere perfo	ormed:								

Method	Description	Analyst Comments
1	EPA 904.0/SW846 9320 Modified	•
2	Coloulation	

2 Calculation 3 EPA 903.1 Modified

Surrogate/Tracer Recovery Test Result Nominal Recovery% Acceptable Limits

Barium-133 Tracer GFPC, Ra228, Liquid "As Received"

78.7 (15%-125%)

Notes:

Counting Uncertainty is calculated at the 95% confidence level (1.96-sigma).

Column headers are defined as follows:

DF: Dilution Factor Lc/LC: Critical Level
DL: Detection Limit PF: Prep Factor
MDA: Minimum Detectable Activity RL: Reporting Limit

MDC: Minimum Detectable Concentration SQL: Sample Quantitation Limit

Page 3 of 18 SDG: 611428

2040 Savage Road Charleston SC 29407 - (843) 556-8171 - www.gel.com

Certificate of Analysis

Project:

Client ID:

Report Date: March 16, 2023

SOOP00119

SOOP001

Company: Santee Cooper Address: P.O. Box 2946101

OCO3

Moncks Corner, South Carolina 29461

Contact: Ms. Jeanette Gilmetti Project: ABS Lab Analytical

Client Sample ID: AF56400
Sample ID: 611428002
Matrix: Ground Water
Collect Date: 16-FEB-23 12:55

Receive Date: 17-FEB-23 Collector: Client

Parameter	Qualifier	Result	Uncertainty	MDC	RL	Units	PF	DF Analy	yst Date	Time Batch	Method
Rad Gas Flow Proport	tional Counting	3									
GFPC, Ra228, Liquid	"As Received"	'									
Radium-228	U	1.71	+/-1.23	1.92	3.00	pCi/L		JE1	03/14/23	1216 2390110	1
Radium-226+Radium-228 Calculation "See Parent Products"											
Radium-226+228 Sum		2.55	+/-1.28			pCi/L		NXL1	03/16/23	1404 2394229	2
Rad Radium-226											
Lucas Cell, Ra226, Li	quid "As Rece	ived"									
Radium-226		0.835	+/-0.332	0.350	1.00	pCi/L		LXP1	03/16/23	0935 2390103	3
TEL C 11 ' A 1 A	. 134.4 1	C	1								

The following Analytical Methods were performed:

MethodDescriptionAnalyst Comments1EPA 904.0/SW846 9320 Modified

Calculation
B EPA 903.1 Modified

Surrogate/Tracer Recovery Test Result Nominal Recovery% Acceptable Limits

Barium-133 Tracer GFPC, Ra228, Liquid "As Received"

67.3 (15%-125%)

Notes:

Counting Uncertainty is calculated at the 95% confidence level (1.96-sigma).

Column headers are defined as follows:

DF: Dilution Factor Lc/LC: Critical Level
DL: Detection Limit PF: Prep Factor
MDA: Minimum Detectable Activity RL: Reporting Limit

MDC: Minimum Detectable Concentration SQL: Sample Quantitation Limit

Page 4 of 18 SDG: 611428

2040 Savage Road Charleston SC 29407 - (843) 556-8171 - www.gel.com

Certificate of Analysis

Project:

Client ID:

Report Date: March 16, 2023

SOOP00119

SOOP001

Company: Santee Cooper Address: P.O. Box 2946101

OCO3

Moncks Corner, South Carolina 29461

Contact: Ms. Jeanette Gilmetti Project: ABS Lab Analytical

Client Sample ID: AF56442 Sample ID: 611428003 Matrix: Ground Water Collect Date: 16-FEB-23 14:07 Receive Date:

17-FEB-23

Client

Parameter	Qualifier	Result	Uncertainty	MDC	RL	Units	PF	DF Analyst Dat	Time Batch	Method
Rad Gas Flow Proportion	onal Counting									
GFPC, Ra228, Liquid "	As Received"									
Radium-228	U	1.77	+/-1.23	1.95	3.00	pCi/L		JE1 03/14/	3 1216 2390110	1
Radium-226+Radium-228 Calculation "See Parent Products"										
Radium-226+228 Sum		1.98	+/-1.24			pCi/L		NXL1 03/16/	3 1404 2394229	2
Rad Radium-226										
Lucas Cell, Ra226, Liqu	uid "As Recei	ved"								
Radium-226	U	0.206	+/-0.173	0.225	1.00	pCi/L		LXP1 03/16/	3 0935 2390103	3
The following Analytic	cal Methods w	ere perfo	ormed:							
Method	Description					I	Analys	st Comments		

1	EPA 904.0/SW846 9320 Modified				
2	Calculation				
3	EPA 903.1 Modified				
Surrogate/Tracer Recove	ery Test	Result	Nominal	Recovery%	Acceptable Limits

Barium-133 Tracer 88.2 GFPC, Ra228, Liquid "As Received" (15%-125%)

Counting Uncertainty is calculated at the 95% confidence level (1.96-sigma).

Column headers are defined as follows:

Collector:

DF: Dilution Factor Lc/LC: Critical Level DL: Detection Limit PF: Prep Factor MDA: Minimum Detectable Activity **RL**: Reporting Limit

MDC: Minimum Detectable Concentration **SQL**: Sample Quantitation Limit

Page 5 of 18 SDG: 611428

2040 Savage Road Charleston SC 29407 - (843) 556-8171 - www.gel.com

Certificate of Analysis

Project:

Client ID:

Report Date: March 16, 2023

SOOP00119

SOOP001

Company: Santee Cooper Address: P.O. Box 2946101

OCO3

Moncks Corner, South Carolina 29461

Contact: Ms. Jeanette Gilmetti Project: ABS Lab Analytical

Client Sample ID: AF56443
Sample ID: 611428004
Matrix: Ground Water
Collect Date: 16-FEB-23 14:12
Receive Date: 17-FEB-23

Collector: Client

Parameter	Qualifier	Result	Uncertainty	MDC	RL	Units	PF	DF Analy	st Date	Time Batch	Method
Rad Gas Flow Proportion	onal Counting	5									
GFPC, Ra228, Liquid ".	As Received'	1									
Radium-228	U	0.313	+/-0.845	1.53	3.00	pCi/L		JE1	03/14/23	1216 2390110	1
Radium-226+Radium-2	Radium-226+Radium-228 Calculation "See Parent Products"										
Radium-226+228 Sum		0.644	+/-0.892			pCi/L		NXL1	03/16/23	1404 2394229	2
Rad Radium-226											
Lucas Cell, Ra226, Liqu	uid "As Recei	ived"									
Radium-226	U	0.331	+/-0.286	0.446	1.00	pCi/L		LXP1	03/16/23	1008 2390103	3

The following Analytical Methods were performed:

MethodDescriptionAnalyst Comments1EPA 904.0/SW846 9320 Modified

2 Calculation 3 EPA 903.1 Modified

Surrogate/Tracer Recovery Test Result Nominal Recovery% Acceptable Limits

Barium-133 Tracer GFPC, Ra228, Liquid "As Received"

87 (15%-125%)

Notes:

Counting Uncertainty is calculated at the 95% confidence level (1.96-sigma).

Column headers are defined as follows:

DF: Dilution Factor Lc/LC: Critical Level
DL: Detection Limit PF: Prep Factor
MDA: Minimum Detectable Activity RL: Reporting Limit

MDC: Minimum Detectable Concentration SQL: Sample Quantitation Limit

Page 6 of 18 SDG: 611428

2040 Savage Road Charleston SC 29407 - (843) 556-8171 - www.gel.com

Certificate of Analysis

Project:

Client ID:

Report Date: March 16, 2023

SOOP00119

SOOP001

Company: Santee Cooper Address: P.O. Box 2946101

OCO3

Moncks Corner, South Carolina 29461

Ms. Jeanette Gilmetti Contact: Project: ABS Lab Analytical

Client Sample ID: AF56395 Sample ID: 611428005 Matrix: Ground Water Collect Date: 15-FEB-23 11:36 17-FEB-23

Receive Date: Client Collector:

Parameter	Qualifier	Result	Uncertainty	MDC	RL	Units	PF	PF DF Analyst Da		Time Batch	Method
Rad Gas Flow Proporti	ional Counting	5									
GFPC, Ra228, Liquid	"As Received"										
Radium-228		2.62	+/-1.33	1.88	3.00	pCi/L		JE1	03/14/23	1216 2390110	1
Radium-226+Radium-	228 Calculation	n "See Pa	arent Products"								
Radium-226+228 Sum		3.15	+/-1.37			pCi/L		NXL1	03/16/23	1404 2394229	2
Rad Radium-226											
Lucas Cell, Ra226, Lic	juid "As Recei	ved"									
Radium-226		0.531	+/-0.317	0.425	1.00	pCi/L		LXP1	03/16/23	1008 2390103	3
The following Analyti	cal Methods w	zere perfo	rmed:								

Method	Description	Analyst Comments
1	EPA 904.0/SW846 9320 Modified	•
2	Calculation	
3	EPA 903.1 Modified	
C	D	D14 N1 D

Recovery% Surrogate/Tracer Recovery Result Nominal Acceptable Limits Test Barium-133 Tracer GFPC, Ra228, Liquid "As Received" 69.4 (15%-125%)

Counting Uncertainty is calculated at the 95% confidence level (1.96-sigma).

Column headers are defined as follows:

DF: Dilution Factor Lc/LC: Critical Level DL: Detection Limit PF: Prep Factor MDA: Minimum Detectable Activity **RL**: Reporting Limit

MDC: Minimum Detectable Concentration **SQL**: Sample Quantitation Limit

Page 7 of 18 SDG: 611428

2040 Savage Road Charleston SC 29407 - (843) 556-8171 - www.gel.com

Certificate of Analysis

Project:

Client ID:

Report Date: March 16, 2023

SOOP00119

SOOP001

Company: Santee Cooper Address: P.O. Box 2946101

OCO3

Moncks Corner, South Carolina 29461

Contact: Ms. Jeanette Gilmetti Project: ABS Lab Analytical

Client Sample ID: AF56396 Sample ID: 611428006 Matrix: Ground Water Collect Date: 15-FEB-23 13:21 17-FEB-23

Receive Date: Client Collector:

Parameter	Qualifier	Result	Uncertainty	MDC	RL	Units	PF	DF Analyst	t Date	Time Batch	Method
Rad Gas Flow Proportion	onal Counting										
GFPC, Ra228, Liquid ".	As Received"										
Radium-228	U	1.33	+/-0.985	1.53	3.00	pCi/L		JE1 0	03/14/23	1216 2390110	1
Radium-226+Radium-228 Calculation "See Parent Products"											
Radium-226+228 Sum		2.51	+/-1.06			pCi/L		NXL1 0	03/16/23	1404 2394229	2
Rad Radium-226											
Lucas Cell, Ra226, Liqu	uid "As Recei	ved"									
Radium-226		1.18	+/-0.396	0.298	1.00	pCi/L		LXP1 0	03/16/23	1008 2390103	3
The following Analytical Methods were performed:											

Method	Descrip	otion	Analyst Comments
			•

EPA 904.0/SW846 9320 Modified

Calculation EPA 903.1 Modified

Nominal Recovery% Acceptable Limits Surrogate/Tracer Recovery Test Result

Barium-133 Tracer GFPC, Ra228, Liquid "As Received" 78 (15%-125%)

Notes:

Counting Uncertainty is calculated at the 95% confidence level (1.96-sigma).

Column headers are defined as follows:

DF: Dilution Factor Lc/LC: Critical Level DL: Detection Limit PF: Prep Factor MDA: Minimum Detectable Activity **RL**: Reporting Limit

MDC: Minimum Detectable Concentration SQL: Sample Quantitation Limit

Page 8 of 18 SDG: 611428

2040 Savage Road Charleston SC 29407 - (843) 556-8171 - www.gel.com

Certificate of Analysis

Project:

Client ID:

Analyst Comments

Report Date: March 16, 2023

SOOP00119

SOOP001

Company: Santee Cooper Address: P.O. Box 2946101

OCO3

Moncks Corner, South Carolina 29461

Contact: Ms. Jeanette Gilmetti Project: ABS Lab Analytical

Client Sample ID: AF56394
Sample ID: 611428007
Matrix: Ground Water
Collect Date: 14-FEB-23 12:33

Receive Date: 17-FEB-23 Collector: Client

Parameter	Qualifier	Result	Uncertainty	MDC	RL	Units	PF	DF Analy	st Date	Time Batch	Method
Rad Gas Flow Proportion	onal Counting										
GFPC, Ra228, Liquid ".	As Received"										
Radium-228	U	1.40	+/-1.44	2.39	3.00	pCi/L		JE1	03/14/23	1216 2390110	1
Radium-226+Radium-2	Radium-226+Radium-228 Calculation "See Parent Products"										
Radium-226+228 Sum		1.48	+/-1.44			pCi/L		NXL1	03/16/23	1404 2394229	2
Rad Radium-226											
Lucas Cell, Ra226, Liqu	uid "As Recei	ved"									
Radium-226	U	0.0794	+/-0.137	0.254	1.00	pCi/L		LXP1	03/16/23	1008 2390103	3
The following Analytical Methods were performed:											

The following Analytical Methods were performed:

Description

1	EPA 904.0/SW846 9320 Modified				
2	Calculation				
3	EPA 903.1 Modified				
Surrogate/Tracer Recov	erv Test	Result	Nominal	Recovery%	Acceptable Limits

Barium-133 Tracer GFPC, Ra228, Liquid "As Received"

Result Nominal Recovery% Acceptable Limit Recovery% Test

70.8 (15%-125%)

Notes:

Method

Counting Uncertainty is calculated at the 95% confidence level (1.96-sigma).

Column headers are defined as follows:

DF: Dilution Factor Lc/LC: Critical Level
DL: Detection Limit PF: Prep Factor
MDA: Minimum Detectable Activity RL: Reporting Limit

MDC: Minimum Detectable Concentration SQL: Sample Quantitation Limit

Page 9 of 18 SDG: 611428

2040 Savage Road Charleston SC 29407 - (843) 556-8171 - www.gel.com

Certificate of Analysis

Project:

Client ID:

Report Date: March 16, 2023

SOOP00119

SOOP001

Company: Santee Cooper Address: P.O. Box 2946101

OCO3

Moncks Corner, South Carolina 29461

Contact: Ms. Jeanette Gilmetti Project: ABS Lab Analytical

Client Sample ID: AF56431
Sample ID: 611428008
Matrix: Ground Water
Collect Date: 14-FEB-23 13:51

Receive Date: 17-FEB-23 Collector: Client

Parameter	Qualifier	Result	Uncertainty	MDC	RL	Units	PF	DF Analyst	t Date	Time Batch	Method
Rad Gas Flow Proportion	onal Counting	5									
GFPC, Ra228, Liquid "	'As Received"	1									
Radium-228	U	1.18	+/-0.939	1.47	3.00	pCi/L		JE1 0	03/14/23	1217 2390110	1
Radium-226+Radium-2	Radium-226+Radium-228 Calculation "See Parent Products"										
Radium-226+228 Sum		1.84	+/-0.982			pCi/L		NXL1 0	03/16/23	1404 2394229	2
Rad Radium-226											
Lucas Cell, Ra226, Liq	uid "As Recei	ved"									
Radium-226		0.668	+/-0.289	0.267	1.00	pCi/L		LXP1 0	03/16/23	1008 2390103	3
The following Analytic	cal Methods w	ere perfo	ormed:								

Method	Description	Analyst Comments
1	FPA 904 0/SW846 9320 Modified	-

1 EPA 904.0/SW846 9320 Modified 2 Calculation

2 Calculation 3 EPA 903.1 Modified

Surrogate/Tracer RecoveryTestResultNominalRecovery%Acceptable LimitsBarium-133 TracerGFPC, Ra228, Liquid "As Received"74.2(15%-125%)

Notes:

Counting Uncertainty is calculated at the 95% confidence level (1.96-sigma).

Column headers are defined as follows:

DF: Dilution Factor Lc/LC: Critical Level
DL: Detection Limit PF: Prep Factor
MDA: Minimum Detectable Activity RL: Reporting Limit

MDC: Minimum Detectable Concentration SQL: Sample Quantitation Limit

Page 10 of 18 SDG: 611428

2040 Savage Road Charleston SC 29407 - (843) 556-8171 - www.gel.com

Certificate of Analysis

Project:

Client ID:

Report Date: March 16, 2023

SOOP00119

SOOP001

Company: Santee Cooper Address: P.O. Box 2946101

OCO3

Moncks Corner, South Carolina 29461

Contact: Ms. Jeanette Gilmetti Project: ABS Lab Analytical

Client Sample ID: AF56432
Sample ID: 611428009
Matrix: Ground Water
Collect Date: 14-FEB-23 15:22

Receive Date: 17-FEB-23 Collector: Client

Parameter	Qualifier	Result	Uncertainty	MDC	RL	Units	PF	DF Analyst	Date	Time Batch	Method
Rad Gas Flow Proporti	onal Counting	5									
GFPC, Ra228, Liquid "	'As Received'	Ì									
Radium-228		1.80	+/-1.13	1.70	3.00	pCi/L		JE1 03	/14/23	1217 2390110	1
Radium-226+Radium-2	Radium-226+Radium-228 Calculation "See Parent Products"										
Radium-226+228 Sum		3.51	+/-1.24			pCi/L		NXL1 03	/16/23	1404 2394229	2
Rad Radium-226											
Lucas Cell, Ra226, Liq	uid "As Recei	ved"									
Radium-226		1.71	+/-0.498	0.477	1.00	pCi/L		LXP1 03	/16/23	1008 2390103	3
The following Analytic	cal Methods v	vere perfo	ormed:								

Method	Description	Analyst Comments
1	FPA 904 0/SW846 9320 Modified	•

2 Calculation

Surrogate/Tracer Recovery Test Result Nominal Recovery% Acceptable Limits

Barium-133 Tracer GFPC, Ra228, Liquid "As Received" 72 (15%-125%)

Notes:

Counting Uncertainty is calculated at the 95% confidence level (1.96-sigma).

Column headers are defined as follows:

DF: Dilution Factor Lc/LC: Critical Level
DL: Detection Limit PF: Prep Factor
MDA: Minimum Detectable Activity RL: Reporting Limit

EPA 903.1 Modified

MDC: Minimum Detectable Concentration SQL: Sample Quantitation Limit

Page 11 of 18 SDG: 611428

2040 Savage Road Charleston, SC 29407 - (843) 556-8171 - www.gel.com

QC Summary

Report Date: March 16, 2023

Santee Cooper P.O. Box 2946101

OCO3

Moncks Corner, South Carolina

Contact: Ms. Jeanette Gilmetti

Workorder: 611428

Parmname	NOM	Sample	Qual	QC	Units	RPD%	REC%	Range Anlst	Date Time
Rad Gas Flow Batch 2390110 ——									
QC1205331121 611428001 DUP Radium-228	U Uncertainty	1.13 +/-1.35	U	0.494 +/-0.911	pCi/L	N/A		N/A JE1	03/14/23 12:15
QC1205331122 LCS Radium-228	62.8 Uncertainty			64.6 +/-4.30	pCi/L		103	(75%-125%)	03/14/23 12:15
QC1205331120 MB Radium-228	Uncertainty		U	1.16 +/-1.36	pCi/L				03/14/23 12:15
Rad Ra-226 Batch 2390103									
QC1205331090 611428001 DUP Radium-226	Uncertainty	0.677 +/-0.308		0.445 +/-0.291	pCi/L	41.4		(0% - 100%) LXP1	03/16/23 10:40
QC1205331092 LCS Radium-226	26.5 Uncertainty			23.0 +/-1.52	pCi/L		86.6	(75%-125%)	03/16/23 10:40
QC1205331089 MB Radium-226	Uncertainty		U	0.264 +/-0.216	pCi/L				03/16/23 10:08
QC1205331091 611428001 MS Radium-226	260 Uncertainty	0.677 +/-0.308		213 +/-9.99	pCi/L		81.6	(75%-125%)	03/16/23 10:40

Notes:

Counting Uncertainty is calculated at the 95% confidence level (1.96-sigma).

The Qualifiers in this report are defined as follows:

U Analyte was analyzed for, but not detected above the MDL, MDA, MDC or LOD.

J Value is estimated

X Consult Case Narrative, Data Summary package, or Project Manager concerning this qualifier

H Analytical holding time was exceeded

< Result is less than value reported

Page 12 of 18 SDG: 611428

Page 1 of 2

2040 Savage Road Charleston, SC 29407 - (843) 556-8171 - www.gel.com

QC Summary

Workorder: 611428

Page 2 of 2

NOM Sample Ovel OC Units PRDS/ PECS/ Page Aplet Deta Time

Parmname	NOM	Sample Qual	QC	Units	RPD%	REC%	Range	Anlst	Date Time

- > Result is greater than value reported
- UI Gamma Spectroscopy--Uncertain identification
- BD Results are either below the MDC or tracer recovery is low
- h Preparation or preservation holding time was exceeded
- R Sample results are rejected
- ^ RPD of sample and duplicate evaluated using +/-RL. Concentrations are <5X the RL. Qualifier Not Applicable for Radiochemistry.
- N/A RPD or %Recovery limits do not apply.
- ND Analyte concentration is not detected above the detection limit
- M If above MDC and less than LLD
- NJ Consult Case Narrative, Data Summary package, or Project Manager concerning this qualifier
- FA Failed analysis.
- UJ Gamma Spectroscopy--Uncertain identification
- Q One or more quality control criteria have not been met. Refer to the applicable narrative or DER.
- K Analyte present. Reported value may be biased high. Actual value is expected to be lower.
- UL Not considered detected. The associated number is the reported concentration, which may be inaccurate due to a low bias.
- L Analyte present. Reported value may be biased low. Actual value is expected to be higher.
- N1 See case narrative
- Y Other specific qualifiers were required to properly define the results. Consult case narrative.
- ** Analyte is a Tracer compound
- M REMP Result > MDC/CL and < RDL
- J See case narrative for an explanation

N/A indicates that spike recovery limits do not apply when sample concentration exceeds spike conc. by a factor of 4 or more or %RPD not applicable.

- ^ The Relative Percent Difference (RPD) obtained from the sample duplicate (DUP) is evaluated against the acceptance criteria when the sample is greater than five times (5X) the contract required detection limit (RL). In cases where either the sample or duplicate value is less than 5X the RL, a control limit of +/- the RL is used to evaluate the DUP result.
- * Indicates that a Quality Control parameter was not within specifications.

For PS, PSD, and SDILT results, the values listed are the measured amounts, not final concentrations.

Where the analytical method has been performed under NELAP certification, the analysis has met all of the requirements of the NELAC standard unless qualified on the QC Summary.

Page 13 of 18 SDG: 611428

Radiochemistry Technical Case Narrative Santee Cooper SDG #: 611428

Product: GFPC, Ra228, Liquid

Analytical Method: EPA 904.0/SW846 9320 Modified **Analytical Procedure:** GL-RAD-A-063 REV# 5

Analytical Batch: 2390110

The following samples were analyzed using the above methods and analytical procedure(s).

GEL Sample ID#	Client Sample Identification
611428001	AF56397
611428002	AF56400
611428003	AF56442
611428004	AF56443
611428005	AF56395
611428006	AF56396
611428007	AF56394
611428008	AF56431
611428009	AF56432
1205331120	Method Blank (MB)
1205331121	611428001(AF56397) Sample Duplicate (DUP)
1205331122	Laboratory Control Sample (LCS)

The samples in this SDG were analyzed on an "as received" basis.

Data Summary:

There are no exceptions, anomalies or deviations from the specified methods. All sample data provided in this report met the acceptance criteria specified in the analytical methods and procedures for initial calibration, continuing calibration, instrument controls and process controls where applicable.

Product: Lucas Cell, Ra226, Liquid **Analytical Method:** EPA 903.1 Modified

Analytical Procedure: GL-RAD-A-008 REV# 15

Analytical Batch: 2390103

The following samples were analyzed using the above methods and analytical procedure(s).

GEL Sample ID#	Client Sample Identification
611428001	AF56397
611428002	AF56400
611428003	AF56442
611428004	AF56443
611428005	AF56395
611428006	AF56396
611428007	AF56394

Page 14 of 18 SDG: 611428

611428008	AF56431
611428009	AF56432
1205331089	Method Blank (MB)
1205331090	611428001(AF56397) Sample Duplicate (DUP)
1205331091	611428001(AF56397) Matrix Spike (MS)
1205331092	Laboratory Control Sample (LCS)

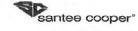
The samples in this SDG were analyzed on an "as received" basis.

Data Summary:

All sample data provided in this report met the acceptance criteria specified in the analytical methods and procedures for initial calibration, continuing calibration, instrument controls and process controls where applicable, with the following exceptions.

Miscellaneous Information

Additional Comments


The matrix spike, 1205331091 (AF56397MS), aliquot was reduced to conserve sample volume.

Certification Statement

Where the analytical method has been performed under NELAP certification, the analysis has met all of the requirements of the NELAC standard unless otherwise noted in the analytical case narrative.

Page 15 of 18 SDG: 611428

Chain of Custody

Date Results Needed by:

Project/Task/Unit #:

Rerun request for any flagged QC

LCWILLIA 125915 / JM02.09. GØ1.1 / 36500 @santeecooper.com

Received by:

☐ Rad 226

☐ Rad 228

□ PCB

Time

0950

Date

2/17/23

□ SO4

Yes (No)

Sample Receiving (Internal Use Only)

TEMP (°C):_____ Initial:

□ Oil & Grease

□ As

□ TSS

(As,Cd,Cr,Ni,Pb

Hg)

GOFER

											E	Analysis Group				
Labworks ID # (Internal use only)	Collection Date Collection Time Sample Collector Total # of containers Bottle type: (Glass-G/Plastic-P) Grab (G) or Grap (G) or Composite (C) Matrix(see below)		Matrix(see below)	Preservative (see	Comments Method # Reporting limit Misc. sample info Any other notes	Tac/Doc	ALK BIGHEB, GARB	SurFibE	8 th/ 100 and							
AP56397	WAP-4	2/16/23	1023	ZDM MDG	7	P4	G	GW	*	* SULFIDE HAS SHORTHOU	2	1	1	2		
400	WAP-7		1255			1			1		1		1	1		
442	WLF- 42-6		1407							* PRESERVATIVES						
1 443	WLF-A2-6 DUP	1	1412		_	1	1	1	1	TOC HZSO4 SULFIDE ZINC ACEINTE, NOOH	1		1	1		
AF 56395	WAP -2	2/15/23	1136	ZDM ML	1	1	1			RAD H1103 <4 °C	1		1			
96	WAP 3	1	1321	1	1	1	1	1	1		1	1				
AF56394	WAP-I	2/14/23	1233		6	1		1	1	ALKAL-TOTAL BICARB, CARB	2	1	1	2		
431	WBW-I		1351		1					RAD - INCLUDE TOTAL CALCULATION	14		1			
432	WBW-A1-1	1	1522	1	1	1		1	1		1		1			

Du	ished by:	61 2123 145 MH COLL		Employee #	Date Date Date	Time Time	Correct pH: Yes N Preservative Lot#: Date/Time/Init for prese	rvative:		
		'ALS (all)	Nut	trients	MISC.	Gyps	um	Coal	Flyash	Oil
□ Ag	□ Cu	□Sb	□ TC	C	□ BTEX	☐ Wallboard Gypsum(all		Ultimate	☐ Ammonia	Trans. Oil Qual.
□ Al	□ Fe	□ Se	□ D(OC	☐ Napthalene			☐ % Moistur	e 🗆 LOI	☐ %Moisture
□ As	□K	□ Sn	□ T₽	TPO4	□ THM/HAA	below)		□ Ash	□ % Carbon	□ Color
□В	□Li	□ Sr	□NI	13-N	□ VOC □ Oil & Grease	☐ AIM ☐ TOC		□ Sulfur	☐ Mineral	☐ Acidity ☐ Dielectric Strength
□ Ba	□Mg	□Ti			□ E. Coli	□ Total 1	TO SERVICE OF THE PARTY OF THE	☐ BTUs ☐ Volatile M	Analysis [atter	□ IFT □ Dissolved Gases
□ Be	□Mn	□ T1		5000	☐ Total Coliform	□ Solubl	3/7/50 350 W 555	□ CHN	□ % Moisture	Used Oil
			□Br	2010	☐ pH ☐ Dissolved As	☐ Purity ☐ % Mo	C. Subtrate of the Party Co.	Other Tests:	E /0 Wioisture	Flashpoint
□ Ca	□Мо	$\Box V$			☐ Dissolved Fe	□ Sulfite	A PERSONAL PROPERTY OF THE PERSON NAMED IN COLUMN TWO IS NOT THE PERSON NAMED IN COLUMN TO THE PERSON NAMED IN COLUMN TWO IS NOT THE PERSON NAMED IN COLUMN TWO IS NAMED IN THE PERSON NAMED IN COLUMN TWO IS NAMED IN COLUMN TWO IS NAMED I	□ XRF Scan	NPDES	Metals in oil
0.01	D.M.	D7-	A23		□ Pod 226	D Duitte	100000000000000000000000000000000000000	DUCI	NPDES	(As Cd Cr Ni.P

□pH

□ Sulfur

☐ Chlorides

☐ Particle Size

Employee #

GEL

Date

417/23

Time

0950

□HGI

□ Fineness

☐ Particulate Matter

Matrix codes: GW-groundwater, DW-drinking water, SW-surface water, WW-waste water, BW-boiler water, L-limestone, Oil-oil, S-Soil, SL-solid, C-coal, G-gypsum, FA-flyash, BA-bottom ash, M-misc (describe in comment section)
Preservative code- 1=<4°C 2=HNO₃ 3=H₂SO₄ 4-HCl 5=Na₂S₂O₃ 6-Other (Specify)
Page 16 of 18 SDG: 611428

□ Na

□ Ni

□Pb

Relinquished by:

Symoun

□ Cd

□Со

□ Cr

Employee#

 \Box Zn

□Hg

□ CrVI

35594

No	SAMPLE RECEIPT & REVIEW FORM. SDG/AR/COC/Work Order: O
4o	Date Received: Circle Applicable: FedEx Express FedEx Ground UPS Field Services Courier Other
Ą.	FedEx Express FedEx Ground UPS Field Services Courier Other
Ę.	COOPER 2-6'C
<u>چ</u>	. 1 0 116 4 1 4 1 4 1
	*If Net Counts > 100cpm on samples not marked "radioactive", contact the Radiation Safety Group for further investigation.
1	Hazard Class Shipped: UN#: If UN2910, Is the Radioactive Shipment Survey Compliant? YesNo
/	COC notation or radioactive stickers on containers equal client designation.
/	Maximum Net Counts Observed* (Observed Counts - Area Background Counts): CPM mR/Hr Classified as: Rad 1 Rad 2 Rad 3
V	COC notation or hazard labels on containers equal client designation.
V	f D or E is yes, select Hazards below. PCB's Flammable Foreign Soil RCRA Asbestos Beryllium Other;
ž	Comments/Qualifiers (Required for Non-Conforming Items)
	Circle Applicable: Seals broken Damaged container Leaking container Other (describe)
	Circle Applicable: Client contacted and provided COC COC created upon receipt
	Preservation Method: [Wet Ice] Ice Packs Dry ice None Other: *all temperatures are recorded in Celsius TEMP:
	Temperature Device Serial #: IR2-21 Secondary Temperature Device Serial # (If Applicable):
	Circle Applicable: Seals broken Damaged container Leaking container Other (describe)
	Sample ID's and Containers Affected; If Preservation added, Lot#:
	If Yes, are Encores or Soil Kits present for solids? YesNoNA(If yes, take to VOA Freezer) Do liquid VOA vials contain acid preservation? YesNoNA(If unknown, select No) Are liquid VOA vials free of headspace? YesNoNA Sample ID's and containers affected:
	ID's and tests affected:
	ID's and containers affected:
	Circle Applicable: No dates on containers No times on containers COC missing info Other (describe)
	Circle Applicable: Not relinquished Other (describe)

List of current GEL Certifications as of 16 March 2023

State	Certification
Alabama	42200
Alaska	17-018
Alaska Drinking Water	SC00012
Arkansas	88-0651
CLIA	42D0904046
California	2940
Colorado	SC00012
Connecticut	PH-0169
DoD ELAP/ ISO17025 A2LA	2567.01
Florida NELAP	E87156
Foreign Soils Permit	P330-15-00283, P330-15-00253
Georgia	SC00012
Georgia SDWA	967
Hawaii	SC00012
Idaho	SC00012
Illinois NELAP	200029
Indiana	C-SC-01
Kansas NELAP	E-10332
Kentucky SDWA	90129
Kentucky Wastewater	90129
Louisiana Drinking Water	LA024
Louisiana NELAP	03046 (AI33904)
Maine	2019020
Maryland	270
Massachusetts	M-SC012
Massachusetts PFAS Approv	Letter
Michigan	9976
Mississippi	SC00012
Nebraska	NE-OS-26-13
Nevada	SC000122023-4
New Hampshire NELAP	2054
New Jersey NELAP	SC002
New Mexico	SC002 SC00012
New York NELAP	11501
North Carolina	233
North Carolina SDWA	45709
North Dakota	R-158
Oklahoma	2022-160
Pennsylvania NELAP	68-00485
Puerto Rico	SC00012
S. Carolina Radiochem	10120002
Sanitation Districts of L	9255651
South Carolina Chemistry	10120001
Tennessee	TN 02934
Texas NELAP	T104704235-22-20
Utah NELAP	SC000122022-37
Vermont	VT87156
Vermont Virginia NELAP	460202
	C780
Washington	C/80

gel.com

March 14, 2023

Ms. Jeanette Gilmetti Santee Cooper P.O. Box 2946101 OCO3 Moncks Corner, South Carolina 29461

Re: ABS Lab Analytical Work Order: 612999

Dear Ms. Gilmetti:

GEL Laboratories, LLC (GEL) appreciates the opportunity to provide the enclosed analytical results for the sample(s) we received on March 03, 2023. This original data report has been prepared and reviewed in accordance with GEL's standard operating procedures.

The samples were delivered with proper chain of custody documentation and signatures. All sample containers arrived without any visible signs of tampering or breakage. There are no additional comments concerning sample receipt.

Test results for NELAP or ISO 17025 accredited tests are verified to meet the requirements of those standards, with any exceptions noted. The results reported relate only to the items tested and to the sample as received by the laboratory. These results may not be reproduced except as full reports without approval by the laboratory. Copies of GEL's accreditations and certifications can be found on our website at www.gel.com.

Our policy is to provide high quality, personalized analytical services to enable you to meet your analytical needs on time every time. We trust that you will find everything in order and to your satisfaction. If you have any questions, please do not hesitate to call me at (843) 556-8171, ext. 4289.

Sincerely,

Heather Millar for Julie Robinson Project Manager

Purchase Order: 398684

Enclosures

2040 Savage Road Charleston SC 29407 - (843) 556-8171 - www.gel.com

Certificate of Analysis Report for

SOOP001 Santee Cooper

Client SDG: 612999 GEL Work Order: 612999

The Qualifiers in this report are defined as follows:

- * A quality control analyte recovery is outside of specified acceptance criteria
- ** Analyte is a Tracer compound
- ** Analyte is a surrogate compound
- U Analyte was analyzed for, but not detected above the MDL, MDA, MDC or LOD.

Where the analytical method has been performed under NELAP certification, the analysis has met all of the requirements of the NELAC standard unless qualified on the Certificate of Analysis.

The designation ND, if present, appears in the result column when the analyte concentration is not detected above the limit as defined in the 'U' qualifier above.

This data report has been prepared and reviewed in accordance with GEL Laboratories LLC standard operating procedures. Please direct any questions to your Project Manager, Julie Robinson.

Reviewed by

Page 2 of 47 SDG: 612999

2040 Savage Road Charleston SC 29407 - (843) 556-8171 - www.gel.com

Certificate of Analysis

Report Date: March 14, 2023

Company: Santee Cooper Address: P.O. Box 2946101

OCO3

Moncks Corner, South Carolina 29461

Contact: Ms. Jeanette Gilmetti Project: ABS Lab Analytical

Client Sample ID: AF56433 Sample ID: 612999001

Matrix: GW

Collect Date: 28-FEB-23 12:58
Receive Date: 03-MAR-23
Collector: Client

Project: SOOP00119 Client ID: SOOP001

Parameter	Qualifier	Result	DL	RL	Units	PF	DF Anal	yst Date	Time Batch	Method
Carbon Analysis										
SM 5310 B Total Organ	ic Carbon "A	As Received"								
Total Organic Carbon Averag	e	13.0	0.330	1.00	mg/L		1 TSM	03/11/23	0321 2394332	1
Spectrometric Analysis										
SM 4500-S(2-) D Sulfide "As Received"										
Total Sulfide	U	ND	0.0330	0.100	mg/L		1 HH2	03/07/23	1510 2394295	2
Titration and Ion Analys	sis									
SM 2320B Total Alkalii	nity "As Rec	eived"								
Alkalinity, Total as CaCO3		322	2.42	6.67	mg/L		MS3	03/09/23	1341 2393625	3
Bicarbonate alkalinity (CaCO	3)	322	2.42	6.67	mg/L					
Carbonate alkalinity (CaCO3)	U	ND	2.42	6.67	mg/L					
The following Analytic	al Methods v	vere performed:								
Method	Description				I	Analys	st Commen	ts		

1 SM 5310 B 2 SM 4500-S (2-) D 3 SM 2320B

Notes:

Column headers are defined as follows:

DF: Dilution Factor Lc/LC: Critical Level
DL: Detection Limit PF: Prep Factor
MDA: Minimum Detectable Activity RL: Reporting Limit

MDC: Minimum Detectable Concentration SQL: Sample Quantitation Limit

Page 3 of 47 SDG: 612999

2040 Savage Road Charleston SC 29407 - (843) 556-8171 - www.gel.com

Certificate of Analysis

Project:

Client ID:

Report Date: March 14, 2023

SOOP00119

SOOP001

Company: Santee Cooper Address: P.O. Box 2946101

OCO3

Moncks Corner, South Carolina 29461

Contact: Ms. Jeanette Gilmetti Project: ABS Lab Analytical

Client Sample ID: AF56433 Sample ID: 612999002

Matrix: GW

Collect Date: 28-FEB-23 12:58
Receive Date: 03-MAR-23
Collector: Client

Parameter	Qualifier	Result	DL	RL	Units	PF	DF Analyst Date	Time Batch	Method
Carbon Analysis									

SM 5310 B Dissolved Organic Carbon "As Received"

Dissolved Organic Carbon Average 12.4 0.330 1.00 mg/L 1 TSM 03/10/23 1641 2394833 1

The following Prep Methods were performed:

Method	Description	Analyst	Date	Time	Prep Batch
EPA 160	Laboratory Filtration - DOC	TSM	03/07/23	1150	2394325
TEST 0 11					

The following Analytical Methods were performed:

Method	Description	Analyst Comments
1	SM 5310 B	

Notes:

Column headers are defined as follows:

DF: Dilution Factor Lc/LC: Critical Level
DL: Detection Limit PF: Prep Factor
MDA: Minimum Detectable Activity RL: Reporting Limit

MDC: Minimum Detectable Concentration SQL: Sample Quantitation Limit

Page 4 of 47 SDG: 612999

2040 Savage Road Charleston SC 29407 - (843) 556-8171 - www.gel.com

Certificate of Analysis

Project:

Client ID:

Report Date: March 14, 2023

SOOP00119

SOOP001

Company: Santee Cooper P.O. Box 2946101 Address:

OCO3

Moncks Corner, South Carolina 29461

Contact: Ms. Jeanette Gilmetti Project: ABS Lab Analytical

Client Sample ID: AF56435 Sample ID: 612999003

Matrix: GW

Collect Date: 28-FEB-23 11:44 Receive Date: 03-MAR-23 Collector: Client

Parameter	Qualifier	Result	DL	RL	Units	PF	DF	Anal	yst Date	Time Batch	Method
Carbon Analysis											
SM 5310 B Total Organi	c Carbon "A	As Received"									
Total Organic Carbon Average		1.14	0.330	1.00	mg/L		1	TSM	03/11/23	0341 239433	2 1
Spectrometric Analysis											
SM 4500-S(2-) D Sulfide	e "As Receiv	ved"									
Total Sulfide	U	ND	0.0330	0.100	mg/L		1	HH2	03/07/23	1510 239429:	5 2
Titration and Ion Analysi	S										
SM 2320B Total Alkalin	ity "As Rece	eived"									
Alkalinity, Total as CaCO3	U	ND	1.45	4.00	mg/L			MS3	03/09/23	1351 239362:	5 3
Bicarbonate alkalinity (CaCO3)) U	ND	1.45	4.00	mg/L						
Carbonate alkalinity (CaCO3)	U	ND	1.45	4.00	mg/L						
The following Analytica	l Methods v	vere performed:									

Method Description **Analyst Comments** SM 5310 B 2

SM 4500-S (2-) D

SM 2320B

Notes:

Column headers are defined as follows:

DF: Dilution Factor Lc/LC: Critical Level DL: Detection Limit PF: Prep Factor MDA: Minimum Detectable Activity **RL**: Reporting Limit

MDC: Minimum Detectable Concentration SQL: Sample Quantitation Limit

Page 5 of 47 SDG: 612999

2040 Savage Road Charleston SC 29407 - (843) 556-8171 - www.gel.com

Certificate of Analysis

Project:

Client ID:

Report Date: March 14, 2023

SOOP00119

SOOP001

Company: Santee Cooper Address: P.O. Box 2946101

OCO3

Moncks Corner, South Carolina 29461

Contact: Ms. Jeanette Gilmetti Project: ABS Lab Analytical

Client Sample ID: AF56435 Sample ID: 612999004

Matrix: GW

Collect Date: 28-FEB-23 11:44
Receive Date: 03-MAR-23
Collector: Client

Parameter Qualifier Result DL RL Units PF DF Analyst Date Time Batch Method Carbon Analysis

SM 5310 B Dissolved Organic Carbon "As Received"

Dissolved Organic Carbon Average 1.92 0.330 1.00 mg/L 1 TSM 03/10/23 1740 2394833 1

The following Prep Methods were performed:

MethodDescriptionAnalystDateTimePrep BatchEPA 160Laboratory Filtration - DOCTSM03/07/2311502394325

The following Analytical Methods were performed:

MethodDescriptionAnalyst Comments1SM 5310 B

Notes:

Column headers are defined as follows:

DF: Dilution Factor Lc/LC: Critical Level
DL: Detection Limit PF: Prep Factor
MDA: Minimum Detectable Activity RL: Reporting Limit

MDC: Minimum Detectable Concentration SQL: Sample Quantitation Limit

Page 6 of 47 SDG: 612999

2040 Savage Road Charleston SC 29407 - (843) 556-8171 - www.gel.com

Certificate of Analysis

Project:

Client ID:

Analyst Comments

Report Date: March 14, 2023

SOOP00119

SOOP001

Company: Santee Cooper Address: P.O. Box 2946101

OCO3

Moncks Corner, South Carolina 29461

Contact: Ms. Jeanette Gilmetti Project: ABS Lab Analytical

Client Sample ID: AF56436 Sample ID: 612999005

Matrix: GW

Collect Date: 28-FEB-23 10:19
Receive Date: 03-MAR-23
Collector: Client

Parameter	Qualifier	Result	DL	RL	Units	PF	DF	Anal	yst Date	Time	Batch	Method
Carbon Analysis												
SM 5310 B Total Organi	c Carbon "A	s Received"										
Total Organic Carbon Average		9.67	0.330	1.00	mg/L		1	TSM	03/11/23	0423	2394332	1
Spectrometric Analysis												
SM 4500-S(2-) D Sulfide	e "As Receiv	ved"										
Total Sulfide	U	ND	0.0330	0.100	mg/L		1	HH2	03/07/23	1511	2394295	2
Titration and Ion Analys:	is											
SM 2320B Total Alkalin	ity "As Rece	eived"										
Alkalinity, Total as CaCO3		118	1.45	4.00	mg/L			MS3	03/09/23	1355	2393625	3
Bicarbonate alkalinity (CaCO3)	118	1.45	4.00	mg/L							
Carbonate alkalinity (CaCO3)	U	ND	1.45	4.00	mg/L							
The following Analytica	l Methods v	vere performed:										

 Method
 Description

 1
 SM 5310 B

 2
 SM 4500-S (2-) D

 3
 SM 2320B

Notes:

Column headers are defined as follows:

DF: Dilution Factor Lc/LC: Critical Level
DL: Detection Limit PF: Prep Factor
MDA: Minimum Detectable Activity RL: Reporting Limit

MDC: Minimum Detectable Concentration SQL: Sample Quantitation Limit

Page 7 of 47 SDG: 612999

2040 Savage Road Charleston SC 29407 - (843) 556-8171 - www.gel.com

Certificate of Analysis

Project:

Client ID:

Report Date: March 14, 2023

SOOP00119

SOOP001

Company: Santee Cooper Address: P.O. Box 2946101

OCO3

Moncks Corner, South Carolina 29461

Contact: Ms. Jeanette Gilmetti Project: ABS Lab Analytical

Client Sample ID: AF56436 Sample ID: 612999006

Matrix: GW

Collect Date: 28-FEB-23 10:19
Receive Date: 03-MAR-23
Collector: Client

Parameter	Qualifier	Result	DL	RL	Units	PF	DF Analyst Date	Time Batch Method
Carbon Analysis								

SM 5310 B Dissolved Organic Carbon "As Received"

Dissolved Organic Carbon Average 10.1 0.330 1.00 mg/L 1 TSM 03/10/23 1800 2394833 1

The following Prep Methods were performed:

EPA 160 Laboratory Filtration - DOC TSM 03/07/23 1150 2394325	Method	Description	Analyst Date	Time	Prep Batch
	EPA 160	Laboratory Filtration - DOC	TSM 03/07/23	1150	2394325

The following Analytical Methods were performed:

Method	Description	Analyst Comments
1	SM 5310 B	

Notes:

Column headers are defined as follows:

DF: Dilution Factor Lc/LC: Critical Level
DL: Detection Limit PF: Prep Factor
MDA: Minimum Detectable Activity RL: Reporting Limit

MDC: Minimum Detectable Concentration SQL: Sample Quantitation Limit

Page 8 of 47 SDG: 612999

2040 Savage Road Charleston SC 29407 - (843) 556-8171 - www.gel.com

Certificate of Analysis

Report Date: March 14, 2023

Company: Santee Cooper Address: P.O. Box 2946101

OCO3

Moncks Corner, South Carolina 29461

Contact: Ms. Jeanette Gilmetti Project: ABS Lab Analytical

Client Sample ID: AF56437 Sample ID: 612999007

Matrix: GW

Collect Date: 28-FEB-23 10:24
Receive Date: 03-MAR-23
Collector: Client

 56437
 Project:
 SOOP00119

 999007
 Client ID:
 SOOP001

Parameter	Qualifier	Result	DL	RL	Units	PF	DF	Analy	st Date	Time	e Batch	Method
Carbon Analysis												
SM 5310 B Total Orga	anic Carbon "A	As Received"										
Total Organic Carbon Avera	age	10.2	0.330	1.00	mg/L		1	TSM	03/11/23	0443	2394332	1
Spectrometric Analysi	S											
SM 4500-S(2-) D Sulf	ide "As Recei	ved"										
Total Sulfide	U	ND	0.0330	0.100	mg/L		1	HH2	03/07/23	1511	2394295	2
Titration and Ion Anal	ysis											
SM 2320B Total Alka	linity "As Rec	eived"										
Alkalinity, Total as CaCO3	-	126	1.45	4.00	mg/L			MS3	03/09/23	1358	2393625	3
Bicarbonate alkalinity (CaC	O3)	126	1.45	4.00	mg/L							
Carbonate alkalinity (CaCO	3) U	ND	1.45	4.00	mg/L							
The following Analyt	ical Methods v	were performed:										
Method	Description	l			I	Analy	st Cor	nment	s			

1 SM 5310 B 2 SM 4500-S (2-) D 3 SM 2320B

Notes:

Column headers are defined as follows:

DF: Dilution Factor Lc/LC: Critical Level
DL: Detection Limit PF: Prep Factor
MDA: Minimum Detectable Activity RL: Reporting Limit

MDC: Minimum Detectable Concentration SQL: Sample Quantitation Limit

Page 9 of 47 SDG: 612999

2040 Savage Road Charleston SC 29407 - (843) 556-8171 - www.gel.com

Certificate of Analysis

Project:

Client ID:

Report Date: March 14, 2023

SOOP00119

SOOP001

Company: Santee Cooper Address: P.O. Box 2946101

OCO3

Moncks Corner, South Carolina 29461

Contact: Ms. Jeanette Gilmetti Project: ABS Lab Analytical

Client Sample ID: AF56437 Sample ID: 612999008

Matrix: GW

Collect Date: 28-FEB-23 10:24
Receive Date: 03-MAR-23
Collector: Client

Parameter Qualifier Result DL RL Units PF DF Analyst Date Time Batch Method

Carbon Analysis

SM 5310 B Dissolved Organic Carbon "As Received"

Dissolved Organic Carbon Average 10.5 0.330 1.00 mg/L 1 TSM 03/10/23 1820 2394833 1

The following Prep Methods were performed:

MethodDescriptionAnalystDateTimePrep BatchEPA 160Laboratory Filtration - DOCTSM03/07/2311502394325

The following Analytical Methods were performed:

Method Description Analyst Comments

SM 5310 B

Notes:

Column headers are defined as follows:

DF: Dilution Factor Lc/LC: Critical Level
DL: Detection Limit PF: Prep Factor
MDA: Minimum Detectable Activity RL: Reporting Limit

MDC: Minimum Detectable Concentration SQL: Sample Quantitation Limit

Page 10 of 47 SDG: 612999

2040 Savage Road Charleston SC 29407 - (843) 556-8171 - www.gel.com

Certificate of Analysis

Project:

Client ID:

Analyst Comments

Report Date: March 14, 2023

SOOP00119

SOOP001

Company: Santee Cooper Address: P.O. Box 2946101

OCO3

Moncks Corner, South Carolina 29461

Contact: Ms. Jeanette Gilmetti Project: ABS Lab Analytical

Client Sample ID: AF56438 Sample ID: 612999009

Matrix: GW

Collect Date: 28-FEB-23 14:31
Receive Date: 03-MAR-23
Collector: Client

Parameter	Qualifier	Result	DL	RL	Units	PF	DF	Analy	yst Date	Time	Batch	Method
Carbon Analysis												
SM 5310 B Total Organi	c Carbon "A	s Received"										
Total Organic Carbon Average		7.51	0.330	1.00	mg/L		1	TSM	03/11/23	0503	2394332	1
Spectrometric Analysis												
SM 4500-S(2-) D Sulfide	e "As Receiv	ved"										
Total Sulfide	U	ND	0.0330	0.100	mg/L		1	HH2	03/07/23	1512	2394295	2
Titration and Ion Analysis	is											
SM 2320B Total Alkalin	ity "As Rece	eived"										
Alkalinity, Total as CaCO3	-	209	1.45	4.00	mg/L			MS3	03/09/23	1401	2393625	3
Bicarbonate alkalinity (CaCO3)	209	1.45	4.00	mg/L							
Carbonate alkalinity (CaCO3)	U	ND	1.45	4.00	mg/L							
The following Analytica	ıl Methods v	vere performed	:									

 Method
 Description

 1
 SM 5310 B

 2
 SM 4500-S (2-) D

 3
 SM 2320B

Notes:

Column headers are defined as follows:

DF: Dilution Factor Lc/LC: Critical Level
DL: Detection Limit PF: Prep Factor
MDA: Minimum Detectable Activity RL: Reporting Limit

MDC: Minimum Detectable Concentration SQL: Sample Quantitation Limit

Page 11 of 47 SDG: 612999

2040 Savage Road Charleston SC 29407 - (843) 556-8171 - www.gel.com

Certificate of Analysis

Report Date: March 14, 2023

SOOP00119

Company: Santee Cooper Address: P.O. Box 2946101

OCO3

Moncks Corner, South Carolina 29461

Contact: Ms. Jeanette Gilmetti Project: ABS Lab Analytical

Client Sample ID: AF56438 Sample ID: 612999010

Matrix: GW

Collect Date: 28-FEB-23 14:31
Receive Date: 03-MAR-23
Collector: Client

Client ID: SOOP001

Project:

Parameter	Qualifier	Result	DL	RL	Units	PF	DF	Analyst Date	Time Batch	Method
Carbon Analysis										
SM 5310 B Dissolve	ed Organic Carbo	on "As Received"								
Dissolved Organic Carbo	n Average	7.98	0.330	1.00	mg/L		1	TSM 03/10/23	1840 2394833	1
The following Prep	Methods were pe									
Method	Description	1		Analyst	Date		Time	Prep Batch		
EPA 160	Laboratory Fi	ltration - DOC		TSM	03/07/23		1150	2394325		
The following Anal	The following Analytical Methods were performed:									

Method Description Analyst Comments

SM 5310 B

Notes:

Column headers are defined as follows:

DF: Dilution Factor Lc/LC: Critical Level
DL: Detection Limit PF: Prep Factor
MDA: Minimum Detectable Activity RL: Reporting Limit

MDC: Minimum Detectable Concentration SQL: Sample Quantitation Limit

Page 12 of 47 SDG: 612999

2040 Savage Road Charleston SC 29407 - (843) 556-8171 - www.gel.com

Certificate of Analysis

Project:

Client ID:

Report Date: March 14, 2023

SOOP00119

SOOP001

Company: Santee Cooper Address: P.O. Box 2946101

OCO3

Moncks Corner, South Carolina 29461

Contact: Ms. Jeanette Gilmetti Project: ABS Lab Analytical

Client Sample ID: AF56402 Sample ID: 612999011

Matrix: GW

Collect Date: 27-FEB-23 12:47 Receive Date: 03-MAR-23 Client Collector:

Parameter	Qualifier	Result	DL	RL	Units	PF	DF	Anal	yst Date	Time	Batch	Method
Carbon Analysis												
SM 5310 B Total Organi	c Carbon "A	s Received"										
Total Organic Carbon Average		15.3	0.330	1.00	mg/L		1	TSM	03/11/23	0523	2394332	1
Spectrometric Analysis												
SM 4500-S(2-) D Sulfide	"As Receiv	ed"										
Total Sulfide	U	ND	0.0330	0.100	mg/L		1	HH2	03/06/23	1808	2394245	2
Titration and Ion Analysi	S											
SM 2320B Total Alkalini	ity "As Rece	eived"										
Alkalinity, Total as CaCO3		208	1.45	4.00	mg/L			MS3	03/09/23	1404	2393625	3
Bicarbonate alkalinity (CaCO3))	208	1.45	4.00	mg/L							
Carbonate alkalinity (CaCO3)	U	ND	1.45	4.00	mg/L							

Method Description Analyst Comments

SM 5310 B SM 4500-S (2-) D 2 SM 2320B

The following Analytical Methods were performed:

Notes:

Column headers are defined as follows:

DF: Dilution Factor Lc/LC: Critical Level DL: Detection Limit PF: Prep Factor MDA: Minimum Detectable Activity **RL**: Reporting Limit

MDC: Minimum Detectable Concentration SQL: Sample Quantitation Limit

Page 13 of 47 SDG: 612999

2040 Savage Road Charleston SC 29407 - (843) 556-8171 - www.gel.com

Certificate of Analysis

Project:

Client ID:

Report Date: March 14, 2023

SOOP00119

SOOP001

Company: Santee Cooper Address: P.O. Box 2946101

OCO3

Moncks Corner, South Carolina 29461

Ms. Jeanette Gilmetti Contact: Project: ABS Lab Analytical

Client Sample ID: AF56402 Sample ID: 612999012

Matrix: GW

Collect Date: 27-FEB-23 12:47 Receive Date: 03-MAR-23 Collector: Client

Parameter	Qualifier	Result	DL	RL	Units	PF	DF Analyst Date	Time Batch M	Iethod
Carbon Analysis									

SM 5310 B Dissolved Organic Carbon "As Received"

Dissolved Organic Carbon Average 15.8 0.330 1.00 mg/L TSM 03/10/23 1923 2394833

The following Prep Methods were performed:

Method Date Prep Batch Description Analyst Time EPA 160 Laboratory Filtration - DOC TSM 03/07/23 1150 2394325

The following Analytical Methods were performed:

Method	Description	Analyst Comments
1	SM 5310 B	•

Notes:

Column headers are defined as follows:

DF: Dilution Factor Lc/LC: Critical Level DL: Detection Limit PF: Prep Factor MDA: Minimum Detectable Activity **RL**: Reporting Limit

MDC: Minimum Detectable Concentration SQL: Sample Quantitation Limit

Page 14 of 47 SDG: 612999

2040 Savage Road Charleston SC 29407 - (843) 556-8171 - www.gel.com

Certificate of Analysis

Report Date: March 14, 2023

Company: Santee Cooper Address: P.O. Box 2946101

OCO3

Moncks Corner, South Carolina 29461

Contact: Ms. Jeanette Gilmetti Project: ABS Lab Analytical

Client Sample ID: AF56403 Sample ID: 612999013

Matrix: GW

Collect Date: 27-FEB-23 09:57
Receive Date: 03-MAR-23
Collector: Client

Project: SOOP00119 Client ID: SOOP001

Parameter	Qualifier	Result	DL	RL	Units	PF	DF Analy	yst Date	Time Batch	Method
Carbon Analysis										
SM 5310 B Total Orga	nic Carbon " <i>A</i>	As Received"								
Total Organic Carbon Averag	ge	1.81	0.330	1.00	mg/L		1 TSM	03/11/23	0543 2394332	1
Spectrometric Analysis	1									
SM 4500-S(2-) D Sulfi	de "As Receiv	ved"								
Total Sulfide	U	ND	0.0330	0.100	mg/L		1 HH2	03/06/23	1808 2394245	2
Titration and Ion Analy	vsis									
SM 2320B Total Alkal	inity "As Rec	eived"								
Alkalinity, Total as CaCO3	-	227	1.45	4.00	mg/L		MS3	03/09/23	1407 2393625	3
Bicarbonate alkalinity (CaCC	03)	227	1.45	4.00	mg/L					
Carbonate alkalinity (CaCO3) U	ND	1.45	4.00	mg/L					
The following Analytic	cal Methods v	vere performed:								
Method	Description	l			I	Analys	st Comment	s		

 Method
 Description

 1
 SM 5310 B

 2
 SM 4500-S (2-) D

 3
 SM 2320B

Notes:

Column headers are defined as follows:

DF: Dilution Factor Lc/LC: Critical Level
DL: Detection Limit PF: Prep Factor
MDA: Minimum Detectable Activity RL: Reporting Limit

MDC: Minimum Detectable Concentration SQL: Sample Quantitation Limit

Page 15 of 47 SDG: 612999

2040 Savage Road Charleston SC 29407 - (843) 556-8171 - www.gel.com

Certificate of Analysis

Report Date: March 14, 2023

SOOP00119

SOOP001

Company: Santee Cooper Address: P.O. Box 2946101

OCO3

Moncks Corner, South Carolina 29461

Contact: Ms. Jeanette Gilmetti Project: ABS Lab Analytical

Client Sample ID: AF56403 Sample ID: 612999014

Matrix: GW

Collect Date: 27-FEB-23 09:57
Receive Date: 03-MAR-23
Collector: Client

03-MAR-23

Project:

Client ID:

Parameter	Qualifier	Result	DL	RL	Units	PF	DF	Analyst Date	Time Batch	Method
Carbon Analysis										
SM 5310 B Dissolved C	Organic Carbo	n "As Received"								
Dissolved Organic Carbon Av	erage	2.08	0.330	1.00	mg/L		1	TSM 03/10/23	1942 2394833	1
The following Prep Mer	hods were pe	rformed:								
Method	Description			Analyst	Date		Time	Prep Batch		
EPA 160	Laboratory Fil	tration - DOC		TSM	03/07/23		1150	2394325		

The following Analytical Methods were performed:

MethodDescriptionAnalyst Comments1SM 5310 B

Notes:

Column headers are defined as follows:

DF: Dilution Factor Lc/LC: Critical Level
DL: Detection Limit PF: Prep Factor
MDA: Minimum Detectable Activity RL: Reporting Limit

MDC: Minimum Detectable Concentration SQL: Sample Quantitation Limit

Page 16 of 47 SDG: 612999

2040 Savage Road Charleston SC 29407 - (843) 556-8171 - www.gel.com

Certificate of Analysis

Report Date: March 14, 2023

SOOP00119

SOOP001

Project:

Client ID:

Company: Santee Cooper Address: P.O. Box 2946101

OCO3

Moncks Corner, South Carolina 29461

Contact: Ms. Jeanette Gilmetti Project: ABS Lab Analytical

Client Sample ID: AF56404 Sample ID: 612999015

Matrix: GW

Collect Date: 27-FEB-23 10:02
Receive Date: 03-MAR-23
Collector: Client

Parameter	Qualifier	Result	DL	RL	Units	PF	DF	Analy	st Date	Time Batch	Method
Carbon Analysis											
SM 5310 B Total Organi	ic Carbon "A	s Received"									
Total Organic Carbon Average	;	1.79	0.330	1.00	mg/L		1	TSM	03/11/23	0605 2394332	1
Spectrometric Analysis											
SM 4500-S(2-) D Sulfide	e "As Receiv	ed"									
Total Sulfide	U	ND	0.0330	0.100	mg/L		1	HH2	03/06/23	1808 2394245	2
Titration and Ion Analys	is										
SM 2320B Total Alkalin	ity "As Rece	eived"									
Alkalinity, Total as CaCO3	-	232	1.45	4.00	mg/L			MS3	03/09/23	1410 2393625	3
Bicarbonate alkalinity (CaCO3	5)	232	1.45	4.00	mg/L						
Carbonate alkalinity (CaCO3)	U	ND	1.45	4.00	mg/L						
The following Analytica	al Methods w	vere performed:									

Method Description Analyst Comments

1 SM 5310 B 2 SM 4500-S (2-) D

3 SM 2320B

Notes:

Column headers are defined as follows:

DF: Dilution Factor Lc/LC: Critical Level
DL: Detection Limit PF: Prep Factor
MDA: Minimum Detectable Activity RL: Reporting Limit

MDC: Minimum Detectable Concentration SQL: Sample Quantitation Limit

Page 17 of 47 SDG: 612999

2040 Savage Road Charleston SC 29407 - (843) 556-8171 - www.gel.com

Certificate of Analysis

Project:

Client ID:

1150

Report Date: March 14, 2023

SOOP00119

SOOP001

Company: Santee Cooper Address: P.O. Box 2946101

OCO₃

Moncks Corner, South Carolina 29461

Contact: Ms. Jeanette Gilmetti Project: ABS Lab Analytical

Client Sample ID: AF56404 Sample ID: 612999016

Matrix: GW

Collect Date: 27-FEB-23 10:02 Receive Date: 03-MAR-23 Collector: Client

Parameter DLRLUnits PF Qualifier Result DF Analyst Date Time Batch Method Carbon Analysis SM 5310 B Dissolved Organic Carbon "As Received" Dissolved Organic Carbon Average 2.36 0.330 1.00 mg/L TSM 03/10/23 2004 2394833 The following Prep Methods were performed: Method Date Prep Batch Description Analyst Time 03/07/23 2394325

TSM

EPA 160 Laboratory Filtration - DOC The following Analytical Methods were performed:

Method Description **Analyst Comments**

SM 5310 B

Notes:

Column headers are defined as follows:

DF: Dilution Factor Lc/LC: Critical Level DL: Detection Limit PF: Prep Factor MDA: Minimum Detectable Activity **RL**: Reporting Limit

MDC: Minimum Detectable Concentration SQL: Sample Quantitation Limit

Page 18 of 47 SDG: 612999

2040 Savage Road Charleston SC 29407 - (843) 556-8171 - www.gel.com

Certificate of Analysis

Report Date: March 14, 2023

Company: Santee Cooper Address: P.O. Box 2946101

OCO3

Moncks Corner, South Carolina 29461

Contact: Ms. Jeanette Gilmetti Project: ABS Lab Analytical

Client Sample ID: AF56434 Sample ID: 612999017

Matrix: GW

Collect Date: 27-FEB-23 15:44
Receive Date: 03-MAR-23
Collector: Client

Project: SOOP00119 Client ID: SOOP001

Parameter	Qualifier	Result	DL	RL	Units	PF	DF Analy	st Date	Time Batch	Method
Carbon Analysis										
SM 5310 B Total Org	ganic Carbon "A	As Received"								
Total Organic Carbon Aver	rage	1.41	0.330	1.00	mg/L		1 TSM	03/11/23	0627 2394332	1
Spectrometric Analys	is									
SM 4500-S(2-) D Sul	fide "As Recei	ved"								
Total Sulfide	U	ND	0.0330	0.100	mg/L		1 HH2	03/06/23	1808 2394245	2
Titration and Ion Ana	lysis									
SM 2320B Total Alka	alinity "As Rec	eived"								
Alkalinity, Total as CaCO3	3	8.00	1.45	4.00	mg/L		MS3	03/09/23	1416 2393625	3
Bicarbonate alkalinity (Ca	CO3)	8.00	1.45	4.00	mg/L					
Carbonate alkalinity (CaCo	D3) U	ND	1.45	4.00	mg/L					
The following Analy	tical Methods v	were performed:								
Method	Description	ı			1	Analys	st Comments	s		

 Method
 Description

 1
 SM 5310 B

 2
 SM 4500-S (2-) D

SM 2320B

Notes:

Column headers are defined as follows:

DF: Dilution Factor Lc/LC: Critical Level
DL: Detection Limit PF: Prep Factor
MDA: Minimum Detectable Activity RL: Reporting Limit

MDC: Minimum Detectable Concentration SQL: Sample Quantitation Limit

Page 19 of 47 SDG: 612999

2040 Savage Road Charleston SC 29407 - (843) 556-8171 - www.gel.com

Certificate of Analysis

Project:

Client ID:

Report Date: March 14, 2023

SOOP00119

SOOP001

Company: Santee Cooper Address: P.O. Box 2946101

OCO3

Moncks Corner, South Carolina 29461

Contact: Ms. Jeanette Gilmetti Project: ABS Lab Analytical

Client Sample ID: AF56434 Sample ID: 612999018

Matrix: GW

Collect Date: 27-FEB-23 15:44
Receive Date: 03-MAR-23
Collector: Client

Parameter	Qualifier	Result	DL	RL	Units	PF	DF	Analy	yst Date	Time Batch	Method
Carbon Analysis											
SM 5310 B Dissolved	l Organic Carbo	on "As Received"									
Dissolved Organic Carbon	Average	2.30	0.330	1.00	mg/L		1	TSM	03/10/23	2026 2394833	1
The following Prep M	lethods were pe	erformed:									
Method	Description	1		Analyst	Date		Time	e Pi	rep Batch		
EPA 160	Laboratory Fi	ltration - DOC		TSM	03/07/23		1150	23	394325		

The following Analytical Methods were performed:

MethodDescriptionAnalyst Comments1SM 5310 B

Notes:

Column headers are defined as follows:

DF: Dilution Factor Lc/LC: Critical Level
DL: Detection Limit PF: Prep Factor
MDA: Minimum Detectable Activity RL: Reporting Limit

MDC: Minimum Detectable Concentration SQL: Sample Quantitation Limit

Page 20 of 47 SDG: 612999

2040 Savage Road Charleston SC 29407 - (843) 556-8171 - www.gel.com

Certificate of Analysis

Report Date: March 14, 2023

Company: Santee Cooper Address: P.O. Box 2946101

OCO3

Moncks Corner, South Carolina 29461

Contact: Ms. Jeanette Gilmetti Project: ABS Lab Analytical

Client Sample ID: AF56414 Sample ID: 612999019

Matrix: GW

Collect Date: 02-MAR-23 12:46
Receive Date: 03-MAR-23
Collector: Client

Project: SOOP00119 Client ID: SOOP001

Parameter	Qualifier	Result	DL	RL	Units	PF	DF Analy	st Date	Time Batch	Method
Carbon Analysis										
SM 5310 B Total Orga	anic Carbon "A	As Received"								
Total Organic Carbon Avera	age	2.07	0.330	1.00	mg/L		1 TSM	03/11/23	0646 2394332	1
Spectrometric Analysi	S									
SM 4500-S(2-) D Sulf	ide "As Recei	ved"								
Total Sulfide	U	ND	0.0330	0.100	mg/L		1 HH2	03/07/23	1513 2394295	2
Titration and Ion Anal	ysis									
SM 2320B Total Alka	linity "As Rec	eived"								
Alkalinity, Total as CaCO3	-	75.0	1.45	4.00	mg/L		MS3	03/09/23	1418 2393625	3
Bicarbonate alkalinity (CaC	O3)	75.0	1.45	4.00	mg/L					
Carbonate alkalinity (CaCO	3) U	ND	1.45	4.00	mg/L					
The following Analyt	ical Methods v	were performed:								
Method	Description	1			1	Analys	st Comment	s		

 Method
 Description

 1
 SM 5310 B

 2
 SM 4500-S (2-) D

 3
 SM 2320B

Notes:

Column headers are defined as follows:

DF: Dilution Factor Lc/LC: Critical Level
DL: Detection Limit PF: Prep Factor
MDA: Minimum Detectable Activity RL: Reporting Limit

MDC: Minimum Detectable Concentration SQL: Sample Quantitation Limit

Page 21 of 47 SDG: 612999

2040 Savage Road Charleston SC 29407 - (843) 556-8171 - www.gel.com

Certificate of Analysis

Report Date: March 14, 2023

SOOP00119

SOOP001

Company: Santee Cooper Address: P.O. Box 2946101

OCO3

Moncks Corner, South Carolina 29461

Contact: Ms. Jeanette Gilmetti Project: ABS Lab Analytical

Client Sample ID: AF56414 Sample ID: 612999020

Matrix: GW

Collect Date: 02-MAR-23 12:46 Receive Date: 03-MAR-23 Client Collector:

Project:

Client ID:

Parameter	Qualifier	Result	DL	RL	Units	PF DF	Analyst Date	Time Batch	Method
Carbon Analysis									
SM 5310 B Dissolve	ed Organic Carbo	on "As Received"							
Dissolved Organic Carbon	n Average	1.48	0.330	1.00	mg/L	1	RM3 03/14/23	1542 2394833	1
The following Prep I	Methods were pe	erformed:							
Method	Description	1	1	Analyst	Date	Tim	e Prep Batch		
EPA 160	Laboratory Fi	ltration - DOC	-	ΓSM	03/13/23	0830	2394325		
EPA 160	Laboratory Fi	ltration - DOC	-	ΓSM	03/07/23	1150	2394325		
The following Analy	ytical Methods v	vere performed:							
Method	Description				A	nalyst Co	mments		

Notes:

Column headers are defined as follows:

DF: Dilution Factor Lc/LC: Critical Level DL: Detection Limit PF: Prep Factor MDA: Minimum Detectable Activity RL: Reporting Limit

SM 5310 B

MDC: Minimum Detectable Concentration SQL: Sample Quantitation Limit

Page 22 of 47 SDG: 612999

2040 Savage Road Charleston SC 29407 - (843) 556-8171 - www.gel.com

Certificate of Analysis

Project:

Client ID:

Analyst Comments

Report Date: March 14, 2023

SOOP00119

SOOP001

Company: Santee Cooper Address: P.O. Box 2946101

OCO3

Moncks Corner, South Carolina 29461

Contact: Ms. Jeanette Gilmetti Project: ABS Lab Analytical

Client Sample ID: AF56423 Sample ID: 612999021

Matrix: GW

Collect Date: 02-MAR-23 09:52
Receive Date: 03-MAR-23
Collector: Client

Parameter	Qualifier	Result	DL	RL	Units	PF	DF	Anal	yst Date	Time Batch	Method
Carbon Analysis											
SM 5310 B Total Organi	c Carbon "A	As Received"									
Total Organic Carbon Average		3.29	0.330	1.00	mg/L		1	TSM	03/11/23	0814 239433	2 1
Spectrometric Analysis											
SM 4500-S(2-) D Sulfide	e "As Receiv	ved"									
Total Sulfide	U	ND	0.0330	0.100	mg/L		1	HH2	03/07/23	1513 239429	5 2
Titration and Ion Analysi	is										
SM 2320B Total Alkalin	ity "As Rec	eived"									
Alkalinity, Total as CaCO3		280	2.42	6.67	mg/L			MS3	03/09/23	1424 239362	5 3
Bicarbonate alkalinity (CaCO3))	280	2.42	6.67	mg/L						
Carbonate alkalinity (CaCO3)	U	ND	2.42	6.67	mg/L						
The following Analytica	l Methods v	vere performed:									

 Method
 Description

 1
 SM 5310 B

 2
 SM 4500-S (2-) D

 3
 SM 2320B

Notes:

Column headers are defined as follows:

DF: Dilution Factor Lc/LC: Critical Level
DL: Detection Limit PF: Prep Factor
MDA: Minimum Detectable Activity RL: Reporting Limit

MDC: Minimum Detectable Concentration SQL: Sample Quantitation Limit

Page 23 of 47 SDG: 612999

2040 Savage Road Charleston SC 29407 - (843) 556-8171 - www.gel.com

Certificate of Analysis

Report Date: March 14, 2023

Company: Santee Cooper Address: P.O. Box 2946101

OCO3

Moncks Corner, South Carolina 29461

Contact: Ms. Jeanette Gilmetti Project: ABS Lab Analytical

Client Sample ID: AF56423 Sample ID: 612999022

Matrix: GW

Collect Date: 02-MAR-23 09:52
Receive Date: 03-MAR-23
Collector: Client

Project: SOOP00119 Client ID: SOOP001

Parameter	Qualifier	Result	DL	RL	Units	PF	DF A	Analyst Date	Time Batch	Method
Carbon Analysis										
SM 5310 B Dissolve	ed Organic Carbo	on "As Received"								
Dissolved Organic Carbo	on Average	3.83	0.330	1.00	mg/L		1 7	ΓSM 03/10/23	2153 2394833	1
The following Prep	Methods were pe	erformed:								
Method	Description	1		Analyst	Date	,	Time	Prep Batch		
EPA 160	Laboratory Fi	ltration - DOC		ΓSM	03/07/23		1150	2394325		
The following Anal	lytical Methods v	vere performed:								

Method Description Analyst Comments

SM 5310 B

Notes:

Column headers are defined as follows:

DF: Dilution Factor Lc/LC: Critical Level
DL: Detection Limit PF: Prep Factor
MDA: Minimum Detectable Activity RL: Reporting Limit

MDC: Minimum Detectable Concentration SQL: Sample Quantitation Limit

Page 24 of 47 SDG: 612999

2040 Savage Road Charleston SC 29407 - (843) 556-8171 - www.gel.com

Certificate of Analysis

Report Date: March 14, 2023

Company: Santee Cooper Address: P.O. Box 2946101

OCO3

Moncks Corner, South Carolina 29461

Contact: Ms. Jeanette Gilmetti Project: ABS Lab Analytical

Client Sample ID: AF56428 Sample ID: 612999023

Matrix: GW

Collect Date: 02-MAR-23 10:56 Receive Date: 03-MAR-23 Client Collector:

SOOP00119 Project: Client ID: SOOP001

Parameter	Qualifier	Result	DL	RL	Units	PF	DF Anal	yst Date	Time Batch	Method
Carbon Analysis										
SM 5310 B Total Org	ganic Carbon " <i>A</i>	As Received"								
Total Organic Carbon Ave	erage	11.1	0.330	1.00	mg/L		1 TSM	03/11/23	0835 2394332	1
Spectrometric Analys	sis									
SM 4500-S(2-) D Sul	lfide "As Receiv	ved"								
Total Sulfide	U	ND	0.0330	0.100	mg/L		1 HH2	03/07/23	1514 2394295	2
Titration and Ion Ana	alysis									
SM 2320B Total Alk	alinity "As Rec	eived"								
Alkalinity, Total as CaCO	3	190	1.45	4.00	mg/L		MS3	03/09/23	1428 2393625	3
Bicarbonate alkalinity (Ca-	CO3)	190	1.45	4.00	mg/L					
Carbonate alkalinity (CaC	O3) U	ND	1.45	4.00	mg/L					
The following Analy	tical Methods v	were performed:								
Method	Description	1			I	Analys	st Commen	ts		

 $SM\ 5310\ B$ SM 4500-S (2-) D 2 SM 2320B

Notes:

Column headers are defined as follows:

DF: Dilution Factor Lc/LC: Critical Level DL: Detection Limit PF: Prep Factor MDA: Minimum Detectable Activity **RL**: Reporting Limit

MDC: Minimum Detectable Concentration SQL: Sample Quantitation Limit

Page 25 of 47 SDG: 612999

2040 Savage Road Charleston SC 29407 - (843) 556-8171 - www.gel.com

Certificate of Analysis

Project:

Client ID:

Report Date: March 14, 2023

SOOP00119

SOOP001

Company: Santee Cooper Address: P.O. Box 2946101

OCO₃

Moncks Corner, South Carolina 29461

Contact: Ms. Jeanette Gilmetti Project: ABS Lab Analytical

Client Sample ID: AF56428 Sample ID: 612999024

Matrix: GW

Collect Date: 02-MAR-23 10:56 Receive Date: 03-MAR-23 Collector: Client

Parameter DLRLUnits PF Qualifier Result DF Analyst Date Time Batch Method Carbon Analysis SM 5310 B Dissolved Organic Carbon "As Received" 1.00 TSM 03/10/23 2214 2394833

Dissolved Organic Carbon Average 11.4

0.330 mg/L

The following Prep Methods were performed:

Method Date Prep Batch Description Analyst Time EPA 160 Laboratory Filtration - DOC TSM 03/07/23 1150 2394325

The following Analytical Methods were performed:

Method Description **Analyst Comments** SM 5310 B

Notes:

Column headers are defined as follows:

DF: Dilution Factor Lc/LC: Critical Level DL: Detection Limit PF: Prep Factor MDA: Minimum Detectable Activity **RL**: Reporting Limit

MDC: Minimum Detectable Concentration SQL: Sample Quantitation Limit

Page 26 of 47 SDG: 612999

2040 Savage Road Charleston SC 29407 - (843) 556-8171 - www.gel.com

Certificate of Analysis

Report Date: March 14, 2023

Company: Santee Cooper Address: P.O. Box 2946101

OCO3

Moncks Corner, South Carolina 29461

Contact: Ms. Jeanette Gilmetti Project: ABS Lab Analytical

Client Sample ID: AF56421 Sample ID: 612999025

Matrix: GW

Collect Date: 01-MAR-23 14:41
Receive Date: 03-MAR-23
Collector: Client

F56421 Project: SOOP00119
2999025 Client ID: SOOP001

Parameter	Qualifier	Result	DL	RL	Units	PF	DF Analyst Date		Time Batch	Method	
Carbon Analysis											
SM 5310 B Total Organic Carbon "As Received"											
Total Organic Carbon Average	e	10.8	0.330	1.00	mg/L		1 TSM	03/11/23	0855 2394332	1	
Spectrometric Analysis											
SM 4500-S(2-) D Sulfide "As Received"											
Total Sulfide	U	ND	0.0330	0.100	mg/L		1 HH2	03/07/23	1514 2394295	2	
Titration and Ion Analys	sis										
SM 2320B Total Alkalinity "As Received"											
Alkalinity, Total as CaCO3		251	1.45	4.00	mg/L		MS3	03/09/23	1430 2393625	3	
Bicarbonate alkalinity (CaCO	3)	251	1.45	4.00	mg/L						
Carbonate alkalinity (CaCO3)	U	ND	1.45	4.00	mg/L						
The following Analytical Methods were performed:											
Method Description				Analyst Comments							

 Method
 Description

 1
 SM 5310 B

 2
 SM 4500-S (2-) D

 3
 SM 2320B

Notes:

Column headers are defined as follows:

DF: Dilution Factor Lc/LC: Critical Level
DL: Detection Limit PF: Prep Factor
MDA: Minimum Detectable Activity RL: Reporting Limit

MDC: Minimum Detectable Concentration SQL: Sample Quantitation Limit

Page 27 of 47 SDG: 612999

2040 Savage Road Charleston SC 29407 - (843) 556-8171 - www.gel.com

Certificate of Analysis

Report Date: March 14, 2023

Time Batch Method

SOOP00119

SOOP001

DF Analyst Date

Company: Santee Cooper Address: P.O. Box 2946101

OCO₃

Moncks Corner, South Carolina 29461

Contact: Ms. Jeanette Gilmetti Project: ABS Lab Analytical

Client Sample ID: AF56421 Sample ID: 612999026

Matrix: GW

Collect Date: 02-MAR-23 14:41
Receive Date: 03-MAR-23
Collector: Client

Qualifier

Result

RL

Project:

Units

Client ID:

PF

Carbon Analysis

Parameter

SM 5310 B Dissolved Organic Carbon "As Received"

Dissolved Organic Carbon Average 11.7 0.330 1.00 mg/L 1 TSM 03/10/23 2235 2394833 1

DL

The following Prep Methods were performed:

MethodDescriptionAnalystDateTimePrep BatchEPA 160Laboratory Filtration - DOCTSM03/07/2311502394325

The following Analytical Methods were performed:

Method Description Analyst Comments

SM 5310 B

Notes:

Column headers are defined as follows:

DF: Dilution Factor Lc/LC: Critical Level
DL: Detection Limit PF: Prep Factor
MDA: Minimum Detectable Activity RL: Reporting Limit

MDC: Minimum Detectable Concentration SQL: Sample Quantitation Limit

Page 28 of 47 SDG: 612999

2040 Savage Road Charleston SC 29407 - (843) 556-8171 - www.gel.com

Certificate of Analysis

Report Date: March 14, 2023

Company: Santee Cooper Address: P.O. Box 2946101

OCO3

Moncks Corner, South Carolina 29461

Contact: Ms. Jeanette Gilmetti Project: ABS Lab Analytical

Client Sample ID: AF56424 Sample ID: 612999027

Matrix: GW

Collect Date: 02-MAR-23 13:37
Receive Date: 03-MAR-23
Collector: Client

Project: SOOP00119 Client ID: SOOP001

Parameter	Qualifier	Result	DL	RL	Units	PF	DF Analy	st Date	Time Batch	Method
Carbon Analysis										
SM 5310 B Total Org	anic Carbon "A	As Received"								
Total Organic Carbon Aver	age	2.24	0.330	1.00	mg/L		1 TSM	03/11/23	0914 2394332	1
Spectrometric Analysis	is									
SM 4500-S(2-) D Sulf	fide "As Recei	ved"								
Total Sulfide	U	ND	0.0330	0.100	mg/L		1 HH2	03/07/23	1514 2394295	2
Titration and Ion Anal	lysis									
SM 2320B Total Alka	linity "As Rec	eived"								
Alkalinity, Total as CaCO3	•	277	1.45	4.00	mg/L		MS3	03/09/23	1432 2393625	3
Bicarbonate alkalinity (CaC	CO3)	277	1.45	4.00	mg/L					
Carbonate alkalinity (CaCC	03) U	ND	1.45	4.00	mg/L					
The following Analyt	ical Methods v	were performed:								
Method	Description	1			I	Analys	st Comment	s		

 Method
 Description

 1
 SM 5310 B

 2
 SM 4500-S (2-) D

 3
 SM 2320B

Notes:

Column headers are defined as follows:

DF: Dilution Factor Lc/LC: Critical Level
DL: Detection Limit PF: Prep Factor
MDA: Minimum Detectable Activity RL: Reporting Limit

MDC: Minimum Detectable Concentration SQL: Sample Quantitation Limit

Page 29 of 47 SDG: 612999

2040 Savage Road Charleston SC 29407 - (843) 556-8171 - www.gel.com

Certificate of Analysis

Project:

Client ID:

Report Date: March 14, 2023

SOOP00119

SOOP001

Company: Santee Cooper Address: P.O. Box 2946101

OCO3

Moncks Corner, South Carolina 29461

Contact: Ms. Jeanette Gilmetti Project: ABS Lab Analytical

Client Sample ID: AF56424 Sample ID: 612999028

Matrix: GW

Collect Date: 02-MAR-23 13:37
Receive Date: 03-MAR-23
Collector: Client

Parameter	Qualifier	Result	DL	RL	Units	PF	DF	Analy	st Date	Time Batch	Method
Carbon Analysis											
SM 5310 B Dissolve	d Organic Carbo	on "As Received"									
Dissolved Organic Carbon	n Average	2.90	0.330	1.00	mg/L		1	TSM	03/10/23	2317 2394833	1
The following Prep N	Methods were pe	erformed:									
Method	Description	1		Analyst	Date		Time	e Pr	ep Batch		
EPA 160	Laboratory Fi	ltration - DOC		TSM	03/07/23		1150	23	94325		

The following Analytical Methods were performed:

MethodDescriptionAnalyst Comments1SM 5310 B

Notes:

Column headers are defined as follows:

DF: Dilution Factor

DL: Detection Limit

MDA: Minimum Detectable Activity

Lc/LC: Critical Level

PF: Prep Factor

RL: Reporting Limit

MDC: Minimum Detectable Concentration SQL: Sample Quantitation Limit

Page 30 of 47 SDG: 612999

2040 Savage Road Charleston SC 29407 - (843) 556-8171 - www.gel.com

Certificate of Analysis

Project:

Client ID:

Analyst Comments

Report Date: March 14, 2023

SOOP00119

SOOP001

Company: Santee Cooper Address: P.O. Box 2946101

OCO3

Moncks Corner, South Carolina 29461

Contact: Ms. Jeanette Gilmetti Project: ABS Lab Analytical

Client Sample ID: AF56439 Sample ID: 612999029

Matrix: GW

Collect Date: 02-MAR-23 10:22
Receive Date: 03-MAR-23
Collector: Client

Parameter	Qualifier	Result	DL	RL	Units	PF	DF	Anal	yst Date	Time Ba	tch Meth	ıod
Carbon Analysis												
SM 5310 B Total Organi	c Carbon "A	s Received"										
Total Organic Carbon Average		5.31	0.330	1.00	mg/L		1	TSM	03/11/23	0934 2394	1332	1
Spectrometric Analysis												
SM 4500-S(2-) D Sulfide	e "As Receiv	/ed"										
Total Sulfide	U	ND	0.0330	0.100	mg/L		1	HH2	03/07/23	1516 2394	1295	2
Titration and Ion Analysi	is											
SM 2320B Total Alkalin	ity "As Rece	eived"										
Alkalinity, Total as CaCO3	•	12.2	1.45	4.00	mg/L			MS3	03/09/23	1434 2393	3625	3
Bicarbonate alkalinity (CaCO3)	12.2	1.45	4.00	mg/L							
Carbonate alkalinity (CaCO3)	U	ND	1.45	4.00	mg/L							
The following Analytica	ıl Methods v	vere performed:										

 Method
 Description

 1
 SM 5310 B

 2
 SM 4500-S (2-) D

 3
 SM 2320B

Notes:

Column headers are defined as follows:

DF: Dilution Factor Lc/LC: Critical Level
DL: Detection Limit PF: Prep Factor
MDA: Minimum Detectable Activity RL: Reporting Limit

MDC: Minimum Detectable Concentration SQL: Sample Quantitation Limit

Page 31 of 47 SDG: 612999

2040 Savage Road Charleston SC 29407 - (843) 556-8171 - www.gel.com

Certificate of Analysis

Project:

Client ID:

Report Date: March 14, 2023

SOOP00119

SOOP001

Company: Santee Cooper Address: P.O. Box 2946101

OCO3

Moncks Corner, South Carolina 29461

Contact: Ms. Jeanette Gilmetti Project: ABS Lab Analytical

Client Sample ID: AF56439 Sample ID: 612999030

Matrix: GW

Collect Date: 02-MAR-23 10:22
Receive Date: 03-MAR-23
Collector: Client

Parameter Qualifier Result DL RL Units PF DF Analyst Date Time Batch Method

Carbon Analysis

SM 5310 B Dissolved Organic Carbon "As Received"

Dissolved Organic Carbon Average 5.75 0.330 1.00 mg/L 1 TSM 03/10/23 2338 2394833 1

The following Prep Methods were performed:

MethodDescriptionAnalystDateTimePrep BatchEPA 160Laboratory Filtration - DOCTSM03/07/2311502394325

The following Analytical Methods were performed:

Method Description Analyst Comments

SM 5310 B

Notes:

Column headers are defined as follows:

DF: Dilution Factor Lc/LC: Critical Level
DL: Detection Limit PF: Prep Factor
MDA: Minimum Detectable Activity RL: Reporting Limit

MDC: Minimum Detectable Concentration SQL: Sample Quantitation Limit

Page 32 of 47 SDG: 612999

2040 Savage Road Charleston SC 29407 - (843) 556-8171 - www.gel.com

Certificate of Analysis

Project:

Client ID:

Report Date: March 14, 2023

SOOP00119

SOOP001

Company: Santee Cooper P.O. Box 2946101 Address:

OCO3

Moncks Corner, South Carolina 29461

Contact: Ms. Jeanette Gilmetti Project: ABS Lab Analytical

Client Sample ID: AF56441 Sample ID: 612999031

Matrix: GW

Collect Date: 02-MAR-23 11:45 Receive Date: 03-MAR-23 Collector: Client

Parameter	Qualifier	Result	DL	RL	Units	PF	DF	Analy	st Date	Time	Batch	Method
Carbon Analysis												
SM 5310 B Total Organi	ic Carbon "A	As Received"										
Total Organic Carbon Average	;	9.35	0.330	1.00	mg/L		1	TSM	03/11/23	0954	2394332	1
Spectrometric Analysis												
SM 4500-S(2-) D Sulfide	e "As Recei	ved"										
Total Sulfide	U	ND	0.0330	0.100	mg/L		1	HH2	03/07/23	1516	2394295	2
Titration and Ion Analys	is											
SM 2320B Total Alkalin	nity "As Rec	eived"										
Alkalinity, Total as CaCO3	•	62.8	1.45	4.00	mg/L			MS3	03/09/23	1438	2393625	3
Bicarbonate alkalinity (CaCO3	3)	62.8	1.45	4.00	mg/L							
Carbonate alkalinity (CaCO3)	U	ND	1.45	4.00	mg/L							
The following Analytica	al Methods v	were performed:										
Method	Description	l			1	Analys	st Co	mment	s			

Method Description $SM\ 5310\ B$ SM 4500-S (2-) D 2 SM 2320B

Notes:

Column headers are defined as follows:

DF: Dilution Factor Lc/LC: Critical Level DL: Detection Limit PF: Prep Factor MDA: Minimum Detectable Activity **RL**: Reporting Limit

MDC: Minimum Detectable Concentration SQL: Sample Quantitation Limit

Page 33 of 47 SDG: 612999

2040 Savage Road Charleston SC 29407 - (843) 556-8171 - www.gel.com

Certificate of Analysis

Project:

Client ID:

Report Date: March 14, 2023

SOOP00119

SOOP001

Company: Santee Cooper Address: P.O. Box 2946101

OCO3

Moncks Corner, South Carolina 29461

Contact: Ms. Jeanette Gilmetti Project: ABS Lab Analytical

Client Sample ID: AF56441 Sample ID: 612999032

Matrix: GW

Collect Date: 02-MAR-23 11:45 Receive Date: 03-MAR-23 Collector: Client

Parameter	Qualifier	Result	DL	RL	Units	PF	DF Analyst Date	Time Batch	Method
Carbon Analysis									
SM 5310 B Disso	lved Organic Carb	on "As Received"							

Dissolved Organic Carbon Average 10.2 0.330 1.00 mg/L TSM 03/10/23 2358 2394833

The following Prep Methods were performed:

Method Date Prep Batch Description Analyst Time EPA 160 Laboratory Filtration - DOC TSM 03/07/23 1150 2394325

The following Analytical Methods were performed:

Method Description **Analyst Comments** SM 5310 B

Notes:

Column headers are defined as follows:

DF: Dilution Factor Lc/LC: Critical Level DL: Detection Limit PF: Prep Factor MDA: Minimum Detectable Activity **RL**: Reporting Limit

MDC: Minimum Detectable Concentration SQL: Sample Quantitation Limit

Page 34 of 47 SDG: 612999

2040 Savage Road Charleston, SC 29407 - (843) 556-8171 - www.gel.com

QC Summary

Report Date: March 14, 2023

Page 1 of 4

Santee Cooper P.O. Box 2946101

OCO3

Moncks Corner, South Carolina

Contact: Ms. Jeanette Gilmetti

Workorder: 612999

Parmname	NOM	Sample Qual	QC	Units	RPD%	REC%	Range A	Anlst	Date Time
Carbon Analysis Batch 2394332									
QC1205338198 612999019 DUP Total Organic Carbon Average		2.07	2.05	mg/L	0.924 ^		(+/-1.00)	TSM	03/11/23 07:08
QC1205338197 LCS Total Organic Carbon Average	10.0		9.71	mg/L		97.1	(80%-120%)		03/11/23 00:50
QC1205338196 MB Total Organic Carbon Average		U	ND	mg/L					03/11/23 00:40
QC1205338200 612999019 PS Total Organic Carbon Average	10.0	2.07	11.1	mg/L		90.1	(65%-120%)		03/11/23 07:30
Batch 2394833 ——									
QC1205338176 612999002 DUP Dissolved Organic Carbon Average		12.4	12.0	mg/L	2.86		(0%-20%)	TSM	03/10/23 17:01
QC1205338177 612999020 DUP Dissolved Organic Carbon Average		1.48	1.43	mg/L	3.37 ^		(+/-1.00)	RM3	03/14/23 16:04
QC1205338175 FLTB Dissolved Organic Carbon Average		U	ND	mg/L					03/14/23 15:21
QC1205339108 LCS Dissolved Organic Carbon Average	10.0		10.1	mg/L		101	(80%-120%)	TSM	03/10/23 16:28
QC1205339107 MB Dissolved Organic Carbon Average		U	ND	mg/L					03/10/23 16:09
QC1205338178 612999002 PS Dissolved Organic Carbon Average	10.0	12.4	21.2	mg/L		88.2	(65%-120%)		03/10/23 17:20

Page 35 of 47 SDG: 612999

2040 Savage Road Charleston, SC 29407 - (843) 556-8171 - www.gel.com

QC Summary

612999 Page 2 of 4 **Parmname** NOM Sample Qual QC Units RPD% REC% Range Anlst Date Time Carbon Analysis 2394833 Batch QC1205338179 612999020 PS 1.48 95.9 RM3 03/14/23 16:26 Dissolved Organic Carbon Average 10.0 11.1 mg/L (65%-120%) Spectrometric Analysis Batch 2394245 QC1205338011 LCS 0.404 Total Sulfide 0.400 101 (85%-115%) HH2 03/06/23 18:08 mg/L QC1205338010 MB Total Sulfide U ND mg/L 03/06/23 18:07 QC1205338012 612999011 PS 0.400 U ND 0.241 59.3 * (75%-125%) Total Sulfide mg/L 03/06/23 18:08 QC1205338013 612999011 PSD Total Sulfide 0.400 U ND 0.246 60.4* (0%-15%) 03/06/23 18:08 mg/L 1.8 Batch 2394295 QC1205338101 LCS Total Sulfide 0.400 0.403 mg/L 101 (85%-115%) HH2 03/07/23 15:09 QC1205338100 MBU ND 03/07/23 15:09 Total Sulfide mg/L QC1205338104 612999027 PS ND Total Sulfide 0.400 U 0.102 mg/L 25.2* (75%-125%) 03/07/23 15:15 QC1205338105 612999027 PSD ND 0.400 U 0.104 25.8* 03/07/23 15:15 Total Sulfide mg/L 2.38 (0%-15%)Titration and Ion Analysis 2393625 QC1205336863 612999001 DUP Alkalinity, Total as CaCO3 322 327 mg/L 1.44 (0%-20%)MS3 03/09/23 13:46

Page 36 of 47 SDG: 612999

Workorder:

2040 Savage Road Charleston, SC 29407 - (843) 556-8171 - www.gel.com

QC Summary

Workorder: 612999 Page 3 of 4 **Parmname** NOM Sample Qual **OC** Units RPD% REC% Range Anlst Date Time Titration and Ion Analysis Batch 2393625 Bicarbonate alkalinity (CaCO3) 322 327 mg/L 1.44 (0%-20%)MS3 03/09/23 13:46 U Carbonate alkalinity (CaCO3) ND U ND mg/L N/A QC1205336865 612999021 DUP 280 279 03/09/23 14:25 (0%-20%) Alkalinity, Total as CaCO3 mg/L 0.357 Bicarbonate alkalinity (CaCO3) 280 279 mg/L 0.357 (0%-20%)Carbonate alkalinity (CaCO3) U ND U ND N/A mg/L QC1205336862 LCS 100 105 105 03/09/23 13:35 Alkalinity, Total as CaCO3 (90%-110%) mg/L QC1205336864 612999001 MS Alkalinity, Total as CaCO3 167 322 495 mg/L 104 (80%-120%) 03/09/23 13:48 QC1205336866 612999021 MS

451

mg/L

103

(80%-120%)

03/09/23 14:26

Notes:

The Qualifiers in this report are defined as follows:

U Analyte was analyzed for, but not detected above the MDL, MDA, MDC or LOD.

167

J Value is estimated

Alkalinity, Total as CaCO3

- X Consult Case Narrative, Data Summary package, or Project Manager concerning this qualifier
- H Analytical holding time was exceeded
- Result is less than value reported
- > Result is greater than value reported
- h Preparation or preservation holding time was exceeded
- R Sample results are rejected
- Z Paint Filter Test--Particulates passed through the filter, however no free liquids were observed.
- d 5-day BOD--The 2:1 depletion requirement was not met for this sample
- ^ RPD of sample and duplicate evaluated using +/-RL. Concentrations are <5X the RL. Qualifier Not Applicable for Radiochemistry.

280

Page 37 of 47 SDG: 612999

2040 Savage Road Charleston, SC 29407 - (843) 556-8171 - www.gel.com

QC Summary

612999 Page 4 of 4

Parmname	NOM	Sample Qu	ual	QC	Units	RPD%	REC%	Range	Anlst	Date	Time

- N/A RPD or %Recovery limits do not apply.
- Analyte concentration is not detected above the detection limit ND
- NJ Consult Case Narrative, Data Summary package, or Project Manager concerning this qualifier
- Ε General Chemistry--Concentration of the target analyte exceeds the instrument calibration range
- Q One or more quality control criteria have not been met. Refer to the applicable narrative or DER.
- N1 See case narrative

Workorder:

- Per section 9.3.4.1 of Method 1664 Revision B, due to matrix spike recovery issues, this result may not be reported or used for regulatory compliance R purposes.
- В The target analyte was detected in the associated blank.
- 5-day BOD--Test replicates show more than 30% difference between high and low values. The data is qualified per the method and can be used for reporting purposes
- See case narrative for an explanation

N/A indicates that spike recovery limits do not apply when sample concentration exceeds spike conc. by a factor of 4 or more or %RPD not applicable.

- ^ The Relative Percent Difference (RPD) obtained from the sample duplicate (DUP) is evaluated against the acceptance criteria when the sample is greater than five times (5X) the contract required detection limit (RL). In cases where either the sample or duplicate value is less than 5X the RL, a control limit of +/- the RL is used to evaluate the DUP result.
- * Indicates that a Quality Control parameter was not within specifications.

For PS, PSD, and SDILT results, the values listed are the measured amounts, not final concentrations.

Where the analytical method has been performed under NELAP certification, the analysis has met all of the requirements of the NELAC standard unless qualified on the QC Summary.

Page 38 of 47 SDG: 612999

General Chemistry Technical Case Narrative Santee Cooper SDG #: 612999

Product: Carbon, Total Organic Analytical Method: SM 5310 B

Analytical Procedure: GL-GC-E-093 REV# 21

Analytical Batch: 2394332

The following samples were analyzed using the above methods and analytical procedure(s).

GEL Sample ID#	Client Sample Identification
612999001	AF56433
612999003	AF56435
612999005	AF56436
612999007	AF56437
612999009	AF56438
612999011	AF56402
612999013	AF56403
612999015	AF56404
612999017	AF56434
612999019	AF56414
612999021	AF56423
612999023	AF56428
612999025	AF56421
612999027	AF56424
612999029	AF56439
612999031	AF56441
1205338196	Method Blank (MB)
1205338197	Laboratory Control Sample (LCS)
1205338198	612999019(AF56414) Sample Duplicate (DUP)
1205338200	612999019(AF56414) Post Spike (PS)

The samples in this SDG were analyzed on an "as received" basis.

Data Summary:

There are no exceptions, anomalies or deviations from the specified methods. All sample data provided in this report met the acceptance criteria specified in the analytical methods and procedures for initial calibration, continuing calibration, instrument controls and process controls where applicable.

Product: Carbon, Dissolved Organic Analytical Method: SM 5310 B

Analytical Procedure: GL-GC-E-093 REV# 21

Analytical Batch: 2394833

Filtration Method: EPA 160

Filtration Procedure: GL-LB-E-034 REV# 4

Filtration Batch: 2394325

Page 39 of 47 SDG: 612999

The following samples were analyzed using the above methods and analytical procedure(s).

GEL Sample ID#	Client Sample Identification
612999002	AF56433
612999004	AF56435
612999006	AF56436
612999008	AF56437
612999010	AF56438
612999012	AF56402
612999014	AF56403
612999016	AF56404
612999018	AF56434
612999020	AF56414
612999022	AF56423
612999024	AF56428
612999026	AF56421
612999028	AF56424
612999030	AF56439
612999032	AF56441
1205338175	Filtration Blank (FLTB)
1205338176	612999002(AF56433) Sample Duplicate (DUP)
1205338177	612999020(AF56414) Sample Duplicate (DUP)
1205338178	612999002(AF56433) Post Spike (PS)
1205338179	612999020(AF56414) Post Spike (PS)
1205339107	Method Blank (MB)
1205339108	Laboratory Control Sample (LCS)

The samples in this SDG were analyzed on an "as received" basis.

Data Summary:

All sample data provided in this report met the acceptance criteria specified in the analytical methods and procedures for initial calibration, continuing calibration, instrument controls and process controls where applicable, with the following exceptions.

Technical Information

Sample Re-analysis

Samples 1205338177 (AF56414DUP), 1205338179 (AF56414PS) and 612999020 (AF56414) were reanalyzed due to PS failure. The reanalysis data was reported. Sample was re-analyzed to verify the result. The reanalysis data with passing instrument QC was reported. 1205338175 (FLTB).

Product: Sulfide, Total

Analytical Method: SM 4500-S (2-) D

Analytical Procedure: GL-GC-E-052 REV# 12

Analytical Batch: 2394245

The following samples were analyzed using the above methods and analytical procedure(s).

GEL Sample ID#	Client Sample Identification
612999011	AF56402
612999013	AF56403
612999015	AF56404
612999017	AF56434
1205338010	Method Blank (MB)

1205338011	Laboratory Control Sample (LCS)
1205338012	612999011(AF56402) Post Spike (PS)
1205338013	612999011(AF56402) Post Spike Duplicate (PSD)

The samples in this SDG were analyzed on an "as received" basis.

Data Summary:

All sample data provided in this report met the acceptance criteria specified in the analytical methods and procedures for initial calibration, continuing calibration, instrument controls and process controls where applicable, with the following exceptions.

Quality Control (QC) Information

Matrix Spike (MS)/Post Spike (PS) Recovery Statement

The percent recoveries (%R) obtained from the spike analyses are evaluated when the sample concentration is less than four times (4X) the spike concentration added. The matrix spike recovered outside of the established acceptance limits due to matrix interference and/or non-homogeneity.

Analyte	Sample	Value
Total Sulfide	1205338012 (AF56402PS)	59.3* (75%-125%)
	1205338013 (AF56402PSD)	60.4* (75%-125%)

Product: Sulfide, Total

Analytical Method: SM 4500-S (2-) D

Analytical Procedure: GL-GC-E-052 REV# 12

Analytical Batch: 2394295

The following samples were analyzed using the above methods and analytical procedure(s).

GEL Sample ID#	Client Sample Identification
612999001	AF56433
612999003	AF56435
612999005	AF56436
612999007	AF56437
612999009	AF56438
612999019	AF56414
612999021	AF56423
612999023	AF56428
612999025	AF56421
612999027	AF56424
612999029	AF56439
612999031	AF56441
1205338100	Method Blank (MB)
1205338101	Laboratory Control Sample (LCS)
1205338104	612999027(AF56424) Post Spike (PS)
1205338105	612999027(AF56424) Post Spike Duplicate (PSD)

The samples in this SDG were analyzed on an "as received" basis.

Data Summary:

All sample data provided in this report met the acceptance criteria specified in the analytical methods and procedures for initial calibration, continuing calibration, instrument controls and process controls where applicable, with the following exceptions.

Quality Control (QC) Information

Matrix Spike (MS)/Post Spike (PS) Recovery Statement

The percent recoveries (%R) obtained from the spike analyses are evaluated when the sample concentration is less than four times (4X) the spike concentration added. The matrix spike recovered outside of the established acceptance limits due to matrix interference and/or non-homogeneity.

Analyte	Sample	Value
Total Sulfide	1205338104 (AF56424PS)	25.2* (75%-125%)
	1205338105 (AF56424PSD)	25.8* (75%-125%)

Product: Alkalinity

Analytical Method: SM 2320B

Analytical Procedure: GL-GC-E-033 REV# 14

Analytical Batch: 2393625

The following samples were analyzed using the above methods and analytical procedure(s).

GEL Sample ID#	Client Sample Identification
612999001	AF56433
612999003	AF56435
612999005	AF56436
612999007	AF56437
612999009	AF56438
612999011	AF56402
612999013	AF56403
612999015	AF56404
612999017	AF56434
612999019	AF56414
612999021	AF56423
612999023	AF56428
612999025	AF56421
612999027	AF56424
612999029	AF56439
612999031	AF56441
1205336862	Laboratory Control Sample (LCS)
1205336863	612999001(AF56433) Sample Duplicate (DUP)
1205336864	612999001(AF56433) Matrix Spike (MS)
1205336865	612999021(AF56423) Sample Duplicate (DUP)
1205336866	612999021(AF56423) Matrix Spike (MS)

The samples in this SDG were analyzed on an "as received" basis.

Page 42 of 47 SDG: 612999

Data Summary:

There are no exceptions, anomalies or deviations from the specified methods. All sample data provided in this report met the acceptance criteria specified in the analytical methods and procedures for initial calibration, continuing calibration, instrument controls and process controls where applicable.

Certification Statement

Where the analytical method has been performed under NELAP certification, the analysis has met all of the requirements of the NELAC standard unless otherwise noted in the analytical case narrative.

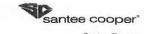
Page 43 of 47 SDG: 612999

Contract Lab Info: _

Contract Lab Due Date (Lab Only):

612999 / 613005

Send report to lcwillia@santeecooper.com & sibrown@santeecooper.com & sibrown.com & <a hr


Chain of Custody

Santee Cooper One Riverwood Drive Moncks Corner, SC 29461 Phone: (843)761-8000 Ext. 5148 Fax: (843)761-4175

Custome	er Email,	/Report Recipie	ent:	Date R	esults Ne	eded b	y:		Pr	oject/	Task/	Unit #:		Rerun request	for ar	ıy fla	ggeo	I QC
LCWI	LLIA	@santeec	ooper.com					125	715	/ JM	02.0	1.109.PC	3650	Yes Yes	NO			
															A	nalys	s Grou	<u>up</u>
Labwork (Internal only)		Sample Locatio Description	n/	Collection Date	Collection Time	Sample Collector	Total # of containers	Bottle type: (Glass-G/Plastic-P)	Grab (G) or Composite (C)	Matrix(see below)	Preservative (see	Metl Repo Misc Any	Comm nod # orting limit orting sample in other notes	fo	ALKARINITY	Suchbe	TOC/POC	RAP 226/228
AFS	6433	WLF -AI-	-)	2/23/23	1258	ZDM	6	Pla	G	GW	本	* 500	SULFIDE HAS SHOTT HOLD			1	2	2
	35	WLF - AI -	3	1	1144	1	H	11	1	1	1				1	1	1	+
				+ + -		\vdash	+	++			H	1			+	\dagger	H	H
	36	WLF-AI-	4	\vdash	1019		H	+		+	-	TOC- H	SERVAT	IVES	+	+	+	1
	37	WLF-AI-	4-D		1024									ACETATE, NOUTH				
	38	WLF-AI-	5		1431	1	1		1	1		RAD-H	103					
AF 56		WAP-9		2/21/28	1247	ZDM	1	1	1	(T				П	T		T
1	03	WAP-10		1	0957	1	\parallel	\Box			T	ALK - T	TOTAL ST	ICARB, CARB			IT	\parallel
-							T	+	+		H		11.92	1011107	T	\parallel	H	+
+	434	WAP-10D			1544		+		+	\dagger	H	DOC-NO	T FIELL	FUERED	1	Ţ	\parallel	+
<u> </u>	727	WLF-AI-		-	1247	-	-	-		-					Ī			-
Relinq	uished by:	Employee#	Date	Time	Receiv	red by:		Employee	#	Date	e	Time		Receiving (Internal	Use Oi Initia			
89m	15 len	35594	3/3/23	QUA	1	11	(SEL	1	3/3/2	23	Darto		pH: Yes No				-
Relinq	uished by:	Employee#	Date	Time	Récei	red by:		Employee	#	Date		Time		ative Lot#:				
Du	1	GEL	3-3123	1950 Stiffe	1/	L)	4	oll	()	309	1	500	rieserv	auve Loin:				
Relinq	uished by:	Employee#	Date	Ville	Receiv	red by:		Employee	#	Date	e	Time	Date/Ti	me/Init for preserv	ative:			
		ETALS (all)	Nint	rients	MI	22		Gy	psur	70		Coal		Flyash		0	il	
□Ag	□ Ci	u □ Sb	D TO		□ BTEX	<u>sc.</u>		□ Wallbo	NAME OF TAXABLE PARTY.			Ultimate		☐ Ammonia		ans. C	il Qu	
□ A1	□Fe		□ DO		□ Naphtha		614	Gyp belo	osum(a	ıll	7	☐ % Moist ☐ Ash	ture	□ LOI □ % Carbon		%Mo	sture	
□В	□ Li	CO. SELDING BOYERS SEED	□ NH	DESCRIPTION OF THE PARTY OF THE	□ VOC □ Oil & G			D A	IM			□ Sulfur		☐ Mineral		Acidit	ic Street	ngth
□ Ba	□М				□ E. Coli			□ To	tal meta			☐ BTUs ☐ Volatile	Matter	Analysis ☐ Sieve	711	FT	ved G	
□ Be	□М	n 🗆 Tl	□NO	DESCRIPTION !	□ Total Co	onform	1		luble M rity (Ca		14	□ CHN		□ % Moisture	Us	ed O	il	1136.5
□ Ca	□М	o 🗆 V		60035632899999	☐ Dissolve			□%	Moistu		1000	Other Tests: XRF Scan		NIDDEC		lashp	oint in oil	
□ Cd	□Na	a 🗆 Zn			□ Rad 226		18	□рН			E	HGI		NPDES Oil & Grease		(As,C	d,Cr.N	
□Со	□Ni	i □ Hg			□ Rad 228 □ PCB				ilorides rticle Si			Fineness Particulate M	atter	□As		Hg)		
□ Cr	□Pt	□ CrVI						□ Sulfur		1461		STATE OF THE STATE		□TSS	□ GC	DFER		

Chain of Custody

Santee Cooper One Riverwood Drive Moncks Comer, SC 29461 Phone: (843)761-8000 Ext. 5148 Fax: (843)761-4175

Customer Em	nail/Rep	port Recipie	nt:	Date	Results N	eeded b	y:		Pr	oject/	Task/l	Jnit #:	Rerun request f	or ar	y fla	gged	QC
LCWILLIA		_@santeeco	ooper.com		J			125	915	J 57V	102.0	09.601.1/3650	<u> </u>	No			
														A	nalysi	s Grou	ID.
Labworks ID # (Internal use only)	91 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	mple Location	o/	Collection Date	Collection Time	Sample Collector	Total # of containers	Bottle type: (Glass-G/Plastic-P)	Grab (G) or Composite (C)	Matrix(see below)	Preservative (see	Comm Method # Reporting limit Misc. sample in Any other notes	fo	ALICALINITY	SULFIPE	TOC/DOC	RAD 226/228
AF56411	4 4	AP-15		3/2/2	3 1246	ZDM	6	P/G	G	GW	*	* SULFIDE H	AS SHORT HOLD	1	Ţ	2	2
1 23	3 W	rAP-23			0952				1	1					1	1	
25		VAP - 27			1056	. 1	1	I	I	1	1	* PRESERVAT	IVES				
AF5642	_	JA-P-21		3/1/2	3 1441	1	1	1	1	1	1	TOC- H2504 SULFIDE - ZINC	ACETATE NGOH				
	4	1 24		1	133		IT	$\dagger \uparrow$				RAD-HNO3			T		
3					1022		$\dagger \uparrow$		T		T				\dagger	T	П
1 4		LF-A2-2		11	1145		1	1	1	1	1	ALKAL- TOTAL,	BICARB CARB	1	1		1
		-										-,,-					П
												DOC-WOT FIELD	FILTERED				
												Sample	Receiving (Internal	Use O	n/v)		
Relinquished		Employee#	Date	Time	Rece	ived by:		Employe		Date			(°C):				_
Relinquished		35594- Employee#	3/3/23 Date	Time	Rece	ived by:		Employe		3/3/2 Date		Time Correct	t pH: Yes No				
Relinquished	l by:	AGC Employee#	3-3-2 3 Date	15 Julie	Rece	eived by:	10	Employee	e#	3.03 Date	33	Time Preserv	rative Lot#:				
												Date/Ti	me/Init for preserv	ative:			
☐ Ag ☐ Al ☐ As ☐ B ☐ Ba ☐ Ca ☐ Cd ☐ Co	META Cu Fe K Li Mg Mn Mo Na	ALS (all)	□ TO □ DC	OC /TPO4 13-N 02	□ BTEX □ Naphti □ THM/ □ VOC □ Oil & □ E. Col	halene HAA Grease i Coliform ved As ved Fe		□ Wallt Gy bell □ A □ T □ S □ P □ % □ S □ P	psum(a ow) AIM OC otal met oluble N urity (C & Moistu ulfites H Chlorides article S	all als fetals aSO4) are	(Coal Ultimate % Moisture Ash Sulfur BTUs Volatile Matter CHN Other Tests: XRF Scan HGI Fineness Particulate Matter	Flyash Ammonia LOI % Carbon Mineral Analysis Sieve % Moisture NPDES Oil & Grease As TSS		%Mo Color Acidit Dielectri IFT Dissol sed O Flashp Metal	oil Qui isture y ic Strer ved Gi il ooint s in oil d,Cr,N	ngth ases

			SAMPLE RECEIPT & REVIEW FORM	
Client: X 6 1			SDG/AR/COC/Work Order: 612999/613005	
Received By: MVH			Date Received Circle Applicable:	
Carrier and Tracking Number			FedEx Express FedEx Ground UPS Field Service Courier Other	
Suspected Hazard Information	Yes	ž	*If Not Counts > 100cpm on samples not marked "radioactive", contact the Radiation Safety Group for further investigation.	
A)Shipped as a DOT Hazardous?		V	Hazard Class Shipped: UN#: If UN2910, Is the Radioactive Shipment Survey Compliant? Yes, No	
B) Did the client designate the samples are to be eccived as radioactive?		V	COC notation or radioactive stickers on containers equal client designation.	
C) Did the RSO classify the samples as adioactive?		V	Maximum Net Counts Observed* (Observed Counts - Area Background Counts); CPMy mR/Hr Classifled as: Rad 1 Rad 2 Rad 3	
D) Did the client designate samples are hazardous?			COC notation or hazard labels on containers equal client designation.	
Did the RSO identify possible hazards?		_	If D or E is yes, select Hazards below. PCB's Flammable Foreign Soil RCRA Asbestes Beryllium Other:	
Sample Receipt Criteria	Yes	Ϋ́	2 Comments/Qualifiers (Required for Non-Conforming Items)	
Shipping containers received intact and scaled?	V		Circle Applicable: Seals broken Damaged container Leaking container Other (describe)	
2 Chain of custody documents included with shipment?	V		Circle Applicable: Client contacted and provided COC COC created upon reccipt	
3 Samples requiring cold preservation within (0 ≤ 6 deg. C)?*	\checkmark	_	Preservation Method: Wet Ice Dice Packs Dry ice None Other: *all temperatures are recorded in Celsius TEMP:	
4 Daily check performed and passed on IR temperature gun?	\checkmark		Temperature Device Serial #: IR2-21 Secondary Temperature Device Serial # (If Applicable):	
5 Sample containers intact and sealed?	V		Circle Applicable: Scals broken Damagod container Leaking container Other (describe)	
6 Samples requiring chemical preservation at proper pH? WHO3 Co 23	\bigvee	/	Sample ID's and Containers Affected H-56043-1, AFF56428, AF56421, AF56403, AF56402 II Preservation added. Latt. 13-44-13	19 F5W
Do any samples require Volatile Analysis?			If Yes, are Encores or Soil Kits present for solids? YesNoNA(If yes, take to VOA Freezer) Do liquid VOA vials contain acid preservation? YesNoNA(If unknown, select No) Are liquid VOA vials free of headspace? YesNoNA Sample ID's and containers affected:	
8 Samples received within holding time?			ID's and tests affected:	
9 Sample ID's on COC match ID's on bottles?	V		ID's and containers affected:	
Date & time on COC match date & time on bottles?			eircle Applicable: No dates on containers No times on containers COC missing info Other (describe) Thus for Singles AF51692, and AF53633, are seen as the containers of the c	ortes.
Number of containers received match number indicated on COC?	Ş	-3 -452	Circle Applicable: No container count on COC Other (describe)	~1401
Are sample containers identifiable as GEL provided by use of GEL labels?	V			
COC form is properly signed in relinquished/received sections?	V		Circle Applicable: Not relinquished Other (describe)	
premium teorice (ved sections: Comments (Use Continuation Form if needed):			77 \	

List of current GEL Certifications as of 14 March 2023

State	Certification
Alabama	42200
Alaska	17-018
Alaska Drinking Water	SC00012
Arkansas	88-0651
CLIA	42D0904046
California	2940
Colorado	SC00012
Connecticut	PH-0169
DoD ELAP/ ISO17025 A2LA	2567.01
Florida NELAP	E87156
Foreign Soils Permit	P330-15-00283, P330-15-00253
Georgia	SC00012
Georgia SDWA	967
Hawaii	SC00012
Idaho	SC00012
Illinois NELAP	200029
Indiana	C-SC-01
Kansas NELAP	E-10332
Kentucky SDWA	90129
Kentucky Wastewater	90129
Louisiana Drinking Water	LA024
Louisiana NELAP	03046 (AI33904)
Maine	2019020
Maryland	270
Massachusetts	M-SC012
Massachusetts PFAS Approv	Letter
Michigan	9976
Mississippi	SC00012
Nebraska	NE-OS-26-13
Nevada	SC000122023-4
New Hampshire NELAP	2054
New Jersey NELAP	SC002
New Mexico	SC002 SC00012
New York NELAP	11501
North Carolina	233
North Carolina SDWA	45709
North Dakota	R-158
Oklahoma	2022-160
Pennsylvania NELAP	68-00485
Puerto Rico	SC00012
S. Carolina Radiochem	10120002
Sanitation Districts of L	9255651
South Carolina Chemistry	10120001
Tennessee	TN 02934
Texas NELAP	T104704235-22-20
Utah NELAP	SC000122022-37
Vermont	VT87156
Vermont Virginia NELAP	460202
	C780
Washington	C/80

gel.com

April 03, 2023

Ms. Jeanette Gilmetti Santee Cooper P.O. Box 2946101 OCO3 Moncks Corner, South Carolina 29461

Re: ABS Lab Analytical Work Order: 613005

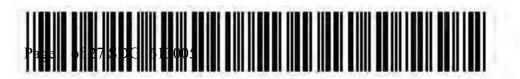
Dear Ms. Gilmetti:

GEL Laboratories, LLC (GEL) appreciates the opportunity to provide the enclosed analytical results for the sample(s) we received on March 03, 2023. This original data report has been prepared and reviewed in accordance with GEL's standard operating procedures.

The samples were delivered with proper chain of custody documentation and signatures. All sample containers arrived without any visible signs of tampering or breakage. There are no additional comments concerning sample receipt.

Test results for NELAP or ISO 17025 accredited tests are verified to meet the requirements of those standards, with any exceptions noted. The results reported relate only to the items tested and to the sample as received by the laboratory. These results may not be reproduced except as full reports without approval by the laboratory. Copies of GEL's accreditations and certifications can be found on our website at www.gel.com.

Our policy is to provide high quality, personalized analytical services to enable you to meet your analytical needs on time every time. We trust that you will find everything in order and to your satisfaction. If you have any questions, please do not hesitate to call me at (843) 556-8171, ext. 4289.


Sincerely,

Julie Robinson Project Manager

Inlie Robinson

Purchase Order: 398684

Enclosures

2040 Savage Road Charleston SC 29407 - (843) 556-8171 - www.gel.com

Certificate of Analysis Report for

SOOP001 Santee Cooper

Client SDG: 613005 GEL Work Order: 613005

The Qualifiers in this report are defined as follows:

- * A quality control analyte recovery is outside of specified acceptance criteria
- ** Analyte is a Tracer compound
- ** Analyte is a surrogate compound
- U Analyte was analyzed for, but not detected above the MDL, MDA, MDC or LOD.

Where the analytical method has been performed under NELAP certification, the analysis has met all of the requirements of the NELAC standard unless qualified on the Certificate of Analysis.

The designation ND, if present, appears in the result column when the analyte concentration is not detected above the limit as defined in the 'U' qualifier above.

This data report has been prepared and reviewed in accordance with GEL Laboratories LLC standard operating procedures. Please direct any questions to your Project Manager, Julie Robinson.

	Irlie	Roberson
Reviewed by		

Page 2 of 27 SDG: 613005

2040 Savage Road Charleston SC 29407 - (843) 556-8171 - www.gel.com

Certificate of Analysis

Project:

Client ID:

Analyst Comments

Report Date: April 3, 2023

SOOP00119

SOOP001

Company: Santee Cooper Address: P.O. Box 2946101

OCO3

Moncks Corner, South Carolina 29461

Contact: Ms. Jeanette Gilmetti Project: ABS Lab Analytical

Client Sample ID: AF56433 Sample ID: 613005001

Matrix: GW

Collect Date: 28-FEB-23 12:58
Receive Date: 03-MAR-23
Collector: Client

Parameter	Qualifier	Result	Uncertainty	MDC	RL	Units	PF	DF	Analy	st Date	Time Batch	Method
Rad Gas Flow Proport	ional Counting	5										
GFPC, Ra228, Liquid	"As Received"	1										
Radium-228	U	-0.249	+/-0.781	1.56	3.00	pCi/L			JE1	03/29/23	1353 2397799	1
Radium-226+Radium-	228 Calculation	on "See Pa	arent Products"									
Radium-226+228 Sum		0.644	+/-0.904			pCi/L		1	NXL1	04/03/23	1450 2397798	2
Rad Radium-226												
Lucas Cell, Ra226, Lic	quid "As Recei	ived"										
Radium-226		0.644	+/-0.455	0.560	1.00	pCi/L			LXP1	04/03/23	0839 2397388	3
T1 f-11 A14	: - 1 N f - 41 4		1.									

The following Analytical Methods were performed:

Description

1	EPA 904.0/SW846 9320 Modified				
2	Calculation				
3	EPA 903.1 Modified				
Surrogate/Tracer Recov	ery Test	Result	Nominal	Recovery%	Acceptable Limits

Barium-133 Tracer GFPC, Ra228, Liquid "As Received" 89.8 (15%-125%)

Notes:

Method

Counting Uncertainty is calculated at the 95% confidence level (1.96-sigma).

Column headers are defined as follows:

DF: Dilution Factor Lc/LC: Critical Level
DL: Detection Limit PF: Prep Factor
MDA: Minimum Detectable Activity RL: Reporting Limit

MDC: Minimum Detectable Concentration SQL: Sample Quantitation Limit

Page 3 of 27 SDG: 613005

2040 Savage Road Charleston SC 29407 - (843) 556-8171 - www.gel.com

Certificate of Analysis

Report Date: April 3, 2023

SOOP00119

Company: Santee Cooper Address: P.O. Box 2946101

OCO3

Moncks Corner, South Carolina 29461

Contact: Ms. Jeanette Gilmetti Project: ABS Lab Analytical

Client Sample ID: AF56435 Sample ID: 613005002

Matrix: GW

Collect Date: 28-FEB-23 11:44
Receive Date: 03-MAR-23
Collector: Client

613005002 Client ID: SOOP001 GW

Project:

Parameter	Qualifier	Result	Uncertainty	MDC	RL	Units	PF	DF	Analy	st Date	Time Batch	Method
Rad Gas Flow Proportion	onal Counting											
GFPC, Ra228, Liquid ".	As Received"											
Radium-228	U	1.77	+/-1.29	2.03	3.00	pCi/L			JE1	03/29/23	1353 2397799	1
Radium-226+Radium-2	28 Calculatio	n "See Pa	rent Products"									
Radium-226+228 Sum		3.09	+/-1.47			pCi/L		1	NXL1	04/03/23	1450 2397798	2
Rad Radium-226												
Lucas Cell, Ra226, Liqu	uid "As Recei	ved"										
Radium-226		1.32	+/-0.707	0.797	1.00	pCi/L			LXP1	04/03/23	0839 2397388	3
The following Analytic	al Methods w	ere perfo	rmed:									
Method	Description		·		·		Analys	st Co	mment	<u> </u>		

1	EPA 904.0/SW846 9320 Modified				
2	Calculation				
3	EPA 903.1 Modified				
Surrogate/Tracer Recov	ery Test	Result	Nominal	Recovery%	Acceptable Limits

Barium-133 Tracer GFPC, Ra228, Liquid "As Received"

Result Nonlinial Recovery Acceptable Lilli

73.8 (15%-125%)

Notes:

Counting Uncertainty is calculated at the 95% confidence level (1.96-sigma).

Column headers are defined as follows:

DF: Dilution Factor Lc/LC: Critical Level
DL: Detection Limit PF: Prep Factor
MDA: Minimum Detectable Activity RL: Reporting Limit

MDC: Minimum Detectable Concentration SQL: Sample Quantitation Limit

Page 4 of 27 SDG: 613005

2040 Savage Road Charleston SC 29407 - (843) 556-8171 - www.gel.com

Certificate of Analysis

Project:

Client ID:

Analyst Comments

Report Date: April 3, 2023

SOOP00119

SOOP001

Company: Santee Cooper Address: P.O. Box 2946101

OCO3

Moncks Corner, South Carolina 29461

Contact: Ms. Jeanette Gilmetti Project: ABS Lab Analytical

Client Sample ID: AF56436 Sample ID: 613005003

Matrix: GW

Collect Date: 28-FEB-23 10:19
Receive Date: 03-MAR-23
Collector: Client

MDC RLParameter Qualifier Result Uncertainty Units PF DF Analyst Date Time Batch Method Rad Gas Flow Proportional Counting GFPC, Ra228, Liquid "As Received" Radium-228 -0.0291 +/-0.690 1.35 3.00 pCi/L JE1 03/29/23 1353 2397799 1 Radium-226+Radium-228 Calculation "See Parent Products" Radium-226+228 Sum 0.482 +/-0.837 pCi/L NXL1 04/03/23 1450 2397798 2 Rad Radium-226 Lucas Cell, Ra226, Liquid "As Received" Radium-226 0.482 +/-0.473 0.699 1.00 pCi/L LXP1 04/03/23 0839 2397388 3

The following Analytical Methods were performed:

Description

Surrogate/Tracer Recovery Test Result Nominal Recovery% Acceptable Limits

Barium-133 Tracer GFPC, Ra228, Liquid "As Received"

93.3 (15%-125%)

Notes:

Method

Counting Uncertainty is calculated at the 95% confidence level (1.96-sigma).

Column headers are defined as follows:

DF: Dilution Factor Lc/LC: Critical Level
DL: Detection Limit PF: Prep Factor
MDA: Minimum Detectable Activity RL: Reporting Limit

MDC: Minimum Detectable Concentration SQL: Sample Quantitation Limit

Page 5 of 27 SDG: 613005

2040 Savage Road Charleston SC 29407 - (843) 556-8171 - www.gel.com

Certificate of Analysis

Report Date: April 3, 2023

SOOP00119

Company: Santee Cooper Address: P.O. Box 2946101

OCO3

Moncks Corner, South Carolina 29461

Contact: Ms. Jeanette Gilmetti Project: ABS Lab Analytical

Client Sample ID: AF56437 Sample ID: 613005004

Matrix: GW

Collect Date: 28-FEB-23 10:24 Receive Date: 03-MAR-23 Collector: Client

Client ID: SOOP001

Project:

Parameter	Qualifier	Result	Uncertainty	MDC	RL	Units	PF	DF	Analy	st Date	Time	e Batch	Method
Rad Gas Flow Proportion	onal Counting												
GFPC, Ra228, Liquid ".	As Received"												
Radium-228	U	-0.766	+/-0.835	1.75	3.00	pCi/L			JE1	03/29/23	1353	2397799	1
Radium-226+Radium-2	28 Calculatio	n "See Pa	arent Products"										
Radium-226+228 Sum		0.569	+/-0.926			pCi/L		1	NXL1	04/03/23	1450	2397798	2
Rad Radium-226													
Lucas Cell, Ra226, Liqu	uid "As Recei	ved"											
Radium-226		0.569	+/-0.399	0.392	1.00	pCi/L			LXP1	04/03/23	0839	2397388	3
The following Analytic	al Methods w	ere perfo	ormed:										
Method	Description					I	Analys	st Co	mment	S			

1 E	PA 904.0/SW846 9320 Modified				
2 C	Calculation				
3 E	CPA 903.1 Modified				
Surrogate/Tracer Recovery	y Test	Result	Nominal	Recovery%	Acceptable Limits

91.5 Barium-133 Tracer GFPC, Ra228, Liquid "As Received" (15%-125%)

Notes:

Counting Uncertainty is calculated at the 95% confidence level (1.96-sigma).

Column headers are defined as follows:

DF: Dilution Factor Lc/LC: Critical Level DL: Detection Limit PF: Prep Factor MDA: Minimum Detectable Activity **RL**: Reporting Limit

MDC: Minimum Detectable Concentration SQL: Sample Quantitation Limit

Page 6 of 27 SDG: 613005

2040 Savage Road Charleston SC 29407 - (843) 556-8171 - www.gel.com

Certificate of Analysis

Report Date: April 3, 2023

SOOP00119

Analyst Comments

Company: Santee Cooper Address: P.O. Box 2946101

OCO3

Moncks Corner, South Carolina 29461

Contact: Ms. Jeanette Gilmetti Project: ABS Lab Analytical

Client Sample ID: AF56438 Sample ID: 613005005

Matrix: GW

Collect Date: 28-FEB-23 14:31 Receive Date: 03-MAR-23 Collector: Client

Description

Project: Client ID: SOOP001

Parameter	Qualifier	Result	Uncertainty	MDC	RL	Units	PF	DF Anal	yst Date	Time Batch	Method
Rad Gas Flow Proportion	onal Counting										
GFPC, Ra228, Liquid "A	As Received"										
Radium-228		2.60	+/-1.20	1.68	3.00	pCi/L		JE1	03/29/23	1353 2397799	1
Radium-226+Radium-2	28 Calculation	n "See Pa	arent Products"								
Radium-226+228 Sum		3.92	+/-1.36			pCi/L		1 NXL1	04/03/23	1450 2397798	2
Rad Radium-226											
Lucas Cell, Ra226, Liqu	uid "As Recei	ved"									
Radium-226		1.32	+/-0.639	0.633	1.00	pCi/L		LXP1	04/03/23	0839 2397388	3
The following Analytic	al Methods w	ere perfo	rmed:								

1	EPA 904.0/SW846 9320 Modified				
2	Calculation				
3	EPA 903.1 Modified				
Surrogate/Tracer Recov	ery Test	Result	Nominal	Recovery%	Acceptable Limits

Barium-133 Tracer 87 (15%-125%) GFPC, Ra228, Liquid "As Received"

Method

Counting Uncertainty is calculated at the 95% confidence level (1.96-sigma).

Column headers are defined as follows:

DF: Dilution Factor Lc/LC: Critical Level DL: Detection Limit PF: Prep Factor MDA: Minimum Detectable Activity **RL**: Reporting Limit

MDC: Minimum Detectable Concentration SQL: Sample Quantitation Limit

Page 7 of 27 SDG: 613005

2040 Savage Road Charleston SC 29407 - (843) 556-8171 - www.gel.com

Certificate of Analysis

Report Date: April 3, 2023

2

3

SOOP00119

SOOP001

Company: Santee Cooper Address: P.O. Box 2946101

OCO3

Moncks Corner, South Carolina 29461

Contact: Ms. Jeanette Gilmetti Project: ABS Lab Analytical

Client Sample ID: AF56402 Sample ID: 613005006

Matrix: GW

Collect Date: 27-FEB-23 12:47
Receive Date: 03-MAR-23
Collector: Client

MDC RLParameter Qualifier Result Uncertainty Units PF DF Analyst Date Time Batch Method Rad Gas Flow Proportional Counting GFPC, Ra228, Liquid "As Received" Radium-228 1.51 +/-1.11 1.75 3.00 pCi/L JE1 03/29/23 1353 2397799 1

Project:

Client ID:

Radium-226+Radium-228 Calculation "See Parent Products"

Radium-226+228 Sum 2.78 +/-1.28 pCi/L 1 NXL1 04/03/23 1450 2397798

Rad Radium-226

Lucas Cell, Ra226, Liquid "As Received"

Radium-226 1.26 +/-0.631 0.611 1.00 pCi/L LXP1 04/03/23 0839 2397388

The following Analytical Methods were performed:

MethodDescriptionAnalyst Comments1EPA 904.0/SW846 9320 Modified2Calculation

2 Calculation 3 EPA 903.1 Modified

Surrogate/Tracer Recovery Test Result Nominal Recovery% Acceptable Limits

Barium-133 Tracer GFPC, Ra228, Liquid "As Received"

93.2 (15%-125%)

Notes:

Counting Uncertainty is calculated at the 95% confidence level (1.96-sigma).

Column headers are defined as follows:

DF: Dilution Factor Lc/LC: Critical Level
DL: Detection Limit PF: Prep Factor
MDA: Minimum Detectable Activity RL: Reporting Limit

MDC: Minimum Detectable Concentration SQL: Sample Quantitation Limit

Page 8 of 27 SDG: 613005

2040 Savage Road Charleston SC 29407 - (843) 556-8171 - www.gel.com

Certificate of Analysis

Report Date: April 3, 2023

SOOP00119

SOOP001

Company: Santee Cooper Address: P.O. Box 2946101

OCO3

Moncks Corner, South Carolina 29461

Ms. Jeanette Gilmetti Contact: Project: ABS Lab Analytical

Client Sample ID: AF56403 Sample ID: 613005007

Matrix: GW

Collect Date: Receive Date: 03-MAR-23 Collector: Client

27-FEB-23 09:57

Project:

Client ID:

Analyst Comments

Parameter	Qualifier	Result	Uncertainty	MDC	RL	Units	PF	DF Anal	yst Date	Time Batch	Method
Rad Gas Flow Proportion	onal Counting										
GFPC, Ra228, Liquid "A	As Received"										
Radium-228	U	-0.163	+/-1.41	2.61	3.00	pCi/L		JE1	03/29/23	1353 2397799	1
Radium-226+Radium-2	28 Calculatio	n "See Pa	arent Products"								
Radium-226+228 Sum		1.55	+/-1.56			pCi/L		1 NXL1	04/03/23	1450 2397798	2
Rad Radium-226											
Lucas Cell, Ra226, Liqu	uid "As Recei	ved"									
Radium-226		1.55	+/-0.668	0.494	1.00	pCi/L		LXP1	04/03/23	0839 2397388	3
The following Analytic	al Methods w	ere perfo	ormed:								

Method Description

EPA 904.0/SW846 9320 Modified

Calculation EPA 903.1 Modified

Nominal Acceptable Limits Surrogate/Tracer Recovery Test Result Recovery% Barium-133 Tracer GFPC, Ra228, Liquid "As Received" 74 (15%-125%)

Notes:

Counting Uncertainty is calculated at the 95% confidence level (1.96-sigma).

Column headers are defined as follows:

DF: Dilution Factor Lc/LC: Critical Level DL: Detection Limit PF: Prep Factor MDA: Minimum Detectable Activity **RL**: Reporting Limit

MDC: Minimum Detectable Concentration SQL: Sample Quantitation Limit

Page 9 of 27 SDG: 613005

2040 Savage Road Charleston SC 29407 - (843) 556-8171 - www.gel.com

Certificate of Analysis

Project:

Client ID:

Analyst Comments

Report Date: April 3, 2023

SOOP00119

SOOP001

Company: Santee Cooper Address: P.O. Box 2946101

OCO3

Moncks Corner, South Carolina 29461

Contact: Ms. Jeanette Gilmetti Project: ABS Lab Analytical

Client Sample ID: AF56404 Sample ID: 613005008

Matrix: GW

Collect Date: 27-FEB-23 10:02
Receive Date: 03-MAR-23
Collector: Client

MDC RLParameter Qualifier Result Uncertainty Units PF DF Analyst Date Time Batch Method Rad Gas Flow Proportional Counting GFPC, Ra228, Liquid "As Received" Radium-228 1.00 +/-1.16 1.94 3.00 pCi/L JE1 03/29/23 1353 2397799 1 Radium-226+Radium-228 Calculation "See Parent Products" Radium-226+228 Sum 3.12 +/-1.42 pCi/L NXL1 04/03/23 1450 2397798 2 Rad Radium-226 Lucas Cell, Ra226, Liquid "As Received" Radium-226 2.11 +/-0.816 0.467 1.00 pCi/L LXP1 04/03/23 0913 2397388 3

The following Analytical Methods were performed:

Description

1 EPA 904.0/SW846 9320 Modified
2 Calculation
3 EPA 903.1 Modified

Surrogate/Tracer Recovery Test Result Nominal Recovery% Acceptable Limits

Barium-133 Tracer GFPC, Ra228, Liquid "As Received"

Result Norminal Recovery% Acceptable Limit Result Norminal Recovery% Acceptable Limit Recovery% Accepta

Notes:

Method

Counting Uncertainty is calculated at the 95% confidence level (1.96-sigma).

Column headers are defined as follows:

DF: Dilution Factor Lc/LC: Critical Level
DL: Detection Limit PF: Prep Factor
MDA: Minimum Detectable Activity RL: Reporting Limit

MDC: Minimum Detectable Concentration SQL: Sample Quantitation Limit

Page 10 of 27 SDG: 613005

2040 Savage Road Charleston SC 29407 - (843) 556-8171 - www.gel.com

Certificate of Analysis

Report Date: April 3, 2023

Company: Santee Cooper Address: P.O. Box 2946101

OCO3

Moncks Corner, South Carolina 29461

Contact: Ms. Jeanette Gilmetti Project: ABS Lab Analytical

Client Sample ID: AF56434 Sample ID: 613005009

Matrix: GW

Collect Date: 27-FEB-23 15:44
Receive Date: 03-MAR-23
Collector: Client

 434
 Project:
 SOOP00119

 05009
 Client ID:
 SOOP001

Parameter	Qualifier	Result	Uncertainty	MDC	RL	Units	PF	DF	Analy	st Date	Time	e Batch	Method
Rad Gas Flow Proportion	onal Counting												
GFPC, Ra228, Liquid "	As Received"												
Radium-228		2.28	+/-1.34	2.01	3.00	pCi/L			JE1	03/29/23	1353	2397799	1
Radium-226+Radium-2	28 Calculatio	n "See Pa	arent Products"										
Radium-226+228 Sum		3.38	+/-1.47			pCi/L		1	NXL1	04/03/23	1450	2397798	2
Rad Radium-226													
Lucas Cell, Ra226, Liqu	uid "As Recei	ved"											
Radium-226		1.11	+/-0.592	0.650	1.00	pCi/L			LXP1	04/03/23	0913	2397388	3
The following Analytic	cal Methods w	ere perfo	ormed:										
Method	Description					I	Analys	st Con	nment	S			

Surrogate/Tracer Recov	erv Test	Result	Nominal	Recovery%	Acceptable Limits
3	EPA 903.1 Modified				
2	Calculation				
1	EPA 904.0/SW846 9320 Modified				

Barium-133 Tracer GFPC, Ra228, Liquid "As Received" 70 (15%-125%)

Notes:

Counting Uncertainty is calculated at the 95% confidence level (1.96-sigma).

Column headers are defined as follows:

DF: Dilution Factor Lc/LC: Critical Level
DL: Detection Limit PF: Prep Factor
MDA: Minimum Detectable Activity RL: Reporting Limit

MDC: Minimum Detectable Concentration SQL: Sample Quantitation Limit

Page 11 of 27 SDG: 613005

2040 Savage Road Charleston SC 29407 - (843) 556-8171 - www.gel.com

Certificate of Analysis

Report Date: April 3, 2023

Company: Santee Cooper Address: P.O. Box 2946101

OCO3

Moncks Corner, South Carolina 29461

Contact: Ms. Jeanette Gilmetti Project: ABS Lab Analytical

Client Sample ID: AF56414 Sample ID: 613005010

Matrix: GW

Collect Date: 02-MAR-23 12:46
Receive Date: 03-MAR-23
Collector: Client

Description

Project: SOOP00119 Client ID: SOOP001

Analyst Comments

Parameter	Qualifier	Result	Uncertainty	MDC	RL	Units	PF	DF	Analy	st Date	Time	Batch	Method
Rad Gas Flow Proportio	nal Counting												
GFPC, Ra228, Liquid "A	As Received"												
Radium-228	U	1.86	+/-1.32	2.04	3.00	pCi/L			JE1	03/29/23	1353	2397799	1
Radium-226+Radium-22	28 Calculation	n "See Pa	arent Products"										
Radium-226+228 Sum		3.89	+/-1.53			pCi/L		1	NXL1	04/03/23	1450	2397798	2
Rad Radium-226													
Lucas Cell, Ra226, Liqu	iid "As Recei	ved"											
Radium-226		2.03	+/-0.775	0.608	1.00	pCi/L			LXP1	04/03/23	0913	2397388	3
The following Analytic	al Methods w	ere perfo	ormed:										

1	EPA 904.0/SW846 9320 Modified				
2	Calculation				
3	EPA 903.1 Modified				
Surrogate/Tracer Recov	ery Test	Result	Nominal	Recovery%	Acceptable Limits

Barium-133 Tracer GFPC, Ra228, Liquid "As Received" 64.8 (15%-125%)

Notes:

Method

Counting Uncertainty is calculated at the 95% confidence level (1.96-sigma).

Column headers are defined as follows:

DF: Dilution Factor Lc/LC: Critical Level
DL: Detection Limit PF: Prep Factor
MDA: Minimum Detectable Activity RL: Reporting Limit

MDC: Minimum Detectable Concentration SQL: Sample Quantitation Limit

Page 12 of 27 SDG: 613005

2040 Savage Road Charleston SC 29407 - (843) 556-8171 - www.gel.com

Certificate of Analysis

Report Date: April 3, 2023

Company: Santee Cooper Address: P.O. Box 2946101

OCO3

Moncks Corner, South Carolina 29461

Contact: Ms. Jeanette Gilmetti Project: ABS Lab Analytical

Client Sample ID: AF56423 Sample ID: 613005011

Matrix: GW

Collect Date: 02-MAR-23 09:52
Receive Date: 03-MAR-23
Collector: Client

Description

 423
 Project:
 SOOP00119

 05011
 Client ID:
 SOOP001

Parameter	Qualifier	Result	Uncertainty	MDC	RL	Units	PF	DF Anal	yst Date	Time Batch	Method
Rad Gas Flow Proportion	onal Counting										
GFPC, Ra228, Liquid "	As Received"										
Radium-228		2.86	+/-1.55	2.31	3.00	pCi/L		JE1	03/29/23	1353 2397799	1
Radium-226+Radium-2	228 Calculatio	n "See Pa	arent Products"								
Radium-226+228 Sum		5.59	+/-1.83			pCi/L		1 NXL1	04/03/23	1450 2397798	2
Rad Radium-226											
Lucas Cell, Ra226, Liqu	uid "As Recei	ved"									
Radium-226		2.72	+/-0.971	0.718	1.00	pCi/L		LXP1	04/03/23	0913 2397388	3
The following Analytic	cal Methods w	ere perfo	ormed:								

1	EPA 904.0/SW846 9320 Modified				
2	Calculation				
3	EPA 903.1 Modified				
Surrogate/Tracer Recove	ery Test	Result	Nominal	Recovery%	Acceptable Limits

Analyst Comments

Barium-133 Tracer GFPC, Ra228, Liquid "As Received" 67.2 (15%-125%)

Notes:

Method

Counting Uncertainty is calculated at the 95% confidence level (1.96-sigma).

Column headers are defined as follows:

DF: Dilution Factor Lc/LC: Critical Level
DL: Detection Limit PF: Prep Factor
MDA: Minimum Detectable Activity RL: Reporting Limit

MDC: Minimum Detectable Concentration SQL: Sample Quantitation Limit

Page 13 of 27 SDG: 613005

2040 Savage Road Charleston SC 29407 - (843) 556-8171 - www.gel.com

Certificate of Analysis

Report Date: April 3, 2023

SOOP00119

SOOP001

Company: Santee Cooper Address: P.O. Box 2946101

OCO3

Moncks Corner, South Carolina 29461

Ms. Jeanette Gilmetti Contact: Project: ABS Lab Analytical

Client Sample ID: AF56428 Sample ID: 613005012

Matrix: GW

Collect Date: Receive Date: 03-MAR-23

02-MAR-23 10:56 Collector: Client

Project:

Client ID:

Parameter	Qualifier	Result	Uncertainty	MDC	RL	Units	PF	DF .	Analy	st Date	Time Batch	Method
Rad Gas Flow Proportio	nal Counting											
GFPC, Ra228, Liquid "A	As Received"											
Radium-228	U	1.86	+/-1.30	2.02	3.00	pCi/L			JE1	03/29/23	1353 2397799	1
Radium-226+Radium-22	28 Calculation	n "See Pa	rent Products"									
Radium-226+228 Sum		3.02	+/-1.43			pCi/L		1	NXL1	04/03/23	1450 2397798	2
Rad Radium-226												
Lucas Cell, Ra226, Liqu	ıid "As Recei	ved"										
Radium-226		1.16	+/-0.597	0.592	1.00	pCi/L			LXP1	04/03/23	0913 2397388	3
The following Analytic	al Methods w	ere perfo	rmed:									

Method Description **Analyst Comments** EPA 904.0/SW846 9320 Modified Calculation EPA 903.1 Modified

Nominal Recovery% Surrogate/Tracer Recovery Test Result Acceptable Limits Barium-133 Tracer 74 (15%-125%) GFPC, Ra228, Liquid "As Received"

Notes:

Counting Uncertainty is calculated at the 95% confidence level (1.96-sigma).

Column headers are defined as follows:

DF: Dilution Factor Lc/LC: Critical Level DL: Detection Limit PF: Prep Factor MDA: Minimum Detectable Activity **RL**: Reporting Limit

MDC: Minimum Detectable Concentration SQL: Sample Quantitation Limit

Page 14 of 27 SDG: 613005

2040 Savage Road Charleston SC 29407 - (843) 556-8171 - www.gel.com

Certificate of Analysis

Report Date: April 3, 2023

Company: Santee Cooper Address: P.O. Box 2946101

OCO3

Moncks Corner, South Carolina 29461

Contact: Ms. Jeanette Gilmetti Project: ABS Lab Analytical

Client Sample ID: AF56421 Sample ID: 613005013

Matrix: GW

Collect Date: 01-MAR-23 14:41
Receive Date: 03-MAR-23
Collector: Client

Description

Project: SOOP00119 Client ID: SOOP001

Analyst Comments

Parameter	Qualifier	Result	Uncertainty	MDC	RL	Units	PF	DF Ana	lyst Date	Time Batch	Method
Rad Gas Flow Proportion	onal Counting										
GFPC, Ra228, Liquid ".	As Received"										
Radium-228	U	1.24	+/-0.981	1.55	3.00	pCi/L		JE1	03/29/23	1354 2397799	1
Radium-226+Radium-228 Calculation "See Parent Products"											
Radium-226+228 Sum		1.94	+/-1.10			pCi/L		1 NXI	1 04/03/23	1450 2397798	2
Rad Radium-226											
Lucas Cell, Ra226, Liqu	uid "As Recei	ved"									
Radium-226		0.704	+/-0.496	0.628	1.00	pCi/L		LXP	1 04/03/23	0913 2397388	3
The following Analytical Methods were performed:											

I	EPA 904.0/SW846 9320 Modified				
2	Calculation				
3	EPA 903.1 Modified				
Surrogate/Tracer Recove	ery Test	Result	Nominal	Recovery%	Acceptable Limits

Barium-133 Tracer GFPC, Ra228, Liquid "As Received" Result Nonlinial Recovery Acceptable Lilli 87.2 (15%-125%)

Notes:

Method

Counting Uncertainty is calculated at the 95% confidence level (1.96-sigma).

Column headers are defined as follows:

DF: Dilution Factor Lc/LC: Critical Level
DL: Detection Limit PF: Prep Factor
MDA: Minimum Detectable Activity RL: Reporting Limit

MDC: Minimum Detectable Concentration SQL: Sample Quantitation Limit

Page 15 of 27 SDG: 613005

2040 Savage Road Charleston SC 29407 - (843) 556-8171 - www.gel.com

Certificate of Analysis

Report Date: April 3, 2023

SOOP00119

SOOP001

Company: Santee Cooper Address: P.O. Box 2946101

OCO3

Moncks Corner, South Carolina 29461

Ms. Jeanette Gilmetti Contact: Project: ABS Lab Analytical

Client Sample ID: AF56424 Sample ID: 613005014

Matrix: GW

Collect Date: 01-MAR-23 13:37 Receive Date: 03-MAR-23

Collector: Client

Project:

Client ID:

Parameter	Qualifier	Result	Uncertainty	MDC	RL	Units	PF	DF Anal	yst Date	Time Batch	Method
Rad Gas Flow Proportional Counting											
GFPC, Ra228, Liquid "	As Received"										
Radium-228	U	0.794	+/-1.11	1.91	3.00	pCi/L		JE1	03/29/23	1354 2397799	1
Radium-226+Radium-228 Calculation "See Parent Products"											
Radium-226+228 Sum		1.98	+/-1.28			pCi/L		1 NXL1	04/03/23	1450 2397798	2
Rad Radium-226											
Lucas Cell, Ra226, Liqu	uid "As Recei	ved"									
Radium-226		1.18	+/-0.630	0.605	1.00	pCi/L		LXP1	04/03/23	0913 2397388	3
The following Analytic	eal Methods w	ere perfo	ormed:								

Method Description **Analyst Comments** EPA 904.0/SW846 9320 Modified

Calculation EPA 903.1 Modified

Nominal Acceptable Limits Surrogate/Tracer Recovery Test Result Recovery% Barium-133 Tracer (15%-125%) GFPC, Ra228, Liquid "As Received" 66.8

Notes:

Counting Uncertainty is calculated at the 95% confidence level (1.96-sigma).

Column headers are defined as follows:

DF: Dilution Factor Lc/LC: Critical Level DL: Detection Limit PF: Prep Factor MDA: Minimum Detectable Activity **RL**: Reporting Limit

MDC: Minimum Detectable Concentration SQL: Sample Quantitation Limit

Page 16 of 27 SDG: 613005

2040 Savage Road Charleston SC 29407 - (843) 556-8171 - www.gel.com

Certificate of Analysis

Project:

Client ID:

Analyst Comments

Report Date: April 3, 2023

SOOP00119

SOOP001

Company: Santee Cooper Address: P.O. Box 2946101

OCO3

Moncks Corner, South Carolina 29461

Contact: Ms. Jeanette Gilmetti Project: ABS Lab Analytical

Client Sample ID: AF56439 Sample ID: 613005015

Matrix: GW

Collect Date: 01-MAR-23 10:22
Receive Date: 03-MAR-23
Collector: Client

MDC RLParameter Qualifier Result Uncertainty Units PF DF Analyst Date Time Batch Method Rad Gas Flow Proportional Counting GFPC, Ra228, Liquid "As Received" Radium-228 0.580 +/-0.976 1.72 3.00 pCi/L JE1 03/29/23 1354 2397799 1 Radium-226+Radium-228 Calculation "See Parent Products" Radium-226+228 Sum 0.994 +/-1.03pCi/L NXL1 04/03/23 1450 2397798 2 Rad Radium-226 Lucas Cell, Ra226, Liquid "As Received" Radium-226 +/-0.336 0.373 1.00 pCi/L LXP1 04/03/23 0913 2397388 3

The following Analytical Methods were performed:

Description

1 EPA 904.0/SW846 9320 Modified
2 Calculation
3 EPA 903.1 Modified

Surrogate/Tracer Recovery Test Result Nominal Recovery% Acceptable Limits

Barium-133 Tracer GFPC, Ra228, Liquid "As Received" 69.6 (15%-125%)

Notes:

Method

Counting Uncertainty is calculated at the 95% confidence level (1.96-sigma).

Column headers are defined as follows:

DF: Dilution Factor Lc/LC: Critical Level
DL: Detection Limit PF: Prep Factor
MDA: Minimum Detectable Activity RL: Reporting Limit

MDC: Minimum Detectable Concentration SQL: Sample Quantitation Limit

Page 17 of 27 SDG: 613005

2040 Savage Road Charleston SC 29407 - (843) 556-8171 - www.gel.com

Certificate of Analysis

Report Date: April 3, 2023

Company: Santee Cooper Address: P.O. Box 2946101

OCO3

Moncks Corner, South Carolina 29461

Contact: Ms. Jeanette Gilmetti Project: ABS Lab Analytical

Client Sample ID: AF56441 Sample ID: 613005016

Matrix: GW

Collect Date: 01-MAR-23 11:45 Receive Date: 03-MAR-23 Collector: Client

Project: SOOP00119 Client ID: SOOP001

Parameter	Qualifier	Result	Uncertainty	MDC	RL	Units	PF	DF	Analy	st Date	Time	Batch	Method
Rad Gas Flow Proportional Counting GFPC, Ra228, Liquid "As Received" Radium-228 U 0.269 +/-0.783 1.43 3.00 pCi/L JE1 03/29/23 1354 2397799 1 Radium-226+Radium-228 Calculation "See Parent Products" Radium-226+228 Sum 1.02 +/-0.912 pCi/L 1 NXL1 04/03/23 1450 2397798 2 Rad Radium-226 Lucas Cell, Ra226, Liquid "As Received" Radium-226 0.747 +/-0.468 0.416 1.00 pCi/L LXP1 04/03/23 0931 2397388 3 The following Analytical Methods were performed:													
GFPC, Ra228, Liquid ".	ad Gas Flow Proportional Counting FPC, Ra228, Liquid "As Received" dium-228 U 0.269 +/-0.783 1.43 3.00 pCi/L JE1 03/29/23 1354 2397799 1 adium-226+Radium-228 Calculation "See Parent Products" dium-226+228 Sum 1.02 +/-0.912 pCi/L 1 NXL1 04/03/23 1450 2397798 2 ad Radium-226 acas Cell, Ra226, Liquid "As Received" dium-226 0.747 +/-0.468 0.416 1.00 pCi/L LXP1 04/03/23 0931 2397388 3 the following Analytical Methods were performed:												
Radium-228	U	0.269	+/-0.783	1.43	3.00	pCi/L			JE1	03/29/23	1354	2397799	1
Radium-226+Radium-2	28 Calculatio	n "See Pa	arent Products"										
Radium-226+228 Sum		1.02	+/-0.912			pCi/L		1	NXL1	04/03/23	1450	2397798	2
Rad Radium-226													
Radium-226+Radium-228 Calculation "See Parent Products" Radium-226+228 Sum 1.02 +/-0.912 pCi/L 1 NXL1 04/03/23 1450 2397798 2 Rad Radium-226 Lucas Cell, Ra226, Liquid "As Received" Radium-226 0.747 +/-0.468 0.416 1.00 pCi/L LXP1 04/03/23 0931 2397388 3 The following Analytical Methods were performed:													
Radium-226		0.747	+/-0.468	0.416	1.00	pCi/L			LXP1	04/03/23	0931	2397388	3
The following Analytic	al Methods w	ere perfo	ormed:										
Method	Description					F	Analys	st Co	mment	S			

1	EPA 904.0/SW846 9320 Modified				
2	Calculation				
3	EPA 903.1 Modified				
Surrogate/Tracer Recov	ery Test	Result	Nominal	Recovery%	Acceptable Limits

91.4 Barium-133 Tracer GFPC, Ra228, Liquid "As Received" (15%-125%)

Notes:

Counting Uncertainty is calculated at the 95% confidence level (1.96-sigma).

Column headers are defined as follows:

DF: Dilution Factor Lc/LC: Critical Level DL: Detection Limit PF: Prep Factor MDA: Minimum Detectable Activity **RL**: Reporting Limit

MDC: Minimum Detectable Concentration **SQL**: Sample Quantitation Limit

Page 18 of 27 SDG: 613005

2040 Savage Road Charleston, SC 29407 - (843) 556-8171 - www.gel.com

QC Summary

Report Date: April 3, 2023

Santee Cooper P.O. Box 2946101

OCO3

Moncks Corner, South Carolina

Contact: Ms. Jeanette Gilmetti

Workorder: 613005

Parmname	NOM	Sample	Qual	QC	Units	RPD%	REC%	Range	Anlst	Date Time
Rad Gas Flow Batch 2397799 ———										
QC1205344410 613005001 DUP										
Radium-228	U	-0.249 +/-0.781		1.56 +/-1.00	pCi/L	276*		(0% - 100%)	JE1	03/29/23 13:53
	Uncertainty	+/-0./81		+/-1.00						
QC1205344411 LCS										
Radium-228	62.2			70.2	pCi/L		113	(75%-125%)		03/29/23 13:53
	Uncertainty			+/-4.54						
QC1205344409 MB										
Radium-228			U	0.121	pCi/L					03/29/23 13:53
	Uncertainty			+/-1.00	1					
Rad Ra-226										
Batch 2397388 ——										
QC1205343453 613005001 DUP Radium-226		0.644		1.16	pCi/L	57.3		(0% - 100%)	I XP1	04/03/23 09:48
Radium 220	Uncertainty	+/-0.455		+/-0.620	pel/E	37.3		(070 10070)	L211 1	04/03/23 07.40
	j									
QC1205343455 LCS	06.5			20.5	G: /r		446	(550/ 1050/)		0.4/0.0/0.0 0.0 40
Radium-226	26.5			30.7 +/-2.99	pCi/L		116	(75%-125%)		04/03/23 09:48
	Uncertainty			⊤/ - ∠.99						
QC1205343452 MB										
Radium-226			U	0.167	pCi/L					04/03/23 09:48
	Uncertainty			+/-0.305						
OC1205343454 613005001 MS										
Radium-226	132	0.644		101	pCi/L		75.5	(75%-125%)		04/03/23 09:48
	Uncertainty	+/-0.455		+/-11.8	•			,		

Notes:

Counting Uncertainty is calculated at the 95% confidence level (1.96-sigma).

The Qualifiers in this report are defined as follows:

U Analyte was analyzed for, but not detected above the MDL, MDA, MDC or LOD.

J Value is estimated

X Consult Case Narrative, Data Summary package, or Project Manager concerning this qualifier

H Analytical holding time was exceeded

< Result is less than value reported

Page 19 of 27 SDG: 613005

Page 1 of 2

2040 Savage Road Charleston, SC 29407 - (843) 556-8171 - www.gel.com

QC Summary

Workorder: 613005

Page 2 of 2

Parmname NOM Sample Qual QC Units RPD% REC% Range Anlst Date Time

>	Result is greater than value reported	

- UI Gamma Spectroscopy--Uncertain identification
- BD Results are either below the MDC or tracer recovery is low
- h Preparation or preservation holding time was exceeded
- R Sample results are rejected
- ^ RPD of sample and duplicate evaluated using +/-RL. Concentrations are <5X the RL. Qualifier Not Applicable for Radiochemistry.
- N/A RPD or %Recovery limits do not apply.
- ND Analyte concentration is not detected above the detection limit
- M if above MDC and less than LLD
- NJ Consult Case Narrative, Data Summary package, or Project Manager concerning this qualifier
- FA Failed analysis.
- UJ Gamma Spectroscopy--Uncertain identification
- Q One or more quality control criteria have not been met. Refer to the applicable narrative or DER.
- K Analyte present. Reported value may be biased high. Actual value is expected to be lower.
- UL Not considered detected. The associated number is the reported concentration, which may be inaccurate due to a low bias.
- L Analyte present. Reported value may be biased low. Actual value is expected to be higher.
- N1 See case narrative
- Y Other specific qualifiers were required to properly define the results. Consult case narrative.
- ** Analyte is a Tracer compound
- M REMP Result > MDC/CL and < RDL
- J See case narrative for an explanation

N/A indicates that spike recovery limits do not apply when sample concentration exceeds spike conc. by a factor of 4 or more or %RPD not applicable.

- ^ The Relative Percent Difference (RPD) obtained from the sample duplicate (DUP) is evaluated against the acceptance criteria when the sample is greater than five times (5X) the contract required detection limit (RL). In cases where either the sample or duplicate value is less than 5X the RL, a control limit of +/- the RL is used to evaluate the DUP result.
- * Indicates that a Quality Control parameter was not within specifications.

For PS, PSD, and SDILT results, the values listed are the measured amounts, not final concentrations.

Where the analytical method has been performed under NELAP certification, the analysis has met all of the requirements of the NELAC standard unless qualified on the QC Summary.

Page 20 of 27 SDG: 613005

Radiochemistry Technical Case Narrative Santee Cooper SDG #: 613005

Product: Radium-226+Radium-228 Calculation

Analytical Method: Calculation

Analytical Procedure: GL-RAD-D-003 REV# 45

Analytical Batch: 2397798

The following samples were analyzed using the above methods and analytical procedure(s).

GEL Sample ID#	Client Sample Identification
613005001	AF56433
613005002	AF56435
613005003	AF56436
613005004	AF56437
613005005	AF56438
613005006	AF56402
613005007	AF56403
613005008	AF56404
613005009	AF56434
613005010	AF56414
613005011	AF56423
613005012	AF56428
613005013	AF56421
613005014	AF56424
613005015	AF56439
613005016	AF56441

The samples in this SDG were analyzed on an "as received" basis.

Data Summary:

There are no exceptions, anomalies or deviations from the specified methods. All sample data provided in this report met the acceptance criteria specified in the analytical methods and procedures for initial calibration, continuing calibration, instrument controls and process controls where applicable.

Product: GFPC, Ra228, Liquid

<u>Analytical Method:</u> EPA 904.0/SW846 9320 Modified <u>Analytical Procedure:</u> GL-RAD-A-063 REV# 5

Analytical Batch: 2397799

The following samples were analyzed using the above methods and analytical procedure(s).

GEL Sample ID#	Client Sample Identification
613005001	AF56433
613005002	AF56435
613005003	AF56436

Page 21 of 27 SDG: 613005

613005004	AF56437
613005005	AF56438
613005006	AF56402
613005007	AF56403
613005008	AF56404
613005009	AF56434
613005010	AF56414
613005011	AF56423
613005012	AF56428
613005013	AF56421
613005014	AF56424
613005015	AF56439
613005016	AF56441
1205344409	Method Blank (MB)
1205344410	613005001(AF56433) Sample Duplicate (DUP)
1205344411	Laboratory Control Sample (LCS)

The samples in this SDG were analyzed on an "as received" basis.

Data Summary:

All sample data provided in this report met the acceptance criteria specified in the analytical methods and procedures for initial calibration, continuing calibration, instrument controls and process controls where applicable, with the following exceptions.

Quality Control (QC) Information

Duplication Criteria between QC Sample and Duplicate Sample

The Sample and the Duplicate, (See Below), did not meet the relative percent difference requirement; however, they do meet the relative error ratio requirement with the value listed below.

Sample	Analyte	Value
1205344410 (AF56433DUP)	Radium-228	RPD 276* (0.0%-100.0%) RER 2.65 (0-3)

<u>Product:</u> Lucas Cell, Ra226, Liquid <u>Analytical Method:</u> EPA 903.1 Modified

Analytical Procedure: GL-RAD-A-008 REV# 15

Analytical Batch: 2397388

The following samples were analyzed using the above methods and analytical procedure(s).

GEL Sample ID#	Client Sample Identification
613005001	AF56433
613005002	AF56435
613005003	AF56436
613005004	AF56437
613005005	AF56438
613005006	AF56402
613005007	AF56403

613005008	AF56404
613005009	AF56434
613005010	AF56414
613005011	AF56423
613005012	AF56428
613005013	AF56421
613005014	AF56424
613005015	AF56439
613005016	AF56441
1205343452	Method Blank (MB)
1205343453	613005001(AF56433) Sample Duplicate (DUP)
1205343454	613005001(AF56433) Matrix Spike (MS)
1205343455	Laboratory Control Sample (LCS)

The samples in this SDG were analyzed on an "as received" basis.

Data Summary:

All sample data provided in this report met the acceptance criteria specified in the analytical methods and procedures for initial calibration, continuing calibration, instrument controls and process controls where applicable, with the following exceptions.

Miscellaneous Information

Additional Comments

The matrix spike, 1205343454 (AF56433MS), aliquot was reduced to conserve sample volume.

Certification Statement

Where the analytical method has been performed under NELAP certification, the analysis has met all of the requirements of the NELAC standard unless otherwise noted in the analytical case narrative.

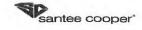
Page 23 of 27 SDG: 613005

Contract Lab Info:

Contract Lab Due Date (Lab Only):

612999 / 613005

Send report to lcwillia@santeecooper.com & sibrown@santeecooper.com & sibrown.com & <a hr


Chain of Custody

Santee Cooper One Riverwood Drive Moneks Comer, SC 29461 Phone: (843)761-8000 Ext. 5148 Fax: (843)761-4175

Custo	mer Email,	/Report Recipie	nt:	Date R	esults Ne	eded b	y:		Pr	oject/	Task/l	Jnit #:	Rerun request	for a	ny fla	gged	JQC
LCH	NULLA	@santeec	ooper.com					125	715	JM	02.0	9.601.1	36500 Yes	No			
														£	Analysi	s Gro	<u>up</u>
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	orks ID # nal use	Sample Locatio Description	n/	Collection Date	Collection Time	Sample Collector	Total # of containers	Bottle type: (Glass-G/Plastic-P)	Grab (G) or Composite (C)	Matrix(see below)	Preservative (see	Method Reportin Misc. sa Any oth	ng limit Imple info	ALKALINITY	Suchbe	TOC/POC	RAD 226/228
AF	26433	WLF -AI-	- 1	2/23/23	1258	ZDM	6	Pla	G	GW	朱	* SUUFID	E HAS SHORT HOLD	1.	1	2	2
1	35	WLF - AI -	3		ग्राप्	1				1						1	
	36	WLF-AI-	4		1019							* PRESE	RATIVES				T
	37	WLF - AI -	4-D		1024							TOC- H2S	DY ZINC ACETATE, NOUTH	П			
丁	33	WLF-AI-			1431	1	1		1	1		RAD-HNI		\prod	\dagger	T	\parallel
4=5	6402	WAP-9		2/27/28	1247	ZDM	1		1	1	1				\dagger	\parallel	\dagger
1	03	WAT-10		1	0957	1						ALK - TOT	HL, BICARB, CARB	\dagger	\dagger		\parallel
	04	WAP-10 D			1062		\top		+	T		1.54	ing Diolity - Heb	\dagger	\dagger	\dagger	\parallel
1	434	WLE-AI-		1	1544		_	1	1		1	DOC-NOT	FIELD FIVERED	1	Ţ	1	1
											L						
Reli	nquished by:	Employee#	Date	Time	Receiv	red by:		Employee	#	Date		Time	Sample Receiving (Internal TEMP (°C):	Use Oi Initia	nly) il:		
V	nguished by:	35594 Employee#	3/3/23 Date	Gyo Time	Receiv	red by:		SEL Employee	-	3/3/2 Date		Time	Correct pH: Yes No				
100		GEL	3-3/21	Stime	M	e	£(de	0	309	23	550	Preservative Lot#:				
Relii	nquished by:	Employee#	Date	Vilme	Kecen	ed by:		Employee	#	Date		Time	Date/Time/Init for preserv	ative:			
☐ Ag ☐ AI ☐ As ☐ B ☐ Ba ☐ Ca ☐ Cd ☐ Co ☐ Cr	C C Fe Fe K Li M M M Na	□ METALS (all) Nutrients □ Cu □ Sb □ Fe □ Se □ DOC □ Naphthalene □ TP/TPO4 □ NH3-N □ Mg □ Ti □ Mg □ Ti □ Mn □ Ti □ Mo □ V □ No3 □ Dissolved A □ Ni □ Hg □ Pb □ CrVI			lene AA rease oliform ed As ed Fe		Wallbo Gyp belo A To To So Pu Su Su PH	sum (a w) IM OC tal meta luble M rity (Ca Moistur lifites lorides rticle Si	alls letals (SO4)	0	Coal Ultimate Moisture LOI Ash Sulfur BTUs Volatile Matter CHN Other Tests: XRF Scan HGI Fineness Particulate Matter Oil & Grease As			Oil Trans. Oil Qual. Moisture Color Acidity Dielectric Strength FIFT Dissolved Gases Used Oil Hashpoint Metals in oil (As,Cd,Cr,Ni,PbHg) TX GOFER			

Chain of Custody

Santee Cooper One Riverwood Drive Moncks Comer, SC 29461 Phone: (843)761-8000 Ext. 5148 Fax: (843)761-4175

	mer Email	/Report Recipi @santeed	ent: cooper.com		esults Ne			125				Jnit#: 09.60).1/36	Rerun request	for an	ıy fla	gged	QC
														A	nalysi	s Grou	<u>ıp</u>
	orks ID # nal use	Sample Location Description	on/	Collection Date	Collection Time	Sample Collector	Total # of containers	Bottle type: (Glass-G/Plastic-P)	Grab (G) or Composite (C)	Matrix(see below)	Preservative (see	• Method # • Reporting I • Misc. samp • Any other I	ole info	ALKALINITY	SULFIPE	TDC/DOC	RAD 226/228
AF	56414	WA-P-15		3/2/23	1246	ZDM	6	P/G	G	GW	*	4 SULFIDE	HAS SHORT HOLD	4	ı	2	2
1	23	WAP - 23	3		0952		1	1	1						1	1	1
1	28	WAP-2-	1		1056	Ī	1		I	1	I	* PRESER	VATIVES				
	6421	WAP-21		3/1/23	1441	1	,	1	1		1	TOC- H250	4 NC ACETATE, NJOH	П			T
1		,		1	1337		H	$\dagger \uparrow$	II	H	T	RAD-HNOT	Colonia Coloni	H	IT	\dagger	
	24	1 24		++				+	+		H	24°C		+	+	+	+
	39	WLF-A2-	1	+	1022	\vdash	\vdash	+		\vdash	-			+	H	+	+
	. 41	WLF-A2-	2		1145	7	7	1	7	1	1	ALKAL- TOTA	HL, BICARB, CARB	1	1	1	_
												DOC-1407 F1	ELD FILTERED				
F7310 200				Time	Parati	ved by:	enule:	Faralana	.# 1	Date	15/65		mple Receiving (Internal				
san	inquished by:	35594	3/3/23	OGyo Time	1	ved by:		Employee # Date GEL 3/3/23 Employee # Date			3	TEMP (°C): Initial: Correct pH: Yes No Preservative Lot#:				-	
Rel	inquished by:	Employee#	3-3-2 3 Date	1540 Uline	Recei	ved by:	1 ()	Employe	e#	Date	a5	Time	te/Time/Init for preserv	ative:			
	□М	ETALS (all)	Nut	rionts	BAI	sc.		G	ypsui	m			Flyash			il	
	g 🗆 C	u □ Sb	□ TC		BTEX	SC.		□ Wallb	oard			Coal Ultimate	☐ Ammonia		ans. C	oil Qu	
				TPO4	□ Naphtha □ THM/H				psum(a ow)	all	3	☐ % Moisture ☐ Ash	□ LOI □ % Carbon	57	%Mo Color		
□В	οL	ENGLISH MEANING	□NI	A DOOR OF THE REAL PROPERTY.	□ VOC □ Oil & C	rease		□ AIM □ TOC		□ Sulfur	☐ Mineral	DI		y ic Stree	ngth		
□ Ba		fg □ Ti	□ F □ Cl	- 33	☐ E. Coli ☐ Total C			O T	otal met		· F	☐ BTUs ☐ Volatile Matte	Analysis □ Sieve		IFT Dissol	ved G	ases
□Ве	. □ N	ín □ Tl	DNO		□рН			□ Pt	oluble N urity (Ca	aSO4)	1	□ CHN	☐ % Moisture	U	sed O	il	
□ Ca		fo □ V	□ Br □ NO		☐ Dissolv				Moistu ulfites	ire	1 10 100	Other Tests: XRF Scan	NPDES	E		s in oil	
□Сс	I DN	a □ Zn	USC		□ Rad 220	5		□ pl	Н		E	HGI	Oil & Grease			d,Cr,N	
□Сс	ο DN		100 PEA		□ Rad 228				hlorides article S		10 Dist. 20	Fineness Particulate Matter	□As		TX		
□ Cr	□P	b □ CrV		-				□ Sulfu	r				□TSS	G	OFER		-500

Received By, MVH Date Received Pedita Express Fedita Ground UPS Field Service Course) Other Carrier and Tracking Number Suspected Hazned Information \$\frac{\pi}{2} \frac{\pi}{2} \cdot PiPet Cours is 100cpm on uniques and tracked "indicactive", contact the Radiation Safety Group for factor investigation. AlsSingpod as a DOT Haznedson? Did the RSO clearity the samples are to be received an anticourtee? Obd the RSO clearity the samples are observed in included with the property of the property	Client; Y			(CT)	SAMPLE RECEIPT & REVIEW FORM	
Carrier and Tracking Number Suspected Hazard Information Suspected Hazard Information ASShipped as a DOT Hazardone? ASSHIPPED ASSOCIATION ASSOCIAT						
Simperted Hazard Information	Received By: 1919 1			Dat	Circle Applicable;	
AjShipped as a DOT Hazadous? Trun7910, it the Redisoutive Shipped: If UN7910, it the Redisoutive Shipment Survey Compliant? Yes_No_ OCC notation or malinactive stickets on continens equal client designation. Chairman Net Courts Chearved* (Observed Counts - Area Background Counts): Chairman Net Courts Chearved* (Observed Counts - Area Background Counts): Chairman Net Courts Chearved* (Observed Counts - Area Background Counts): Chairman Net Courts Chearved* (Observed Counts - Area Background Counts): Chairman Net Courts Chearved* (Observed Counts - Area Background Counts): Chairman Net Courts Chearved* (Observed Counts - Area Background Counts): Chairman Net Courts Chearved* (Observed Counts - Area Background Counts): Chairman Net Courts Chearved* (Observed Counts - Area Background Counts): Chairman Net Courts Chearved* (Observed Counts - Area Background Counts): Chairman Net Courts Chearved* (Observed Counts - Area Background Counts): Chairman Net Courts Chearved* (Observed Counts - Area Background Counts): Chairman Net Courts Chearved* (Observed Counts - Area Background Counts): Chairman Net Courts Chearved* (Observed Counts - Area Background Counts): Chairman Net Courts Chearved* (Observed Counts - Area Background Counts): Chairman Net Courts Chearved* (Observed Counts - Area Background Counts): Chairman Net Courts Chearved* (Observed Counts - Area Background Counts): Chairman Net Courts Chearved* (Observed Counts - Area Background Counts): Chairman Net Courts Chearved* (Observed Counts - Area Background Counts): Chairman Net Courts Chearved* (Observed Counts - Area Background Counts): Chairman Net Courts Chearved* (Observed Counts - Area Background Counts): Chairman Net Courts Chearved* (Observed Counts - Area Background Counts): Chairman Net Courts Chearved* (Observed Counts - Area Background Counts): Chairman Net Courts Chearved* (Observed Counts - Area Background Counts): Chairman Net Courts Chearved* (Observed Counts - Area Background Counts): Chairman Net Courts Chearved* (Obs	Carrier and Tracking Number				FedEx Express FedEx Ground UPS Field Service Courier Other	
Al Shipped at a DOT Hazaclour? If UN29(0, Is the Radioactive Shipment Survey Compliant? Yes_No_ COC notation or milinerive stickers on containers equal client designation. COC notation or milinerive stickers on containers equal client designation. COC notation or milinerive stickers on containers equal client designation. CoC notation or milinerive stickers on containers equal client designation. Chair of Radioactive? COC notation or milinerive stickers on containers equal client designation. Chair of Radioactive? COC notation or milinerive stickers on containers equal client designation. If Do the Radioactive Shipment Survey Compliant? Yes_No_ Chair of Radioactive Shipment Survey Compliant? Yes_No_ Chair of Radioactive Shipment Survey Compliant? Coc Coccasion or hazard falsely on continiers equal client designation. If Do the Radioactive Shipment Survey Compliant? Yes_No_ Chair of Radioactive Shipment Survey Compliant? Coccasion or hazard falsely on continiers equal client designation. If Do the Radioactive Shipment Survey Compliant? Yes_No_ Shipping containers received intact and sealed? Coccasion or hazard falsely on continiers equal client designation. If Do the Radioactive Shipment Survey Compliant? Yes_No_ Shipping containers received intact and sealed? Chair of Current Applicable: Scalab broken Duranged container Leaking comminer Other (describe) Samples requiring cold preservation within (0 & dose, C.)?* Circle Applicable: Scalab broken Duranged container Leaking comminer Other (describe) TEMP: Temperature power served served in If, Paplicable; Samples requiring chemical preservation within the Requiring chemical preservation and proper pH? March Survey Country and Survey Country of the Radioactive State of R	Suspected Hazard Information	Yes	S _S	*1f1	Net Counts > 100cpm on samples not marked "radioactive", contact the Radiation Safety Group for further investigation.	
final times RSO classify the samples as redioactive? Clust the RSO identify possible baracters? Did the RSO identify possible baracters? Final times are contained as a sample as the properties of the client designate samples are hazardose? OCO notation or bazard labels on containers equal client designation. If D or E is yes, select Hazards below. PCB's Flammable Foreign Soil RCRA Asbeatos Beryllium Other: Sample Receipt Criteria Simple Receipt Criteria Simple Receipt Criteria Cricle Applicable: Scala broken Damaged consular Leaking container Other (describe) Cricle Applicable: Clian contacted and properties of the Cricle Applicable: Scala broken Damaged consular Leaking container Other (describe) Cricle Applicable: Clian contacted and provided COC COC created upon receipt with shipment? Samples requiring cold preservation within (0 ≤ 6 deg. C)?** Temperature Device Serial #; [#221] Scoondary Temperature Device Serial #; [#222] Samples requiring chemical preservation alphanes of the containers intact and scaled? Temperature Device Serial #; [#221] Samples requiring chemical preservation alphanes of the containers and passed on IR preservation alphanes of the containers and passed on IR preservation alphanes of the containers and passed on IR preservation alphanes of the containers and passed on IR preservation alphanes of the containers and passed on the containers and passed containers of the containers and passed on the containers and passed containers and passe	A)Shipped as a DOT Hazardous?		~	/laz:	ard Class Shipped: UN#: If UN2910, Is the Radioactive Shipment Survey Compliant? Yes No	
Consider or hazard tabels on continers equal client designation. Consider or hazard tabels on continers equal client designation.			V	ccc	C notation or radioactive stickers on containers equal client designation.	
Simple Receipt Criteria S Sea Comments/Qualiffers (Required for Non-Conforming Hens)			V	Max	cimum Net Counts Observed* (Observed Counts - Area Background Counts):CPMy mR/Hr Classified as: Rad 1	
Sample Receipt Criteria Sample Receipt C	D) Did the client designate samples are hazardous?		V	<u> </u>		
Sample Receipt Criteria Shipping containers received intact and scaled? Chain of custody documents included with shipment? Chain of custody documents included with shipment? Samples requiring cold preservation within (0 ≤ 6 deg. C)?* Date Applicable: Seals broken Damaged container Lenking container Other (describe) TEMP: Temperature gun? Samples requiring chemical preservation at proper pH? WAACS COO3 Samples requiring chemical preservation at proper pH? WAACS COO3 Samples requiring chemical preservation at proper pH? WAACS COO3 Samples received within holding time? Sample ID's on COC match ID's on containers affected: Date & time on COC match date & time on bottles? ID's and containers affected: Circle Applicable: No containers No times on containers COC missing info Other (describe) Circle Applicable: No containers count on COC Other (describe) Circle Applicable: No containers count on COC Other (describe) Circle Applicable: No containers count on COC Other (describe) Circle Applicable: No containers count on COC Other (describe)	E) Did the RSO identify possible hazards?		 '	עייין		
1 Schipping containers received intact and scaled? 2 Chain of custody documents included with shipment? 3 Samples requiring cold preservation within (0 ≤ 6 deg. C)?* 4 Daily check performed and passed on IR remperatures for requiring themical preservation at proper pH?		8		9	Comments/Qualifiers (Peaning for Non-Conforming Hones)	
with shipment? 3 Samples requiring cold preservation within (0 ≤ 6 deg. C)?** 4 Daily check performed and passed on IR temperature gua? 5 Sample containers intact and sealed? 6 Samples requiring chemical preservation at proper pH?	Shipping containers received intact and	V				
*all temperatures are recorded in Cetsius *all temperature and passed on IR temperature gun? *all temperature Device Serial #; [R2-21] Scoondary Temperature Device Serial #; [R2-21] Sample Disance Only (Getal Analysis) If Preservation Analysis Preservation Preservation Preservation Preservation Preservat	2.1	~				
temperature gun? Secondary Temperature Device Serial # (If Applicable): Circle Applicable: Seals broken Damaged container Leaking container Other (describe) Sample containers intact and sealed? Sample containers intact and sealed? Sample D's and Containers Affected: The Preservation added. Lodg: The Social Preservation at proper pH? MAGS CODS If Preservation added. Lodg: The Social Preservation at proper pH? MAGS CODS If Preservation added. Lodg: The Social Preservation added. Lo		\checkmark			1	
Samples requiring chemical preservation at proper pH? MACS Cop3 The second of proper pH? MACS Cop3 T		\vee				
Do any samples require Volatile Analysis? No NA (If unknown, select No) Are liquid VOA vials contain acid preservation? Yes No NA (If unknown, select No) Are liquid VOA vials free of headspace? Yes No NA (If unknown, select No) Are liquid VOA vials free of headspace? Yes No NA (If unknown, select No) Are liquid VOA vials contain acid preservation? Yes No NA (If unknown, select No) Are liquid VOA vials contain acid preservation? Yes No NA (If unknown, select No) Are liquid VOA vials contain acid preservation? Yes No NA (If unknown, select No) Are liquid VOA vials contain acid preservation? Yes No NA (If unknown, select No) Are liquid VOA vials contain acid preservation? Yes No NA (If unknown, select No) Are liquid VOA vials contain acid preservation? Yes No NA (If unknown, select No) Are liquid VOA vials contain acid preservation? Yes No NA (If unknown, select No) Are liquid VOA vials contain acid preservation? Yes No NA (If unknown, select No) Are liquid VOA vials contain acid preservation? Yes No NA (If unknown, select No) Are liquid VOA vials contain acid preservation? Yes No NA (If unknown, select No) Are liquid VOA vials contain acid preservation? Yes No NA (If unknown, select No) Are liquid VOA vials contain acid preservation? Yes No NA (If unknown, select No) Are liquid VOA vials contain acid preservation? Yes No NA (If unknown, select No NA (If unknown	5 Sample containers intact and sealed?	V				
Do any samples require Volatile Analysis? No NA (If unknown, select No) Are liquid VOA vials contain acid preservation? Yes No NA (If unknown, select No) Are liquid VOA vials containers affected: ID's and containers affected: ID's and containers affected: Date & time on COC match date & time on bottles? Date & time on COC match date & time on bottles? Number of containers received match number indicated on COC? Are sample containers identifiable as	6 Samples requiring chemical preservation at proper pH? WV+63-06-33	V	/		Sample ID's and Container's Affected 50428, AF50421, AF56403, AF56402 If Preservation added, Loth L3-14-13	17F56
8 Samples received within holding time? 9 Sample ID's on COC match ID's on bottles? 10 Date & time on COC match date & time on bottles? 11 Number of containers received match number indicated on COC? 12 Are sample containers identifiable as					Do liquid VOA vials contain acid preservation? YesNoNA(If unknown, select No) Are liquid VOA vials free of headspace? YesNoNA	
bottles? Date & time on COC match date & time on bottles? Number of containers received match number indicated on COC? Are sample containers identifiable as	8 Samples received within holding time?	V			ID's and tests affected:	
on bottles? Number of containers received match number indicated on COC? Are sample containers identifiable as	u i ·	V			ID's and containers affected:	
number indicated on COC? Are sample containers identifiable as	111 1			V	Circle Applicable: No dates on containers No times on containers COC missing info Other (describe) The Second Street Cock of the Cock of	ortes.
12 Are sample containers identifiable as	number indicated on COC?	~			Circle Applicable: No container edunt on COC Other (describe)	1,10
COC form is properly signed in Circle Applicable: Not religious shed. Other (describe)	GEL provided by use of GEL labels?				Circle Applicable: Not relinquished Other (describe)	
relinquished/received sections? Comments (Use Continuation Form if needed):	relinquished/received sections?					
	PM (or PM	A) rev		······································	als: Date 3-17-23 Page Lof L	

List of current GEL Certifications as of 03 April 2023

State	Certification
Alabama	42200
Alaska	17-018
Alaska Drinking Water	SC00012
Arkansas	88-0651
CLIA	42D0904046
California	2940
Colorado	SC00012
Connecticut	PH-0169
DoD ELAP/ ISO17025 A2LA	2567.01
Florida NELAP	E87156
Foreign Soils Permit	P330-15-00283, P330-15-00253
Georgia	SC00012
Georgia SDWA	967
Hawaii	SC00012
Idaho	SC00012
Illinois NELAP	200029
Indiana	C-SC-01
Kansas NELAP	E-10332
Kentucky SDWA	90129
Kentucky Wastewater	90129
Louisiana Drinking Water	LA024
Louisiana NELAP	03046 (AI33904)
Maine	2019020
Maryland	270
Massachusetts	M-SC012
Massachusetts PFAS Approv	Letter
Michigan	9976
Mississippi	SC00012
Nebraska	NE-OS-26-13
Nevada	SC000122023-4
New Hampshire NELAP	2054
New Jersey NELAP	SC002
New Mexico	SC002 SC00012
New York NELAP	11501
North Carolina	233
North Carolina SDWA	45709
North Dakota	R-158
Oklahoma	2022-160
Pennsylvania NELAP	68-00485
Pennsylvania NELAP Puerto Rico	SC00012
S. Carolina Radiochem	10120002
Sanitation Districts of L	9255651
South Carolina Chemistry	10120001
Tennessee Teves NEL A P	TN 02934
Texas NELAP	T104704235-22-20
Utah NELAP	SC000122022-37
Vermont	VT87156
Virginia NELAP	460202
Washington	C780

gel.com

March 20, 2023

Ms. Jeanette Gilmetti Santee Cooper P.O. Box 2946101 OCO3 Moncks Corner, South Carolina 29461

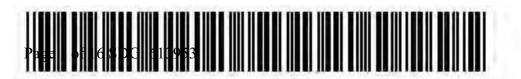
Re: ABS Lab Analytical Work Order: 613953

Dear Ms. Gilmetti:

GEL Laboratories, LLC (GEL) appreciates the opportunity to provide the enclosed analytical results for the sample(s) we received on March 10, 2023. This original data report has been prepared and reviewed in accordance with GEL's standard operating procedures.

The samples were delivered with proper chain of custody documentation and signatures. All sample containers arrived without any visible signs of tampering or breakage. There are no additional comments concerning sample receipt.

Test results for NELAP or ISO 17025 accredited tests are verified to meet the requirements of those standards, with any exceptions noted. The results reported relate only to the items tested and to the sample as received by the laboratory. These results may not be reproduced except as full reports without approval by the laboratory. Copies of GEL's accreditations and certifications can be found on our website at www.gel.com.


Our policy is to provide high quality, personalized analytical services to enable you to meet your analytical needs on time every time. We trust that you will find everything in order and to your satisfaction. If you have any questions, please do not hesitate to call me at (843) 556-8171, ext. 4289.

Sincerely,

Heather Millar for Julie Robinson Project Manager

Purchase Order: 398684

Enclosures

2040 Savage Road Charleston SC 29407 - (843) 556-8171 - www.gel.com

Certificate of Analysis Report for

SOOP001 Santee Cooper

Client SDG: 613953 GEL Work Order: 613953

The Qualifiers in this report are defined as follows:

- * A quality control analyte recovery is outside of specified acceptance criteria
- ** Analyte is a Tracer compound
- ** Analyte is a surrogate compound
- U Analyte was analyzed for, but not detected above the MDL, MDA, MDC or LOD.

Where the analytical method has been performed under NELAP certification, the analysis has met all of the requirements of the NELAC standard unless qualified on the Certificate of Analysis.

The designation ND, if present, appears in the result column when the analyte concentration is not detected above the limit as defined in the 'U' qualifier above.

This data report has been prepared and reviewed in accordance with GEL Laboratories LLC standard operating procedures. Please direct any questions to your Project Manager, Julie Robinson.

Reviewed by

Page 2 of 16 SDG: 613953

2040 Savage Road Charleston SC 29407 - (843) 556-8171 - www.gel.com

Certificate of Analysis

Project:

Client ID:

Report Date: March 20, 2023

SOOP00119

SOOP001

Company: Santee Cooper Address: P.O. Box 2946101

OCO3

Moncks Corner, South Carolina 29461

Contact: Ms. Jeanette Gilmetti Project: ABS Lab Analytical

Client Sample ID: AF56414
Sample ID: 613953001
Matrix: Ground Water
Collect Date: 02-MAR-23 12:46
Receive Date: 10-MAR-23

Collector: Client

Parameter	Qualifier	Result	DL	RL	Units	PF	DF .	Analyst Date	Time Batch	Method
Nutrient Analysis										
EPA 353.2 Nitrogen,	Nitrate/Nitrite '	'As Received"								
Nitrogen, Nitrate/Nitrite	U	ND	0.0700	0.200	mg/L		10	AXH3 03/13/23	0951 2395701	1
The following Analy	tical Methods w	vere performed:								
3.6.4.4	ъ						~			

Method Description Analyst Comments

1 EPA 353.2 Low Level

Notes:

Column headers are defined as follows:

DF: Dilution Factor Lc/LC: Critical Level
DL: Detection Limit PF: Prep Factor
MDA: Minimum Detectable Activity RL: Reporting Limit

MDC: Minimum Detectable Concentration SQL: Sample Quantitation Limit

Page 3 of 16 SDG: 613953

2040 Savage Road Charleston SC 29407 - (843) 556-8171 - www.gel.com

Certificate of Analysis

Report Date: March 20, 2023

SOOP00119

SOOP001

Project:

Client ID:

Company: Santee Cooper Address: P.O. Box 2946101

OCO3

Moncks Corner, South Carolina 29461

Contact: Ms. Jeanette Gilmetti Project: ABS Lab Analytical

Client Sample ID: AF56423
Sample ID: 613953002
Matrix: Ground Water
Collect Date: 02-MAR-23 09:52
Receive Date: 10-MAR-23

Collector: Client

Parameter	Qualifier	Result	DL	RL	Units	PF	DF Analyst Date	Time Batch	Method
Nutrient Analysis									
EPA 353.2 Nitrogen	, Nitrate/Nitrite	"As Received"							
Nitrogen, Nitrate/Nitrite	U	ND	0.0700	0.200	mg/L		10 AXH3 03/13/23	0957 2395701	1
The following Anal	ytical Methods v	vere performed:							

Method Description Analyst Comments

1 EPA 353.2 Low Level

Notes:

Column headers are defined as follows:

DF: Dilution Factor Lc/LC: Critical Level
DL: Detection Limit PF: Prep Factor
MDA: Minimum Detectable Activity RL: Reporting Limit

MDC: Minimum Detectable Concentration SQL: Sample Quantitation Limit

Page 4 of 16 SDG: 613953

2040 Savage Road Charleston SC 29407 - (843) 556-8171 - www.gel.com

Certificate of Analysis

Report Date: March 20, 2023

SOOP00119

SOOP001

Project:

Client ID:

Company: Santee Cooper Address: P.O. Box 2946101

OCO3

Moncks Corner, South Carolina 29461

Contact: Ms. Jeanette Gilmetti Project: ABS Lab Analytical

Client Sample ID: AF56428
Sample ID: 613953003
Matrix: Ground Water
Collect Date: 02-MAR-23 10:56
Receive Date: 10-MAR-23

Collector: Client

Parameter	Qualifier	Result	DL	RL	Units	PF	DF Analyst Date Time Batch	Method
Nutrient Analysis								
EPA 353.2 Nitrogen,	, Nitrate/Nitrite '	'As Received"						
Nitrogen, Nitrate/Nitrite	U	ND	0.0700	0.200	mg/L		10 AXH3 03/13/23 0958 2395701	1
The following Analy	ytical Methods w	vere performed:						
							~	

Method Description Analyst Comments

EPA 353.2 Low Level

Notes:

Column headers are defined as follows:

DF: Dilution Factor Lc/LC: Critical Level
DL: Detection Limit PF: Prep Factor
MDA: Minimum Detectable Activity RL: Reporting Limit

MDC: Minimum Detectable Concentration SQL: Sample Quantitation Limit

Page 5 of 16 SDG: 613953

2040 Savage Road Charleston SC 29407 - (843) 556-8171 - www.gel.com

Certificate of Analysis

Report Date: March 20, 2023

SOOP00119

SOOP001

Project:

Client ID:

Company: Santee Cooper Address: P.O. Box 2946101

OCO3

Moncks Corner, South Carolina 29461

Contact: Ms. Jeanette Gilmetti Project: ABS Lab Analytical

Client Sample ID: AF56406
Sample ID: 613953004
Matrix: Ground Water
Collect Date: 09-MAR-23 10:29
Receive Date: 10-MAR-23

Collector: Client

Parameter	Qualifier	Result	DL	RL	Units	PF	DF Analyst Date	Time Batch Method
Nutrient Analysis								
EPA 353.2 Nitrogen	, Nitrate/Nitrite	"As Received"						
Nitrogen, Nitrate/Nitrite	U	ND	0.0700	0.200	mg/L		10 AXH3 03/13/23	0959 2395701 1
The following Anal	ytical Methods v	vere performed:						

Method Description Analyst Comments

EPA 353.2 Low Level

Notes:

Column headers are defined as follows:

DF: Dilution Factor Lc/LC: Critical Level
DL: Detection Limit PF: Prep Factor
MDA: Minimum Detectable Activity RL: Reporting Limit

MDC: Minimum Detectable Concentration SQL: Sample Quantitation Limit

Page 6 of 16 SDG: 613953

2040 Savage Road Charleston SC 29407 - (843) 556-8171 - www.gel.com

Certificate of Analysis

Project:

Client ID:

Report Date: March 20, 2023

SOOP00119

SOOP001

Company: Santee Cooper Address: P.O. Box 2946101

OCO3

Moncks Corner, South Carolina 29461

Contact: Ms. Jeanette Gilmetti Project: ABS Lab Analytical

Client Sample ID: AF56407
Sample ID: 613953005
Matrix: Ground Water
Collect Date: 09-MAR-23 10:34
Receive Date: 10-MAR-23

Collector: Client

Parameter	Qualifier	Result	DL	RL	Units	PF	DF Analyst Date Time Batch M	Method
Nutrient Analysis								_
EPA 353.2 Nitrogen,	Nitrate/Nitrite '	'As Received"						
Nitrogen, Nitrate/Nitrite	U	ND	0.0700	0.200	mg/L		10 AXH3 03/13/23 1001 2395701	1
The following Analy	tical Methods w	vere performed:						
M . 41 1	D					A 1		

Method Description Analyst Comments

EPA 353.2 Low Level

Notes:

Column headers are defined as follows:

DF: Dilution Factor Lc/LC: Critical Level
DL: Detection Limit PF: Prep Factor
MDA: Minimum Detectable Activity RL: Reporting Limit

MDC: Minimum Detectable Concentration SQL: Sample Quantitation Limit

Page 7 of 16 SDG: 613953

2040 Savage Road Charleston SC 29407 - (843) 556-8171 - www.gel.com

Certificate of Analysis

Report Date: March 20, 2023

SOOP00119

SOOP001

Project:

Client ID:

Company: Santee Cooper Address: P.O. Box 2946101

OCO3

Moncks Corner, South Carolina 29461

Contact: Ms. Jeanette Gilmetti Project: ABS Lab Analytical

Client Sample ID: AF56418
Sample ID: 613953006
Matrix: Ground Water
Collect Date: 09-MAR-23 12:07
Receive Date: 10-MAR-23

Collector: Client

Parameter	Qualifier	Result	DL	RL	Units	PF	DF Analyst Date	Time Batch	Method
Nutrient Analysis									
EPA 353.2 Nitrogen,	Nitrate/Nitrite "	As Received"							
Nitrogen, Nitrate/Nitrite	U	ND	0.0700	0.200	mg/L		10 AXH3 03/13/23	1002 2395701	1
The following Analy	tical Methods w	ere performed:							

Method Description Analyst Comments

EPA 353.2 Low Level

Notes:

Column headers are defined as follows:

DF: Dilution Factor Lc/LC: Critical Level
DL: Detection Limit PF: Prep Factor
MDA: Minimum Detectable Activity RL: Reporting Limit

MDC: Minimum Detectable Concentration SQL: Sample Quantitation Limit

Page 8 of 16 SDG: 613953

2040 Savage Road Charleston SC 29407 - (843) 556-8171 - www.gel.com

Certificate of Analysis

Project:

Client ID:

Report Date: March 20, 2023

SOOP00119

SOOP001

Company: Santee Cooper Address: P.O. Box 2946101

OCO3

Moncks Corner, South Carolina 29461

Contact: Ms. Jeanette Gilmetti Project: ABS Lab Analytical

Client Sample ID: AF56422
Sample ID: 613953007
Matrix: Ground Water
Collect Date: 09-MAR-23 13:19
Receive Date: 10-MAR-23

Collector: Client

Parameter DLRLUnits PF Qualifier Result DF Analyst Date Time Batch Method **Nutrient Analysis** EPA 353.2 Nitrogen, Nitrate/Nitrite "As Received" Nitrogen, Nitrate/Nitrite 0.0700 0.200 mg/L 10 AXH3 03/13/23 1003 2395701

The following Analytical Methods were performed:

Method Description Analyst Comments

1 EPA 353.2 Low Level

Notes:

Column headers are defined as follows:

DF: Dilution Factor Lc/LC: Critical Level
DL: Detection Limit PF: Prep Factor
MDA: Minimum Detectable Activity RL: Reporting Limit

MDC: Minimum Detectable Concentration SQL: Sample Quantitation Limit

Page 9 of 16 SDG: 613953

2040 Savage Road Charleston, SC 29407 - (843) 556-8171 - www.gel.com

QC Summary

Report Date: March 20, 2023

Santee Cooper P.O. Box 2946101

OCO3

Moncks Corner, South Carolina

Contact: Ms. Jeanette Gilmetti

Workorder: 613953

Parmname	NOM	Sample Qual	QC	Units	RPD%	REC%	Range Anlst	Date Time
Nutrient Analysis Batch 2395701								
QC1205340398 613378004 DUP Nitrogen, Nitrate/Nitrite		3.24	3.16	mg/L	2.5		(0%-20%) AXH3	03/13/23 09:29
QC1205340397 LCS Nitrogen, Nitrate/Nitrite	1.00		1.07	mg/L		107	(90%-110%)	03/13/23 09:25
QC1205340396 MB Nitrogen, Nitrate/Nitrite		U	ND	mg/L				03/13/23 09:24
QC1205340399 613378004 PS Nitrogen, Nitrate/Nitrite	1.00	0.324	1.32	mg/L		99.6	(90%-110%)	03/13/23 09:30

Notes:

The Qualifiers in this report are defined as follows:

- U Analyte was analyzed for, but not detected above the MDL, MDA, MDC or LOD.
- J Value is estimated
- X Consult Case Narrative, Data Summary package, or Project Manager concerning this qualifier
- H Analytical holding time was exceeded
- < Result is less than value reported
- > Result is greater than value reported
- h Preparation or preservation holding time was exceeded
- R Sample results are rejected
- Z Paint Filter Test--Particulates passed through the filter, however no free liquids were observed.
- d 5-day BOD--The 2:1 depletion requirement was not met for this sample
- ^ RPD of sample and duplicate evaluated using +/-RL. Concentrations are <5X the RL. Qualifier Not Applicable for Radiochemistry.
- N/A RPD or %Recovery limits do not apply.
- ND Analyte concentration is not detected above the detection limit
- NJ Consult Case Narrative, Data Summary package, or Project Manager concerning this qualifier
- E General Chemistry--Concentration of the target analyte exceeds the instrument calibration range
- Q One or more quality control criteria have not been met. Refer to the applicable narrative or DER.

Page 10 of 16 SDG: 613953

Page 1 of 2

2040 Savage Road Charleston, SC 29407 - (843) 556-8171 - www.gel.com

QC Summary

Workorder: 613953

Parmname

NOM Sample Qual QC Units RPD% REC% Range Anlst Date Time

- N1 See case narrative
- R Per section 9.3.4.1 of Method 1664 Revision B, due to matrix spike recovery issues, this result may not be reported or used for regulatory compliance purposes.
- B The target analyte was detected in the associated blank.
- e 5-day BOD--Test replicates show more than 30% difference between high and low values. The data is qualified per the method and can be used for reporting purposes
- J See case narrative for an explanation

N/A indicates that spike recovery limits do not apply when sample concentration exceeds spike conc. by a factor of 4 or more or %RPD not applicable.

- ^ The Relative Percent Difference (RPD) obtained from the sample duplicate (DUP) is evaluated against the acceptance criteria when the sample is greater than five times (5X) the contract required detection limit (RL). In cases where either the sample or duplicate value is less than 5X the RL, a control limit of +/- the RL is used to evaluate the DUP result.
- * Indicates that a Quality Control parameter was not within specifications.

For PS, PSD, and SDILT results, the values listed are the measured amounts, not final concentrations.

Where the analytical method has been performed under NELAP certification, the analysis has met all of the requirements of the NELAC standard unless qualified on the QC Summary.

Page 11 of 16 SDG: 613953

Technical Case Narrative Santee Cooper SDG #: 613953

General Chemistry

<u>Product:</u> Nitrate/Nitrite Cad Redux Low Level <u>Analytical Method:</u> EPA 353.2 Low Level <u>Analytical Procedure:</u> GL-GC-E-128 REV# 11

Analytical Batch: 2395701

The following samples were analyzed using the above methods and analytical procedure(s).

GEL Sample ID#	Client Sample Identification
613953001	AF56414
613953002	AF56423
613953003	AF56428
613953004	AF56406
613953005	AF56407
613953006	AF56418
613953007	AF56422
1205340396	Method Blank (MB)
1205340397	Laboratory Control Sample (LCS)
1205340398	613378004(NonSDG) Sample Duplicate (DUP)
1205340399	613378004(NonSDG) Post Spike (PS)

The samples in this SDG were analyzed on an "as received" basis.

Data Summary:

All sample data provided in this report met the acceptance criteria specified in the analytical methods and procedures for initial calibration, continuing calibration, instrument controls and process controls where applicable, with the following exceptions.

Technical Information

Sample Dilutions

The following samples 1205340398 (Non SDG 613378004DUP) and 1205340399 (Non SDG 613378004PS) were diluted because target analyte concentrations exceeded the calibration range. The following samples 613953001 (AF56414), 613953002 (AF56423), 613953003 (AF56428), 613953004 (AF56406), 613953005 (AF56407), 613953006 (AF56418) and 613953007 (AF56422) in this sample group were diluted due to matrix interference. Dilutions may be required for many reasons, including to minimize matrix interferences or to bring over range target analyte concentrations into the linear calibration range.

Analysis			6	1395	3		
Analyte	001	002	003	004	005	006	007
Nitrogen, Nitrate/Nitrite	10X	10X	10X	10X	10X	10X	10X

Certification Statement

Page 12 of 16 SDG: 613953

Where the analytical method has been performed under NELAP certification, the analysis has met all of the requirements of the NELAC standard unless otherwise noted in the analytical case narrative.

Page 13 of 16 SDG: 613953

Chain of Custody

Santee Cooper One Riverwood Drive Moneks Corner, SC 29461 Phone: (843)761-8000 Ext. 5148 Fax: (843)761-4175

	er Email	/Report Recip			Results N	eeded i	oy:					Unit #:		Rerun reque	est for an	y flagged (
		@sante	ecooper.com		/		• 5	125	915	J_JN	102.	09.60	1.1/3	6500 Yes	s (No	
	L- 15 #	T		LI TANGGER COM	NI CONTRACTOR										<u>A</u>	nalysis Group
(Interna only)		Sample Locat Description	ion/	Collection Date	Collection Time	Sample Collector	Total # of containers	Bottle type: (Glass-G/Plastic-P)	Grab (G) or Composite (C)	Matrix(see below)	Preservative (see	• R	ethod # eporting l isc. samp	ole info	NDs/NO2	
AF56	414	WAP-15		3/2/23	1246	2DM ML	ı	P	G	GW	3/			4	×	
-1	23	WAP-23		1	0952	1	1	1	-	-	1					
	28	WAP-27			1056			1		1	+					+
	20	WAT 21		-		-		-	上	-					\blacksquare	
	06	WAP-12		3/9/23	1029		1									
	07	WAP - 120			1034											
	18	WAP-18			1207											
	22	WAP-22			1319		1			+					+H	
	22	WAT 22		-	1511	_	-	1		1	Ā				1	
		-														
Polingu	ished by:	T = 0 0											Camp	olo Pogolisia a Mataura		
8919u	-	Employee#	3/10/23	Time	Receive			ployee #		Date		Time		le Receiving (Interna I P (°C):		
	ished by:	Employee#	Date	Time	M. A.	ed by:	-	ployee #	_	/10/2: Date	3	Time	Corr	ect pH: Yes N	0	
M. Dr	~	GEL	3.10.23	1620 .	AN	20		Er	3	11	3	1620	Prese	ervative Lot#:		
	ished by:	Employee#	Date	Time 2	Receive	d by:		ployee #		JO 2 Date	15	Time				
													Date/	Time/Init for presen	vative:	
	□ ME	TALS (all)	Nutr	ients	MIS	C		Gun	sum		100	0 1			100g = 100	1 2 20
AI AI	☐ Cu	☐ Sb	DITOC	materials (cr)	BTEX	<u>u.</u>	1 1	Wallboa	A STREET, SQUARE, SQUA			Coal		<u>Flyash</u>		<u>Oil</u>
As	□ K	□ Sn	I DOG	E	Naphthale			Gypsi	ım(all		E CONTRACTOR	Itimate ☐ % Moist	ure	☐ Ammonia ☐ LO1	1 %N	Old Qual.
В	DLi	□ Sr	☐ TP/T	The second second	THM/HA.			below,		45.1	1	Ash		□ % Carbon	D Cok	H Charles
Ba	□ Mg	□ Ti	OF		Oil & Gre E. Coli	ase	TAX.	UTOC			1000	☐ Sulfur ☐ BTUs		☐ Mineral	□ Diele	ctric Strength
Be	□ Mn		E Cl	E 1000	Total Coli	form		□ Total □ Solub				Volatile	Matter	Analysis ☐ Sieve	U Diss	olved Gases
Ca	□Мо		□ NO2	2 May 20	pH Dissolved	Ac		D Purity	(CaSC		E	CHN	CITY	☐ % Moisture	1 Lised	Oil
Cd	□ Na	□ V	NO3		Dissolved		1037	☐% Mo				er Tests: RF Scan	45 3	NIDDEC	- Flash	spoise ds in oil
Sea 1550 16		□ Zn	□ SO4		Rad 226 Rad 228		3 3/10	□pH		F-101/2	□HC	GI II	16 7	NPDES	(As.	Cd.Cr.Ni,Pb
Co Cr	□ Ni □ Pb	☐ Hg			PCB		(SIL	□ Chlor	A SECURE OF	41121		neness rticulate Ma	tter	□ Oil & Grease □ As	Hg)	100
	ILI	□ CrVI		100			0.5	Sulfur	- 3	1000	1		-	□ TSS	GOFE	R

	GEL Laboratories LLG				CAMPLE PROPERTY A WARRENGE OF THE PROPERTY OF						
Cli	ent: COP				SAMPLE RECEIPT & REVIEW FORM						
CII	ent: See I			SD	G/AR/COC/Work Order: 6 139,53						
Re	reived By:			Da	te Received: 3/10/25.						
	Carrier and Tracking Number				FedEx Express FedEx Ground UPS Field Services Courier Other						
Sus	pected Hazard Information	Yes	Š	*If Net Counts > 100cpm on samples not marked "radioactive", contact the Radiation Safety Group for further investi							
A)S	hipped as a DOT Hazardous?		/	Hazard Class Shipped: UN#: If UN2910, Is the Radioactive Shipment Survey Compliant? YesNuNu							
	Did the client designate the samples are to be ived as radioactive?		1	COC notation or radioactive stickers on containers equal client designation.							
	Did the RSO classify the samples as pactive?		/	Ma.	ximum Net Counts Observed* (Observed Counts - Area Background Counts): CPM mR/Hr Classified as: Rad 1 Rad 2 Rad 3						
	Oid the client designate samples are hazardous?			1	C notation or hazard labels on containers equal client designation. O or E is yes, select Hazards below. PCB's Flammable Foreign Soil RCRA Asbestos Beryllium Other:						
E) I	old the RSO identify possible hazards?		/		PCB's Flammable Foreign Soil RCRA Asbestos Beryllium Other:						
	Sample Receipt Criteria	Yes	Y.	ž	Comments/Qualifiers (Required for Non-Conforming Items)						
1	Shipping containers received intact and sealed?	1			Circle Applicable: Seals broken Damaged container Leaking container Other (describe)						
2	Chain of custody documents included with shipment?	1			Circle Applicable: Client contacted and provided COC COC created upon receipt						
3	Samples requiring cold preservation within (0 ≤ 6 deg. C)?*	/			Preservation Method: Wet Ice Jce Packs Dry ice None Other: *all temperatures are recorded in Celsius TEMP:						
4	Daily check performed and passed on IR temperature gun?	/	1		Temperature Device Serial #:						
5	Sample containers intact and sealed?	/			Circle Applicable: Seals broken Damaged container Leaking container Other (describe)						
6	Samples requiring chemical preservation at proper pH?				Sample ID's and Containers Affected: If Preservation added, Lot#:						
7	Do any samples require Volatile Analysis?		11.11	/	If Yes, are Encores or Soil Kits present for solids? YesNoNA(If yes, take to VOA Freezer) Do liquid VOA vials contain acid preservation? YesNoNA(If unknown, select No) Are liquid VOA vials free of headspace? YesNoNA Sample ID's and containers affected:						
8	Samples received within holding time?	/			1D's and tests affected:						
9	Sample ID's on COC match ID's on bottles?	/			ID's and containers affected:						
10	Date & time on COC match date & time on bottles?	/			Circle Applicable: No dates on containers No times on containers COC missing info Other (describe)						
11	Number of containers received match number indicated on COC?	1		Circle Applicable: No container count on COC Other (describe)							
12	GEL provided by use of GEL labels?										
	COC form is properly signed in relinquished/received sections? ments (Use Continuation Form if needed):		港		Circle Applicable: Not relinquished Other (describe)						

PM (or PMA) review: Initials Date 3/13/23 Page L of L

List of current GEL Certifications as of 20 March 2023

State	Certification
Alabama	42200
Alaska	17-018
Alaska Drinking Water	SC00012
Arkansas	88-0651
CLIA	42D0904046
California	2940
Colorado	SC00012
Connecticut	PH-0169
DoD ELAP/ ISO17025 A2LA	2567.01
Florida NELAP	E87156
Foreign Soils Permit	P330-15-00283, P330-15-00253
Georgia	SC00012
Georgia SDWA	967
Hawaii	SC00012
Idaho	SC00012
Illinois NELAP	200029
Indiana	C-SC-01
Kansas NELAP	E-10332
Kentucky SDWA	90129
Kentucky Wastewater	90129
Louisiana Drinking Water	LA024
Louisiana NELAP	03046 (AI33904)
Maine	2019020
Maryland	270
Massachusetts	M-SC012
Massachusetts PFAS Approv	Letter
Michigan	9976
Mississippi	SC00012
Nebraska	NE-OS-26-13
Nevada	SC000122023-4
New Hampshire NELAP	2054
New Jersey NELAP	SC002
New Mexico	SC002 SC00012
New York NELAP	11501
North Carolina	233
North Carolina SDWA	45709
North Dakota	R-158
Oklahoma	2022-160
Pennsylvania NELAP	68-00485
Puerto Rico	SC00012
S. Carolina Radiochem	10120002
Sanitation Districts of L	9255651
South Carolina Chemistry	10120001
Tennessee	TN 02934
Texas NELAP	T104704235-22-20
Utah NELAP	SC000122022-37
Vermont	VT87156
Vermont Virginia NELAP	460202
	C780
Washington	C/80

gel.com

March 21, 2023

Ms. Jeanette Gilmetti Santee Cooper P.O. Box 2946101 OCO3 Moncks Corner, South Carolina 29461

Re: ABS Lab Analytical Work Order: 613959

Dear Ms. Gilmetti:

GEL Laboratories, LLC (GEL) appreciates the opportunity to provide the enclosed analytical results for the sample(s) we received on March 10, 2023. This original data report has been prepared and reviewed in accordance with GEL's standard operating procedures.

The samples were delivered with proper chain of custody documentation and signatures. All sample containers arrived without any visible signs of tampering or breakage. There are no additional comments concerning sample receipt.

Test results for NELAP or ISO 17025 accredited tests are verified to meet the requirements of those standards, with any exceptions noted. The results reported relate only to the items tested and to the sample as received by the laboratory. These results may not be reproduced except as full reports without approval by the laboratory. Copies of GEL's accreditations and certifications can be found on our website at www.gel.com.

Our policy is to provide high quality, personalized analytical services to enable you to meet your analytical needs on time every time. We trust that you will find everything in order and to your satisfaction. If you have any questions, please do not hesitate to call me at (843) 556-8171, ext. 4289.

Sincerely,

Heather Millar for Julie Robinson Project Manager

Purchase Order: 398684

Enclosures

2040 Savage Road Charleston SC 29407 - (843) 556-8171 - www.gel.com

Certificate of Analysis Report for

SOOP001 Santee Cooper

Client SDG: 613959 GEL Work Order: 613959

The Qualifiers in this report are defined as follows:

- * A quality control analyte recovery is outside of specified acceptance criteria
- ** Analyte is a Tracer compound
- ** Analyte is a surrogate compound
- H Analytical holding time was exceeded
- J Value is estimated
- U Analyte was analyzed for, but not detected above the MDL, MDA, MDC or LOD.

Where the analytical method has been performed under NELAP certification, the analysis has met all of the requirements of the NELAC standard unless qualified on the Certificate of Analysis.

The designation ND, if present, appears in the result column when the analyte concentration is not detected above the limit as defined in the 'U' qualifier above.

This data report has been prepared and reviewed in accordance with GEL Laboratories LLC standard operating procedures. Please direct any questions to your Project Manager, Julie Robinson.

Reviewed by

Page 2 of 55 SDG: 613959

2040 Savage Road Charleston SC 29407 - (843) 556-8171 - www.gel.com

Certificate of Analysis

Project:

Client ID:

Analyst Comments

Report Date: March 21, 2023

SOOP00119

SOOP001

Company: Santee Cooper Address: P.O. Box 2946101

OCO3

Moncks Corner, South Carolina 29461

Contact: Ms. Jeanette Gilmetti Project: ABS Lab Analytical

Client Sample ID: AF56409
Sample ID: 613959001
Matrix: Ground Water
Collect Date: 06-MAR-23 12:14
Receive Date: 10-MAR-23

Collector: Client

Parameter	Qualifier	Result	DL	RL	Units	PF	DF .	Analyst Date	Date Time Batch	
Carbon Analysis										
SM 5310 B Total Organi	ic Carbon "A	s Received"								
Total Organic Carbon Average	:	8.36	0.660	2.00	mg/L		2	TSM 03/21/23	0112 2397544	1
Spectrometric Analysis										
SM 4500-S(2-) D Sulfide	e "As Receiv	/ed"								
Total Sulfide	Н	198	13.2	40.0	mg/L		400	HH2 03/14/23	1759 2397596	2
Titration and Ion Analys	is									
SM 2320B Total Alkalin	ity "As Rece	eived"								
Alkalinity, Total as CaCO3	-	344	2.42	6.67	mg/L			EK1 03/13/23	1409 2397768	3
Bicarbonate alkalinity (CaCO3)	344	2.42	6.67	mg/L					
Carbonate alkalinity (CaCO3)	U	ND	2.42	6.67	mg/L					
The following Analytica	al Methods w	vere performed:								

 Method
 Description

 1
 SM 5310 B

 2
 SM 4500-S (2-) D

 3
 SM 2320B

Notes:

Column headers are defined as follows:

DF: Dilution Factor Lc/LC: Critical Level
DL: Detection Limit PF: Prep Factor
MDA: Minimum Detectable Activity RL: Reporting Limit

MDC: Minimum Detectable Concentration SQL: Sample Quantitation Limit

Page 3 of 55 SDG: 613959

2040 Savage Road Charleston SC 29407 - (843) 556-8171 - www.gel.com

Certificate of Analysis

Project:

Client ID:

Report Date: March 21, 2023

SOOP00119

SOOP001

Company: Santee Cooper Address: P.O. Box 2946101

OCO3

Moncks Corner, South Carolina 29461

Contact: Ms. Jeanette Gilmetti Project: ABS Lab Analytical

Client Sample ID: AF56409
Sample ID: 613959002
Matrix: Ground Water
Collect Date: 06-MAR-23 12:14
Receive Date: 10-MAR-23

Collector: Client

Parameter	Qualifier	Result	DL	RL	Units	PF :	OF A	Analyst Date	Time Batch	Method	
Carbon Analysis											
SM 5310 B Disso	olved Organic Carb	on "As Received"									
Dissolved Organic Ca	rbon Average	8.18	0.660	2.00	mg/L		2 T	SM 03/20/23	1639 2399632	1	
The following Pro	ep Methods were p	erformed:									
Method	Description	n		Analyst	Date	Т	ime	Prep Batch			
EPA 160	Laboratory F	iltration - DOC		TSM	03/17/23	12	237	2397540			
EPA 160	Laboratory F	iltration - DOC		TSM	03/15/23	1	.35	2397540			
The following A	nalytical Methods v	were performed:									
Method	Description		Analyst Comments								

Notes:

Column headers are defined as follows:

DF: Dilution Factor Lc/LC: Critical Level
DL: Detection Limit PF: Prep Factor
MDA: Minimum Detectable Activity RL: Reporting Limit

SM 5310 B

MDC: Minimum Detectable Concentration SQL: Sample Quantitation Limit

Page 4 of 55 SDG: 613959

2040 Savage Road Charleston SC 29407 - (843) 556-8171 - www.gel.com

Certificate of Analysis

Project:

Client ID:

Report Date: March 21, 2023

03/13/23 1420 2397768

3

SOOP00119

SOOP001

EK1

Company: Santee Cooper Address: P.O. Box 2946101

OCO3

Moncks Corner, South Carolina 29461

Contact: Ms. Jeanette Gilmetti Project: ABS Lab Analytical

Client Sample ID: AF56410
Sample ID: 613959003
Matrix: Ground Water
Collect Date: 06-MAR-23 12:19
Receive Date: 10-MAR-23

Client

DL RL Parameter Qualifier Result Units PF DF Analyst Date Time Batch Method Carbon Analysis SM 5310 B Total Organic Carbon "As Received" Total Organic Carbon Average 0.660 2.00 mg/L TSM 03/21/23 0217 2397544 1 Spectrometric Analysis

SM 4500-S(2-) D Sulfide "As Received"

Total Sulfide H 69.6 6.60 20.0 mg/L 200 HH2 03/14/23 1759 2397596

Titration and Ion Analysis

SM 2320B Total Alkalinity "As Received"

Alkalinity, Total as CaCO3 339 2.07 5.71 mg/L
Bicarbonate alkalinity (CaCO3) 339 2.07 5.71 mg/L
Carbonate alkalinity (CaCO3) U ND 2.07 5.71 mg/L
The following Analytical Methods were performed:

Method Description Analyst Comments

1 SM 5310 B 2 SM 4500-S (2-) D 3 SM 2320B

Collector:

Notes:

Column headers are defined as follows:

DF: Dilution Factor Lc/LC: Critical Level
DL: Detection Limit PF: Prep Factor
MDA: Minimum Detectable Activity RL: Reporting Limit

MDC: Minimum Detectable Concentration SQL: Sample Quantitation Limit

Page 5 of 55 SDG: 613959

2040 Savage Road Charleston SC 29407 - (843) 556-8171 - www.gel.com

Certificate of Analysis

Project:

Client ID:

Report Date: March 21, 2023

SOOP00119

SOOP001

Company: Santee Cooper Address: P.O. Box 2946101

OCO3

Moncks Corner, South Carolina 29461

Contact: Ms. Jeanette Gilmetti Project: ABS Lab Analytical

Client Sample ID: AF56410
Sample ID: 613959004
Matrix: Ground Water
Collect Date: 06-MAR-23 12:19
Receive Date: 10-MAR-23

Collector: Client

Parameter	Qualifier	Result	DL	RL	Units	PF	DF	Analy	st Date	Time Batch	Method
Carbon Analysis											
SM 5310 B Dissolved Organic Carbon "As Received"											
Dissolved Organic Carbon	Average	10.7	1.65	5.00	mg/L		5	TSM	03/16/23	1637 2399632	1
The following Prep M	lethods were pe	erformed:									
Method	Description	1		Analyst	Date		Time	e Pr	ep Batch		
EPA 160	Laboratory Fi	ltration - DOC		TSM	03/15/23		1135	23	97540		

The following Analytical Methods were performed:

MethodDescriptionAnalyst Comments1SM 5310 B

1 51

Notes:

Column headers are defined as follows:

DF: Dilution Factor Lc/LC: Critical Level
DL: Detection Limit PF: Prep Factor
MDA: Minimum Detectable Activity RL: Reporting Limit

MDC: Minimum Detectable Concentration SQL: Sample Quantitation Limit

Page 6 of 55 SDG: 613959

2040 Savage Road Charleston SC 29407 - (843) 556-8171 - www.gel.com

Certificate of Analysis

Report Date: March 21, 2023

Company: Santee Cooper Address: P.O. Box 2946101

OCO3

Moncks Corner, South Carolina 29461

Contact: Ms. Jeanette Gilmetti Project: ABS Lab Analytical

Client Sample ID: AF56411 Sample ID: 613959005 Matrix: Ground Water Collect Date: 06-MAR-23 11:08

Receive Date: 10-MAR-23 Client Collector:

SOOP00119 Project: Client ID: SOOP001

Parameter	Qualifier	Result	DL	RL	Units	PF	DF Ar	alyst Date	Time Batch	Method
Carbon Analysis										
SM 5310 B Total Organ	ic Carbon "A	As Received"								
Total Organic Carbon Average	e	4.17	0.330	1.00	mg/L		1 TS	M 03/21/23	0239 2397544	1
Spectrometric Analysis										
SM 4500-S(2-) D Sulfide "As Received"										
Total Sulfide	Н	59.2	3.30	10.0	mg/L		100 HF	2 03/14/23	1759 2397596	2
Titration and Ion Analys	sis									
SM 2320B Total Alkalin	nity "As Rec	eived"								
Alkalinity, Total as CaCO3		221	2.07	5.71	mg/L		EK	1 03/13/23	1426 2397768	3
Bicarbonate alkalinity (CaCO	3)	221	2.07	5.71	mg/L					
Carbonate alkalinity (CaCO3)	U	ND	2.07	5.71	mg/L					
The following Analytic	al Methods v	vere performed:	•							

Analyst Comments

Method Description SM 5310 B SM 4500-S (2-) D 2 SM 2320B

Notes:

Column headers are defined as follows:

DF: Dilution Factor Lc/LC: Critical Level DL: Detection Limit PF: Prep Factor MDA: Minimum Detectable Activity **RL**: Reporting Limit

MDC: Minimum Detectable Concentration SQL: Sample Quantitation Limit

Page 7 of 55 SDG: 613959

2040 Savage Road Charleston SC 29407 - (843) 556-8171 - www.gel.com

Certificate of Analysis

Project:

Client ID:

Report Date: March 21, 2023

SOOP00119

SOOP001

Company: Santee Cooper Address: P.O. Box 2946101

OCO3

Moncks Corner, South Carolina 29461

Contact: Ms. Jeanette Gilmetti Project: ABS Lab Analytical

Client Sample ID: AF56411
Sample ID: 613959006
Matrix: Ground Water
Collect Date: 06-MAR-23 11:08
Receive Date: 10-MAR-23

Collector: Client

Parameter	Qualifier	Result	DL	RL	Units	PF	DF	Analy	st Date	Time Batch	Method
Carbon Analysis											
SM 5310 B Dissolve	d Organic Carbo										
Dissolved Organic Carbon	n Average	6.08	1.65	5.00	mg/L		5	TSM	03/16/23	1658 2399632	1
The following Prep N	Methods were pe	erformed:									
Method	Description	1		Analyst	Date		Time	e Pr	ep Batch		
EPA 160	Laboratory Fi	ltration - DOC		TSM	03/15/23		1135	23	97540		

The following Analytical Methods were performed:

Method Description Analyst Comments

SM 5310 B

Notes:

Column headers are defined as follows:

DF: Dilution Factor Lc/LC: Critical Level
DL: Detection Limit PF: Prep Factor
MDA: Minimum Detectable Activity RL: Reporting Limit

MDC: Minimum Detectable Concentration SQL: Sample Quantitation Limit

Page 8 of 55 SDG: 613959

2040 Savage Road Charleston SC 29407 - (843) 556-8171 - www.gel.com

Certificate of Analysis

Report Date: March 21, 2023

Company: Santee Cooper Address: P.O. Box 2946101

OCO3

Moncks Corner, South Carolina 29461

Contact: Ms. Jeanette Gilmetti Project: ABS Lab Analytical

Client Sample ID: AF56412
Sample ID: 613959007
Matrix: Ground Water
Collect Date: 06-MAR-23 15:15
Receive Date: 10-MAR-23

Client

Project: SOOP00119 Client ID: SOOP001

Parameter	Qualifier	Result	DL	RL	Units	PF	PF DF Analyst Dat		Time Batch	Method
Carbon Analysis										
SM 5310 B Total Organ	nic Carbon "A	As Received"								
Total Organic Carbon Averag	e	2.81	0.330	1.00	mg/L		1 TS	M 03/21/23	0301 2397544	1
Spectrometric Analysis										
SM 4500-S(2-) D Sulfic	le "As Receiv	ved"								
Total Sulfide	UH	ND	0.825	2.50	mg/L		25 HI	H2 03/14/23	1759 2397596	2
Titration and Ion Analys	sis									
SM 2320B Total Alkali	nity "As Rec	eived"								
Alkalinity, Total as CaCO3	·	157	2.07	5.71	mg/L		Ek	1 03/13/23	1431 2397768	3
Bicarbonate alkalinity (CaCO	3)	157	2.07	5.71	mg/L					
Carbonate alkalinity (CaCO3)	U	ND	2.07	5.71	mg/L					
The following Analytic	al Methods v	vere performed:								
Method		Analyst Comments								

1 SM 5310 B 2 SM 4500-S (2-) D 3 SM 2320B

Collector:

Notes:

Column headers are defined as follows:

DF: Dilution Factor Lc/LC: Critical Level
DL: Detection Limit PF: Prep Factor
MDA: Minimum Detectable Activity RL: Reporting Limit

MDC: Minimum Detectable Concentration SQL: Sample Quantitation Limit

Page 9 of 55 SDG: 613959

2040 Savage Road Charleston SC 29407 - (843) 556-8171 - www.gel.com

Certificate of Analysis

Report Date: March 21, 2023

SOOP00119

SOOP001

Project:

Client ID:

Company: Santee Cooper Address: P.O. Box 2946101

OCO3

Moncks Corner, South Carolina 29461

Contact: Ms. Jeanette Gilmetti Project: ABS Lab Analytical

Client Sample ID: AF56412
Sample ID: 613959008
Matrix: Ground Water
Collect Date: 06-MAR-23 15:15
Receive Date: 10-MAR-23

Collector: Client

Parameter	Qualifier	Result	DL	RL	Units	PF	DF	Analy	yst Date	Time Batch	Method
Carbon Analysis											
SM 5310 B Disso	lved Organic Car	rbon "As Received"									
Dissolved Organic Carbon Average 3.44			0.330	1.00	mg/L		1	TSM	03/20/23	1744 2399632	1
The following Pre	ep Methods were	performed:									
Method	Descript	ion		Analyst	Date		Time	Pı	rep Batch		
EPA 160	Laboratory	Filtration - DOC		TSM	03/15/23		1135	23	97540		
EPA 160	Laboratory	Filtration - DOC		TSM	03/17/23		1237	23	397540		

The following Analytical Methods were performed:

Method Description Analyst Comments

SM 5310 B

Notes:

Column headers are defined as follows:

DF: Dilution Factor Lc/LC: Critical Level
DL: Detection Limit PF: Prep Factor
MDA: Minimum Detectable Activity RL: Reporting Limit

MDC: Minimum Detectable Concentration SQL: Sample Quantitation Limit

Page 10 of 55 SDG: 613959

2040 Savage Road Charleston SC 29407 - (843) 556-8171 - www.gel.com

Certificate of Analysis

Project:

Client ID:

Analyst Comments

Report Date: March 21, 2023

SOOP00119

SOOP001

Company: Santee Cooper Address: P.O. Box 2946101

OCO3

Moncks Corner, South Carolina 29461

Contact: Ms. Jeanette Gilmetti Project: ABS Lab Analytical

Client Sample ID: AF56413
Sample ID: 613959009
Matrix: Ground Water
Collect Date: 06-MAR-23 13:41
Receive Date: 10-MAR-23

Collector: Client

Parameter	Qualifier	Result	DL	RL	Units	PF	DF	Anal	yst Date	Time Batch	Method
Carbon Analysis											
SM 5310 B Total Organi	c Carbon "A	As Received"									
Total Organic Carbon Average	J	0.895	0.330	1.00	mg/L		1	TSM	03/21/23	0323 2397544	1
Spectrometric Analysis											
SM 4500-S(2-) D Sulfide	e "As Receiv	ved"									
Total Sulfide	U	ND	0.0330	0.100	mg/L		1	HH2	03/13/23	1924 2396527	2
Titration and Ion Analysis	is										
SM 2320B Total Alkalin	ity "As Rec	eived"									
Alkalinity, Total as CaCO3		104	2.07	5.71	mg/L			EK1	03/13/23	1434 2397768	3
Bicarbonate alkalinity (CaCO3)	104	2.07	5.71	mg/L						
Carbonate alkalinity (CaCO3)	U	ND	2.07	5.71	mg/L						
The following Analytica	l Methods v	vere performed:									

Method	Description	
1	SM 5310 B	
2	SM 4500-S (2-) D	
3	SM 2320B	

Notes:

Column headers are defined as follows:

DF: Dilution Factor Lc/LC: Critical Level
DL: Detection Limit PF: Prep Factor
MDA: Minimum Detectable Activity RL: Reporting Limit

MDC: Minimum Detectable Concentration SQL: Sample Quantitation Limit

Page 11 of 55 SDG: 613959

2040 Savage Road Charleston SC 29407 - (843) 556-8171 - www.gel.com

Certificate of Analysis

Project:

Client ID:

Report Date: March 21, 2023

SOOP00119

SOOP001

Company: Santee Cooper Address: P.O. Box 2946101

OCO3

Moncks Corner, South Carolina 29461

Contact: Ms. Jeanette Gilmetti Project: ABS Lab Analytical

Client Sample ID: AF56413
Sample ID: 613959010
Matrix: Ground Water
Collect Date: 06-MAR-23 13:41
Receive Date: 10-MAR-23

Collector: Client

Parameter	Qualifier	Result	DL	RL	Units	PF	DF	Analyst Date	Time Batch	Method
Carbon Analysis										
SM 5310 B Dissol	ved Organic Carbo	on "As Received"								
Dissolved Organic Car	bon Average	1.61	0.330	1.00	mg/L		1	TSM 03/16/23	1740 2399632	1
The following Pre	p Methods were pe	erformed:								
Method	Description	1		Analyst	Date		Time	e Prep Batch	l	
EPA 160	Laboratory Fi	ltration - DOC		TSM	03/15/23		1135	2397540		

The following Analytical Methods were performed:

 Method
 Description
 Analyst Comments

 1
 SM 5310 B

Notes:

Column headers are defined as follows:

DF: Dilution Factor Lc/LC: Critical Level
DL: Detection Limit PF: Prep Factor
MDA: Minimum Detectable Activity RL: Reporting Limit

MDC: Minimum Detectable Concentration SQL: Sample Quantitation Limit

Page 12 of 55 SDG: 613959

2040 Savage Road Charleston SC 29407 - (843) 556-8171 - www.gel.com

Certificate of Analysis

Project:

Client ID:

Report Date: March 21, 2023

SOOP00119

SOOP001

Company: Santee Cooper Address: P.O. Box 2946101

OCO3

Moncks Corner, South Carolina 29461

Contact: Ms. Jeanette Gilmetti Project: ABS Lab Analytical

Client Sample ID: AF56430
Sample ID: 613959011
Matrix: Ground Water
Collect Date: 06-MAR-23 10:10
Receive Date: 10-MAR-23

Client

Parameter	Qualifier	Result	DL	RL	Units	PF	DF	Analy	st Date	Time B	atch	Method
Carbon Analysis												
SM 5310 B Total Organ	ic Carbon "A	As Received"										
Total Organic Carbon Averag	e	3.76	0.330	1.00	mg/L		1	TSM	03/21/23	0405 23	97544	1
Spectrometric Analysis												
SM 4500-S(2-) D Sulfid	le "As Recei	ved"										
Total Sulfide	U	ND	0.0330	0.100	mg/L		1	HH2	03/13/23	1924 23	96527	2
Titration and Ion Analys	sis											
SM 2320B Total Alkalii	nity "As Rec	eived"										
Alkalinity, Total as CaCO3	•	126	2.07	5.71	mg/L			EK1	03/13/23	1439 23	97768	3
Bicarbonate alkalinity (CaCO	3)	126	2.07	5.71	mg/L							
Carbonate alkalinity (CaCO3)	U	ND	2.07	5.71	mg/L							
The following Analytic	al Methods v	were performed:										
Method	Description	l			I	Analys	st Co	mment	s			

 Method
 Description

 1
 SM 5310 B

 2
 SM 4500-S (2-) D

 3
 SM 2320B

Collector:

Notes:

Column headers are defined as follows:

DF: Dilution Factor Lc/LC: Critical Level
DL: Detection Limit PF: Prep Factor
MDA: Minimum Detectable Activity RL: Reporting Limit

MDC: Minimum Detectable Concentration SQL: Sample Quantitation Limit

Page 13 of 55 SDG: 613959

2040 Savage Road Charleston SC 29407 - (843) 556-8171 - www.gel.com

Certificate of Analysis

Project:

Client ID:

Report Date: March 21, 2023

SOOP00119

SOOP001

Company: Santee Cooper Address: P.O. Box 2946101

OCO3

Moncks Corner, South Carolina 29461

Contact: Ms. Jeanette Gilmetti Project: ABS Lab Analytical

Client Sample ID: AF56430
Sample ID: 613959012
Matrix: Ground Water
Collect Date: 06-MAR-23 10:10
Receive Date: 10-MAR-23

Collector: Client

Parameter	Qualifier	Result	DL	RL	Units	PF	DF	Analyst Date	Time Batch	Method
Carbon Analysis										
SM 5310 B Dissolved 0	Organic Carbo	on "As Received"								
Dissolved Organic Carbon A	verage	4.42	0.330	1.00	mg/L		1	TSM 03/16/23	1824 2399632	1
The following Prep Me	thods were pe	erformed:								
Method	Description	1		Analyst	Date		Time	e Prep Batch	ı	
EPA 160	Laboratory Fi	ltration - DOC		TSM	03/15/23		1135	2397540		

The following Analytical Methods were performed:

MethodDescriptionAnalyst Comments1SM 5310 B

Notes:

Column headers are defined as follows:

DF: Dilution Factor Lc/LC: Critical Level
DL: Detection Limit PF: Prep Factor
MDA: Minimum Detectable Activity RL: Reporting Limit

MDC: Minimum Detectable Concentration SQL: Sample Quantitation Limit

Page 14 of 55 SDG: 613959

2040 Savage Road Charleston SC 29407 - (843) 556-8171 - www.gel.com

Certificate of Analysis

Project:

Client ID:

Report Date: March 21, 2023

SOOP00119

SOOP001

Company: Santee Cooper Address: P.O. Box 2946101

OCO3

Moncks Corner, South Carolina 29461

Contact: Ms. Jeanette Gilmetti Project: ABS Lab Analytical

Client Sample ID: AF56419
Sample ID: 613959013
Matrix: Ground Water
Collect Date: 07-MAR-23 14:51
Receive Date: 10-MAR-23

Collector: Client

Parameter	Qualifier	Result	DL	RL	Units	PF	DF	Analy	yst Date	Time	e Batch	Method
Carbon Analysis												
SM 5310 B Total Organ	ic Carbon "A	As Received"										
Total Organic Carbon Average	•	10.6	0.330	1.00	mg/L		1	TSM	03/21/23	0427	2397544	1
Spectrometric Analysis												
SM 4500-S(2-) D Sulfid	e "As Receiv	ved"										
Total Sulfide	U	ND	0.0330	0.100	mg/L		1	HH2	03/13/23	1925	2396527	2
Titration and Ion Analys	is											
SM 2320B Total Alkalir	nity "As Rec	eived"										
Alkalinity, Total as CaCO3	•	222	2.07	5.71	mg/L			EK1	03/13/23	1441	2397768	3
Bicarbonate alkalinity (CaCO3	3)	222	2.07	5.71	mg/L							
Carbonate alkalinity (CaCO3)	U	ND	2.07	5.71	mg/L							
The following Analytica	al Methods v	were performed:										
Method	Description	l			F	Analys	st Co	mment	S			

 Method
 Description

 1
 SM 5310 B

 2
 SM 4500-S (2-) D

 3
 SM 2320B

Notes:

Column headers are defined as follows:

DF: Dilution Factor Lc/LC: Critical Level
DL: Detection Limit PF: Prep Factor
MDA: Minimum Detectable Activity RL: Reporting Limit

MDC: Minimum Detectable Concentration SQL: Sample Quantitation Limit

Page 15 of 55 SDG: 613959

2040 Savage Road Charleston SC 29407 - (843) 556-8171 - www.gel.com

Certificate of Analysis

Project:

Client ID:

Report Date: March 21, 2023

SOOP00119

SOOP001

Company: Santee Cooper Address: P.O. Box 2946101

OCO3

Moncks Corner, South Carolina 29461

Contact: Ms. Jeanette Gilmetti Project: ABS Lab Analytical

Client Sample ID: AF56419
Sample ID: 613959014
Matrix: Ground Water
Collect Date: 07-MAR-23 14:51
Receive Date: 10-MAR-23

Collector: Client

Parameter	Qualifier	Result	DL	RL	Units	PF	DF	Analy	st Date	Time Batch	Method
Carbon Analysis											
SM 5310 B Dissolve	ed Organic Carbo	on "As Received"									
Dissolved Organic Carbon	n Average	8.47	0.330	1.00	mg/L		1	TSM	03/16/23	1846 2399632	1
The following Prep I	Methods were pe	erformed:									
Method	Description	1		Analyst	Date		Time	e Pr	ep Batch		
EPA 160	Laboratory Fi	ltration - DOC		TSM	03/15/23		1135	239	97540		

The following Analytical Methods were performed:

MethodDescriptionAnalyst Comments1SM 5310 B

5141 5510

Notes:

Column headers are defined as follows:

DF: Dilution Factor Lc/LC: Critical Level
DL: Detection Limit PF: Prep Factor
MDA: Minimum Detectable Activity RL: Reporting Limit

MDC: Minimum Detectable Concentration SQL: Sample Quantitation Limit

Page 16 of 55 SDG: 613959

2040 Savage Road Charleston SC 29407 - (843) 556-8171 - www.gel.com

Certificate of Analysis

Project:

Client ID:

Analyst Comments

Report Date: March 21, 2023

SOOP00119

SOOP001

Company: Santee Cooper Address: P.O. Box 2946101

OCO3

Moncks Corner, South Carolina 29461

Contact: Ms. Jeanette Gilmetti Project: ABS Lab Analytical

Client Sample ID: AF56425
Sample ID: 613959015
Matrix: Ground Water
Collect Date: 07-MAR-23 12:49
Receive Date: 10-MAR-23

Collector: Client

Parameter	Qualifier	Result	DL	RL	Units	PF	DF	Anal	yst Date	Time Batch	Method
Carbon Analysis											
SM 5310 B Total Organi	c Carbon "A	s Received"									
Total Organic Carbon Average		2.77	0.330	1.00	mg/L		1	TSM	03/21/23	0447 2397544	1
Spectrometric Analysis											
SM 4500-S(2-) D Sulfide	"As Receiv	/ed"									
Total Sulfide	U	ND	0.0330	0.100	mg/L		1	HH2	03/13/23	1907 2395803	2
Titration and Ion Analysi	S										
SM 2320B Total Alkalin	ity "As Rece	eived"									
Alkalinity, Total as CaCO3	-	183	2.07	5.71	mg/L			EK1	03/13/23	1444 2397768	3
Bicarbonate alkalinity (CaCO3))	183	2.07	5.71	mg/L						
Carbonate alkalinity (CaCO3)	U	ND	2.07	5.71	mg/L						
The following Analytica	l Methods v	vere performed:									

 Method
 Description

 1
 SM 5310 B

 2
 SM 4500-S (2-) D

 3
 SM 2320B

Notes:

Column headers are defined as follows:

DF: Dilution Factor Lc/LC: Critical Level
DL: Detection Limit PF: Prep Factor
MDA: Minimum Detectable Activity RL: Reporting Limit

MDC: Minimum Detectable Concentration SQL: Sample Quantitation Limit

Page 17 of 55 SDG: 613959

2040 Savage Road Charleston SC 29407 - (843) 556-8171 - www.gel.com

Certificate of Analysis

Project:

Client ID:

Report Date: March 21, 2023

SOOP00119

SOOP001

Company: Santee Cooper Address: P.O. Box 2946101

OCO3

Moncks Corner, South Carolina 29461

Contact: Ms. Jeanette Gilmetti Project: ABS Lab Analytical

Client Sample ID: AF56425 Sample ID: 613959016 Matrix: Ground Water Collect Date: 07-MAR-23 12:49

Receive Date: 10-MAR-23 Client Collector:

Parameter	Qualifier	Result	DL	RL	Units	PF	DF .	Analyst Date	Time Batch	Method
Carbon Analysis										
SM 5310 B Dissolv	ed Organic Carbo	on "As Received"								
Dissolved Organic Carbo	on Average	3.09	0.330	1.00	mg/L		1	TSM 03/16/23	1906 2399632	1
The following Prep	Methods were pe	rformed:								
Method	Description	l		Analyst	Date		Time	Prep Batch	ı	

EPA 160 Laboratory Filtration - DOC 03/15/23 TSM 1135 2397540

The following Analytical Methods were performed:

Method Description **Analyst Comments** SM 5310 B

Notes:

Column headers are defined as follows:

DF: Dilution Factor Lc/LC: Critical Level DL: Detection Limit PF: Prep Factor RL: Reporting Limit MDA: Minimum Detectable Activity

MDC: Minimum Detectable Concentration SQL: Sample Quantitation Limit

Page 18 of 55 SDG: 613959

2040 Savage Road Charleston SC 29407 - (843) 556-8171 - www.gel.com

Certificate of Analysis

Project:

Client ID:

Report Date: March 21, 2023

SOOP00119

SOOP001

Company: Santee Cooper P.O. Box 2946101 Address:

OCO3

Moncks Corner, South Carolina 29461

Contact: Ms. Jeanette Gilmetti Project: ABS Lab Analytical

Client Sample ID: AF56426 Sample ID: 613959017 Matrix: Ground Water Collect Date: 07-MAR-23 10:22 Receive Date: 10-MAR-23

Collector: Client

Parameter	Qualifier	Result	DL	RL	Units	PF	DF	Anal	yst Date	Time Batch	Method
Carbon Analysis											
SM 5310 B Total Organi	c Carbon "A	As Received"									
Total Organic Carbon Average		1.05	0.330	1.00	mg/L		1	TSM	03/21/23	0507 2397544	1
Spectrometric Analysis											
SM 4500-S(2-) D Sulfide	e "As Receiv	ved"									
Total Sulfide	U	ND	0.0330	0.100	mg/L		1	HH2	03/13/23	1907 2395803	3 2
Titration and Ion Analysi	is										
SM 2320B Total Alkalin	ity "As Rec	eived"									
Alkalinity, Total as CaCO3	-	7.14	2.07	5.71	mg/L			EK1	03/13/23	1447 2397768	3
Bicarbonate alkalinity (CaCO3))	7.14	2.07	5.71	mg/L						
Carbonate alkalinity (CaCO3)	U	ND	2.07	5.71	mg/L						
The following Analytica	l Methods v	were performed:									

Method Description **Analyst Comments** SM 5310 B 2

SM 4500-S (2-) D

SM 2320B

Notes:

Column headers are defined as follows:

DF: Dilution Factor Lc/LC: Critical Level DL: Detection Limit PF: Prep Factor MDA: Minimum Detectable Activity **RL**: Reporting Limit

MDC: Minimum Detectable Concentration SQL: Sample Quantitation Limit

Page 19 of 55 SDG: 613959

2040 Savage Road Charleston SC 29407 - (843) 556-8171 - www.gel.com

Certificate of Analysis

Project:

Client ID:

Report Date: March 21, 2023

SOOP00119

SOOP001

Company: Santee Cooper Address: P.O. Box 2946101

OCO3

Moncks Corner, South Carolina 29461

Contact: Ms. Jeanette Gilmetti Project: ABS Lab Analytical

Client Sample ID: AF56426
Sample ID: 613959018
Matrix: Ground Water
Collect Date: 07-MAR-23 10:22
Receive Date: 10-MAR-23

Collector: Client

Parameter	Qualifier	Result	DL	RL	Units	PF	DF	Analy	st Date	Time Batch	Method
Carbon Analysis											
SM 5310 B Dissol Dissolved Organic Carl	~	on "As Received" 0.864	0.330	1.00	mg/L		1	TSM	03/16/23	1926 2399632	1
The following Prep	p Methods were pe	rformed:									
Method	Description	l		Analyst	Date		Time	e Pr	ep Batch		
EPA 160	Laboratory Fil	Itration - DOC		TSM	03/15/23		1135	23	97540		

The following Analytical Methods were performed:

MethodDescriptionAnalyst Comments1SM 5310 B

Notes:

Column headers are defined as follows:

DF: Dilution Factor Lc/LC: Critical Level
DL: Detection Limit PF: Prep Factor
MDA: Minimum Detectable Activity RL: Reporting Limit

MDC: Minimum Detectable Concentration SQL: Sample Quantitation Limit

Page 20 of 55 SDG: 613959

2040 Savage Road Charleston SC 29407 - (843) 556-8171 - www.gel.com

Certificate of Analysis

Project:

Client ID:

Analyst Comments

Report Date: March 21, 2023

SOOP00119

SOOP001

Company: Santee Cooper Address: P.O. Box 2946101

OCO3

Moncks Corner, South Carolina 29461

Contact: Ms. Jeanette Gilmetti Project: ABS Lab Analytical

Client Sample ID: AF56427
Sample ID: 613959019
Matrix: Ground Water
Collect Date: 07-MAR-23 10:27
Receive Date: 10-MAR-23

Collector: Client

Parameter	Qualifier	Result	DL	RL	Units	PF	DF	Anal	yst Date	Time Batch	Method
Carbon Analysis											
SM 5310 B Total Organi	c Carbon "A	As Received"									
Total Organic Carbon Average	J	0.730	0.330	1.00	mg/L		1	TSM	03/21/23	0526 2397544	1
Spectrometric Analysis											
SM 4500-S(2-) D Sulfide	e "As Receiv	ved"									
Total Sulfide	J	0.0420	0.0330	0.100	mg/L		1	HH2	03/14/23	1759 2397596	5 2
Titration and Ion Analys:	is										
SM 2320B Total Alkalin	ity "As Rec	eived"									
Alkalinity, Total as CaCO3		10.3	2.07	5.71	mg/L			EK1	03/13/23	1450 2397768	3
Bicarbonate alkalinity (CaCO3)	10.3	2.07	5.71	mg/L						
Carbonate alkalinity (CaCO3)	U	ND	2.07	5.71	mg/L						
The following Analytica	ıl Methods v	vere performed	d:								

 Method
 Description

 1
 SM 5310 B

 2
 SM 4500-S (2-) D

SM 2320B

Notes:

Column headers are defined as follows:

DF: Dilution Factor Lc/LC: Critical Level
DL: Detection Limit PF: Prep Factor
MDA: Minimum Detectable Activity RL: Reporting Limit

MDC: Minimum Detectable Concentration SQL: Sample Quantitation Limit

Page 21 of 55 SDG: 613959

2040 Savage Road Charleston SC 29407 - (843) 556-8171 - www.gel.com

Certificate of Analysis

Report Date: March 21, 2023

SOOP00119

SOOP001

Project:

Client ID:

Company: Santee Cooper Address: P.O. Box 2946101

OCO3

Moncks Corner, South Carolina 29461

Contact: Ms. Jeanette Gilmetti Project: ABS Lab Analytical

Client Sample ID: AF56427 Sample ID: 613959020 Matrix: Ground Water Collect Date: 07-MAR-23 10:27 Receive Date: 10-MAR-23

Client Collector:

Parameter	Qualifier	Result	DL	RL	Units	PF	DF	Analy	st Date	Time Batch	Method
Carbon Analysis											
SM 5310 B Dissol	ved Organic Carbo	n "As Received"									
Dissolved Organic Carl	oon Average J	0.950	0.330	1.00	mg/L		1	TSM	03/16/23	1947 2399632	1
The following Prep	Methods were pe	rformed:									
Method	Description			Analyst	Date		Time	e Pr	ep Batch		
EPA 160	Laboratory Fil	tration - DOC		TSM	03/15/23		1135	23	97540		

EPA 160 Laboratory Filtration - DOC The following Analytical Methods were performed:

Method Description **Analyst Comments** SM 5310 B

Notes:

Column headers are defined as follows:

DF: Dilution Factor Lc/LC: Critical Level DL: Detection Limit PF: Prep Factor MDA: Minimum Detectable Activity RL: Reporting Limit

SQL: Sample Quantitation Limit MDC: Minimum Detectable Concentration

Page 22 of 55 SDG: 613959

2040 Savage Road Charleston SC 29407 - (843) 556-8171 - www.gel.com

Certificate of Analysis

Project:

Client ID:

Report Date: March 21, 2023

SOOP00119

SOOP001

Company: Santee Cooper Address: P.O. Box 2946101

OCO3

Moncks Corner, South Carolina 29461

Contact: Ms. Jeanette Gilmetti Project: ABS Lab Analytical

Client Sample ID: AF56408
Sample ID: 613959021
Matrix: Ground Water
Collect Date: 08-MAR-23 13:38
Receive Date: 10-MAR-23

10-MAR-23 Client

Parameter	Qualifier	Result	DL	RL	Units	PF	DF	Analy	st Date	Time Batch	Method
Carbon Analysis											
SM 5310 B Total Organi	ic Carbon "A	As Received"									
Total Organic Carbon Average	;	9.05	0.330	1.00	mg/L		1	TSM	03/21/23	0546 2397544	1
Spectrometric Analysis											
SM 4500-S(2-) D Sulfide	e "As Receiv	ved"									
Total Sulfide	U	ND	0.0330	0.100	mg/L		1	HH2	03/14/23	1759 2397596	2
Titration and Ion Analys	is										
SM 2320B Total Alkalin	ity "As Rec	eived"									
Alkalinity, Total as CaCO3		481	2.07	5.71	mg/L			EK1	03/13/23	1456 2397768	3
Bicarbonate alkalinity (CaCO3	5)	481	2.07	5.71	mg/L						
Carbonate alkalinity (CaCO3)	U	ND	2.07	5.71	mg/L						
The following Analytica	al Methods v	vere performed:									
Method	Description	ļ			F	Analys	st Co	mment	s		

1 SM 5310 B 2 SM 4500-S (2-) D 3 SM 2320B

Collector:

Notes:

Column headers are defined as follows:

DF: Dilution Factor Lc/LC: Critical Level
DL: Detection Limit PF: Prep Factor
MDA: Minimum Detectable Activity RL: Reporting Limit

MDC: Minimum Detectable Concentration SQL: Sample Quantitation Limit

Page 23 of 55 SDG: 613959

2040 Savage Road Charleston SC 29407 - (843) 556-8171 - www.gel.com

Certificate of Analysis

Project:

Client ID:

Report Date: March 21, 2023

SOOP00119

SOOP001

Company: Santee Cooper Address: P.O. Box 2946101

OCO3

Moncks Corner, South Carolina 29461

Contact: Ms. Jeanette Gilmetti Project: ABS Lab Analytical

Client Sample ID: AF56408
Sample ID: 613959022
Matrix: Ground Water
Collect Date: 08-MAR-23 13:38
Receive Date: 10-MAR-23

Collector: Client

Parameter	Qualifier	Result	DL	RL	Units	PF	DF Analyst Date	Time Batch	Method
Carbon Analysis	-		-						

Carbon Analysis

SM 5310 B Dissolved Organic Carbon "As Received"

Dissolved Organic Carbon Average 7.68 0.330 1.00 mg/L 1 TSM 03/20/23 1806 2399632 1

The following Prep Methods were performed:

Method	Description	Analyst	Date	Time	Prep Batch
EPA 160	Laboratory Filtration - DOC	TSM	03/15/23	1135	2397540
EPA 160	Laboratory Filtration - DOC	TSM	03/17/23	1237	2397540

The following Analytical Methods were performed:

Method Description Analyst Comments

SM 5310 B

Notes:

Column headers are defined as follows:

DF: Dilution Factor Lc/LC: Critical Level
DL: Detection Limit PF: Prep Factor
MDA: Minimum Detectable Activity RL: Reporting Limit

MDC: Minimum Detectable Concentration SQL: Sample Quantitation Limit

Page 24 of 55 SDG: 613959

2040 Savage Road Charleston SC 29407 - (843) 556-8171 - www.gel.com

Certificate of Analysis

Report Date: March 21, 2023

Company: Santee Cooper Address: P.O. Box 2946101

OCO3

Moncks Corner, South Carolina 29461

Contact: Ms. Jeanette Gilmetti Project: ABS Lab Analytical

Client Sample ID: AF56415
Sample ID: 613959023
Matrix: Ground Water
Collect Date: 08-MAR-23 15:13
Receive Date: 10-MAR-23

Client

Client ID: SOOP001

Project:

SOOP00119

Parameter	Qualifier	Result	DL	RL	Units	PF	DF Anal	yst Date	Time Batch	Method
Carbon Analysis										
SM 5310 B Total Organ	ic Carbon "A	As Received"								
Total Organic Carbon Average	e	21.1	0.660	2.00	mg/L		2 TSM	03/21/23	0608 2397544	1
Spectrometric Analysis										
SM 4500-S(2-) D Sulfid	e "As Receiv	ved"								
Total Sulfide	U	ND	0.0330	0.100	mg/L		1 HH2	03/14/23	1759 2397596	2
Titration and Ion Analys	sis									
SM 2320B Total Alkalin	nity "As Rec	eived"								
Alkalinity, Total as CaCO3	•	322	2.07	5.71	mg/L		EK1	03/13/23	1507 2397768	3
Bicarbonate alkalinity (CaCO	3)	322	2.07	5.71	mg/L					
Carbonate alkalinity (CaCO3)	U	ND	2.07	5.71	mg/L					
The following Analytic	al Methods v	were performed:								
Method	Description	l			F	Analys	st Commen	ts		

1 SM 5310 B 2 SM 4500-S (2-) D 3 SM 2320B

Collector:

Notes:

Column headers are defined as follows:

DF: Dilution Factor Lc/LC: Critical Level
DL: Detection Limit PF: Prep Factor
MDA: Minimum Detectable Activity RL: Reporting Limit

MDC: Minimum Detectable Concentration SQL: Sample Quantitation Limit

Page 25 of 55 SDG: 613959

2040 Savage Road Charleston SC 29407 - (843) 556-8171 - www.gel.com

Certificate of Analysis

Project:

Client ID:

Report Date: March 21, 2023

SOOP00119

SOOP001

Company: Santee Cooper Address: P.O. Box 2946101

OCO3

Moncks Corner, South Carolina 29461

Contact: Ms. Jeanette Gilmetti Project: ABS Lab Analytical

Client Sample ID: AF56415
Sample ID: 613959024
Matrix: Ground Water
Collect Date: 08-MAR-23 15:13
Receive Date: 10-MAR-23

Collector: Client

Parameter	Qualifier	Result	DL	RL	Units	PF	DF	Analyst Date	Time Batch	Method
Carbon Analysis										
SM 5310 B Disso	lved Organic Carbo	n "As Received"								
Dissolved Organic Car	rbon Average	19.2	0.330	1.00	mg/L		1	TSM 03/16/23	2114 2399632	1
The following Pre	p Methods were pe	rformed:								
Method	Description			Analyst	Date		Time	Prep Batch		
EPA 160	Laboratory Fil	tration - DOC		TSM	03/15/23		1135	2397540		

The following Analytical Methods were performed:

MethodDescriptionAnalyst Comments1SM 5310 B

Notes:

Column headers are defined as follows:

DF: Dilution Factor Lc/LC: Critical Level
DL: Detection Limit PF: Prep Factor
MDA: Minimum Detectable Activity RL: Reporting Limit

MDC: Minimum Detectable Concentration SQL: Sample Quantitation Limit

Page 26 of 55 SDG: 613959

2040 Savage Road Charleston SC 29407 - (843) 556-8171 - www.gel.com

Certificate of Analysis

Project:

Client ID:

Report Date: March 21, 2023

SOOP00119

SOOP001

Company: Santee Cooper Address: P.O. Box 2946101

OCO3

Moncks Corner, South Carolina 29461

Contact: Ms. Jeanette Gilmetti Project: ABS Lab Analytical

Client Sample ID: AF56416
Sample ID: 613959025
Matrix: Ground Water
Collect Date: 08-MAR-23 10:09

Receive Date: 10-MAR-23 Collector: Client

Parameter	Qualifier	Result	DL	RL	Units	PF	DF	Analy	st Date	Time Batch	Method
Carbon Analysis											
SM 5310 B Total Organ	nic Carbon "A	As Received"									
Total Organic Carbon Averag	e	10.1	0.330	1.00	mg/L		1	TSM	03/21/23	0708 2397544	1
Spectrometric Analysis											
SM 4500-S(2-) D Sulfic	le "As Recei	ved"									
Total Sulfide	J	0.0396	0.0330	0.100	mg/L		1	HH2	03/14/23	1759 2397596	2
Titration and Ion Analys	sis										
SM 2320B Total Alkali	nity "As Rec	eived"									
Alkalinity, Total as CaCO3	•	67.4	2.07	5.71	mg/L			EK1	03/13/23	1511 2397768	3
Bicarbonate alkalinity (CaCO	3)	67.4	2.07	5.71	mg/L						
Carbonate alkalinity (CaCO3)	U	ND	2.07	5.71	mg/L						
The following Analytic	al Methods v	were performed:									
Method	Description	1			1	Analys	st Co	mment	s		

1 SM 5310 B 2 SM 4500-S (2-) D 3 SM 2320B

Notes:

Column headers are defined as follows:

DF: Dilution Factor Lc/LC: Critical Level
DL: Detection Limit PF: Prep Factor
MDA: Minimum Detectable Activity RL: Reporting Limit

MDC: Minimum Detectable Concentration SQL: Sample Quantitation Limit

Page 27 of 55 SDG: 613959

2040 Savage Road Charleston SC 29407 - (843) 556-8171 - www.gel.com

Certificate of Analysis

Report Date: March 21, 2023

SOOP00119

SOOP001

Project:

Client ID:

Company: Santee Cooper Address: P.O. Box 2946101

OCO3

Moncks Corner, South Carolina 29461

Contact: Ms. Jeanette Gilmetti Project: ABS Lab Analytical

Client Sample ID: AF56416
Sample ID: 613959026
Matrix: Ground Water
Collect Date: 08-MAR-23 10:09
Receive Date: 10-MAR-23

Collector: Client

Parameter	Qualifier	Result	DL	RL	Units	PF	DF	Analyst Date	Time Batch	Method
Carbon Analysis										
SM 5310 B Dissolv	ed Organic Carbo	on "As Received"								
Dissolved Organic Carbo	on Average	10.1	0.330	1.00	mg/L		1	TSM 03/16/23	2134 2399632	1
The following Prep	Methods were pe	erformed:								
Method	Description	1		Analyst	Date		Time	e Prep Batcl	1	
EPA 160	Laboratory Fi	ltration - DOC		TSM	03/15/23		1135	2397540		

EPA 160 Laboratory Filtration - DOC

The following Analytical Methods were performed:

MethodDescriptionAnalyst Comments1SM 5310 B

Notes:

Column headers are defined as follows:

DF: Dilution Factor Lc/LC: Critical Level
DL: Detection Limit PF: Prep Factor
MDA: Minimum Detectable Activity RL: Reporting Limit

MDC: Minimum Detectable Concentration SQL: Sample Quantitation Limit

Page 28 of 55 SDG: 613959

2040 Savage Road Charleston SC 29407 - (843) 556-8171 - www.gel.com

Certificate of Analysis

Report Date: March 21, 2023

Company: Santee Cooper Address: P.O. Box 2946101

OCO3

Moncks Corner, South Carolina 29461

Contact: Ms. Jeanette Gilmetti Project: ABS Lab Analytical

Client Sample ID: AF56417
Sample ID: 613959027
Matrix: Ground Water
Collect Date: 08-MAR-23 10:14
Receive Date: 10-MAR-23

Client

Client ID: SOOP001

SOOP00119

Project:

Parameter	Qualifier	Result	DL	RL	Units	PF	DF	Analy	st Date	Time	Batch	Method
Carbon Analysis												
SM 5310 B Total Organ	ic Carbon "A	As Received"										
Total Organic Carbon Average	e	10.5	0.330	1.00	mg/L		1	TSM	03/21/23	0750	2397544	1
Spectrometric Analysis												
SM 4500-S(2-) D Sulfid	e "As Receiv	ved"										
Total Sulfide	U	ND	0.0330	0.100	mg/L		1	HH2	03/14/23	1759	2397596	2
Titration and Ion Analys	sis											
SM 2320B Total Alkalir	nity "As Rece	eived"										
Alkalinity, Total as CaCO3	•	59.4	2.07	5.71	mg/L			EK1	03/13/23	1513	2397768	3
Bicarbonate alkalinity (CaCO3	3)	59.4	2.07	5.71	mg/L							
Carbonate alkalinity (CaCO3)	U	ND	2.07	5.71	mg/L							
The following Analytica	al Methods v	vere performed:										
Method	Description				F	Analys	st Co	mment	s			

 Method
 Description

 1
 SM 5310 B

 2
 SM 4500-S (2-) D

 3
 SM 2320B

Collector:

Notes:

Column headers are defined as follows:

DF: Dilution Factor Lc/LC: Critical Level
DL: Detection Limit PF: Prep Factor
MDA: Minimum Detectable Activity RL: Reporting Limit

MDC: Minimum Detectable Concentration SQL: Sample Quantitation Limit

Page 29 of 55 SDG: 613959

2040 Savage Road Charleston SC 29407 - (843) 556-8171 - www.gel.com

Certificate of Analysis

Report Date: March 21, 2023

SOOP00119

SOOP001

Project:

Client ID:

Company: Santee Cooper Address: P.O. Box 2946101

OCO3

Moncks Corner, South Carolina 29461

Contact: Ms. Jeanette Gilmetti Project: ABS Lab Analytical

Client Sample ID: AF56417
Sample ID: 613959028
Matrix: Ground Water
Collect Date: 08-MAR-23 10:14

Receive Date: 10-MAR-23 Collector: Client

Parameter	Qualifier	Result	DL	RL	Units	PF	DF	Analyst Date	Time Batch	Method
Carbon Analysis										
SM 5310 B Disso	lved Organic Carbo	on "As Received"								
Dissolved Organic Car	rbon Average	10.7	0.330	1.00	mg/L		1	TSM 03/16/23	2216 2399632	1
The following Pre	p Methods were pe	erformed:								
Method	Description	1		Analyst	Date		Time	Prep Batch		
EPA 160	Laboratory Fi	ltration - DOC		TSM	03/15/23		1135	2397540		
TEL C 11 . A	1 2 134 4 1	C 1								

The following Analytical Methods were performed:

 Method
 Description
 Analyst Comments

 1
 SM 5310 B

Notes:

Column headers are defined as follows:

DF: Dilution Factor Lc/LC: Critical Level
DL: Detection Limit PF: Prep Factor
MDA: Minimum Detectable Activity RL: Reporting Limit

MDC: Minimum Detectable Concentration SQL: Sample Quantitation Limit

Page 30 of 55 SDG: 613959

2040 Savage Road Charleston SC 29407 - (843) 556-8171 - www.gel.com

Certificate of Analysis

Project:

Client ID:

Report Date: March 21, 2023

SOOP00119

SOOP001

Company: Santee Cooper Address: P.O. Box 2946101

OCO3

Moncks Corner, South Carolina 29461

Contact: Ms. Jeanette Gilmetti Project: ABS Lab Analytical

Client Sample ID: AF56429
Sample ID: 613959029
Matrix: Ground Water
Collect Date: 08-MAR-23 12:12
Receive Date: 10-MAR-23

Collector: Client

Parameter	Qualifier	Result	DL	RL	Units	PF	DF	Analy	yst Date	Time	Batch	Method
Carbon Analysis												
SM 5310 B Total Organi	ic Carbon "A	s Received"										
Total Organic Carbon Average	;	2.31	0.330	1.00	mg/L		1	TSM	03/21/23	0810	2397544	1
Spectrometric Analysis												
SM 4500-S(2-) D Sulfide	e "As Receiv	ed"										
Total Sulfide	U	ND	0.0330	0.100	mg/L		1	HH2	03/14/23	1759	2397596	2
Titration and Ion Analys	is											
SM 2320B Total Alkalin	ity "As Rece	eived"										
Alkalinity, Total as CaCO3		13.1	2.07	5.71	mg/L			EK1	03/13/23	1515	2397768	3
Bicarbonate alkalinity (CaCO3	5)	13.1	2.07	5.71	mg/L							
Carbonate alkalinity (CaCO3)	U	ND	2.07	5.71	mg/L							
The following Analytica	al Methods v	vere performed:										
Method	Description				1	Analys	st Co	mment	ts			

 Method
 Description

 1
 SM 5310 B

 2
 SM 4500-S (2-) D

 3
 SM 2320B

Notes:

Column headers are defined as follows:

DF: Dilution Factor Lc/LC: Critical Level
DL: Detection Limit PF: Prep Factor
MDA: Minimum Detectable Activity RL: Reporting Limit

MDC: Minimum Detectable Concentration SQL: Sample Quantitation Limit

Page 31 of 55 SDG: 613959

2040 Savage Road Charleston SC 29407 - (843) 556-8171 - www.gel.com

Certificate of Analysis

Report Date: March 21, 2023

SOOP00119

SOOP001

Project:

Client ID:

Company: Santee Cooper Address: P.O. Box 2946101

OCO3

Moncks Corner, South Carolina 29461

Contact: Ms. Jeanette Gilmetti Project: ABS Lab Analytical

Client Sample ID: AF56429
Sample ID: 613959030
Matrix: Ground Water
Collect Date: 08-MAR-23 12:12
Receive Date: 10-MAR-23

l Water

Collector: Client

Parameter	Qualifier	Result	DL	RL	Units	PF	DF A	Analyst Date	Time Batch	Method
Carbon Analysis										
SM 5310 B Disso	lved Organic Carb	oon "As Received"								
Dissolved Organic Car	rbon Average	2.22	0.330	1.00	mg/L		1 '	TSM 03/16/23	2236 2399632	1
The following Pre	ep Methods were p	erformed:								
Method	Description	on		Analyst	Date		Time	Prep Batch		
EPA 160	Laboratory I	Filtration - DOC		TSM	03/15/23		1135	2397540		
The fellowing A	andretinal Mathemata									

The following Analytical Methods were performed:

 Method
 Description
 Analyst Comments

 1
 SM 5310 B

Notes:

Column headers are defined as follows:

DF: Dilution Factor

DL: Detection Limit

MDA: Minimum Detectable Activity

Lc/LC: Critical Level

PF: Prep Factor

RL: Reporting Limit

MDC: Minimum Detectable Concentration SQL: Sample Quantitation Limit

Page 32 of 55 SDG: 613959

2040 Savage Road Charleston SC 29407 - (843) 556-8171 - www.gel.com

Certificate of Analysis

Project:

Client ID:

Report Date: March 21, 2023

SOOP00119

SOOP001

Company: Santee Cooper Address: P.O. Box 2946101

OCO3

Moncks Corner, South Carolina 29461

Contact: Ms. Jeanette Gilmetti Project: ABS Lab Analytical

Client Sample ID: AF56406
Sample ID: 613959031
Matrix: Ground Water
Collect Date: 09-MAR-23 10:29
Receive Date: 10-MAR-23

Client

Parameter	Qualifier	Result	DL	RL	Units	PF	DF	Analy	st Date	Time Batch	Method
Carbon Analysis											
SM 5310 B Total Organ	ic Carbon "A	As Received"									
Total Organic Carbon Average	•	7.15	0.330	1.00	mg/L		1	TSM	03/21/23	0830 2397544	1
Spectrometric Analysis											
SM 4500-S(2-) D Sulfid	e "As Recei	ved"									
Total Sulfide	U	ND	0.0330	0.100	mg/L		1	HH2	03/14/23	1759 2397596	2
Titration and Ion Analys	is										
SM 2320B Total Alkalir	nity "As Rec	eived"									
Alkalinity, Total as CaCO3	J	5.43	2.07	5.71	mg/L			EK1	03/13/23	1518 2397768	3
Bicarbonate alkalinity (CaCO3	3) J	5.43	2.07	5.71	mg/L						
Carbonate alkalinity (CaCO3)	U	ND	2.07	5.71	mg/L						
The following Analytics	The following Analytical Methods were performed:										
Method		Analyst Comments									

 Method
 Description

 1
 SM 5310 B

 2
 SM 4500-S (2-) D

 3
 SM 2320B

Collector:

Notes:

Column headers are defined as follows:

DF: Dilution Factor Lc/LC: Critical Level
DL: Detection Limit PF: Prep Factor
MDA: Minimum Detectable Activity RL: Reporting Limit

MDC: Minimum Detectable Concentration SQL: Sample Quantitation Limit

Page 33 of 55 SDG: 613959

2040 Savage Road Charleston SC 29407 - (843) 556-8171 - www.gel.com

Certificate of Analysis

Project:

Client ID:

Report Date: March 21, 2023

SOOP00119

SOOP001

Company: Santee Cooper Address: P.O. Box 2946101

OCO3

Moncks Corner, South Carolina 29461

Contact: Ms. Jeanette Gilmetti Project: ABS Lab Analytical

Client Sample ID: AF56406
Sample ID: 613959032
Matrix: Ground Water
Collect Date: 09-MAR-23 10:29
Receive Date: 10-MAR-23

Collector: Client

Parameter	Qualifier	Result	DL	RL	Units	PF	DF	Analy	yst Date	Time	Batch	Method
Carbon Analysis												
SM 5310 B Dissolve	ed Organic Carbo	on "As Received"										
Dissolved Organic Carbon	n Average	6.20	0.330	1.00	mg/L		1	TSM	03/16/23	2257 2	2399632	1
The following Prep M	Methods were pe	erformed:										
Method	Description	1		Analyst	Date		Time	e Pi	rep Batch			
EPA 160	Laboratory Fi	ltration - DOC		TSM	03/15/23		1135	23	97540			

The following Analytical Methods were performed:

MethodDescriptionAnalyst Comments1SM 5310 B

Notes:

Column headers are defined as follows:

DF: Dilution Factor Lc/LC: Critical Level
DL: Detection Limit PF: Prep Factor
MDA: Minimum Detectable Activity RL: Reporting Limit

MDC: Minimum Detectable Concentration SQL: Sample Quantitation Limit

Page 34 of 55 SDG: 613959

2040 Savage Road Charleston SC 29407 - (843) 556-8171 - www.gel.com

Certificate of Analysis

Report Date: March 21, 2023

Company: Santee Cooper Address: P.O. Box 2946101

OCO3

Moncks Corner, South Carolina 29461

Contact: Ms. Jeanette Gilmetti Project: ABS Lab Analytical

Client Sample ID: AF56407 Sample ID: 613959033 Matrix: Ground Water Collect Date: 09-MAR-23 10:34 Receive Date: 10-MAR-23

Client

Project: Client ID: SOOP001

SOOP00119

Parameter	Qualifier	Result	DL	RL	Units	PF	DF	Analy	st Date	Time Batc	h Method
Carbon Analysis											
SM 5310 B Total Organ	ic Carbon "A	As Received"									
Total Organic Carbon Average	•	7.16	0.330	1.00	mg/L		1	TSM	03/21/23	0850 23975	14 1
Spectrometric Analysis											
SM 4500-S(2-) D Sulfid	e "As Receiv	ved"									
Total Sulfide	U	ND	0.0330	0.100	mg/L		1	HH2	03/14/23	1759 23975	96 2
Titration and Ion Analys	is										
SM 2320B Total Alkalir	nity "As Rec	eived"									
Alkalinity, Total as CaCO3	•	7.14	2.07	5.71	mg/L			EK1	03/13/23	1521 23977	58 3
Bicarbonate alkalinity (CaCO3	3)	7.14	2.07	5.71	mg/L						
Carbonate alkalinity (CaCO3)	U	ND	2.07	5.71	mg/L						
The following Analytica	The following Analytical Methods were performed:										
Method		Analyst Comments									

 $SM\ 5310\ B$ SM 4500-S (2-) D 2 SM 2320B

Collector:

Notes:

Column headers are defined as follows:

DF: Dilution Factor Lc/LC: Critical Level DL: Detection Limit PF: Prep Factor MDA: Minimum Detectable Activity **RL**: Reporting Limit

MDC: Minimum Detectable Concentration SQL: Sample Quantitation Limit

Page 35 of 55 SDG: 613959

2040 Savage Road Charleston SC 29407 - (843) 556-8171 - www.gel.com

Certificate of Analysis

Project:

Client ID:

Report Date: March 21, 2023

SOOP00119

SOOP001

Company: Santee Cooper Address: P.O. Box 2946101

OCO3

Moncks Corner, South Carolina 29461

Contact: Ms. Jeanette Gilmetti Project: ABS Lab Analytical

Client Sample ID: AF56407
Sample ID: 613959034
Matrix: Ground Water
Collect Date: 09-MAR-23 10:34
Receive Date: 10-MAR-23

Collector: Client

Parameter	Oualifier	Result	DL	RL	Units	PF	DF	Analyst Dat	e Time Bate	h Method
	Quanner	Result	DL	KL	Onts	11	DI	Anaryst Dat	c Time Batt	n wiemou
Carbon Analysis										
SM 5310 B Dissolv	ed Organic Carbo	on "As Received"								
Dissolved Organic Carbo	on Average	6.25	0.330	1.00	mg/L		1	TSM 03/16/	23 2317 23996	532 1
The following Prep	Methods were pe	erformed:								
Method	Description	1		Analyst	Date		Time	e Prep Bat	ch	
EPA 160	Laboratory Fi	ltration - DOC		TSM	03/15/23		1135	2397540		

The following Analytical Methods were performed:

MethodDescriptionAnalyst Comments1SM 5310 B

Notes:

Column headers are defined as follows:

DF: Dilution Factor Lc/LC: Critical Level
DL: Detection Limit PF: Prep Factor
MDA: Minimum Detectable Activity RL: Reporting Limit

MDC: Minimum Detectable Concentration SQL: Sample Quantitation Limit

Page 36 of 55 SDG: 613959

2040 Savage Road Charleston SC 29407 - (843) 556-8171 - www.gel.com

Certificate of Analysis

Project:

Client ID:

Report Date: March 21, 2023

SOOP00119

SOOP001

Company: Santee Cooper P.O. Box 2946101 Address:

OCO3

Moncks Corner, South Carolina 29461

Contact: Ms. Jeanette Gilmetti ABS Lab Analytical Project:

Client Sample ID: AF56418 Sample ID: 613959035 Matrix: Ground Water Collect Date: 09-MAR-23 12:07 Receive Date: 10-MAR-23

Collector: Client

Parameter	Qualifier	Result	DL	RL	Units	PF	DF An	alyst Date	Time Batch	Method
Carbon Analysis										
SM 5310 B Total Organi	c Carbon "A	As Received"								
Total Organic Carbon Average		10.3	0.330	1.00	mg/L		1 TS	M 03/21/23	0910 2397544	1
Spectrometric Analysis										
SM 4500-S(2-) D Sulfide	e "As Recei	ved"								
Total Sulfide	U	ND	0.0330	0.100	mg/L		1 HH	2 03/14/23	1759 2397596	2
Titration and Ion Analys:	is									
SM 2320B Total Alkalin	ity "As Rec	eived"								
Alkalinity, Total as CaCO3	-	32.0	2.07	5.71	mg/L		EK	1 03/13/23	1523 2397768	3
Bicarbonate alkalinity (CaCO3)	32.0	2.07	5.71	mg/L					
Carbonate alkalinity (CaCO3)	U	ND	2.07	5.71	mg/L					
The following Analytica	The following Analytical Methods were performed:									

Method Description **Analyst Comments** SM 5310 B SM 4500-S (2-) D 2

SM 2320B

Notes:

Column headers are defined as follows:

DF: Dilution Factor Lc/LC: Critical Level DL: Detection Limit PF: Prep Factor MDA: Minimum Detectable Activity **RL**: Reporting Limit

MDC: Minimum Detectable Concentration SQL: Sample Quantitation Limit

Page 37 of 55 SDG: 613959

2040 Savage Road Charleston SC 29407 - (843) 556-8171 - www.gel.com

Certificate of Analysis

Project:

Client ID:

Report Date: March 21, 2023

SOOP00119

SOOP001

Company: Santee Cooper Address: P.O. Box 2946101

OCO3

Moncks Corner, South Carolina 29461

Contact: Ms. Jeanette Gilmetti Project: ABS Lab Analytical

Client Sample ID: AF56418
Sample ID: 613959036
Matrix: Ground Water
Collect Date: 09-MAR-23 12:07
Receive Date: 10-MAR-23

Collector: Client

Parameter	Qualifier	Result	DL	RL	Units	PF	DF	Analy	st Date	Time Batch	Method
Carbon Analysis											
SM 5310 B Dissolve	ed Organic Carbo	on "As Received"									
Dissolved Organic Carbo	n Average	10.1	0.330	1.00	mg/L		1	TSM	03/16/23	2337 2399632	. 1
The following Prep	Methods were pe	erformed:									
Method	Description	1		Analyst	Date		Time	e Pr	ep Batch		
EPA 160	Laboratory Fi	ltration - DOC		TSM	03/15/23		1135	23	97540		

The following Analytical Methods were performed:

MethodDescriptionAnalyst Comments1SM 5310 B

Notes:

Column headers are defined as follows:

DF: Dilution Factor Lc/LC: Critical Level
DL: Detection Limit PF: Prep Factor
MDA: Minimum Detectable Activity RL: Reporting Limit

MDC: Minimum Detectable Concentration SQL: Sample Quantitation Limit

Page 38 of 55 SDG: 613959

2040 Savage Road Charleston SC 29407 - (843) 556-8171 - www.gel.com

Certificate of Analysis

Project:

Client ID:

Report Date: March 21, 2023

SOOP00119

SOOP001

Company: Santee Cooper Address: P.O. Box 2946101

OCO3

Moncks Corner, South Carolina 29461

Contact: Ms. Jeanette Gilmetti Project: ABS Lab Analytical

Client Sample ID: AF56422
Sample ID: 613959037
Matrix: Ground Water
Collect Date: 09-MAR-23 13:19
Receive Date: 10-MAR-23

Collector: Client

Parameter	Qualifier	Result	DL	RL	Units	PF	DF	Analy	st Date	Time Batch	Method
Carbon Analysis											
SM 5310 B Total Organ	ic Carbon "A	As Received"									
Total Organic Carbon Average	•	3.78	0.330	1.00	mg/L		1	TSM	03/21/23	0930 2397544	1
Spectrometric Analysis											
SM 4500-S(2-) D Sulfid	e "As Receiv	ved"									
Total Sulfide	U	ND	0.0330	0.100	mg/L		1	HH2	03/14/23	1759 2397596	2
Titration and Ion Analys	is										
SM 2320B Total Alkalin	nity "As Rec	eived"									
Alkalinity, Total as CaCO3	•	282	2.07	5.71	mg/L			EK1	03/13/23	1524 2397768	3
Bicarbonate alkalinity (CaCO3	3)	282	2.07	5.71	mg/L						
Carbonate alkalinity (CaCO3)	U	ND	2.07	5.71	mg/L						
The following Analytica	The following Analytical Methods were performed:										
Method		Analyst Comments									

1 SM 5310 B 2 SM 4500-S (2-) D 3 SM 2320B

Notes:

Column headers are defined as follows:

DF: Dilution Factor Lc/LC: Critical Level
DL: Detection Limit PF: Prep Factor
MDA: Minimum Detectable Activity RL: Reporting Limit

MDC: Minimum Detectable Concentration SQL: Sample Quantitation Limit

Page 39 of 55 SDG: 613959

2040 Savage Road Charleston SC 29407 - (843) 556-8171 - www.gel.com

Certificate of Analysis

Project:

Client ID:

Report Date: March 21, 2023

SOOP00119

SOOP001

Company: Santee Cooper Address: P.O. Box 2946101

OCO3

Moncks Corner, South Carolina 29461

Contact: Ms. Jeanette Gilmetti Project: ABS Lab Analytical

Client Sample ID: AF56422
Sample ID: 613959038
Matrix: Ground Water
Collect Date: 09-MAR-23 13:19
Receive Date: 10-MAR-23

Collector: Client

Parameter	Qualifier	Result	DL	RL	Units	PF	DF	Analy	st Date	Time Batch	Method
Carbon Analysis											
SM 5310 B Dissolved	l Organic Carbo	on "As Received"									
Dissolved Organic Carbon	Average	2.90	0.330	1.00	mg/L		1	TSM	03/16/23	2357 239963	2 1
The following Prep M	lethods were pe	erformed:									
Method	Description	1		Analyst	Date		Time	e Pr	ep Batch		
EPA 160	Laboratory Fi	ltration - DOC		TSM	03/15/23		1135	23	97540		

The following Analytical Methods were performed:

MethodDescriptionAnalyst Comments1SM 5310 B

Notes:

Column headers are defined as follows:

DF: Dilution Factor Lc/LC: Critical Level
DL: Detection Limit PF: Prep Factor
MDA: Minimum Detectable Activity RL: Reporting Limit

MDC: Minimum Detectable Concentration SQL: Sample Quantitation Limit

Page 40 of 55 SDG: 613959

2040 Savage Road Charleston, SC 29407 - (843) 556-8171 - www.gel.com

QC Summary

Report Date: March 21, 2023

Page 1 of 5

Santee Cooper P.O. Box 2946101

OCO3

Moncks Corner, South Carolina

Contact: Ms. Jeanette Gilmetti

Workorder: 613959

Parmname	NOM	Sample	Qual	QC	Units	RPD%	REC%	Range	Anlst	Date	Time
Carbon Analysis Batch 2397544											
QC1205343816 613959001 DUP Total Organic Carbon Average		8.36		8.18	mg/L	2.15 ^		(+/-2.00)	TSM	03/21/2	23 01:34
QC1205343817 613959023 DUP Total Organic Carbon Average		21.1		21.1	mg/L	0.104		(0%-20%)		03/21/2	23 06:28
QC1205343815 LCS Total Organic Carbon Average	10.0			9.96	mg/L		99.6	(80%-120%)		03/21/2	23 00:38
QC1205343814 MB Total Organic Carbon Average			U	ND	mg/L					03/21/2	23 00:28
QC1205343818 613959001 PS Total Organic Carbon Average	10.0	4.18		13.4	mg/L		92.5	(65%-120%)		03/21/2	23 01:56
QC1205343819 613959023 PS Total Organic Carbon Average	10.0	10.5		22.1	mg/L		116	(65%-120%)		03/21/2	23 06:48
Batch 2399632 ———											
QC1205343804 613959002 DUP Dissolved Organic Carbon Average		8.18		8.04	mg/L	1.78 ^		(+/-2.00)	TSM	03/20/2	23 17:01
QC1205343805 613959022 DUP Dissolved Organic Carbon Average		7.68		7.55	mg/L	1.75		(0%-20%)		03/20/2	23 18:29
QC1205343803 FB Dissolved Organic Carbon Average			U	ND	mg/L					03/16/2	23 15:12
Dissolved Organic Carbon Average			U	ND	mg/L					03/20/2	23 16:29

2040 Savage Road Charleston, SC 29407 - (843) 556-8171 - www.gel.com

QC Summary

Workorder: 613959 Page 2 of 5 **Parmname** NOM Sample Qual QC Units RPD% REC% Range Anlst Date Time Carbon Analysis 2399632 Batch QC1205347787 LCS 9.94 mg/L 99.4 (80%-120%) TSM 03/16/23 15:23 Dissolved Organic Carbon Average 10.0 QC1205347786 MB U ND 03/16/23 15:02 Dissolved Organic Carbon Average mg/L QC1205343806 613959002 PS 4.09 4.49 3.98* (65%-120%) 03/20/23 17:23 Dissolved Organic Carbon Average 10.0 mg/L QC1205343807 613959022 PS 10.0 7.68 12.2 45.7* (65%-120%) 03/20/23 18:51 Dissolved Organic Carbon Average mg/L Spectrometric Analysis Batch 2395803 QC1205340625 LCS 0.400 0.403 101 HH2 03/13/23 19:07 Total Sulfide mg/L (85%-115%) QC1205340624 MBU Total Sulfide ND mg/L 03/13/23 19:07 QC1205343956 613152021 PS ND 0.437 Total Sulfide 0.400 U mg/L 109 (75%-125%) 03/13/23 19:07 QC1205343957 613152021 PSD Total Sulfide 0.400 U ND 0.438109 03/13/23 19:07 mg/L 0.266(0%-15%) Batch 2396527 OC1205341655 LCS 0.403 mg/LTotal Sulfide 0.400 101 (85%-115%) HH2 03/13/23 19:24 QC1205341654 MB Total Sulfide U ND 03/13/23 19:24 mg/L

2040 Savage Road Charleston, SC 29407 - (843) 556-8171 - www.gel.com

QC Summary

Workorder: 613959 Page 3 of 5 Parmname NOM Sample Qual QC Units RPD% REC% Range Anlst Date Time Spectrometric Analysis Batch 2396527 QC1205344918 613959009 PS ND 0.400 U 0.403 100 HH2 03/13/23 19:24 Total Sulfide mg/L (75%-125%) QC1205344919 613959009 PSD ND 0.402 Total Sulfide 0.400 U mg/L 0.289 100 (0%-15%)03/13/23 19:25 Batch 2397596 QC1205343969 LCS 0.404 Total Sulfide 0.400 101 (85%-115%) HH2 03/14/23 17:59 mg/L OC1205343968 MB U ND 03/14/23 17:59 Total Sulfide mg/L QC1205343970 613959019 PS Total Sulfide 0.400 J 0.0420 0.423 mg/L 95.2 (75%-125%) 03/14/23 17:59 QC1205345470 613959033 PS 59.7* Total Sulfide 0.400 U ND 0.247 mg/L (75%-125%) 03/14/23 17:59 QC1205343971 613959019 PSD mg/L Total Sulfide 0.400 J 0.0420 0.425 0.549 95.8 (0%-15%)03/14/23 17:59 QC1205345471 613959033 PSD Total Sulfide 0.400 U ND 0.250 mg/L 1.4 60.5 * (0%-15%)03/14/23 17:59 Titration and Ion Analysis 2397768 Batch QC1205344345 613959001 DUP Alkalinity, Total as CaCO3 344 344 mg/L 0.0969 (0%-20%)EK1 03/13/23 14:11 Bicarbonate alkalinity (CaCO3) 344 344 mg/L 0.0969 (0%-20%)U ND ND Carbonate alkalinity (CaCO3) U mg/L N/A

Page 43 of 55 SDG: 613959

2040 Savage Road Charleston, SC 29407 - (843) 556-8171 - www.gel.com

QC Summary

Workorder: 613959 Page 4 of 5 **Parmname** NOM Sample Qual **OC** Units RPD% REC% Range Anlst Date Time **Titration and Ion Analysis** Batch 2397768 QC1205344347 613959021 DUP 481 482 Alkalinity, Total as CaCO3 mg/L 0.238 (0%-20%)EK1 03/13/23 15:00 Bicarbonate alkalinity (CaCO3) 481 482 mg/L 0.238 (0%-20%)U ND U ND Carbonate alkalinity (CaCO3) mg/L N/A QC1205344344 LCS 100 106 mg/L 106 Alkalinity, Total as CaCO3 (90%-110%) 03/13/23 14:04 QC1205344346 613959001 MS Alkalinity, Total as CaCO3 167 344 513 mg/L 102 (80%-120%) 03/13/23 14:15 QC1205344348 613959021 MS

595

mg/L

80.4

(80%-120%)

03/13/23 15:04

Notes:

The Qualifiers in this report are defined as follows:

U Analyte was analyzed for, but not detected above the MDL, MDA, MDC or LOD.

143

J Value is estimated

Alkalinity, Total as CaCO3

- X Consult Case Narrative, Data Summary package, or Project Manager concerning this qualifier
- H Analytical holding time was exceeded
- < Result is less than value reported
- > Result is greater than value reported
- h Preparation or preservation holding time was exceeded
- R Sample results are rejected
- Z Paint Filter Test--Particulates passed through the filter, however no free liquids were observed.
- d 5-day BOD--The 2:1 depletion requirement was not met for this sample
- ^ RPD of sample and duplicate evaluated using +/-RL. Concentrations are <5X the RL. Qualifier Not Applicable for Radiochemistry.

481

- N/A RPD or %Recovery limits do not apply.
- ND Analyte concentration is not detected above the detection limit
- NJ Consult Case Narrative, Data Summary package, or Project Manager concerning this qualifier
- E General Chemistry--Concentration of the target analyte exceeds the instrument calibration range
- Q One or more quality control criteria have not been met. Refer to the applicable narrative or DER.

Page 44 of 55 SDG: 613959

2040 Savage Road Charleston, SC 29407 - (843) 556-8171 - www.gel.com

QC Summary

Workorder: 613959

Parmname

NOM Sample Qual QC Units RPD% REC% Range Anlst Date Time

N1 See case narrative

- R Per section 9.3.4.1 of Method 1664 Revision B, due to matrix spike recovery issues, this result may not be reported or used for regulatory compliance purposes.
- B The target analyte was detected in the associated blank.
- e 5-day BOD--Test replicates show more than 30% difference between high and low values. The data is qualified per the method and can be used for reporting purposes
- J See case narrative for an explanation

N/A indicates that spike recovery limits do not apply when sample concentration exceeds spike conc. by a factor of 4 or more or %RPD not applicable.

- ^ The Relative Percent Difference (RPD) obtained from the sample duplicate (DUP) is evaluated against the acceptance criteria when the sample is greater than five times (5X) the contract required detection limit (RL). In cases where either the sample or duplicate value is less than 5X the RL, a control limit of +/- the RL is used to evaluate the DUP result.
- * Indicates that a Quality Control parameter was not within specifications.

For PS, PSD, and SDILT results, the values listed are the measured amounts, not final concentrations.

Where the analytical method has been performed under NELAP certification, the analysis has met all of the requirements of the NELAC standard unless qualified on the QC Summary.

Page 45 of 55 SDG: 613959

General Chemistry Technical Case Narrative Santee Cooper SDG #: 613959

Product: Carbon, Total Organic Analytical Method: SM 5310 B

Analytical Procedure: GL-GC-E-093 REV# 21

Analytical Batch: 2397544

The following samples were analyzed using the above methods and analytical procedure(s).

GEL Sample ID#	Client Sample Identification
613959001	AF56409
613959003	AF56410
613959005	AF56411
613959007	AF56412
613959009	AF56413
613959011	AF56430
613959013	AF56419
613959015	AF56425
613959017	AF56426
613959019	AF56427
613959021	AF56408
613959023	AF56415
613959025	AF56416
613959027	AF56417
613959029	AF56429
613959031	AF56406
613959033	AF56407
613959035	AF56418
613959037	AF56422
1205343814	Method Blank (MB)
1205343815	Laboratory Control Sample (LCS)
1205343816	613959001(AF56409) Sample Duplicate (DUP)
1205343817	613959023(AF56415) Sample Duplicate (DUP)
1205343818	613959001(AF56409) Post Spike (PS)
1205343819	613959023(AF56415) Post Spike (PS)

The samples in this SDG were analyzed on an "as received" basis.

Data Summary:

All sample data provided in this report met the acceptance criteria specified in the analytical methods and procedures for initial calibration, continuing calibration, instrument controls and process controls where applicable, with the following exceptions.

Technical Information

Sample Dilutions

The following samples 1205343817 (AF56415DUP), 1205343819 (AF56415PS) and 613959023 (AF56415) were diluted because target analyte concentrations exceeded the calibration range. The following samples 1205343816 (AF56409DUP), 1205343818 (AF56409PS), 613959001 (AF56409) and 613959003 (AF56410) in

Page 46 of 55 SDG: 613959

this sample group were diluted due to matrix interference. Dilutions may be required for many reasons, including to minimize matrix interferences or to bring over range target analyte concentrations into the linear calibration range.

Amalanta	613959						
Analyte	001	003	023				
Total Organic Carbon Average	2X	2X	2X				

Product: Carbon, Dissolved Organic Analytical Method: SM 5310 B

Analytical Procedure: GL-GC-E-093 REV# 21

Analytical Batch: 2399632

Filtration Method: EPA 160

Filtration Procedure: GL-LB-E-034 REV# 4

Filtration Batch: 2397540

The following samples were analyzed using the above methods and analytical procedure(s).

GEL Sample ID#	Client Sample Identification
613959002	AF56409
613959004	AF56410
613959006	AF56411
613959008	AF56412
613959010	AF56413
613959012	AF56430
613959014	AF56419
613959016	AF56425
613959018	AF56426
613959020	AF56427
613959022	AF56408
613959024	AF56415
613959026	AF56416
613959028	AF56417
613959030	AF56429
613959032	AF56406
613959034	AF56407
613959036	AF56418
613959038	AF56422
1205343803	Foam Blank (FB)
1205343804	613959002(AF56409) Sample Duplicate (DUP)
1205343805	613959022(AF56408) Sample Duplicate (DUP)
1205343806	613959002(AF56409) Post Spike (PS)
1205343807	613959022(AF56408) Post Spike (PS)
1205347786	Method Blank (MB)
1205347787	Laboratory Control Sample (LCS)

The samples in this SDG were analyzed on an "as received" basis.

Data Summary:

All sample data provided in this report met the acceptance criteria specified in the analytical methods and

Page 47 of 55 SDG: 613959

procedures for initial calibration, continuing calibration, instrument controls and process controls where applicable, with the following exceptions.

Quality Control (QC) Information

Matrix Spike (MS)/Post Spike (PS) Recovery Statement

The percent recoveries (%R) obtained from the spike analyses are evaluated when the sample concentration is less than four times (4X) the spike concentration added. The matrix spike recovered outside of the established acceptance limits due to matrix interference and/or non-homogeneity.

Analyte	Sample	Value
Dissolved Organic Carbon Average	1205343806 (AF56409 PS)	3.98* (65%-120%)
	1205343807 (AF56408PS)	45.7* (65%-120%)

Both QC's was rerun to verify recoveries.

Sample	Analyte	Value			
1205343806 (AF56409 PS)	Dissolved Organic Carbon Average	3.98* (65%-120%)			
1205343807 (AF56408PS)	Dissolved Organic Carbon Average	45.7* (65%-120%)			

Miscellaneous Information

Additional Comments

The following sample was reanalyzed neat. 613959008 (AF56412).

Product: Sulfide, Total

Analytical Method: SM 4500-S (2-) D

Analytical Procedure: GL-GC-E-052 REV# 12

Analytical Batch: 2395803

The following samples were analyzed using the above methods and analytical procedure(s).

GEL Sample ID#	Client Sample Identification
613959015	AF56425
613959017	AF56426
1205340624	Method Blank (MB)
1205340625	Laboratory Control Sample (LCS)
1205343956	613152021(NonSDG) Post Spike (PS)
1205343957	613152021(NonSDG) Post Spike Duplicate (PSD)

The samples in this SDG were analyzed on an "as received" basis.

Data Summary:

There are no exceptions, anomalies or deviations from the specified methods. All sample data provided in this report met the acceptance criteria specified in the analytical methods and procedures for initial calibration, continuing calibration, instrument controls and process controls where applicable.

Product: Sulfide, Total

Page 48 of 55 SDG: 613959

Analytical Method: SM 4500-S (2-) D

Analytical Procedure: GL-GC-E-052 REV# 12

Analytical Batch: 2396527

The following samples were analyzed using the above methods and analytical procedure(s).

GEL Sample ID#	Client Sample Identification
613959009	AF56413
613959011	AF56430
613959013	AF56419
1205341654	Method Blank (MB)
1205341655	Laboratory Control Sample (LCS)
1205344918	613959009(AF56413) Post Spike (PS)
1205344919	613959009(AF56413) Post Spike Duplicate (PSD)

The samples in this SDG were analyzed on an "as received" basis.

Data Summary:

There are no exceptions, anomalies or deviations from the specified methods. All sample data provided in this report met the acceptance criteria specified in the analytical methods and procedures for initial calibration, continuing calibration, instrument controls and process controls where applicable.

Product: Sulfide, Total

Analytical Method: SM 4500-S (2-) D

Analytical Procedure: GL-GC-E-052 REV# 12

Analytical Batch: 2397596

The following samples were analyzed using the above methods and analytical procedure(s).

GEL Sample ID#	Client Sample Identification
613959001	AF56409
613959003	AF56410
613959005	AF56411
613959007	AF56412
613959019	AF56427
613959021	AF56408
613959023	AF56415
613959025	AF56416
613959027	AF56417
613959029	AF56429
613959031	AF56406
613959033	AF56407
613959035	AF56418
613959037	AF56422
1205343968	Method Blank (MB)
1205343969	Laboratory Control Sample (LCS)
1205343970	613959019(AF56427) Post Spike (PS)
1205343971	613959019(AF56427) Post Spike Duplicate (PSD)
1205345470	613959033(AF56407) Post Spike (PS)
1205345471	613959033(AF56407) Post Spike Duplicate (PSD)

The samples in this SDG were analyzed on an "as received" basis.

Data Summary:

All sample data provided in this report met the acceptance criteria specified in the analytical methods and procedures for initial calibration, continuing calibration, instrument controls and process controls where applicable, with the following exceptions.

Quality Control (QC) Information

Matrix Spike (MS)/Post Spike (PS) Recovery Statement

The percent recoveries (%R) obtained from the spike analyses are evaluated when the sample concentration is less than four times (4X) the spike concentration added. The matrix spike recovered outside of the established acceptance limits due to matrix interference and/or non-homogeneity.

Analyte	Sample	Value
Total Sulfide	1205345470 (AF56407PS)	59.7* (75%-125%)
	1205345471 (AF56407PSD)	60.5* (75%-125%)

Technical Information

Holding Times

Samples 613959001 (AF56409), 613959003 (AF56410), 613959005 (AF56411) and 613959007 (AF56412) were initially analyzed within holding; however, the holding times had expired prior to reanalysis of diluted samples. The data is qualified.

Sample Dilutions

The following samples 613959001 (AF56409), 613959003 (AF56410) and 613959005 (AF56411) were diluted because target analyte concentrations exceeded the calibration range. The following sample 613959007 (AF56412) in this sample group was diluted due to matrix interference. Dilutions may be required for many reasons, including to minimize matrix interferences or to bring over range target analyte concentrations into the linear calibration range.

Amalasta	613959								
Analyte	001	003	005	007					
Total Sulfide	400X	200X	100X	25X					

Product: Alkalinity

Analytical Method: SM 2320B

Analytical Procedure: GL-GC-E-033 REV# 14

Analytical Batch: 2397768

The following samples were analyzed using the above methods and analytical procedure(s).

GEL Sample ID#	Client Sample Identification
613959001	AF56409
613959003	AF56410
613959005	AF56411
613959007	AF56412
613959009	AF56413
613959011	AF56430
613959013	AF56419
613959015	AF56425

Page 50 of 55 SDG: 613959

613959017	AF56426
613959019	AF56427
613959021	AF56408
613959023	AF56415
613959025	AF56416
613959027	AF56417
613959029	AF56429
613959031	AF56406
613959033	AF56407
613959035	AF56418
613959037	AF56422
1205344344	Laboratory Control Sample (LCS)
1205344345	613959001(AF56409) Sample Duplicate (DUP)
1205344346	613959001(AF56409) Matrix Spike (MS)
1205344347	613959021(AF56408) Sample Duplicate (DUP)
1205344348	613959021(AF56408) Matrix Spike (MS)

The samples in this SDG were analyzed on an "as received" basis.

Data Summary:

All sample data provided in this report met the acceptance criteria specified in the analytical methods and procedures for initial calibration, continuing calibration, instrument controls and process controls where applicable, with the following exceptions.

Miscellaneous Information

Additional Comments

35 mL aliquots were used due to sample concentration

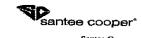
Certification Statement

Where the analytical method has been performed under NELAP certification, the analysis has met all of the requirements of the NELAC standard unless otherwise noted in the analytical case narrative.

Page 51 of 55 SDG: 613959

Contract Lab Info: GEL

_ Controct Lab Due Date (Lab Only):_


Chain of Custody

Santee Cooper One Riverwood Drive Moneks Comer, SC 29461 Phone: (843)761-8000 Ext. 5148 Fax: (843)761-4175

Customer Email/Report Recipient:		Da	Date Results Needed by:					Project/Task/Unit #:						for ar	ıy fla	ggeo	l QC		
LCWIUJA @santeecooper.com		/					125915 / JMO2.09.601.1/ 36500						Yes	(No					
-															<u>A</u>	nalys	s Grou	NE	
1.0	sworks ID # ternal use (y)	Sample Location Description	"/	Collection Date		Collection Time	Sample Collector	Total # of containers	Bottle type: (Glass-G/Plastic-P)	Grab (G) or Composite (C)	Matrix(see below)	Preservative (see below)	Rep Mis	Comments hod # orting limit sample info other notes		Tac/tesc	A-KAUNTY	Suffee	XAD 226 +228
AF	=564cf	WAP-14		3/6,	/23	1214	205M ML	6	P/G	6-	GN	*	券SULF	IDE HAS SHO	RT HOUD	2	1	ı	2
) (0	WAP-14D				1219		1]							
	u	WAP - 14A	- 			1108							* PRES	SER VATIVES					
	12.	MAP-14B				1515							TOC-	HZSOU E EINCAEETT	HE NOOH				
	(3	WAP-140				1341							KAD #N	O3	<u>-</u>				
	30	WAP-29				1010	1	1	<u> </u>	<u> </u>	1	1				1	1	1	
AF56419 WAP-19		3/7	1/23	145)							ALKAL	AL-TOTAL, BICARB, CARB				1			
	25	25)	1249							RAD - IN	NCLUDE TOTAL CALC.					
	26	26				1022							DOC-NOT FIELD FILITERS						
_	27	<u> </u>				1027	<u> </u>	1	1	Ţ	1						<u>}</u>	1	
(2) F	Relinquished by:	Employee#	Date	Ťin	ie.	- Recelv	ed by: ः	%	mployee	# 8 8	Date		Time	Sample Receive TEMP (°C):_					_
	() telinguished by:	35594 Employee#		(10						GEL 3/10/23 [(00 Employee# Date Time			Correct pH: Yes No						
M	M	GEL	3.10.23	ere en	20		4 t 1881 186			的社员	164,548			Prescrvative l	Lot#:				
savo L	telinguished by:	Employee#	Date	Tim		Receiv	ed by:) . E	mployee	#/	Date		Time	Date/Time/In	it for preserv	ative:			
□ MĒTALS (all) Nutric □ Ag			iie 04		MIS BTEX Naphtha THM/H VOC Oil & Gr E. Coli Total Co pH Dissolve Cossolve Rad 226 Rad 228	lenc AA case liform d As d Fe		ente Olari	(2010) (2010)	u_{-}		Coal Ultimate □ 27 Mois □ Ashi □ Suthir □ Suthir □ Suthir □ Olinis □ Clinis □ Clinis ARI Scarpa HO Fineness Particulate M	Matter Passes No. 1 No.	l eriaran	1	(2) (0) (0) (1) (1) (1) (1) (1) (1) (1)	Silvi divi		

Chain of Custody

Santee Cooper One Riverwood Drive Moneks Corner, SC 29461 Phone: (843)761-8000 Ext, 5148 Fax: (843)761-4175

Cust	Customer Email/Report Recipient:		D	Date Results Needed by:				Project/Task/Unit #:					Reru	Rerun request for any flagged QC							
	CWILLIA		@santeed	cooper.com	_		//		•	125	591	5	<u>/</u>	102.0	9. GØ].	36500	Yes	®			
																		£	nalysi	s Grou	TD.
(Inte	Labworks ID # Sample Location/ (Internal use only) Sample Location/ Description			Collection Date		Collection Time	Sample Collector	Total # of containers	Bottle type: (Glass-	G/Plastic-P)	Grab (G) or Composite (C)	Matrix(see below)	Preservative (see	• Me • Rej • Mi • An	Comments thod # porting limit se, sample info y other notes		Tac/20c	AUCAUNITY	Sulfide	Red 226 [228	
Ą=!	56408	W	IAP-18		3/1	7/23	1338	ZDM ML	6	۴		G	€W	*	∦ SULF	FIDE HAS SHOW	at Herb	2	١	l	2
	l2		16			}	티티크				T								1	1.	
	16		17				1009									ERVATIVES	•				
	17	<u> </u>	170			 	1014				-				SULFIDE	TOC 82504 SULFIDE ZINC ACETATE, NAOH					
_	29		28		_		1212	Ī	1			1	<u> </u>		RAD H1103 44°C						
AF!	36 406	W	AP-12		3/9	/23	1029		1	1										-	
	07		- 12D				1034								ALKAL -	TOTAL BICARD	,CA卡尼				
	เช	<u> </u>	।इ		<u> </u>		1207								1840 - IN	CLUDE TOTAL O	ALC.				
	22	_	22		ļ <u>-</u>	_	1319		1	1-	1	1.	Ţ	1	DOC-NE	T FIELD FILE	ered	1		1	
															ļ						
. Re	inquished by:	\$6.70 PK \(1.50 \)	. Employee#	. Date.	Tim	ê 🍦	Receiv	ed bỳ:	继 🛭	Employe	e#		Date		Time	Sample Receiving TEMP (°C):		Use On Initial			-
	ww		35594	3/10/23	ιιο		m. Sr			GEL	-	3	/10/2	3	1100	Correct pH: 3			·		-
Re	inquished by:	A TEA	· Employee#	Date	TIM	759 W	Receiv	ed by:	経費	Employe	e#	. 43	Date	10 mm	Time	Preservative Los					
	<u> </u>	202	GEL_	3.16.23	162	0		3 3 5 5 5 5 5 5 5	028 98	PROCEEDS.	er wild	2 18 18	er Caregoria	SS-345-86 Z	5772-70-558-8	T Teset valive Col	ır.				
ne Zaz	inguished by:		Employee#	Date	₹-Tim		Receiv	d by:	\$ B	Employe	:E #		Date		Time > .	Date/Time/Init fo	or preserv	ative:			
	. Ō M I	CT A	LS (all)	Nuti	Pont		MIS	<u>.</u>		ţ¢.					Coal	i Velva		riginal v	(9)	VĄ	
	; Porton		⊈ □ Sb □ Se				O BTEX					2		0	Ultimate		ACCURATE A TANK OF THE PARTY OF			100	
□ As	14 1 19 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	K Ar	□ Sn .	100	1)RO4		□ Naphthal □ THM/HA			τ, - (⊆ κ) γ = 30 π	UO OS	oj Lijeli Lijeli Lijeli Lijeli Koli			□ % Mois □/Ash	tore Display Control Matter Salary Control Matter Salary Control LEVANO		(°	is (e) Notes di	M. H	
ΟВ	i Ou		Sr) II //	ÛN		□ VOC □ Oil & Gn	ase		70 J	()(c)				io Sulfue LOBITUS				ettije.	si, i	
□ Ba	O.M	g	∠ (DjŤi a	POLCIE		3825 E	☐ E. Coli ☐ Total Col	iform		1	n <u>ie</u> lh	ijąsk civis	สเ		🛘 Volatile	Martier & Stev	IVS)		e. Guiji), 5 , 5	
□ Be	MERKATA AUSENSI	277KCD2	On				□ pH □ Dissolved				داريا	(Cos	OL 1		□CHN ther Tests:	JELVA VIO	sie (€	2			
□ Ca	5 P. 18		O.V	PIDNO			□ Dissolved			645	din	RUIE			XRF Scan	NPC		Ý			
□ Co	图内学员 基次等等	11.77.7	D Zn	E SO			☐ Rad 226 ☐ Rad 228			ill (C					HGI! Fineness	Efonoto			94.30	HV I	
	25 32 5 32 30 3	~	□ Hg	97.53 34.70			O PCB			5165 1916 1916 1917 1918		(St)			Particulate M	after to Purchase) (e(e)	1012		
الحد س	Cr DP6 CrVI					e specify the e	<u> </u>	⊥ [88				er na						3000	in the same	/ALA	

Client: Received	By Stan & Boons	<u>ں</u> 			Received: Mach 10, 2023
COLUMN	Anna Johnson				Circle Applicable: FedEx Express FedEx Ground UPS Field Services Courier Other
Car	rier and Tracking Number				
Suspecte	d Hazard Information	Yes	ž	*If N	let Counts > 100cpm on samples not marked "radioactive", contact the Radiation Safety Group for further investigation.
A)Shippe	ed as a DOT Hazardous?		1	Haza	rd Class Shipped: If UN2910, Is the Radioactive Shipment Survey Compliant? Yes No
B) Did th	ne client designate the samples are to be as radioactive?		/	l	notation or radioactive stickers on containers equal client designation.
C) Did-tl radioacti	ne RSO classify the samples as ve?			Max	imum Net Counts Observed* (Observed Counts - Area Background Counts):CPM / mR/Hr Classified as: Rad 1 Rad 2 Rad 3
D) Did t	he client designate samples are hazardous?		/	IFD	notation or hazard labels on containers equal client designation. or B is yes, select Hazards below.
E) Did t	he RSO identify possible hazards?	Ŀ			PGB's Flammable Foreign Soil RCRA Asbestos Berytiium Other;
	Sample Receipt Criteria	Yes	N.	윋	Comments/Qualifiers (Required for Non-Conforming Items) Circle Applicable: Seals broken Damaged container Leaking container Other (describe)
l sea	ipping containers received intact and aled?	/		-	Circle Applicable: Client contacted and provided COC COC created upon receipt
	nain of custody documents included th shipment?	/		Mu	3.1411.2 Preservation Method: (Wet Ice) Ice Packs Dry ice None Other: 20.3
wi	mples requiring cold preservation thin (0 ≤ 6 deg. C)?*	1	1	9	Temperature Device Script #:
4 ten	aily check performed and passed on IR mperature gun?	<u> /</u>			Secondary Temperature Device Scrial # (If Applicable)? Circle Applicable: Scals broken Damaged container Leaking container Other (describe)
1 1	imple containers intact and scaled?	1		_	Sample ID's and Containers Affected:
6 Sa	amples requiring chemical preservation proper pH?	/		2	If Preservation added, Let#: If Yes, or Precess or Soil Kits present for solids? Yes No. NA (If yes, take to VOA Freezer)
7	Do any samples require Volatile Analysis?			/	Do liquid VOA vials contain acid preservation? Yes No. NA. (If unknown, select No) Are liquid VOA vials free of headspace? Yes No. NA. Sample ID's and containers affected:
8 S	amples received within holding time?	/	,		ID's and tests affected:
9 S	ample ID's on COC match ID's on ottles?			/	1D's and containers affected: Circle Applicable: No dates on containers No times on containers COC missing info Other (describe)
10 0	Date & time on COC match date & time n bottles?				Circle Applicable: No container count on COC Other (describe)
11 _n	Number of containers received match number indicated on COC?	/			Chick Application, 100 on the chick and the
13 0	are sample containers identifiable as SEL provided by use of GEL labels? SOC form is properly signed in elinquished/received sections?		/	and the second	Circle Applicable: Not relinquished Other (describe)
Comm	correct (hand) / }-	2	8. N	container says WAP-8dates/times Hen sample ID)

List of current GEL Certifications as of 21 March 2023

State	Certification
Alabama	42200
Alaska	17-018
Alaska Drinking Water	SC00012
Arkansas	88-0651
CLIA	42D0904046
California	2940
Colorado	SC00012
Connecticut	PH-0169
DoD ELAP/ ISO17025 A2LA	2567.01
Florida NELAP	E87156
Foreign Soils Permit	P330-15-00283, P330-15-00253
Georgia	SC00012
Georgia SDWA	967
Hawaii	SC00012
Idaho	SC00012
Illinois NELAP	200029
Indiana	C-SC-01
Kansas NELAP	E-10332
Kentucky SDWA	90129
Kentucky Wastewater	90129
Louisiana Drinking Water	LA024
Louisiana NELAP	03046 (AI33904)
Maine	2019020
Maryland	270
Massachusetts	M-SC012
Massachusetts PFAS Approv	Letter
Michigan	9976
Mississippi	SC00012
Nebraska	NE-OS-26-13
Nevada	SC000122023-4
New Hampshire NELAP	2054
New Jersey NELAP	SC002
New Mexico	SC002 SC00012
New York NELAP	11501
North Carolina	233
North Carolina SDWA	45709
North Dakota	R-158
Oklahoma	2022-160
Pennsylvania NELAP	68-00485
Puerto Rico	SC00012
S. Carolina Radiochem	10120002
Sanitation Districts of L	9255651
South Carolina Chemistry	10120001
Tennessee	TN 02934
Texas NELAP	T104704235-22-20
Utah NELAP	SC000122022-37
Vermont	VT87156
Vermont Virginia NELAP	460202
	C780
Washington	C/80

gel.com

April 11, 2023

Ms. Jeanette Gilmetti Santee Cooper P.O. Box 2946101 OCO3 Moncks Corner, South Carolina 29461

Re: ABS Lab Analytical Work Order: 613963

Dear Ms. Gilmetti:

GEL Laboratories, LLC (GEL) appreciates the opportunity to provide the enclosed analytical results for the sample(s) we received on March 10, 2023. This original data report has been prepared and reviewed in accordance with GEL's standard operating procedures.

The samples were delivered with proper chain of custody documentation and signatures. All sample containers arrived without any visible signs of tampering or breakage. Sample ID on the container did not match the sample ID on the Chain of Custody. 613963015(AF56429).

Test results for NELAP or ISO 17025 accredited tests are verified to meet the requirements of those standards, with any exceptions noted. The results reported relate only to the items tested and to the sample as received by the laboratory. These results may not be reproduced except as full reports without approval by the laboratory. Copies of GEL's accreditations and certifications can be found on our website at www.gel.com.

Our policy is to provide high quality, personalized analytical services to enable you to meet your analytical needs on time every time. We trust that you will find everything in order and to your satisfaction. If you have any questions, please do not hesitate to call me at (843) 556-8171, ext. 4289.

Sincerely,

Heather Millar for Julie Robinson Project Manager

ther Millar

Purchase Order: 398684

Enclosures

2040 Savage Road Charleston SC 29407 - (843) 556-8171 - www.gel.com

Certificate of Analysis Report for

SOOP001 Santee Cooper

Client SDG: 613963 GEL Work Order: 613963

The Qualifiers in this report are defined as follows:

- * A quality control analyte recovery is outside of specified acceptance criteria
- ** Analyte is a Tracer compound
- ** Analyte is a surrogate compound
- U Analyte was analyzed for, but not detected above the MDL, MDA, MDC or LOD.

Where the analytical method has been performed under NELAP certification, the analysis has met all of the requirements of the NELAC standard unless qualified on the Certificate of Analysis.

The designation ND, if present, appears in the result column when the analyte concentration is not detected above the limit as defined in the 'U' qualifier above.

This data report has been prepared and reviewed in accordance with GEL Laboratories LLC standard operating procedures. Please direct any questions to your Project Manager, Julie Robinson.

Reviewed by Heather Millar

Page 2 of 32 SDG: 613963

2040 Savage Road Charleston SC 29407 - (843) 556-8171 - www.gel.com

Certificate of Analysis

Project:

Client ID:

Report Date: April 11, 2023

LXP1 04/11/23 0819 2402018

2

3

SOOP00119

SOOP001

Company: Santee Cooper Address: P.O. Box 2946101

OCO3

Moncks Corner, South Carolina 29461

Contact: Ms. Jeanette Gilmetti Project: ABS Lab Analytical

Client Sample ID: AF56409
Sample ID: 613963001
Matrix: Ground Water
Collect Date: 06-MAR-23 12:14
Receive Date: 10-MAR-23

Collector: Client

Parameter	Qualifier	Result	Uncertainty	MDC	RL	Units	PF	DF Analyst Date	Time Batch	Method
Rad Gas Flow Prop	portional Counting	Ţ,								
GFPC, Ra228, Liq	uid "As Received"	1								
Radium-228		2.18	+/-1.16	1.68	3.00	pCi/L		JE1 04/04/23	1245 2402066	1
Radium-226+Radi	um-228 Calculatio	n "See Pa	arent Products"							

1.00

pCi/L

Radium-226+Radium-228 Calculation "See Parent Products"

Radium-226+228 Sum 3.15 +/-1.26 pCi/L NXL1 04/11/23 1121 2402065

Rad Radium-226

0.366

Radium-226 0.971 +/-0.495
The following Analytical Methods were performed:

Lucas Cell, Ra226, Liquid "As Received"

MethodDescriptionAnalyst Comments1EPA 904.0/SW846 9320 Modified

2 Calculation
3 EPA 903.1 Modified

Surrogate/Tracer Recovery Test Result Nominal Recovery% Acceptable Limits

Barium-133 Tracer GFPC, Ra228, Liquid "As Received" 72.3 (15%-125%)

Notes:

Counting Uncertainty is calculated at the 95% confidence level (1.96-sigma).

Column headers are defined as follows:

DF: Dilution Factor Lc/LC: Critical Level
DL: Detection Limit PF: Prep Factor
MDA: Minimum Detectable Activity RL: Reporting Limit

MDC: Minimum Detectable Concentration SQL: Sample Quantitation Limit

Page 3 of 32 SDG: 613963

2040 Savage Road Charleston SC 29407 - (843) 556-8171 - www.gel.com

Certificate of Analysis

Project:

Client ID:

Report Date: April 11, 2023

SOOP00119

SOOP001

Company: Santee Cooper Address: P.O. Box 2946101

OCO3

10-MAR-23

Moncks Corner, South Carolina 29461

Contact: Ms. Jeanette Gilmetti Project: ABS Lab Analytical

Client Sample ID: AF56410
Sample ID: 613963002
Matrix: Ground Water
Collect Date: 06-MAR-23 12:19

Collector: Client

Receive Date:

Parameter	Qualifier	Result	Uncertainty	MDC	RL	Units	PF	DF Analyst Date	Time Batch	Method
Rad Gas Flow Proporti	onal Counting	5								
GFPC, Ra228, Liquid '	'As Received'	Ì								
Radium-228		1.73	+/-0.952	1.36	3.00	pCi/L		JE1 04/04/23	1245 2402066	1
Radium-226+Radium-2	228 Calculation	n "See Pa	arent Products"							
Radium-226+228 Sum		2.14	+/-1.01			pCi/L		NXL1 04/11/23	1121 2402065	2
Rad Radium-226										
Lucas Cell, Ra226, Liq	uid "As Recei	ved"								
Radium-226	U	0.405	+/-0.330	0.406	1.00	pCi/L		LXP1 04/11/23	0819 2402018	3
The following Analytic	cal Methods v	vere perfo	ormed:							
Method	Description					I	Analy	st Comments		

1	EPA 904.0/SW846 9320 Modified				
2	Calculation				
3	EPA 903.1 Modified				
Surrogate/Tracer Recov	ery Test	Result	Nominal	Recovery%	Acceptable Limits

Barium-133 Tracer GFPC, Ra228, Liquid "As Received" 82.7 (15%-125%)

Notes:

Counting Uncertainty is calculated at the 95% confidence level (1.96-sigma).

Column headers are defined as follows:

DF: Dilution Factor Lc/LC: Critical Level
DL: Detection Limit PF: Prep Factor
MDA: Minimum Detectable Activity RL: Reporting Limit

MDC: Minimum Detectable Concentration SQL: Sample Quantitation Limit

Page 4 of 32 SDG: 613963

2040 Savage Road Charleston SC 29407 - (843) 556-8171 - www.gel.com

Certificate of Analysis

Project:

Client ID:

Report Date: April 11, 2023

SOOP00119

SOOP001

Company: Santee Cooper Address: P.O. Box 2946101

OCO3

Moncks Corner, South Carolina 29461

Contact: Ms. Jeanette Gilmetti Project: ABS Lab Analytical

Client Sample ID: AF56411
Sample ID: 613963003
Matrix: Ground Water
Collect Date: 06-MAR-23 11:08

Receive Date: 10-MAR-23 Collector: Client

Parameter	Qualifier	Result	Uncertainty	MDC	RL	Units	PF	DF Anal	yst Date	Time Batch	Method
Rad Gas Flow Propor	tional Counting	Ţ,									
GFPC, Ra228, Liquid	"As Received"	1									
Radium-228	U	0.627	+/-1.16	2.05	3.00	pCi/L		JE1	04/04/23	1245 2402066	1
Radium-226+Radium	-228 Calculation	n "See Pa	rent Products"								
Radium-226+228 Sum		1.30	+/-1.23			pCi/L		NXL1	04/11/23	1121 2402065	2
Rad Radium-226											
Lucas Cell, Ra226, Li	iquid "As Recei	ved"									
Radium-226	_	0.673	+/-0.404	0.395	1.00	pCi/L		LXP1	04/11/23	0819 2402018	3
The following Analy	tical Methods w	vere perfo	rmed:								

Method	Description	Analyst Comments
1	EPA 904 0/SW846 9320 Modified	•

2 Calculation 3 EPA 903.1 Modified

Surrogate/Tracer Recovery Test Result Nominal Recovery% Acceptable Limits

Barium-133 Tracer GFPC, Ra228, Liquid "As Received" 64 (15%-125%)

Notes

Counting Uncertainty is calculated at the 95% confidence level (1.96-sigma).

Column headers are defined as follows:

DF: Dilution Factor Lc/LC: Critical Level
DL: Detection Limit PF: Prep Factor
MDA: Minimum Detectable Activity RL: Reporting Limit

MDC: Minimum Detectable Concentration SQL: Sample Quantitation Limit

Page 5 of 32 SDG: 613963

2040 Savage Road Charleston SC 29407 - (843) 556-8171 - www.gel.com

Certificate of Analysis

Project:

Client ID:

Analyst Comments

Report Date: April 11, 2023

SOOP00119

SOOP001

Company: Santee Cooper Address: P.O. Box 2946101

OCO3

Moncks Corner, South Carolina 29461

Contact: Ms. Jeanette Gilmetti Project: ABS Lab Analytical

Client Sample ID: AF56412
Sample ID: 613963004
Matrix: Ground Water
Collect Date: 06-MAR-23 15:15
Receive Date: 10-MAR-23

Collector: Client

Parameter	Qualifier	Result	Uncertainty	MDC	RL	Units	PF	DF Anal	yst Date	Time Batch	Method
Rad Gas Flow Proportion	onal Counting										
GFPC, Ra228, Liquid ".	As Received"										
Radium-228	U	1.54	+/-1.09	1.65	3.00	pCi/L		JE1	04/04/23	1246 2402066	1
Radium-226+Radium-228 Calculation "See Parent Products"											
Radium-226+228 Sum		5.48	+/-1.52			pCi/L		NXL1	04/11/23	1121 2402065	2
Rad Radium-226											
Lucas Cell, Ra226, Liqu	uid "As Recei	ved"									
Radium-226		3.95	+/-1.06	0.613	1.00	pCi/L		LXP1	04/11/23	0819 2402018	3
The following Analytic	eal Methods w	ere perfo	ormed:								

The following Analytical Methods were performed:

Description

1	EPA 904.0/SW846 9320 Modified				
2	Calculation				
3	EPA 903.1 Modified				
Surrogate/Tracer Recove	ery Test	Result	Nominal	Recovery%	Acceptable Limits

Barium-133 Tracer GFPC, Ra228, Liquid "As Received" 61.5 (15%-125%)

Notes:

Method

Counting Uncertainty is calculated at the 95% confidence level (1.96-sigma).

Column headers are defined as follows:

DF: Dilution Factor Lc/LC: Critical Level
DL: Detection Limit PF: Prep Factor
MDA: Minimum Detectable Activity RL: Reporting Limit

MDC: Minimum Detectable Concentration SQL: Sample Quantitation Limit

Page 6 of 32 SDG: 613963

2040 Savage Road Charleston SC 29407 - (843) 556-8171 - www.gel.com

Certificate of Analysis

Project:

Client ID:

Analyst Comments

Report Date: April 11, 2023

SOOP00119

SOOP001

Company: Santee Cooper Address: P.O. Box 2946101

OCO3

Moncks Corner, South Carolina 29461

Contact: Ms. Jeanette Gilmetti Project: ABS Lab Analytical

Client Sample ID: AF56413
Sample ID: 613963005
Matrix: Ground Water
Collect Date: 06-MAR-23 13:41
Receive Date: 10-MAR-23

Collector: Client

Parameter	Qualifier	Result	Uncertainty	MDC	RL	Units	PF	DF Analy	st Date	Time Batch	Method
Rad Gas Flow Proportion	onal Counting	-)									
GFPC, Ra228, Liquid ".	As Received"										
Radium-228	U	1.35	+/-1.31	2.15	3.00	pCi/L		JE1	04/04/23	1246 2402066	1
Radium-226+Radium-228 Calculation "See Parent Products"											
Radium-226+228 Sum		3.49	+/-1.49			pCi/L		NXL1	04/11/23	1121 2402065	2
Rad Radium-226											
Lucas Cell, Ra226, Liqu	uid "As Recei	ved"									
Radium-226		2.14	+/-0.717	0.503	1.00	pCi/L		LXP1	04/11/23	0819 2402018	3
The following Analytic	al Methods w	zere perfo	ormed:								

The following Analytical Methods were performed:

Description

1	EPA 904.0/SW846 9320 Modified Calculation				
3	EPA 903.1 Modified				
Surrogate/Tracer Recov	ery Test	Result	Nominal	Recovery%	Acceptable Limits

Barium-133 Tracer GFPC, Ra228, Liquid "As Received" 65.8 (15%-125%)

Notes:

Method

Counting Uncertainty is calculated at the 95% confidence level (1.96-sigma).

Column headers are defined as follows:

DF: Dilution Factor Lc/LC: Critical Level
DL: Detection Limit PF: Prep Factor
MDA: Minimum Detectable Activity RL: Reporting Limit

MDC: Minimum Detectable Concentration SQL: Sample Quantitation Limit

Page 7 of 32 SDG: 613963

2040 Savage Road Charleston SC 29407 - (843) 556-8171 - www.gel.com

Certificate of Analysis

Project:

Client ID:

Analyst Comments

Report Date: April 11, 2023

SOOP00119

SOOP001

Company: Santee Cooper Address: P.O. Box 2946101

OCO3

Moncks Corner, South Carolina 29461

Contact: Ms. Jeanette Gilmetti Project: ABS Lab Analytical

Client Sample ID: AF56430 Sample ID: 613963006 Matrix: Ground Water Collect Date: 06-MAR-23 10:10

Receive Date: 10-MAR-23 Client

Description

Collector:

Parameter	Qualifier	Result	Uncertainty	MDC	RL	Units	PF	DF Analyst I	Date	Time Batch	Method
Rad Gas Flow Proportion	onal Counting										
GFPC, Ra228, Liquid "	As Received"										
Radium-228		2.88	+/-1.61	2.36	3.00	pCi/L		JE1 04	04/23	1246 2402066	1
Radium-226+Radium-2	228 Calculatio	n "See P	arent Products"								
Radium-226+228 Sum		3.38	+/-1.64			pCi/L		NXL1 04	11/23	1121 2402065	2
Rad Radium-226											
Lucas Cell, Ra226, Liqu	uid "As Recei	ved"									
Radium-226		0.499	+/-0.350	0.343	1.00	pCi/L		LXP1 04	11/23	0819 2402018	3
The following Analytic	cal Methods w	ere perfo	ormed:								

1	EPA 904.0/SW846 9320 Modified				
2	Calculation				
3	EPA 903.1 Modified				
Surrogate/Tracer Recov	ery Test	Result	Nominal	Recovery%	Acceptable Limits

Barium-133 Tracer 55.3 (15%-125%) GFPC, Ra228, Liquid "As Received"

Method

Counting Uncertainty is calculated at the 95% confidence level (1.96-sigma).

Column headers are defined as follows:

DF: Dilution Factor Lc/LC: Critical Level DL: Detection Limit PF: Prep Factor MDA: Minimum Detectable Activity **RL**: Reporting Limit

MDC: Minimum Detectable Concentration SQL: Sample Quantitation Limit

Page 8 of 32 SDG: 613963

2040 Savage Road Charleston SC 29407 - (843) 556-8171 - www.gel.com

Certificate of Analysis

Report Date: April 11, 2023

SOOP00119

Company: Santee Cooper P.O. Box 2946101 Address:

OCO₃

Moncks Corner, South Carolina 29461

Contact: Ms. Jeanette Gilmetti Project: ABS Lab Analytical

Client Sample ID: AF56419 Sample ID: 613963007 Matrix: Ground Water Collect Date: 07-MAR-23 14:51 Receive Date: 10-MAR-23

Collector: Client

Client ID: SOOP001

Project:

Analyst Comments

MDC RL Parameter Qualifier Result Uncertainty Units PF DF Analyst Date Time Batch Method Rad Gas Flow Proportional Counting GFPC, Ra228, Liquid "As Received" Radium-228 1.89 +/-1.13 1.72 3.00 pCi/L JE1 04/04/23 1246 2402066 1 Radium-226+Radium-228 Calculation "See Parent Products" Radium-226+228 Sum 2.70 +/-1.24pCi/L NXL1 04/11/23 1121 2402065 2 Rad Radium-226 Lucas Cell, Ra226, Liquid "As Received" Radium-226 +/-0.511 0.606 1.00 pCi/L LXP1 04/11/23 0819 2402018 3 The following Analytical Methods were performed:

Method Description

EPA 904.0/SW846 9320 Modified 2 Calculation

EPA 903.1 Modified

Surrogate/Tracer Recovery Test Result Nominal Recovery% Acceptable Limits Barium-133 Tracer GFPC, Ra228, Liquid "As Received" 84.3 (15%-125%)

Notes:

Counting Uncertainty is calculated at the 95% confidence level (1.96-sigma).

Column headers are defined as follows:

DF: Dilution Factor Lc/LC: Critical Level DL: Detection Limit PF: Prep Factor MDA: Minimum Detectable Activity **RL**: Reporting Limit

MDC: Minimum Detectable Concentration **SQL**: Sample Quantitation Limit

Page 9 of 32 SDG: 613963

2040 Savage Road Charleston SC 29407 - (843) 556-8171 - www.gel.com

Certificate of Analysis

Project:

Client ID:

Report Date: April 11, 2023

SOOP00119

SOOP001

Company: Santee Cooper Address: P.O. Box 2946101

OCO3

Moncks Corner, South Carolina 29461

Contact: Ms. Jeanette Gilmetti Project: ABS Lab Analytical

Client Sample ID: AF56425
Sample ID: 613963008
Matrix: Ground Water
Collect Date: 07-MAR-23 12:49
Receive Date: 10-MAR-23

Receive Date: 10-MA
Collector: Client

Parameter	Qualifier	Result	Uncertainty	MDC	RL	Units	PF	DF Analyst	Date	Time Batch	Method
Rad Gas Flow Proportion	onal Counting										
GFPC, Ra228, Liquid ".	As Received"										
Radium-228	U	-0.250	+/-0.593	1.24	3.00	pCi/L		JE1 04	04/04/23	1246 2402066	1
Radium-226+Radium-2	28 Calculatio	n "See Pa	arent Products"								
Radium-226+228 Sum		0.520	+/-0.729			pCi/L		NXL1 04	04/11/23	1121 2402065	2
Rad Radium-226											
Lucas Cell, Ra226, Liqu	uid "As Recei	ved"									
Radium-226	U	0.520	+/-0.424	0.550	1.00	pCi/L		LXP1 04	04/11/23	0819 2402018	3
The following Analytic	al Methods w	ere perfo	ormed:								

Method	Description	Analyst Comments
1	EBA 004 0/SW846 0320 Modified	•

EPA 904.0/SW846 9320 Modified
Calculation

3 EPA 903.1 Modified

Surrogate/Tracer Recovery Test Result Nominal Recovery% Acceptable Limits

Barium-133 Tracer GFPC, Ra228, Liquid "As Received"

88.3 (15%-125%)

Notes:

Counting Uncertainty is calculated at the 95% confidence level (1.96-sigma).

Column headers are defined as follows:

DF: Dilution Factor Lc/LC: Critical Level
DL: Detection Limit PF: Prep Factor
MDA: Minimum Detectable Activity RL: Reporting Limit

MDC: Minimum Detectable Concentration SQL: Sample Quantitation Limit

Page 10 of 32 SDG: 613963

2040 Savage Road Charleston SC 29407 - (843) 556-8171 - www.gel.com

Certificate of Analysis

Report Date: April 11, 2023

SOOP00119

Company: Santee Cooper Address: P.O. Box 2946101

OCO3

Client

Moncks Corner, South Carolina 29461

Contact: Ms. Jeanette Gilmetti Project: ABS Lab Analytical

Client Sample ID: AF56426
Sample ID: 613963009
Matrix: Ground Water
Collect Date: 07-MAR-23 10:22
Receive Date: 10-MAR-23

009 Client ID: SOOP001

Water

Project:

Analyst Comments

Parameter	Qualifier	Result	Uncertainty	MDC	RL	Units	PF	DF Analy	st Date	Time Batch	Method
Rad Gas Flow Proportion	onal Counting										
GFPC, Ra228, Liquid ".	As Received"										
Radium-228	U	-1.31	+/-1.21	2.50	3.00	pCi/L		JE1	04/04/23	1246 240206	6 1
Radium-226+Radium-2	28 Calculation	n "See Pa	arent Products"								
Radium-226+228 Sum		0.567	+/-1.28			pCi/L		NXL1	04/11/23	1121 240206	5 2
Rad Radium-226											
Lucas Cell, Ra226, Liqu	uid "As Recei	ved"									
Radium-226		0.567	+/-0.398	0.390	1.00	pCi/L		LXP1	04/11/23	0854 240201	8 3

The following Analytical Methods were performed:

Description

1	EPA 904.0/SW846 9320 Modified				
2	Calculation				
3	EPA 903.1 Modified				
Surrogate/Tracer Recov	ery Test	Result	Nominal	Recovery%	Acceptable Limits

Barium-133 Tracer GFPC, Ra228, Liquid "As Received" 68.3 (15%-125%)

Notes:

Method

Counting Uncertainty is calculated at the 95% confidence level (1.96-sigma).

Column headers are defined as follows:

Collector:

DF: Dilution Factor Lc/LC: Critical Level
DL: Detection Limit PF: Prep Factor
MDA: Minimum Detectable Activity RL: Reporting Limit

MDC: Minimum Detectable Concentration SQL: Sample Quantitation Limit

Page 11 of 32 SDG: 613963

2040 Savage Road Charleston SC 29407 - (843) 556-8171 - www.gel.com

Certificate of Analysis

Project:

Client ID:

Report Date: April 11, 2023

SOOP00119

SOOP001

Company: Santee Cooper Address: P.O. Box 2946101

OCO3

Moncks Corner, South Carolina 29461

Contact: Ms. Jeanette Gilmetti Project: ABS Lab Analytical

Client Sample ID: AF56427 Sample ID: 613963010 Matrix: Ground Water Collect Date: 07-MAR-23 10:27 Receive Date: 10-MAR-23

Client Collector:

Parameter	Qualifier	Result	Uncertainty	MDC	RL	Units	PF	DF Analy	yst Date	Time Batch	Method
Rad Gas Flow Proportion	onal Counting	5									
GFPC, Ra228, Liquid "	'As Received'	1									
Radium-228	U	0.0970	+/-0.674	1.31	3.00	pCi/L		JE1	04/04/23	1246 2402066	1
Radium-226+Radium-2	228 Calculation	n "See Pa	arent Products"								
Radium-226+228 Sum		1.05	+/-0.832			pCi/L		NXL1	04/11/23	1121 2402065	2
Rad Radium-226											
Lucas Cell, Ra226, Liq	uid "As Recei	ved"									
Radium-226		0.958	+/-0.488	0.361	1.00	pCi/L		LXP1	04/11/23	0854 2402018	3
The following Analytic	cal Methods w	ere perfo	ormed:								

Method	Description	Analyst Comments
1	EPA 904.0/SW846 9320 Modified	•
2	Calculation	

EPA 903.1 Modified

Surrogate/Tracer Recovery	Test	Result	Nommai	Recovery%	Acceptable Limits
Barium-133 Tracer	GFPC, Ra228, Liquid "As Received"			73.7	(15%-125%)

Counting Uncertainty is calculated at the 95% confidence level (1.96-sigma).

Column headers are defined as follows:

DF: Dilution Factor Lc/LC: Critical Level DL: Detection Limit PF: Prep Factor MDA: Minimum Detectable Activity RL: Reporting Limit

MDC: Minimum Detectable Concentration SQL: Sample Quantitation Limit

Page 12 of 32 SDG: 613963

2040 Savage Road Charleston SC 29407 - (843) 556-8171 - www.gel.com

Certificate of Analysis

Project:

Client ID:

Report Date: April 11, 2023

SOOP00119

SOOP001

Company: Santee Cooper Address: P.O. Box 2946101

OCO3

Moncks Corner, South Carolina 29461

Contact: Ms. Jeanette Gilmetti Project: ABS Lab Analytical

Client Sample ID: AF56408
Sample ID: 613963011
Matrix: Ground Water
Collect Date: 08-MAR-23 13:38
Receive Date: 10-MAR-23

Collector: Client

Parameter	Qualifier	Result	Uncertainty	MDC	RL	Units	PF	DF Analyst Date	Time Batch	Method
Rad Gas Flow Proportion	onal Counting	5								
GFPC, Ra228, Liquid ".	As Received"	1								
Radium-228	U	0.311	+/-0.884	1.62	3.00	pCi/L		JE1 04/04/2	3 1246 2402066	1
Radium-226+Radium-2	28 Calculatio	n "See P	arent Products"							
Radium-226+228 Sum		1.84	+/-1.08			pCi/L		NXL1 04/11/2	3 1121 2402065	2
Rad Radium-226										
Lucas Cell, Ra226, Liqu	uid "As Recei	ved"								
Radium-226		1.53	+/-0.619	0.431	1.00	pCi/L		LXP1 04/11/2	3 0854 2402018	3
The following Analytic	al Methods w	ere perfo	ormed:							

Method	Description	Analyst Comments
1	EPA 904.0/SW846 9320 Modified	•

2 Calculation 3 EPA 903.1 Modified

Surrogate/Tracer Recovery Test Result Nominal Recovery% Acceptable Limits

Barium-133 Tracer GFPC, Ra228, Liquid "As Received"

70.7 (15%-125%)

Notes:

Counting Uncertainty is calculated at the 95% confidence level (1.96-sigma).

Column headers are defined as follows:

DF: Dilution Factor Lc/LC: Critical Level
DL: Detection Limit PF: Prep Factor
MDA: Minimum Detectable Activity RL: Reporting Limit

MDC: Minimum Detectable Concentration SQL: Sample Quantitation Limit

Page 13 of 32 SDG: 613963

2040 Savage Road Charleston SC 29407 - (843) 556-8171 - www.gel.com

Certificate of Analysis

Project:

Client ID:

Report Date: April 11, 2023

SOOP00119

SOOP001

Company: Santee Cooper Address: P.O. Box 2946101

OCO3

Moncks Corner, South Carolina 29461

Contact: Ms. Jeanette Gilmetti Project: ABS Lab Analytical

Client Sample ID: AF56415
Sample ID: 613963012
Matrix: Ground Water
Collect Date: 08-MAR-23 15:13
Receive Date: 10-MAR-23

Collector: Client

Parameter	Qualifier	Result	Uncertainty	MDC	RL	Units	PF	DF Anal	yst Date	Time Batch	Method
Rad Gas Flow Proportion	onal Counting										
GFPC, Ra228, Liquid ".	As Received"										
Radium-228	U	1.63	+/-1.08	1.65	3.00	pCi/L		JE1	04/04/23	1246 2402066	1
Radium-226+Radium-2	28 Calculatio	n "See Pa	arent Products"								
Radium-226+228 Sum		3.33	+/-1.29			pCi/L		NXL1	04/11/23	1121 2402065	2
Rad Radium-226											
Lucas Cell, Ra226, Liqu	uid "As Recei	ved"									
Radium-226		1.69	+/-0.717	0.572	1.00	pCi/L		LXP1	04/11/23	0854 2402018	3
The following Analytic	eal Methods w	ere perfo	ormed:								

The following Analytical Methods were performed:

Method	Description	Analyst Comments
1	EPA 904.0/SW846 9320 Modified	•
2	Calculation	

2 Calculation
3 EPA 903.1 Modified

Surrogate/Tracer RecoveryTestResultNominalRecovery%Acceptable LimitsBarium-133 TracerGFPC, Ra228, Liquid "As Received"84.8(15%-125%)

Notes:

Counting Uncertainty is calculated at the 95% confidence level (1.96-sigma).

Column headers are defined as follows:

DF: Dilution Factor Lc/LC: Critical Level
DL: Detection Limit PF: Prep Factor
MDA: Minimum Detectable Activity RL: Reporting Limit

MDC: Minimum Detectable Concentration SQL: Sample Quantitation Limit

Page 14 of 32 SDG: 613963

2040 Savage Road Charleston SC 29407 - (843) 556-8171 - www.gel.com

Certificate of Analysis

Project:

Client ID:

Analyst Comments

Report Date: April 11, 2023

SOOP00119

SOOP001

Company: Santee Cooper Address: P.O. Box 2946101

OCO3

Moncks Corner, South Carolina 29461

Contact: Ms. Jeanette Gilmetti Project: ABS Lab Analytical

Client Sample ID: AF56416
Sample ID: 613963013
Matrix: Ground Water
Collect Date: 08-MAR-23 10:09

Receive Date: 10-MAR-23 Collector: Client

Parameter	Qualifier	Result	Uncertainty	MDC	RL	Units	PF	DF Anal	yst Date	Time Batch	Method
Rad Gas Flow Proport	ional Counting	3									
GFPC, Ra228, Liquid	"As Received"	'									
Radium-228	U	0.331	+/-0.898	1.61	3.00	pCi/L		JE1	04/04/23	1246 2402066	1
Radium-226+Radium-	-228 Calculation	on "See Pa	arent Products"								
Radium-226+228 Sum		0.476	+/-0.942			pCi/L		NXL1	04/11/23	1121 2402065	2
Rad Radium-226											
Lucas Cell, Ra226, Lic	quid "As Rece	ived"									
Radium-226	U	0.145	+/-0.285	0.545	1.00	pCi/L		LXP1	04/11/23	0854 2402018	3
The following Analyti	ical Methods v	vere nerfo	rmed·								

The following Analytical Methods were performed:

Description

1 E	EPA 904.0/SW846 9320 Modified				
2 C	Calculation				
3 E	EPA 903.1 Modified				
Surrogate/Tracer Recovery	y Test	Result	Nominal	Recovery%	Acceptable Limits

Barium-133 Tracer GFPC, Ra228, Liquid "As Received" 88.6 (15%-125%)

Notes:

Method

Counting Uncertainty is calculated at the 95% confidence level (1.96-sigma).

Column headers are defined as follows:

DF: Dilution Factor Lc/LC: Critical Level
DL: Detection Limit PF: Prep Factor
MDA: Minimum Detectable Activity RL: Reporting Limit

MDC: Minimum Detectable Concentration SQL: Sample Quantitation Limit

Page 15 of 32 SDG: 613963

2040 Savage Road Charleston SC 29407 - (843) 556-8171 - www.gel.com

Certificate of Analysis

Project:

Client ID:

Report Date: April 11, 2023

SOOP00119

SOOP001

Company: Santee Cooper Address: P.O. Box 2946101

OCO3

Moncks Corner, South Carolina 29461

Contact: Ms. Jeanette Gilmetti Project: ABS Lab Analytical

Client Sample ID: AF56417 Sample ID: 613963014 Matrix: Ground Water 08-MAR-23 10:14 Collect Date: Receive Date: 10-MAR-23

Client Collector:

Parameter	Qualifier	Result	Uncertainty	MDC	RL	Units	PF	DF Analy	st Date	Time Batch	Method
Rad Gas Flow Proporti	onal Counting										
GFPC, Ra228, Liquid '	'As Received"										
Radium-228		2.50	+/-1.09	1.51	3.00	pCi/L		JE1	04/04/23	1246 2402066	1
Radium-226+Radium-2	228 Calculatio	n "See Pa	arent Products"								
Radium-226+228 Sum		3.19	+/-1.18			pCi/L		NXL1	04/11/23	1121 2402065	2
Rad Radium-226											
Lucas Cell, Ra226, Liq	uid "As Recei	ved"									
Radium-226		0.690	+/-0.459	0.562	1.00	pCi/L		LXP1	04/11/23	0854 2402018	3
The following Analytic	The following Analytical Methods were performed:										
Method	Description					I	Analys	st Comment	5		

1	EPA 904.0/SW846 9320 Modified		-		
2	Calculation				
3	EPA 903.1 Modified				
Surrogate/Tracer Recov	erv Test	Result	Nominal	Recoverv%	Acceptable Limits

Barium-133 Tracer GFPC, Ra228, Liquid "As Received" 89.6 (15%-125%)

Counting Uncertainty is calculated at the 95% confidence level (1.96-sigma).

Column headers are defined as follows:

DF: Dilution Factor Lc/LC: Critical Level DL: Detection Limit PF: Prep Factor MDA: Minimum Detectable Activity **RL**: Reporting Limit

MDC: Minimum Detectable Concentration SQL: Sample Quantitation Limit

Page 16 of 32 SDG: 613963

2040 Savage Road Charleston SC 29407 - (843) 556-8171 - www.gel.com

Certificate of Analysis

Report Date: April 11, 2023

Company: Santee Cooper Address: P.O. Box 2946101

OCO3

Moncks Corner, South Carolina 29461

Contact: Ms. Jeanette Gilmetti Project: ABS Lab Analytical

Client Sample ID: AF56429 Sample ID: 613963015 Matrix: Ground Water Collect Date: 08-MAR-23 12:12 Receive Date: 10-MAR-23

Client

Client ID: SOOP001

SOOP00119

Project:

Parameter	Qualifier	Result	Uncertainty	MDC	RL	Units	PF	DF Analyst Date Ti	me Batch	Method
Rad Gas Flow Proportion	onal Counting	5								
GFPC, Ra228, Liquid "	As Received"	1								
Radium-228		3.39	+/-1.22	1.54	3.00	pCi/L		JE1 04/04/23 12	46 2402066	1
Radium-226+Radium-2	228 Calculatio	n "See Pa	arent Products"							
Radium-226+228 Sum		3.97	+/-1.29			pCi/L		NXL1 04/11/23 11	21 2402065	2
Rad Radium-226										
Lucas Cell, Ra226, Liqu	uid "As Recei	ved"								
Radium-226		0.578	+/-0.409	0.483	1.00	pCi/L		LXP1 04/11/23 08	354 2402018	3
The following Analytic	The following Analytical Methods were performed:									
Method	Description					I	Analys	st Comments		

1	EPA 904.0/SW846 9320 Modified				
2	Calculation				
3	EPA 903.1 Modified				
Surrogate/Tracer Recove	ery Test	Result	Nominal	Recovery%	Acceptable Limits

78.1 Barium-133 Tracer GFPC, Ra228, Liquid "As Received" (15%-125%)

Counting Uncertainty is calculated at the 95% confidence level (1.96-sigma).

Column headers are defined as follows:

Collector:

DF: Dilution Factor Lc/LC: Critical Level DL: Detection Limit PF: Prep Factor MDA: Minimum Detectable Activity **RL**: Reporting Limit

MDC: Minimum Detectable Concentration SQL: Sample Quantitation Limit

Page 17 of 32 SDG: 613963

2040 Savage Road Charleston SC 29407 - (843) 556-8171 - www.gel.com

Certificate of Analysis

Project:

Client ID:

Analyst Comments

Report Date: April 11, 2023

SOOP00119

SOOP001

Company: Santee Cooper Address: P.O. Box 2946101

OCO3

Moncks Corner, South Carolina 29461

Contact: Ms. Jeanette Gilmetti Project: ABS Lab Analytical

Client Sample ID: AF56406
Sample ID: 613963016
Matrix: Ground Water
Collect Date: 09-MAR-23 10:29
Receive Date: 10-MAR-23

Collector: Client

Parameter	Qualifier	Result	Uncertainty	MDC	RL	Units	PF	DF Analy	st Date	Time Batch	Method
Rad Gas Flow Proport	tional Counting	5									
GFPC, Ra228, Liquid	"As Received"	1									
Radium-228	U	0.757	+/-0.814	1.35	3.00	pCi/L		JE1	04/04/23	1246 2402066	1
Radium-226+Radium-	-228 Calculatio	n "See Pa	arent Products"								
Radium-226+228 Sum		1.81	+/-0.979			pCi/L		NXL1	04/11/23	1121 2402065	2
Rad Radium-226											
Lucas Cell, Ra226, Lie	quid "As Recei	ved"									
Radium-226		1.06	+/-0.544	0.508	1.00	pCi/L		LXP1	04/11/23	0854 2402018	3
The following Analyt	ical Methods w	zere perfo	ormed:								

The following Analytical Methods were performed:

Description

1	EPA 904.0/SW846 9320 Modified		•		
2	Calculation				
3	EPA 903.1 Modified				
Surrogate/Tracer Recov	ery Test	Result	Nominal	Recoverv%	Acceptable Limits

Barium-133 Tracer GFPC, Ra228, Liquid "As Received" Result Normal Recovery Acceptable Limit Result Normal Recovery 84.9 (15%-125%)

Notes:

Method

Counting Uncertainty is calculated at the 95% confidence level (1.96-sigma).

Column headers are defined as follows:

DF: Dilution Factor Lc/LC: Critical Level
DL: Detection Limit PF: Prep Factor
MDA: Minimum Detectable Activity RL: Reporting Limit

MDC: Minimum Detectable Concentration SQL: Sample Quantitation Limit

Page 18 of 32 SDG: 613963

2040 Savage Road Charleston SC 29407 - (843) 556-8171 - www.gel.com

Certificate of Analysis

Project:

Client ID:

Analyst Comments

Report Date: April 11, 2023

SOOP00119

SOOP001

Company: Santee Cooper Address: P.O. Box 2946101

OCO3

Moncks Corner, South Carolina 29461

Contact: Ms. Jeanette Gilmetti Project: ABS Lab Analytical

Client Sample ID: AF56407
Sample ID: 613963017
Matrix: Ground Water
Collect Date: 09-MAR-23 10:34
Receive Date: 10-MAR-23

Collector: Client

Parameter	Qualifier	Result	Uncertainty	MDC	RL	Units	PF	DF Analy	yst Date	Time Batch	Method
Rad Gas Flow Proporti	onal Counting	5									
GFPC, Ra228, Liquid '	'As Received'	1									
Radium-228	U	0.0962	+/-1.20	2.19	3.00	pCi/L		JE1	04/04/23	1246 2402066	1
Radium-226+Radium-2	228 Calculation	n "See Pa	rent Products"								
Radium-226+228 Sum		1.39	+/-1.35			pCi/L		NXL1	04/11/23	1121 2402065	2
Rad Radium-226											
Lucas Cell, Ra226, Liq	juid "As Recei	ved"									
Radium-226		1.29	+/-0.623	0.554	1.00	pCi/L		LXP1	04/11/23	0930 2402018	3
The following Analytic	cal Methods w	zere perfo	rmed:								

The following Analytical Methods were performed:

Description

I	EPA 904.0/SW846 9320 Modified				
2	Calculation				
3	EPA 903.1 Modified				
Surrogate/Tracer Recove	ery Test	Result	Nominal	Recovery%	Acceptable Limits

Barium-133 Tracer GFPC, Ra228, Liquid "As Received" 79.8 (15%-125%)

Notes:

Method

Counting Uncertainty is calculated at the 95% confidence level (1.96-sigma).

Column headers are defined as follows:

DF: Dilution Factor Lc/LC: Critical Level
DL: Detection Limit PF: Prep Factor
MDA: Minimum Detectable Activity RL: Reporting Limit

MDC: Minimum Detectable Concentration SQL: Sample Quantitation Limit

Page 19 of 32 SDG: 613963

2040 Savage Road Charleston SC 29407 - (843) 556-8171 - www.gel.com

Certificate of Analysis

Project:

Client ID:

Report Date: April 11, 2023

SOOP00119

SOOP001

Company: Santee Cooper Address: P.O. Box 2946101

OCO3

Moncks Corner, South Carolina 29461

Contact: Ms. Jeanette Gilmetti Project: ABS Lab Analytical

Client Sample ID: AF56418
Sample ID: 613963018
Matrix: Ground Water
Collect Date: 09-MAR-23 12:07
Receive Date: 10-MAR-23

Collector: Client

Parameter	Qualifier	Result	Uncertainty	MDC	RL	Units	PF	DF Analyst	Date	Time Batch	Method
Rad Gas Flow Proportion	onal Counting										
GFPC, Ra228, Liquid "	As Received"										
Radium-228	U	0.0769	+/-0.950	1.77	3.00	pCi/L		JE1 0-	04/04/23	1246 2402066	1
Radium-226+Radium-2	28 Calculatio	n "See Pa	arent Products"								
Radium-226+228 Sum		1.17	+/-1.09			pCi/L		NXL1 0	04/11/23	1121 2402065	2
Rad Radium-226											
Lucas Cell, Ra226, Liqu	uid "As Recei	ved"									
Radium-226		1.09	+/-0.528	0.499	1.00	pCi/L		LXP1 0	04/11/23	0930 2402018	3
The following Analytical Methods were performed:											
Method	Description					1	Analys	st Comments			

1	EPA 904.0/SW846 9320 Modified				
2	Calculation				
3	EPA 903.1 Modified				
Surrogate/Tracer Recov	ery Test	Result	Nominal	Recovery%	Acceptable Limits

Barium-133 Tracer GFPC, Ra228, Liquid "As Received" 81.2 (15%-125%)

Notes:

Counting Uncertainty is calculated at the 95% confidence level (1.96-sigma).

Column headers are defined as follows:

DF: Dilution Factor Lc/LC: Critical Level
DL: Detection Limit PF: Prep Factor
MDA: Minimum Detectable Activity RL: Reporting Limit

MDC: Minimum Detectable Concentration SQL: Sample Quantitation Limit

Page 20 of 32 SDG: 613963

2040 Savage Road Charleston SC 29407 - (843) 556-8171 - www.gel.com

Certificate of Analysis

Report Date: April 11, 2023

Company: Santee Cooper Address: P.O. Box 2946101

OCO3

Moncks Corner, South Carolina 29461

Contact: Ms. Jeanette Gilmetti Project: ABS Lab Analytical

Client Sample ID: AF56422
Sample ID: 613963019
Matrix: Ground Water
Collect Date: 09-MAR-23 13:19
Receive Date: 10-MAR-23

Client

Client ID: SOOP001

Analyst Comments

SOOP00119

Project:

Parameter	Qualifier	Result	Uncertainty	MDC	RL	Units	PF	DF Analy	yst Date	Time Batch	Method
Rad Gas Flow Proportion	onal Counting										
GFPC, Ra228, Liquid "A	As Received"										
Radium-228	U	0.992	+/-0.901	1.45	3.00	pCi/L		JE1	04/04/23	1247 2402066	5 1
Radium-226+Radium-2	28 Calculatio	n "See Pa	rent Products"								
Radium-226+228 Sum		2.31	+/-1.07			pCi/L		NXL1	04/11/23	1121 2402065	5 2
Rad Radium-226											
Lucas Cell, Ra226, Liqu	uid "As Recei	ved"									
Radium-226		1.32	+/-0.571	0.464	1.00	pCi/L		LXP1	04/11/23	0930 2402018	3
The following Analytic	al Methods w	ere perfo	rmed:								

1 E	PA 904.0/SW846 9320 Modified				
2 C	alculation				
3 E	PA 903.1 Modified				
Surrogate/Tracer Recovery	Test	Result	Nominal	Recovery%	Acceptable Limits
Barium-133 Tracer	GFPC, Ra228, Liquid "As Received"			69.8	(15%-125%)

Notes

Method

Counting Uncertainty is calculated at the 95% confidence level (1.96-sigma).

Column headers are defined as follows:

Collector:

DF: Dilution Factor Lc/LC: Critical Level
DL: Detection Limit PF: Prep Factor
MDA: Minimum Detectable Activity RL: Reporting Limit

Description

MDC: Minimum Detectable Concentration SQL: Sample Quantitation Limit

Page 21 of 32 SDG: 613963

2040 Savage Road Charleston, SC 29407 - (843) 556-8171 - www.gel.com

QC Summary

Report Date: April 11, 2023

Santee Cooper P.O. Box 2946101

OCO3

Moncks Corner, South Carolina

Contact: Ms. Jeanette Gilmetti

Workorder: 613963

Parmname			NOM	Sample	Qual	QC	Units	RPD%	REC%	Range A	Anlst	Date Tir	ne_
Rad Gas Flow Batch 2402066	5												
QC1205352839 6139 Radium-228	963001	DUP	Uncertainty	2.18 +/-1.16	U	1.38 +/-1.13	pCi/L	45.2		(0% - 100%)	JE1	04/04/23 12	2:45
QC1205352840 L Radium-228	.CS		81.6 Uncertainty			77.8 +/-4.42	pCi/L		95.3	(75%-125%)		04/04/23 12	2:45
QC1205352838 M Radium-228	ИΒ		Uncertainty		U	0.382 +/-0.779	pCi/L					04/04/23 12	2:45
Rad Ra-226 Batch 2402018	3												
QC1205352737 6139 Radium-226	963001	DUP	Uncertainty	0.971 +/-0.495		0.957 +/-0.511	pCi/L	1.4		(0% - 100%)	LXP1	04/11/23 09	9:30
QC1205352739 L Radium-226	LCS		26.4 Uncertainty			22.4 +/-2.39	pCi/L		84.9	(75%-125%)		04/11/23 09	9:30
QC1205352736 M Radium-226	ИΒ		Uncertainty		U	0.253 +/-0.405	pCi/L					04/11/23 09	9:30
QC1205352738 6139 Radium-226	963001	MS	132 Uncertainty	0.971 +/-0.495		101 +/-10.7	pCi/L		75.9	(75%-125%)		04/11/23 09	9:30

Notes:

Counting Uncertainty is calculated at the 95% confidence level (1.96-sigma).

The Qualifiers in this report are defined as follows:

U Analyte was analyzed for, but not detected above the MDL, MDA, MDC or LOD.

J Value is estimated

X Consult Case Narrative, Data Summary package, or Project Manager concerning this qualifier

H Analytical holding time was exceeded

< Result is less than value reported

Page 22 of 32 SDG: 613963

Page 1 of 2

2040 Savage Road Charleston, SC 29407 - (843) 556-8171 - www.gel.com

QC Summary

Workorder: 613963

Page 2 of 2

Parmname	NOM	Sample Qual	QC	Units	RPD%	REC%	Range	Anlst	Date	Time

- > Result is greater than value reported
- UI Gamma Spectroscopy--Uncertain identification
- BD Results are either below the MDC or tracer recovery is low
- h Preparation or preservation holding time was exceeded
- R Sample results are rejected
- ^ RPD of sample and duplicate evaluated using +/-RL. Concentrations are <5X the RL. Qualifier Not Applicable for Radiochemistry.
- N/A RPD or %Recovery limits do not apply.
- ND Analyte concentration is not detected above the detection limit
- M If above MDC and less than LLD
- NJ Consult Case Narrative, Data Summary package, or Project Manager concerning this qualifier
- FA Failed analysis.
- UJ Gamma Spectroscopy--Uncertain identification
- Q One or more quality control criteria have not been met. Refer to the applicable narrative or DER.
- K Analyte present. Reported value may be biased high. Actual value is expected to be lower.
- UL Not considered detected. The associated number is the reported concentration, which may be inaccurate due to a low bias.
- L Analyte present. Reported value may be biased low. Actual value is expected to be higher.
- N1 See case narrative
- Y Other specific qualifiers were required to properly define the results. Consult case narrative.
- ** Analyte is a Tracer compound
- M REMP Result > MDC/CL and < RDL
- J See case narrative for an explanation

N/A indicates that spike recovery limits do not apply when sample concentration exceeds spike conc. by a factor of 4 or more or %RPD not applicable.

- ^ The Relative Percent Difference (RPD) obtained from the sample duplicate (DUP) is evaluated against the acceptance criteria when the sample is greater than five times (5X) the contract required detection limit (RL). In cases where either the sample or duplicate value is less than 5X the RL, a control limit of +/- the RL is used to evaluate the DUP result.
- * Indicates that a Quality Control parameter was not within specifications.

For PS, PSD, and SDILT results, the values listed are the measured amounts, not final concentrations.

Where the analytical method has been performed under NELAP certification, the analysis has met all of the requirements of the NELAC standard unless qualified on the QC Summary.

Page 23 of 32 SDG: 613963

Radiochemistry **Technical Case Narrative Santee Cooper** SDG #: 613963

Product: GFPC, Ra228, Liquid

Analytical Method: EPA 904.0/SW846 9320 Modified **Analytical Procedure:** GL-RAD-A-063 REV# 5

Analytical Batch: 2402066

The following samples were analyzed using the above methods and analytical procedure(s).

GEL Sample ID#	Client Sample Identification
613963001	AF56409
613963002	AF56410
613963003	AF56411
613963004	AF56412
613963005	AF56413
613963006	AF56430
613963007	AF56419
613963008	AF56425
613963009	AF56426
613963010	AF56427
613963011	AF56408
613963012	AF56415
613963013	AF56416
613963014	AF56417
613963015	AF56429
613963016	AF56406
613963017	AF56407
613963018	AF56418
613963019	AF56422
1205352838	Method Blank (MB)
1205352839	613963001(AF56409) Sample Duplicate (DUP)
1205352840	Laboratory Control Sample (LCS)

The samples in this SDG were analyzed on an "as received" basis.

Data Summary:

All sample data provided in this report met the acceptance criteria specified in the analytical methods and procedures for initial calibration, continuing calibration, instrument controls and process controls where applicable, with the following exceptions.

Preparation Information

Homogenous Matrix

Samples 613963012 (AF56415), 613963013 (AF56416), 613963014 (AF56417), 613963016 (AF56406), 613963017 (AF56407) and 613963018 (AF56418) were non-homogenous matrix. yellow tint 613963012 (AF56415), 613963013 (AF56416), 613963014 (AF56417), 613963016 (AF56406), 613963017 (AF56407) and 613963018 (AF56418).

Page 24 of 32 SDG: 613963

Product: Lucas Cell, Ra226, Liquid **Analytical Method:** EPA 903.1 Modified

Analytical Procedure: GL-RAD-A-008 REV# 15

Analytical Batch: 2402018

The following samples were analyzed using the above methods and analytical procedure(s).

GEL Sample ID#	Client Sample Identification
613963001	AF56409
613963002	AF56410
613963003	AF56411
613963004	AF56412
613963005	AF56413
613963006	AF56430
613963007	AF56419
613963008	AF56425
613963009	AF56426
613963010	AF56427
613963011	AF56408
613963012	AF56415
613963013	AF56416
613963014	AF56417
613963015	AF56429
613963016	AF56406
613963017	AF56407
613963018	AF56418
613963019	AF56422
1205352736	Method Blank (MB)
1205352737	613963001(AF56409) Sample Duplicate (DUP)
1205352738	613963001(AF56409) Matrix Spike (MS)
1205352739	Laboratory Control Sample (LCS)

The samples in this SDG were analyzed on an "as received" basis.

Data Summary:

All sample data provided in this report met the acceptance criteria specified in the analytical methods and procedures for initial calibration, continuing calibration, instrument controls and process controls where applicable, with the following exceptions.

Preparation Information

Homogenous Matrix

Samples 613963012 (AF56415), 613963013 (AF56416), 613963014 (AF56417), 613963017 (AF56407) and 613963018 (AF56418) were non-homogenous matrix.

Miscellaneous Information

Additional Comments

The matrix spike, 1205352738 (AF56409MS), aliquot was reduced to conserve sample volume.

Page 25 of 32 SDG: 613963

Certification Statement

Where the analytical method has been performed under NELAP certification, the analysis has met all of the requirements of the NELAC standard unless otherwise noted in the analytical case narrative.

Page 26 of 32 SDG: 613963

Contract Lab Info:

RAD - 4/17/23

Chain of Custody

santee cooper°

Customer Emai	l/Report Recipie	nt:	Date R	esults Ne	eeded b	y:		Pr	oject/	Task/L	Jnit #:	Rerun request	for ar	y fla	ggec	1 QC
LCWIUJA	@santeeco	ooper.com					125	715	<u>J</u> JM	02.0	9.601.1	<u>1_36500</u> Yes		nalysi	s Grou	up
Labworks ID # (Internal use only)	Sample Location Description	o/	Collection Date	Collection Time	Sample Collector	Total # of containers	Bottle type: (Glass- G/Plastic-P)	Grab (G) or Composite (C)	Matrix(see below)	Preservative (see below)	Meth Repc Misc Any	Comments od # orting limit . sample info other notes	Tac/boc	ALKAUNITY	SWIFIDE	RAD 226 +228
AF56409	WAP-14		3/6/23	1214	20M ML	6	P/s	6	GW	*	*SULF	IDE HAS SHORT HOUD	2	1	1	2
1 10	WAP - 14D			1219	1	1		1					11			Ш
u	WAP - 14A			1108		1					* PRES	ERVATURES				
				1515		H						HZSO4 ZINCACETATE, NaOI	4			Π
12	WAP-14B			1013	++-				\mathbf{H}		RAD HN			\forall		H
[3	WAP-14C			1344	+	+	+		+		∠H°C		+	H	H	H
<u> </u>	WAP-29		1	1010	1	-	1	1	-	-			1	1	1	سد
AF56419	WAP -19		3/7/23	145]	1		1				ALKAL-	TOTAL, BICARB, CARB	1	1	11	
) 25	25		1	1249							RAD - IN	CLUDE TOTAL CALC.				Ш
26	26			1022							bec-N	OT FIELD FILTERED				
27			1	1027	I	Ī	1	ĵ	1	1			1	1	1	
- 1 11	Fundament	Date	Time	Pacai	ived by:		Employee	#	Dat	e	Time	Sample Receiving (Internal				
Relinquished by	y: Employee#	3/10/23	1100	M. A			GE		3/10/		1100	TEMP (°C):	Initia	u:		=
Relinquished by	y: Employee#	Date	Time		ived by:		Employee	#	Dat	_	Time	Correct pH: Yes No)			
m. An	GEL	3.10.23	1620	The	Sel		JEC	_	10/		1620	Preservative Lot#:				
Relinquished b	y: Employee#	Date	Time 2	Recei	ived by:		Employee	#	Ďat	e	Time	Date/Time/Init for presen	ative:			
		100000	100	114			100 100 10	ISOS ES	Part C			Bate/ mile/ mit io. preser	N SAV		Sall S	F 1899
	TETALS (all)	Control of the Contro	rients		ISC.		MA STEEL	ypsu	<u>m</u>		<u>Coal</u> Ultimate	Flyash	17.10	ans. C	il M On	
			CONTRACTOR OF THE PARTY OF THE	□ BTEX □ Naphth	alene		100	psum(all		□ % Moist	☐ Ammonia ure ☐ LOI	100	%Mo Color	isture	
			TPO4	□ THM/F	IAA		belo □ A				☐ Ash ☐ Sulfur	☐ % Carbon ☐ Mineral	14	Acidi	y	
		□ NI □ F		□ Oil & C			DI		ale		BTUs	Analysis	DED	Dielect IFT		
	Mg □ Ti	□ CI		☐ Total C			So	oluble N	detals		☐ Volatile	Matter ☐ Sieve ☐ % Moisture		Disso sed (inses
の対象を持ちました。	Mn Tl		The second secon	□ pH □ Dissolv	ved As			urity (C Moist		0	other Tests:	COLD VICE AND ADDRESS OF THE PARTY OF THE PA	1 to	Flash	mion	200
THE REPORT OF THE REAL PROPERTY.	Mo □ V	ONC)3	□ Dissolv		11	D Si	ulfites	1154		XRF Scan	NPDES	4.1	Metal (As.C		NLPb
		□ SC)4	☐ Rad 22		50		hloride:		E	Fineness	□ Oil & Grease □ As	THE STATE OF	Hg) TX		
	Ni ☐ Hg Pb ☐ CrVI	A STATE OF		□ PCB			□ Pa □ Sulfur	irticle S	ize	Att 5	Particulate M	atter TSS		OFE	1	
	I UCIVI	the second		SI CONTRACTOR			Junth	15			The state of the		100	-		

Chain of Custody

Santee Cooper One Riverwood Drive Moneks Corner, SC 29461 Phone: (843)761-8000 Ext. 5148 Fax: (843)761-4175

Custo	omer E	mail/	Report Recip	ient:	Date	Results No	eeded b	y:		Pi	roject/	Task/l	Unit #:	Rerun reque	st for a	ny fla	gged	QC
LC	WILLIA	Ar .	@sante	cooper.com					1250	715	1 Th	102.0	9. 6 Ø1. l	<u> </u>	No			
															1	Analysi	s Grou	<u>ap</u>
		Sample Location/ Description		Collection Date	Collection Time	Sample Collector	Total # of containers	Bottle type: (Glass-G/Plastic-P)	Grab (G) or Composite (C)	Matrix(see below)	Preservative (see below)	Me Rep Mis Any	Comments thod # borting limit sc. sample info y other notes	TOC/200C	AUCAUNITY	SulFide	Red 126 (128	
AFE	56405 WAP-13			3/8/2	3 1338	20M ML	6	P	G	ew.	*	*SULF	IDE HAS SHORT HOL	0 2	1	l	2	
	15	5	16		++	1513		1	11			1			1	1		1
	16		17			1009							* PRES	ERVATIVES				
	17		170			1014							TOC &	ZSO4 ZINC ACETATE, NOT	F	П		
	2°	7	1 28			1212	Ī	1	1	1	1	1	RAD HA					
A = 5	56406		WAP-12		3/9/2		1	ī	1	1	1	1			- -	H		
1-31 -	0		- 2D		1	1034			\forall	1			Alsent	Tringle on comment of the	+	H		
									++			+		TOTAL, BICARB, CARB		H		
	19	3	18		\vdash	1267	\vdash	+	H	+		+	RAD - IN	CLUDE SOTAL CALC.	+	H	+	+
	27	2	1 22		1-1-	1319	7	1	-	1	1	7	DOC-NO	T FIELD FILTERED	1	7	7	上
Rel	inquishe	d by:	Employeet	Date	Time	Receiv	ed by:	F	mployee	#	Date		Time	Sample Receiving (International TEMP (°C):				
	ww		35594	3/10/23	1100	m. dr			GEL		3/10/2	3	1100	Correct pH: Yes				
Rel	inquishe	d by:	Employee#	Date	Time	Receiv	red by:	-	mployee	#	Date		Time		10			
	An		GEL	3.10.23	1620.	5	al		EL		10/0	_	1620	Preservative Lot#:				
Rel	inquished	d by:	Employee#	Date	Time	Receiv	red by:		mployee	#	Ďate		Time	Date/Time/Init for prese	rvative:			
	П	ME	TALS (all)							- 32 M			7 (Sec. 31)					
□ A _s	100 Per 100 Pe	□ Cu		INGU		MI	SC.		Gy		n		Coal			Oi		
□ A1		□ Fe	□ Se	D TO		☐ BTEX ☐ Naphtha	lene		Wallbo Gyp	Dard ISMM(4	ıll		Ultimate ☐ % Mois	ture 🛮 🖸 LO1		www. Ol Mois		C'UN.
□ As		□K	□ Sn	□ TP/	TPO4	□ THM/H. □ VOC		A Par	belo	w)		8	□ Ash	□ % Carbon	1 60	olor Acidity		
□В		□Li	□ Sr	□NH	3-N	□ Oil & G	rease	2	D AI		No.	F 18	Sulfur	☐ Mineral	BI	lielectri		gth
□ Ba		□ Mg	g 🗆 Ti	D CI		□ E. Coli	liform	10	Li To	tal meta		1000	□ BTUs □ Volatile	Analysis Matter Sieve	THE RESERVE OF THE PERSON NAMED IN	F1 Dissolv	ed Ga	Q#C
□Ве		□ Mn	□ TI	□ NO.	2	□ Total Co	miorm			luble M rity (Ca		1	□ CHN	☐ % Moisture	5100000000000	ed Oi		
□ Ca		□ Mo	□V	□Br		☐ Dissolve		100	1%	Moistu			ther Tests:		, ai	lashp	int	
□ Cd		□ Na		□ NO □ SO4		☐ Dissolve ☐ Rad 226		189	□ Sul	lfites	In pro		XRF Scan HGI	NPDES		Metals As,Cd		
□ Co	C SEX C	□ Ni	□ Hg	0.304	1	☐ Rad 228			□ Ch	lorides			Fineness	☐ Oil & Grease ☐ As	10-00	lg)		
	The state of the s	□ Pb				□ PCB		5	☐ Par ☐ Sulfur	nicle Si	ze.		Particulate M	latter TSS	G	FER		
L CI	SEPTEMBER ST	LU	I ii crv.		*0-7-0		THE R. S.		L Suitur	1	A Jara		March .	THE RESERVE OF STREET		Control of the last	EX.	

	GEG Laboratories LLC				CAMPI D DECEMBER 1
Clie	nt COP		-		SAMPLE RECEIPT & REVIEW FORM
Cit	See 1		_	SD	G/AR/COC/Work Order: 613959/613962
Rec	eived By: UW			Da	te Received: 3/10/25.
	Carrier and Tracking Number				FedEx Express FedEx Ground UPS Field Services Courier Other
Susp	ected Hazard Information	Yes	No	*If	Net Counts > 100cpm on samples not marked "radioactive", contact the Radiation Safety Group for further investigation.
A)SI	iipped as a DOT Hazardous?		1		tard Class Shipped: UN#: If UN2910, Is the Radioactive Shipment Survey Compliant? YesNo
	id the client designate the samples are to be ved as radioactive?		1	СО	C notation or radioactive stickers on containers equal client designation.
	id the RSO classify the samples as active?		/	Ma	ximum Net Counts Observed* (Observed Counts - Area Background Counts): CPM) mR/Hr Classified as: Rad 1 Rad 2 Rad 3
	id the client designate samples are hazardous?		/	1	C notation or hazard labels on containers equal client designation. For E is yes, select Hazards below. PCB's Flammable Foreign Soil RCRA Asbestos Beryllium Others
E) D	id the RSO identify possible hazards?		/		PCB's Flammable Foreign Soil RCRA Asbestos Beryllium Other:
	Sample Receipt Criteria	Yes	YZ,	ž	Comments/Qualifiers (Required for Non-Conforming Items)
1	Shipping containers received intact and sealed?	,			Circle Applicable: Seals broken Damaged container Leaking container Other (describe)
2	Chain of custody documents included with shipment?	1			Circle Applicable: Client contacted and provided COC COC created upon receipt
3	Samples requiring cold preservation within $(0 \le 6 \text{ deg. C})$?*	/			Preservation Method: Wet Ice Jce Packs Dry ice None Other: *all temperatures are recorded in Celsius TEMP: 7
4	Daily check performed and passed on IR temperature gun?	/			Temperature Device Serial #:
5	Sample containers intact and sealed?	/			Circle Applicable: Seals broken Damaged container Leaking container Other (describe)
6	Samples requiring chemical preservation at proper pH?	1			Sample ID's and Containers Affected: If Preservation added, Lot#:
4					If Yes, are Encores or Soil Kits present for solids? Yes No NA (If yes, take to VOA Freezer)
7	Do any samples require Volatile			,	Do liquid VOA vials contain acid preservation? Yes No NA (If unknown, select No)
	Analysis?		24. 	/	Are liquid VOA vials free of headspace? Yes No NA Sample ID's and containers affected:
8	Samples received within holding time?	/			ID's and tests affected:
	Sample ID's on COC match ID's on bottles?	/			ID's and containers affected:
	Date & time on COC match date & time on bottles?	/			Circle Applicable: No dates on containers No times on containers COC missing info Other (describe)
	Number of containers received match number indicated on COC?	1	有	Ĭ	Circle Applicable: No container count on COC Other (describe)
12	Are sample containers identifiable as GEL provided by use of GEL labels?	1			
13	COC form is properly signed in relinquished/received sections?			_	Circle Applicable: Not relinquished Other (describe)

Page 29 of 32 SDG: 613963

PNI (or PMA) review: Initials July Date 3/13/23 Page 1 of 1

Jordan Melton

From: Linda Williams linda.williams@santeecooper.com>

Sent: Tuesday, March 14, 2023 8:08 AM

To: Jordan Melton

Cc: Jeanette Gilmetti; Courtney Ames Watkins; Sherri Brown **Subject:** RE: Sample ID verification for "AF56429: WAP-28" 613963

[EXTERNAL EMAIL] DO NOT CLICK links or attachments unless you recognize the sender and know the content is safe.

Hello Jordan,

The sample should be WAP-28 id AF56429.

Thank you,

Linda Williams

Manager Analytical Services 843-761-8000 x5184

From: Jeanette Gilmetti < jeanette.gilmetti@santeecooper.com>

Sent: Tuesday, March 14, 2023 7:21 AM

To: Linda Williams < linda.williams@santeecooper.com>; Courtney Ames Watkins

<COURTNEY.AMESWATKINS@santeecooper.com>

Subject: FW: Sample ID verification for "AF56429: WAP-28" 613963

Please see note below and let me know if this has been resolved or if I can assist.

Jeanette Gilmetti

Santee cooper Environmental Resources (843) 761-8000 ext. 4564

jeanette.gilmetti@santeecooper.com

From: Jordan Melton < Jordan. Melton@gel.com >

Sent: Monday, March 13, 2023 12:12 PM

To: Sherri Brown <sherri.brown@santeecooper.com>

Cc: Jeanette Gilmetti < jeanette.gilmetti@santeecooper.com >

Subject: [EXTERNAL SENDER] Sample ID verification for "AF56429: WAP-28" 613963

Good afternoon,

GEL received ground water samples for Rad 226 and Rad 228 analysis. Sample AF56429 was received with the ID "WAP-8" on the container. The chain of custody lists the sample ID as "WAP-28". Please confirm which sample ID should be used.

Thank you,

Jordan Melton

Project Manager Assistant

2040 Savage Road, Charleston, SC 29407 | P.O. Box 30712, Charleston, SC 29417

Office Main: 843.556.8171 | Office Fax: 843.769.7383 E-Mail: <u>Jordan.Melton@gel.com</u> | Website: <u>www.gel.com</u>

Follow us on LinkedIn

CONFIDENTIALITY NOTICE: This e-mail and any files transmitted with it are the property of The GEL Group, Inc. and its affiliates. All rights, including without limitation copyright, are reserved. The proprietary information contained in this e-mail message, and any files transmitted with it, is intended for the use of the recipient(s) named above. If the reader of this e-mail is not the intended recipient, you are hereby notified that you have received this e-mail in error and that any review, distribution or copying of this e-mail or any files transmitted with it is strictly prohibited. If you have received this e-mail in error, please notify the sender immediately and delete the original message and any files transmitted. The unauthorized use of this e-mail or any files transmitted with it is prohibited and disclaimed by The GEL Group, Inc. and its affiliates.

WARNING!

This e-mail message originated outside of Santee Cooper.

Do not click on any links or open any attachments unless you are confident it is from a trusted source.

If you have questions, please call the Technology Service Desk at Ext. 7777.

List of current GEL Certifications as of 11 April 2023

State	Certification
Alabama	42200
Alaska	17-018
Alaska Drinking Water	SC00012
Arkansas	88-0651
CLIA	42D0904046
California	2940
Colorado	SC00012
Connecticut	PH-0169
DoD ELAP/ ISO17025 A2LA	2567.01
Florida NELAP	E87156
Foreign Soils Permit	P330-15-00283, P330-15-00253
Georgia	SC00012
Georgia SDWA	967
Hawaii	SC00012
Idaho	SC00012
Illinois NELAP	200029
Indiana	C-SC-01
Kansas NELAP	E-10332
Kentucky SDWA	90129
Kentucky Wastewater	90129
Louisiana Drinking Water	LA024
Louisiana NELAP	03046 (AI33904)
Maine	2019020
Maryland	270
Massachusetts	M-SC012
Massachusetts PFAS Approv	Letter
Michigan	9976
Mississippi	SC00012
Nebraska	NE-OS-26-13
Nevada	SC000122023-4
New Hampshire NELAP	2054
New Jersey NELAP	SC002
New Mexico	SC002 SC00012
New York NELAP	11501
North Carolina	233
North Carolina SDWA	45709
North Dakota	R-158
Oklahoma	2022-160
Pennsylvania NELAP	68-00485
Puerto Rico	SC00012
S. Carolina Radiochem	10120002
Sanitation Districts of L	9255651
South Carolina Chemistry	10120001
Tennessee	TN 02934
Texas NELAP	T104704235-22-20
Utah NELAP	SC000122022-37
Vermont	VT87156
Vermont Virginia NELAP	460202
	C780
Washington	C/80

ANALYTICAL REPORT

PREPARED FOR

Attn: Linda Williams
South Carolina Public Service Authority
Santee Cooper
PO BOX 2946101
Moncks Corner, South Carolina 29461-2901

JOB DESCRIPTION

Generated 3/28/2023 6:24:21 PM

125915/JM02.09.G01.1/36500

JOB NUMBER

680-232195-1

Eurofins Savannah 5102 LaRoche Avenue Savannah GA 31404

Eurofins Savannah

Job Notes

The test results in this report meet NELAP requirements for parameters for which accreditation is required or available. Any exceptions to the NELAP requirements are noted. Results pertain only to samples listed in this report. This report may not be reproduced, except in full, without the written approval of the laboratory. Questions should be directed to the person who signed this report.

The test results in this report relate only to the samples as received by the laboratory and will meet all requirements of the methodology, with any exceptions noted. This report shall not be reproduced except in full, without the express written approval of the laboratory. All questions should be directed to the Eurofins Environment Testing Southeast, LLC Project Manager.

Authorization

Generated 3/28/2023 6:24:21 PM

Authorized for release by Jerry Lanier, Project Manager I <u>Jerry.Lanier@et.eurofinsus.com</u> (912)250-0281

3

4

5

7

8

10

11

12

Table of Contents

Cover Page	1
Table of Contents	3
Case Narrative	4
Sample Summary	5
Method Summary	6
Definitions	7
Detection Summary	8
Client Sample Results	18
QC Sample Results	62
QC Association	69
Chronicle	77
Chain of Custody	89
Receipt Checklists	100
Certification Summary	102

6

8

9

11

12

Case Narrative

Client: South Carolina Public Service Authority Project/Site: 125915/JM02.09.G01.1/36500

Job ID: 680-232195-1

Job ID: 680-232195-1

Laboratory: Eurofins Savannah

Narrative

Job Narrative 680-232195-1

Receipt

The samples were received on 3/17/2023 10:30 AM. Unless otherwise noted below, the samples arrived in good condition, and, where required, properly preserved and on ice. The temperature of the cooler at receipt time was 12.3°C

Metals

No additional analytical or quality issues were noted, other than those described above or in the Definitions/ Glossary page.

4

5

6

Ö

1 C

11

45

Sample Summary

Client: South Carolina Public Service Authority Project/Site: 125915/JM02.09.G01.1/36500

Job ID: 680-232195-1

Water Water	03/01/23 14:41	03/17/23 10:30
Water		
	03/01/23 13:37	03/17/23 10:30
Water	03/01/23 10:22	03/17/23 10:30
Water	03/01/23 11:45	03/17/23 10:30
Water	03/02/23 12:46	03/17/23 10:30
Water	03/02/23 09:52	03/17/23 10:30
Water	03/02/23 10:56	03/17/23 10:30
Water	03/07/23 14:51	03/17/23 10:30
Water	03/07/23 12:49	03/17/23 10:30
Water	03/07/23 10:22	03/17/23 10:30
Water	03/07/23 10:27	03/17/23 10:30
Water	03/08/23 13:38	03/17/23 10:30
Water	03/08/23 15:13	03/17/23 10:30
Water	03/08/23 10:09	03/17/23 10:30
Water	03/08/23 10:14	03/17/23 10:30
Water	03/08/23 12:12	03/17/23 10:30
Water	02/14/23 12:33	03/17/23 10:30
Water	02/14/23 13:51	03/17/23 10:30
Water	02/14/23 15:22	03/17/23 10:30
Water	02/15/23 11:36	03/17/23 10:30
Water	02/15/23 13:21	03/17/23 10:30
Water	02/16/23 10:53	03/17/23 10:30
Water	02/16/23 12:55	03/17/23 10:30
Water	02/16/23 14:07	03/17/23 10:30
Water	02/16/23 14:12	03/17/23 10:30
		03/17/23 10:30
	02/27/23 09:57	03/17/23 10:30
	02/27/23 10:02	03/17/23 10:30
		03/17/23 10:30
Water	02/28/23 12:58	03/17/23 10:30
Water	02/28/23 11:44	03/17/23 10:30
Water	02/28/23 10:19	03/17/23 10:30
	02/28/23 10:24	03/17/23 10:30
	02/28/23 14:31	03/17/23 10:30
		03/17/23 10:30
		03/17/23 10:30
		03/17/23 10:30
		03/17/23 10:30
		03/17/23 10:30
		03/17/23 10:30
		03/17/23 10:30
		03/17/23 10:30
		03/17/23 10:30
		03/17/23 10:30
	Water	Water 03/02/23 12:46 Water 03/02/23 09:52 Water 03/02/23 10:56 Water 03/07/23 14:51 Water 03/07/23 12:49 Water 03/07/23 10:22 Water 03/07/23 10:22 Water 03/08/23 13:38 Water 03/08/23 15:13 Water 03/08/23 15:13 Water 03/08/23 10:14 Water 03/08/23 10:14 Water 03/08/23 12:12 Water 03/08/23 12:12 Water 02/14/23 12:33 Water 02/14/23 13:51 Water 02/14/23 13:51 Water 02/14/23 13:51 Water 02/15/23 11:36 Water 02/15/23 11:36 Water 02/16/23 10:53 Water 02/16/23 12:55 Water 02/16/23 14:07 Water 02/27/23 10:02 Water 02/27/23 10:02 Water 02/28/23 11:44 Water 02/28/23 11:45 Water 02/28/23 11:41 Water 03/06/23 12:14 Water 03/06/23 12:14 Water 03/06/23 12:14 Water 03/06/23 11:08 Water 03/06/23 11:08 Water 03/06/23 10:10 Water 03/09/23 10:29 Water 03/09/23 10:29 Water 03/09/23 10:29

4

9

10

11

13

Method Summary

Client: South Carolina Public Service Authority Project/Site: 125915/JM02.09.G01.1/36500

Job ID: 680-232195-1

Method	Method Description	Protocol	Laboratory
6010D	Metals (ICP)	SW846	EET SAV
6010D	Metals (ICP)	SW846	EET SL
6020B	Metals (ICP/MS)	SW846	EET SAV
3005A	Preparation, Total Recoverable or Dissolved Metals	SW846	EET SAV
3010A	Preparation, Total Metals	SW846	EET SL

Protocol References:

SW846 = "Test Methods For Evaluating Solid Waste, Physical/Chemical Methods", Third Edition, November 1986 And Its Updates.

Laboratory References:

EET SAV = Eurofins Savannah, 5102 LaRoche Avenue, Savannah, GA 31404, TEL (912)354-7858 EET SL = Eurofins St. Louis, 13715 Rider Trail North, Earth City, MO 63045, TEL (314)298-8566

Δ

5

6

8

9

11

13

Definitions/Glossary

Client: South Carolina Public Service Authority

Project/Site: 125915/JM02.09.G01.1/36500

Job ID: 680-232195-1

Qualifiers

PRES

QC

RL RPD

TEF TEQ

TNTC

RER

Presumptive

Quality Control

Relative Error Ratio (Radiochemistry)

Toxicity Equivalent Factor (Dioxin)

Too Numerous To Count

Toxicity Equivalent Quotient (Dioxin)

Reporting Limit or Requested Limit (Radiochemistry)

Relative Percent Difference, a measure of the relative difference between two points

Metals	
Qualifier	Qualifier Description
4	MS, MSD: The analyte present in the original sample is greater than 4 times the matrix spike concentration; therefore, control limits are not
	applicable.
U	Indicates the analyte was analyzed for but not detected.

Glossary	
Abbreviation	These commonly used abbreviations may or may not be present in this report.
1	Listed under the "D" column to designate that the result is reported on a dry weight basis
%R	Percent Recovery
CFL	Contains Free Liquid
CFU	Colony Forming Unit
CNF	Contains No Free Liquid
DER	Duplicate Error Ratio (normalized absolute difference)
Dil Fac	Dilution Factor
DL	Detection Limit (DoD/DOE)
DL, RA, RE, IN	Indicates a Dilution, Re-analysis, Re-extraction, or additional Initial metals/anion analysis of the sample
DLC	Decision Level Concentration (Radiochemistry)
EDL	Estimated Detection Limit (Dioxin)
.OD	Limit of Detection (DoD/DOE)
.OQ	Limit of Quantitation (DoD/DOE)
ИCL	EPA recommended "Maximum Contaminant Level"
MDA	Minimum Detectable Activity (Radiochemistry)
MDC	Minimum Detectable Concentration (Radiochemistry)
ИDL	Method Detection Limit
ИL	Minimum Level (Dioxin)
MPN .	Most Probable Number
ИQL	Method Quantitation Limit
IC	Not Calculated
ND	Not Detected at the reporting limit (or MDL or EDL if shown)
NEG	Negative / Absent
POS	Positive / Present
PQL	Practical Quantitation Limit

-3

4

,

8

9

10

12

13

Client Sample ID: AF56421

Job ID: 680-232195-1

Lab Sample ID: 680-232195-1

Analyte	Result Qualifier	RL	MDL Unit	Dil Fac D	Method	Prep Type
Calcium	99400	500	ug/L		6010D	Dissolved
Iron	3540	100	ug/L	1	6010D	Dissolved
Magnesium	14600	500	ug/L	1	6010D	Dissolved
Potassium	9160	1000	ug/L	1	6010D	Dissolved
Sodium	19200	2000	ug/L	1	6010D	Dissolved
Aluminum	127	100	ug/L	1	6020B	Dissolved
Barium 	33.3	5.00	ug/L	1	6020B	Dissolved

Client Sample ID: AF56424 Lab Sample ID: 680-232195-2

Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type
Calcium	175000		500		ug/L	1	_	6010D	Dissolved
Iron	269		100		ug/L	1		6010D	Dissolved
Magnesium	13100		500		ug/L	1		6010D	Dissolved
Potassium	5550		1000		ug/L	1		6010D	Dissolved
Sodium	34700		2000		ug/L	1		6010D	Dissolved
Barium	9.67		5.00		ug/L	1		6020B	Dissolved

Client Sample ID: AF56439 Lab Sample ID: 680-232195-3

 Analyte	Result Qualifier	RL	MDL Unit		Dil Fac	D	Method	Prep Type
Calcium	126000	500	ug/L		1	_	6010D	Dissolved
Iron	7900	100	ug/L	-	1		6010D	Dissolved
Magnesium	13000	500	ug/L		1		6010D	Dissolved
Potassium	6990	1000	ug/L		1		6010D	Dissolved
Sodium	35800	2000	ug/L		1		6010D	Dissolved
Aluminum	850	100	ug/L		1		6020B	Dissolved
Arsenic	40.1	3.00	ug/L		1		6020B	Dissolved
Barium	90.0	5.00	ug/L		1		6020B	Dissolved
Cobalt	6.59	0.500	ug/L	<u>-</u>	1		6020B	Dissolved
Zinc	43.1	20.0	ug/L		1		6020B	Dissolved

Client Sample ID: AF56441 Lab Sample ID: 680-232195-4

Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type
Lithium	140		50.0		ug/L	1	_	6010D	Dissolved
Calcium	174000		500		ug/L	1		6010D	Dissolved
Iron	4580		100		ug/L	1		6010D	Dissolved
Magnesium	9730		500		ug/L	1		6010D	Dissolved
Potassium	5050		1000		ug/L	1		6010D	Dissolved
Sodium	22900		2000		ug/L	1		6010D	Dissolved
Arsenic	177		3.00		ug/L	1		6020B	Dissolved
Barium	76.2		5.00		ug/L	1		6020B	Dissolved

Client Sample ID: AF56414 Lab Sample ID: 680-232195-5

Analyte	Result Qualifier	RL	MDL Unit	Dil Fac	D Method	Prep Type
Lithium	63.0	50.0	ug/L	1	6010D	Dissolved
Calcium	443000	500	ug/L	1	6010D	Dissolved
Iron	21800	100	ug/L	1	6010D	Dissolved
Magnesium	43600	500	ug/L	1	6010D	Dissolved
Potassium	6180	1000	ug/L	1	6010D	Dissolved
Sodium	94600	2000	ug/L	1	6010D	Dissolved

This Detection Summary does not include radiochemical test results.

Eurofins Savannah

3/28/2023

Page 8 of 102

2

3

_

8

10

11

13

Detection Summary

Client: South Carolina Public Service Authority Project/Site: 125915/JM02.09.G01.1/36500

Job ID: 680-232195-1

Lab Sample ID: 680-232195-5

Lab Sample ID: 680-232195-6

Lab Sample ID: 680-232195-7

Lab Sample ID: 680-232195-8

Lab Sample ID: 680-232195-9

Client S	Sample	ID.	AF56414	(Continued)
Ollellt 4	Cample	ID.	AI 307 IT	(Continued)

Analyte	Result Qualifier	RL	MDL Unit	Dil Fac D	Method	Prep Type
Barium	367	5.00	ug/L	1	6020B	Dissolved

Client Sample ID: AF56423

Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type
Lithium	95.7		50.0		ug/L	1	_	6010D	Dissolved
Calcium	382000		500		ug/L	1		6010D	Dissolved
Iron	14000		100		ug/L	1		6010D	Dissolved
Magnesium	46400		500		ug/L	1		6010D	Dissolved
Potassium	11800		1000		ug/L	1		6010D	Dissolved
Sodium	85500		2000		ug/L	1		6010D	Dissolved
Arsenic	307		3.00		ug/L	1		6020B	Dissolved
Barium	214		5.00		ug/L	1		6020B	Dissolved

Client Sample ID: AF56428

Analyte	Result Qu	ualifier RL	MDL	Unit	Dil Fac	D	Method	Prep Type
Calcium	95200	500		ug/L	1		6010D	Dissolved
Iron	76100	100		ug/L	1		6010D	Dissolved
Magnesium	21000	500		ug/L	1		6010D	Dissolved
Potassium	9830	1000		ug/L	1		6010D	Dissolved
Sodium	35400	2000		ug/L	1		6010D	Dissolved
Arsenic	75.4	3.00		ug/L	1		6020B	Dissolved
Barium	108	5.00		ug/L	1		6020B	Dissolved
Cobalt	0.610	0.500		ug/L	1		6020B	Dissolved

Client Sample ID: AF56419

Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type
Lithium	223		50.0		ug/L	1	_	6010D	Dissolved
Calcium	535000		500		ug/L	1		6010D	Dissolved
Iron	1430		100		ug/L	1		6010D	Dissolved
Magnesium	78800		500		ug/L	1		6010D	Dissolved
Molybdenum	55.9		10.0		ug/L	1		6010D	Dissolved
Potassium	19700		1000		ug/L	1		6010D	Dissolved
Sodium	41700		2000		ug/L	1		6010D	Dissolved
Arsenic	103		3.00		ug/L	1		6020B	Dissolved
Barium	71.5		5.00		ug/L	1		6020B	Dissolved
Cobalt	1.26		0.500		ug/L	1		6020B	Dissolved

Client Sample ID: AF56425

•								•	
- Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type
Calcium	247000		500		ug/L	1	_	6010D	Dissolved
Iron	1290		100		ug/L	1		6010D	Dissolved
Magnesium	35800		500		ug/L	1		6010D	Dissolved
Molybdenum	19.3		10.0		ug/L	1		6010D	Dissolved
Potassium	13000		1000		ug/L	1		6010D	Dissolved
Sodium	68500		2000		ug/L	1		6010D	Dissolved
Barium	42.8		5.00		ug/L	1		6020B	Dissolved

This Detection Summary does not include radiochemical test results.

Eurofins Savannah

Client Sample ID: AF56426

Job ID: 680-232195-1

Lab Sample ID: 680-232195-10

Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type
Calcium	192000		500		ug/L	1	_	6010D	Dissolved
Iron	3230		100		ug/L	1		6010D	Dissolved
Magnesium	18700		500		ug/L	1		6010D	Dissolved
Potassium	11200		1000		ug/L	1		6010D	Dissolved
Sodium	127000		2000		ug/L	1		6010D	Dissolved
Aluminum	149		100		ug/L	1		6020B	Dissolved
Barium	35.1		5.00		ug/L	1		6020B	Dissolved

Client Sample ID: AF56427 Lab Sample ID: 680-232195-11

Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type
Calcium	382000		500		ug/L	1	_	6010D	Dissolved
Iron	41600		100		ug/L	1		6010D	Dissolved
Magnesium	27600		500		ug/L	1		6010D	Dissolved
Potassium	2620		1000		ug/L	1		6010D	Dissolved
Sodium	121000		2000		ug/L	1		6010D	Dissolved
Aluminum	156		100		ug/L	1		6020B	Dissolved
Barium	35.8		5.00		ug/L	1		6020B	Dissolved

Client Sample ID: AF56408 Lab Sample ID: 680-232195-12

Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type
Calcium	21000		500		ug/L	1	_	6010D	Dissolved
Iron	256		100		ug/L	1		6010D	Dissolved
Magnesium	1650		500		ug/L	1		6010D	Dissolved
Sodium	4330		2000		ug/L	1		6010D	Dissolved
Barium	251		5.00		ug/L	1		6020B	Dissolved
Chromium	40.5		5.00		ug/L	1		6020B	Dissolved
Cobalt	0.575		0.500		ug/L	1		6020B	Dissolved
Zinc	53.9		20.0		ug/L	1		6020B	Dissolved

Client Sample ID: AF56415 Lab Sample ID: 680-232195-13

— Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type
Calcium	19600		500		ug/L	1	_	6010D	Dissolved
Iron	213		100		ug/L	1		6010D	Dissolved
Magnesium	1630		500		ug/L	1		6010D	Dissolved
Sodium	4310		2000		ug/L	1		6010D	Dissolved
Barium	76.3		5.00		ug/L	1		6020B	Dissolved
Zinc	30.6		20.0		ug/L	1		6020B	Dissolved

Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type
Calcium	66800		500		ug/L	1	_	6010D	Dissolved
Iron	891		100		ug/L	1		6010D	Dissolved
Magnesium	2920		500		ug/L	1		6010D	Dissolved
Potassium	2190		1000		ug/L	1		6010D	Dissolved
Sodium	11100		2000		ug/L	1		6010D	Dissolved
Arsenic	74.8		3.00		ug/L	1		6020B	Dissolved
Barium	42.0		5.00		ug/L	1		6020B	Dissolved
Zinc	182		20.0		ug/L	1		6020B	Dissolved

This Detection Summary does not include radiochemical test results.

Eurofins Savannah

3/28/2023

-

4

5

7

10

12

13

Job ID: 680-232195-1

Lab Sample ID: 680-232195-15

Analyte	Result Qualifier	RL	MDL Unit	Dil Fac	D	Method	Prep Type
Calcium	270000	500	ug/L	1	_	6010D	Dissolved
Iron	1940	100	ug/L	1		6010D	Dissolved
Magnesium	38900	500	ug/L	1	(6010D	Dissolved
Molybdenum	21.2	10.0	ug/L	1		6010D	Dissolved
Potassium	14100	1000	ug/L	1	(6010D	Dissolved
Sodium	72300	2000	ug/L	1	(6010D	Dissolved
Arsenic	84.0	3.00	ug/L	1		6020B	Dissolved
Barium	50.0	5.00	ug/L	1		6020B	Dissolved

Client Sample ID: AF56429

Client Sample ID: AF56417

Lab	Sample	ID:	680-232195-16	
-----	--------	-----	---------------	--

Analyte	Result Qual	ifier RL	MDL	Unit	Dil Fac	D	Method	Prep Type
Calcium	74200	500		ug/L	1	_	6010D	Dissolved
Iron	92900	100		ug/L	1		6010D	Dissolved
Magnesium	26000	500		ug/L	1		6010D	Dissolved
Sodium	82900	2000		ug/L	1		6010D	Dissolved
Aluminum	2310	100		ug/L	1		6020B	Dissolved
Barium	245	5.00		ug/L	1		6020B	Dissolved
Beryllium	0.965	0.500		ug/L	1		6020B	Dissolved
Cobalt	19.1	0.500		ug/L	1		6020B	Dissolved
Lead	2.54	2.50		ug/L	1		6020B	Dissolved
_ Nickel	5.89	5.00		ug/L	1		6020B	Dissolved

Client Sample ID: AF56394

Lab Sample ID: 680-232195-17

Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type
Calcium	11200		500		ug/L	1	_	6010D	Dissolved
Iron	3120		100		ug/L	1		6010D	Dissolved
Magnesium	1020		500		ug/L	1		6010D	Dissolved
Sodium	5650		2000		ug/L	1		6010D	Dissolved
Aluminum	1310		100		ug/L	1		6020B	Dissolved
Arsenic	5.22		3.00		ug/L	1		6020B	Dissolved
Barium	76.1		5.00		ug/L	1		6020B	Dissolved
Cobalt	0.765		0.500		ug/L	1		6020B	Dissolved
Zinc	23.6		20.0		ug/L	1		6020B	Dissolved

Client Sample ID: AF56331

Lab Sample ID: 680-232195-18

– Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type
Calcium	3560		500		ug/L	1	_	6010D	Dissolved
Magnesium	898		500		ug/L	1		6010D	Dissolved
Sodium	2720		2000		ug/L	1		6010D	Dissolved
Aluminum	793		100		ug/L	1		6020B	Dissolved
Barium	30.1		5.00		ug/L	1		6020B	Dissolved
Cobalt	1.58		0.500		ug/L	1		6020B	Dissolved

Client Sample ID: AF56332

Lab Sample ID: 680-232195-19

Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type	
Calcium	87900		500		ug/L	1	_	6010D	Dissolved	
Iron	5240		100		ug/L	1		6010D	Dissolved	
Magnesium	2750		500		ug/L	1		6010D	Dissolved	
Potassium	2150		1000		ug/L	1		6010D	Dissolved	

This Detection Summary does not include radiochemical test results.

Eurofins Savannah

-

5

7

Q

10

12

14

۰

3/28/2023

Client Sample ID: AF56332 (Continued)

Job ID: 680-232195-1

Lab Sample ID: 680-232195-19

Analyte	Result Qu	ualifier RL	MDL Unit	Dil Fac	D Meth	od Prep Type
Sodium	11700	2000	ug/L	1	6010	D Dissolved
Aluminum	1300	100	ug/L	1	6020	B Dissolved
Barium	102	5.00	ug/L	1	6020	B Dissolved

Client Sample ID: AF56395 Lab Sample ID: 680-232195-20

Analyte	Result	Qualifier RL	MDL	Unit	Dil Fac D	Method	Prep Type
Calcium	355000	500		ug/L	1	6010D	Dissolved
Iron	3970	100		ug/L	1	6010D	Dissolved
Magnesium	43700	500		ug/L	1	6010D	Dissolved
Potassium	9610	1000		ug/L	1	6010D	Dissolved
Sodium	71800	2000		ug/L	1	6010D	Dissolved
Aluminum	194	100		ug/L	1	6020B	Dissolved
Arsenic	11.5	3.00		ug/L	1	6020B	Dissolved
Barium	151	5.00		ug/L	1	6020B	Dissolved
Beryllium	1.46	0.500		ug/L	1	6020B	Dissolved
Cobalt	18.5	0.500		ug/L	1	6020B	Dissolved
Nickel	10.1	5.00		ug/L	1	6020B	Dissolved

Client Sample ID: AF56396 Lab Sample ID: 680-232195-21

Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type
Calcium	226000		500		ug/L	1	_	6010D	Dissolved
Iron	23400		100		ug/L	1		6010D	Dissolved
Magnesium	14600		500		ug/L	1		6010D	Dissolved
Potassium	2050		1000		ug/L	1		6010D	Dissolved
Sodium	42400		2000		ug/L	1		6010D	Dissolved
Barium	149		5.00		ug/L	1		6020B	Dissolved
Cobalt	0.565		0.500		ug/L	1		6020B	Dissolved

Client Sample ID: AF56397 Lab Sample ID: 680-232195-22

Analyte	Result	Qualifier RL	MDL	Unit	Dil Fac	D	Method	Prep Type
Calcium	54900	500		ug/L	1	_	6010D	Dissolved
Iron	102	100		ug/L	1		6010D	Dissolved
Magnesium	3940	500		ug/L	1		6010D	Dissolved
Potassium	1830	1000		ug/L	1		6010D	Dissolved
Sodium	17100	2000		ug/L	1		6010D	Dissolved
Barium	34.2	5.00		ug/L	1		6020B	Dissolved
Zinc	114	20.0		ug/L	1		6020B	Dissolved

Client Sample ID: AF56400 Lab Sample ID: 680-232195-23

Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type
Calcium	264000		500		ug/L	1	_	6010D	Dissolved
Iron	783		100		ug/L	1		6010D	Dissolved
Magnesium	3930		500		ug/L	1		6010D	Dissolved
Potassium	2390		1000		ug/L	1		6010D	Dissolved
Sodium	13900		2000		ug/L	1		6010D	Dissolved
Barium	46.4		5.00		ug/L	1		6020B	Dissolved

This Detection Summary does not include radiochemical test results.

Eurofins Savannah

Client Sample ID: AF56442

Job ID: 680-232195-1

Lab Sample ID: 680-232195-24

Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type
Calcium	162000		500		ug/L	1	_	6010D	Dissolved
Iron	286		100		ug/L	1		6010D	Dissolved
Magnesium	7610		500		ug/L	1		6010D	Dissolved
Potassium	4220		1000		ug/L	1		6010D	Dissolved
Sodium	21500		2000		ug/L	1		6010D	Dissolved
Arsenic	3.62		3.00		ug/L	1		6020B	Dissolved
Barium —	34.7		5.00		ug/L	1		6020B	Dissolved

Client Sample ID: AF56443

Lah	Sample	י ווי	680-232195-25
Lab	Sample	, וטו	000-232133-23

Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type
Calcium	166000		500		ug/L	1	_	6010D	Dissolved
Iron	359		100		ug/L	1		6010D	Dissolved
Magnesium	7850		500		ug/L	1		6010D	Dissolved
Potassium	4220		1000		ug/L	1		6010D	Dissolved
Sodium	21500		2000		ug/L	1		6010D	Dissolved
Aluminum	239		100		ug/L	1		6020B	Dissolved
Arsenic	4.54		3.00		ug/L	1		6020B	Dissolved
Barium	39.2		5.00		ug/L	1		6020B	Dissolved
Cobalt	0.715		0.500		ug/L	1		6020B	Dissolved

Client Sample ID: AF56402

Lab Sample ID: 680-232195-26

Analyte	Result	Qualifier RL	MDL	Unit	Dil Fac	D	Method	Prep Type
Calcium	199000	500		ug/L	1	_	6010D	Dissolved
Iron	22900	100		ug/L	1		6010D	Dissolved
Magnesium	23600	500		ug/L	1		6010D	Dissolved
Potassium	11200	1000		ug/L	1		6010D	Dissolved
Sodium	34600	2000		ug/L	1		6010D	Dissolved
Aluminum	327	100		ug/L	1		6020B	Dissolved
Arsenic	31.0	3.00		ug/L	1		6020B	Dissolved
Barium	77.9	5.00		ug/L	1		6020B	Dissolved

Client Sample ID: AF56403

Lab Sample ID: 680-232195-27

Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type
Lithium	70.2		50.0		ug/L	1	_	6010D	Dissolved
Calcium	645000		500		ug/L	1		6010D	Dissolved
Iron	22000		100		ug/L	1		6010D	Dissolved
Magnesium	90500		500		ug/L	1		6010D	Dissolved
Potassium	28700		1000		ug/L	1		6010D	Dissolved
Sodium	156000		2000		ug/L	1		6010D	Dissolved
Barium	318		5.00		ug/L	1		6020B	Dissolved

Client Sample ID: AF56404

Lab Sample ID: 680-232195-28

Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type
Lithium	64.9		50.0		ug/L	1	_	6010D	Dissolved
Calcium	653000		500		ug/L	1		6010D	Dissolved
Iron	22200		100		ug/L	1		6010D	Dissolved
Magnesium	91700		500		ug/L	1		6010D	Dissolved
Potassium	28600		1000		ug/L	1		6010D	Dissolved
Sodium	158000		2000		ug/L	1		6010D	Dissolved

This Detection Summary does not include radiochemical test results.

Eurofins Savannah

3/28/2023

Job ID: 680-232195-1

Client Sample ID: AF56404 (Continued) Lab Sample ID: 680-232195-28 Result Qualifier **MDL** Unit Dil Fac D Method Analyte RL **Prep Type** 313 5.00 6020B Barium ug/L Dissolved Client Sample ID: AF56434 Lab Sample ID: 680-232195-29 Dil Fac D Analyte Result Qualifier RLMDL Method Unit Prep Type Calcium 60500 500 ug/L 6010D Dissolved 2930 6010D 100 ug/L Dissolved Iron 1 Magnesium 1910 500 ug/L 6010D Dissolved ug/L Sodium 4740 2000 6010D Dissolved Aluminum 929 100 ug/L 6020B Dissolved Barium 38.9 5.00 ug/L 6020B Dissolved Cobalt 6020B Dissolved 2.41 0.500 ug/L Zinc 68.5 20.0 ug/L 6020B Dissolved Client Sample ID: AF56433 Lab Sample ID: 680-232195-30 Result Qualifier RL MDL Unit Dil Fac D Method **Prep Type** Calcium 448000 500 ug/L 6010D Dissolved 16300 6010D Iron 100 ug/L 1 Dissolved 12900 500 6010D Magnesium ug/L 1 Dissolved 5750 6010D Potassium 1000 ug/L Dissolved 10800 2000 6010D Sodium ug/L Dissolved 53.8 5.00 6020B Barium ug/L Dissolved Client Sample ID: AF56435 Lab Sample ID: 680-232195-31

Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type
Calcium	21900		500		ug/L	1	_	6010D	Dissolved
Iron	880		100		ug/L	1		6010D	Dissolved
Magnesium	892		500		ug/L	1		6010D	Dissolved
Sodium	3260		2000		ug/L	1		6010D	Dissolved
Aluminum	3790		100		ug/L	1		6020B	Dissolved
Arsenic	8.02		3.00		ug/L	1		6020B	Dissolved
Barium	34.7		5.00		ug/L	1		6020B	Dissolved
Cobalt	1.29		0.500		ug/L	1		6020B	Dissolved

Client Sample ID: AF56436 Lab Sample ID: 680-232195-32

Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type
Calcium	92200		500		ug/L	1	_	6010D	Dissolved
Iron	771		100		ug/L	1		6010D	Dissolved
Magnesium	2500		500		ug/L	1		6010D	Dissolved
Potassium	1580		1000		ug/L	1		6010D	Dissolved
Sodium	5430		2000		ug/L	1		6010D	Dissolved
Barium	37.2		5.00		ug/L	1		6020B	Dissolved
Zinc	42.9		20.0		ug/L	1		6020B	Dissolved

Client Sample ID: AF56437 Lab Sample ID: 680-232195-33

Analyte	Result Qualifier	RL	MDL Unit	Dil Fac D	Method	Prep Type
Calcium	93200	500	ug/L		6010D	Dissolved
Iron	1200	100	ug/L	1	6010D	Dissolved
Magnesium	1750	500	ug/L	1	6010D	Dissolved

This Detection Summary does not include radiochemical test results.

Eurofins Savannah

Job ID: 680-232195-1

Lab Sample ID: 680-232195-33

Lab Sample ID: 680-232195-34

Lab Sample ID: 680-232195-35

Lab Sample ID: 680-232195-36

Lab Sample ID: 680-232195-37

Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type
Potassium	1260		1000		ug/L	1		6010D	Dissolved
Sodium	3590		2000		ug/L	1		6010D	Dissolved
Barium	36.8		5.00		ug/L	1		6020B	Dissolved

Client Sample ID: AF56438

Analyte	Result Qualifier	RL	MDL Unit	Dil Fac D	Method	Prep Type
Calcium	296000	500	ug/L	1	6010D	Dissolved
Iron	1040	100	ug/L	1	6010D	Dissolved
Magnesium	28800	500	ug/L	1	6010D	Dissolved
Potassium	6790	1000	ug/L	1	6010D	Dissolved
Sodium	18000	2000	ug/L	1	6010D	Dissolved
Barium	41.2	5.00	ug/L	1	6020B	Dissolved

Client Sample ID: AF56409

Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type
Lithium	118		50.0		ug/L	1	_	6010D	Dissolved
Calcium	1140000		5000		ug/L	10		6010D	Dissolved
Magnesium	30500		500		ug/L	1		6010D	Dissolved
Potassium	15500		1000		ug/L	1		6010D	Dissolved
Sodium	139000		2000		ug/L	1		6010D	Dissolved
Arsenic	15.2		3.00		ug/L	1		6020B	Dissolved
Barium	54.6		5.00		ug/L	1		6020B	Dissolved
Chromium	13.2		5.00		ug/L	1		6020B	Dissolved

Client Sample ID: AF56410

— Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type
Lithium	109		50.0		ug/L	1	_	6010D	Dissolved
Calcium	1160000		5000		ug/L	10		6010D	Dissolved
Iron	113		100		ug/L	1		6010D	Dissolved
Magnesium	30800		500		ug/L	1		6010D	Dissolved
Potassium	15700		1000		ug/L	1		6010D	Dissolved
Sodium	140000		2000		ug/L	1		6010D	Dissolved
Arsenic	13.0		3.00		ug/L	1		6020B	Dissolved
Barium	56.5		5.00		ug/L	1		6020B	Dissolved

Client Sample ID: AF56411

Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type
Lithium	92.4		50.0		ug/L	1		6010D	Dissolved
Calcium	849000		5000		ug/L	10		6010D	Dissolved
Magnesium	42600		500		ug/L	1		6010D	Dissolved
Potassium	13800		1000		ug/L	1		6010D	Dissolved
Sodium	126000		2000		ug/L	1		6010D	Dissolved
Arsenic	7.06		3.00		ug/L	1		6020B	Dissolved
Barium	108		5.00		ug/L	1		6020B	Dissolved
Zinc	35.7		20.0		ug/L	1		6020B	Dissolved

This Detection Summary does not include radiochemical test results.

Eurofins Savannah

Job ID: 680-232195-1

Lab Sample ID: 680-232195-38

Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type
Lithium	64.6		50.0		ug/L	1	_	6010D	Dissolved
Calcium	698000		500		ug/L	1		6010D	Dissolved
Iron	1420		100		ug/L	1		6010D	Dissolved
Magnesium	29900		500		ug/L	1		6010D	Dissolved
Potassium	7230		1000		ug/L	1		6010D	Dissolved
Sodium	107000		2000		ug/L	1		6010D	Dissolved
Arsenic	6.71		3.00		ug/L	1		6020B	Dissolved
Barium	158		5.00		ug/L	1		6020B	Dissolved

Client Sample ID: AF56413

Client Sample ID: AF56412

Analyte	Result (Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type
Calcium	161000		500		ug/L	1	_	6010D	Dissolved
Iron	7850		100		ug/L	1		6010D	Dissolved
Magnesium	11100		500		ug/L	1		6010D	Dissolved
Potassium	4680		1000		ug/L	1		6010D	Dissolved
Sodium	71500		2000		ug/L	1		6010D	Dissolved
Barium	85.5		5.00		ug/L	1		6020B	Dissolved
Cobalt	0.955		0.500		ug/L	1		6020B	Dissolved

Client Sample ID: AF56430

Lab Sample ID: 680-232195-40

Γ	5 "	0 110	ъ.	MDI		D.1 E	_		
Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	ט	Method	Prep Type
Calcium	448000		500		ug/L	1		6010D	Dissolved
Iron	32200		100		ug/L	1		6010D	Dissolved
Magnesium	72300		500		ug/L	1		6010D	Dissolved
Potassium	6530		1000		ug/L	1		6010D	Dissolved
Sodium	87300		2000		ug/L	1		6010D	Dissolved
Barium	48.0		5.00		ug/L	1		6020B	Dissolved
Cobalt	6.15		0.500		ug/L	1		6020B	Dissolved

Client Sample ID: AF56406

Lab Sample ID: 680-232195-41

Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type
Calcium	194000		500		ug/L	1	_	6010D	Dissolved
Iron	1380		100		ug/L	1		6010D	Dissolved
Magnesium	17000		500		ug/L	1		6010D	Dissolved
Potassium	4650		1000		ug/L	1		6010D	Dissolved
Sodium	43100		2000		ug/L	1		6010D	Dissolved
Aluminum	1740		100		ug/L	1		6020B	Dissolved
Barium	38.2		5.00		ug/L	1		6020B	Dissolved
Cobalt	1.83		0.500		ug/L	1		6020B	Dissolved
Zinc	40.6		20.0		ug/L	1		6020B	Dissolved

Client Sample ID: AF56407

Lab Sample ID: 680-232195-42

– Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type
Calcium	210000		500		ug/L	1	_	6010D	Dissolved
Iron	1430		100		ug/L	1		6010D	Dissolved
Magnesium	18500		500		ug/L	1		6010D	Dissolved
Potassium	5200		1000		ug/L	1		6010D	Dissolved
Sodium	46500		2000		ug/L	1		6010D	Dissolved
Aluminum	1590		100		ug/L	1		6020B	Dissolved

This Detection Summary does not include radiochemical test results.

Eurofins Savannah

3/28/2023

5

7

9

11

13

14

Dissolved -232195-42

Detection Summary

Client: South Carolina Public Service Authority Project/Site: 125915/JM02.09.G01.1/36500

Job ID: 680-232195-1

Client	Sami	ole II) · AF	56407	(Con	tinued)
OHOHE	Odilli		<i>-</i>	JUTU1	1001	itiiiaca,

	Client Sample ID: AF56407 (Contin	ued)		Lab Sample ID:	: 680-232195-4

Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type	
Barium	38.7		5.00		ug/L	1		6020B	Dissolved	
Cobalt	2.01		0.500		ug/L	1		6020B	Dissolved	
Zinc	28.0		20.0		ug/L	1		6020B	Dissolved	

Client Sample ID: AF56418 Lab Sample ID: 680-232195-43

Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type
Lithium	87.9		50.0		ug/L	1	_	6010D	Dissolved
Calcium	95500		500		ug/L	1		6010D	Dissolved
Iron	788		100		ug/L	1		6010D	Dissolved
Magnesium	7530		500		ug/L	1		6010D	Dissolved
Molybdenum	92.0		10.0		ug/L	1		6010D	Dissolved
Potassium	7660		1000		ug/L	1		6010D	Dissolved
Sodium	25300		2000		ug/L	1		6010D	Dissolved
Aluminum	130		100		ug/L	1		6020B	Dissolved
Arsenic	229		3.00		ug/L	1		6020B	Dissolved
Barium	133		5.00		ug/L	1		6020B	Dissolved
Cobalt	2.16	(0.500		ug/L	1		6020B	Dissolved

Client Sample ID: AF56422 Lab Sample ID: 680-232195-44

Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type
Calcium	248000		500		ug/L	1	_	6010D	Dissolved
Iron	6050		100		ug/L	1		6010D	Dissolved
Magnesium	8900		500		ug/L	1		6010D	Dissolved
Potassium	3850		1000		ug/L	1		6010D	Dissolved
Sodium	73300		2000		ug/L	1		6010D	Dissolved
Arsenic	3.54		3.00		ug/L	1		6020B	Dissolved
Barium	104		5.00		ug/L	1		6020B	Dissolved
Zinc	48.0		20.0		ug/L	1		6020B	Dissolved

Client: South Carolina Public Service Authority Project/Site: 125915/JM02.09.G01.1/36500

Lab Sample ID: 680-232195-1

Matrix: Water

Job ID: 680-232195-1

Client Sample ID: AF56421

Date Collected: 03/01/23 14:41 Date Received: 03/17/23 10:30

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Lithium	50.0	U	50.0		ug/L		03/23/23 14:17	03/24/23 20:16	1
Calcium	99400		500		ug/L		03/24/23 14:44	03/24/23 19:56	1
Iron	3540		100		ug/L		03/24/23 14:44	03/24/23 19:56	1
Magnesium	14600		500		ug/L		03/24/23 14:44	03/24/23 19:56	1
Molybdenum	10.0	U	10.0		ug/L		03/24/23 14:44	03/24/23 19:56	1
Potassium	9160		1000		ug/L		03/24/23 14:44	03/24/23 19:56	1
Selenium	20.0	U	20.0		ug/L		03/24/23 14:44	03/24/23 19:56	1
Sodium	19200		2000		ug/L		03/24/23 14:44	03/24/23 19:56	1

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Aluminum	127		100		ug/L		03/20/23 07:40	03/21/23 08:04	1
Antimony	5.00	U	5.00		ug/L		03/20/23 07:40	03/21/23 08:04	1
Arsenic	3.00	U	3.00		ug/L		03/20/23 07:40	03/21/23 08:04	1
Barium	33.3		5.00		ug/L		03/20/23 07:40	03/21/23 08:04	1
Beryllium	0.500	U	0.500		ug/L		03/20/23 07:40	03/21/23 08:04	1
Cadmium	0.500	U	0.500		ug/L		03/20/23 07:40	03/21/23 08:04	1
Chromium	5.00	U	5.00		ug/L		03/20/23 07:40	03/21/23 08:04	1
Cobalt	0.500	U	0.500		ug/L		03/20/23 07:40	03/21/23 08:04	1
Lead	2.50	U	2.50		ug/L		03/20/23 07:40	03/21/23 08:04	1
Nickel	5.00	U	5.00		ug/L		03/20/23 07:40	03/21/23 08:04	1
Silver	1.00	U	1.00		ug/L		03/20/23 07:40	03/21/23 08:04	1
Thallium	1.00	U	1.00		ug/L		03/20/23 07:40	03/21/23 08:04	1
Zinc	20.0	U	20.0		ug/L		03/20/23 07:40	03/21/23 08:04	1

Client: South Carolina Public Service Authority Project/Site: 125915/JM02.09.G01.1/36500

Client Sample ID: AF56424 Lab Sample ID: 680-232195-2

Matrix: Water

Job ID: 680-232195-1

Date Collected: 03/01/23 13:37 Date Received: 03/17/23 10:30

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Lithium	50.0	U	50.0		ug/L		03/23/23 14:17	03/24/23 20:20	1
Calcium	175000		500		ug/L		03/24/23 14:44	03/24/23 20:00	1
Iron	269		100		ug/L		03/24/23 14:44	03/24/23 20:00	1
Magnesium	13100		500		ug/L		03/24/23 14:44	03/24/23 20:00	1
Molybdenum	10.0	U	10.0		ug/L		03/24/23 14:44	03/24/23 20:00	1
Potassium	5550		1000		ug/L		03/24/23 14:44	03/24/23 20:00	1
Selenium	20.0	U	20.0		ug/L		03/24/23 14:44	03/24/23 20:00	1
Sodium	34700		2000		ug/L		03/24/23 14:44	03/24/23 20:00	1

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Aluminum	100	U	100		ug/L		03/20/23 07:40	03/21/23 08:08	1
Antimony	5.00	U	5.00		ug/L		03/20/23 07:40	03/21/23 08:08	1
Arsenic	3.00	U	3.00		ug/L		03/20/23 07:40	03/21/23 08:08	1
Barium	9.67		5.00		ug/L		03/20/23 07:40	03/21/23 08:08	1
Beryllium	0.500	U	0.500		ug/L		03/20/23 07:40	03/21/23 08:08	1
Cadmium	0.500	U	0.500		ug/L		03/20/23 07:40	03/21/23 08:08	1
Chromium	5.00	U	5.00		ug/L		03/20/23 07:40	03/21/23 08:08	1
Cobalt	0.500	U	0.500		ug/L		03/20/23 07:40	03/21/23 08:08	1
Lead	2.50	U	2.50		ug/L		03/20/23 07:40	03/21/23 08:08	1
Nickel	5.00	U	5.00		ug/L		03/20/23 07:40	03/21/23 08:08	1
Silver	1.00	U	1.00		ug/L		03/20/23 07:40	03/21/23 08:08	1
Thallium	1.00	U	1.00		ug/L		03/20/23 07:40	03/21/23 08:08	1
Zinc	20.0	U	20.0		ug/L		03/20/23 07:40	03/21/23 08:08	1

8

10

12

13

Client: South Carolina Public Service Authority Project/Site: 125915/JM02.09.G01.1/36500

Lab Sample ID: 680-232195-3

Matrix: Water

Job ID: 680-232195-1

Client Sample ID: AF56439 Date Collected: 03/01/23 10:22

Date Received: 03/17/23 10:30

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Lithium	50.0	U	50.0		ug/L		03/23/23 14:17	03/24/23 20:25	1
Calcium	126000		500		ug/L		03/24/23 14:44	03/24/23 20:03	1
Iron	7900		100		ug/L		03/24/23 14:44	03/24/23 20:03	1
Magnesium	13000		500		ug/L		03/24/23 14:44	03/24/23 20:03	1
Molybdenum	10.0	U	10.0		ug/L		03/24/23 14:44	03/24/23 20:03	1
Potassium	6990		1000		ug/L		03/24/23 14:44	03/24/23 20:03	1
Selenium	20.0	U	20.0		ug/L		03/24/23 14:44	03/24/23 20:03	1
Sodium	35800		2000		ug/L		03/24/23 14:44	03/24/23 20:03	1

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Aluminum	850		100		ug/L		03/20/23 07:40	03/21/23 08:12	1
Antimony	5.00	U	5.00		ug/L		03/20/23 07:40	03/21/23 08:12	1
Arsenic	40.1		3.00		ug/L		03/20/23 07:40	03/21/23 08:12	1
Barium	90.0		5.00		ug/L		03/20/23 07:40	03/21/23 08:12	1
Beryllium	0.500	U	0.500		ug/L		03/20/23 07:40	03/21/23 08:12	1
Cadmium	0.500	U	0.500		ug/L		03/20/23 07:40	03/21/23 08:12	1
Chromium	5.00	U	5.00		ug/L		03/20/23 07:40	03/21/23 08:12	1
Cobalt	6.59		0.500		ug/L		03/20/23 07:40	03/21/23 08:12	1
Lead	2.50	U	2.50		ug/L		03/20/23 07:40	03/21/23 08:12	1
Nickel	5.00	U	5.00		ug/L		03/20/23 07:40	03/21/23 08:12	1
Silver	1.00	U	1.00		ug/L		03/20/23 07:40	03/21/23 08:12	1
Thallium	1.00	U	1.00		ug/L		03/20/23 07:40	03/21/23 08:12	1
Zinc	43.1		20.0		ug/L		03/20/23 07:40	03/21/23 08:12	1

Client: South Carolina Public Service Authority Project/Site: 125915/JM02.09.G01.1/36500

Lab Sample ID: 680-232195-4

Job ID: 680-232195-1

Matrix: Water

Date Collected: 03/01/23 11:45 Date Received: 03/17/23 10:30

Client Sample ID: AF56441

Method: SW846 6010D - Met	tals (ICP) - Dissolve	d							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Lithium	140		50.0		ug/L		03/23/23 14:17	03/24/23 20:30	1
Calcium	174000		500		ug/L		03/24/23 14:44	03/24/23 20:06	1
Iron	4580		100		ug/L		03/24/23 14:44	03/24/23 20:06	1
Magnesium	9730		500		ug/L		03/24/23 14:44	03/24/23 20:06	1
Molybdenum	10.0	U	10.0		ug/L		03/24/23 14:44	03/24/23 20:06	1
Potassium	5050		1000		ug/L		03/24/23 14:44	03/24/23 20:06	1
Selenium	20.0	U	20.0		ug/L		03/24/23 14:44	03/24/23 20:06	1
Sodium	22900		2000		ug/L		03/24/23 14:44	03/24/23 20:06	1

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Aluminum	100	U	100		ug/L		03/20/23 07:40	03/21/23 08:16	1
Antimony	5.00	U	5.00		ug/L		03/20/23 07:40	03/21/23 08:16	1
Arsenic	177		3.00		ug/L		03/20/23 07:40	03/21/23 08:16	1
Barium	76.2		5.00		ug/L		03/20/23 07:40	03/21/23 08:16	1
Beryllium	0.500	U	0.500		ug/L		03/20/23 07:40	03/21/23 08:16	1
Cadmium	0.500	U	0.500		ug/L		03/20/23 07:40	03/21/23 08:16	1
Chromium	5.00	U	5.00		ug/L		03/20/23 07:40	03/21/23 08:16	1
Cobalt	0.500	U	0.500		ug/L		03/20/23 07:40	03/21/23 08:16	1
Lead	2.50	U	2.50		ug/L		03/20/23 07:40	03/21/23 08:16	1
Nickel	5.00	U	5.00		ug/L		03/20/23 07:40	03/21/23 08:16	1
Silver	1.00	U	1.00		ug/L		03/20/23 07:40	03/21/23 08:16	1
Thallium	1.00	U	1.00		ug/L		03/20/23 07:40	03/21/23 08:16	1
Zinc	20.0	U	20.0		ug/L		03/20/23 07:40	03/21/23 08:16	1

Client: South Carolina Public Service Authority Project/Site: 125915/JM02.09.G01.1/36500

oject/Site: 125915/JM02.09.G01.1/36500

Client Sample ID: AF56414 Lab Sample ID: 680-232195-5

Date Collected: 03/02/23 12:46
Date Received: 03/17/23 10:30
Matrix: Water

Method: SW846 6010D - Me	etals (ICP) - Dissolve	d							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Lithium	63.0		50.0		ug/L		03/23/23 14:17	03/24/23 20:34	1
Calcium	443000		500		ug/L		03/24/23 14:44	03/24/23 20:09	1
Iron	21800		100		ug/L		03/24/23 14:44	03/24/23 20:09	1
Magnesium	43600		500		ug/L		03/24/23 14:44	03/24/23 20:09	1
Molybdenum	10.0	U	10.0		ug/L		03/24/23 14:44	03/24/23 20:09	1
Potassium	6180		1000		ug/L		03/24/23 14:44	03/24/23 20:09	1
Selenium	20.0	U	20.0		ug/L		03/24/23 14:44	03/24/23 20:09	1
Sodium	94600		2000		ug/L		03/24/23 14:44	03/24/23 20:09	1

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Aluminum	100	U	100		ug/L		03/20/23 07:40	03/21/23 08:20	1
Antimony	5.00	U	5.00		ug/L		03/20/23 07:40	03/21/23 08:20	1
Arsenic	3.00	U	3.00		ug/L		03/20/23 07:40	03/21/23 08:20	1
Barium	367		5.00		ug/L		03/20/23 07:40	03/21/23 08:20	1
Beryllium	0.500	U	0.500		ug/L		03/20/23 07:40	03/21/23 08:20	1
Cadmium	0.500	U	0.500		ug/L		03/20/23 07:40	03/21/23 08:20	1
Chromium	5.00	U	5.00		ug/L		03/20/23 07:40	03/21/23 08:20	1
Cobalt	0.500	U	0.500		ug/L		03/20/23 07:40	03/21/23 08:20	1
Lead	2.50	U	2.50		ug/L		03/20/23 07:40	03/21/23 08:20	1
Nickel	5.00	U	5.00		ug/L		03/20/23 07:40	03/21/23 08:20	1
Silver	1.00	U	1.00		ug/L		03/20/23 07:40	03/21/23 08:20	1
Thallium	1.00	U	1.00		ug/L		03/20/23 07:40	03/21/23 08:20	1
Zinc	20.0	U	20.0		ug/L		03/20/23 07:40	03/21/23 08:20	1

2

Job ID: 680-232195-1

3

4

6

8

46

11

12

Client: South Carolina Public Service Authority Project/Site: 125915/JM02.09.G01.1/36500

L - L O - --- L ID - COO 000405

Lab Sample ID: 680-232195-6

Matrix: Water

Job ID: 680-232195-1

Client Sample ID: AF56423 Date Collected: 03/02/23 09:52

Date Received: 03/17/23 10:30

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Lithium	95.7		50.0		ug/L		03/23/23 14:17	03/24/23 20:39	1
Calcium	382000		500		ug/L		03/24/23 14:44	03/24/23 20:19	1
Iron	14000		100		ug/L		03/24/23 14:44	03/24/23 20:19	1
Magnesium	46400		500		ug/L		03/24/23 14:44	03/24/23 20:19	1
Molybdenum	10.0	U	10.0		ug/L		03/24/23 14:44	03/24/23 20:19	1
Potassium	11800		1000		ug/L		03/24/23 14:44	03/24/23 20:19	1
Selenium	20.0	U	20.0		ug/L		03/24/23 14:44	03/24/23 20:19	1
Sodium	85500		2000		ug/L		03/24/23 14:44	03/24/23 20:19	1

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Aluminum	100	U	100		ug/L		03/20/23 07:40	03/21/23 08:24	1
Antimony	5.00	U	5.00		ug/L		03/20/23 07:40	03/21/23 08:24	1
Arsenic	307		3.00		ug/L		03/20/23 07:40	03/21/23 08:24	1
Barium	214		5.00		ug/L		03/20/23 07:40	03/21/23 08:24	1
Beryllium	0.500	U	0.500		ug/L		03/20/23 07:40	03/21/23 08:24	1
Cadmium	0.500	U	0.500		ug/L		03/20/23 07:40	03/21/23 08:24	1
Chromium	5.00	U	5.00		ug/L		03/20/23 07:40	03/21/23 08:24	1
Cobalt	0.500	U	0.500		ug/L		03/20/23 07:40	03/21/23 08:24	1
Lead	2.50	U	2.50		ug/L		03/20/23 07:40	03/21/23 08:24	1
Nickel	5.00	U	5.00		ug/L		03/20/23 07:40	03/21/23 08:24	1
Silver	1.00	U	1.00		ug/L		03/20/23 07:40	03/21/23 08:24	1
Thallium	1.00	U	1.00		ug/L		03/20/23 07:40	03/21/23 08:24	1
Zinc	20.0	U	20.0		ug/L		03/20/23 07:40	03/21/23 08:24	1

_

3

5

6

8

9

11

Client: South Carolina Public Service Authority Project/Site: 125915/JM02.09.G01.1/36500

Client Sample ID: AF56428

Lab Sample ID: 680-232195-7

Job ID: 680-232195-1

Date Collected: 03/02/23 10:56 Matrix: Water Date Received: 03/17/23 10:30

Method: SW846 6010D - Meta	ıls (ICP) - Dissolve	d							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Lithium	50.0	U	50.0		ug/L		03/23/23 14:17	03/24/23 20:44	1
Calcium	95200		500		ug/L		03/24/23 14:44	03/24/23 20:22	1
Iron	76100		100		ug/L		03/24/23 14:44	03/24/23 20:22	1
Magnesium	21000		500		ug/L		03/24/23 14:44	03/24/23 20:22	1
Molybdenum	10.0	U	10.0		ug/L		03/24/23 14:44	03/24/23 20:22	1
Potassium	9830		1000		ug/L		03/24/23 14:44	03/24/23 20:22	1
Selenium	20.0	U	20.0		ug/L		03/24/23 14:44	03/24/23 20:22	1
Sodium	35400		2000		ug/L		03/24/23 14:44	03/24/23 20:22	1

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Aluminum	100	U	100		ug/L		03/20/23 07:40	03/21/23 08:28	1
Antimony	5.00	U	5.00		ug/L		03/20/23 07:40	03/21/23 08:28	1
Arsenic	75.4		3.00		ug/L		03/20/23 07:40	03/21/23 08:28	1
Barium	108		5.00		ug/L		03/20/23 07:40	03/21/23 08:28	1
Beryllium	0.500	U	0.500		ug/L		03/20/23 07:40	03/21/23 08:28	1
Cadmium	0.500	U	0.500		ug/L		03/20/23 07:40	03/21/23 08:28	1
Chromium	5.00	U	5.00		ug/L		03/20/23 07:40	03/21/23 08:28	1
Cobalt	0.610		0.500		ug/L		03/20/23 07:40	03/21/23 08:28	1
Lead	2.50	U	2.50		ug/L		03/20/23 07:40	03/21/23 08:28	1
Nickel	5.00	U	5.00		ug/L		03/20/23 07:40	03/21/23 08:28	1
Silver	1.00	U	1.00		ug/L		03/20/23 07:40	03/21/23 08:28	1
Thallium	1.00	U	1.00		ug/L		03/20/23 07:40	03/21/23 08:28	1
Zinc	20.0	U	20.0		ug/L		03/20/23 07:40	03/21/23 08:28	1

Client: South Carolina Public Service Authority Project/Site: 125915/JM02.09.G01.1/36500

Lab Sample ID: 680-232195-8

Matrix: Water

Job ID: 680-232195-1

Client Sample ID: AF56419

Date Collected: 03/07/23 14:51 Date Received: 03/17/23 10:30

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Lithium	223		50.0		ug/L		03/23/23 14:17	03/24/23 20:48	1
Calcium	535000		500		ug/L		03/24/23 14:44	03/24/23 20:25	1
Iron	1430		100		ug/L		03/24/23 14:44	03/24/23 20:25	1
Magnesium	78800		500		ug/L		03/24/23 14:44	03/24/23 20:25	1
Molybdenum	55.9		10.0		ug/L		03/24/23 14:44	03/24/23 20:25	1
Potassium	19700		1000		ug/L		03/24/23 14:44	03/24/23 20:25	1
Selenium	20.0	U	20.0		ug/L		03/24/23 14:44	03/24/23 20:25	1
Sodium	41700		2000		ug/L		03/24/23 14:44	03/24/23 20:25	1

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Aluminum	100	U	100		ug/L		03/20/23 07:40	03/21/23 08:33	1
Antimony	5.00	U	5.00		ug/L		03/20/23 07:40	03/21/23 08:33	1
Arsenic	103		3.00		ug/L		03/20/23 07:40	03/21/23 08:33	1
Barium	71.5		5.00		ug/L		03/20/23 07:40	03/21/23 08:33	1
Beryllium	0.500	U	0.500		ug/L		03/20/23 07:40	03/21/23 08:33	1
Cadmium	0.500	U	0.500		ug/L		03/20/23 07:40	03/21/23 08:33	1
Chromium	5.00	U	5.00		ug/L		03/20/23 07:40	03/21/23 08:33	1
Cobalt	1.26		0.500		ug/L		03/20/23 07:40	03/21/23 08:33	1
Lead	2.50	U	2.50		ug/L		03/20/23 07:40	03/21/23 08:33	1
Nickel	5.00	U	5.00		ug/L		03/20/23 07:40	03/21/23 08:33	1
Silver	1.00	U	1.00		ug/L		03/20/23 07:40	03/21/23 08:33	1
Thallium	1.00	U	1.00		ug/L		03/20/23 07:40	03/21/23 08:33	1
Zinc	20.0	U	20.0		ug/L		03/20/23 07:40	03/21/23 08:33	1

Client: South Carolina Public Service Authority Project/Site: 125915/JM02.09.G01.1/36500

Client Sample ID: AF56425

Date Collected: 03/07/23 12:49

Lab Sample ID: 680-232195-9

Matrix: Water

Date Received: 03/17/23 10:30

Method: SW846 6010D - Meta	ls (ICP) - Dissolve	d							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Lithium	50.0	U	50.0		ug/L		03/23/23 14:17	03/24/23 20:53	1
Calcium	247000		500		ug/L		03/24/23 14:44	03/24/23 20:29	1
Iron	1290		100		ug/L		03/24/23 14:44	03/24/23 20:29	1
Magnesium	35800		500		ug/L		03/24/23 14:44	03/24/23 20:29	1
Molybdenum	19.3		10.0		ug/L		03/24/23 14:44	03/24/23 20:29	1
Potassium	13000		1000		ug/L		03/24/23 14:44	03/24/23 20:29	1
Selenium	20.0	U	20.0		ug/L		03/24/23 14:44	03/24/23 20:29	1
Sodium	68500		2000		ug/L		03/24/23 14:44	03/24/23 20:29	1

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Aluminum	100	U	100		ug/L		03/20/23 07:40	03/21/23 08:37	1
Antimony	5.00	U	5.00		ug/L		03/20/23 07:40	03/21/23 08:37	1
Arsenic	3.00	U	3.00		ug/L		03/20/23 07:40	03/21/23 08:37	1
Barium	42.8		5.00		ug/L		03/20/23 07:40	03/21/23 08:37	1
Beryllium	0.500	U	0.500		ug/L		03/20/23 07:40	03/21/23 08:37	1
Cadmium	0.500	U	0.500		ug/L		03/20/23 07:40	03/21/23 08:37	1
Chromium	5.00	U	5.00		ug/L		03/20/23 07:40	03/21/23 08:37	1
Cobalt	0.500	U	0.500		ug/L		03/20/23 07:40	03/21/23 08:37	1
Lead	2.50	U	2.50		ug/L		03/20/23 07:40	03/21/23 08:37	1
Nickel	5.00	U	5.00		ug/L		03/20/23 07:40	03/21/23 08:37	1
Silver	1.00	U	1.00		ug/L		03/20/23 07:40	03/21/23 08:37	1
Thallium	1.00	U	1.00		ug/L		03/20/23 07:40	03/21/23 08:37	1
Zinc	20.0	U	20.0		ug/L		03/20/23 07:40	03/21/23 08:37	1

2

Job ID: 680-232195-1

3

5

6

8

9

10

12

13

Client: South Carolina Public Service Authority Project/Site: 125915/JM02.09.G01.1/36500

Lab Sample ID: 680-232195-10

Matrix: Water

Job ID: 680-232195-1

Client Sample ID: AF56426

Date Collected: 03/07/23 10:22 Date Received: 03/17/23 10:30

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Lithium	50.0	U	50.0		ug/L		03/23/23 14:17	03/24/23 21:12	1
Calcium	192000		500		ug/L		03/24/23 14:44	03/24/23 20:32	1
Iron	3230		100		ug/L		03/24/23 14:44	03/24/23 20:32	1
Magnesium	18700		500		ug/L		03/24/23 14:44	03/24/23 20:32	1
Molybdenum	10.0	U	10.0		ug/L		03/24/23 14:44	03/24/23 20:32	1
Potassium	11200		1000		ug/L		03/24/23 14:44	03/24/23 20:32	1
Selenium	20.0	U	20.0		ug/L		03/24/23 14:44	03/24/23 20:32	1
Sodium	127000		2000		ug/L		03/24/23 14:44	03/24/23 20:32	1

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Aluminum	149		100		ug/L		03/20/23 07:40	03/21/23 08:41	1
Antimony	5.00	U	5.00		ug/L		03/20/23 07:40	03/21/23 08:41	1
Arsenic	3.00	U	3.00		ug/L		03/20/23 07:40	03/21/23 08:41	1
Barium	35.1		5.00		ug/L		03/20/23 07:40	03/21/23 08:41	1
Beryllium	0.500	U	0.500		ug/L		03/20/23 07:40	03/21/23 08:41	1
Cadmium	0.500	U	0.500		ug/L		03/20/23 07:40	03/21/23 08:41	1
Chromium	5.00	U	5.00		ug/L		03/20/23 07:40	03/21/23 08:41	1
Cobalt	0.500	U	0.500		ug/L		03/20/23 07:40	03/21/23 08:41	1
Lead	2.50	U	2.50		ug/L		03/20/23 07:40	03/21/23 08:41	1
Nickel	5.00	U	5.00		ug/L		03/20/23 07:40	03/21/23 08:41	1
Silver	1.00	U	1.00		ug/L		03/20/23 07:40	03/21/23 08:41	1
Thallium	1.00	U	1.00		ug/L		03/20/23 07:40	03/21/23 08:41	1
Zinc	20.0	U	20.0		ug/L		03/20/23 07:40	03/21/23 08:41	1

2

Л

5

7

8

10

11

12

Client: South Carolina Public Service Authority Project/Site: 125915/JM02.09.G01.1/36500

Job ID: 680-232195-1

Lab Sample ID: 680-232195-11

Matrix: Water

Client Sample ID: AF56427

Date Collected: 03/07/23 10:27 Date Received: 03/17/23 10:30

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Lithium	50.0	U	50.0		ug/L		03/23/23 14:17	03/24/23 21:16	1
Calcium	382000		500		ug/L		03/24/23 14:44	03/24/23 20:35	1
Iron	41600		100		ug/L		03/24/23 14:44	03/24/23 20:35	1
Magnesium	27600		500		ug/L		03/24/23 14:44	03/24/23 20:35	1
Molybdenum	10.0	U	10.0		ug/L		03/24/23 14:44	03/24/23 20:35	1
Potassium	2620		1000		ug/L		03/24/23 14:44	03/24/23 20:35	1
Selenium	20.0	U	20.0		ug/L		03/24/23 14:44	03/24/23 20:35	1
Sodium	121000		2000		ug/L		03/24/23 14:44	03/24/23 20:35	1

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Aluminum	156		100		ug/L		03/20/23 07:40	03/21/23 08:53	1
Antimony	5.00	U	5.00		ug/L		03/20/23 07:40	03/21/23 08:53	1
Arsenic	3.00	U	3.00		ug/L		03/20/23 07:40	03/21/23 08:53	1
Barium	35.8		5.00		ug/L		03/20/23 07:40	03/21/23 08:53	1
Beryllium	0.500	U	0.500		ug/L		03/20/23 07:40	03/21/23 08:53	1
Cadmium	0.500	U	0.500		ug/L		03/20/23 07:40	03/21/23 08:53	1
Chromium	5.00	U	5.00		ug/L		03/20/23 07:40	03/21/23 08:53	1
Cobalt	0.500	U	0.500		ug/L		03/20/23 07:40	03/21/23 08:53	1
Lead	2.50	U	2.50		ug/L		03/20/23 07:40	03/21/23 08:53	1
Nickel	5.00	U	5.00		ug/L		03/20/23 07:40	03/21/23 08:53	1
Silver	1.00	U	1.00		ug/L		03/20/23 07:40	03/21/23 08:53	1
Thallium	1.00	U	1.00		ug/L		03/20/23 07:40	03/21/23 08:53	1
Zinc	20.0	U	20.0		ug/L		03/20/23 07:40	03/21/23 08:53	1

2

А

5

7

8

9

11

12

Client: South Carolina Public Service Authority Project/Site: 125915/JM02.09.G01.1/36500

Lab Sample ID: 680-232195-12

Matrix: Water

Job ID: 680-232195-1

Date Collected: 03/08/23 13:38 Date Received: 03/17/23 10:30

Client Sample ID: AF56408

Method: SW846 6010D - Metals	(ICP) - Dissolve	d							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Lithium	50.0	U	50.0		ug/L		03/23/23 14:17	03/24/23 21:21	1
Calcium	21000		500		ug/L		03/24/23 14:44	03/24/23 20:38	1
Iron	256		100		ug/L		03/24/23 14:44	03/24/23 20:38	1
Magnesium	1650		500		ug/L		03/24/23 14:44	03/24/23 20:38	1
Molybdenum	10.0	U	10.0		ug/L		03/24/23 14:44	03/24/23 20:38	1
Potassium	1000	U	1000		ug/L		03/24/23 14:44	03/24/23 20:38	1
Selenium	20.0	U	20.0		ug/L		03/24/23 14:44	03/24/23 20:38	1
Sodium	4330		2000		ug/L		03/24/23 14:44	03/24/23 20:38	1

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Aluminum	100	U	100		ug/L		03/20/23 07:40	03/21/23 08:57	1
Antimony	5.00	U	5.00		ug/L		03/20/23 07:40	03/21/23 08:57	1
Arsenic	3.00	U	3.00		ug/L		03/20/23 07:40	03/21/23 08:57	1
Barium	251		5.00		ug/L		03/20/23 07:40	03/21/23 08:57	1
Beryllium	0.500	U	0.500		ug/L		03/20/23 07:40	03/21/23 08:57	1
Cadmium	0.500	U	0.500		ug/L		03/20/23 07:40	03/21/23 08:57	1
Chromium	40.5		5.00		ug/L		03/20/23 07:40	03/21/23 08:57	1
Cobalt	0.575		0.500		ug/L		03/20/23 07:40	03/21/23 08:57	1
Lead	2.50	U	2.50		ug/L		03/20/23 07:40	03/21/23 08:57	1
Nickel	5.00	U	5.00		ug/L		03/20/23 07:40	03/21/23 08:57	1
Silver	1.00	U	1.00		ug/L		03/20/23 07:40	03/21/23 08:57	1
Thallium	1.00	U	1.00		ug/L		03/20/23 07:40	03/21/23 08:57	1
Zinc	53.9		20.0		ug/L		03/20/23 07:40	03/21/23 08:57	1

6

8

9

10

12

13

Client: South Carolina Public Service Authority Project/Site: 125915/JM02.09.G01.1/36500

Client Sample ID: AF56415

Lab Sample ID: 680-232195-13

Matrix: Water

Job ID: 680-232195-1

Date Collected: 03/08/23 15:13

Date Received: 03/17/23 10:30

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Lithium	50.0	U	50.0		ug/L		03/23/23 14:17	03/24/23 21:26	1
Calcium	19600		500		ug/L		03/24/23 14:44	03/24/23 20:42	1
Iron	213		100		ug/L		03/24/23 14:44	03/24/23 20:42	1
Magnesium	1630		500		ug/L		03/24/23 14:44	03/24/23 20:42	1
Molybdenum	10.0	U	10.0		ug/L		03/24/23 14:44	03/24/23 20:42	1
Potassium	1000	U	1000		ug/L		03/24/23 14:44	03/24/23 20:42	1
Selenium	20.0	U	20.0		ug/L		03/24/23 14:44	03/24/23 20:42	1
Sodium	4310		2000		ug/L		03/24/23 14:44	03/24/23 20:42	1

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Aluminum	100	U	100		ug/L		03/20/23 07:40	03/21/23 09:01	1
Antimony	5.00	U	5.00		ug/L		03/20/23 07:40	03/21/23 09:01	1
Arsenic	3.00	U	3.00		ug/L		03/20/23 07:40	03/21/23 09:01	1
Barium	76.3		5.00		ug/L		03/20/23 07:40	03/21/23 09:01	1
Beryllium	0.500	U	0.500		ug/L		03/20/23 07:40	03/21/23 09:01	1
Cadmium	0.500	U	0.500		ug/L		03/20/23 07:40	03/21/23 09:01	1
Chromium	5.00	U	5.00		ug/L		03/20/23 07:40	03/21/23 09:01	1
Cobalt	0.500	U	0.500		ug/L		03/20/23 07:40	03/21/23 09:01	1
Lead	2.50	U	2.50		ug/L		03/20/23 07:40	03/21/23 09:01	1
Nickel	5.00	U	5.00		ug/L		03/20/23 07:40	03/21/23 09:01	1
Silver	1.00	U	1.00		ug/L		03/20/23 07:40	03/21/23 09:01	1
Thallium	1.00	U	1.00		ug/L		03/20/23 07:40	03/21/23 09:01	1
Zinc	30.6		20.0		ug/L		03/20/23 07:40	03/21/23 09:01	1

3/28/2023

Client: South Carolina Public Service Authority Project/Site: 125915/JM02.09.G01.1/36500

Lab Sample ID: 680-232195-14 Matrix: Water

Job ID: 680-232195-1

Client Sample ID: AF56416 Date Collected: 03/08/23 10:09

Date Received: 03/17/23 10:30

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Lithium	50.0	U	50.0		ug/L		03/23/23 14:17	03/24/23 21:31	1
Calcium	66800		500		ug/L		03/24/23 14:44	03/24/23 20:45	1
Iron	891		100		ug/L		03/24/23 14:44	03/24/23 20:45	1
Magnesium	2920		500		ug/L		03/24/23 14:44	03/24/23 20:45	1
Molybdenum	10.0	U	10.0		ug/L		03/24/23 14:44	03/24/23 20:45	1
Potassium	2190		1000		ug/L		03/24/23 14:44	03/24/23 20:45	1
Selenium	20.0	U	20.0		ug/L		03/24/23 14:44	03/24/23 20:45	1
Sodium	11100		2000		ug/L		03/24/23 14:44	03/24/23 20:45	1

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Aluminum	100	U	100		ug/L		03/20/23 07:40	03/21/23 09:05	1
Antimony	5.00	U	5.00		ug/L		03/20/23 07:40	03/21/23 09:05	1
Arsenic	74.8		3.00		ug/L		03/20/23 07:40	03/21/23 09:05	1
Barium	42.0		5.00		ug/L		03/20/23 07:40	03/21/23 09:05	1
Beryllium	0.500	U	0.500		ug/L		03/20/23 07:40	03/21/23 09:05	1
Cadmium	0.500	U	0.500		ug/L		03/20/23 07:40	03/21/23 09:05	1
Chromium	5.00	U	5.00		ug/L		03/20/23 07:40	03/21/23 09:05	1
Cobalt	0.500	U	0.500		ug/L		03/20/23 07:40	03/21/23 09:05	1
Lead	2.50	U	2.50		ug/L		03/20/23 07:40	03/21/23 09:05	1
Nickel	5.00	U	5.00		ug/L		03/20/23 07:40	03/21/23 09:05	1
Silver	1.00	U	1.00		ug/L		03/20/23 07:40	03/21/23 09:05	1
Thallium	1.00	U	1.00		ug/L		03/20/23 07:40	03/21/23 09:05	1
Zinc	182		20.0		ug/L		03/20/23 07:40	03/21/23 09:05	1

1

5

0

9

10

12

13

Client: South Carolina Public Service Authority Project/Site: 125915/JM02.09.G01.1/36500

Lab Sample ID: 680-232195-15

Matrix: Water

Job ID: 680-232195-1

Client Sample ID: AF56417 Date Collected: 03/08/23 10:14

Date Received: 03/17/23 10:30

Method: SW846 6010D - Me	tals (ICP) - Dissolve	d							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Lithium	50.0	U	50.0		ug/L		03/23/23 14:17	03/24/23 21:35	1
Calcium	270000		500		ug/L		03/20/23 09:01	03/21/23 19:12	1
Iron	1940		100		ug/L		03/20/23 09:01	03/21/23 19:12	1
Magnesium	38900		500		ug/L		03/20/23 09:01	03/21/23 19:12	1
Molybdenum	21.2		10.0		ug/L		03/20/23 09:01	03/21/23 19:12	1
Potassium	14100		1000		ug/L		03/20/23 09:01	03/21/23 19:12	1
Selenium	20.0	U	20.0		ug/L		03/20/23 09:01	03/21/23 19:12	1
Sodium	72300		2000		ug/L		03/20/23 09:01	03/21/23 19:12	1

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Aluminum	100	U	100		ug/L		03/20/23 09:01	03/21/23 16:07	1
Antimony	5.00	U	5.00		ug/L		03/20/23 09:01	03/21/23 16:07	1
Arsenic	84.0		3.00		ug/L		03/20/23 09:01	03/21/23 16:07	1
Barium	50.0		5.00		ug/L		03/20/23 09:01	03/21/23 16:07	1
Beryllium	0.500	U	0.500		ug/L		03/20/23 09:01	03/21/23 16:07	1
Cadmium	0.500	U	0.500		ug/L		03/20/23 09:01	03/21/23 16:07	1
Chromium	5.00	U	5.00		ug/L		03/20/23 09:01	03/21/23 16:07	1
Cobalt	0.500	U	0.500		ug/L		03/20/23 09:01	03/21/23 16:07	1
Lead	2.50	U	2.50		ug/L		03/20/23 09:01	03/21/23 16:07	1
Nickel	5.00	U	5.00		ug/L		03/20/23 09:01	03/21/23 16:07	1
Silver	1.00	U	1.00		ug/L		03/20/23 09:01	03/21/23 16:07	1
Thallium	1.00	U	1.00		ug/L		03/20/23 09:01	03/21/23 16:07	1
Zinc	20.0	U	20.0		ug/L		03/20/23 09:01	03/21/23 16:07	1

Client: South Carolina Public Service Authority Project/Site: 125915/JM02.09.G01.1/36500

Lab Sample ID: 680-232195-16

Matrix: Water

Job ID: 680-232195-1

Client Sample ID: AF56429

Date Collected: 03/08/23 12:12 Date Received: 03/17/23 10:30

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Lithium	50.0	U	50.0		ug/L		03/23/23 14:17	03/24/23 21:40	1
Calcium	74200		500		ug/L		03/20/23 09:01	03/21/23 19:22	1
Iron	92900		100		ug/L		03/20/23 09:01	03/21/23 19:22	1
Magnesium	26000		500		ug/L		03/20/23 09:01	03/21/23 19:22	1
Molybdenum	10.0	U	10.0		ug/L		03/20/23 09:01	03/21/23 19:22	1
Potassium	1000	U	1000		ug/L		03/20/23 09:01	03/21/23 19:22	1
Selenium	20.0	U	20.0		ug/L		03/20/23 09:01	03/21/23 19:22	1
Sodium	82900		2000		ug/L		03/20/23 09:01	03/21/23 19:22	1

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Aluminum	2310		100		ug/L		03/20/23 09:01	03/21/23 16:19	1
Antimony	5.00	U	5.00		ug/L		03/20/23 09:01	03/21/23 16:19	1
Arsenic	3.00	U	3.00		ug/L		03/20/23 09:01	03/21/23 16:19	1
Barium	245		5.00		ug/L		03/20/23 09:01	03/21/23 16:19	1
Beryllium	0.965		0.500		ug/L		03/20/23 09:01	03/21/23 16:19	1
Cadmium	0.500	U	0.500		ug/L		03/20/23 09:01	03/21/23 16:19	1
Chromium	5.00	U	5.00		ug/L		03/20/23 09:01	03/21/23 16:19	1
Cobalt	19.1		0.500		ug/L		03/20/23 09:01	03/21/23 16:19	1
Lead	2.54		2.50		ug/L		03/20/23 09:01	03/21/23 16:19	1
Nickel	5.89		5.00		ug/L		03/20/23 09:01	03/21/23 16:19	1
Silver	1.00	U	1.00		ug/L		03/20/23 09:01	03/21/23 16:19	1
Thallium	1.00	U	1.00		ug/L		03/20/23 09:01	03/21/23 16:19	1
Zinc	20.0	U	20.0		ug/L		03/20/23 09:01	03/21/23 16:19	1

Client: South Carolina Public Service Authority Project/Site: 125915/JM02.09.G01.1/36500

Lab Sample ID: 680-232195-17

Matrix: Water

Job ID: 680-232195-1

Client Sample ID: AF56394 Date Collected: 02/14/23 12:33

Date Received: 03/17/23 10:30

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Lithium	50.0	U	50.0		ug/L		03/23/23 14:19	03/24/23 21:54	1
Calcium	11200		500		ug/L		03/20/23 09:01	03/21/23 19:25	1
Iron	3120		100		ug/L		03/20/23 09:01	03/21/23 19:25	1
Magnesium	1020		500		ug/L		03/20/23 09:01	03/21/23 19:25	1
Molybdenum	10.0	U	10.0		ug/L		03/20/23 09:01	03/21/23 19:25	1
Potassium	1000	U	1000		ug/L		03/20/23 09:01	03/21/23 19:25	1
Selenium	20.0	U	20.0		ug/L		03/20/23 09:01	03/21/23 19:25	1
Sodium	5650		2000		ug/L		03/20/23 09:01	03/21/23 19:25	1

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Aluminum	1310		100		ug/L		03/20/23 09:01	03/21/23 16:23	1
Antimony	5.00	U	5.00		ug/L		03/20/23 09:01	03/21/23 16:23	1
Arsenic	5.22		3.00		ug/L		03/20/23 09:01	03/21/23 16:23	1
Barium	76.1		5.00		ug/L		03/20/23 09:01	03/21/23 16:23	1
Beryllium	0.500	U	0.500		ug/L		03/20/23 09:01	03/21/23 16:23	1
Cadmium	0.500	U	0.500		ug/L		03/20/23 09:01	03/21/23 16:23	1
Chromium	5.00	U	5.00		ug/L		03/20/23 09:01	03/21/23 16:23	1
Cobalt	0.765		0.500		ug/L		03/20/23 09:01	03/21/23 16:23	1
Lead	2.50	U	2.50		ug/L		03/20/23 09:01	03/21/23 16:23	1
Nickel	5.00	U	5.00		ug/L		03/20/23 09:01	03/21/23 16:23	1
Silver	1.00	U	1.00		ug/L		03/20/23 09:01	03/21/23 16:23	1
Thallium	1.00	U	1.00		ug/L		03/20/23 09:01	03/21/23 16:23	1
Zinc	23.6		20.0		ug/L		03/20/23 09:01	03/21/23 16:23	1

2

Δ

5

7

8

10

11

13

Client: South Carolina Public Service Authority Project/Site: 125915/JM02.09.G01.1/36500

Client Sample ID: AF56331

Lab Sample ID: 680-232195-18

Matrix: Water

Job ID: 680-232195-1

Date Collected: 02/14/23 13:51 Date Received: 03/17/23 10:30

Method: SW846 6010D - M	letals (ICP) - Dissolve	d							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Lithium	50.0	U	50.0		ug/L		03/23/23 14:19	03/24/23 22:26	1
Calcium	3560		500		ug/L		03/20/23 09:01	03/21/23 19:29	1
Iron	100	U	100		ug/L		03/20/23 09:01	03/21/23 19:29	1
Magnesium	898		500		ug/L		03/20/23 09:01	03/21/23 19:29	1
Molybdenum	10.0	U	10.0		ug/L		03/20/23 09:01	03/21/23 19:29	1
Potassium	1000	U	1000		ug/L		03/20/23 09:01	03/21/23 19:29	1
Selenium	20.0	U	20.0		ug/L		03/20/23 09:01	03/21/23 19:29	1
Sodium	2720		2000		ug/L		03/20/23 09:01	03/21/23 19:29	1

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Aluminum	793		100		ug/L		03/20/23 09:01	03/21/23 16:27	1
Antimony	5.00	U	5.00		ug/L		03/20/23 09:01	03/21/23 16:27	1
Arsenic	3.00	U	3.00		ug/L		03/20/23 09:01	03/21/23 16:27	1
Barium	30.1		5.00		ug/L		03/20/23 09:01	03/21/23 16:27	1
Beryllium	0.500	U	0.500		ug/L		03/20/23 09:01	03/21/23 16:27	1
Cadmium	0.500	U	0.500		ug/L		03/20/23 09:01	03/21/23 16:27	1
Chromium	5.00	U	5.00		ug/L		03/20/23 09:01	03/21/23 16:27	1
Cobalt	1.58		0.500		ug/L		03/20/23 09:01	03/21/23 16:27	1
Lead	2.50	U	2.50		ug/L		03/20/23 09:01	03/21/23 16:27	1
Nickel	5.00	U	5.00		ug/L		03/20/23 09:01	03/21/23 16:27	1
Silver	1.00	U	1.00		ug/L		03/20/23 09:01	03/21/23 16:27	1
Thallium	1.00	U	1.00		ug/L		03/20/23 09:01	03/21/23 16:27	1
Zinc	20.0	U	20.0		ug/L		03/20/23 09:01	03/21/23 16:27	1

Client: South Carolina Public Service Authority Project/Site: 125915/JM02.09.G01.1/36500

Lab Sample ID: 680-232195-19

Matrix: Water

Job ID: 680-232195-1

Client Sample ID: AF56332

Date Collected: 02/14/23 15:22 Date Received: 03/17/23 10:30

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Lithium	50.0	U	50.0		ug/L		03/23/23 14:19	03/24/23 22:35	1
Calcium	87900		500		ug/L		03/20/23 09:01	03/21/23 19:38	1
Iron	5240		100		ug/L		03/20/23 09:01	03/21/23 19:38	1
Magnesium	2750		500		ug/L		03/20/23 09:01	03/21/23 19:38	1
Molybdenum	10.0	U	10.0		ug/L		03/20/23 09:01	03/21/23 19:38	1
Potassium	2150		1000		ug/L		03/20/23 09:01	03/21/23 19:38	1
Selenium	20.0	U	20.0		ug/L		03/20/23 09:01	03/21/23 19:38	1
Sodium	11700		2000		ug/L		03/20/23 09:01	03/21/23 19:38	1

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Aluminum	1300		100		ug/L		03/20/23 09:01	03/21/23 16:31	1
Antimony	5.00	U	5.00		ug/L		03/20/23 09:01	03/21/23 16:31	1
Arsenic	3.00	U	3.00		ug/L		03/20/23 09:01	03/21/23 16:31	1
Barium	102		5.00		ug/L		03/20/23 09:01	03/21/23 16:31	1
Beryllium	0.500	U	0.500		ug/L		03/20/23 09:01	03/21/23 16:31	1
Cadmium	0.500	U	0.500		ug/L		03/20/23 09:01	03/21/23 16:31	1
Chromium	5.00	U	5.00		ug/L		03/20/23 09:01	03/21/23 16:31	1
Cobalt	0.500	U	0.500		ug/L		03/20/23 09:01	03/21/23 16:31	1
Lead	2.50	U	2.50		ug/L		03/20/23 09:01	03/21/23 16:31	1
Nickel	5.00	U	5.00		ug/L		03/20/23 09:01	03/21/23 16:31	1
Silver	1.00	U	1.00		ug/L		03/20/23 09:01	03/21/23 16:31	1
Thallium	1.00	U	1.00		ug/L		03/20/23 09:01	03/21/23 16:31	1
Zinc	20.0	U	20.0		ug/L		03/20/23 09:01	03/21/23 16:31	1

9

10

12

13

14

Client: South Carolina Public Service Authority Project/Site: 125915/JM02.09.G01.1/36500

Client Sample ID: AF56395

Lab Sample ID: 680-232195-20

Matrix: Water

Job ID: 680-232195-1

Date Collected: 02/15/23 11:36
Date Received: 03/17/23 10:30

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Lithium	50.0	U	50.0		ug/L		03/23/23 14:19	03/24/23 22:39	1
Calcium	355000		500		ug/L		03/20/23 09:01	03/21/23 19:42	1
Iron	3970		100		ug/L		03/20/23 09:01	03/21/23 19:42	1
Magnesium	43700		500		ug/L		03/20/23 09:01	03/21/23 19:42	1
Molybdenum	10.0	U	10.0		ug/L		03/20/23 09:01	03/21/23 19:42	1
Potassium	9610		1000		ug/L		03/20/23 09:01	03/21/23 19:42	1
Selenium	20.0	U	20.0		ug/L		03/20/23 09:01	03/21/23 19:42	1
Sodium	71800		2000		ug/L		03/20/23 09:01	03/21/23 19:42	1

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Aluminum	194		100		ug/L		03/20/23 09:01	03/21/23 16:35	1
Antimony	5.00	U	5.00		ug/L		03/20/23 09:01	03/21/23 16:35	1
Arsenic	11.5		3.00		ug/L		03/20/23 09:01	03/21/23 16:35	1
Barium	151		5.00		ug/L		03/20/23 09:01	03/21/23 16:35	1
Beryllium	1.46		0.500		ug/L		03/20/23 09:01	03/21/23 16:35	1
Cadmium	0.500	U	0.500		ug/L		03/20/23 09:01	03/21/23 16:35	1
Chromium	5.00	U	5.00		ug/L		03/20/23 09:01	03/21/23 16:35	1
Cobalt	18.5		0.500		ug/L		03/20/23 09:01	03/21/23 16:35	1
Lead	2.50	U	2.50		ug/L		03/20/23 09:01	03/21/23 16:35	1
Nickel	10.1		5.00		ug/L		03/20/23 09:01	03/21/23 16:35	1
Silver	1.00	U	1.00		ug/L		03/20/23 09:01	03/21/23 16:35	1
Thallium	1.00	U	1.00		ug/L		03/20/23 09:01	03/21/23 16:35	1
Zinc	20.0	U	20.0		ug/L		03/20/23 09:01	03/21/23 16:35	1

_

4

5

7

8

10

11

Client: South Carolina Public Service Authority Project/Site: 125915/JM02.09.G01.1/36500

Lab Sample ID: 680-232195-21

Matrix: Water

Job ID: 680-232195-1

Client Sample ID: AF56396

Date Collected: 02/15/23 13:21 Date Received: 03/17/23 10:30

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Lithium	50.0	U	50.0		ug/L		03/23/23 14:19	03/24/23 22:44	1
Calcium	226000		500		ug/L		03/20/23 09:01	03/21/23 19:51	1
Iron	23400		100		ug/L		03/20/23 09:01	03/21/23 19:51	1
Magnesium	14600		500		ug/L		03/20/23 09:01	03/21/23 19:51	1
Molybdenum	10.0	U	10.0		ug/L		03/20/23 09:01	03/21/23 19:51	1
Potassium	2050		1000		ug/L		03/20/23 09:01	03/21/23 19:51	1
Selenium	20.0	U	20.0		ug/L		03/20/23 09:01	03/21/23 19:51	1
Sodium	42400		2000		ug/L		03/20/23 09:01	03/21/23 19:51	1

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Aluminum	100	U	100		ug/L		03/20/23 09:01	03/21/23 16:54	1
Antimony	5.00	U	5.00		ug/L		03/20/23 09:01	03/21/23 16:54	1
Arsenic	3.00	U	3.00		ug/L		03/20/23 09:01	03/22/23 08:24	1
Barium	149		5.00		ug/L		03/20/23 09:01	03/21/23 16:54	1
Beryllium	0.500	U	0.500		ug/L		03/20/23 09:01	03/21/23 16:54	1
Cadmium	0.500	U	0.500		ug/L		03/20/23 09:01	03/21/23 16:54	1
Chromium	5.00	U	5.00		ug/L		03/20/23 09:01	03/21/23 16:54	1
Cobalt	0.565		0.500		ug/L		03/20/23 09:01	03/21/23 16:54	1
Lead	2.50	U	2.50		ug/L		03/20/23 09:01	03/22/23 08:24	1
Nickel	5.00	U	5.00		ug/L		03/20/23 09:01	03/21/23 16:54	1
Silver	1.00	U	1.00		ug/L		03/20/23 09:01	03/21/23 16:54	1
Thallium	1.00	U	1.00		ug/L		03/20/23 09:01	03/22/23 08:24	1
Zinc	20.0	U	20.0		ug/L		03/20/23 09:01	03/21/23 16:54	1

Client: South Carolina Public Service Authority Project/Site: 125915/JM02.09.G01.1/36500

Lab Sample ID: 680-232195-22

Client Sample ID: AF56397

Date Collected: 02/16/23 10:53 Matrix: Water

Date Received: 03/17/23 10:30

Method: SW846 6010D - N	netais (ICP) - Dissolve	u							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Lithium	50.0	U	50.0		ug/L		03/23/23 14:19	03/24/23 22:49	1
Calcium	54900		500		ug/L		03/20/23 09:01	03/21/23 19:45	1
Iron	102		100		ug/L		03/20/23 09:01	03/21/23 19:45	1
Magnesium	3940		500		ug/L		03/20/23 09:01	03/21/23 19:45	1
Molybdenum	10.0	U	10.0		ug/L		03/20/23 09:01	03/21/23 19:45	1
Potassium	1830		1000		ug/L		03/20/23 09:01	03/21/23 19:45	1
Selenium	20.0	U	20.0		ug/L		03/20/23 09:01	03/21/23 19:45	1
Sodium	17100		2000		ug/L		03/20/23 09:01	03/21/23 19:45	1

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Aluminum	100	U	100		ug/L		03/20/23 09:01	03/21/23 16:46	1
Antimony	5.00	U	5.00		ug/L		03/20/23 09:01	03/21/23 16:46	1
Arsenic	3.00	U	3.00		ug/L		03/20/23 09:01	03/22/23 08:16	1
Barium	34.2		5.00		ug/L		03/20/23 09:01	03/21/23 16:46	1
Beryllium	0.500	U	0.500		ug/L		03/20/23 09:01	03/21/23 16:46	1
Cadmium	0.500	U	0.500		ug/L		03/20/23 09:01	03/21/23 16:46	1
Chromium	5.00	U	5.00		ug/L		03/20/23 09:01	03/21/23 16:46	1
Cobalt	0.500	U	0.500		ug/L		03/20/23 09:01	03/21/23 16:46	1
Lead	2.50	U	2.50		ug/L		03/20/23 09:01	03/22/23 08:16	1
Nickel	5.00	U	5.00		ug/L		03/20/23 09:01	03/21/23 16:46	1
Silver	1.00	U	1.00		ug/L		03/20/23 09:01	03/21/23 16:46	1
Thallium	1.00	U	1.00		ug/L		03/20/23 09:01	03/22/23 08:16	1
Zinc	114		20.0		ug/L		03/20/23 09:01	03/21/23 16:46	1

Job ID: 680-232195-1

Client: South Carolina Public Service Authority Project/Site: 125915/JM02.09.G01.1/36500

Client Comple ID: AFEC400

Lab Sample ID: 680-232195-23

Matrix: Water

Job ID: 680-232195-1

Client Sample ID: AF56400

Date Collected: 02/16/23 12:55 Date Received: 03/17/23 10:30

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Lithium	50.0	U	50.0		ug/L		03/23/23 14:19	03/24/23 22:53	1
Calcium	264000		500		ug/L		03/20/23 09:01	03/21/23 19:48	1
Iron	783		100		ug/L		03/20/23 09:01	03/21/23 19:48	1
Magnesium	3930		500		ug/L		03/20/23 09:01	03/21/23 19:48	1
Molybdenum	10.0	U	10.0		ug/L		03/20/23 09:01	03/21/23 19:48	1
Potassium	2390		1000		ug/L		03/20/23 09:01	03/21/23 19:48	1
Selenium	20.0	U	20.0		ug/L		03/20/23 09:01	03/21/23 19:48	1
Sodium	13900		2000		ug/L		03/20/23 09:01	03/21/23 19:48	1

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Aluminum	100	U	100		ug/L		03/20/23 09:01	03/21/23 16:50	1
Antimony	5.00	U	5.00		ug/L		03/20/23 09:01	03/21/23 16:50	1
Arsenic	3.00	U	3.00		ug/L		03/20/23 09:01	03/22/23 08:20	1
Barium	46.4		5.00		ug/L		03/20/23 09:01	03/21/23 16:50	1
Beryllium	0.500	U	0.500		ug/L		03/20/23 09:01	03/21/23 16:50	1
Cadmium	0.500	U	0.500		ug/L		03/20/23 09:01	03/21/23 16:50	1
Chromium	5.00	U	5.00		ug/L		03/20/23 09:01	03/21/23 16:50	1
Cobalt	0.500	U	0.500		ug/L		03/20/23 09:01	03/21/23 16:50	1
Lead	2.50	U	2.50		ug/L		03/20/23 09:01	03/22/23 08:20	1
Nickel	5.00	U	5.00		ug/L		03/20/23 09:01	03/21/23 16:50	1
Silver	1.00	U	1.00		ug/L		03/20/23 09:01	03/21/23 16:50	1
Thallium	1.00	U	1.00		ug/L		03/20/23 09:01	03/22/23 08:20	1
Zinc	20.0	U	20.0		ug/L		03/20/23 09:01	03/21/23 16:50	1

Client: South Carolina Public Service Authority Project/Site: 125915/JM02.09.G01.1/36500

Client Sample ID: AF56442

Lab Sample ID: 680-232195-24 Matrix: Water

Job ID: 680-232195-1

Date Collected: 02/16/23 14:07 Date Received: 03/17/23 10:30

Method: SW846 6010D - Me	tals (ICP) - Dissolve	d							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Lithium	50.0	U	50.0		ug/L		03/23/23 14:19	03/24/23 23:12	1
Calcium	162000		500		ug/L		03/20/23 09:01	03/21/23 19:55	1
Iron	286		100		ug/L		03/20/23 09:01	03/21/23 19:55	1
Magnesium	7610		500		ug/L		03/20/23 09:01	03/21/23 19:55	1
Molybdenum	10.0	U	10.0		ug/L		03/20/23 09:01	03/21/23 19:55	1
Potassium	4220		1000		ug/L		03/20/23 09:01	03/21/23 19:55	1
Selenium	20.0	U	20.0		ug/L		03/20/23 09:01	03/21/23 19:55	1
Sodium	21500		2000		ug/L		03/20/23 09:01	03/21/23 19:55	1

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Aluminum	100	U	100		ug/L		03/20/23 09:01	03/21/23 16:58	1
Antimony	5.00	U	5.00		ug/L		03/20/23 09:01	03/21/23 16:58	1
Arsenic	3.62		3.00		ug/L		03/20/23 09:01	03/22/23 08:28	1
Barium	34.7		5.00		ug/L		03/20/23 09:01	03/21/23 16:58	1
Beryllium	0.500	U	0.500		ug/L		03/20/23 09:01	03/21/23 16:58	1
Cadmium	0.500	U	0.500		ug/L		03/20/23 09:01	03/21/23 16:58	1
Chromium	5.00	U	5.00		ug/L		03/20/23 09:01	03/21/23 16:58	1
Cobalt	0.500	U	0.500		ug/L		03/20/23 09:01	03/21/23 16:58	1
Lead	2.50	U	2.50		ug/L		03/20/23 09:01	03/22/23 08:28	1
Nickel	5.00	U	5.00		ug/L		03/20/23 09:01	03/21/23 16:58	1
Silver	1.00	U	1.00		ug/L		03/20/23 09:01	03/21/23 16:58	1
Thallium	1.00	U	1.00		ug/L		03/20/23 09:01	03/22/23 08:28	1
Zinc	20.0	U	20.0		ug/L		03/20/23 09:01	03/21/23 16:58	1

Client: South Carolina Public Service Authority Project/Site: 125915/JM02.09.G01.1/36500

Lab Sample ID: 680-232195-25

Matrix: Water

Job ID: 680-232195-1

Client Sample ID: AF56443

Date Collected: 02/16/23 14:12 Date Received: 03/17/23 10:30

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Lithium	50.0	U	50.0		ug/L		03/23/23 14:19	03/24/23 23:17	1
Calcium	166000		500		ug/L		03/20/23 09:01	03/21/23 19:58	1
Iron	359		100		ug/L		03/20/23 09:01	03/21/23 19:58	1
Magnesium	7850		500		ug/L		03/20/23 09:01	03/21/23 19:58	1
Molybdenum	10.0	U	10.0		ug/L		03/20/23 09:01	03/21/23 19:58	1
Potassium	4220		1000		ug/L		03/20/23 09:01	03/21/23 19:58	1
Selenium	20.0	U	20.0		ug/L		03/20/23 09:01	03/21/23 19:58	1
Sodium	21500		2000		ug/L		03/20/23 09:01	03/21/23 19:58	1

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Aluminum	239		100		ug/L		03/20/23 09:01	03/21/23 17:02	1
Antimony	5.00	U	5.00		ug/L		03/20/23 09:01	03/21/23 17:02	1
Arsenic	4.54		3.00		ug/L		03/20/23 09:01	03/22/23 08:32	1
Barium	39.2		5.00		ug/L		03/20/23 09:01	03/21/23 17:02	1
Beryllium	0.500	U	0.500		ug/L		03/20/23 09:01	03/21/23 17:02	1
Cadmium	0.500	U	0.500		ug/L		03/20/23 09:01	03/21/23 17:02	1
Chromium	5.00	U	5.00		ug/L		03/20/23 09:01	03/21/23 17:02	1
Cobalt	0.715		0.500		ug/L		03/20/23 09:01	03/21/23 17:02	1
Lead	2.50	U	2.50		ug/L		03/20/23 09:01	03/22/23 08:32	1
Nickel	5.00	U	5.00		ug/L		03/20/23 09:01	03/21/23 17:02	1
Silver	1.00	U	1.00		ug/L		03/20/23 09:01	03/21/23 17:02	1
Thallium	1.00	U	1.00		ug/L		03/20/23 09:01	03/22/23 08:32	1
Zinc	20.0	U	20.0		ug/L		03/20/23 09:01	03/21/23 17:02	1

2

Λ

5

7

8

9

10

12

Client: South Carolina Public Service Authority Project/Site: 125915/JM02.09.G01.1/36500

Lab Sample ID: 680-232195-26

Matrix: Water

Job ID: 680-232195-1

Client Sample ID: AF56402

Date Collected: 02/27/23 12:47 Date Received: 03/17/23 10:30

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Lithium	50.0	U	50.0		ug/L		03/23/23 14:19	03/24/23 23:21	1
Calcium	199000		500		ug/L		03/20/23 09:01	03/21/23 20:01	1
Iron	22900		100		ug/L		03/20/23 09:01	03/21/23 20:01	1
Magnesium	23600		500		ug/L		03/20/23 09:01	03/21/23 20:01	1
Molybdenum	10.0	U	10.0		ug/L		03/20/23 09:01	03/21/23 20:01	1
Potassium	11200		1000		ug/L		03/20/23 09:01	03/21/23 20:01	1
Selenium	20.0	U	20.0		ug/L		03/20/23 09:01	03/21/23 20:01	1
Sodium	34600		2000		ug/L		03/20/23 09:01	03/21/23 20:01	1

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Aluminum	327		100		ug/L		03/20/23 09:01	03/21/23 17:06	1
Antimony	5.00	U	5.00		ug/L		03/20/23 09:01	03/21/23 17:06	1
Arsenic	31.0		3.00		ug/L		03/20/23 09:01	03/22/23 08:36	1
Barium	77.9		5.00		ug/L		03/20/23 09:01	03/21/23 17:06	1
Beryllium	0.500	U	0.500		ug/L		03/20/23 09:01	03/21/23 17:06	1
Cadmium	0.500	U	0.500		ug/L		03/20/23 09:01	03/21/23 17:06	1
Chromium	5.00	U	5.00		ug/L		03/20/23 09:01	03/21/23 17:06	1
Cobalt	0.500	U	0.500		ug/L		03/20/23 09:01	03/21/23 17:06	1
Lead	2.50	U	2.50		ug/L		03/20/23 09:01	03/22/23 08:36	1
Nickel	5.00	U	5.00		ug/L		03/20/23 09:01	03/21/23 17:06	1
Silver	1.00	U	1.00		ug/L		03/20/23 09:01	03/21/23 17:06	1
Thallium	1.00	U	1.00		ug/L		03/20/23 09:01	03/22/23 08:36	1
Zinc	20.0	U	20.0		ug/L		03/20/23 09:01	03/21/23 17:06	1

Client: South Carolina Public Service Authority Project/Site: 125915/JM02.09.G01.1/36500

Lab Sample ID: 680-232195-27

Matrix: Water

Job ID: 680-232195-1

Client Sample ID: AF56403

Date Collected: 02/27/23 09:57 Date Received: 03/17/23 10:30

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Lithium	70.2		50.0		ug/L		03/23/23 14:19	03/24/23 23:26	1
Calcium	645000		500		ug/L		03/20/23 09:01	03/21/23 20:04	1
Iron	22000		100		ug/L		03/20/23 09:01	03/21/23 20:04	1
Magnesium	90500		500		ug/L		03/20/23 09:01	03/21/23 20:04	1
Molybdenum	10.0	U	10.0		ug/L		03/20/23 09:01	03/21/23 20:04	1
Potassium	28700		1000		ug/L		03/20/23 09:01	03/21/23 20:04	1
Selenium	20.0	U	20.0		ug/L		03/20/23 09:01	03/21/23 20:04	1
Sodium	156000		2000		ug/L		03/20/23 09:01	03/21/23 20:04	1

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Aluminum	100	U	100		ug/L		03/20/23 09:01	03/21/23 17:10	1
Antimony	5.00	U	5.00		ug/L		03/20/23 09:01	03/21/23 17:10	1
Arsenic	3.00	U	3.00		ug/L		03/20/23 09:01	03/22/23 08:40	1
Barium	318		5.00		ug/L		03/20/23 09:01	03/21/23 17:10	1
Beryllium	0.500	U	0.500		ug/L		03/20/23 09:01	03/21/23 17:10	1
Cadmium	0.500	U	0.500		ug/L		03/20/23 09:01	03/21/23 17:10	1
Chromium	5.00	U	5.00		ug/L		03/20/23 09:01	03/21/23 17:10	1
Cobalt	0.500	U	0.500		ug/L		03/20/23 09:01	03/21/23 17:10	1
Lead	2.50	U	2.50		ug/L		03/20/23 09:01	03/22/23 08:40	1
Nickel	5.00	U	5.00		ug/L		03/20/23 09:01	03/21/23 17:10	1
Silver	1.00	U	1.00		ug/L		03/20/23 09:01	03/21/23 17:10	1
Thallium	1.00	U	1.00		ug/L		03/20/23 09:01	03/22/23 08:40	1
Zinc	20.0	U	20.0		ug/L		03/20/23 09:01	03/21/23 17:10	1

Client: South Carolina Public Service Authority Project/Site: 125915/JM02.09.G01.1/36500

Lab Sample ID: 680-232195-28 **Client Sample ID: AF56404** Date Collected: 02/27/23 10:02

Matrix: Water

Job ID: 680-232195-1

Date Received: 03/17/23 10:30

Method: SW846 6010D - Met	tals (ICP) - Dissolved	d							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Lithium	64.9		50.0		ug/L		03/23/23 14:19	03/24/23 23:31	1
Calcium	653000		500		ug/L		03/20/23 09:01	03/21/23 20:08	1
Iron	22200		100		ug/L		03/20/23 09:01	03/21/23 20:08	1
Magnesium	91700		500		ug/L		03/20/23 09:01	03/21/23 20:08	1
Molybdenum	10.0	U	10.0		ug/L		03/20/23 09:01	03/21/23 20:08	1
Potassium	28600		1000		ug/L		03/20/23 09:01	03/21/23 20:08	1
Selenium	20.0	U	20.0		ug/L		03/20/23 09:01	03/21/23 20:08	1
Sodium	158000		2000		ug/L		03/20/23 09:01	03/21/23 20:08	1

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Aluminum	100	U	100		ug/L		03/20/23 09:01	03/21/23 17:14	1
Antimony	5.00	U	5.00		ug/L		03/20/23 09:01	03/21/23 17:14	1
Arsenic	3.00	U	3.00		ug/L		03/20/23 09:01	03/22/23 08:43	1
Barium	313		5.00		ug/L		03/20/23 09:01	03/21/23 17:14	1
Beryllium	0.500	U	0.500		ug/L		03/20/23 09:01	03/21/23 17:14	1
Cadmium	0.500	U	0.500		ug/L		03/20/23 09:01	03/21/23 17:14	1
Chromium	5.00	U	5.00		ug/L		03/20/23 09:01	03/21/23 17:14	1
Cobalt	0.500	U	0.500		ug/L		03/20/23 09:01	03/21/23 17:14	1
Lead	2.50	U	2.50		ug/L		03/20/23 09:01	03/22/23 08:43	1
Nickel	5.00	U	5.00		ug/L		03/20/23 09:01	03/21/23 17:14	1
Silver	1.00	U	1.00		ug/L		03/20/23 09:01	03/21/23 17:14	1
Thallium	1.00	U	1.00		ug/L		03/20/23 09:01	03/22/23 08:43	1
Zinc	20.0	U	20.0		ug/L		03/20/23 09:01	03/21/23 17:14	1

Client: South Carolina Public Service Authority Project/Site: 125915/JM02.09.G01.1/36500

Lab Sample ID: 680-232195-29

Matrix: Water

Job ID: 680-232195-1

Client Sample ID: AF56434

Date Collected: 02/27/23 15:44 Date Received: 03/17/23 10:30

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Lithium	50.0	U	50.0		ug/L		03/23/23 14:19	03/24/23 23:36	1
Calcium	60500		500		ug/L		03/20/23 09:01	03/21/23 20:17	1
Iron	2930		100		ug/L		03/20/23 09:01	03/21/23 20:17	1
Magnesium	1910		500		ug/L		03/20/23 09:01	03/21/23 20:17	1
Molybdenum	10.0	U	10.0		ug/L		03/20/23 09:01	03/21/23 20:17	1
Potassium	1000	U	1000		ug/L		03/20/23 09:01	03/21/23 20:17	1
Selenium	20.0	U	20.0		ug/L		03/20/23 09:01	03/21/23 20:17	1
Sodium	4740		2000		ug/L		03/20/23 09:01	03/21/23 20:17	1

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Aluminum	929		100		ug/L		03/20/23 09:01	03/21/23 17:18	1
Antimony	5.00	U	5.00		ug/L		03/20/23 09:01	03/21/23 17:18	1
Arsenic	3.00	U	3.00		ug/L		03/20/23 09:01	03/22/23 08:47	1
Barium	38.9		5.00		ug/L		03/20/23 09:01	03/21/23 17:18	1
Beryllium	0.500	U	0.500		ug/L		03/20/23 09:01	03/21/23 17:18	1
Cadmium	0.500	U	0.500		ug/L		03/20/23 09:01	03/21/23 17:18	1
Chromium	5.00	U	5.00		ug/L		03/20/23 09:01	03/21/23 17:18	1
Cobalt	2.41		0.500		ug/L		03/20/23 09:01	03/21/23 17:18	1
Lead	2.50	U	2.50		ug/L		03/20/23 09:01	03/22/23 08:47	1
Nickel	5.00	U	5.00		ug/L		03/20/23 09:01	03/21/23 17:18	1
Silver	1.00	U	1.00		ug/L		03/20/23 09:01	03/21/23 17:18	1
Thallium	1.00	U	1.00		ug/L		03/20/23 09:01	03/22/23 08:47	1
Zinc	68.5		20.0		ug/L		03/20/23 09:01	03/21/23 17:18	1

Client: South Carolina Public Service Authority Project/Site: 125915/JM02.09.G01.1/36500

Client Sample ID: AF56433

Lab Sample ID: 680-232195-30

Matrix: Water

Job ID: 680-232195-1

Date Collected: 02/28/23 12:58 Date Received: 03/17/23 10:30

Method: SW846 6010D - Met	tals (ICP) - Dissolve	d							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Lithium	50.0	U	50.0		ug/L		03/23/23 14:19	03/24/23 23:41	1
Calcium	448000		500		ug/L		03/20/23 09:01	03/21/23 20:21	1
Iron	16300		100		ug/L		03/20/23 09:01	03/21/23 20:21	1
Magnesium	12900		500		ug/L		03/20/23 09:01	03/21/23 20:21	1
Molybdenum	10.0	U	10.0		ug/L		03/20/23 09:01	03/21/23 20:21	1
Potassium	5750		1000		ug/L		03/20/23 09:01	03/21/23 20:21	1
Selenium	20.0	U	20.0		ug/L		03/20/23 09:01	03/21/23 20:21	1
Sodium	10800		2000		ug/L		03/20/23 09:01	03/21/23 20:21	1

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Aluminum	100	U	100		ug/L		03/20/23 09:01	03/21/23 17:22	1
Antimony	5.00	U	5.00		ug/L		03/20/23 09:01	03/21/23 17:22	1
Arsenic	3.00	U	3.00		ug/L		03/20/23 09:01	03/22/23 09:03	1
Barium	53.8		5.00		ug/L		03/20/23 09:01	03/21/23 17:22	1
Beryllium	0.500	U	0.500		ug/L		03/20/23 09:01	03/21/23 17:22	1
Cadmium	0.500	U	0.500		ug/L		03/20/23 09:01	03/21/23 17:22	1
Chromium	5.00	U	5.00		ug/L		03/20/23 09:01	03/21/23 17:22	1
Cobalt	0.500	U	0.500		ug/L		03/20/23 09:01	03/21/23 17:22	1
Lead	2.50	U	2.50		ug/L		03/20/23 09:01	03/22/23 09:03	1
Nickel	5.00	U	5.00		ug/L		03/20/23 09:01	03/21/23 17:22	1
Silver	1.00	U	1.00		ug/L		03/20/23 09:01	03/21/23 17:22	1
Thallium	1.00	U	1.00		ug/L		03/20/23 09:01	03/22/23 09:03	1
Zinc	20.0	U	20.0		ug/L		03/20/23 09:01	03/21/23 17:22	1

_

Δ

5

7

8

3

11

12

Client: South Carolina Public Service Authority Project/Site: 125915/JM02.09.G01.1/36500

Lab Sample ID: 680-232195-31

Matrix: Water

Job ID: 680-232195-1

Client Sample ID: AF56435 Date Collected: 02/28/23 11:44

Date Received: 03/17/23 10:30

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Lithium	50.0	U	50.0		ug/L		03/23/23 14:19	03/24/23 23:45	1
Calcium	21900		500		ug/L		03/20/23 09:01	03/21/23 20:24	1
Iron	880		100		ug/L		03/20/23 09:01	03/21/23 20:24	1
Magnesium	892		500		ug/L		03/20/23 09:01	03/21/23 20:24	1
Molybdenum	10.0	U	10.0		ug/L		03/20/23 09:01	03/21/23 20:24	1
Potassium	1000	U	1000		ug/L		03/20/23 09:01	03/21/23 20:24	1
Selenium	20.0	U	20.0		ug/L		03/20/23 09:01	03/21/23 20:24	1
Sodium	3260		2000		ug/L		03/20/23 09:01	03/21/23 20:24	1

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Aluminum	3790		100		ug/L		03/20/23 09:01	03/21/23 17:33	1
Antimony	5.00	U	5.00		ug/L		03/20/23 09:01	03/21/23 17:33	1
Arsenic	8.02		3.00		ug/L		03/20/23 09:01	03/22/23 09:07	1
Barium	34.7		5.00		ug/L		03/20/23 09:01	03/21/23 17:33	1
Beryllium	0.500	U	0.500		ug/L		03/20/23 09:01	03/22/23 09:07	1
Cadmium	0.500	U	0.500		ug/L		03/20/23 09:01	03/21/23 17:33	1
Chromium	5.00	U	5.00		ug/L		03/20/23 09:01	03/21/23 17:33	1
Cobalt	1.29		0.500		ug/L		03/20/23 09:01	03/21/23 17:33	1
Lead	2.50	U	2.50		ug/L		03/20/23 09:01	03/22/23 09:07	1
Nickel	5.00	U	5.00		ug/L		03/20/23 09:01	03/21/23 17:33	1
Silver	1.00	U	1.00		ug/L		03/20/23 09:01	03/21/23 17:33	1
Thallium	1.00	U	1.00		ug/L		03/20/23 09:01	03/22/23 09:07	1
Zinc	20.0	U	20.0		ug/L		03/20/23 09:01	03/21/23 17:33	1

Client: South Carolina Public Service Authority Project/Site: 125915/JM02.09.G01.1/36500

Lab Sample ID: 680-232195-32

Matrix: Water

Job ID: 680-232195-1

Client Sample ID: AF56436

Date Collected: 02/28/23 10:19 Date Received: 03/17/23 10:30

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Lithium	50.0	U	50.0		ug/L		03/23/23 14:19	03/24/23 23:50	1
Calcium	92200		500		ug/L		03/20/23 09:01	03/21/23 20:30	1
Iron	771		100		ug/L		03/20/23 09:01	03/21/23 20:30	1
Magnesium	2500		500		ug/L		03/20/23 09:01	03/21/23 20:30	1
Molybdenum	10.0	U	10.0		ug/L		03/20/23 09:01	03/21/23 20:30	1
Potassium	1580		1000		ug/L		03/20/23 09:01	03/21/23 20:30	1
Selenium	20.0	U	20.0		ug/L		03/20/23 09:01	03/21/23 20:30	1
Sodium	5430		2000		ug/L		03/20/23 09:01	03/21/23 20:30	1

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Aluminum	100	U	100		ug/L		03/20/23 09:01	03/21/23 17:41	1
Antimony	5.00	U	5.00		ug/L		03/20/23 09:01	03/21/23 17:41	1
Arsenic	3.00	U	3.00		ug/L		03/20/23 09:01	03/22/23 09:15	1
Barium	37.2		5.00		ug/L		03/20/23 09:01	03/21/23 17:41	1
Beryllium	0.500	U	0.500		ug/L		03/20/23 09:01	03/22/23 09:15	1
Cadmium	0.500	U	0.500		ug/L		03/20/23 09:01	03/21/23 17:41	1
Chromium	5.00	U	5.00		ug/L		03/20/23 09:01	03/21/23 17:41	1
Cobalt	0.500	U	0.500		ug/L		03/20/23 09:01	03/21/23 17:41	1
Lead	2.50	U	2.50		ug/L		03/20/23 09:01	03/22/23 09:15	1
Nickel	5.00	U	5.00		ug/L		03/20/23 09:01	03/21/23 17:41	1
Silver	1.00	U	1.00		ug/L		03/20/23 09:01	03/21/23 17:41	1
Thallium	1.00	U	1.00		ug/L		03/20/23 09:01	03/22/23 09:15	1
Zinc	42.9		20.0		ug/L		03/20/23 09:01	03/21/23 17:41	1

5

7

8

10

11

13

Client: South Carolina Public Service Authority Project/Site: 125915/JM02.09.G01.1/36500

Lab Sample ID: 680-232195-33

Matrix: Water

Job ID: 680-232195-1

Client Sample ID: AF56437

Date Collected: 02/28/23 10:24 Date Received: 03/17/23 10:30

Method: SW846 6010D - Metals	(ICP) - Dissolve	d							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Lithium	50.0	U	50.0		ug/L		03/23/23 14:19	03/24/23 23:55	1
Calcium	93200		500		ug/L		03/20/23 09:01	03/21/23 20:27	1
Iron	1200		100		ug/L		03/20/23 09:01	03/21/23 20:27	1
Magnesium	1750		500		ug/L		03/20/23 09:01	03/21/23 20:27	1
Molybdenum	10.0	U	10.0		ug/L		03/20/23 09:01	03/21/23 20:27	1
Potassium	1260		1000		ug/L		03/20/23 09:01	03/21/23 20:27	1
Selenium	20.0	U	20.0		ug/L		03/20/23 09:01	03/21/23 20:27	1
Sodium	3590		2000		ug/L		03/20/23 09:01	03/21/23 20:27	1

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Aluminum	100	U	100		ug/L		03/20/23 09:01	03/21/23 17:37	1
Antimony	5.00	U	5.00		ug/L		03/20/23 09:01	03/21/23 17:37	1
Arsenic	3.00	U	3.00		ug/L		03/20/23 09:01	03/22/23 09:11	1
Barium	36.8		5.00		ug/L		03/20/23 09:01	03/21/23 17:37	1
Beryllium	0.500	U	0.500		ug/L		03/20/23 09:01	03/22/23 09:11	1
Cadmium	0.500	U	0.500		ug/L		03/20/23 09:01	03/21/23 17:37	1
Chromium	5.00	U	5.00		ug/L		03/20/23 09:01	03/21/23 17:37	1
Cobalt	0.500	U	0.500		ug/L		03/20/23 09:01	03/21/23 17:37	1
Lead	2.50	U	2.50		ug/L		03/20/23 09:01	03/22/23 09:11	1
Nickel	5.00	U	5.00		ug/L		03/20/23 09:01	03/21/23 17:37	1
Silver	1.00	U	1.00		ug/L		03/20/23 09:01	03/21/23 17:37	1
Thallium	1.00	U	1.00		ug/L		03/20/23 09:01	03/22/23 09:11	1
Zinc	20.0	U	20.0		ug/L		03/20/23 09:01	03/21/23 17:37	1

3/28/2023

4

6

8

9

10

12

13

Client: South Carolina Public Service Authority Project/Site: 125915/JM02.09.G01.1/36500

Lab Sample ID: 680-232195-34

Matrix: Water

Job ID: 680-232195-1

Client Sample ID: AF56438

Date Collected: 02/28/23 14:31 Date Received: 03/17/23 10:30

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Lithium	50.0	U	50.0		ug/L		03/23/23 14:19	03/25/23 00:13	1
Calcium	296000		500		ug/L		03/20/23 13:39	03/21/23 11:21	1
Iron	1040		100		ug/L		03/20/23 13:39	03/21/23 11:21	1
Magnesium	28800		500		ug/L		03/20/23 13:39	03/21/23 11:21	1
Molybdenum	10.0	U	10.0		ug/L		03/20/23 13:39	03/21/23 11:21	1
Potassium	6790		1000		ug/L		03/20/23 13:39	03/21/23 11:21	1
Selenium	20.0	U	20.0		ug/L		03/20/23 13:39	03/21/23 11:21	1
Sodium	18000		2000		ug/L		03/20/23 13:39	03/21/23 11:21	1

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Aluminum	100	U	100		ug/L		03/20/23 13:39	03/21/23 22:43	1
Antimony	5.00	U	5.00		ug/L		03/20/23 13:39	03/21/23 22:43	1
Arsenic	3.00	U	3.00		ug/L		03/20/23 13:39	03/21/23 22:43	1
Barium	41.2		5.00		ug/L		03/20/23 13:39	03/21/23 22:43	1
Beryllium	0.500	U	0.500		ug/L		03/20/23 13:39	03/21/23 22:43	1
Cadmium	0.500	U	0.500		ug/L		03/20/23 13:39	03/21/23 22:43	1
Chromium	5.00	U	5.00		ug/L		03/20/23 13:39	03/21/23 22:43	1
Cobalt	0.500	U	0.500		ug/L		03/20/23 13:39	03/21/23 22:43	1
Lead	2.50	U	2.50		ug/L		03/20/23 13:39	03/21/23 22:43	1
Nickel	5.00	U	5.00		ug/L		03/20/23 13:39	03/21/23 22:43	1
Silver	1.00	U	1.00		ug/L		03/20/23 13:39	03/21/23 22:43	1
Thallium	1.00	U	1.00		ug/L		03/20/23 13:39	03/21/23 22:43	1
Zinc	20.0	U	20.0		ug/L		03/20/23 13:39	03/21/23 22:43	1

3

4

6

8

40

11

13

Client: South Carolina Public Service Authority Project/Site: 125915/JM02.09.G01.1/36500

Lab Sample ID: 680-232195-35

Matrix: Water

Job ID: 680-232195-1

Client Sample ID: AF56409

Date Collected: 03/06/23 12:14 Date Received: 03/17/23 10:30

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Lithium	118		50.0		ug/L		03/23/23 14:19	03/25/23 00:18	1
Calcium	1140000		5000		ug/L		03/20/23 13:39	03/22/23 12:16	10
Iron	100	U	100		ug/L		03/20/23 13:39	03/21/23 11:24	1
Magnesium	30500		500		ug/L		03/20/23 13:39	03/21/23 11:24	1
Molybdenum	10.0	U	10.0		ug/L		03/20/23 13:39	03/21/23 11:24	1
Potassium	15500		1000		ug/L		03/20/23 13:39	03/21/23 11:24	1
Selenium	20.0	U	20.0		ug/L		03/20/23 13:39	03/21/23 11:24	1
Sodium	139000		2000		ug/L		03/20/23 13:39	03/21/23 11:24	1

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Aluminum	100	U	100		ug/L		03/20/23 13:39	03/21/23 22:47	1
Antimony	5.00	U	5.00		ug/L		03/20/23 13:39	03/21/23 22:47	1
Arsenic	15.2		3.00		ug/L		03/20/23 13:39	03/21/23 22:47	1
Barium	54.6		5.00		ug/L		03/20/23 13:39	03/21/23 22:47	1
Beryllium	0.500	U	0.500		ug/L		03/20/23 13:39	03/21/23 22:47	1
Cadmium	0.500	U	0.500		ug/L		03/20/23 13:39	03/21/23 22:47	1
Chromium	13.2		5.00		ug/L		03/20/23 13:39	03/21/23 22:47	1
Cobalt	0.500	U	0.500		ug/L		03/20/23 13:39	03/21/23 22:47	1
Lead	2.50	U	2.50		ug/L		03/20/23 13:39	03/21/23 22:47	1
Nickel	5.00	U	5.00		ug/L		03/20/23 13:39	03/21/23 22:47	1
Silver	1.00	U	1.00		ug/L		03/20/23 13:39	03/21/23 22:47	1
Thallium	1.00	U	1.00		ug/L		03/20/23 13:39	03/21/23 22:47	1
Zinc	20.0	U	20.0		ug/L		03/20/23 13:39	03/21/23 22:47	1

Client: South Carolina Public Service Authority Project/Site: 125915/JM02.09.G01.1/36500

Client Sample ID: AF56410 Lab Sample ID: 680-232195-36

Matrix: Water

Job ID: 680-232195-1

Date Collected: 03/06/23 12:19 Date Received: 03/17/23 10:30

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Lithium	109		50.0		ug/L	— <u>-</u>	03/23/23 14:19	03/25/23 00:23	1
Calcium	1160000		5000		ug/L		03/20/23 13:39	03/22/23 12:13	10
Iron	113		100		ug/L		03/20/23 13:39	03/21/23 11:08	1
Magnesium	30800		500		ug/L		03/20/23 13:39	03/21/23 11:08	1
Molybdenum	10.0	U	10.0		ug/L		03/20/23 13:39	03/21/23 11:08	1
Potassium	15700		1000		ug/L		03/20/23 13:39	03/21/23 11:08	1
Selenium	20.0	U	20.0		ug/L		03/20/23 13:39	03/21/23 11:08	1
Sodium	140000		2000		ug/L		03/20/23 13:39	03/21/23 11:08	1

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Aluminum	100	U	100		ug/L		03/20/23 13:39	03/21/23 22:27	1
Antimony	5.00	U	5.00		ug/L		03/20/23 13:39	03/21/23 22:27	1
Arsenic	13.0		3.00		ug/L		03/20/23 13:39	03/21/23 22:27	1
Barium	56.5		5.00		ug/L		03/20/23 13:39	03/21/23 22:27	1
Beryllium	0.500	U	0.500		ug/L		03/20/23 13:39	03/21/23 22:27	1
Cadmium	0.500	U	0.500		ug/L		03/20/23 13:39	03/21/23 22:27	1
Chromium	5.00	U	5.00		ug/L		03/20/23 13:39	03/21/23 22:27	1
Cobalt	0.500	U	0.500		ug/L		03/20/23 13:39	03/21/23 22:27	1
Lead	2.50	U	2.50		ug/L		03/20/23 13:39	03/21/23 22:27	1
Nickel	5.00	U	5.00		ug/L		03/20/23 13:39	03/21/23 22:27	1
Silver	1.00	U	1.00		ug/L		03/20/23 13:39	03/21/23 22:27	1
Thallium	1.00	U	1.00		ug/L		03/20/23 13:39	03/21/23 22:27	1
Zinc	20.0	U	20.0		ug/L		03/20/23 13:39	03/21/23 22:27	1

Client: South Carolina Public Service Authority Project/Site: 125915/JM02.09.G01.1/36500

Client Sample ID: AF56411

Lab Sample ID: 680-232195-37

Matrix: Water

Job ID: 680-232195-1

Date Collected: 03/06/23 11:08 Date Received: 03/17/23 10:30

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Lithium	92.4		50.0		ug/L		03/23/23 14:21	03/25/23 00:37	1
Calcium	849000		5000		ug/L		03/20/23 13:39	03/22/23 12:19	10
Iron	100	U	100		ug/L		03/20/23 13:39	03/21/23 11:37	1
Magnesium	42600		500		ug/L		03/20/23 13:39	03/21/23 11:37	1
Molybdenum	10.0	U	10.0		ug/L		03/20/23 13:39	03/21/23 11:37	1
Potassium	13800		1000		ug/L		03/20/23 13:39	03/21/23 11:37	1
Selenium	20.0	U	20.0		ug/L		03/20/23 13:39	03/21/23 11:37	1
Sodium	126000		2000		ug/L		03/20/23 13:39	03/21/23 11:37	1

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Aluminum	100	U	100		ug/L		03/20/23 13:39	03/21/23 23:02	1
Antimony	5.00	U	5.00		ug/L		03/20/23 13:39	03/21/23 23:02	1
Arsenic	7.06		3.00		ug/L		03/20/23 13:39	03/21/23 23:02	1
Barium	108		5.00		ug/L		03/20/23 13:39	03/21/23 23:02	1
Beryllium	0.500	U	0.500		ug/L		03/20/23 13:39	03/21/23 23:02	1
Cadmium	0.500	U	0.500		ug/L		03/20/23 13:39	03/21/23 23:02	1
Chromium	5.00	U	5.00		ug/L		03/20/23 13:39	03/21/23 23:02	1
Cobalt	0.500	U	0.500		ug/L		03/20/23 13:39	03/21/23 23:02	1
Lead	2.50	U	2.50		ug/L		03/20/23 13:39	03/21/23 23:02	1
Nickel	5.00	U	5.00		ug/L		03/20/23 13:39	03/21/23 23:02	1
Silver	1.00	U	1.00		ug/L		03/20/23 13:39	03/21/23 23:02	1
Thallium	1.00	U	1.00		ug/L		03/20/23 13:39	03/21/23 23:02	1
Zinc	35.7		20.0		ug/L		03/20/23 13:39	03/21/23 23:02	1

_

Δ

5

7

8

9

10

12

Client: South Carolina Public Service Authority Project/Site: 125915/JM02.09.G01.1/36500

Lab Sample ID: 680-232195-38 **Client Sample ID: AF56412** Date Collected: 03/06/23 15:15

Matrix: Water

Job ID: 680-232195-1

Date Received: 03/17/23 10:30

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Lithium	64.6		50.0		ug/L		03/23/23 14:21	03/25/23 00:55	1
Calcium	698000		500		ug/L		03/20/23 13:39	03/21/23 11:30	1
Iron	1420		100		ug/L		03/20/23 13:39	03/21/23 11:30	1
Magnesium	29900		500		ug/L		03/20/23 13:39	03/21/23 11:30	1
Molybdenum	10.0	U	10.0		ug/L		03/20/23 13:39	03/21/23 11:30	1
Potassium	7230		1000		ug/L		03/20/23 13:39	03/21/23 11:30	1
Selenium	20.0	U	20.0		ug/L		03/20/23 13:39	03/21/23 11:30	1
Sodium	107000		2000		ug/L		03/20/23 13:39	03/21/23 11:30	1

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Aluminum	100	U	100		ug/L		03/20/23 13:39	03/21/23 22:55	1
Antimony	5.00	U	5.00		ug/L		03/20/23 13:39	03/21/23 22:55	1
Arsenic	6.71		3.00		ug/L		03/20/23 13:39	03/21/23 22:55	1
Barium	158		5.00		ug/L		03/20/23 13:39	03/21/23 22:55	1
Beryllium	0.500	U	0.500		ug/L		03/20/23 13:39	03/21/23 22:55	1
Cadmium	0.500	U	0.500		ug/L		03/20/23 13:39	03/21/23 22:55	1
Chromium	5.00	U	5.00		ug/L		03/20/23 13:39	03/21/23 22:55	1
Cobalt	0.500	U	0.500		ug/L		03/20/23 13:39	03/21/23 22:55	1
Lead	2.50	U	2.50		ug/L		03/20/23 13:39	03/21/23 22:55	1
Nickel	5.00	U	5.00		ug/L		03/20/23 13:39	03/21/23 22:55	1
Silver	1.00	U	1.00		ug/L		03/20/23 13:39	03/21/23 22:55	1
Thallium	1.00	U	1.00		ug/L		03/20/23 13:39	03/21/23 22:55	1
Zinc	20.0	U	20.0		ug/L		03/20/23 13:39	03/21/23 22:55	1

3/28/2023

Client: South Carolina Public Service Authority Project/Site: 125915/JM02.09.G01.1/36500

Lab Sample ID: 680-232195-39

Matrix: Water

Job ID: 680-232195-1

Client Sample ID: AF56413

Date Collected: 03/06/23 13:41 Date Received: 03/17/23 10:30

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Lithium	50.0	U	50.0		ug/L		03/23/23 14:21	03/25/23 01:18	1
Calcium	161000		500		ug/L		03/20/23 13:39	03/21/23 11:27	1
Iron	7850		100		ug/L		03/20/23 13:39	03/21/23 11:27	1
Magnesium	11100		500		ug/L		03/20/23 13:39	03/21/23 11:27	1
Molybdenum	10.0	U	10.0		ug/L		03/20/23 13:39	03/21/23 11:27	1
Potassium	4680		1000		ug/L		03/20/23 13:39	03/21/23 11:27	1
Selenium	20.0	U	20.0		ug/L		03/20/23 13:39	03/21/23 11:27	1
Sodium	71500		2000		ug/L		03/20/23 13:39	03/21/23 11:27	1

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Aluminum	100	U	100		ug/L		03/20/23 13:39	03/21/23 22:51	1
Antimony	5.00	U	5.00		ug/L		03/20/23 13:39	03/21/23 22:51	1
Arsenic	3.00	U	3.00		ug/L		03/20/23 13:39	03/21/23 22:51	1
Barium	85.5		5.00		ug/L		03/20/23 13:39	03/21/23 22:51	1
Beryllium	0.500	U	0.500		ug/L		03/20/23 13:39	03/21/23 22:51	1
Cadmium	0.500	U	0.500		ug/L		03/20/23 13:39	03/21/23 22:51	1
Chromium	5.00	U	5.00		ug/L		03/20/23 13:39	03/21/23 22:51	1
Cobalt	0.955		0.500		ug/L		03/20/23 13:39	03/21/23 22:51	1
Lead	2.50	U	2.50		ug/L		03/20/23 13:39	03/21/23 22:51	1
Nickel	5.00	U	5.00		ug/L		03/20/23 13:39	03/21/23 22:51	1
Silver	1.00	U	1.00		ug/L		03/20/23 13:39	03/21/23 22:51	1
Thallium	1.00	U	1.00		ug/L		03/20/23 13:39	03/21/23 22:51	1
Zinc	20.0	U	20.0		ug/L		03/20/23 13:39	03/21/23 22:51	1

Client: South Carolina Public Service Authority Project/Site: 125915/JM02.09.G01.1/36500

Job ID: 680-232195-1

Lab Sample ID: 680-232195-40 Matrix: Water

Date Collected: 03/06/23 10:10 Date Received: 03/17/23 10:30

Client Sample ID: AF56430

Method: SW846 6010D - Me	tals (ICP) - Dissolve	d							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Lithium	50.0	U	50.0		ug/L		03/23/23 14:21	03/25/23 01:23	1
Calcium	448000		500		ug/L		03/20/23 13:39	03/21/23 11:11	1
Iron	32200		100		ug/L		03/20/23 13:39	03/21/23 11:11	1
Magnesium	72300		500		ug/L		03/20/23 13:39	03/21/23 11:11	1
Molybdenum	10.0	U	10.0		ug/L		03/20/23 13:39	03/21/23 11:11	1
Potassium	6530		1000		ug/L		03/20/23 13:39	03/21/23 11:11	1
Selenium	20.0	U	20.0		ug/L		03/20/23 13:39	03/21/23 11:11	1
Sodium	87300		2000		ug/L		03/20/23 13:39	03/21/23 11:11	1

Method: SW846 6020B -	Metals (ICP/MS) - Disse	olved							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Aluminum	100	U	100		ug/L		03/20/23 13:39	03/21/23 22:31	1
Antimony	5.00	U	5.00		ug/L		03/20/23 13:39	03/21/23 22:31	1
Arsenic	3.00	U	3.00		ug/L		03/20/23 13:39	03/21/23 22:31	1
Barium	48.0		5.00		ug/L		03/20/23 13:39	03/21/23 22:31	1
Beryllium	0.500	U	0.500		ug/L		03/20/23 13:39	03/21/23 22:31	1
Cadmium	0.500	U	0.500		ug/L		03/20/23 13:39	03/21/23 22:31	1
Chromium	5.00	U	5.00		ug/L		03/20/23 13:39	03/21/23 22:31	1
Cobalt	6.15		0.500		ug/L		03/20/23 13:39	03/21/23 22:31	1
Lead	2.50	U	2.50		ug/L		03/20/23 13:39	03/21/23 22:31	1
Nickel	5.00	U	5.00		ug/L		03/20/23 13:39	03/21/23 22:31	1
Silver	1.00	U	1.00		ug/L		03/20/23 13:39	03/21/23 22:31	1
Thallium	1.00	U	1.00		ug/L		03/20/23 13:39	03/21/23 22:31	1
Zinc	20.0	U	20.0		ug/L		03/20/23 13:39	03/21/23 22:31	1

Client: South Carolina Public Service Authority Project/Site: 125915/JM02.09.G01.1/36500

Client Sample ID: AF56406

Lab Sample ID: 680-232195-41 Date Collected: 03/09/23 10:29 Matrix: Water

Date Received: 03/17/23 10:30

Method: SW846 6010D - M	etals (ICP) - Dissolve	d							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Lithium	50.0	U	50.0		ug/L		03/23/23 14:21	03/25/23 01:28	1
Calcium	194000		500		ug/L		03/20/23 13:39	03/21/23 11:40	1
Iron	1380		100		ug/L		03/20/23 13:39	03/21/23 11:40	1
Magnesium	17000		500		ug/L		03/20/23 13:39	03/21/23 11:40	1
Molybdenum	10.0	U	10.0		ug/L		03/20/23 13:39	03/21/23 11:40	1
Potassium	4650		1000		ug/L		03/20/23 13:39	03/21/23 11:40	1
Selenium	20.0	U	20.0		ug/L		03/20/23 13:39	03/21/23 11:40	1
Sodium	43100		2000		ug/L		03/20/23 13:39	03/21/23 11:40	1

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Aluminum	1740		100		ug/L		03/20/23 13:39	03/21/23 23:06	1
Antimony	5.00	U	5.00		ug/L		03/20/23 13:39	03/21/23 23:06	1
Arsenic	3.00	U	3.00		ug/L		03/20/23 13:39	03/21/23 23:06	1
Barium	38.2		5.00		ug/L		03/20/23 13:39	03/21/23 23:06	1
Beryllium	0.500	U	0.500		ug/L		03/20/23 13:39	03/21/23 23:06	1
Cadmium	0.500	U	0.500		ug/L		03/20/23 13:39	03/21/23 23:06	1
Chromium	5.00	U	5.00		ug/L		03/20/23 13:39	03/21/23 23:06	1
Cobalt	1.83		0.500		ug/L		03/20/23 13:39	03/21/23 23:06	1
Lead	2.50	U	2.50		ug/L		03/20/23 13:39	03/21/23 23:06	1
Nickel	5.00	U	5.00		ug/L		03/20/23 13:39	03/21/23 23:06	1
Silver	1.00	U	1.00		ug/L		03/20/23 13:39	03/21/23 23:06	1
Thallium	1.00	U	1.00		ug/L		03/20/23 13:39	03/21/23 23:06	1
Zinc	40.6		20.0		ug/L		03/20/23 13:39	03/21/23 23:06	1

Job ID: 680-232195-1

Client: South Carolina Public Service Authority Project/Site: 125915/JM02.09.G01.1/36500

Lab Sample ID: 680-232195-42 Matrix: Water

Job ID: 680-232195-1

Client Sample ID: AF56407 Date Collected: 03/09/23 10:34

Date Received: 03/17/23 10:30

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Lithium	50.0	U	50.0		ug/L		03/23/23 14:21	03/25/23 01:32	1
Calcium	210000		500		ug/L		03/20/23 13:39	03/21/23 11:43	1
Iron	1430		100		ug/L		03/20/23 13:39	03/21/23 11:43	1
Magnesium	18500		500		ug/L		03/20/23 13:39	03/21/23 11:43	1
Molybdenum	10.0	U	10.0		ug/L		03/20/23 13:39	03/21/23 11:43	1
Potassium	5200		1000		ug/L		03/20/23 13:39	03/21/23 11:43	1
Selenium	20.0	U	20.0		ug/L		03/20/23 13:39	03/21/23 11:43	1
Sodium	46500		2000		ug/L		03/20/23 13:39	03/21/23 11:43	1

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Aluminum	1590		100		ug/L		03/20/23 13:39	03/21/23 23:10	1
Antimony	5.00	U	5.00		ug/L		03/20/23 13:39	03/21/23 23:10	1
Arsenic	3.00	U	3.00		ug/L		03/20/23 13:39	03/21/23 23:10	1
Barium	38.7		5.00		ug/L		03/20/23 13:39	03/21/23 23:10	1
Beryllium	0.500	U	0.500		ug/L		03/20/23 13:39	03/21/23 23:10	1
Cadmium	0.500	U	0.500		ug/L		03/20/23 13:39	03/21/23 23:10	1
Chromium	5.00	U	5.00		ug/L		03/20/23 13:39	03/21/23 23:10	1
Cobalt	2.01		0.500		ug/L		03/20/23 13:39	03/21/23 23:10	1
Lead	2.50	U	2.50		ug/L		03/20/23 13:39	03/21/23 23:10	1
Nickel	5.00	U	5.00		ug/L		03/20/23 13:39	03/21/23 23:10	1
Silver	1.00	U	1.00		ug/L		03/20/23 13:39	03/21/23 23:10	1
Thallium	1.00	U	1.00		ug/L		03/20/23 13:39	03/21/23 23:10	1
Zinc	28.0		20.0		ug/L		03/20/23 13:39	03/21/23 23:10	1

_

Δ

5

7

8

9

11

12

1 A

Client: South Carolina Public Service Authority Project/Site: 125915/JM02.09.G01.1/36500

Job ID: 680-232195-1

Client Sample ID: AF56418

Lab Sample ID: 680-232195-43

Matrix: Water

Date Collected: 03/09/23 12:07 Date Received: 03/17/23 10:30

Analyte	Result Q	Qualifier RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Lithium	87.9	50.0		ug/L		03/23/23 14:21	03/25/23 01:37	1
Calcium	95500	500		ug/L		03/20/23 13:39	03/21/23 11:34	1
Iron	788	100		ug/L		03/20/23 13:39	03/21/23 11:34	1
Magnesium	7530	500		ug/L		03/20/23 13:39	03/21/23 11:34	1
Molybdenum	92.0	10.0		ug/L		03/20/23 13:39	03/21/23 11:34	1
Potassium	7660	1000		ug/L		03/20/23 13:39	03/21/23 11:34	1
Selenium	20.0 U	J 20.0		ug/L		03/20/23 13:39	03/21/23 11:34	1
Sodium	25300	2000		ug/L		03/20/23 13:39	03/21/23 11:34	1

Method: SW846 6020B - Analyte	, ,	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Analyte	Kesuit	Qualifier		MIDL					DII Fac
Aluminum	130		100		ug/L		03/20/23 13:39	03/21/23 22:59	1
Antimony	5.00	U	5.00		ug/L		03/20/23 13:39	03/21/23 22:59	1
Arsenic	229		3.00		ug/L		03/20/23 13:39	03/21/23 22:59	1
Barium	133		5.00		ug/L		03/20/23 13:39	03/21/23 22:59	1
Beryllium	0.500	U	0.500		ug/L		03/20/23 13:39	03/21/23 22:59	1
Cadmium	0.500	U	0.500		ug/L		03/20/23 13:39	03/21/23 22:59	1
Chromium	5.00	U	5.00		ug/L		03/20/23 13:39	03/21/23 22:59	1
Cobalt	2.16		0.500		ug/L		03/20/23 13:39	03/21/23 22:59	1
Lead	2.50	U	2.50		ug/L		03/20/23 13:39	03/21/23 22:59	1
Nickel	5.00	U	5.00		ug/L		03/20/23 13:39	03/21/23 22:59	1
Silver	1.00	U	1.00		ug/L		03/20/23 13:39	03/21/23 22:59	1
Thallium	1.00	U	1.00		ug/L		03/20/23 13:39	03/21/23 22:59	1
Zinc	20.0	U	20.0		ug/L		03/20/23 13:39	03/21/23 22:59	1

2

6

8

9

11

12

Client: South Carolina Public Service Authority Project/Site: 125915/JM02.09.G01.1/36500

Lab Sample ID: 680-232195-44

Job ID: 680-232195-1

Matrix: Water

Client Sample ID: AF56422

Date Collected: 03/09/23 13:19 Date Received: 03/17/23 10:30

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Lithium	50.0	U	50.0		ug/L		03/23/23 14:21	03/25/23 01:42	1
Calcium	248000		500		ug/L		03/20/23 13:39	03/21/23 11:05	1
Iron	6050		100		ug/L		03/20/23 13:39	03/21/23 11:05	1
Magnesium	8900		500		ug/L		03/20/23 13:39	03/21/23 11:05	1
Molybdenum	10.0	U	10.0		ug/L		03/20/23 13:39	03/21/23 11:05	1
Potassium	3850		1000		ug/L		03/20/23 13:39	03/21/23 11:05	1
Selenium	20.0	U	20.0		ug/L		03/20/23 13:39	03/21/23 11:05	1
Sodium	73300		2000		ug/L		03/20/23 13:39	03/21/23 11:05	1

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Aluminum	100	U	100		ug/L		03/20/23 13:39	03/21/23 22:23	1
Antimony	5.00	U	5.00		ug/L		03/20/23 13:39	03/21/23 22:23	1
Arsenic	3.54		3.00		ug/L		03/20/23 13:39	03/21/23 22:23	1
Barium	104		5.00		ug/L		03/20/23 13:39	03/21/23 22:23	1
Beryllium	0.500	U	0.500		ug/L		03/20/23 13:39	03/21/23 22:23	1
Cadmium	0.500	U	0.500		ug/L		03/20/23 13:39	03/21/23 22:23	1
Chromium	5.00	U	5.00		ug/L		03/20/23 13:39	03/21/23 22:23	1
Cobalt	0.500	U	0.500		ug/L		03/20/23 13:39	03/21/23 22:23	1
Lead	2.50	U	2.50		ug/L		03/20/23 13:39	03/21/23 22:23	1
Nickel	5.00	U	5.00		ug/L		03/20/23 13:39	03/21/23 22:23	1
Silver	1.00	U	1.00		ug/L		03/20/23 13:39	03/21/23 22:23	1
Thallium	1.00	U	1.00		ug/L		03/20/23 13:39	03/21/23 22:23	1
Zinc	48.0		20.0		ug/L		03/20/23 13:39	03/21/23 22:23	1

Client: South Carolina Public Service Authority Project/Site: 125915/JM02.09.G01.1/36500

Job ID: 680-232195-1

Prep Type: Total/NA

Prep Type: Total/NA

Prep Batch: 604819

Prep Type: Total/NA

Prep Batch: 604819

Prep Type: Total/NA

Prep Batch: 604820

Client Sample ID: Method Blank

Method: 6010D - Metals (ICP)

Lab Sample ID: MB 160-604817/1-A

Client Sample ID: Method Blank

Matrix: Water Prep Type: Total/NA Analysis Batch: 605060 Prep Batch: 604817

мв мв

Analyte Result Qualifier RL MDL Unit D Prepared Analyzed Dil Fac Lithium 50.0 U 50.0 ug/L 03/23/23 14:17 03/24/23 19:15

Lab Sample ID: LCS 160-604817/2-A Client Sample ID: Lab Control Sample

Matrix: Water

Analysis Batch: 605060

Prep Batch: 604817 Spike LCS LCS %Rec Result Qualifier Unit D %Rec Limits

Analyte Added Lithium 100 104.4 ug/L 104 80 - 120

Lab Sample ID: MB 160-604819/1-A Client Sample ID: Method Blank

Matrix: Water

Analysis Batch: 605060

MB MB

Analyte Result Qualifier RLMDL Unit Prepared Analyzed Dil Fac Lithium 50.0 U 50.0 03/23/23 14:19 03/24/23 21:45 ug/L

Lab Sample ID: LCS 160-604819/2-A Client Sample ID: Lab Control Sample

Matrix: Water

Analysis Batch: 605060

LCS LCS Spike %Rec

Added Analyte Result Qualifier Unit %Rec Limits Lithium 100 111.0 80 - 120 ug/L

Lab Sample ID: MB 160-604820/1-A

Matrix: Water

Analysis Batch: 605060

мв мв

Analyte Result Qualifier RL MDL Unit Prepared Analyzed Dil Fac Lithium 50.0 U 50.0 ug/L 03/23/23 14:21 03/25/23 00:28

Lab Sample ID: LCS 160-604820/2-A Client Sample ID: Lab Control Sample

Matrix: Water

Analysis Batch: 605060 Spike LCS LCS %Rec

Added Analyte Result Qualifier Unit D %Rec Limits Lithium 100 112.0 ug/L 112 80 - 120

Lab Sample ID: MB 680-768608/1-A

Client Sample ID: Method Blank Matrix: Water **Prep Type: Total Recoverable** Analysis Batch: 768929 **Prep Batch: 768608**

	MB	MB							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Calcium	500	U	500		ug/L		03/20/23 13:39	03/21/23 10:42	1
Iron	100	U	100		ug/L		03/20/23 13:39	03/21/23 10:42	1
Magnesium	500	U	500		ug/L		03/20/23 13:39	03/21/23 10:42	1
Molybdenum	10.0	U	10.0		ug/L		03/20/23 13:39	03/21/23 10:42	1
Potassium	1000	U	1000		ug/L		03/20/23 13:39	03/21/23 10:42	1
Selenium	20.0	U	20.0		ug/L		03/20/23 13:39	03/21/23 10:42	1
Sodium	2000	U	2000		ug/L		03/20/23 13:39	03/21/23 10:42	1
Iron Magnesium Molybdenum Potassium Selenium	100 500 10.0 1000 20.0	U U U U	100 500 10.0 1000 20.0		ug/L ug/L ug/L ug/L ug/L		03/20/23 13:39 03/20/23 13:39 03/20/23 13:39 03/20/23 13:39 03/20/23 13:39	03/21/23 10:42 03/21/23 10:42 03/21/23 10:42 03/21/23 10:42 03/21/23 10:42	

Eurofins Savannah

Prep Type: Total/NA Prep Batch: 604820

Client: South Carolina Public Service Authority Project/Site: 125915/JM02.09.G01.1/36500

Job ID: 680-232195-1

Method: 6010D - Metals (ICP) (Continued)

Lab Sample ID: LCS 680-768608/2-A Matrix: Water

Analysis Batch: 768929

Client Sample ID: Lab Control Sample Prep Type: Total Recoverable

Prep Batch: 768608

	Spike	LCS	LCS				%Rec	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Calcium	5000	5036		ug/L		101	80 - 120	
Iron	5000	5196		ug/L		104	80 - 120	
Magnesium	5010	5075		ug/L		101	80 - 120	
Molybdenum	100	101.3		ug/L		101	80 - 120	
Potassium	6970	7195		ug/L		103	80 - 120	
Selenium	100	91.14		ug/L		91	80 - 120	
Sodium	5050	4981		ug/L		99	80 - 120	

Lab Sample ID: MB 680-768859/1-A

Matrix: Water

Analysis Batch: 768929

Client Sample ID: Method Blank Prep Type: Total Recoverable

Prep Batch: 768859

	МВ	MB							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Calcium	500	U	500		ug/L		03/20/23 09:01	03/21/23 19:06	1
Iron	100	U	100		ug/L		03/20/23 09:01	03/21/23 19:06	1
Magnesium	500	U	500		ug/L		03/20/23 09:01	03/21/23 19:06	1
Molybdenum	10.0	U	10.0		ug/L		03/20/23 09:01	03/21/23 19:06	1
Potassium	1000	U	1000		ug/L		03/20/23 09:01	03/21/23 19:06	1
Selenium	20.0	U	20.0		ug/L		03/20/23 09:01	03/21/23 19:06	1
Sodium	2000	U	2000		ug/L		03/20/23 09:01	03/21/23 19:06	1

Lab Sample ID: LCS 680-768859/2-A

Matrix: Water

Analysis Batch: 768929

Client Sample ID: Lab Control Sample **Prep Type: Total Recoverable**

Prep Batch: 768859

7								
	Spike	LCS	LCS				%Rec	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Calcium	5000	5013		ug/L		100	80 - 120	
Iron	5000	5131		ug/L		103	80 - 120	
Magnesium	5010	5094		ug/L		102	80 - 120	
Molybdenum	100	100.7		ug/L		101	80 - 120	
Potassium	6970	7245		ug/L		104	80 - 120	
Selenium	100	95.19		ug/L		95	80 - 120	
Sodium	5050	5031		ug/L		100	80 - 120	

Lab Sample ID: MB 680-769547/1-A

Matrix: Water

Analysis Batch: 769727

Client Sample ID: Method Blank **Prep Type: Total Recoverable**

Prep Batch: 769547

Allalysis Datell. 103121								i iep bateii.	103341
	МВ	MB							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Calcium	500	U	500		ug/L		03/24/23 14:44	03/24/23 19:40	1
Iron	100	U	100		ug/L		03/24/23 14:44	03/24/23 19:40	1
Magnesium	500	U	500		ug/L		03/24/23 14:44	03/24/23 19:40	1
Molybdenum	10.0	U	10.0		ug/L		03/24/23 14:44	03/24/23 19:40	1
Potassium	1000	U	1000		ug/L		03/24/23 14:44	03/24/23 19:40	1
Selenium	20.0	U	20.0		ug/L		03/24/23 14:44	03/24/23 19:40	1
Sodium	2000	U	2000		ug/L		03/24/23 14:44	03/24/23 19:40	1
Molybdenum Potassium Selenium	10.0 1000 20.0	U U U	10.0 1000 20.0		ug/L ug/L ug/L		03/24/23 14:44 03/24/23 14:44 03/24/23 14:44	03/24/23 19:40 03/24/23 19:40 03/24/23 19:40	1 1 1 1

Eurofins Savannah

Job ID: 680-232195-1

Client: South Carolina Public Service Authority Project/Site: 125915/JM02.09.G01.1/36500

Lab Sample ID: LCS 680-769547/2-A

Lab Sample ID: 680-232195-17 MS

Client Sample ID: AF56394

Client Sample ID: Lab Control Sample

Method: 6010D - Metals (ICP) (Continued)

Matrix: Water Analysis Batch: 769727						Prep	Type: Total R Prep Bat	ecoverable tch: 769547
	Spike	LCS	LCS				%Rec	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Calcium	5000	4687		ug/L		94	80 - 120	
Iron	5000	4647		ug/L		93	80 - 120	
Magnesium	5010	4712		ug/L		94	80 - 120	
Molybdenum	100	94.36		ug/L		94	80 - 120	
Potassium	6970	6849		ug/L		98	80 - 120	
Selenium	100	88.77		ug/L		89	80 - 120	
Sodium	5050	4885		ug/L		97	80 - 120	

Matrix: Water										ype: Dissolved	
Analysis Batch: 605060									Prep	Batch: 604819	
	Sample	Sample	Spike	MS	MS				%Rec		
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits		
Lithium	50.0	U	100	109.8		ua/l		110	75 - 125		

Lab Sample ID: 680-232195-17 MSD								CI	ient Sampl	م ID· ۸F	5630/
-								Cil	•		
Matrix: Water									Prep Ty	•	
Analysis Batch: 605060									Prep I	Batch: 6	04819
	Sample	Sample	Spike	MSD	MSD				%Rec		RPD
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Lithium	50.0	U	100	105.2		ug/L		105	75 - 125	4	20

Lab Sample ID: 680-232195-37 MS								CI	ient Samp	le ID: AF56411
Matrix: Water									Prep Ty	pe: Dissolved
Analysis Batch: 605060									Prep	Batch: 604820
	Sample	Sample	Spike	MS	MS				%Rec	
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Lithium	92.4		100	217.4		ug/L		125	75 - 125	

Lab Sample ID: 680-232195-33	7 MSD							CI	ient Sampl	e ID: AF	56411
Matrix: Water									Prep Ty	pe: Diss	olved
Analysis Batch: 605060									Prep I	Batch: 6	04820
	Sample	Sample	Spike	MSD	MSD				%Rec		RPD
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Lithium	92.4		100	216.3		ua/L		124	75 - 125		20

Lab Sample ID: 680-232195-15	5 MS							CI	ient Samp	le ID: AF56417
Matrix: Water									Prep Ty	pe: Dissolved
Analysis Batch: 768929									Prep	Batch: 768859
	Sample	Sample	Spike	MS	MS				%Rec	
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Calcium	270000		5000	260000	4	ua/l		-196	75 125	

	Sample	Sample	Spike	MS	MS				%Rec	
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Calcium	270000		5000	260000	4	ug/L		-196	75 - 125	
Iron	1940		5000	6853		ug/L		98	75 - 125	
Magnesium	38900		5010	42060	4	ug/L		62	75 - 125	
Molybdenum	21.2		100	121.2		ug/L		100	75 - 125	
Potassium	14100		6970	20270		ug/L		89	75 - 125	
Selenium	20.0	U	100	90.82		ug/L		91	75 - 125	
Sodium	72300		5050	73490	4	ug/L		25	75 - 125	

Eurofins Savannah

3/28/2023

Client: South Carolina Public Service Authority Project/Site: 125915/JM02.09.G01.1/36500

Job ID: 680-232195-1

Method: 6010D - Metals (ICP) (Continued)

Lab Sample ID: 680-232195-15 MSD Client Sample ID: AF56417

Matrix: Water

Analysis Batch: 768929

Prep Type: Dissolved Prep Batch: 768859

Analysis Batch. 100525									i icp i	,000	
	Sample	Sample	Spike	MSD	MSD				%Rec		RPD
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Calcium	270000		5000	255000	4	ug/L		-296	75 - 125	2	20
Iron	1940		5000	6800		ug/L		97	75 - 125	1	20
Magnesium	38900		5010	41060	4	ug/L		42	75 - 125	2	20
Molybdenum	21.2		100	119.7		ug/L		99	75 - 125	1	20
Potassium	14100		6970	20170		ug/L		88	75 - 125	0	20
Selenium	20.0	U	100	95.36		ug/L		95	75 - 125	5	20
Sodium	72300		5050	71860	4	ug/L		-8	75 - 125	2	20

Method: 6020B - Metals (ICP/MS)

Lab Sample ID: MB 680-768492/1-A Client Sample ID: Method Blank Matrix: Water Prep Type: Total Recoverable

Analysis Batch: 768799 Prep Batch: 768492

Alialysis Datell. 100133								i iep bateii.	100432
	MB	MB							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Aluminum	100	U	100		ug/L		03/20/23 07:40	03/21/23 07:15	1
Antimony	5.00	U	5.00		ug/L		03/20/23 07:40	03/21/23 07:15	1
Arsenic	3.00	U	3.00		ug/L		03/20/23 07:40	03/21/23 07:15	1
Barium	5.00	U	5.00		ug/L		03/20/23 07:40	03/21/23 07:15	1
Beryllium	0.500	U	0.500		ug/L		03/20/23 07:40	03/21/23 07:15	1
Cadmium	0.500	U	0.500		ug/L		03/20/23 07:40	03/21/23 07:15	1
Chromium	5.00	U	5.00		ug/L		03/20/23 07:40	03/21/23 07:15	1
Cobalt	0.500	U	0.500		ug/L		03/20/23 07:40	03/21/23 07:15	1
Lead	2.50	U	2.50		ug/L		03/20/23 07:40	03/21/23 07:15	1
Nickel	5.00	U	5.00		ug/L		03/20/23 07:40	03/21/23 07:15	1
Silver	1.00	U	1.00		ug/L		03/20/23 07:40	03/21/23 07:15	1
Thallium	1.00	U	1.00		ug/L		03/20/23 07:40	03/21/23 07:15	1
Zinc	20.0	U	20.0		ug/L		03/20/23 07:40	03/21/23 07:15	1

Lab Sample ID: LCS 680-768492/2-A Client Sample ID: Lab Control Sample Matrix: Water Prep Type: Total Recoverable

Analysis Batch: 768799							Prep Batch: 7684	492
	Spike	LCS	LCS				%Rec	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Aluminum	5000	4932		ug/L		99	80 - 120	
Antimony	50.0	47.96		ug/L		96	80 - 120	
Arsenic	100	100.2		ug/L		100	80 - 120	
Barium	100	97.57		ug/L		98	80 - 120	
Beryllium	50.0	49.66		ug/L		99	80 - 120	
Cadmium	50.0	48.34		ug/L		97	80 - 120	
Chromium	100	101.0		ug/L		101	80 - 120	
Cobalt	50.0	50.30		ug/L		101	80 - 120	
Lead	505	492.9		ug/L		98	80 - 120	
Nickel	100	98.30		ug/L		98	80 - 120	
Silver	50.0	47.86		ug/L		96	80 - 120	
Thallium	50.0	47.36		ug/L		95	80 - 120	
Zinc	100	104.8		ug/L		105	80 - 120	

Eurofins Savannah

Client: South Carolina Public Service Authority Project/Site: 125915/JM02.09.G01.1/36500

Job ID: 680-232195-1

Method: 6020B - Metals (ICP/MS) (Continued)

Lab Sample ID: MB 680-768540/1-A

Matrix: Water

Analysis Batch: 768945

Client Sample ID: Method Blank Prep Type: Total Recoverable Prep Batch: 768540

	МВ	MB							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Aluminum	100	U	100		ug/L		03/20/23 09:01	03/21/23 15:59	1
Antimony	5.00	U	5.00		ug/L		03/20/23 09:01	03/21/23 15:59	1
Arsenic	3.00	U	3.00		ug/L		03/20/23 09:01	03/21/23 15:59	1
Barium	5.00	U	5.00		ug/L		03/20/23 09:01	03/21/23 15:59	1
Beryllium	0.500	U	0.500		ug/L		03/20/23 09:01	03/21/23 15:59	1
Cadmium	0.500	U	0.500		ug/L		03/20/23 09:01	03/21/23 15:59	1
Chromium	5.00	U	5.00		ug/L		03/20/23 09:01	03/21/23 15:59	1
Cobalt	0.500	U	0.500		ug/L		03/20/23 09:01	03/21/23 15:59	1
Lead	2.50	U	2.50		ug/L		03/20/23 09:01	03/21/23 15:59	1
Nickel	5.00	U	5.00		ug/L		03/20/23 09:01	03/21/23 15:59	1
Silver	1.00	U	1.00		ug/L		03/20/23 09:01	03/21/23 15:59	1
Thallium	1.00	U	1.00		ug/L		03/20/23 09:01	03/21/23 15:59	1
Zinc	20.0	U	20.0		ug/L		03/20/23 09:01	03/21/23 15:59	1

Lab Sample ID: LCS 680-768540/2-A

Matrix: Water

Analysis Batch: 768945

Client Sample ID: Lab Control Sample **Prep Type: Total Recoverable**

Prep Batch: 768540

Analysis batch. 700545							i iep bat	CII. 7005 4 0
	Spike	LCS	LCS				%Rec	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Aluminum	5000	5338		ug/L		107	80 - 120	
Antimony	50.0	51.80		ug/L		104	80 - 120	
Arsenic	100	103.7		ug/L		104	80 - 120	
Barium	100	102.1		ug/L		102	80 - 120	
Beryllium	50.0	54.66		ug/L		109	80 - 120	
Cadmium	50.0	51.98		ug/L		104	80 - 120	
Chromium	100	108.2		ug/L		108	80 - 120	
Cobalt	50.0	53.54		ug/L		107	80 - 120	
Lead	505	507.5		ug/L		101	80 - 120	
Nickel	100	105.2		ug/L		105	80 - 120	
Silver	50.0	54.86		ug/L		110	80 - 120	
Thallium	50.0	49.92		ug/L		100	80 - 120	
Zinc	100	110.6		ua/l		111	80 120	

Lab Sample ID: MB 680-768613/1-A

Matrix: Water

Analysis Batch: 768945

Client Sample ID: Method Blank Prep Type: Total Recoverable

Prep Batch: 768613

	МВ	MB							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Aluminum	100	U	100		ug/L		03/20/23 13:39	03/21/23 21:56	1
Antimony	5.00	U	5.00		ug/L		03/20/23 13:39	03/21/23 21:56	1
Arsenic	3.00	U	3.00		ug/L		03/20/23 13:39	03/21/23 21:56	1
Barium	5.00	U	5.00		ug/L		03/20/23 13:39	03/21/23 21:56	1
Beryllium	0.500	U	0.500		ug/L		03/20/23 13:39	03/21/23 21:56	1
Cadmium	0.500	U	0.500		ug/L		03/20/23 13:39	03/21/23 21:56	1
Chromium	5.00	U	5.00		ug/L		03/20/23 13:39	03/21/23 21:56	1
Cobalt	0.500	U	0.500		ug/L		03/20/23 13:39	03/21/23 21:56	1
Lead	2.50	U	2.50		ug/L		03/20/23 13:39	03/21/23 21:56	1
Nickel	5.00	U	5.00		ug/L		03/20/23 13:39	03/21/23 21:56	1
Silver	1.00	U	1.00		ug/L		03/20/23 13:39	03/21/23 21:56	1

Eurofins Savannah

Page 66 of 102

3/28/2023

Job ID: 680-232195-1

Client: South Carolina Public Service Authority Project/Site: 125915/JM02.09.G01.1/36500

Method: 6020B - Metals (ICP/MS) (Continued)

Lab Sample ID: MB 680-768613/1-A

Matrix: Water

Analysis Batch: 768945

Client Sample ID: Method Blank **Prep Type: Total Recoverable**

Prep Batch: 768613

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Thallium	1.00	U	1.00		ug/L		03/20/23 13:39	03/21/23 21:56	1
Zinc	20.0	U	20.0		ug/L		03/20/23 13:39	03/21/23 21:56	1

MB MB

Lab Sample ID: LCS 680-768613/2-A Client Sample ID: Lab Control Sample

Matrix: Water **Prep Type: Total Recoverable**

Analysis Batch: 768945							Prep Bat	tch: 768613
	Spike	LCS	LCS				%Rec	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Aluminum	5000	5081		ug/L		102	80 - 120	
Antimony	50.0	50.30		ug/L		101	80 - 120	
Arsenic	100	96.86		ug/L		97	80 - 120	
Barium	100	96.16		ug/L		96	80 - 120	
Beryllium	50.0	49.35		ug/L		99	80 - 120	
Cadmium	50.0	49.86		ug/L		100	80 - 120	
Chromium	100	98.60		ug/L		99	80 - 120	
Cobalt	50.0	50.99		ug/L		102	80 - 120	
Lead	505	475.9		ug/L		94	80 - 120	
Nickel	100	96.51		ug/L		97	80 - 120	
Silver	50.0	49.14		ug/L		98	80 - 120	
Thallium	50.0	47.31		ug/L		95	80 - 120	
Zinc	100	101.1		ug/L		101	80 - 120	

Lab Sample ID: 680-232195-15 MS Client Sample ID: AF56417 Matrix: Water

Analysis Batch: 768945

Prep Type: Dissolved Prep Batch: 768540

Alialysis balcii. 100945									гтер Ба	ILCII: 100040
	Sample	Sample	Spike	MS	MS				%Rec	
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Aluminum	100	U	5000	5266		ug/L		104	75 - 125	
Antimony	5.00	U	50.0	51.47		ug/L		103	75 - 125	
Arsenic	84.0		100	178.9		ug/L		95	75 - 125	
Barium	50.0		100	145.4		ug/L		95	75 - 125	
Beryllium	0.500	U	50.0	54.31		ug/L		109	75 - 125	
Cadmium	0.500	U	50.0	51.03		ug/L		102	75 - 125	
Chromium	5.00	U	100	107.5		ug/L		106	75 - 125	
Cobalt	0.500	U	50.0	52.11		ug/L		104	75 - 125	
Lead	2.50	U	505	509.1		ug/L		101	75 - 125	
Nickel	5.00	U	100	102.7		ug/L		103	75 - 125	
Silver	1.00	U	50.0	50.31		ug/L		101	75 - 125	
Thallium	1.00	U	50.0	50.73		ug/L		101	75 - 125	
Zinc	20.0	U	100	101.3		ug/L		97	75 - 125	

Lab Sample ID: 680-232195-15 MSD

Matrix: Water

Analysis Batch: 768945

Client Sample ID: AF56417 **Prep Type: Dissolved**

Prep Batch: 768540

П	Allalysis Datell. 100545									i icp	Dateii. 1	00570
		Sample	Sample	Spike	MSD	MSD				%Rec		RPD
	Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
	Aluminum	100	U	5000	5228		ug/L		104	75 - 125	1	20
	Antimony	5.00	U	50.0	49.87		ug/L		100	75 - 125	3	20
	Arsenic	84.0		100	181.5		ug/L		98	75 - 125	1	20

Eurofins Savannah

QC Sample Results

Client: South Carolina Public Service Authority Project/Site: 125915/JM02.09.G01.1/36500

Job ID: 680-232195-1

Method: 6020B - Metals (ICP/MS) (Continued)

Lab Sample ID: 680-232195-15 MSD	Client Sample ID: AF56417
Matrix: Water	Prep Type: Dissolved
Analysis Batch: 768945	Prep Batch: 768540

Analysis Batch: 768945									Prep i	Batch: /	68540
	Sample	Sample	Spike	MSD	MSD				%Rec		RPD
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Barium	50.0		100	145.6		ug/L		96	75 - 125		20
Beryllium	0.500	U	50.0	52.47		ug/L		105	75 - 125	3	20
Cadmium	0.500	U	50.0	49.32		ug/L		99	75 - 125	3	20
Chromium	5.00	U	100	104.1		ug/L		103	75 - 125	3	20
Cobalt	0.500	U	50.0	52.90		ug/L		106	75 - 125	2	20
Lead	2.50	U	505	507.0		ug/L		100	75 - 125	0	20
Nickel	5.00	U	100	99.09		ug/L		99	75 - 125	4	20
Silver	1.00	U	50.0	50.77		ug/L		102	75 - 125	1	20
Thallium	1.00	U	50.0	50.56		ug/L		101	75 - 125	0	20
Zinc	20.0	U	100	102.5		ug/L		98	75 ₋ 125	1	20

Client: South Carolina Public Service Authority Project/Site: 125915/JM02.09.G01.1/36500

Job ID: 680-232195-1

Metals

Prep Batch: 604817

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batcl
680-232195-1	AF56421	Dissolved	Water	3010A	
680-232195-2	AF56424	Dissolved	Water	3010A	
680-232195-3	AF56439	Dissolved	Water	3010A	
680-232195-4	AF56441	Dissolved	Water	3010A	
680-232195-5	AF56414	Dissolved	Water	3010A	
680-232195-6	AF56423	Dissolved	Water	3010A	
680-232195-7	AF56428	Dissolved	Water	3010A	
680-232195-8	AF56419	Dissolved	Water	3010A	
680-232195-9	AF56425	Dissolved	Water	3010A	
680-232195-10	AF56426	Dissolved	Water	3010A	
680-232195-11	AF56427	Dissolved	Water	3010A	
680-232195-12	AF56408	Dissolved	Water	3010A	
680-232195-13	AF56415	Dissolved	Water	3010A	
680-232195-14	AF56416	Dissolved	Water	3010A	
680-232195-15	AF56417	Dissolved	Water	3010A	
680-232195-16	AF56429	Dissolved	Water	3010A	
MB 160-604817/1-A	Method Blank	Total/NA	Water	3010A	
LCS 160-604817/2-A	Lab Control Sample	Total/NA	Water	3010A	

Prep Batch: 604819

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
680-232195-17	AF56394	Dissolved	Water	3010A	
680-232195-18	AF56331	Dissolved	Water	3010A	
680-232195-19	AF56332	Dissolved	Water	3010A	
680-232195-20	AF56395	Dissolved	Water	3010A	
680-232195-21	AF56396	Dissolved	Water	3010A	
680-232195-22	AF56397	Dissolved	Water	3010A	
680-232195-23	AF56400	Dissolved	Water	3010A	
680-232195-24	AF56442	Dissolved	Water	3010A	
680-232195-25	AF56443	Dissolved	Water	3010A	
680-232195-26	AF56402	Dissolved	Water	3010A	
680-232195-27	AF56403	Dissolved	Water	3010A	
680-232195-28	AF56404	Dissolved	Water	3010A	
680-232195-29	AF56434	Dissolved	Water	3010A	
680-232195-30	AF56433	Dissolved	Water	3010A	
680-232195-31	AF56435	Dissolved	Water	3010A	
680-232195-32	AF56436	Dissolved	Water	3010A	
680-232195-33	AF56437	Dissolved	Water	3010A	
680-232195-34	AF56438	Dissolved	Water	3010A	
680-232195-35	AF56409	Dissolved	Water	3010A	
680-232195-36	AF56410	Dissolved	Water	3010A	
MB 160-604819/1-A	Method Blank	Total/NA	Water	3010A	
LCS 160-604819/2-A	Lab Control Sample	Total/NA	Water	3010A	
680-232195-17 MS	AF56394	Dissolved	Water	3010A	
680-232195-17 MSD	AF56394	Dissolved	Water	3010A	

Prep Batch: 604820

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
680-232195-37	AF56411	Dissolved	Water	3010A	
680-232195-38	AF56412	Dissolved	Water	3010A	
680-232195-39	AF56413	Dissolved	Water	3010A	

Eurofins Savannah

Page 69 of 102

2

- 3

4

6

8

9

10

12

Client: South Carolina Public Service Authority Project/Site: 125915/JM02.09.G01.1/36500

Job ID: 680-232195-1

Metals (Continued)

Prep Batch: 604820 (Continued)

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
680-232195-40	AF56430	Dissolved	Water	3010A	
680-232195-41	AF56406	Dissolved	Water	3010A	
680-232195-42	AF56407	Dissolved	Water	3010A	
680-232195-43	AF56418	Dissolved	Water	3010A	
680-232195-44	AF56422	Dissolved	Water	3010A	
MB 160-604820/1-A	Method Blank	Total/NA	Water	3010A	
LCS 160-604820/2-A	Lab Control Sample	Total/NA	Water	3010A	
680-232195-37 MS	AF56411	Dissolved	Water	3010A	
680-232195-37 MSD	AF56411	Dissolved	Water	3010A	

Analysis Batch: 605060

₋ab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batc
80-232195-1	AF56421	Dissolved	Water	6010D	60481
880-232195-2	AF56424	Dissolved	Water	6010D	60481
880-232195-3	AF56439	Dissolved	Water	6010D	60481
80-232195-4	AF56441	Dissolved	Water	6010D	60481
80-232195-5	AF56414	Dissolved	Water	6010D	60481
880-232195-6	AF56423	Dissolved	Water	6010D	60481
880-232195-7	AF56428	Dissolved	Water	6010D	60481
80-232195-8	AF56419	Dissolved	Water	6010D	60481
80-232195-9	AF56425	Dissolved	Water	6010D	60481
80-232195-10	AF56426	Dissolved	Water	6010D	60481
80-232195-11	AF56427	Dissolved	Water	6010D	60481
80-232195-12	AF56408	Dissolved	Water	6010D	60481
80-232195-13	AF56415	Dissolved	Water	6010D	60481
80-232195-14	AF56416	Dissolved	Water	6010D	60481
80-232195-15	AF56417	Dissolved	Water	6010D	60481
880-232195-16	AF56429	Dissolved	Water	6010D	60481
80-232195-17	AF56394	Dissolved	Water	6010D	60481
80-232195-18	AF56331	Dissolved	Water	6010D	60481
80-232195-19	AF56332	Dissolved	Water	6010D	60481
80-232195-20	AF56395	Dissolved	Water	6010D	60481
80-232195-21	AF56396	Dissolved	Water	6010D	60481
80-232195-22	AF56397	Dissolved	Water	6010D	60481
80-232195-23	AF56400	Dissolved	Water	6010D	60481
80-232195-24	AF56442	Dissolved	Water	6010D	60481
80-232195-25	AF56443	Dissolved	Water	6010D	60481
80-232195-26	AF56402	Dissolved	Water	6010D	60481
80-232195-27	AF56403	Dissolved	Water	6010D	60481
80-232195-28	AF56404	Dissolved	Water	6010D	60481
80-232195-29	AF56434	Dissolved	Water	6010D	60481
80-232195-30	AF56433	Dissolved	Water	6010D	60481
80-232195-31	AF56435	Dissolved	Water	6010D	60481
80-232195-32	AF56436	Dissolved	Water	6010D	60481
80-232195-33	AF56437	Dissolved	Water	6010D	60481
80-232195-34	AF56438	Dissolved	Water	6010D	60481
80-232195-35	AF56409	Dissolved	Water	6010D	60481
80-232195-36	AF56410	Dissolved	Water	6010D	60481
80-232195-37	AF56411	Dissolved	Water	6010D	60482
80-232195-38	AF56412	Dissolved	Water	6010D	60482
880-232195-39	AF56413	Dissolved	Water	6010D	60482

Eurofins Savannah

Client: South Carolina Public Service Authority Project/Site: 125915/JM02.09.G01.1/36500

Job ID: 680-232195-1

Metals (Continued)

Analysis Batch: 605060 (Continued)

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
680-232195-40	AF56430	Dissolved	Water	6010D	604820
680-232195-41	AF56406	Dissolved	Water	6010D	604820
680-232195-42	AF56407	Dissolved	Water	6010D	604820
680-232195-43	AF56418	Dissolved	Water	6010D	604820
680-232195-44	AF56422	Dissolved	Water	6010D	604820
MB 160-604817/1-A	Method Blank	Total/NA	Water	6010D	604817
MB 160-604819/1-A	Method Blank	Total/NA	Water	6010D	604819
MB 160-604820/1-A	Method Blank	Total/NA	Water	6010D	604820
LCS 160-604817/2-A	Lab Control Sample	Total/NA	Water	6010D	604817
LCS 160-604819/2-A	Lab Control Sample	Total/NA	Water	6010D	604819
LCS 160-604820/2-A	Lab Control Sample	Total/NA	Water	6010D	604820
680-232195-17 MS	AF56394	Dissolved	Water	6010D	604819
680-232195-17 MSD	AF56394	Dissolved	Water	6010D	604819
680-232195-37 MS	AF56411	Dissolved	Water	6010D	604820
680-232195-37 MSD	AF56411	Dissolved	Water	6010D	604820

Prep Batch: 768492

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
680-232195-1	AF56421	Dissolved	Water	3005A	
680-232195-2	AF56424	Dissolved	Water	3005A	
680-232195-3	AF56439	Dissolved	Water	3005A	
680-232195-4	AF56441	Dissolved	Water	3005A	
680-232195-5	AF56414	Dissolved	Water	3005A	
680-232195-6	AF56423	Dissolved	Water	3005A	
680-232195-7	AF56428	Dissolved	Water	3005A	
680-232195-8	AF56419	Dissolved	Water	3005A	
680-232195-9	AF56425	Dissolved	Water	3005A	
680-232195-10	AF56426	Dissolved	Water	3005A	
680-232195-11	AF56427	Dissolved	Water	3005A	
680-232195-12	AF56408	Dissolved	Water	3005A	
680-232195-13	AF56415	Dissolved	Water	3005A	
680-232195-14	AF56416	Dissolved	Water	3005A	
MB 680-768492/1-A	Method Blank	Total Recoverable	Water	3005A	
LCS 680-768492/2-A	Lab Control Sample	Total Recoverable	Water	3005A	

Prep Batch: 768540

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
680-232195-15	AF56417	Dissolved	Water	3005A	
680-232195-16	AF56429	Dissolved	Water	3005A	
680-232195-17	AF56394	Dissolved	Water	3005A	
680-232195-18	AF56331	Dissolved	Water	3005A	
680-232195-19	AF56332	Dissolved	Water	3005A	
680-232195-20	AF56395	Dissolved	Water	3005A	
680-232195-21	AF56396	Dissolved	Water	3005A	
680-232195-22	AF56397	Dissolved	Water	3005A	
680-232195-23	AF56400	Dissolved	Water	3005A	
680-232195-24	AF56442	Dissolved	Water	3005A	
680-232195-25	AF56443	Dissolved	Water	3005A	
680-232195-26	AF56402	Dissolved	Water	3005A	
680-232195-27	AF56403	Dissolved	Water	3005A	
680-232195-28	AF56404	Dissolved	Water	3005A	

Eurofins Savannah

Page 71 of 102

2

7

8

10

12

13

Client: South Carolina Public Service Authority Project/Site: 125915/JM02.09.G01.1/36500

Job ID: 680-232195-1

Metals (Continued)

Prep Batch: 768540 (Continued)

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
680-232195-29	AF56434	Dissolved	Water	3005A	
680-232195-30	AF56433	Dissolved	Water	3005A	
680-232195-31	AF56435	Dissolved	Water	3005A	
680-232195-32	AF56436	Dissolved	Water	3005A	
680-232195-33	AF56437	Dissolved	Water	3005A	
MB 680-768540/1-A	Method Blank	Total Recoverable	Water	3005A	
LCS 680-768540/2-A	Lab Control Sample	Total Recoverable	Water	3005A	
680-232195-15 MS	AF56417	Dissolved	Water	3005A	
680-232195-15 MSD	AF56417	Dissolved	Water	3005A	

Prep Batch: 768608

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
680-232195-34	AF56438	Dissolved	Water	3005A	
680-232195-35	AF56409	Dissolved	Water	3005A	
680-232195-36	AF56410	Dissolved	Water	3005A	
680-232195-37	AF56411	Dissolved	Water	3005A	
680-232195-38	AF56412	Dissolved	Water	3005A	
680-232195-39	AF56413	Dissolved	Water	3005A	
680-232195-40	AF56430	Dissolved	Water	3005A	
680-232195-41	AF56406	Dissolved	Water	3005A	
680-232195-42	AF56407	Dissolved	Water	3005A	
680-232195-43	AF56418	Dissolved	Water	3005A	
680-232195-44	AF56422	Dissolved	Water	3005A	
MB 680-768608/1-A	Method Blank	Total Recoverable	Water	3005A	
LCS 680-768608/2-A	Lab Control Sample	Total Recoverable	Water	3005A	

Prep Batch: 768613

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batcl
680-232195-34	AF56438	Dissolved	Water	3005A	
680-232195-35	AF56409	Dissolved	Water	3005A	
680-232195-36	AF56410	Dissolved	Water	3005A	
680-232195-37	AF56411	Dissolved	Water	3005A	
680-232195-38	AF56412	Dissolved	Water	3005A	
680-232195-39	AF56413	Dissolved	Water	3005A	
680-232195-40	AF56430	Dissolved	Water	3005A	
680-232195-41	AF56406	Dissolved	Water	3005A	
680-232195-42	AF56407	Dissolved	Water	3005A	
680-232195-43	AF56418	Dissolved	Water	3005A	
680-232195-44	AF56422	Dissolved	Water	3005A	
MB 680-768613/1-A	Method Blank	Total Recoverable	Water	3005A	
LCS 680-768613/2-A	Lab Control Sample	Total Recoverable	Water	3005A	

Analysis Batch: 768799

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
680-232195-1	AF56421	Dissolved	Water	6020B	768492
680-232195-2	AF56424	Dissolved	Water	6020B	768492
680-232195-3	AF56439	Dissolved	Water	6020B	768492
680-232195-4	AF56441	Dissolved	Water	6020B	768492
680-232195-5	AF56414	Dissolved	Water	6020B	768492
680-232195-6	AF56423	Dissolved	Water	6020B	768492
680-232195-7	AF56428	Dissolved	Water	6020B	768492

Page 72 of 102

Client: South Carolina Public Service Authority Project/Site: 125915/JM02.09.G01.1/36500

Job ID: 680-232195-1

Metals (Continued)

Analysis Batch: 768799 (Continued)

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
680-232195-8	AF56419	Dissolved	Water	6020B	768492
680-232195-9	AF56425	Dissolved	Water	6020B	768492
680-232195-10	AF56426	Dissolved	Water	6020B	768492
680-232195-11	AF56427	Dissolved	Water	6020B	768492
680-232195-12	AF56408	Dissolved	Water	6020B	768492
680-232195-13	AF56415	Dissolved	Water	6020B	768492
680-232195-14	AF56416	Dissolved	Water	6020B	768492
MB 680-768492/1-A	Method Blank	Total Recoverable	Water	6020B	768492
LCS 680-768492/2-A	Lab Control Sample	Total Recoverable	Water	6020B	768492

Prep Batch: 768859

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batc
680-232195-15	AF56417	Dissolved	Water	3005A	_
680-232195-16	AF56429	Dissolved	Water	3005A	
680-232195-17	AF56394	Dissolved	Water	3005A	
680-232195-18	AF56331	Dissolved	Water	3005A	
680-232195-19	AF56332	Dissolved	Water	3005A	
680-232195-20	AF56395	Dissolved	Water	3005A	
680-232195-21	AF56396	Dissolved	Water	3005A	
680-232195-22	AF56397	Dissolved	Water	3005A	
680-232195-23	AF56400	Dissolved	Water	3005A	
680-232195-24	AF56442	Dissolved	Water	3005A	
680-232195-25	AF56443	Dissolved	Water	3005A	
680-232195-26	AF56402	Dissolved	Water	3005A	
680-232195-27	AF56403	Dissolved	Water	3005A	
680-232195-28	AF56404	Dissolved	Water	3005A	
680-232195-29	AF56434	Dissolved	Water	3005A	
680-232195-30	AF56433	Dissolved	Water	3005A	
680-232195-31	AF56435	Dissolved	Water	3005A	
680-232195-32	AF56436	Dissolved	Water	3005A	
680-232195-33	AF56437	Dissolved	Water	3005A	
MB 680-768859/1-A	Method Blank	Total Recoverable	Water	3005A	
LCS 680-768859/2-A	Lab Control Sample	Total Recoverable	Water	3005A	
680-232195-15 MS	AF56417	Dissolved	Water	3005A	
680-232195-15 MSD	AF56417	Dissolved	Water	3005A	

Analysis Batch: 768929

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
680-232195-15	AF56417	Dissolved	Water	6010D	768859
680-232195-16	AF56429	Dissolved	Water	6010D	768859
680-232195-17	AF56394	Dissolved	Water	6010D	768859
680-232195-18	AF56331	Dissolved	Water	6010D	768859
680-232195-19	AF56332	Dissolved	Water	6010D	768859
680-232195-20	AF56395	Dissolved	Water	6010D	768859
680-232195-21	AF56396	Dissolved	Water	6010D	768859
680-232195-22	AF56397	Dissolved	Water	6010D	768859
680-232195-23	AF56400	Dissolved	Water	6010D	768859
680-232195-24	AF56442	Dissolved	Water	6010D	768859
680-232195-25	AF56443	Dissolved	Water	6010D	768859
680-232195-26	AF56402	Dissolved	Water	6010D	768859
680-232195-27	AF56403	Dissolved	Water	6010D	768859

Eurofins Savannah

Page 73 of 102

2

3

6

_

9

10

12

13

| | 4

Client: South Carolina Public Service Authority Project/Site: 125915/JM02.09.G01.1/36500

Job ID: 680-232195-1

Metals (Continued)

Analysis Batch: 768929 (Continued)

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
680-232195-28	AF56404	Dissolved	Water	6010D	768859
680-232195-29	AF56434	Dissolved	Water	6010D	768859
680-232195-30	AF56433	Dissolved	Water	6010D	768859
680-232195-31	AF56435	Dissolved	Water	6010D	768859
680-232195-32	AF56436	Dissolved	Water	6010D	768859
680-232195-33	AF56437	Dissolved	Water	6010D	768859
680-232195-34	AF56438	Dissolved	Water	6010D	768608
680-232195-35	AF56409	Dissolved	Water	6010D	768608
680-232195-36	AF56410	Dissolved	Water	6010D	768608
680-232195-37	AF56411	Dissolved	Water	6010D	768608
680-232195-38	AF56412	Dissolved	Water	6010D	768608
680-232195-39	AF56413	Dissolved	Water	6010D	768608
680-232195-40	AF56430	Dissolved	Water	6010D	768608
680-232195-41	AF56406	Dissolved	Water	6010D	768608
680-232195-42	AF56407	Dissolved	Water	6010D	768608
680-232195-43	AF56418	Dissolved	Water	6010D	768608
680-232195-44	AF56422	Dissolved	Water	6010D	768608
MB 680-768608/1-A	Method Blank	Total Recoverable	Water	6010D	768608
MB 680-768859/1-A	Method Blank	Total Recoverable	Water	6010D	768859
LCS 680-768608/2-A	Lab Control Sample	Total Recoverable	Water	6010D	768608
LCS 680-768859/2-A	Lab Control Sample	Total Recoverable	Water	6010D	768859
680-232195-15 MS	AF56417	Dissolved	Water	6010D	768859
680-232195-15 MSD	AF56417	Dissolved	Water	6010D	768859

Analysis Batch: 768945

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
680-232195-15	AF56417	Dissolved	Water	6020B	768540
680-232195-16	AF56429	Dissolved	Water	6020B	768540
680-232195-17	AF56394	Dissolved	Water	6020B	768540
680-232195-18	AF56331	Dissolved	Water	6020B	768540
680-232195-19	AF56332	Dissolved	Water	6020B	768540
680-232195-20	AF56395	Dissolved	Water	6020B	768540
680-232195-21	AF56396	Dissolved	Water	6020B	768540
680-232195-22	AF56397	Dissolved	Water	6020B	768540
680-232195-23	AF56400	Dissolved	Water	6020B	768540
680-232195-24	AF56442	Dissolved	Water	6020B	768540
680-232195-25	AF56443	Dissolved	Water	6020B	768540
680-232195-26	AF56402	Dissolved	Water	6020B	768540
680-232195-27	AF56403	Dissolved	Water	6020B	768540
680-232195-28	AF56404	Dissolved	Water	6020B	768540
680-232195-29	AF56434	Dissolved	Water	6020B	768540
680-232195-30	AF56433	Dissolved	Water	6020B	768540
680-232195-31	AF56435	Dissolved	Water	6020B	768540
680-232195-32	AF56436	Dissolved	Water	6020B	768540
680-232195-33	AF56437	Dissolved	Water	6020B	768540
680-232195-34	AF56438	Dissolved	Water	6020B	768613
680-232195-35	AF56409	Dissolved	Water	6020B	768613
680-232195-36	AF56410	Dissolved	Water	6020B	768613
680-232195-37	AF56411	Dissolved	Water	6020B	768613
680-232195-38	AF56412	Dissolved	Water	6020B	768613
680-232195-39	AF56413	Dissolved	Water	6020B	768613

Eurofins Savannah

Page 74 of 102

Client: South Carolina Public Service Authority Project/Site: 125915/JM02.09.G01.1/36500

Job ID: 680-232195-1

Metals (Continued)

Analysis Batch: 768945 (Continued)

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
680-232195-40	AF56430	Dissolved	Water	6020B	768613
680-232195-41	AF56406	Dissolved	Water	6020B	768613
680-232195-42	AF56407	Dissolved	Water	6020B	768613
680-232195-43	AF56418	Dissolved	Water	6020B	768613
680-232195-44	AF56422	Dissolved	Water	6020B	768613
MB 680-768540/1-A	Method Blank	Total Recoverable	Water	6020B	768540
MB 680-768613/1-A	Method Blank	Total Recoverable	Water	6020B	768613
LCS 680-768540/2-A	Lab Control Sample	Total Recoverable	Water	6020B	768540
LCS 680-768613/2-A	Lab Control Sample	Total Recoverable	Water	6020B	768613
680-232195-15 MS	AF56417	Dissolved	Water	6020B	768540
680-232195-15 MSD	AF56417	Dissolved	Water	6020B	768540

Analysis Batch: 769014

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
680-232195-21	AF56396	Dissolved	Water	6020B	768540
680-232195-22	AF56397	Dissolved	Water	6020B	768540
680-232195-23	AF56400	Dissolved	Water	6020B	768540
680-232195-24	AF56442	Dissolved	Water	6020B	768540
680-232195-25	AF56443	Dissolved	Water	6020B	768540
680-232195-26	AF56402	Dissolved	Water	6020B	768540
680-232195-27	AF56403	Dissolved	Water	6020B	768540
680-232195-28	AF56404	Dissolved	Water	6020B	768540
680-232195-29	AF56434	Dissolved	Water	6020B	768540
680-232195-30	AF56433	Dissolved	Water	6020B	768540
680-232195-31	AF56435	Dissolved	Water	6020B	768540
680-232195-32	AF56436	Dissolved	Water	6020B	768540
680-232195-33	AF56437	Dissolved	Water	6020B	768540

Analysis Batch: 769167

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
680-232195-35	AF56409	Dissolved	Water	6010D	768608
680-232195-36	AF56410	Dissolved	Water	6010D	768608
680-232195-37	AF56411	Dissolved	Water	6010D	768608

Prep Batch: 769547

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
680-232195-1	AF56421	Dissolved	Water	3005A	
680-232195-2	AF56424	Dissolved	Water	3005A	
680-232195-3	AF56439	Dissolved	Water	3005A	
680-232195-4	AF56441	Dissolved	Water	3005A	
680-232195-5	AF56414	Dissolved	Water	3005A	
680-232195-6	AF56423	Dissolved	Water	3005A	
680-232195-7	AF56428	Dissolved	Water	3005A	
680-232195-8	AF56419	Dissolved	Water	3005A	
680-232195-9	AF56425	Dissolved	Water	3005A	
680-232195-10	AF56426	Dissolved	Water	3005A	
680-232195-11	AF56427	Dissolved	Water	3005A	
680-232195-12	AF56408	Dissolved	Water	3005A	
680-232195-13	AF56415	Dissolved	Water	3005A	
680-232195-14	AF56416	Dissolved	Water	3005A	
MB 680-769547/1-A	Method Blank	Total Recoverable	Water	3005A	

Eurofins Savannah

Page 75 of 102

Client: South Carolina Public Service Authority Project/Site: 125915/JM02.09.G01.1/36500

Job ID: 680-232195-1

Metals (Continued)

Prep Batch: 769547 (Continued)

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
LCS 680-769547/2-A	Lab Control Sample	Total Recoverable	Water	3005A	

Analysis Batch: 769727

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
680-232195-1	AF56421	Dissolved	Water	6010D	769547
680-232195-2	AF56424	Dissolved	Water	6010D	769547
680-232195-3	AF56439	Dissolved	Water	6010D	769547
680-232195-4	AF56441	Dissolved	Water	6010D	769547
680-232195-5	AF56414	Dissolved	Water	6010D	769547
680-232195-6	AF56423	Dissolved	Water	6010D	769547
680-232195-7	AF56428	Dissolved	Water	6010D	769547
680-232195-8	AF56419	Dissolved	Water	6010D	769547
680-232195-9	AF56425	Dissolved	Water	6010D	769547
680-232195-10	AF56426	Dissolved	Water	6010D	769547
680-232195-11	AF56427	Dissolved	Water	6010D	769547
680-232195-12	AF56408	Dissolved	Water	6010D	769547
680-232195-13	AF56415	Dissolved	Water	6010D	769547
680-232195-14	AF56416	Dissolved	Water	6010D	769547
MB 680-769547/1-A	Method Blank	Total Recoverable	Water	6010D	769547
LCS 680-769547/2-A	Lab Control Sample	Total Recoverable	Water	6010D	769547

Eurofins Savannah

3/28/2023

5

7

8

46

10

12

Client: South Carolina Public Service Authority Project/Site: 125915/JM02.09.G01.1/36500

Client Sample ID: AF56421

Date Received: 03/17/23 10:30

Date Collected: 03/01/23 14:41

Lab Sample ID: 680-232195-1

Matrix: Water

	Batch	Batch		Dilution	Batch			Prepared
Prep Type	Type	Method	Run	Factor	Number	Analyst	Lab	or Analyzed
Dissolved	Prep	3010A			604817	LKP	EET SL	03/23/23 14:17
Dissolved	Analysis	6010D		1	605060	LKP	EET SL	03/24/23 20:16
Dissolved	Prep	3005A			769547	ВСВ	EET SAV	03/24/23 14:44
Dissolved	Analysis	6010D		1	769727	BCB	EET SAV	03/24/23 19:56
Dissolved	Prep	3005A			768492	RR	EET SAV	03/20/23 07:40
Dissolved	Analysis	6020B		1	768799	BWR	EET SAV	03/21/23 08:04

Client Sample ID: AF56424

Date Collected: 03/01/23 13:37

Date Received: 03/17/23 10:30

Matrix: Water

Batch Batch Dilution Batch Prepared Prep Type Туре Method Run Factor **Number Analyst** Lab or Analyzed Dissolved Prep 3010A 604817 LKP EET SL 03/23/23 14:17 Dissolved 6010D 03/24/23 20:20 Analysis 605060 LKP EET SL Prep Dissolved 3005A 769547 BCB 03/24/23 14:44 **EET SAV** Dissolved Analysis 6010D 769727 BCB **EET SAV** 03/24/23 20:00 Dissolved 3005A 03/20/23 07:40 Prep 768492 RR **EET SAV** Dissolved Analysis 6020B 1 768799 BWR **EET SAV** 03/21/23 08:08

Client Sample ID: AF56439

Date Collected: 03/01/23 10:22

Date Received: 03/17/23 10:30

Lab Sam	ple ID:	680-23219	5-3
---------	---------	-----------	-----

Matrix: Water

_	Batch	Batch		Dilution	Batch			Prepared
Prep Type	Type	Method	Run	Factor	Number	Analyst	Lab	or Analyzed
Dissolved	Prep	3010A			604817	LKP	EET SL	03/23/23 14:17
Dissolved	Analysis	6010D		1	605060	LKP	EET SL	03/24/23 20:25
Dissolved	Prep	3005A			769547	ВСВ	EET SAV	03/24/23 14:44
Dissolved	Analysis	6010D		1	769727	BCB	EET SAV	03/24/23 20:03
Dissolved	Prep	3005A			768492	RR	EET SAV	03/20/23 07:40
Dissolved	Analysis	6020B		1	768799	BWR	EET SAV	03/21/23 08:12

Client Sample ID: AF56441

Date Collected: 03/01/23 11:45

Date Received: 03/17/23 10:30

Lab Sample II	J: 680-232195-4
---------------	-----------------

Matrix: Water

_	Batch	Batch		Dilution	Batch			Prepared
Prep Type	Туре	Method	Run	Factor	Number	Analyst	Lab	or Analyzed
Dissolved	Prep	3010A			604817	LKP	EET SL	03/23/23 14:17
Dissolved	Analysis	6010D		1	605060	LKP	EET SL	03/24/23 20:30
Dissolved	Prep	3005A			769547	ВСВ	EET SAV	03/24/23 14:44
Dissolved	Analysis	6010D		1	769727	BCB	EET SAV	03/24/23 20:06
Dissolved	Prep	3005A			768492	RR	EET SAV	03/20/23 07:40
Dissolved	Analysis	6020B		1	768799	BWR	EET SAV	03/21/23 08:16

Eurofins Savannah

2

_

5

7

9

11

12

14

232195-4

Client: South Carolina Public Service Authority Project/Site: 125915/JM02.09.G01.1/36500

Client Sample ID: AF56414

Date Collected: 03/02/23 12:46 Date Received: 03/17/23 10:30 Lab Sample ID: 680-232195-5

Matrix: Water

	Batch	Batch		Dilution	Batch			Prepared
Prep Type	Type	Method	Run	Factor	Number	Analyst	Lab	or Analyzed
Dissolved	Prep	3010A			604817	LKP	EET SL	03/23/23 14:17
Dissolved	Analysis	6010D		1	605060	LKP	EET SL	03/24/23 20:34
Dissolved	Prep	3005A			769547	ВСВ	EET SAV	03/24/23 14:44
Dissolved	Analysis	6010D		1	769727	BCB	EET SAV	03/24/23 20:09
Dissolved	Prep	3005A			768492	RR	EET SAV	03/20/23 07:40
Dissolved	Analysis	6020B		1	768799	BWR	EET SAV	03/21/23 08:20

Client Sample ID: AF56423

Date Collected: 03/02/23 09:52

Lab Sample ID: 680-232195-6

Matrix: Water

Date Collected: 03/02/23 09:52 Date Received: 03/17/23 10:30

	Batch	Batch		Dilution	Batch			Prepared
Prep Type	Type	Method	Run	Factor	Number	Analyst	Lab	or Analyzed
Dissolved	Prep	3010A			604817	LKP	EET SL	03/23/23 14:17
Dissolved	Analysis	6010D		1	605060	LKP	EET SL	03/24/23 20:39
Dissolved	Prep	3005A			769547	ВСВ	EET SAV	03/24/23 14:44
Dissolved	Analysis	6010D		1	769727	BCB	EET SAV	03/24/23 20:19
Dissolved	Prep	3005A			768492	RR	EET SAV	03/20/23 07:40
Dissolved	Analysis	6020B		1	768799	BWR	EET SAV	03/21/23 08:24

Client Sample ID: AF56428 Lab Sample ID: 680-232195-7

Date Collected: 03/02/23 10:56

Date Received: 03/17/23 10:30

	Batch	Batch		Dilution	Batch			Prepared
Prep Type	Type	Method	Run	Factor	Number	Analyst	Lab	or Analyzed
Dissolved	Prep	3010A			604817	LKP	EET SL	03/23/23 14:17
Dissolved	Analysis	6010D		1	605060	LKP	EET SL	03/24/23 20:44
Dissolved	Prep	3005A			769547	ВСВ	EET SAV	03/24/23 14:44
Dissolved	Analysis	6010D		1	769727	BCB	EET SAV	03/24/23 20:22
Dissolved	Prep	3005A			768492	RR	EET SAV	03/20/23 07:40
Dissolved	Analysis	6020B		1	768799	BWR	EET SAV	03/21/23 08:28

Client Sample ID: AF56419 Lab Sample ID: 680-232195-8

Date Collected: 03/07/23 14:51 Date Received: 03/17/23 10:30

	Batch	Batch		Dilution	Batch			Prepared
Prep Type	Type	Method	Run	Factor	Number	Analyst	Lab	or Analyzed
Dissolved	Prep	3010A			604817	LKP	EET SL	03/23/23 14:17
Dissolved	Analysis	6010D		1	605060	LKP	EET SL	03/24/23 20:48
Dissolved	Prep	3005A			769547	ВСВ	EET SAV	03/24/23 14:44
Dissolved	Analysis	6010D		1	769727	BCB	EET SAV	03/24/23 20:25
Dissolved	Prep	3005A			768492	RR	EET SAV	03/20/23 07:40
Dissolved	Analysis	6020B		1	768799	BWR	EET SAV	03/21/23 08:33

Eurofins Savannah

<u>8</u>

10

13

14

Matrix: Water

Matrix: Water

Client: South Carolina Public Service Authority Project/Site: 125915/JM02.09.G01.1/36500

Client Sample ID: AF56425

Lab Sample ID: 680-232195-9 Date Collected: 03/07/23 12:49

Matrix: Water

Date Received: 03/17/23 10:30

	Batch	Batch		Dilution	Batch			Prepared
Prep Type	Type	Method	Run	Factor	Number	Analyst	Lab	or Analyzed
Dissolved	Prep	3010A			604817	LKP	EET SL	03/23/23 14:17
Dissolved	Analysis	6010D		1	605060	LKP	EET SL	03/24/23 20:53
Dissolved	Prep	3005A			769547	ВСВ	EET SAV	03/24/23 14:44
Dissolved	Analysis	6010D		1	769727	BCB	EET SAV	03/24/23 20:29
Dissolved	Prep	3005A			768492	RR	EET SAV	03/20/23 07:40
Dissolved	Analysis	6020B		1	768799	BWR	EET SAV	03/21/23 08:37

Client Sample ID: AF56426

Lab Sample ID: 680-232195-10 Date Collected: 03/07/23 10:22 Matrix: Water

Date Received: 03/17/23 10:30

	Batch	Batch		Dilution	Batch			Prepared
Prep Type	Туре	Method	Run	Factor	Number	Analyst	Lab	or Analyzed
Dissolved	Prep	3010A			604817	LKP	EET SL	03/23/23 14:17
Dissolved	Analysis	6010D		1	605060	LKP	EET SL	03/24/23 21:12
Dissolved	Prep	3005A			769547	ВСВ	EET SAV	03/24/23 14:44
Dissolved	Analysis	6010D		1	769727	BCB	EET SAV	03/24/23 20:32
Dissolved	Prep	3005A			768492	RR	EET SAV	03/20/23 07:40
Dissolved	Analysis	6020B		1	768799	BWR	EET SAV	03/21/23 08:41

Client Sample ID: AF56427

Lab Sample ID: 680-232195-11 Date Collected: 03/07/23 10:27 Matrix: Water

Date Received: 03/17/23 10:30

	Batch	Batch		Dilution	Batch			Prepared
Prep Type	Type	Method	Run	Factor	Number	Analyst	Lab	or Analyzed
Dissolved	Prep	3010A			604817	LKP	EET SL	03/23/23 14:17
Dissolved	Analysis	6010D		1	605060	LKP	EET SL	03/24/23 21:16
Dissolved	Prep	3005A			769547	ВСВ	EET SAV	03/24/23 14:44
Dissolved	Analysis	6010D		1	769727	BCB	EET SAV	03/24/23 20:35
Dissolved	Prep	3005A			768492	RR	EET SAV	03/20/23 07:40
Dissolved	Analysis	6020B		1	768799	BWR	EET SAV	03/21/23 08:53

Client Sample ID: AF56408

Date Collected: 03/08/23 13:38 Matrix: Water

Date Received: 03/17/23 10:30

	Batch	Batch		Dilution	Batch			Prepared
Prep Type	Туре	Method	Run	Factor	Number	Analyst	Lab	or Analyzed
Dissolved	Prep	3010A			604817	LKP	EET SL	03/23/23 14:17
Dissolved	Analysis	6010D		1	605060	LKP	EET SL	03/24/23 21:21
Dissolved	Prep	3005A			769547	ВСВ	EET SAV	03/24/23 14:44
Dissolved	Analysis	6010D		1	769727	BCB	EET SAV	03/24/23 20:38
Dissolved	Prep	3005A			768492	RR	EET SAV	03/20/23 07:40
Dissolved	Analysis	6020B		1	768799	BWR	EET SAV	03/21/23 08:57

Eurofins Savannah

Lab Sample ID: 680-232195-12

Client: South Carolina Public Service Authority Project/Site: 125915/JM02.09.G01.1/36500

Client Sample ID: AF56415

Lab Sample ID: 680-232195-13 Date Collected: 03/08/23 15:13

Matrix: Water

Date Received: 03/17/23 10:30

	Batch	Batch		Dilution	Batch			Prepared
Prep Type	Туре	Method	Run	Factor	Number	Analyst	Lab	or Analyzed
Dissolved	Prep	3010A			604817	LKP	EET SL	03/23/23 14:17
Dissolved	Analysis	6010D		1	605060	LKP	EET SL	03/24/23 21:26
Dissolved	Prep	3005A			769547	ВСВ	EET SAV	03/24/23 14:44
Dissolved	Analysis	6010D		1	769727	BCB	EET SAV	03/24/23 20:42
Dissolved	Prep	3005A			768492	RR	EET SAV	03/20/23 07:40
Dissolved	Analysis	6020B		1	768799	BWR	EET SAV	03/21/23 09:01

Client Sample ID: AF56416

Lab Sample ID: 680-232195-14 Date Collected: 03/08/23 10:09 Matrix: Water

Date Received: 03/17/23 10:30

	Batch	Batch		Dilution	Batch			Prepared
Prep Type	Type	Method	Run	Factor	Number	Analyst	Lab	or Analyzed
Dissolved	Prep	3010A			604817	LKP	EET SL	03/23/23 14:17
Dissolved	Analysis	6010D		1	605060	LKP	EET SL	03/24/23 21:31
Dissolved	Prep	3005A			769547	ВСВ	EET SAV	03/24/23 14:44
Dissolved	Analysis	6010D		1	769727	BCB	EET SAV	03/24/23 20:45
Dissolved	Prep	3005A			768492	RR	EET SAV	03/20/23 07:40
Dissolved	Analysis	6020B		1	768799	BWR	EET SAV	03/21/23 09:05

Client Sample ID: AF56417

Lab Sample ID: 680-232195-15 Date Collected: 03/08/23 10:14 Matrix: Water

Date Received: 03/17/23 10:30

	Batch	Batch		Dilution	Batch			Prepared
Prep Type	Туре	Method	Run	Factor	Number	Analyst	Lab	or Analyzed
Dissolved	Prep	3010A			604817	LKP	EET SL	03/23/23 14:17
Dissolved	Analysis	6010D		1	605060	LKP	EET SL	03/24/23 21:35
Dissolved	Prep	3005A			768859	BJB	EET SAV	03/20/23 09:01
Dissolved	Analysis	6010D		1	768929	BJB	EET SAV	03/21/23 19:12
Dissolved	Prep	3005A			768540	RR	EET SAV	03/20/23 09:01
Dissolved	Analysis	6020B		1	768945	BWR	EET SAV	03/21/23 16:07

Client Sample ID: AF56429

Date Collected: 03/08/23 12:12 Matrix: Water

Date Received: 03/17/23 10:30

	Batch	Batch		Dilution	Batch			Prepared
Prep Type	Туре	Method	Run	Factor	Number	Analyst	Lab	or Analyzed
Dissolved	Prep	3010A			604817	LKP	EET SL	03/23/23 14:17
Dissolved	Analysis	6010D		1	605060	LKP	EET SL	03/24/23 21:40
Dissolved	Prep	3005A			768859	BJB	EET SAV	03/20/23 09:01
Dissolved	Analysis	6010D		1	768929	BJB	EET SAV	03/21/23 19:22
Dissolved	Prep	3005A			768540	RR	EET SAV	03/20/23 09:01
Dissolved	Analysis	6020B		1	768945	BWR	EET SAV	03/21/23 16:19

Eurofins Savannah

Lab Sample ID: 680-232195-16

Client: South Carolina Public Service Authority Project/Site: 125915/JM02.09.G01.1/36500

Client Sample ID: AF56394

Date Collected: 02/14/23 12:33 Date Received: 03/17/23 10:30 Lab Sample ID: 680-232195-17

Matrix: Water

	Batch	Batch		Dilution	Batch			Prepared
Prep Type	Type	Method	Run	Factor	Number	Analyst	Lab	or Analyzed
Dissolved	Prep	3010A			604819	LKP	EET SL	03/23/23 14:19
Dissolved	Analysis	6010D		1	605060	LKP	EET SL	03/24/23 21:54
Dissolved	Prep	3005A			768859	BJB	EET SAV	03/20/23 09:01
Dissolved	Analysis	6010D		1	768929	BJB	EET SAV	03/21/23 19:25
Dissolved	Prep	3005A			768540	RR	EET SAV	03/20/23 09:01
Dissolved	Analysis	6020B		1	768945	BWR	EET SAV	03/21/23 16:23

Client Sample ID: AF56331

Date Collected: 02/14/23 13:51 Date Received: 03/17/23 10:30 Lab Sample ID: 680-232195-18

Matrix: Water

	Batch	Batch		Dilution	Batch			Prepared
Prep Type	Туре	Method	Run	Factor	Number	Analyst	Lab	or Analyzed
Dissolved	Prep	3010A			604819	LKP	EET SL	03/23/23 14:19
Dissolved	Analysis	6010D		1	605060	LKP	EET SL	03/24/23 22:26
Dissolved	Prep	3005A			768859	BJB	EET SAV	03/20/23 09:01
Dissolved	Analysis	6010D		1	768929	BJB	EET SAV	03/21/23 19:29
Dissolved	Prep	3005A			768540	RR	EET SAV	03/20/23 09:01
Dissolved	Analysis	6020B		1	768945	BWR	EET SAV	03/21/23 16:27

Client Sample ID: AF56332

Date Collected: 02/14/23 15:22

Date Received: 03/17/23 10:30

Lab Sample ID: 680-232195-19

Matrix: Water

	Batch	Batch		Dilution	Batch			Prepared
Prep Type	Type	Method	Run	Factor	Number	Analyst	Lab	or Analyzed
Dissolved	Prep	3010A			604819	LKP	EET SL	03/23/23 14:19
Dissolved	Analysis	6010D		1	605060	LKP	EET SL	03/24/23 22:35
Dissolved	Prep	3005A			768859	BJB	EET SAV	03/20/23 09:01
Dissolved	Analysis	6010D		1	768929	BJB	EET SAV	03/21/23 19:38
Dissolved	Prep	3005A			768540	RR	EET SAV	03/20/23 09:01
Dissolved	Analysis	6020B		1	768945	BWR	EET SAV	03/21/23 16:31

Client Sample ID: AF56395

Date Collected: 02/15/23 11:36

Date Received: 03/17/23 10:30

Lab Sample ID: 680-23219	5-20	
--------------------------	------	--

Matrix: Water

	Batch	Batch		Dilution	Batch			Prepared
Prep Type	Туре	Method	Run	Factor	Number	Analyst	Lab	or Analyzed
Dissolved	Prep	3010A			604819	LKP	EET SL	03/23/23 14:19
Dissolved	Analysis	6010D		1	605060	LKP	EET SL	03/24/23 22:39
Dissolved	Prep	3005A			768859	BJB	EET SAV	03/20/23 09:01
Dissolved	Analysis	6010D		1	768929	BJB	EET SAV	03/21/23 19:42
Dissolved	Prep	3005A			768540	RR	EET SAV	03/20/23 09:01
Dissolved	Analysis	6020B		1	768945	BWR	EET SAV	03/21/23 16:35

Eurofins Savannah

3/28/2023

Client: South Carolina Public Service Authority Project/Site: 125915/JM02.09.G01.1/36500

Client Sample ID: AF56396

Lab Sample ID: 680-232195-21 Date Collected: 02/15/23 13:21

Matrix: Water

Date Received: 03/17/23 10:30

	Batch	Batch		Dilution	Batch			Prepared
Prep Type	Туре	Method	Run	Factor	Number	Analyst	Lab	or Analyzed
Dissolved	Prep	3010A			604819	LKP	EET SL	03/23/23 14:19
Dissolved	Analysis	6010D		1	605060	LKP	EET SL	03/24/23 22:44
Dissolved	Prep	3005A			768859	BJB	EET SAV	03/20/23 09:01
Dissolved	Analysis	6010D		1	768929	BJB	EET SAV	03/21/23 19:51
Dissolved	Prep	3005A			768540	RR	EET SAV	03/20/23 09:01
Dissolved	Analysis	6020B		1	768945	BWR	EET SAV	03/21/23 16:54
Dissolved	Prep	3005A			768540	RR	EET SAV	03/20/23 09:01
Dissolved	Analysis	6020B		1	769014	BWR	EET SAV	03/22/23 08:24

Client Sample ID: AF56397

Lab Sample ID: 680-232195-22

Matrix: Water

Date Collected: 02/16/23 10:53 Date Received: 03/17/23 10:30

	Batch	Batch		Dilution	Batch			Prepared
Prep Type	Type	Method	Run	Factor	Number	Analyst	Lab	or Analyzed
Dissolved	Prep	3010A			604819	LKP	EET SL	03/23/23 14:19
Dissolved	Analysis	6010D		1	605060	LKP	EET SL	03/24/23 22:49
Dissolved	Prep	3005A			768859	BJB	EET SAV	03/20/23 09:01
Dissolved	Analysis	6010D		1	768929	BJB	EET SAV	03/21/23 19:45
Dissolved	Prep	3005A			768540	RR	EET SAV	03/20/23 09:01
Dissolved	Analysis	6020B		1	768945	BWR	EET SAV	03/21/23 16:46
Dissolved	Prep	3005A			768540	RR	EET SAV	03/20/23 09:01
Dissolved	Analysis	6020B		1	769014	BWR	EET SAV	03/22/23 08:16

Client Sample ID: AF56400

Lab Sample ID: 680-232195-23

Matrix: Water

Date Collected: 02/16/23 12:55 Date Received: 03/17/23 10:30

	Batch	Batch		Dilution	Batch			Prepared
Prep Type	Туре	Method	Run	Factor	Number	Analyst	Lab	or Analyzed
Dissolved	Prep	3010A			604819	LKP	EET SL	03/23/23 14:19
Dissolved	Analysis	6010D		1	605060	LKP	EET SL	03/24/23 22:53
Dissolved	Prep	3005A			768859	BJB	EET SAV	03/20/23 09:01
Dissolved	Analysis	6010D		1	768929	BJB	EET SAV	03/21/23 19:48
Dissolved	Prep	3005A			768540	RR	EET SAV	03/20/23 09:01
Dissolved	Analysis	6020B		1	768945	BWR	EET SAV	03/21/23 16:50
Dissolved	Prep	3005A			768540	RR	EET SAV	03/20/23 09:01
Dissolved	Analysis	6020B		1	769014	BWR	EET SAV	03/22/23 08:20

Client Sample ID: AF56442

Lab Sample ID: 680-232195-24

Matrix: Water

Date Collected: 02/16/23 14:07 Date Received: 03/17/23 10:30

	Batch	Batch		Dilution	Batch			Prepared
Prep Type	Type	Method	Run	Factor	Number	Analyst	Lab	or Analyzed
Dissolved	Prep	3010A			604819	LKP	EET SL	03/23/23 14:19
Dissolved	Analysis	6010D		1	605060	LKP	EET SL	03/24/23 23:12

Eurofins Savannah

Client: South Carolina Public Service Authority Project/Site: 125915/JM02.09.G01.1/36500

Client Sample ID: AF56442

Date Collected: 02/16/23 14:07 Date Received: 03/17/23 10:30 Lab Sample ID: 680-232195-24

Matrix: Water

	Batch	Batch		Dilution	Batch			Prepared
Prep Type	Type	Method	Run	Factor	Number	Analyst	Lab	or Analyzed
Dissolved	Prep	3005A			768859	BJB	EET SAV	03/20/23 09:01
Dissolved	Analysis	6010D		1	768929	BJB	EET SAV	03/21/23 19:55
Dissolved	Prep	3005A			768540	RR	EET SAV	03/20/23 09:01
Dissolved	Analysis	6020B		1	768945	BWR	EET SAV	03/21/23 16:58
Dissolved	Prep	3005A			768540	RR	EET SAV	03/20/23 09:01
Dissolved	Analysis	6020B		1	769014	BWR	EET SAV	03/22/23 08:28

Client Sample ID: AF56443

Date Collected: 02/16/23 14:12 Date Received: 03/17/23 10:30 Lab Sample ID: 680-232195-25

Matrix: Water

	Batch	Batch		Dilution	Batch			Prepared
Prep Type	Type	Method	Run	Factor	Number	Analyst	Lab	or Analyzed
Dissolved	Prep	3010A			604819	LKP	EET SL	03/23/23 14:19
Dissolved	Analysis	6010D		1	605060	LKP	EET SL	03/24/23 23:17
Dissolved	Prep	3005A			768859	BJB	EET SAV	03/20/23 09:01
Dissolved	Analysis	6010D		1	768929	BJB	EET SAV	03/21/23 19:58
Dissolved	Prep	3005A			768540	RR	EET SAV	03/20/23 09:01
Dissolved	Analysis	6020B		1	768945	BWR	EET SAV	03/21/23 17:02
Dissolved	Prep	3005A			768540	RR	EET SAV	03/20/23 09:01
Dissolved	Analysis	6020B		1	769014	BWR	EET SAV	03/22/23 08:32

Client Sample ID: AF56402

Date Collected: 02/27/23 12:47

Date Received: 03/17/23 10:30

Lab Sam	ple ID:	680-232195-26
---------	---------	---------------

Matrix: Water

	Batch	Batch		Dilution	Batch			Prepared
Prep Type	Type	Method	Run	Factor	Number	Analyst	Lab	or Analyzed
Dissolved	Prep	3010A			604819	LKP	EET SL	03/23/23 14:19
Dissolved	Analysis	6010D		1	605060	LKP	EET SL	03/24/23 23:21
Dissolved	Prep	3005A			768859	ВЈВ	EET SAV	03/20/23 09:01
Dissolved	Analysis	6010D		1	768929	ВЈВ	EET SAV	03/21/23 20:01
Dissolved	Prep	3005A			768540	RR	EET SAV	03/20/23 09:01
Dissolved	Analysis	6020B		1	768945	BWR	EET SAV	03/21/23 17:06
Dissolved	Prep	3005A			768540	RR	EET SAV	03/20/23 09:01
Dissolved	Analysis	6020B		1	769014	BWR	EET SAV	03/22/23 08:36

Client Sample ID: AF56403

Date Collected: 02/27/23 09:57

Date Received: 03/17/23 10:30

Lab	Sample	ID: 68	30-2321	195-27
Lab	Jailible	10.00	JU-EJE	133-21

Matrix: Water

	Batch	Batch		Dilution	Batch			Prepared
Prep Type	Type	Method	Run	Factor	Number	Analyst	Lab	or Analyzed
Dissolved	Prep	3010A			604819	LKP	EET SL	03/23/23 14:19
Dissolved	Analysis	6010D		1	605060	LKP	EET SL	03/24/23 23:26
Dissolved	Prep	3005A			768859	BJB	EET SAV	03/20/23 09:01
Dissolved	Analysis	6010D		1	768929	BJB	EET SAV	03/21/23 20:04

Eurofins Savannah

Client: South Carolina Public Service Authority Project/Site: 125915/JM02.09.G01.1/36500

Client Sample ID: AF56403

Lab Sample ID: 680-232195-27 Date Collected: 02/27/23 09:57

Matrix: Water

Date Received: 03/17/23 10:30

	Batch	Batch		Dilution	Batch			Prepared
Prep Type	Type	Method	Run	Factor	Number	Analyst	Lab	or Analyzed
Dissolved	Prep	3005A			768540	RR	EET SAV	03/20/23 09:01
Dissolved	Analysis	6020B		1	768945	BWR	EET SAV	03/21/23 17:10
Dissolved	Prep	3005A			768540	RR	EET SAV	03/20/23 09:01
Dissolved	Analysis	6020B		1	769014	BWR	EET SAV	03/22/23 08:40

Client Sample ID: AF56404

Lab Sample ID: 680-232195-28 Date Collected: 02/27/23 10:02

Matrix: Water

Date Received: 03/17/23 10:30

	Batch	Batch		Dilution	Batch			Prepared
Prep Type	Type	Method	Run	Factor	Number	Analyst	Lab	or Analyzed
Dissolved	Prep	3010A			604819	LKP	EET SL	03/23/23 14:19
Dissolved	Analysis	6010D		1	605060	LKP	EET SL	03/24/23 23:31
Dissolved	Prep	3005A			768859	BJB	EET SAV	03/20/23 09:01
Dissolved	Analysis	6010D		1	768929	BJB	EET SAV	03/21/23 20:08
Dissolved	Prep	3005A			768540	RR	EET SAV	03/20/23 09:01
Dissolved	Analysis	6020B		1	768945	BWR	EET SAV	03/21/23 17:14
Dissolved	Prep	3005A			768540	RR	EET SAV	03/20/23 09:01
Dissolved	Analysis	6020B		1	769014	BWR	EET SAV	03/22/23 08:43

Client Sample ID: AF56434

Lab Sample ID: 680-232195-29 Date Collected: 02/27/23 15:44 Matrix: Water

Date Received: 03/17/23 10:30

	Batch	Batch		Dilution	Batch			Prepared
Prep Type	Type	Method	Run	Factor	Number	Analyst	Lab	or Analyzed
Dissolved	Prep	3010A			604819	LKP	EET SL	03/23/23 14:19
Dissolved	Analysis	6010D		1	605060	LKP	EET SL	03/24/23 23:36
Dissolved	Prep	3005A			768859	ВЈВ	EET SAV	03/20/23 09:01
Dissolved	Analysis	6010D		1	768929	BJB	EET SAV	03/21/23 20:17
Dissolved	Prep	3005A			768540	RR	EET SAV	03/20/23 09:01
Dissolved	Analysis	6020B		1	768945	BWR	EET SAV	03/21/23 17:18
Dissolved	Prep	3005A			768540	RR	EET SAV	03/20/23 09:01
Dissolved	Analysis	6020B		1	769014	BWR	EET SAV	03/22/23 08:47

Client Sample ID: AF56433

Date Collected: 02/28/23 12:58 Matrix: Water

Date Received: 03/17/23 10:30

	Batch	Batch		Dilution	Batch			Prepared
Prep Type	Туре	Method	Run	Factor	Number	Analyst	Lab	or Analyzed
Dissolved	Prep	3010A			604819	LKP	EET SL	03/23/23 14:19
Dissolved	Analysis	6010D		1	605060	LKP	EET SL	03/24/23 23:41
Dissolved	Prep	3005A			768859	BJB	EET SAV	03/20/23 09:01
Dissolved	Analysis	6010D		1	768929	BJB	EET SAV	03/21/23 20:21
Dissolved	Prep	3005A			768540	RR	EET SAV	03/20/23 09:01
Dissolved	Analysis	6020B		1	768945	BWR	EET SAV	03/21/23 17:22

Eurofins Savannah

Lab Sample ID: 680-232195-30

Client: South Carolina Public Service Authority Project/Site: 125915/JM02.09.G01.1/36500

Client Sample ID: AF56433

Lab Sample ID: 680-232195-30 Date Collected: 02/28/23 12:58

Matrix: Water

Date Received: 03/17/23 10:30

	Batch	Batch		Dilution	Batch			Prepared
Prep Typ	е Туре	Method	Run	Factor	Number	Analyst	Lab	or Analyzed
Dissolved	Prep	3005A			768540	RR	EET SAV	03/20/23 09:01
Dissolved	d Analysis	6020B		1	769014	BWR	EET SAV	03/22/23 09:03

Client Sample ID: AF56435

Lab Sample ID: 680-232195-31

Matrix: Water

Date Collected: 02/28/23 11:44 Date Received: 03/17/23 10:30

	Batch	Batch		Dilution	Batch			Prepared
Prep Type	Type	Method	Run	Factor	Number	Analyst	Lab	or Analyzed
Dissolved	Prep	3010A			604819	LKP	EET SL	03/23/23 14:19
Dissolved	Analysis	6010D		1	605060	LKP	EET SL	03/24/23 23:45
Dissolved	Prep	3005A			768859	BJB	EET SAV	03/20/23 09:01
Dissolved	Analysis	6010D		1	768929	BJB	EET SAV	03/21/23 20:24
Dissolved	Prep	3005A			768540	RR	EET SAV	03/20/23 09:01
Dissolved	Analysis	6020B		1	768945	BWR	EET SAV	03/21/23 17:33
Dissolved	Prep	3005A			768540	RR	EET SAV	03/20/23 09:01
Dissolved	Analysis	6020B		1	769014	BWR	EET SAV	03/22/23 09:07

Client Sample ID: AF56436

Date Received: 03/17/23 10:30

Lab Sample ID: 680-232195-32 Date Collected: 02/28/23 10:19

Matrix: Water

Batch Batch Dilution Batch Prepared **Prep Type** Type Method Run Factor Number Analyst Lab or Analyzed Dissolved 3010A 604819 LKP EET SL 03/23/23 14:19 Prep Dissolved 6010D 03/24/23 23:50 Analysis 605060 LKP EET SL 1 Dissolved Prep 3005A 768859 BJB **EET SAV** 03/20/23 09:01 Dissolved Analysis 6010D 768929 BJB **EET SAV** 03/21/23 20:30 1 Dissolved 3005A **EET SAV** 03/20/23 09:01 Prep 768540 RR 03/21/23 17:41 Dissolved Analysis 6020B 768945 BWR **EET SAV** Dissolved 3005A **EET SAV** 03/20/23 09:01 Prep 768540 RR 03/22/23 09:15 Dissolved Analysis 6020B 769014 BWR **EET SAV**

Client Sample ID: AF56437

Lab Sample ID: 680-232195-33 Date Collected: 02/28/23 10:24 Matrix: Water

Date Received: 03/17/23 10:30

	Batch	Batch		Dilution	Batch			Prepared
Prep Type	Type	Method	Run	Factor	Number	Analyst	Lab	or Analyzed
Dissolved	Prep	3010A			604819	LKP	EET SL	03/23/23 14:19
Dissolved	Analysis	6010D		1	605060	LKP	EET SL	03/24/23 23:55
Dissolved	Prep	3005A			768859	ВЈВ	EET SAV	03/20/23 09:01
Dissolved	Analysis	6010D		1	768929	BJB	EET SAV	03/21/23 20:27
Dissolved	Prep	3005A			768540	RR	EET SAV	03/20/23 09:01
Dissolved	Analysis	6020B		1	768945	BWR	EET SAV	03/21/23 17:37
Dissolved	Prep	3005A			768540	RR	EET SAV	03/20/23 09:01
Dissolved	Analysis	6020B		1	769014	BWR	EET SAV	03/22/23 09:11

Eurofins Savannah

Page 85 of 102

Client: South Carolina Public Service Authority Project/Site: 125915/JM02.09.G01.1/36500

Client Sample ID: AF56438

Lab Sample ID: 680-232195-34 Date Collected: 02/28/23 14:31

Matrix: Water

Date Received: 03/17/23 10:30

	Batch	Batch		Dilution	Batch			Prepared
Prep Type	Type	Method	Run	Factor	Number	Analyst	Lab	or Analyzed
Dissolved	Prep	3010A			604819	LKP	EET SL	03/23/23 14:19
Dissolved	Analysis	6010D		1	605060	LKP	EET SL	03/25/23 00:13
Dissolved	Prep	3005A			768608	RR	EET SAV	03/20/23 13:39
Dissolved	Analysis	6010D		1	768929	BJB	EET SAV	03/21/23 11:21
Dissolved	Prep	3005A			768613	RR	EET SAV	03/20/23 13:39
Dissolved	Analysis	6020B		1	768945	BWR	EET SAV	03/21/23 22:43

Client Sample ID: AF56409

Lab Sample ID: 680-232195-35 Date Collected: 03/06/23 12:14 Matrix: Water

Date Received: 03/17/23 10:30

	Batch	Batch		Dilution	Batch			Prepared
Prep Type	Type	Method	Run	Factor	Number	Analyst	Lab	or Analyzed
Dissolved	Prep	3010A			604819	LKP	EET SL	03/23/23 14:19
Dissolved	Analysis	6010D		1	605060	LKP	EET SL	03/25/23 00:18
Dissolved	Prep	3005A			768608	RR	EET SAV	03/20/23 13:39
Dissolved	Analysis	6010D		1	768929	BJB	EET SAV	03/21/23 11:24
Dissolved	Prep	3005A			768608	RR	EET SAV	03/20/23 13:39
Dissolved	Analysis	6010D		10	769167	BJB	EET SAV	03/22/23 12:16
Dissolved	Prep	3005A			768613	RR	EET SAV	03/20/23 13:39
Dissolved	Analysis	6020B		1	768945	BWR	EET SAV	03/21/23 22:47

Client Sample ID: AF56410

Lab Sample ID: 680-232195-36 Date Collected: 03/06/23 12:19 Matrix: Water

Date Received: 03/17/23 10:30

	Batch	Batch		Dilution	Batch			Prepared
Prep Type	Type	Method	Run	Factor	Number	Analyst	Lab	or Analyzed
Dissolved	Prep	3010A			604819	LKP	EET SL	03/23/23 14:19
Dissolved	Analysis	6010D		1	605060	LKP	EET SL	03/25/23 00:23
Dissolved	Prep	3005A			768608	RR	EET SAV	03/20/23 13:39
Dissolved	Analysis	6010D		1	768929	BJB	EET SAV	03/21/23 11:08
Dissolved	Prep	3005A			768608	RR	EET SAV	03/20/23 13:39
Dissolved	Analysis	6010D		10	769167	BJB	EET SAV	03/22/23 12:13
Dissolved	Prep	3005A			768613	RR	EET SAV	03/20/23 13:39
Dissolved	Analysis	6020B		1	768945	BWR	EET SAV	03/21/23 22:27

Client Sample ID: AF56411

Lab Sample ID: 680-232195-37 Date Collected: 03/06/23 11:08

Date Received: 03/17/23 10:30

	Batch	Batch		Dilution	Batch			Prepared
Prep Type	Type	Method	Run	Factor	Number	Analyst	Lab	or Analyzed
Dissolved	Prep	3010A			604820	LKP	EET SL	03/23/23 14:21
Dissolved	Analysis	6010D		1	605060	LKP	EET SL	03/25/23 00:37
Dissolved	Prep	3005A			768608	RR	EET SAV	03/20/23 13:39
Dissolved	Analysis	6010D		1	768929	BJB	EET SAV	03/21/23 11:37

Eurofins Savannah

Matrix: Water

Client: South Carolina Public Service Authority Project/Site: 125915/JM02.09.G01.1/36500

Client Sample ID: AF56411

Date Received: 03/17/23 10:30

Lab Sample ID: 680-232195-37 Date Collected: 03/06/23 11:08

Matrix: Water

	Batch	Batch		Dilution	Batch			Prepared
Prep Type	Туре	Method	Run	Factor	Number	Analyst	Lab	or Analyzed
Dissolved	Prep	3005A			768608	RR	EET SAV	03/20/23 13:39
Dissolved	Analysis	6010D		10	769167	BJB	EET SAV	03/22/23 12:19
Dissolved	Prep	3005A			768613	RR	EET SAV	03/20/23 13:39
Dissolved	Analysis	6020B		1	768945	BWR	EET SAV	03/21/23 23:02

Client Sample ID: AF56412

Lab Sample ID: 680-232195-38 Date Collected: 03/06/23 15:15

Matrix: Water

Date Received: 03/17/23 10:30

	Batch	Batch		Dilution	Batch			Prepared
Prep Type	Туре	Method	Run	Factor	Number	Analyst	Lab	or Analyzed
Dissolved	Prep	3010A			604820	LKP	EET SL	03/23/23 14:21
Dissolved	Analysis	6010D		1	605060	LKP	EET SL	03/25/23 00:55
Dissolved	Prep	3005A			768608	RR	EET SAV	03/20/23 13:39
Dissolved	Analysis	6010D		1	768929	BJB	EET SAV	03/21/23 11:30
Dissolved	Prep	3005A			768613	RR	EET SAV	03/20/23 13:39
Dissolved	Analysis	6020B		1	768945	BWR	EET SAV	03/21/23 22:55

Client Sample ID: AF56413

Date Received: 03/17/23 10:30

Lab Sample ID: 680-232195-39 Date Collected: 03/06/23 13:41

Matrix: Water

Batch Batch Dilution Batch Prepared **Prep Type** Type Method Run Factor Number Analyst Lab or Analyzed Dissolved Prep 3010A 604820 LKP EET SL 03/23/23 14:21 Dissolved 6010D 03/25/23 01:18 Analysis 605060 LKP EET SL 1 Dissolved Prep 3005A 768608 RR **EET SAV** 03/20/23 13:39 6010D Dissolved Analysis 768929 BJB **EET SAV** 03/21/23 11:27

Client Sample ID: AF56430

Prep

Analysis

3005A

6020B

Dissolved

Dissolved

Lab Sample ID: 680-232195-40

1

768613 RR

768945 BWR

EET SAV

EET SAV

03/20/23 13:39

03/21/23 22:51

Matrix: Water

Date Collected: 03/06/23 10:10 Date Received: 03/17/23 10:30

_	Batch	Batch		Dilution	Batch			Prepared
Prep Type	Туре	Method	Run	Factor	Number	Analyst	Lab	or Analyzed
Dissolved	Prep	3010A			604820	LKP	EET SL	03/23/23 14:21
Dissolved	Analysis	6010D		1	605060	LKP	EET SL	03/25/23 01:23
Dissolved	Prep	3005A			768608	RR	EET SAV	03/20/23 13:39
Dissolved	Analysis	6010D		1	768929	BJB	EET SAV	03/21/23 11:11
Dissolved	Prep	3005A			768613	RR	EET SAV	03/20/23 13:39
Dissolved	Analysis	6020B		1	768945	BWR	EET SAV	03/21/23 22:31

Client: South Carolina Public Service Authority Project/Site: 125915/JM02.09.G01.1/36500

Client Sample ID: AF56406

Lab Sample ID: 680-232195-41 Date Collected: 03/09/23 10:29

Matrix: Water

Date Received: 03/17/23 10:30

	Batch	Batch		Dilution	Batch			Prepared
Prep Type	Туре	Method	Run	Factor	Number	Analyst	Lab	or Analyzed
Dissolved	Prep	3010A			604820	LKP	EET SL	03/23/23 14:21
Dissolved	Analysis	6010D		1	605060	LKP	EET SL	03/25/23 01:28
Dissolved	Prep	3005A			768608	RR	EET SAV	03/20/23 13:39
Dissolved	Analysis	6010D		1	768929	BJB	EET SAV	03/21/23 11:40
Dissolved	Prep	3005A			768613	RR	EET SAV	03/20/23 13:39
Dissolved	Analysis	6020B		1	768945	BWR	EET SAV	03/21/23 23:06

Client Sample ID: AF56407 Lab Sample ID: 680-232195-42

Date Collected: 03/09/23 10:34 Matrix: Water Date Received: 03/17/23 10:30

	Batch	Batch		Dilution	Batch			Prepared
Prep Type	Туре	Method	Run	Factor	Number	Analyst	Lab	or Analyzed
Dissolved	Prep	3010A			604820	LKP	EET SL	03/23/23 14:21
Dissolved	Analysis	6010D		1	605060	LKP	EET SL	03/25/23 01:32
Dissolved	Prep	3005A			768608	RR	EET SAV	03/20/23 13:39
Dissolved	Analysis	6010D		1	768929	BJB	EET SAV	03/21/23 11:43
Dissolved	Prep	3005A			768613	RR	EET SAV	03/20/23 13:39
Dissolved	Analysis	6020B		1	768945	BWR	EET SAV	03/21/23 23:10

Client Sample ID: AF56418 Lab Sample ID: 680-232195-43

Date Collected: 03/09/23 12:07 Matrix: Water Date Received: 03/17/23 10:30

_	Batch	Batch		Dilution	Batch			Prepared
Prep Type	Type	Method	Run	Factor	Number	Analyst	Lab	or Analyzed
Dissolved	Prep	3010A			604820	LKP	EET SL	03/23/23 14:21
Dissolved	Analysis	6010D		1	605060	LKP	EET SL	03/25/23 01:37
Dissolved	Prep	3005A			768608	RR	EET SAV	03/20/23 13:39
Dissolved	Analysis	6010D		1	768929	BJB	EET SAV	03/21/23 11:34
Dissolved	Prep	3005A			768613	RR	EET SAV	03/20/23 13:39
Dissolved	Analysis	6020B		1	768945	BWR	EET SAV	03/21/23 22:59

Client Sample ID: AF56422 Lab Sample ID: 680-232195-44

Date Collected: 03/09/23 13:19 Matrix: Water Date Received: 03/17/23 10:30

	Batch	Batch		Dilution	Batch			Prepared
Prep Type	Туре	Method	Run	Factor	Number	Analyst	Lab	or Analyzed
Dissolved	Prep	3010A			604820	LKP	EET SL	03/23/23 14:21
Dissolved	Analysis	6010D		1	605060	LKP	EET SL	03/25/23 01:42
Dissolved	Prep	3005A			768608	RR	EET SAV	03/20/23 13:39
Dissolved	Analysis	6010D		1	768929	BJB	EET SAV	03/21/23 11:05
Dissolved	Prep	3005A			768613	RR	EET SAV	03/20/23 13:39
Dissolved	Analysis	6020B		1	768945	BWR	EET SAV	03/21/23 22:23

Laboratory References:

EET SAV = Eurofins Savannah, 5102 LaRoche Avenue, Savannah, GA 31404, TEL (912)354-7858

EET SL = Eurofins St. Louis, 13715 Rider Trail North, Earth City, MO 63045, TEL (314)298-8566

Eurofins Savannah

Chain of Custody

Santee cooper

Santee Cooper One Riverwood Drive Moneks Corner, SC 29461 (843)761-8000 Ext. 5148 Fax. (843)761-4175

DISSOLVED

Customer Email/Report Recipient: Date Results Needed by: Project/Task/Unit #: Rerun request for any flagged QC 125915 / JM02.09. GØ1.1 / 36500 Yes No _@santeecooper.com Analysis Group Labworks ID # Sample Location/ Comments Bottle type: (Glass-G/Plastic-P) Matrix(see below) Collection Date Collector Method # BELLOW (Internal use Description METALS Grab (G) or Composite (C) Preservative (below) Reporting limit only) Collection Misc. sample info -SEE Any other notes ZDM 2 × X G SEE SHEET FOR RLS. AF56421 WAP-21 3/1/23 1441 1337 METHOD 6020 WAP-24 WLF-42-1 1022 39 1 1145 41 WLF- A2- 2 G 3/2/23 AF56414 WAP -15 1246 WAP-23 0952 23 28 WAP-27 1056 Sample Receiving (Internal Use Only)
TEMP (°C): 17:3 Initial: 12:3 Date Time 11/23 10:30 Relinquished by: Employee# 2919wan MMa 35594 3/16/23 300 Correct pH: Yes Relinquished by: Time Employee# Date Preservative Lot#: Relinquished by: Employee# Date Time Employee # Date Time Date/Time/Init for preservative: ☐ METALS (all) MISC. **Gypsum** Coal Oil **Nutrients Flyash** ⊠ Sb X Ag □ Cu ☐ Trans. Oil Qual.
☐ %Moisture
☐ Color
☐ Acidity
☐ Dielectric Strength □ BTEX
□ Naphthalene
□ THM/HAA □ Ultimate ☐ Ammonia ¤(Al .⊠ Fe ⊠ Se Gypsum(all below)

AIM
TOC □ DOC □ % Moisture □ LOI ΔK □ Sn ∦ As ☐ Ash
☐ Sulfur
☐ BTUs ☐ % Carbon
☐ Mineral
Analysis ☐ TP/TPO4 □ NH3-N □ VOC **X**Lı □ Sr ΠB ☐ Oil & Grease

Matrix codes GW-groundwater, DW-drinking water, SW-surface water, WW-waste water, BW-boiler water, L-limestone, Oil-oil, S-Soil, SL-solid, $\begin{array}{lll} \text{C-coal, G-gypsum, FA-flyash, BA-bottom ash, M-misc (describe in comment section)} \\ \text{Preservative code-} 1=<4^{\circ}\text{C} & 2=\text{HNO}_3 & 3=\text{H}_2\text{SO}_4 & 4-\text{HCl} & 5=\text{Na}_2\text{S}_2\text{O}_3 & 6-\text{Other (SC)} \\ \text{Constant of the constant of the con$

□ E. Coli

☐ Total Coliform

□ pH
□ Dissolved As

☐ Dissolved Fe
☐ Rad 226

☐ Rad 228

☐ Total metals
☐ Soluble Metals
☐ Purity (CaSO4)
☐ % Moisture
☐ Sulfites

☐ Particle Size

Ø′Ba

⊠ Be

⊠(Ca

₹ Cd

Ж Co

12 Cr

⋈Mg

□ Mn

Mo Mo

Na.Na

X Nı

M Pb

□ Tı

ITPK

 $\Box V$

⊠ Zn

□ Hg

□ CrVI

□Br

□ NO2

□ NO3

□ SO4

☐ IFT ☐ Dissolved Gases

☐ LASSOIVED Gases
☐ Used Oil
☐ Flashpoint
☐ Metals in oil
(As,Cd,Cr,Ni,Pb
Hg)

☐ Sieve

NPDES

□ Oil & Grease

□ As □ TSS

□ Volatile Matter

□ CHN Other Tests:

☐ Fineness
☐ Particulate Matter

□ XRF Scan
□ HGI

凶Ni

ØРь

₽ Co

⊠ Cr

□Hg

☐ CrVI

Chain of Custody

Santee cooper

DISSOLVED

Customer Email/Report Recipient: Date Results Needed by: Project/Task/Unit #: Rerun request for any flagged QC 125915 / JMD2.09.GO 1.1/ 36500 Yes No __@santeecooper.com Analysis Group Labworks ID # Sample Location/ Comments Matrix(see below) Preservative (see below) BEE LOW **Collection Date Collection Time** (Internal use Description Method # Sample Collector Reporting limit only) Grab (G) or Composite (C) Misc. sample info XEE. Any other notes <u>L</u>DM × 3/7/23 F 6 SEE SHEET FUR RIS. AF 56 4, 9 WA-P-19 45 لعاب 25 WAP-25 6020 .022 WAP-26 27 WAP-26D 1027 WAP-.3 3/8/23 1339 AF 56408 15 WA-P-16 1213 6 WAP - 7 WAP-17D 1014 29 WAP-28 12/2 Sample Receiving (Internal Use Only) Relinquished by: Employee# Received by: Employee # Date Time TEMP (°C):_ 8919-wun 35594 3/10/23 Correct pH: Yes No Relinguished by: Time Time Date Date Received by: Employee # Preservative Lot#: Relinquished by: Date Time Received by: Employee # Time Employee# Date/Time/Init for preservative: ☐ METALS (all) **Nutrients** MISC. Gypsum Coal ☐ Trans. Oil Qual.
☐ %Moisture
☐ Color
☐ Acidity
☐ Dielectric Strength X Ag D Cu ⊠ Sb □ TOC BTEX □ Wallboard ☐ Ultimate ☐ Ammonia X Al ₩ Fe Ø.Se Gypsum(all below)

AIM
TOC
Total metals
Soluble Metals ☐ Naphthalene ☐ THM/HAA \square DOC ☐ % Moisture Ø As ÆK ☐ Sn ☐ TP/TPO4 □ Ash □ Sulfur ☐ % Carbon □ VOC □ NH3-N ☐ Mineral Analysis □ Dielectric Strength
□ IFT
□ Dissolved Gases
□ Used Oil
□ Flashpoint
□ Metals in oil
(As,Cd,Cr,Ni,Pb.ltg)
□ TX □В □ Sr PLI □ Oil & Grease
□ E. Coli O F □ BTUs ∭ Ba Ø,Mg 🛛 Ti □ C1 ☐ Volatile Matter ☐ Total Coliform ∏ Be □ Mn ją Tl □ NO2 □ CHN □ % Moisture ☐ Purity (CaSO4)
☐ % Moisture
☐ Sulfites □ Br ☐ Dissolved As Other Tests: MMo Æ Ca ΠV ☐ Dissolved Fe ☐ Rad 226 ☐ Rad 228 □ NO3 **NPDES** ⋈ Cd ⊠′Zn ☐ pH☐ Chlorides☐ Particle Size ⊠(Na □ HGI □ SO4 □ Oil & Grease ☐ Fineness
☐ Particulate Matter

> Matrix codes: GW-groundwater, DW-drinking water, SW-surface water, WW-waste water, BW-boiler water, L-limestone, Oil-oil, S-Soil, SL-solid, C-coal, G-gypsum, FA-flyash, BA-bottom ash, M-misc (describe in comment section)
> Preservative code- 1=<4°C 2=HNO3 3=H2SO4 4-HCl 5=Na₂S₂O₃ 6-Other (Specify)

□ PCB

□ As □ TSS

Chain of Custody

Santee cooper

Santee Cooper One Riverwood Drive Moneks Corner SC 29461 te (843)761-8000 Ext. 5148 Fax. (843)761-4175 DISSOUED Rerun request for any flagged QC Customer Email/Report Recipient: Date Results Needed by: Project/Task/Unit #: L.NDA - WILLIAMS @santeecooper.com 125915 / JM02.09.601.1 / 36500 Yes No **Analysis Group** Labworks ID # Sample Location/ Comments Preservative (see below) (Glass-Matrix(see below) Time DISSOUVED **Collection Date** (Internal use Description Fotal # of container Method # BELOW Sample Collector Reporting limit only) Grab (G) or Composite (C) Bottle type: (G/Plastic-P) Collection Misc sample info Any other notes SEE 2DM K 2 2/14/23 1233 P G SEE SHEET FOR RLS WAP-1 4-56394 1351 G0 20 WBW-1 32 1522 WBW-AI-1 2/15/23 AF56395 WAP-2 1136 32 76 WAP-3 ZDM MDG 2/16/23 b53 +F56397 WAP-4 WAP-7 1255 442 WLF-A2-6 1407 WLF-A2-6D 443 1412 Sample Receiving (Internal Use Only) Relinquished by: Time Received by: Employee # Date Time TEMP (°C):_ __ Initial: 35594 8919-wun 3/16 23 Correct pH: Yes No Time Date Time Date Received by: Employee # Preservative Lot#: Relinquished by: Employee# Received by: Employee # Date Time Date/Time/Init for preservative: ☐ METALS (all) **Nutrients** MISC. **Gypsum** Coal Ä Ag ⊅\Sb ≱\Se ☐ Trans. Oil Qual.
☐ %Moisture
☐ Color
☐ Acidity
☐ Dielectric Strength 🗆 Cu □ TOC □ BTEX □ Wallboard □ Ultimate ☐ Ammonia ≱ Fe Vallboard

Gypsum(all below)

AIM

TOC

Total metals

Purity (CaSO4)

Whoisture

Sulfites

Pull below [A] DOC DTP/TPO4 □ Naphthalene ☐ % Moisture □ THM/HAA □ VOC X,As 図K 🗆 Sn ☐ Ash
☐ Sulfur ☐ % Carbon □ NH3-N □В **XL**1 □ Sr ☐ Mineral ☐ Oil & Grease □ Dielectric Strength
□ IFT
□ Dissolved Gases
□ Used Oil
□ Flashpoint
□ Metals in oil
(As,Cd,Cr,Ni,Pb
Hg)
□ TX □ BTUs Analysis □ E. Coli 风Ba ℤ Mg □ Ti ☐ Sieve
☐ % Moisture □ C1 ☐ Total Coliform ☐ Volatile Matter ĭ Be □ Mn Ø(TI □ NO2 □ pH
□ Dissolved As □ CHN □ Br Other Tests: Ø, Ca **Д**∕Мо $\Box V$ ☐ XRF Scan
☐ HGI □ NO3 ☐ Dissolved Fe **NPDES** ⊠ Cd X Na ⊠(Zn ☐ Rad 226 □ pH □ Chlorides □ SO4 □ Oil & Grease □ Rad 228

> Matrix codes GW-groundwater, DW-drinking water, SW-surface water, WW-waste water, BW-boiler water, L-limestone, Oil-oil, S-Soil, SL-solid, C-coal, G-gypsum, FA-flyash, BA-bottom ash, M-misc (describe in comment section)
> Preservative code- 1=<4°C 2=HNO3 3=H2SO4 4-HCl 5=Na2S2O3 6-Other (S

Particle Size

X Co

₩.Cr

⊠ Nı

ĭ⊈Pb

□ Hg

□ CrVI

□ PCB

□ Fineness

☐ Particulate Matter

□ As □ TSS

□ GOFER

Chain of Custody

DISSOLVED Project/Task/Unit #: Rerun request for any flagged QC Customer Email/Report Recipient: Date Results Needed by: LINDA. WILLIAMS @santeecooper.com 125915 JMOZ. 09. GØ1-1 36500 es No Analysis Group

	works ID # ternal use y)	Sample Location/ Description	Collection Date	Collection Time	Sample Collector	Total # of containers	Bottle type: (Glass- G/Plastic-P)	Grab (G) or Composite (C)	Matrix(see below)	Preservative (see below)	Comments Method # Reporting limit Misc. sample info Any other notes	PISSOLYED METALS	SEE BELOW	
AT	56402	WAP-9	2/27/23	1247	ZDM ML	ı	P	હ	GW	2	SEE SHEET FOR RLS.	X		
	© 3	WA-P-10		0957		1		1	Overdagages		6020			
	04	WAP-10D		1002		-						-		
-	434	WLF-AI-2	1	1544	1	1	-							
AF	:26433	WUE-AI-1	2/28/23	1258)	1			Andrew Control	1				
	85	WLF-A1-3)	११५५										
	w	WLF-AI-4	**************************************	1019						on and a second				
	37	W-F-A1-4D		1024		-				artifility against				
	38	WLF-AL-5	1	1431			1		1	and the same of th				

Relingu	lished by:	Employee#	Date	Time	Received by:	Employee #	Date	Time	TEMI	? (°C):	Initial:
Sgravo	an	35594	3/16/23	1300						ct pH: Yes N	lo .
Relingu	iished by:	Employee#	Date	Time	Received by:	Employee #	Date	Time		rvative Lot#:	
Relingu	ished by:	Employee#	Date	Time	Received by:	Employee #	Date	Time	l reser	vauve Lour.	
<u></u>	en de comissão y comissão e e e								Date/	Time/Init for prese	rvative:
	□ MET	ALS (all)	Nir	trients	MISC.	Gyps	um	Coa		Flyash	Oil
AAg	□ Cu	⊠ Sb		0.000	D BTEX	□ Wallboard		□ Ultimate		☐ Ammonia	☐ Trans, Oil Qual.
¤(Al	⊠ Fe	X Se	D		☐ Naphthalene	Gypsun		□ % Mois	ture		☐ %Moisture
₩ As	ДK	☐ Sn	□ TI	P/TPO4	□ THM/HAA	below)	4	☐ Ash		☐ % Carbon	☐ Color ☐ Acidity
□В	ML 1	□ Sr	1 67223339303007	H3-N	☐ VOC ☐ Oil & Grease	□ AIM □ TOC		□ Sulfur		☐ Mineral	Dielectric Strength
⊠ Ba	Ø∕Mg	□ Ti	— □ CI		□ E. Coli □ Total Coliform	☐ Total m		☐ BTUs ☐ Volatile	Matter	Analysis ☐ Sieve	☐ IFT ☐ Dissolved Gases
ф∕Ве	□Mn	ЖTI	□N		□pH	☐ Soluble ☐ Purity (□ CHN	14.1	☐ % Moisture	□ Used Oil
⊠ Ca	ДMо	υV	□ B ₁		☐ Dissolved As ☐ Dissolved Fe	☐ % Mois ☐ Sulfites		Other Tests:		NDDEC	☐ Flashpoint ☐ Metals in oil
⊅ Cd)X/Na	∑(Zn	□ S0		□ Rad 226	□pH		□HGI		NPDES Oil & Grease	(As,Cd,Ct,Ni,Pb Hg)
X9 C₀	įΧNı	□ Hg			☐ Rad 228 ☐ PCB	☐ Chlorid☐ Particle		☐ Fineness ☐ Particulate M	latter	□ As	n TX
Ø.Cr	⊠Pb	□ CrVI			.,	□ Sulfur		4 14	4	□ TSS	□ GOFER

Matrix codes GW-groundwater, DW-drinking water, SW-surface water, WW-waste water, BW-boiler water, L-limestone, Oil-oil, S-Soil, SL-solid, C-coal, G-gypsum, FA-flyash, BA-bottom ash, M-misc (describe in comment section)

Preservative code- 1=<4°C 2=HNO3 3=H₂SO₄ 4-HCl 5=Na₂S₂O₃ 6-Other (Specify)

Sample Receiving (Internal Use Only)

Chain of Custody

Santee cooper

Santee Cooper One Riverwood Drive Moncks Corner, SC 29461 Phone: (843)761-8000 Ext. 5148 Fax. (843)761-4175 DISSOLVED

Project/Task/Unit #: Rerun request for any flagged QC **Customer Email/Report Recipient:** Date Results Needed by: 125915 / JM02 09. GØ1.1/ 36500 Yes No @santeecooper.com Analysis Group Labworks ID # Sample Location/ Comments OLVED BELOW Preservative (see below) Matrix(see below) (Internal use Description **Collection Date Collection Time** Method # Fotal # of container Sample Collector only) Reporting limit Grab (G) or Composite (C) Bottle type: (G/Plastlc-P) Misc. sample info Any other notes ZON 2 3/6/23 Х WAP-14 1214 GW SEE SHEET FOR RIS. AF 56409 1219 10 6020 WA-P-14D WAP- MA 1108 12 (5,5 WAP-148 (3 1341 WAP - IHC 1 30 WAT-29 1010 3/9/23 4F56406 WAP-12 1029 WAP- 2D 07 1034 18 WA-P - 8 1 1 22 WA--22 1319 Sample Receiving (Internal Use Only) Relinquished by: Employee# Date Time Received by: Employee # Date Time TEMP (°C):_ __Initial:_

	ished by:	Employee#	3/ie/23 Date Date	350 Time	Received by:	Employee #	Date Date	Time Time		ct pH: Yes vative Lot#: Firme/Init for pres	No servative:
<u> </u>		ALS (all)	Nut	trients	MISC.	Gypsi	um	Coal		Flyash	Oil
⊠ Ag ⊠ Al	□ Cu ☑ Fe	⊠ Sb ⊠ Se		22000	□BTEX	□ Wallboard	100000000000000000000000000000000000000	□ Ultimate		☐ Ammonia	☐ Trans. Oil Qual.
D.As	NK	□ Sn)C ?/TPO4	☐ Naphthalene ☐ THM/HAA	Gypsum below)	(all	☐ % Moist	ure	☐ LOI ☐ % Carbon	☐ %Moisture ☐ Color
□В	ALı	□Sr	- NOVO 2721340000	H3-N	□ VOC □ Oil & Grease	D AIM		☐ Sulfur		☐ Mineral	Acidity Dielectric Strength
[A] Ba	'⊠'Mg	□ Ti	□ F		🗆 E. Coli	□ Total m		☐ BTUs ☐ Volatile	Mottor	Analysis ☐ Sieve	☐ IFT ☐ Dissolved Gases
⊠Be	□ Mn	ДTI	□ NO		☐ Total Coliform ☐ pH	☐ Soluble ☐ Purity (□ CHN	Mauci	☐ % Moisture	□ Used Oil
ℤ Ca	Ď-Mo	υV	□ Br		☐ Dissolved As ☐ Dissolved Fe	☐ % Mois	ture	Other Tests:			☐ Flashpoint ☐ Metals in oil
χą Cd	A Na	⊠Zn			☐ Rad 226	□pH		□HGI		NPDES	(As,Cd,Cr,Ni,Pb
Æ Co	ŻΝi	□Hg			☐ Rad 228 ☐ PCB	☐ Chlorid ☐ Particle	77	☐ Fineness ☐ Particulate Ma	tter	☐ Oil & Grease ☐ As	Hg)
⊠ Cr	Й₽ь	□ CrVI			1	□ Sulfur	VIII.			□ TSS	□ GOFER

Matrix codes: GW-groundwater, DW-drinking water, SW-surface water, WW-waste water, BW-boiler water, L-limestone, Oil-oil, S-Soil, SL-solid, C-coal, G-gypsum, FA-flyash, BA-bottom ash, M-misc (describe in comment section)
Preservative code- 1=<4°C 2=HNO3 3=H2SO4 4-HCl 5=Na₂S₂O₃ 6-Other (Speafy)

78/2023

Table of Reporting Limits for Groundwater Samples-- Metals Only

Analyte	Unit	GWPS/ MCL/ RSL	Reporting Limits best case
Aluminum	mg/L	0.05 to 0.2	
Antimony	ug/L	6	5
Arsenic	ug/L	10	5
Arsenic Dissolved	ug/L		
Barium	ug/L	2000	5
Beryllium	ug/L	4	0.5
Boron	ug/L		10 to 15
Cadmium	ug/L	5	0.5
Calcium	ug/L	I	0.1
Chromium	ug/L	100	5
Cobalt	ug/L	6	0.5
Copper	mg/L	1	
Iron	ug/L	300	
Lead	ug/L	15	•
Lithium	ug/L	40	5
Magnesium	ug/L		
Mercury	ug/L	2	0.2
Molybdenum	ug/L	100	5
Nickel	ug/L		
Potassium	mg/L		
Selenium	ug/L	50	5
Sodium	mg/L		
Thallium	ug/L	2	1
Zinc	ug/L	5000	

Ver: 06/08/2021

Environment Testing

💸 eurofins

Chain of Custody Record

Savannah, GA 31404 Phone: 912-354-7858 Fax: 912-352-0165

Eurofins Savannah

5102 LaRoche Avenue

Client Information (Sub Contract Lab)				oide	A .crol .	<				80_	value macking mo(s)		COC 190	
Client Contact	Obodo			נים ווכ						-			080-731060.1	
Shipping/Receiving	2			lerov	.00	904	c-mail: erry apier@et ericofinerie com	8		State	State of Origin:		Page	
Common				Jany	<u> </u>	בו פח	Spellion			noc	n Carolina		Page 1 of 5	
Company. TestAmerica Laboratories, Inc.					ccredita FLAF	itions Re - Flori	Accreditations Required (See note) NELAP - Florida; State - So	se note): e - Sou	th Caro	ina, Sta	Accreditations Required (See note): NELAP - Florida; State - South Carolina; State Program		Job #:	
Address.	Due Date Requester	led:							:				Preservation Codes	des:
Carolina Moltin	3/2/12/023					ŀ	İ	Anai	SIS R	Analysis Requested	red		A · HCI	M - Hexane
City. Earth City	I A I Requested (days):	/s):						_					B - NaOH	N - None O - AsNaO2
State, Zip: MO, 63045	,				6.0	4OI V							D - Nitric Acid E - NaHSO4	P - Na2O4S Q - Na2SO3
Phone. 314-298-8566(Tel) 314-298-8757(Fax)	PO#					d muirt							F - MeOH G - Amchlor	S - H2SO4 T - TSP Dodecahydrate
Email:	**OM					tl J. asi							_	U - Acetone V - MCAA
Project Name. 125915/JM02.09 G01.1/36500	Project #: 68008190					a (dow								W - pH 4-5 Y - Trizma Z - other (specify)
Site.	#MOSS) OAT.							Other:	
			Samolo	Matrix		13_a.							Det o	
		Sample	Type (C=comp,	Sesolid,	edies bla M moch	OD/FIEL							mulf ls	
Sample Identification - Client ID (Lab ID)	Sample Date	Time		4		109		-						Special Instructions/Note:
	X	X	Preservation Code:	ion Code:	X		Ti.							
AF56421 (680-232195-1)	3/1/23	14:41 Eastern		Water		×							1	
AF56424 (680-232195-2)	3/1/23	13:37 Eastern		Water		×							-	
AF56439 (680-232195-3)	3/1/23	10:22 Eastern		Water		×							-	
AF56441 (680-232195-4)	3/1/23	11:45 Eastern		Water		×				_				
AF56414 (680-232195-5)	3/2/23	12:46 Eastern		Water		×		_						
AF56423 (680-232195-6)	3/2/23	09:52 Eastern		Water		×							1	
AF56428 (680-232195-7)	3/2/23	10:56 Eastern		Water		×							-	
AF56419 (680-232195-8)	3/7/23	14:51 Eastern		Water		×							1	
AF56425 (680-232195-9)	3/7/23	12:49 Eastern		Water		×							-	
Note. Since laboratory accreditations are subject to change, Eurofins Environment Testing Southeast, LLC places the ownership of method, analyte & accreditation compliance upon our subcontract laboratories. This sample shipment is forwarded under chain-of-custody. If the laboratory control is shaped back to find the State of Origin listed above for analysistests/matrix being analyzed, the samples must be shipped back to the Eurofins Environment Testing Southeast. LLC laboratory or other instructions will be provided. Any changes to accreditation is the instructions will be provided. Any changes to accreditation	Testing Southeast, LI Ilysis/tests/matrix being	LC places the g analyzed, the	ownership of m s samples musi	ethod, analyte &	accredi	tation cor Eurofins	mpliance Environm	upon our ent Testi	subconfr ng South	act labora	ories. This sar aboratory or of	nple shipment i	s forwarded under cha	LC places the ownership of method, analyte & accreditation compliance upon our subcontract laboratories. This sample shipment is forwarded under chain-of-custody. If the laboratory analyzed, the samples must be shipped back to the Eurofins Environment Testing Southeast, LLC laboratory or other instructions will be provided. Any changes to accreditation
Possible Hazard Identification	in introduction in all re	adnested accre	editations are cu	urrent to date, re	ett mu	signed C	hain of C	ustody at	lesting to	said com	pliance to Euro	fins Environmer	requested accreditations are current to date, return the signed Chain of Custody attesting to said compliance to Eurofins Environment Testing Southeast, LLC	IC

Sample Disposal (A fee may be assessed if samples are retained longer than 1 month)

Return To Client Disposal By Lab Archive For Monte Special Instructions/QC Requirements: Method of Shipment Fime: Primary Deliverable Rank: Deliverable Requested: I, II, III, IV, Other (specify) Empty Kit Relinquished by: Unconfirmed

Chain of Custody Record

Eurofins Savannah 5102 LaRoche Avenue Environment Testing

💸 eurofins

Savannah, GA 31404 Phone: 912-354-7858 Fax: 912-352-0165

The contract Lab Phone		Campagi			Lab PM					j	(e)ou Buyon in come			
Throng	Client Information (Sub Contract Lab)				Lanie	r, Jerny A							680-731060.2	
Foreign	Chient Confact: Shipping/Receiving	Phone:			E-Mail	Spier@	e de la constante	0.00		Sta	of Origin:		Page:	
Forcest and Forcest Properties Prope					3011	Tallel (C)	io io de	IISUS COI			in Carolina		Page 2 or 5	
10 10 10 10 10 10 10 10	TestAmerica Laboratories, Inc.					Accreditation NELAP -	ons Requin Florida;	ed (See no State - S	te): south Ca	rolina; S	ate Program		Job #:	
FOD # POD	Address: 13715 Rider Trail North,	Due Date Requeste 3/27/2023	ij					Ā	alvsis	Regue	sted		Preservation Codes:	800
10 10 10 10 10 10 10 10	City. Earth City	TAT Requested (da	ys):						-				A - HCL B - NaOH	M - hexane N - None O - AsNaO2
Formation Post Formation For	State, Zip. MO, 63045	1				931 V	401 6						C - Zn Acetate D - Nitric Acid E - NaHSO4	P - Na204S Q - Na2SO3
Sample S	Phone. 314-298-8566(Tel) 314-298-8757(Fax)	PO#					0 1110111						F - MeOH G - Amchlor	R - Na2S2O3 S - H2SO4 T - TSP Dodecahydrate
Sample Date Sample Matrix Sample Matrix Sample Cacomp Sample Cacomp Cacom	Email:	#OM				(0	117.661						H - Ascorbic Acid	
Sample Matrix Sample Matrix Sample Matrix Sample Type Type	Project Name: 125915/JM02 09. G01. 1/36500	Project #: 68008190				M'10 a	a (aou					en oute		W - pH 4-5 Y - Trizma Z - other (specify)
Sample Date Names. Sample Water Type Waves. Sample C=Comp. Sample	Site:	SSOW#				N) ds	n) av 1.					il con	Other:	
Sample Date Time G=grab Br-Tituus Assul III			Sample	Sample Type (C=comp,	Matrix (W=water, S=solid, O=waste/oll,	M\ZM mohe						andmin (st		
Treservation Codes 3/7/23 Eastern Water X 3/8/23 Eastern Water X 3/8/23 Eastern X Eastern 2/14/23 Eastern X Eastern 2/14/23 Eastern X Eastern	Sample Identification - Client ID (Lab ID)	Sample Date	Time	- 10	T-Tlasue, A-Air)	d	00					o.I.		Special Instructions/Note:
3/7/23 Eastern Eastern Water X 3/7/23 Eastern Eastern Eastern Eastern 15.13 Water X X 3/8/23 Eastern 10.09 Water X X 3/8/23 Eastern 10.14 Water X X 3/8/23 Eastern 10.14 Water X X 3/8/23 Eastern 10.14 Water X X 3/8/23 Eastern 10.12 Water X X 1/2.12 Water X X Image: Control of the property of the p			(200	Lieselval	ion code.	1						^		V
3/7/23 10:27 Easiern Water X Assiern Water X Assiern 3/8/23 Easiern Water X 8	AF56426 (680-232195-10)	3/7/23	Eastern		Water	_	~							
3/8/23 Eastern Eastern Water X R 3/8/23 Eastern 10.09 Water X R 3/8/23 Eastern 10.14 Water X X R 3/8/23 Eastern 12.12 Water X X R 3/8/23 Eastern 12.12 Water X R R 2/14/23 Eastern 12.33 Water X R R	AF56427 (680-232195-11)	3/7/23	10:27 Eastern		Water	_	Ţ							
3/8/23 15:13 Water X 3/8/23 Eastern Water X 3/8/23 Eastern Water X 3/8/23 Eastern Water X 2/14/23 Eastern X 2/14/23 Eastern X 2/14/23 Eastern X	AF56408 (680-232195-12)	3/8/23	13:38 Eastern		Water	Î	v							
3/8/23 10.09 Eastern Water X 3/8/23 Eastern Eastern X 3/8/23 Eastern L2.12 Water X 2/14/23 Eastern Eastern Eastern Eastern X X	AF56415 (680-232195-13)	3/8/23	15:13 Eastern		Water	Ê	Į							
3/8/23	AF56416 (680-232195-14)	3/8/23	10:09 Fastern		Water		v							
3/8/23 12:12 Water X Eastern 12:33 Water X	AF56417 (680-232195-15)	3/8/23	10:14 Fastern		Water	Ê	Ļ		-					
2/14/23 12:33 Water X Eastern X	AF56429 (680-232195-16)	3/8/23	12:12 Fastern		Water	Ê	Ų							
	AF56394 (680-232195-17)	2/14/23	12:33 Fastern		Water	Î	Į							
AF56331 (680-232195-18) 2/14/23 13:51 Water X	AF56331 (680-232195-18)	2/14/23	13:51 Fastern		Water	Ê	Ţ							

does not currently maintain accreditation in the State of Origin listed above for analysis/lests/matrix being analyzed, the samples must be shipped back to the Eurofins Environment Testing Southeast, LLC laboratory or other instructions will be provided. Any changes to accreditation stream to date, return the signed Chain of Custody attesting to said compliance to Eurofine Environment Testing Southeast, LLC. Sample Disposal (A fee may be assessed if samples are retained longer than 1 month)

Return To Client Disposal By Lab Archive For Mont Possible Hazard Identification

Unconfirmed

	Deliverable Requested: I, II, III, IV, Other (specify)	Primary Deliver	Deliverable Rank: 1		Special Instructions/QC Requirements:	nts:		Sign
	Empty Kit Relinquished by:		Date:	-	Time:	Method of Shipment	hipment	
	Reinquished by	Date/Time:		Company	Received by:		Date/Time:	Company
3	Relinquished by:	Date/Time:		Company	Received by:		Date/Time:	Company
/28/	Relinquished by:	Date/Time		Company	Received by:	0	Date/Time: 3 /22/23	3/22/23 04 10 ETAS
202	Custody Seals Intact: Custody Seal No.:				Cooler Temperature(s) °C and Other Remarks	emarks:		
3	D I GS D MO							

Chain of Custody Record

EULORINS SAVANNAN 5102 LaRoche Avenue	Savannah, GA 31404	Phone: 912-354-7858 Fax: 912-352-0165
--	--------------------	---------------------------------------

Eurofins Savannah										
5102 Lakoche Avenue Savannah, GA 31404 Phone: 912-354-7858 Fav. 912-352-0165	ວົ	hain of Custody Record	ustody F	Seco	ē				💸 eurofins	S Environment Testing
Client Information (Sub Contract Lab)	Sampler		Lab PM Lanier	Lab PM: Lanier, Jerry A	4		Carrier Tracking No(s)	No(s):	COC No.	
ı	Phone		E-Mail:	je je			State of Origin		-000 -000 -000 -000 -000 -000 -000 -00	
Shipping/Receiving			Jer	ry.Lanier	@et.eurof	insus.com	South Carolina	na i	Page 3 of 5	
Company: TestAmerica Laboratories, Inc.				Accredit NELA!	ations Requir	Accreditations Required (See note): NELAP - Florida: State - South Carolina: State Program	olina: State Progr	me	Job #:	
Address. 13715 Rider Trail North,	Due Date Requested: 3/27/2023					Analysis	Analysis Requested		Preservation Codes	des
City Earth City	TAT Requested (days):								A - HCL B - NaOH	
State. Zip MO, 63045					y ICP				D - Nitric Acid E - NaHSO4	P - Na204S Q - Na2SO3
Phone. 314-298-8566(Tel) 314-298-8757(Fax)	PO#:			(d muin				F - MeOH G - Amchlor	
Email	:# OM				MJ.ss				H - Ascorbic Acid	
Project Name 125915/JM02.09.G01.1/36500	Project #: 68008190			_	nop) pi				K-EDTA L-EDA	W - pH 4-5 Y - Trizma Z - other (specify)
Site	SSOW#:				л) аят.				Other	
			Matrix (w-water,	S benetilit MSM mm	וידופּנס_דנ				Mumber o	
Sample Identification - Client ID (Lab ID)	Sample Date	Sample (C=comp, Time G=grab)	ã	Piold	G0109					Special Instructions/Note:
	X		Preservation Code:	X						
AF56332 (680-232195-19)	2/14/23	15:22 Fastern	Water		×				+	
AF56395 (680-232195-20)	2/15/23	11:36 Fastern	Water		×				-	
AF56396 (680-232195-21)	2/15/23	13:21 Eastern	Water		×				12	
AF56397 (680-232195-22)	2/16/23	10:53 Fastern	Water		×				च	
AF56400 (680-232195-23)	2/16/23	12:55 Eastern	Water		×					
AF56442 (680-232195-24)	2/16/23	14:07 Fastern	Water		×				1	
AF56443 (680-232195-25)	2/16/23	14:12 Fastern	Water		×				12	
AF56402 (680-232195-26)	2/27/23	12:47 Eastern	Water		×				-	
AF56403 (680-232195-27)	2/27/23	09:57 Eastern	Water		×				7	
Note: Since laboratory accreditations are subject to change, Eurofins Environment Testing Southeast, LLC places the ownership of method, analyte & accreditation compliance upon our subcontract laboratories. This sample shipment is forwarded under chain-of-custody. If the laboratory does not currently maintain accreditation in the State of Origin listed above for analysis/lests/mainty being analyzed, the samples must be shipped back to the Eurofins Environment Testing Southeast above for analysis/lests/mainty being analyzed, the samples must be shipped back to the Eurofins Environment Testing Southeast, LLC attention immediately. If all requested accreditations are current to date, return the signed Chain of Custody attesting to said compliance to Eurofins Environment Testing Southeast, LLC.	onment Testing Southeast, LLC for analysis/lests/matrix being a attention immediately. If all req	places the ownership analyzed, the samples uested accreditations	of method, analyte must be shipped t are current to date	e & accred back to the return the	itation compl Eurofins En- signed Chai	iance upon our subcon vironment Testing Sour n of Custody attesting	tract laboratories. Thi heast, LLC laboratory o said compliance to	s sample shipm or other instruct Eurofins Enviror	ent is forwarded under chitons will be provided. An iment Testing Southeast,	ain-of-custody. If the laborator y changes to accreditation LLC.
Possible Hazard Identification				Sar	nple Disp	osal (A fee may l	e assessed if sa	Imples are r	Sample Disposal (A fee may be assessed if samples are retained longer than 1 month)	1 month)
Unconfirmed Dalisarchia Bossocial III III IV Odeo (2000)				_	Return	Return To Client	Disposal By Lab	Q.	Archive For	Months
Deliverable Requested. I, III, IV, Other (specify)	Primary Deliverable	e Rank: 1		Sp	cial Instru	Special Instructions/QC Requirements:	ments:			
Empty Kit Relinquished by:	Dat	ate:		Time			Method of Shipment	Shipment:		
Relinquished by:	Date/Time:		Company		Received by			Date/Time:		Company
Relinquished by:	Date/Time:		Company)	Received by:	-	Shoot boss	Date/Time:	2/22/13 00	2 5
Relinquished by.	Date/Time:		Company		Received by			Date/Time:		$\overline{}$
Custody Seals Intact: Custody Seal No.: Δ Yes Δ No					Cooler Temp	Cooler Temperature(s) °C and Other Remarks:	r Remarks:			
1				1						

Ver: 06/08/202

Carrier Tracking No(s)

Environment Testing

🔅 eurofins

Chain of Custody Record

Phone: 912-354-7858 Fax: 912-352-0165

Eurofins Savannah

5102 LaRoche Avenue Savannah, GA 31404

S - H2SO4 T - TSP Dodecahydrate U - Acetone Special Instructions/Note: Z - other (specify) P - Na204S Q - Na2SO3 R - Na2S2O3 W - pH 4-5 V - MCAA Y - Trizma Preservation Codes A - HCL
B - NaOH
C - Zn Acetate
D - Nitric Acid
F - MasSO4
F - MeOH
G - Amchlor
H - Ascorbic Acid COC No: 680-731060.4 680-232195-1 Page: Page 4 of 5 I - Ice J - DI Water K - EDTA L-EDA ÷ Accreditations Required (See note): NELAP - Florida: State - South Carolina; State Program State of Origin: South Carolina Analysis Requested Jerry.Lanier@et.eurofinsus.com Lab PM: Lanier, Jerry A 6010D/FIELD_FLTRD (MOD) Diss.Lithium by ICP × \times \times × × (off. 10 26Y), GZM/ZM miche (off to set) sigma? be E-Mail (W=water, S=solid, O=wasta/oll, Preservation Code: Matrix Water Water Water Water Water (C=comp, G=grab) Sample Type Eastern 15:44 Eastern 11:44 Eastern 10:19 Eastern 10:24 Sample Eastern 12:58 Due Date Requested: 3/27/2023 TAT Requested (days): Sample Date 2/28/23 2/28/23 2/28/23 2127123 Project #: 68008190 2127123 # OM Client Information (Sub Contract Lab) Sample Identification - Client ID (Lab ID) 314-298-8757(Fax) Project Name: 125915/JM02.09.G01.1/36500 FestAmerica Laboratories, Inc. AF56434 (680-232195-29) AF56435 (680-232195-31) AF56404 (680-232195-28) AF56436 (680-232195-32) AF56433 (680-232195-30) 13715 Rider Trail North Client Contact: Shipping/Receiving 314-298-8566(Tel) State, Zip. MO, 63045 Earth City

Note: Since laboratory acceditations are subject to change, Eurofins Environment Testing Southeast, LLC places the ownership of method, analyte & accreditation compliance upon our subcontract laboratories. This sample shipment is forwarded under chain-of-custody. If the laboratory of content instructions will be provided. Any changes to accreditation in the State of Origin listed above for analysis/tests/matrix being analyzed, the samples must be shipped back to the Eurofins Environment Testing Southeast, LLC attention immediately. If all requested accreditations are current to date, return the signed Chain of Custody attesting southeast, LLC attention immediately. If all requested accreditations are current to date, return the signed Chain of Custody attesting to said compliance to Eurofins Environment Testing Southeast, LLC.

× × × ×

Water Water

> Eastern 14:31 Eastern 12:14 Eastern 12:19

2/28/23 2/28/23

AF56437 (680-232195-33) AF56438 (680-232195-34) AF56409 (680-232195-35)

Water

3/6/23

Water

Eastern

3/6/23

AF56410 (680-232195-36)

	l ossible mazard identification			5	Sample Disposal (A fee may be assessed if samples are retained longer than 1 month)	d if samples ar	re refained longer than	month
	Unconfirmed				Return To Client Disposal By Lab	l Bv I ab	Archive For	Months
	Deliverable Requested: I, II, III, IV, Other (specify)	Primary Deliverable Rank:	ble Rank: 1	S	Requ	ł		MOUNTS
	Empty Kit Relinquished by:		Date:	Time:		Method of Shipment:		
	Relinquished by:	Date/Time:	Company	any	Received by:	Date/Time		Company
	Reinquished by	Date/Time:	Company	any	Received by:	Date/Time		Company
3/28	Relinquished by:	Date/Time:	Company	any	Mama Sharkort	Date/Hime	3/2/23 0910 ETAST	ET457
3/20:	Custody Seals Intact: Custody Seal No.:				Cooler Temperature(s) ^o C and Other Remarks)	0	d and to to
23	Δ Yes Δ No							

Chain of Custody Record

Eurofins Savannah

5102 LaRoche Avenue

Environment Testing

😵 eurofins

Savannah GA 31404	Chai	Chain of Custody Record	stody R	ecor			s eurotins	
Phone: 912-354-7858 Fax: 912-352-0165								Environment Test
	Sampler		Lab PM	5		Carrier Tracking No(s)	COC No.	
Client Information (Sub Contract Lab)			Lani	Lanier, Jerry A			680-731060.5	
Client Contact:	Phone		E-Mail:			State of Origin:	Page	
Simplify Receiving			Jerry	.Lanier@	Jerry Lanier@et eurofinsus.com	South Carolina	Page 5 of 5	
Company				Accreditatio	Accreditations Required (See note)		*dop	
TestAmerica Laboratories, Inc.				NELAP -	NELAP - Florida; State - South Carolina; State Program	a; State Program	680-232195-1	
Address: 13715 Rider Trail North	Due Date Requested:						Preservation Codes:	98:
CO TOTAL MOTER,	3/2//2023				Analysis Kequested	quested	3	M - Hexane
City: Earth City	TAT Requested (days):						B - NaOH	N - None O - AsnaO2
State, Zip	Ī			d:			C - Zn Acetate	P - Na204S
MO, 63045				1 A			E - NaHSO4	Q - Na2SO3
Phone. 314-298-8566(Tel) 314-298-8757(Fax)	# Od			98			F - MeOH G - Amchlor	K - Na2S2O3 S - H2SO4 T - TSD Dodoobudoo
Fmail	* OW						H - Ascorbic Acid	II - Acetone
Linear.				(0)				V - MCAA
Project Name. 125915/JM02.09.G01.1/36500	Project # 68008190			A (don			K-EDTA L-EDA	W - pH 4-5 Y - Trizma Z - other (snacify)
Site.	SSOW#:			W) ds			f conf	
		Cample	Matrix	SW/SI			Der O	
		Type	(Wwwater,	M m			imul	
Sample Identification - Client ID (Lab ID)	Sample Date Time	(C=comp,	Secolid. Omwasta/oil,					:
		Preserv	Preservation Code:	-				Special Instructions/Note:
AF56411 (680-232195-37)	3/6/23 11:08		Water	,				
		uie						
AF56412 (680-232195-38)	3/6/23 15:15 Eastern	i5 ern	Water	×			4	
AF56413 (680-232195-39)	3/6/23 13:41 Easter	11 ern	Water	×			+	
AF56430 (680-232195-40)	3/6/23 10:10 Eastern	0	Water	×			T.	

N - None
O - AsNaO2
P - Na2O4S
Q - Na2SO3
R - Na2S2O3
S - R2SO4
I - T FP Dodecahydrate
U - Acetone
V - MCAA
W - pH 4-5
Y - Tizma
Z - other (specify)

Note. Since laboratory accreditations are subject to change, Eurofins Environment Testing Southeast, LLC places the ownership of method, analyte & accreditation compliance upon our subcontract laboratory or other instructions will be provided. Any changes to accreditation does not currently maintain accreditation in the State of Origin listed above for analysis/tests/matrix being analyzed, the samples must be shipped back to the Eurofins Environment Testing Southeast, LLC attention immediately. If all requested accreditations are current to date, return the signed Chain of Custody attesting to said compliance to Eurofins Environment Testing Southeast, LLC. Possible Hazard Identification

Water

Eastern 12:07 Eastern 13:19 Eastern

Eastern 10:34

3/9/23 3/9/23 3/9/23 3/9/23

AF56406 (680-232195-41)

AF56407 (680-232195-42) AF56418 (680-232195-43) AF56422 (680-232195-44)

44

+

× × × ×

Water Water Water

					Sample Disposal (A fee may be assessed if samples are retained longer than 1 month)	ssed if samples ar	e retained longer than 1	nonth)
	Unconfirmed				Return To Client	Oisposal By Lab	Archive For	Months
	Deliverable Requested: I, II, III, IV, Other (specify)	Primary Deliverable Rank:	rable Rank: 1		Requ	ı	D. DANIEL	MOTITUS
	Empty Kit Relinquished by:		Date:	Time:	ici)	Method of Shipment:		
	Relinquished by	Date/Time		Company	Received by:	Date/Time:		Company
(Relinquished by.	Date/Time		Company	Received by:	-22	1 - 1 - 1	Company
3/28	Relinquished by.	.Date/Time:		Company	Received by:	2	V. 3/22/13 09	Company
/2023	Custody Seals Intact: Custody Seal No.:				Cooler Temperature(s) °C and Other Remarks:	i		

Login Sample Receipt Checklist

Client: South Carolina Public Service Authority

Job Number: 680-232195-1

Login Number: 232195 List Source: Eurofins Savannah

List Number: 1

Creator: Givens, Keshia

ordator. Ordano, resina	
Question	Answer Comment
Radioactivity wasn't checked or is = background as measured by a survey meter.</td <td>N/A</td>	N/A
The cooler's custody seal, if present, is intact.	True
Sample custody seals, if present, are intact.	True
The cooler or samples do not appear to have been compromised or tampered with.	True
Samples were received on ice.	True
Cooler Temperature is acceptable.	True
Cooler Temperature is recorded.	True
COC is present.	True
COC is filled out in ink and legible.	True
COC is filled out with all pertinent information.	True
Is the Field Sampler's name present on COC?	True
There are no discrepancies between the containers received and the COC.	N/A
Samples are received within Holding Time (excluding tests with immediate HTs)	True
Sample containers have legible labels.	True
Containers are not broken or leaking.	True
Sample collection date/times are provided.	True
Appropriate sample containers are used.	True
Sample bottles are completely filled.	True
Sample Preservation Verified.	N/A
There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs	True
Containers requiring zero headspace have no headspace or bubble is <6mm (1/4").	N/A
Multiphasic samples are not present.	True
Samples do not require splitting or compositing.	True
Residual Chlorine Checked.	N/A

4

-

Ω

3

11

Login Sample Receipt Checklist

Client: South Carolina Public Service Authority

Job Number: 680-232195-1

List Source: Eurofins St. Louis
List Number: 2
List Creation: 03/22/23 01:48 PM

Creator: Sharkey-Gonzalez, Briana L

Question	Answer	Comment
Radioactivity wasn't checked or is = background as measured by a survey meter.</td <td>True</td> <td></td>	True	
The cooler's custody seal, if present, is intact.	True	
Sample custody seals, if present, are intact.	True	
The cooler or samples do not appear to have been compromised or tampered with.	True	
Samples were received on ice.	N/A	
Cooler Temperature is acceptable.	True	
Cooler Temperature is recorded.	True	
COC is present.	True	
COC is filled out in ink and legible.	True	
COC is filled out with all pertinent information.	True	
Is the Field Sampler's name present on COC?	True	
There are no discrepancies between the containers received and the COC.	True	
Samples are received within Holding Time (excluding tests with immediate HTs)	True	
Sample containers have legible labels.	True	
Containers are not broken or leaking.	True	
Sample collection date/times are provided.	True	
Appropriate sample containers are used.	True	
Sample bottles are completely filled.	True	
Sample Preservation Verified.	True	
There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs	True	
Containers requiring zero headspace have no headspace or bubble is <6mm (1/4").	True	
Multiphasic samples are not present.	True	
Samples do not require splitting or compositing.	True	
Residual Chlorine Checked.	N/A	

3

4

5

7

9

10

12

Accreditation/Certification Summary

Client: South Carolina Public Service Authority Project/Site: 125915/JM02.09.G01.1/36500

Job ID: 680-232195-1

Laboratory: Eurofins Savannah

The accreditations/certifications listed below are applicable to this report.

Authority	Program	Identification Number	Expiration Date
South Carolina	State	98001	06-30-23

Laboratory: Eurofins St. Louis

All accreditations/certifications held by this laboratory are listed. Not all accreditations/certifications are applicable to this report.

Authority	Program	Identification Number	Expiration Date
Alaska (UST)	State	20-001	05-06-25
ANAB	Dept. of Defense ELAP	L2305	04-06-25
ANAB	Dept. of Energy	L2305.01	04-06-25
ANAB	ISO/IEC 17025	L2305	04-06-25
Arizona	State	AZ0813	12-08-23
California	Los Angeles County Sanitation Districts	10259	06-30-22 *
California	State	2886	06-30-23
Connecticut	State	PH-0241	03-31-23
Florida	NELAP	E87689	06-30-23
HI - RadChem Recognition	State	n/a	06-30-23
Illinois	NELAP	200023	11-30-23
lowa	State	373	12-01-24
Kansas	NELAP	E-10236	10-31-23
Kentucky (DW)	State	KY90125	12-31-23
Kentucky (WW)	State	KY90125 (Permit KY0004049)	12-31-23
Louisiana (All)	NELAP	04080	06-30-23
Louisiana (DW)	State	LA011	12-31-23
Maryland	State	310	09-30-23
MI - RadChem Recognition	State	9005	06-30-23
Missouri	State	780	06-30-25
Nevada	State	MO000542020-1	07-31-23
New Jersey	NELAP	MO002	06-30-23
New York	NELAP	11616	04-01-23
North Carolina (DW)	State	29700	07-31-23
North Dakota	State	R-207	06-30-23
Oklahoma	NELAP	9997	08-31-23
Oregon	NELAP	4157	09-01-23
Pennsylvania	NELAP	68-00540	02-28-24
South Carolina	State	85002001	06-30-23
Texas	NELAP	T104704193	07-31-23
US Fish & Wildlife	US Federal Programs	058448	07-31-23
USDA	US Federal Programs	P330-17-00028	06-11-23
Utah	NELAP	MO000542021-14	07-31-23
Virginia	NELAP	10310	06-14-24
Washington	State	C592	08-30-23
West Virginia DEP	State	381	10-31-23

7

8

10

12

13

 $^{^{\}star} \ \text{Accreditation/Certification renewal pending - accreditation/certification considered valid}.$

ANALYTICAL REPORT

PREPARED FOR

Attn: Linda Williams
South Carolina Public Service Authority
Santee Cooper
PO BOX 2946101
Moncks Corner, South Carolina 29461-2901

Generated 3/28/2023 6:36:20 PM

JOB DESCRIPTION

125915/JM02.09.G01.1/36500

JOB NUMBER

680-232196-1

Eurofins Savannah 5102 LaRoche Avenue Savannah GA 31404

Eurofins Savannah

Job Notes

The test results in this report meet NELAP requirements for parameters for which accreditation is required or available. Any exceptions to the NELAP requirements are noted. Results pertain only to samples listed in this report. This report may not be reproduced, except in full, without the written approval of the laboratory. Questions should be directed to the person who signed this report.

The test results in this report relate only to the samples as received by the laboratory and will meet all requirements of the methodology, with any exceptions noted. This report shall not be reproduced except in full, without the express written approval of the laboratory. All questions should be directed to the Eurofins Environment Testing Southeast, LLC Project Manager.

Authorization

Generated 3/28/2023 6:36:20 PM

Authorized for release by Jerry Lanier, Project Manager I <u>Jerry.Lanier@et.eurofinsus.com</u> (912)250-0281

Eurofins Savannah is a laboratory within Eurofins Environment Testing Southeast, LLC, a company within Eurofins Environment Testing Group of Companies

Table of Contents

Cover Page	1
Table of Contents	3
Case Narrative	4
Sample Summary	5
Method Summary	6
Definitions	7
Detection Summary	8
Client Sample Results	24
QC Sample Results	68
QC Association	82
Chronicle	93
Chain of Custody	108
Receipt Checklists	119
Cartification Summary	121

3

4

6

0

9

10

12

Case Narrative

Client: South Carolina Public Service Authority Project/Site: 125915/JM02.09.G01.1/36500

Job ID: 680-232196-1

Job ID: 680-232196-1

Laboratory: Eurofins Savannah

Narrative

Job Narrative 680-232196-1

Receipt

The samples were received on 3/17/2023 10:30 AM. Unless otherwise noted below, the samples arrived in good condition, and, where required, properly preserved and on ice. The temperature of the cooler at receipt time was 18.3°C

Metals

Method 6010D: preparation batch 160-604815 Elevated reporting limits are provided for the following sample due to insufficient sample provided for preparation: AF56407 (680-232196-26).

No additional analytical or quality issues were noted, other than those described above or in the Definitions/ Glossary page.

3

_

5

7

8

9

10

12

Sample Summary

Client: South Carolina Public Service Authority Project/Site: 125915/JM02.09.G01.1/36500

Job ID: 680-232196-1

Lab Sample ID	Client Sample ID	Matrix	Collected	Received
680-232196-1	AF56394	Water	02/14/23 12:33	03/17/23 10:30
680-232196-2	AF56331	Water	02/14/23 13:51	03/17/23 10:30
680-232196-3	AF56332	Water	02/14/23 15:22	03/17/23 10:30
680-232196-4	AF56395	Water	02/15/23 11:36	03/17/23 10:30
680-232196-5	AF56396	Water	02/15/23 13:21	03/17/23 10:30
680-232196-6	AF56397	Water	02/16/23 10:53	03/17/23 10:30
680-232196-7	AF56400	Water	02/16/23 12:55	03/17/23 10:30
680-232196-8	AF56442	Water	02/16/23 14:07	03/17/23 10:30
880-232196-9	AF56443	Water	02/16/23 14:12	03/17/23 10:30
80-232196-10	AF56402	Water	02/27/23 12:47	03/17/23 10:30
680-232196-11	AF56403	Water	02/27/23 09:57	03/17/23 10:30
880-232196-12	AF56404	Water	02/27/23 10:02	03/17/23 10:30
680-232196-13	AF56434	Water	02/27/23 15:44	03/17/23 10:30
680-232196-14	AF56433	Water	02/28/23 12:58	03/17/23 10:30
680-232196-15	AF56435	Water	02/28/23 11:44	03/17/23 10:30
880-232196-16	AF56436	Water	02/28/23 10:19	03/17/23 10:30
880-232196-17	AF56437	Water	02/28/23 10:24	03/17/23 10:30
880-232196-18	AF56438	Water	02/28/23 14:31	03/17/23 10:30
80-232196-19	AF56409	Water	03/06/23 12:14	03/17/23 10:30
80-232196-20	AF56410	Water	03/06/23 12:19	03/17/23 10:30
80-232196-21	AF56411	Water	03/06/23 11:08	03/17/23 10:30
80-232196-22	AF56412	Water	03/06/23 15:15	03/17/23 10:30
80-232196-23	AF56413	Water	03/06/23 13:41	03/17/23 10:30
30-232196-24	AF56430	Water	03/06/23 10:10	03/17/23 10:30
80-232196-25	AF56406	Water	03/09/23 10:29	03/17/23 10:30
80-232196-26	AF56407	Water	03/09/23 10:34	03/17/23 10:30
80-232196-27	AF56418	Water	03/09/23 12:07	03/17/23 10:30
80-232196-28	AF56422	Water	03/09/23 13:19	03/17/23 10:30
30-232196-29	AF56419	Water	03/07/23 14:51	03/17/23 10:30
880-232196-30	AF56425	Water	03/07/23 12:49	03/17/23 10:30
680-232196-31	AF56426	Water	03/07/23 10:22	03/17/23 10:30
880-232196-32	AF56427	Water	03/07/23 10:22	03/17/23 10:30
80-232196-32	AF56408	Water	03/08/23 13:38	03/17/23 10:30
680-232196-34	AF56415	Water	03/08/23 15:13	03/17/23 10:30
680-232196-34 680-232196-35	AF56416	Water	03/08/23 10:09	03/17/23 10:30
580-232196-35 580-232196-36	AF56417	Water	03/08/23 10:14	03/17/23 10:30
680-232196-36 680-232196-37	AF56429		03/08/23 10:14	03/17/23 10:30
		Water		
80-232196-38 80-232196-39	AF56421	Water	03/01/23 14:41	03/17/23 10:30
	AF56428	Water	03/01/23 13:37	03/17/23 10:30
880-232196-40	AF56439	Water	03/01/23 10:22	03/17/23 10:30
880-232196-41	AF56441	Water	03/01/23 11:45	03/17/23 10:30
680-232196-42	AF56414	Water	03/02/23 12:46	03/17/23 10:30
880-232196-43	AF56423	Water	03/02/23 10:56	03/17/23 10:30
880-232196-44	AF56428	Water	03/02/23 00:00	03/17/23 10:30

2

/

7

6

46

11

12

Method Summary

Client: South Carolina Public Service Authority Project/Site: 125915/JM02.09.G01.1/36500

Job ID: 680-232196-1

Method	Method Description	Protocol	Laboratory
6010D	Metals (ICP)	SW846	EET SAV
6010D	Metals (ICP)	SW846	EET SL
6020B	Metals (ICP/MS)	SW846	EET SAV
7470A	Mercury (CVAA)	SW846	EET SAV
3005A	Preparation, Total Recoverable or Dissolved Metals	SW846	EET SAV
3010A	Preparation, Total Metals	SW846	EET SL
7470A	Preparation, Mercury	SW846	EET SAV

Protocol References:

SW846 = "Test Methods For Evaluating Solid Waste, Physical/Chemical Methods", Third Edition, November 1986 And Its Updates.

Laboratory References:

EET SAV = Eurofins Savannah, 5102 LaRoche Avenue, Savannah, GA 31404, TEL (912)354-7858 EET SL = Eurofins St. Louis, 13715 Rider Trail North, Earth City, MO 63045, TEL (314)298-8566

Definitions/Glossary

Client: South Carolina Public Service Authority

Project/Site: 125915/JM02.09.G01.1/36500

Job ID: 680-232196-1

Qualifiers

Qualifier	Qualifier Description
4	MS, MSD: The analyte present in the original sample is greater than 4 times the matrix spike concentration; therefore, control limits are not applicable.
F1	MS and/or MSD recovery exceeds control limits.
F2	MS/MSD RPD exceeds control limits
Н	Sample was prepped or analyzed beyond the specified holding time
H3	Sample was received and analyzed past holding time.
U	Indicates the analyte was analyzed for but not detected.

U	Indicates the analyte was analyzed for but not detected.
Glossary	
Abbreviation	These commonly used abbreviations may or may not be present in this report.
n n	Listed under the "D" column to designate that the result is reported on a dry weight basis
%R	Percent Recovery
CFL	Contains Free Liquid
CFU	Colony Forming Unit
CNF	Contains No Free Liquid
DER	Duplicate Error Ratio (normalized absolute difference)
Dil Fac	Dilution Factor
DL	Detection Limit (DoD/DOE)
DL, RA, RE, IN	Indicates a Dilution, Re-analysis, Re-extraction, or additional Initial metals/anion analysis of the sample
DLC	Decision Level Concentration (Radiochemistry)
EDL	Estimated Detection Limit (Dioxin)
LOD	Limit of Detection (DoD/DOE)
LOQ	Limit of Quantitation (DoD/DOE)
MCL	EPA recommended "Maximum Contaminant Level"
MDA	Minimum Detectable Activity (Radiochemistry)
MDC	Minimum Detectable Concentration (Radiochemistry)
MDL	Method Detection Limit
ML	Minimum Level (Dioxin)
MPN	Most Probable Number
MQL	Method Quantitation Limit
NC	Not Calculated
ND	Not Detected at the reporting limit (or MDL or EDL if shown)
NEG	Negative / Absent
POS	Positive / Present
PQL	Practical Quantitation Limit
PRES	Presumptive
QC	Quality Control

RPD Relative Percent Difference, a measure of the relative difference between two points
TEF Toxicity Equivalent Factor (Dioxin)

Relative Error Ratio (Radiochemistry)

Reporting Limit or Requested Limit (Radiochemistry)

TEQ Toxicity Equivalent Quotient (Dioxin)

TNTC Too Numerous To Count

RER

RL

9

4

-4

7

_

10

12

13

Client Sample ID: AF56394

Job ID: 680-232196-1

Lab Sample ID: 680-232196-1

 Analyte	Result Qualit	fier RL	MDL Uni	Dil Fac	D	Method	Prep Type
Calcium	10600	500	ug/l	. 1	_	6010D	Total
							Recoverable
Iron	3060	100	ug/l	. 1		6010D	Total
							Recoverable
Magnesium	1000	500	ug/l	. 1		6010D	Total
							Recoverable
Sodium	5460	2000	ug/l	. 1		6010D	Total
							Recoverable
Aluminum	1280	100	ug/l	. 1		6020B	Total
							Recoverable
Arsenic	5.88	3.00	ug/l	. 1		6020B	Total
							Recoverable
Barium	76.0	5.00	ug/l	. 1		6020B	Total
							Recoverable
Cobalt	0.705	0.500	ug/l	. 1		6020B	Total
							Recoverable
Zinc	24.9	20.0	ug/l	. 1		6020B	Total
							Recoverable
Manganese	27.1	5.00	ug/l	. 1		6020B	Total
							Recoverable

Client Sample ID: AF56331 Lab Sample ID: 680-232196-2

Analyte	Result	Qualifier RL	MDL	Unit	Dil Fac	D	Method	Prep Type
Calcium	2790	500		ug/L	1	_	6010D	Total
								Recoverable
Iron	251	100		ug/L	1		6010D	Total
								Recoverable
Magnesium	902	500		ug/L	1		6010D	Total
								Recoverable
Sodium	2670	2000		ug/L	1		6010D	Total
								Recoverable
Aluminum	845	100		ug/L	1		6020B	Total
								Recoverable
Barium	31.7	5.00		ug/L	1		6020B	Total
								Recoverable
Cobalt	1.52	0.500		ug/L	1		6020B	Total
								Recoverable
Manganese	44.6	5.00		ug/L	1		6020B	Total
								Recoverable

Client Sample ID: AF56332

Analyte	Result	Qualifier RL	MDL	Unit	Dil Fac	D	Method	Prep Type
Calcium	85600	500		ug/L	1	_	6010D	Total
								Recoverable
Iron	5130	100		ug/L	1		6010D	Total
								Recoverable
Magnesium	2660	500		ug/L	1		6010D	Total
								Recoverable
Potassium	2030	1000		ug/L	1		6010D	Total
								Recoverable
Sodium	11300	2000		ug/L	1		6010D	Total
								Recoverable
Aluminum	1170	100		ug/L	1		6020B	Total
								Recoverable
Barium	88.5	5.00		ug/L	1		6020B	Total

This Detection Summary does not include radiochemical test results.

Eurofins Savannah

Lab Sample ID: 680-232196-3

Recoverable

Detection Summary

Client: South Carolina Public Service Authority Project/Site: 125915/JM02.09.G01.1/36500

Client Sample ID: AF56332 (Continued)

Job ID: 680-232196-1

Lab Sample ID: 680-232196-3

T.						
Analyte	Result Qualifier	RL	MDL Unit	Dil Fac D	Method	Prep Type
Manganese	46.7	5.00	ug/L	1	6020B	Total
						Recoverable

Client Sample ID: AF56395 Lab Sample ID: 680-232196-4

Analyte	Result	Qualifier RL	MDL Unit	Dil Fac	D	Method	Prep Type
Calcium	367000	500	ug/L	1	_	6010D	Total
							Recoverable
Iron	5110	100	ug/L	. 1		6010D	Total
							Recoverable
Magnesium	45200	500	ug/L	. 1		6010D	Total
							Recoverable
Potassium	9860	1000	ug/L	1		6010D	Total
							Recoverable
Sodium	74600	2000	ug/L	. 1		6010D	Total
							Recoverable
Aluminum	948	100	ug/L	. 1		6020B	Total
							Recoverable
Arsenic	23.2	3.00	ug/L	. 1		6020B	Total
Barium	167	5.00		. 1		6020B	Recoverable
Danum	107	5.00	ug/L	. I		6020B	Total
Beryllium	1.96	0.500	ug/L	. 1		6020B	Recoverable Total
Der yıllıdırı	1.90	0.500	ug/L			0020B	Recoverable
Cobalt	19.7	0.500	ug/L	1		6020B	Total
Oobait	10.7	0.000	ug/L			0020B	Recoverable
Nickel	11.6	5.00	ug/L	. 1		6020B	Total
			9				Recoverable
Manganese	721	5.00	ug/L	1		6020B	Total
· ·			-5-				Recoverable

Client Sample ID: AF56396 Lab Sample ID: 680-232196-5

Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type
Calcium	225000		500		ug/L	1	_	6010D	Total
									Recoverable
Iron	25400		100		ug/L	1		6010D	Total
									Recoverable
Magnesium	14300		500		ug/L	1		6010D	Total
									Recoverable
Potassium	1980		1000		ug/L	1		6010D	Total
									Recoverable
Sodium	42300		2000		ug/L	1		6010D	Total
									Recoverable
Barium	146		5.00		ug/L	1		6020B	Total
									Recoverable
Manganese	213		5.00		ug/L	1		6020B	Total
									Recoverable
Mercury	0.259	H H3	0.200		ug/L	1		7470A	Total/NA

Client Sample ID: AF56397 Lab Sample ID: 680-232196-6

Analyte	Result	Qualifier RI	. MDL	Unit	Dil Fac	D	Method	Prep Type
Calcium	54300	500)	ug/L	1		6010D	Total
								Recoverable
Iron	731	100)	ug/L	1		6010D	Total
								Recoverable

This Detection Summary does not include radiochemical test results.

Eurofins Savannah

3/28/2023

Page 9 of 121

2

3

<u>:</u>

7

0

10

12

13

L

Client Sample ID: AF56397 (Continued)

Job ID: 680-232196-1

Lab Sample ID: 680-232196-6

Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type
Magnesium	4040		500		ug/L	1	_	6010D	Total
									Recoverable
Potassium	1990		1000		ug/L	1		6010D	Total
									Recoverable
Sodium	17300		2000		ug/L	1		6010D	Total
									Recoverable
Barium	39.4		5.00		ug/L	1		6020B	Total
									Recoverable
Zinc	309		20.0		ug/L	1		6020B	Total
									Recoverable
Manganese	112		5.00		ug/L	1		6020B	Total
									Recoverable

Client Sample ID: AF56400 Lab Sample ID: 680-232196-7

Analyte	Result	Qualifier RL	MDL	Unit	Dil Fac	D	Method	Prep Type
Calcium	262000	500		ug/L	1	_	6010D	Total
								Recoverable
Iron	789	100		ug/L	1		6010D	Total
								Recoverable
Magnesium	3890	500		ug/L	1		6010D	Total
								Recoverable
Potassium	2320	1000		ug/L	1		6010D	Total
								Recoverable
Sodium	13800	2000		ug/L	1		6010D	Total
								Recoverable
Aluminum	111	100		ug/L	1		6020B	Total
								Recoverable
Barium	42.1	5.00		ug/L	1		6020B	Total
								Recoverable
Manganese	18.6	5.00		ug/L	1		6020B	Total
								Recoverable

Client Sample ID: AF56442 Lab Sample ID: 680-232196-8

Analyte	Result	Qualifier RL	MDL	Unit	Dil Fac	D	Method	Prep Type
Calcium	166000	500		ug/L	1	_	6010D	Total
								Recoverable
Iron	450	100		ug/L	1		6010D	Total
								Recoverable
Magnesium	7730	500		ug/L	1		6010D	Total
								Recoverable
Potassium	4290	1000		ug/L	1		6010D	Total
								Recoverable
Sodium	21900	2000		ug/L	1		6010D	Total
								Recoverable
Barium	32.6	5.00		ug/L	1		6020B	Total
								Recoverable
langanese	58.2	5.00		ug/L	1		6020B	Total
								Recoverable

Client Sample ID: AF56443 Lab Sample ID: 680-232196-9

Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type
Calcium	160000		500		ug/L	1	_	6010D	Total
									Recoverable
Iron	302		100		ug/L	1		6010D	Total
									Recoverable

This Detection Summary does not include radiochemical test results.

Eurofins Savannah

3/28/2023

Client Sample ID: AF56443 (Continued)

Job ID: 680-232196-1

Lab Sample ID: 680-232196-9

Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type
Magnesium	7590		500		ug/L	1	_	6010D	Total
									Recoverable
Potassium	4050		1000		ug/L	1		6010D	Total
									Recoverable
Sodium	20700		2000		ug/L	1		6010D	Total
									Recoverable
Barium	33.8		5.00		ug/L	1		6020B	Total
									Recoverable
Manganese	57.3		5.00		ug/L	1		6020B	Total
									Recoverable

Lab Sample ID: 680-232196-10 Client Sample ID: AF56402

Analyte	Result	Qualifier RL	MDL	Unit	Dil Fac	D	Method	Prep Type
Calcium	204000	500		ug/L	1	_	6010D	Total
								Recoverable
Iron	23500	100		ug/L	1		6010D	Total
								Recoverable
Magnesium	24400	500		ug/L	1		6010D	Total
								Recoverable
Potassium	11400	1000		ug/L	1		6010D	Total
								Recoverable
Sodium	35500	2000		ug/L	1		6010D	Total
								Recoverable
Aluminum	386	100		ug/L	1		6020B	Total
								Recoverable
Arsenic	31.0	3.00		ug/L	1		6020B	Total
								Recoverable
Barium	74.9	5.00		ug/L	1		6020B	Total
								Recoverable
Manganese	283	5.00		ug/L	1		6020B	Total
								Recoverable

Client Sample ID: AF56403 Lab Sample ID: 680-232196-11

Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type
Lithium	51.4		50.0		ug/L	1	_	6010D	Total/NA
Calcium	644000		500		ug/L	1		6010D	Total
									Recoverable
Iron	25200		100		ug/L	1		6010D	Total
									Recoverable
Magnesium	90300		500		ug/L	1		6010D	Total
									Recoverable
Potassium	28200		1000		ug/L	1		6010D	Total
									Recoverable
Sodium	155000		2000		ug/L	1		6010D	Total
									Recoverable
Barium	332		5.00		ug/L	1		6020B	Total
									Recoverable
Manganese	820		5.00		ug/L	1		6020B	Total
									Recoverable

Client Sample ID: AF56404 Lab Sample ID: 680-232196-12

Analyte	Result Qualifier	RL	MDL Unit	Dil Fac) Method	Prep Type
Lithium	58.2	50.0	ug/L		6010D	Total/NA
Calcium	659000	500	ug/L	1	6010D	Total
						Recoverable

This Detection Summary does not include radiochemical test results.

Eurofins Savannah

3/28/2023

Job ID: 680-232196-1

Client Sample ID: AF56404 (Continued)

Lah	Samp	عاد	ID.	680.	232	196.	.12
Lab	Jailik	ᄁᆫ	ID.	OOU.	-232	130	

Analyte	Result	Qualifier RL	MDL	Unit	Dil Fac	D	Method	Prep Type
Iron	25100	100		ug/L	1	_	6010D	 Total
								Recoverable
Magnesium	91700	500		ug/L	1		6010D	Total
								Recoverable
Potassium	29000	1000		ug/L	1		6010D	Total
								Recoverable
Sodium	158000	2000		ug/L	1		6010D	Total
								Recoverable
Barium	325	5.00		ug/L	1		6020B	Total
								Recoverable
Manganese	800	5.00		ug/L	1		6020B	Total
_								Recoverable

Client Sample ID: AF56434

Lab Sample ID: 680-232196-13

Analyte	Result	Qualifier RL	MDL	Unit	Dil Fac	D	Method	Prep Type
Calcium	62900	500		ug/L	1	_	6010D	Total
								Recoverable
Iron	3180	100		ug/L	1		6010D	Total
								Recoverable
Magnesium	1950	500		ug/L	1		6010D	Total
								Recoverable
Sodium	4810	2000		ug/L	1		6010D	Total
								Recoverable
Aluminum	1430	100		ug/L	1		6020B	Total
								Recoverable
Barium	41.2	5.00		ug/L	1		6020B	Total
								Recoverable
Cobalt	2.15	0.500		ug/L	1		6020B	Total
								Recoverable
Zinc	264	20.0		ug/L	1		6020B	Total
								Recoverable
Manganese	52.9	5.00		ug/L	1		6020B	Total
L								Recoverable

Client Sample ID: AF56433

Lab Sample ID: 680-232196-14

Analyte	Result	Qualifier RL	MDL	Unit	Dil Fac	D	Method	Prep Type
Calcium	433000	500		ug/L	1	_	6010D	Total
								Recoverable
Iron	17100	100		ug/L	1		6010D	Total
								Recoverable
Magnesium	12200	500		ug/L	1		6010D	Total
								Recoverable
Potassium	5480	1000		ug/L	1		6010D	Total
								Recoverable
Sodium	10300	2000		ug/L	1		6010D	Total
								Recoverable
Aluminum	219	100		ug/L	1		6020B	Total
								Recoverable
Barium	51.1	5.00		ug/L	1		6020B	Total
								Recoverable
Manganese	1240	5.00		ug/L	1		6020B	Total
								Recoverable

This Detection Summary does not include radiochemical test results.

Client Sample ID: AF56435

Job ID: 680-232196-1

Lab Sample ID: 680-232196-15

Analyte	Result	Qualifier RL	MDL U	Jnit	Dil Fac	D	Method	Prep Type
Calcium	20400	500		ug/L	1	_	6010D	Total
								Recoverable
Iron	863	100	ι	ug/L	1		6010D	Total
								Recoverable
Magnesium	821	500	ι	ug/L	1		6010D	Total
								Recoverable
Sodium	3070	2000	ι	ug/L	1		6010D	Total
								Recoverable
Aluminum	3470	100	ι	ug/L	1		6020B	Total
								Recoverable
Arsenic	8.46	3.00	ι	ug/L	1		6020B	Total
								Recoverable
Barium	29.9	5.00	ι	ug/L	1		6020B	Total
								Recoverable
Cobalt	1.03	0.500	ι	ug/L	1		6020B	Total
								Recoverable
Manganese	24.2	5.00	ι	ug/L	1		6020B	Total
								Recoverable

Client Sample ID: AF56436				Lab	Sample ID	: 680-232196-16
– Analyte	Result Qualifier	RL	MDL Unit	Dil Fac	D Method	Prep Type
Calcium	85500	500	ug/L	1	6010D	Total
						Recoverable
Iron	1170	100	ug/L	1	6010D	Total
						Recoverable
Magnesium	1970	500	ug/L	1	6010D	Total
						Recoverable
Potassium	1460	1000	ug/L	1	6010D	Total
						Recoverable
Sodium	4490	2000	ug/L	1	6010D	Total
						Recoverable
Barium	35.5	5.00	ug/L	1	6020B	Total
						Recoverable
Zinc	53.3	20.0	ug/L	1	6020B	Total
						Recoverable
Manganese	81.1	5.00	ug/L	1	6020B	Total
						Recoverable

Client Sample ID: AF56	6437					Lab	Sa	ample ID: (680-232196-17
– Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type
Calcium	92300		500		ug/L	1	_	6010D	Total
									Recoverable
Iron	1310		100		ug/L	1		6010D	Total
									Recoverable
Magnesium	1710		500		ug/L	1		6010D	Total
									Recoverable
Potassium	1230		1000		ug/L	1		6010D	Total
									Recoverable
Sodium	3600		2000		ug/L	1		6010D	Total
									Recoverable
Barium	36.2		5.00		ug/L	1		6020B	Total
									Recoverable
Manganese	88.0		5.00		ug/L	1		6020B	Total
_									Recoverable

This Detection Summary does not include radiochemical test results.

Eurofins Savannah

4

6

8

10

11

13

Client Sample ID: AF56438

Job ID: 680-232196-1

Lab Sample ID: 680-232196-18

Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type
Calcium	287000		500		ug/L	1	_	6010D	 Total
									Recoverable
Iron	1800		100		ug/L	1		6010D	Total
									Recoverable
Magnesium	28000		500		ug/L	1		6010D	Total
									Recoverable
Potassium	6740		1000		ug/L	1		6010D	Total
									Recoverable
Sodium	17500		2000		ug/L	1		6010D	Total
									Recoverable
Barium	34.9		5.00		ug/L	1		6020B	Total
									Recoverable
Manganese	495		5.00		ug/L	1		6020B	Total
									Recoverable

Client Sample ID: AF56409 Lab Sample ID: 680-232196-19

Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type
Lithium	104		50.0		ug/L	1	_	6010D	Total/NA
Calcium	1150000		5000		ug/L	10		6010D	Total
									Recoverable
Magnesium	31700		500		ug/L	1		6010D	Total
									Recoverable
Potassium	15800		1000		ug/L	1		6010D	Total
									Recoverable
Sodium	144000		2000		ug/L	1		6010D	Total
									Recoverable
Arsenic	13.8		3.00		ug/L	1		6020B	Total
									Recoverable
Barium	57.7		5.00		ug/L	1		6020B	Total
									Recoverable
Manganese	6.96		5.00		ug/L	1		6020B	Total
									Recoverable

Client Sample ID: AF56410 Lab Sample ID: 680-232196-20

Analyte	Result	Qualifier RL	MDL Unit	Dil Fac	D	Method	Prep Type
Lithium	128	50.0	ug/L	1	_	6010D	Total/NA
Calcium	1130000	5000	ug/L	10		6010D	Total
							Recoverable
Magnesium	30600	500	ug/L	1		6010D	Total
							Recoverable
Potassium	15400	1000	ug/L	1		6010D	Total
							Recoverable
Sodium	138000	2000	ug/L	1		6010D	Total
							Recoverable
Arsenic	12.6	3.00	ug/L	1		6020B	Total
							Recoverable
Barium	52.0	5.00	ug/L	1		6020B	Total
							Recoverable
Manganese	7.61	5.00	ug/L	1		6020B	Total
							Recoverable

Client Sample ID: AF56411 Lab Sample ID: 680-232196-21

Analyte	Result Qualifier	RL	MDL Unit	Dil Fac D	Method	Prep Type
Lithium	77.1	50.0	ug/L		6010D	Total/NA

This Detection Summary does not include radiochemical test results.

Eurofins Savannah

Client Sample ID: AF56411 (Continued)

Job ID: 680-232196-1

Lab Sample ID: 680-232196-21

Analyte	Result	Qualifier RL	MDL Unit	Dil Fac	D	Method	Prep Type
Calcium	796000	5000	ug/L	. 10	_	6010D	Total
							Recoverable
Magnesium	40800	500	ug/L	. 1		6010D	Total
							Recoverable
Potassium	13000	1000	ug/L	. 1		6010D	Total
							Recoverable
Sodium	121000	2000	ug/L	. 1		6010D	Total
							Recoverable
Arsenic	8.18	3.00	ug/L	. 1	1 6020B	Total	
							Recoverable
Barium	95.4	5.00	ug/L	. 1		6020B	Total
							Recoverable
Zinc	199	F1 20.0	ug/L	. 1		6020B	Total
							Recoverable
Manganese	101	5.00	ug/L	. 1		6020B	Total
							Recoverable

Client Sample ID: AF56412 Lab Sample ID: 680-232196-22

Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type
Lithium	51.5		50.0		ug/L	1	_	6010D	Total/NA
Calcium	701000		500		ug/L	1		6010D	Total
									Recoverable
Iron	14700		100		ug/L	1		6010D	Total
									Recoverable
Magnesium	30200		500		ug/L	1		6010D	Total
									Recoverable
Potassium	7240		1000		ug/L	1		6010D	Total
									Recoverable
Sodium	108000		2000		ug/L	1		6010D	Total
									Recoverable
Arsenic	4.94		3.00		ug/L	1		6020B	Total
									Recoverable
Barium	165		5.00		ug/L	1		6020B	Total
									Recoverable
Manganese	355		5.00		ug/L	1		6020B	Total
									Recoverable

Client Sample ID: AF56413 Lab Sample ID: 680-232196-23

Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type
Calcium	163000		500		ug/L	1	_	6010D	Total
									Recoverable
Iron	10100		100		ug/L	1		6010D	Total
									Recoverable
Magnesium	11200		500		ug/L	1		6010D	Total
									Recoverable
Potassium	5010		1000		ug/L	1		6010D	Total
									Recoverable
Sodium	72500		2000		ug/L	1		6010D	Total
									Recoverable
Barium	88.7		5.00		ug/L	1		6020B	Total
									Recoverable
Cobalt	0.870		0.500		ug/L	1		6020B	Total
									Recoverable
Manganese	235		5.00		ug/L	1		6020B	Total
									Recoverable

This Detection Summary does not include radiochemical test results.

Eurofins Savannah

Client Sample ID: AF56430

Job ID: 680-232196-1

Lab Sample ID: 680-232196-24

Analyte	Result Qualifier	RL	MDL Unit	Dil Fac	D Method	Prep Type
Calcium	446000	500	ug/L	1	6010D	Total
						Recoverable
Iron	33300	100	ug/L	1	6010D	Total
						Recoverable
Magnesium	72500	500	ug/L	1	6010D	Total
						Recoverable
Potassium	6540	1000	ug/L	1	6010D	Total
						Recoverable
Sodium	87200	2000	ug/L	1	6010D	Total
						Recoverable
Barium	36.3	5.00	ug/L	1	6020B	Total
						Recoverable
Cobalt	6.51	0.500	ug/L	1	6020B	Total
						Recoverable
Manganese	3770	5.00	ug/L	1	6020B	Total
						Recoverable

Client Sample ID: AF56406 Lab Sample ID: 680-232196-25

Analyte	Result	Qualifier RL	MDL	Unit	Dil Fac	D	Method	Prep Type
Calcium	203000	500		ug/L	1	_	6010D	Total
								Recoverable
Iron	1450	100		ug/L	1		6010D	Total
								Recoverable
Magnesium	18100	500		ug/L	1		6010D	Total
								Recoverable
Potassium	4990	1000		ug/L	1		6010D	Total
								Recoverable
Sodium	45500	2000		ug/L	1		6010D	Total
								Recoverable
Aluminum	1940	100		ug/L	1		6020B	Total
								Recoverable
Barium	36.4	5.00		ug/L	1		6020B	Total
								Recoverable
Cobalt	1.84	0.500		ug/L	1		6020B	Total
								Recoverable
Zinc	45.6	20.0		ug/L	1		6020B	Total
								Recoverable
Manganese	183	5.00		ug/L	1		6020B	Total
								Recoverable

Client Sample ID: AF56407 Lab Sample ID: 680-232196-26

Analyte	Result	Qualifier RI	. MDL	Unit	Dil Fac	D	Method	Prep Type
Calcium	207000	500		ug/L	1	_	6010D	Total
								Recoverable
Iron	1440	100)	ug/L	1		6010D	Total
								Recoverable
Magnesium	18200	500)	ug/L	1		6010D	Total
								Recoverable
Potassium	5150	1000	1	ug/L	1		6010D	Total
								Recoverable
Sodium	46200	2000	1	ug/L	1		6010D	Total
								Recoverable
Aluminum	2090	100)	ug/L	1		6020B	Total
								Recoverable
Barium	36.9	5.00		ug/L	1		6020B	Total
								Recoverable

This Detection Summary does not include radiochemical test results.

Eurofins Savannah

3/28/2023

4

5

7

9

10

12

Detection Summary

Client: South Carolina Public Service Authority Project/Site: 125915/JM02.09.G01.1/36500

Client Sample ID: AF56407 (Continued)

Job ID: 680-232196-1

Lab Sample ID: 680-232196-26

Analyte	Result	Qualifier RL	MDL U	Init	Dil Fac	D	Method	Prep Type
Cobalt	1.65	0.500	u	g/L	1	_	6020B	Total
								Recoverable
Zinc	29.1	20.0	u	g/L	1		6020B	Total
								Recoverable
Manganese	207	5.00	u	g/L	1		6020B	Total
								Recoverable

Client Sample ID: AF56418 Lab Sample ID: 680-232196-27

Analyte	Result	Qualifier R	. MDL	Unit	Dil Fac	D	Method	Prep Type
Lithium	76.7	50.)	ug/L	1	_	6010D	Total/NA
Calcium	94400	500)	ug/L	1		6010D	Total
								Recoverable
Iron	840	10)	ug/L	1		6010D	Total
								Recoverable
Magnesium	7510	500)	ug/L	1		6010D	Total
								Recoverable
Molybdenum	90.2	10.0)	ug/L	1		6010D	Total
								Recoverable
Potassium	7420	100)	ug/L	1		6010D	Total
								Recoverable
Sodium	25200	200)	ug/L	1		6010D	Total
								Recoverable
Aluminum	134	10)	ug/L	1		6020B	Total
•	0.40	0.00		n			00000	Recoverable
Arsenic	249	3.00)	ug/L	1		6020B	Total
Dedicati	407						COOOD	Recoverable
Barium	127	5.00)	ug/L	1		6020B	Total
Cobalt	2.17	0.50	.	/1	1		6020B	Recoverabl
CODAIL	2.17	0.500	,	ug/L	1		UUZUD	Total
Manganasa	112	5.0	1	ua/l	1		6020B	Recoverabl
Manganese	113	5.0	J	ug/L	1		00200	Total Recoverabl

Client Sample ID: AF56422 Lab Sample ID: 680-232196-28

Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type
Calcium	250000		500		ug/L	1	_	6010D	 Total
									Recoverable
Iron	15600		100		ug/L	1		6010D	Total
									Recoverable
Magnesium	9000		500		ug/L	1		6010D	Total
									Recoverable
Potassium	3920		1000		ug/L	1		6010D	Total
									Recoverable
Sodium	74400		2000		ug/L	1		6010D	Total
									Recoverable
Arsenic	8.53		3.00		ug/L	1		6020B	Total
									Recoverable
Barium	121		5.00		ug/L	1		6020B	Total
									Recoverable
Zinc	37.7		20.0		ug/L	1		6020B	Total
									Recoverable
Manganese	272		5.00		ug/L	1		6020B	Total
									Recoverable

This Detection Summary does not include radiochemical test results.

Client Sample ID: AF56419

Job ID: 680-232196-1

Lab Sample ID: 680-232196-29

Analyte	Result	Qualifier RL	MDL	Unit	Dil Fac	D	Method	Prep Type
Lithium	234	50.0		ug/L	1	_	6010D	Total/NA
Calcium	601000	500		ug/L	1		6010D	Total
								Recoverable
Iron	19700	100		ug/L	1		6010D	Total
								Recoverable
Magnesium	88700	500		ug/L	1		6010D	Total
								Recoverable
Molybdenum	94.7	10.0		ug/L	1		6010D	Total
								Recoverable
Potassium	22200	1000		ug/L	1		6010D	Total
								Recoverable
Sodium	44900	2000		ug/L	1		6010D	Total
								Recoverable
Aluminum	672	100		ug/L	1		6020B	Total
								Recoverable
Arsenic	474	3.00		ug/L	1		6020B	Total
								Recoverable
Barium	83.9	5.00		ug/L	1		6020B	Total
								Recoverable
Cobalt	1.29	0.500		ug/L	1		6020B	Total
								Recoverable
Zinc	24.2	20.0		ug/L	1		6020B	Total
								Recoverable
Manganese	1020	5.00		ug/L	1		6020B	Total
-								Recoverable

Client Sample ID: AF56425

Lab Sample ID: 680-232196-30

Analyte	Result	Qualifier RL	MDL	Unit	Dil Fac	D	Method	Prep Type
Calcium	68500	500		ug/L	1	_	6010D	Total
								Recoverable
Iron	3190	100		ug/L	1		6010D	Total
								Recoverable
Magnesium	2680	500		ug/L	1		6010D	Total
								Recoverable
Potassium	2060	1000		ug/L	1		6010D	Total
								Recoverable
Sodium	11100	2000		ug/L	1		6010D	Total
								Recoverable
Barium	9.10	5.00		ug/L	1		6020B	Total
								Recoverable
Copper	30.7	5.00		ug/L	1		6020B	Total
								Recoverable
Manganese	90.8	5.00		ug/L	1		6020B	Total
								Recoverable

Client Sample ID: AF56426

Lab Sample ID: 680-232196-31

Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type
Calcium	20600		500		ug/L	1	_	6010D	Total
									Recoverable
Iron	386		100		ug/L	1		6010D	Total
									Recoverable
Magnesium	1730		500		ug/L	1		6010D	Total
									Recoverable
Sodium	4370		2000		ug/L	1		6010D	Total
									Recoverable

This Detection Summary does not include radiochemical test results.

Eurofins Savannah

Client Sample ID: AF56426 (Continued)

Job ID: 680-232196-1

Lab Sample ID: 680-232196-31

Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type
Aluminum	164		100		ug/L		_	6020B	Total
									Recoverable
Barium	34.6		5.00		ug/L	1		6020B	Total
									Recoverable
Zinc	32.7		20.0		ug/L	1		6020B	Total
									Recoverable
Manganese	18.4		5.00		ug/L	1		6020B	Total
									Recoverable

Client Sample ID: AF56427 Lab Sample ID: 680-232196-32

Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type
Calcium	22400		500		ug/L	1	_	6010D	Total
									Recoverable
Iron	392		100		ug/L	1		6010D	Total
									Recoverable
Magnesium	1820		500		ug/L	1		6010D	Total
									Recoverable
Sodium	4470		2000		ug/L	1		6010D	Total
									Recoverable
Aluminum	178		100		ug/L	1		6020B	Total
									Recoverable
Barium	34.5		5.00		ug/L	1		6020B	Total
									Recoverable
Manganese	19.9		5.00		ug/L	1		6020B	Total
									Recoverable

Client Sample ID: AF56408 Lab Sample ID: 680-232196-33

Analyte	Result	Qualifier RL	MDL L	Unit	Dil Fac	D	Method	Prep Type
Calcium	416000	500	u u	ug/L		_	6010D	Total
								Recoverable
Iron	56000	100	u	ug/L	1		6010D	Total
								Recoverable
Magnesium	30400	500	u	ug/L	1		6010D	Total
								Recoverable
Potassium	2780	1000	u	ug/L	1		6010D	Total
								Recoverable
Sodium	127000	2000	u	ug/L	1		6010D	Total
								Recoverable
Barium	305	5.00	u	ug/L	1		6020B	Total
								Recoverable
Cobalt	0.555	0.500	u	ug/L	1		6020B	Total
								Recoverable
Zinc	136	20.0	u	ug/L	1		6020B	Total
								Recoverable
Manganese	694	5.00	u	ug/L	1		6020B	Total
								Recoverable

Client Sample ID: AF56415 Lab Sample ID: 680-232196-34

Analyte	Result Qualifier	RL	MDL Unit	Dil Fac D	Method	Prep Type
Calcium	202000	500	ug/L		6010D	Total
						Recoverable
Iron	8580	100	ug/L	1	6010D	Total
						Recoverable
Magnesium	19800	500	ug/L	1	6010D	Total
						Recoverable

This Detection Summary does not include radiochemical test results.

Eurofins Savannah

Page 19 of 121

2

3

4

6

8

. .

11

Job ID: 680-232196-1

Lab	Sample	ID·	680-2321	96-34
Lab	Jampie	ID.	000-232	30-37

Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type
Potassium	11800		1000		ug/L	1	_	6010D	Total
									Recoverable
Sodium	128000		2000		ug/L	1		6010D	Total
									Recoverable
Barium	86.8		5.00		ug/L	1		6020B	Total
									Recoverable
Zinc	39.3		20.0		ug/L	1		6020B	Total
									Recoverable
Manganese	203		5.00		ug/L	1		6020B	Total
_									Recoverable

Client Sample ID: AF56416

Lab Sample ID: 680-232196-35

Analyte	Result	Qualifier RL	MDL	Unit	Dil Fac	D	Method	Prep Type
Calcium	260000	500		ug/L	1	_	6010D	Total
								Recoverable
Iron	1570	100		ug/L	1		6010D	Total
								Recoverable
Magnesium	38100	500		ug/L	1		6010D	Total
								Recoverable
Molybdenum	18.0	10.0		ug/L	1		6010D	Total
								Recoverable
Potassium	13800	1000		ug/L	1		6010D	Total
								Recoverable
Sodium	69700	2000		ug/L	1		6010D	Total
								Recoverable
Arsenic	85.9	3.00		ug/L	1		6020B	Total
								Recoverable
Barium	44.4	5.00		ug/L	1		6020B	Total
								Recoverable
Zinc	413	20.0		ug/L	1		6020B	Total
								Recoverable
Manganese	82.2	5.00		ug/L	1		6020B	Total
								Recoverable

Client Sample ID: AF56417

Lab Sample ID: 680-232196-36

Analyte	Result	Qualifier F	RL MDI	. Unit	Dil Fac	D	Method	Prep Type
Calcium	260000	5	00	ug/L	1	_	6010D	Total
								Recoverable
Iron	1740	1	00	ug/L	1		6010D	Total
								Recoverable
Magnesium	37600	5	00	ug/L	1		6010D	Total
								Recoverable
Molybdenum	21.2	10	.0	ug/L	1		6010D	Total
								Recoverable
Potassium	13800	10	00	ug/L	1		6010D	Total
								Recoverable
Sodium	69400	20	00	ug/L	1		6010D	Total
								Recoverable
Arsenic	85.8	3.	00	ug/L	1		6020B	Total
								Recoverable
Barium	45.4	5.	00	ug/L	1		6020B	Total
								Recoverable
Zinc	27.9	20	.0	ug/L	1		6020B	Total
								Recoverable
Manganese	84.4	5.	00	ug/L	1		6020B	Total
								Recoverable

This Detection Summary does not include radiochemical test results.

Eurofins Savannah

Client Sample ID: AF56429

Job ID: 680-232196-1

Lab Sample ID: 680-232196-37

Analyte	Result	Qualifier RL	MDL Unit	Dil Fac	Method	Prep Type
Calcium	73100	500	ug/L		6010D	Total
						Recoverable
Iron	94400	100	ug/L	1	6010D	Total
						Recoverable
Magnesium	26000	500	ug/L	1	6010D	Total
						Recoverable
Sodium	82200	2000	ug/L	1	6010D	Total
						Recoverable
Aluminum	2410	100	ug/L	1	6020B	Total
						Recoverable
Barium	258	5.00	ug/L	1	6020B	Total
						Recoverable
Beryllium	0.985	0.500	ug/L	1	6020B	Total
						Recoverable
Cobalt	18.6	0.500	ug/L	1	6020B	Total
						Recoverable
Lead	3.19	2.50	ug/L	1	6020B	Total
						Recoverable
Manganese	1540	5.00	ug/L	1	6020B	Total
						Recoverable

- Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type
Calcium	114000		500		ug/L	1	_	6010D	Total
									Recoverable
Iron	4430		100		ug/L	1		6010D	Total
									Recoverable
Magnesium	16900		500		ug/L	1		6010D	Total
									Recoverable
Potassium	10500		1000		ug/L	1		6010D	Total
									Recoverable
Sodium	21200		2000		ug/L	1		6010D	Total
									Recoverable
Aluminum	159		100		ug/L	1		6020B	Total
									Recoverable
Barium	37.8		5.00		ug/L	1		6020B	Total
									Recoverable
Manganese	128		5.00		ug/L	1		6020B	Total

Analyte	Result	Qualifier RL	MDL	Unit	Dil Fac	D	Method	Prep Type
Calcium	199000	500		ug/L	1	_	6010D	Total
								Recoverable
Iron	714	100		ug/L	1		6010D	Total
								Recoverable
Magnesium	15200	500		ug/L	1		6010D	Total
								Recoverable
Potassium	6130	1000		ug/L	1		6010D	Total
								Recoverable
Sodium	38200	2000		ug/L	1		6010D	Total
								Recoverable
Barium	8.73	5.00		ug/L	1		6020B	Total
								Recoverable
Manganese	59.2	5.00		ug/L	1		6020B	Total
								Recoverable

This Detection Summary does not include radiochemical test results.

Eurofins Savannah

3/28/2023

Recoverable

4

5

7

9

10

12

13

Client Sample ID: AF56439

Job ID: 680-232196-1

Lab Sample ID: 680-232196-40

Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type
Calcium	138000		500		ug/L	1	_	6010D	Total
									Recoverable
Iron	9540		100		ug/L	1		6010D	Total
									Recoverable
Magnesium	14600		500		ug/L	1		6010D	Total
									Recoverable
Potassium	7790		1000		ug/L	1		6010D	Total
									Recoverable
Sodium	38300		2000		ug/L	1		6010D	Total
									Recoverable
Aluminum	1000		100		ug/L	1		6020B	Total
									Recoverable
Arsenic	42.3		3.00		ug/L	1		6020B	Total
									Recoverable
Barium	104		5.00		ug/L	1		6020B	Total
									Recoverable
Cobalt	6.88		0.500		ug/L	1		6020B	Total
									Recoverable
Zinc	67.1		20.0		ug/L	1		6020B	Total
									Recoverable
Manganese	167		5.00		ug/L	1		6020B	Total
									Recoverable

Lab Sample ID: 680-232196-41 Client Sample ID: AF56441

Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type
Lithium	121		50.0		ug/L	1	_	6010D	Total/NA
Calcium	191000		500		ug/L	1		6010D	Total
									Recoverable
Iron	5280		100		ug/L	1		6010D	Total
									Recoverable
Magnesium	10900		500		ug/L	1		6010D	Total
									Recoverable
Potassium	5500		1000		ug/L	1		6010D	Total
									Recoverable
Sodium	24400		2000		ug/L	1		6010D	Total
									Recoverable
Arsenic	182		3.00		ug/L	1		6020B	Total
									Recoverable
Barium	78.6		5.00		ug/L	1		6020B	Total
									Recoverable
Manganese	324		5.00		ug/L	1		6020B	Total
									Recoverable

Client Sample ID: AF56414 Lab Sample ID: 680-232196-42

Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type
Calcium	495000		500		ug/L	1	_	6010D	Total
									Recoverable
Iron	27800		100		ug/L	1		6010D	Total
									Recoverable
Magnesium	49100		500		ug/L	1		6010D	Total
									Recoverable
Potassium	6740		1000		ug/L	1		6010D	Total
									Recoverable
Sodium	101000		2000		ug/L	1		6010D	Total
									Recoverable

This Detection Summary does not include radiochemical test results.

Eurofins Savannah

Detection Summary

Client: South Carolina Public Service Authority Project/Site: 125915/JM02.09.G01.1/36500

Job ID: 680-232196-1

Lab Sample ID: 680-232196-42

Client Sample ID: AF56414 (Continued)						Lab	680-232196-42		
Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type
Barium	413		5.00		ug/L	1	_	6020B	Total
									Recoverable
Manganese	626		5.00		ug/L	1		6020B	Total
									Recoverable

Client Sample ID: AF56423 Lab Sample ID: 680-232196-43

Analyte	Result	Qualifier RL	MDL	Unit	Dil Fac	D	Method	Prep Type
Lithium	104	50.0		ug/L	1	_	6010D	Total/NA
Calcium	429000	500		ug/L	1		6010D	Total
								Recoverable
Iron	16600	100		ug/L	1		6010D	Total
								Recoverable
Magnesium	52600	500		ug/L	1		6010D	Total
								Recoverable
Potassium	13400	1000		ug/L	1		6010D	Total
								Recoverable
Sodium	92700	2000		ug/L	1		6010D	Total
								Recoverable
Arsenic	363	3.00		ug/L	1		6020B	Total
								Recoverable
Barium	262	5.00		ug/L	1		6020B	Total
								Recoverable
Manganese	887	5.00		ug/L	1		6020B	Total
								Recoverable

Client Sample ID: AF56428 Lab Sample ID: 680-232196-44

Analyte	Result	Qualifier RL	MDL	Unit	Dil Fac	D	Method	Prep Type
Calcium	102000	500		ug/L	1	_	6010D	Total
								Recoverable
Iron	89800	100		ug/L	1		6010D	Total
								Recoverable
Magnesium	23400	500		ug/L	1		6010D	Total
								Recoverable
Potassium	10800	1000		ug/L	1		6010D	Total
								Recoverable
Sodium	37100	2000		ug/L	1		6010D	Total
								Recoverable
Arsenic	88.3	3.00		ug/L	1		6020B	Total
								Recoverable
Barium	123	5.00		ug/L	1		6020B	Total
								Recoverable
Cobalt	0.630	0.500		ug/L	1		6020B	Total
								Recoverable
Manganese	362	5.00		ug/L	1		6020B	Total
								Recoverabl

This Detection Summary does not include radiochemical test results.

Eurofins Savannah

Client: South Carolina Public Service Authority Project/Site: 125915/JM02.09.G01.1/36500

Job ID: 680-232196-1

Lab Sample ID: 680-232196-1

Matrix: Water

Client Sample ID: AF56394 Date Collected: 02/14/23 12:33

Analyte

Mercury

Method: SW846 6010D - Me	etals (ICP)								
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
Lithium	50.0	U	50.0		ug/L		03/23/23 14:13	03/24/23 13:50	
Method: SW846 6010D - Me	etals (ICP) - Total Re	coverable							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
Calcium	10600		500		ug/L		03/20/23 09:08	03/21/23 22:21	
Iron	3060		100		ug/L		03/20/23 09:08	03/21/23 22:21	
Magnesium	1000		500		ug/L		03/20/23 09:08	03/21/23 22:21	
Molybdenum	10.0	U	10.0		ug/L		03/20/23 09:08	03/21/23 22:21	
Potassium	1000	U	1000		ug/L		03/20/23 09:08	03/21/23 22:21	
Selenium	20.0	U	20.0		ug/L		03/20/23 09:08	03/21/23 22:21	
Sodium	5460		2000		ug/L		03/20/23 09:08	03/21/23 22:21	
Method: SW846 6020B - Me	etals (ICP/MS) - Total	Recoverable	!						
Analyte	• •	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
Aluminum	1280		100		ug/L		03/20/23 09:08	03/21/23 18:05	
Antimony	5.00	U	5.00		ug/L		03/20/23 09:08	03/21/23 18:05	
Arsenic	5.88		3.00		ug/L		03/20/23 09:08	03/21/23 18:05	
Barium	76.0		5.00		ug/L		03/20/23 09:08	03/21/23 18:05	
Beryllium	0.500	U	0.500		ug/L		03/20/23 09:08	03/22/23 09:30	
Cadmium	0.500	U	0.500		ug/L		03/20/23 09:08	03/21/23 18:05	
Chromium	5.00	U	5.00		ug/L		03/20/23 09:08	03/21/23 18:05	
Cobalt	0.705		0.500		ug/L		03/20/23 09:08	03/21/23 18:05	
Copper	5.00	U	5.00		ug/L		03/20/23 09:08	03/21/23 18:05	
Lead	2.50	U	2.50		ug/L		03/20/23 09:08	03/21/23 18:05	
Nickel	5.00	U	5.00		ug/L		03/20/23 09:08	03/21/23 18:05	
Silver	1.00	U	1.00		ug/L		03/20/23 09:08	03/21/23 18:05	
Thallium	1.00	U	1.00		ug/L		03/20/23 09:08	03/21/23 18:05	
Zinc	24.9		20.0		ug/L		03/20/23 09:08	03/21/23 18:05	
Manganese	27.1		5.00		ug/L		03/20/23 09:08	03/21/23 18:05	

RL

0.200

Result Qualifier

0.200 U H H3

MDL Unit

ug/L

Prepared

03/20/23 12:30

Dil Fac

Analyzed

03/20/23 19:57

Client: South Carolina Public Service Authority Project/Site: 125915/JM02.09.G01.1/36500

Job ID: 680-232196-1

Client Sample ID: AF56331

Date Collected: 02/14/23 13:51

Lab Sample ID: 680-232196-2 Matrix: Water

Date Received: 03/17/23 10:30

Mercury

Method: SW846 6010D - M	etals (ICP)								
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
Lithium	50.0	U	50.0		ug/L		03/23/23 14:13	03/24/23 14:13	
Method: SW846 6010D - M	etals (ICP) - Total Re	coverable							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
Calcium	2790		500		ug/L		03/20/23 09:08	03/21/23 22:31	
Iron	251		100		ug/L		03/20/23 09:08	03/21/23 22:31	
Magnesium	902		500		ug/L		03/20/23 09:08	03/21/23 22:31	
Molybdenum	10.0	U	10.0		ug/L		03/20/23 09:08	03/21/23 22:31	
Potassium	1000	U	1000		ug/L		03/20/23 09:08	03/21/23 22:31	
Selenium	20.0	U	20.0		ug/L		03/20/23 09:08	03/21/23 22:31	
Sodium	2670		2000		ug/L		03/20/23 09:08	03/21/23 22:31	
	otala (ICD/MC) Total	Dagassanahla							
Method: SW846 6020B - M Analyte	· · · · · · · · · · · · · · · · · · ·	Qualifier	e RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
Aluminum	845		100		ug/L		03/20/23 09:08	03/21/23 18:16	
Antimony	5.00	U	5.00		ug/L		03/20/23 09:08	03/21/23 18:16	
Arsenic	3.00	U	3.00		ug/L		03/20/23 09:08	03/21/23 18:16	
Barium	31.7		5.00		ug/L		03/20/23 09:08	03/21/23 18:16	
Beryllium	0.500	U	0.500		ug/L		03/20/23 09:08	03/22/23 09:50	
Cadmium	0.500	U	0.500		ug/L		03/20/23 09:08	03/21/23 18:16	
Chromium	5.00	U	5.00		ug/L		03/20/23 09:08	03/21/23 18:16	
Cobalt	1.52		0.500		ug/L		03/20/23 09:08	03/21/23 18:16	
Copper	5.00	U	5.00		ug/L		03/20/23 09:08	03/21/23 18:16	
Lead	2.50	U	2.50		ug/L		03/20/23 09:08	03/21/23 18:16	
Nickel	5.00	U	5.00		ug/L		03/20/23 09:08	03/21/23 18:16	
Silver	1.00	U	1.00		ug/L		03/20/23 09:08	03/21/23 18:16	
Thallium	1.00	U	1.00		ug/L		03/20/23 09:08	03/21/23 18:16	
Zinc	20.0	U	20.0		ug/L		03/20/23 09:08	03/21/23 18:16	
Manganese	44.6		5.00		ug/L		03/20/23 09:08	03/21/23 18:16	
Method: SW846 7470A - M	, ,								
Analyte	Result	Qualifier	RL	MDI	Unit	D	Prepared	Analyzed	Dil Fa

0.200

ug/L

0.200 U H H3

_

4

5

8

10

12

13

Client: South Carolina Public Service Authority Project/Site: 125915/JM02.09.G01.1/36500

Lab Sample ID: 680-232196-3

Matrix: Water

Job ID: 680-232196-1

Client Sample ID: AF56332 Date Collected: 02/14/23 15:22

Mercury

Method: SW846 6010D - Me	etals (ICP)								
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Lithium	50.0	U	50.0		ug/L		03/23/23 14:13	03/24/23 14:18	1
Method: SW846 6010D - Me	etals (ICP) - Total Re	coverable							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Calcium	85600		500		ug/L		03/20/23 09:08	03/21/23 22:40	1
Iron	5130		100		ug/L		03/20/23 09:08	03/21/23 22:40	•
Magnesium	2660		500		ug/L		03/20/23 09:08	03/21/23 22:40	1
Molybdenum	10.0	U	10.0		ug/L		03/20/23 09:08	03/21/23 22:40	1
Potassium	2030		1000		ug/L		03/20/23 09:08	03/21/23 22:40	1
Selenium	20.0	U	20.0		ug/L		03/20/23 09:08	03/21/23 22:40	•
Sodium	11300		2000		ug/L		03/20/23 09:08	03/21/23 22:40	
Method: SW846 6020B - Me	stale (ICD/MS) - Total	Pecoverable							
Analyte		Qualifier	, RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Aluminum	1170		100		ug/L		03/20/23 09:08	03/21/23 18:20	
Antimony	5.00	U	5.00		ug/L		03/20/23 09:08	03/21/23 18:20	
Arsenic	3.00	U	3.00		ug/L		03/20/23 09:08	03/21/23 18:20	•
Barium	88.5		5.00		ug/L		03/20/23 09:08	03/21/23 18:20	1
Beryllium	0.500	U	0.500		ug/L		03/20/23 09:08	03/22/23 09:54	•
Cadmium	0.500	U	0.500		ug/L		03/20/23 09:08	03/21/23 18:20	1
Chromium	5.00	U	5.00		ug/L		03/20/23 09:08	03/21/23 18:20	1
Cobalt	0.500	U	0.500		ug/L		03/20/23 09:08	03/21/23 18:20	1
Copper	5.00	U	5.00		ug/L		03/20/23 09:08	03/21/23 18:20	
Lead	2.50	U	2.50		ug/L		03/20/23 09:08	03/21/23 18:20	1
Nickel	5.00	U	5.00		ug/L		03/20/23 09:08	03/21/23 18:20	•
Silver	1.00	U	1.00		ug/L		03/20/23 09:08	03/21/23 18:20	•
Thallium	1.00	U	1.00		ug/L		03/20/23 09:08	03/21/23 18:20	1
Zinc	20.0	U	20.0		ug/L		03/20/23 09:08	03/21/23 18:20	
Manganese	46.7		5.00		ug/L		03/20/23 09:08	03/21/23 18:20	
Method: SW846 7470A - Me	ercury (CVAA)								
Analyte	,	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac

0.200

ug/L

0.200 U H H3

03/20/23 12:45

Client: South Carolina Public Service Authority Project/Site: 125915/JM02.09.G01.1/36500

Job ID: 680-232196-1

Oli - -- 1 O - --- 1 - ID - 4 FEC20 F

Client Sample ID: AF56395 Lab Sample ID: 680-232196-4

Matrix: Water

Date Collected: 02/15/23 11:36 Date Received: 03/17/23 10:30

Mercury

Method: SW846 6010D - N	Metals (ICP)								
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
Lithium	50.0	U	50.0		ug/L		03/23/23 14:13	03/24/23 14:36	
Method: SW846 6010D - N	Metals (ICP) - Total Re	coverable							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
Calcium	367000		500		ug/L		03/20/23 09:08	03/21/23 22:44	
Iron	5110		100		ug/L		03/20/23 09:08	03/21/23 22:44	
Magnesium	45200		500		ug/L		03/20/23 09:08	03/21/23 22:44	
Molybdenum	10.0	U	10.0		ug/L		03/20/23 09:08	03/21/23 22:44	
Potassium	9860		1000		ug/L		03/20/23 09:08	03/21/23 22:44	
Selenium	20.0	U	20.0		ug/L		03/20/23 09:08	03/21/23 22:44	
Sodium	74600		2000		ug/L		03/20/23 09:08	03/21/23 22:44	
M-41I- OWO 40 COOOD - B	M-4-1- (IOD/MO) - T-4-1	December							
Method: SW846 6020B - N Analyte	,	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
Aluminum	948		100		ug/L		03/20/23 09:08	03/21/23 18:24	
Antimony	5.00	U	5.00		ug/L		03/20/23 09:08	03/21/23 18:24	
Arsenic	23.2		3.00		ug/L		03/20/23 09:08	03/21/23 18:24	
Barium	167		5.00		ug/L		03/20/23 09:08	03/21/23 18:24	
Beryllium	1.96		0.500		ug/L		03/20/23 09:08	03/22/23 09:58	
Cadmium	0.500	U	0.500		ug/L		03/20/23 09:08	03/21/23 18:24	
Chromium	5.00	U	5.00		ug/L		03/20/23 09:08	03/21/23 18:24	
Cobalt	19.7		0.500		ug/L		03/20/23 09:08	03/21/23 18:24	
Copper	5.00	U	5.00		ug/L		03/20/23 09:08	03/21/23 18:24	
Lead	2.50	U	2.50		ug/L		03/20/23 09:08	03/21/23 18:24	
Nickel	11.6		5.00		ug/L		03/20/23 09:08	03/21/23 18:24	
Silver	1.00	U	1.00		ug/L		03/20/23 09:08	03/21/23 18:24	
Thallium	1.00	U	1.00		ug/L		03/20/23 09:08	03/21/23 18:24	
Zinc	20.0	U	20.0		ug/L		03/20/23 09:08	03/21/23 18:24	
Manganese	721		5.00		ug/L		03/20/23 09:08	03/21/23 18:24	
Method: SW846 7470A - N	,					_			
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil F

0.200

ug/L

0.200 U H H3

03/20/23 12:45 03/21/23 12:56

Client: South Carolina Public Service Authority Project/Site: 125915/JM02.09.G01.1/36500

Job ID: 680-232196-1

Client Sample ID: AF56396 Lab Sample ID: 680-232196-5 Date Collected: 02/15/23 13:21

Matrix: Water

Date Received: 03/17/23 10:30

Mercury

Method: SW846 6010D - M	letals (ICP)								
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Lithium	50.0	U	50.0		ug/L		03/23/23 14:13	03/24/23 14:41	•
Method: SW846 6010D - M	letals (ICP) - Total Re	coverable							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
Calcium	225000		500		ug/L		03/20/23 09:08	03/21/23 22:47	
Iron	25400		100		ug/L		03/20/23 09:08	03/21/23 22:47	
Magnesium	14300		500		ug/L		03/20/23 09:08	03/21/23 22:47	
Molybdenum	10.0	U	10.0		ug/L		03/20/23 09:08	03/21/23 22:47	
Potassium	1980		1000		ug/L		03/20/23 09:08	03/21/23 22:47	
Selenium	20.0	U	20.0		ug/L		03/20/23 09:08	03/21/23 22:47	
Sodium	42300		2000		ug/L		03/20/23 09:08	03/21/23 22:47	
Method: SW846 6020B - M	letals (ICP/MS) - Total	Recoverable							
Analyte		Qualifier	, RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
Aluminum	100	U	100		ug/L		03/20/23 09:08	03/21/23 18:28	
Antimony	5.00	U	5.00		ug/L		03/20/23 09:08	03/21/23 18:28	
Arsenic	3.00	U	3.00		ug/L		03/20/23 09:08	03/21/23 18:28	
Barium	146		5.00		ug/L		03/20/23 09:08	03/21/23 18:28	
Beryllium	0.500	U	0.500		ug/L		03/20/23 09:08	03/22/23 10:02	
Cadmium	0.500	U	0.500		ug/L		03/20/23 09:08	03/21/23 18:28	
Chromium	5.00	U	5.00		ug/L		03/20/23 09:08	03/21/23 18:28	
Cobalt	0.500	U	0.500		ug/L		03/20/23 09:08	03/21/23 18:28	
Copper	5.00	U	5.00		ug/L		03/20/23 09:08	03/21/23 18:28	
Lead	2.50	U	2.50		ug/L		03/20/23 09:08	03/21/23 18:28	
Nickel	5.00	U	5.00		ug/L		03/20/23 09:08	03/21/23 18:28	
Silver	1.00	U	1.00		ug/L		03/20/23 09:08	03/21/23 18:28	
Thallium	1.00	U	1.00		ug/L		03/20/23 09:08	03/21/23 18:28	
Zinc	20.0	U	20.0		ug/L		03/20/23 09:08	03/21/23 18:28	
Manganese	213		5.00		ug/L		03/20/23 09:08	03/21/23 18:28	
Method: SW846 7470A - M	lercury (CVAA)								
Analyte	• • •	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa

0.200

ug/L

0.259 HH3

03/20/23 12:45

03/21/23 14:04

Client: South Carolina Public Service Authority Project/Site: 125915/JM02.09.G01.1/36500

Job ID: 680-232196-1

Lab Sample ID: 680-232196-6

Matrix: Water

Client Sample ID: AF56397 Date Collected: 02/16/23 10:53

Mercury

Method: SW846 6010D - Metals (I	•					_			
Analyte		Qualifier	RL	MDL		<u>D</u>	Prepared	Analyzed	Dil Fa
Lithium	50.0	U	50.0		ug/L		03/23/23 14:13	03/24/23 14:45	
Method: SW846 6010D - Metals (I	CP) - Total Re	coverable							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
Calcium	54300		500		ug/L		03/20/23 09:08	03/21/23 22:50	
Iron	731		100		ug/L		03/20/23 09:08	03/21/23 22:50	
Magnesium	4040		500		ug/L		03/20/23 09:08	03/21/23 22:50	
Molybdenum	10.0	U	10.0		ug/L		03/20/23 09:08	03/21/23 22:50	
Potassium	1990		1000		ug/L		03/20/23 09:08	03/21/23 22:50	
Selenium	20.0	U	20.0		ug/L		03/20/23 09:08	03/21/23 22:50	
Sodium	17300		2000		ug/L		03/20/23 09:08	03/21/23 22:50	
Method: SW846 6020B - Metals (I Analyte	,	Recoverable Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
Aluminum	100		100		ug/L		03/20/23 09:08	03/21/23 18:32	
Antimony	5.00	U	5.00		ug/L		03/20/23 09:08	03/21/23 18:32	
Arsenic	3.00	U	3.00		ug/L		03/20/23 09:08	03/21/23 18:32	
Barium	39.4		5.00		ug/L		03/20/23 09:08	03/21/23 18:32	
					-				
Beryllium	0.500	U	0.500		ug/L		03/20/23 09:08	03/22/23 10:06	
•	0.500		0.500 0.500		ug/L ug/L		03/20/23 09:08 03/20/23 09:08	03/22/23 10:06 03/21/23 18:32	
Beryllium Cadmium Chromium		U			ug/L				
Cadmium	0.500	U	0.500		ug/L ug/L		03/20/23 09:08	03/21/23 18:32	
Cadmium Chromium Cobalt	0.500 5.00	U U U	0.500 5.00		ug/L		03/20/23 09:08 03/20/23 09:08	03/21/23 18:32 03/21/23 18:32	
Cadmium Chromium	0.500 5.00 0.500	บ บ บ	0.500 5.00 0.500		ug/L ug/L ug/L		03/20/23 09:08 03/20/23 09:08 03/20/23 09:08	03/21/23 18:32 03/21/23 18:32 03/21/23 18:32	
Cadmium Chromium Cobalt Copper	0.500 5.00 0.500 5.00	U U U U	0.500 5.00 0.500 5.00		ug/L ug/L ug/L ug/L		03/20/23 09:08 03/20/23 09:08 03/20/23 09:08 03/20/23 09:08	03/21/23 18:32 03/21/23 18:32 03/21/23 18:32 03/21/23 18:32	
Cadmium Chromium Cobalt Copper Lead Nickel	0.500 5.00 0.500 5.00 2.50	U U U U U	0.500 5.00 0.500 5.00 2.50		ug/L ug/L ug/L ug/L ug/L		03/20/23 09:08 03/20/23 09:08 03/20/23 09:08 03/20/23 09:08 03/20/23 09:08	03/21/23 18:32 03/21/23 18:32 03/21/23 18:32 03/21/23 18:32 03/21/23 18:32	
Cadmium Chromium Cobalt Copper Lead Nickel Silver	0.500 5.00 0.500 5.00 2.50 5.00	U U U U U U	0.500 5.00 0.500 5.00 2.50 5.00		ug/L ug/L ug/L ug/L ug/L ug/L		03/20/23 09:08 03/20/23 09:08 03/20/23 09:08 03/20/23 09:08 03/20/23 09:08 03/20/23 09:08	03/21/23 18:32 03/21/23 18:32 03/21/23 18:32 03/21/23 18:32 03/21/23 18:32 03/21/23 18:32	
Cadmium Chromium Cobalt Copper Lead	0.500 5.00 0.500 5.00 2.50 5.00	U U U U U U	0.500 5.00 0.500 5.00 2.50 5.00 1.00		ug/L ug/L ug/L ug/L ug/L ug/L		03/20/23 09:08 03/20/23 09:08 03/20/23 09:08 03/20/23 09:08 03/20/23 09:08 03/20/23 09:08 03/20/23 09:08	03/21/23 18:32 03/21/23 18:32 03/21/23 18:32 03/21/23 18:32 03/21/23 18:32 03/21/23 18:32 03/21/23 18:32	

0.200

ug/L

0.200 U H H3

03/21/23 12:43

03/20/23 12:45

Client: South Carolina Public Service Authority Project/Site: 125915/JM02.09.G01.1/36500

Job ID: 680-232196-1

Project/3ite. 123913/Jivi02.09.G01.1/3030/

Client Sample ID: AF56400 Lab Sample ID: 680-232196-7

Matrix: Water

Date Collected: 02/16/23 12:55 Date Received: 03/17/23 10:30

Mercury

Method: SW846 6010D - Me	tals (ICP)								
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
Lithium	50.0	U	50.0		ug/L		03/23/23 14:13	03/24/23 14:50	
Method: SW846 6010D - Me	tals (ICP) - Total Re	coverable							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
Calcium	262000		500		ug/L		03/20/23 09:08	03/21/23 22:53	
Iron	789		100		ug/L		03/20/23 09:08	03/21/23 22:53	
Magnesium	3890		500		ug/L		03/20/23 09:08	03/21/23 22:53	
Molybdenum	10.0	U	10.0		ug/L		03/20/23 09:08	03/21/23 22:53	
Potassium	2320		1000		ug/L		03/20/23 09:08	03/21/23 22:53	
Selenium	20.0	U	20.0		ug/L		03/20/23 09:08	03/21/23 22:53	
Sodium	13800		2000		ug/L		03/20/23 09:08	03/21/23 22:53	
Mathada CWOAC COOOD Ma	tala (ICD/MC) Tatal	Dagawanahla							
Method: SW846 6020B - Me Analyte	•	Qualifier	r RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
Aluminum			100		ug/L		03/20/23 09:08	03/21/23 18:44	
Antimony	5.00	U	5.00		ug/L		03/20/23 09:08	03/21/23 18:44	
Arsenic	3.00	U	3.00		ug/L		03/20/23 09:08	03/21/23 18:44	
Barium	42.1		5.00		ug/L		03/20/23 09:08	03/21/23 18:44	
Beryllium	0.500	U	0.500		ug/L		03/20/23 09:08	03/21/23 18:44	
Cadmium	0.500	U	0.500		ug/L		03/20/23 09:08	03/21/23 18:44	
Chromium	5.00	U	5.00		ug/L		03/20/23 09:08	03/21/23 18:44	
Cobalt	0.500	U	0.500		ug/L		03/20/23 09:08	03/21/23 18:44	
Copper	5.00	U	5.00		ug/L		03/20/23 09:08	03/21/23 18:44	
Lead	2.50	U	2.50		ug/L		03/20/23 09:08	03/21/23 18:44	
Nickel	5.00	U	5.00		ug/L		03/20/23 09:08	03/21/23 18:44	
Silver	1.00	U	1.00		ug/L		03/20/23 09:08	03/21/23 18:44	
Thallium	1.00	U	1.00		ug/L		03/20/23 09:08	03/21/23 18:44	
Zinc	20.0	U	20.0		ug/L		03/20/23 09:08	03/21/23 18:44	
Manganese	18.6		5.00		ug/L		03/20/23 09:08	03/21/23 18:44	
					-				
Method: SW846 7470A - Me	rcury (CVAA)								
Analyte	Result								

0.200

ug/L

03/20/23 13:40

03/21/23 11:09

0.200 U H H3

Client: South Carolina Public Service Authority Project/Site: 125915/JM02.09.G01.1/36500

Job ID: 680-232196-1

Lab Sample ID: 680-232196-8

Matrix: Water

Client Sample ID: AF56442 Date Collected: 02/16/23 14:07

Method: SW846 6010D - Metals (ICP)									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
Lithium	50.0	U	50.0		ug/L		03/23/23 14:13	03/24/23 15:08	
Method: SW846 6010D - Metals (ICP)	- Total Re	coverable							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
Calcium	166000		500		ug/L		03/20/23 09:08	03/21/23 22:57	
ron	450		100		ug/L		03/20/23 09:08	03/21/23 22:57	
Magnesium	7730		500		ug/L		03/20/23 09:08	03/21/23 22:57	
Molybdenum	10.0	U	10.0		ug/L		03/20/23 09:08	03/21/23 22:57	
Potassium	4290		1000		ug/L		03/20/23 09:08	03/21/23 22:57	
Selenium	20.0	U	20.0		ug/L		03/20/23 09:08	03/21/23 22:57	
Sodium	21900		2000		ug/L		03/20/23 09:08	03/21/23 22:57	
Method: SW846 6020B - Metals (ICP/	MS) - Total	Recoverable	:						
Analyte	•	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
Aluminum	100	U	100		ug/L		03/20/23 09:08	03/21/23 18:48	
Antimony	5.00	U	5.00		ug/L		03/20/23 09:08	03/21/23 18:48	
Arsenic	3.00	U	3.00		ug/L		03/20/23 09:08	03/21/23 18:48	
Barium	32.6		5.00		ug/L		03/20/23 09:08	03/21/23 18:48	
Beryllium	0.500	U	0.500		ug/L		03/20/23 09:08	03/21/23 18:48	
Cadmium	0.500	U	0.500		ug/L		03/20/23 09:08	03/21/23 18:48	
Chromium	5.00	U	5.00		ug/L		03/20/23 09:08	03/21/23 18:48	
Cobalt	0.500	U	0.500		ug/L		03/20/23 09:08	03/21/23 18:48	
Copper	5.00	U	5.00		ug/L		03/20/23 09:08	03/21/23 18:48	
_ead	2.50	U	2.50		ug/L		03/20/23 09:08	03/21/23 18:48	
Nickel	5.00	U	5.00		ug/L		03/20/23 09:08	03/21/23 18:48	
Silver	1.00	U	1.00		ug/L		03/20/23 09:08	03/21/23 18:48	
- Thallium	1.00	U	1.00		ug/L		03/20/23 09:08	03/21/23 18:48	
Zinc	20.0	U	20.0		ug/L		03/20/23 09:08	03/21/23 18:48	
Manganese	58.2		5.00		ug/L		03/20/23 09:08	03/21/23 18:48	

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Mercury	0.200	U H H3	0.200		ug/L		03/20/23 13:40	03/21/23 11:19	1

Client: South Carolina Public Service Authority Project/Site: 125915/JM02.09.G01.1/36500

Job ID: 680-232196-1

Client Sample ID: AF56443

e ID: AF56443 Lab Sample ID: 680-232196-9

Matrix: Water

Date Collected: 02/16/23 14:12 Date Received: 03/17/23 10:30

Mercury

AnalyteLithium	Result	Qualifier							
Lithium		w uaiiiiei	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
	50.0	U	50.0		ug/L		03/23/23 14:13	03/24/23 15:13	
Method: SW846 6010D - Metals (ICP) -	Total Re	coverable							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
Calcium	160000		500		ug/L		03/20/23 09:08	03/21/23 23:00	
Iron	302		100		ug/L		03/20/23 09:08	03/21/23 23:00	
Magnesium	7590		500		ug/L		03/20/23 09:08	03/21/23 23:00	
Molybdenum	10.0	U	10.0		ug/L		03/20/23 09:08	03/21/23 23:00	
Potassium	4050		1000		ug/L		03/20/23 09:08	03/21/23 23:00	
Selenium	20.0	U	20.0		ug/L		03/20/23 09:08	03/21/23 23:00	
Sodium	20700		2000		ug/L		03/20/23 09:08	03/21/23 23:00	
Mathada CN/04C COOOD Matala (ICD/A	IC) T-4-1	Dagawanahla							
Method: SW846 6020B - Metals (ICP/N Analyte	,	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
Aluminum	100	U	100		ug/L		03/20/23 09:08	03/21/23 18:52	
Antimony	5.00	U	5.00		ug/L		03/20/23 09:08	03/21/23 18:52	
Arsenic	3.00	U	3.00		ug/L		03/20/23 09:08	03/21/23 18:52	
Barium	33.8		5.00		ug/L		03/20/23 09:08	03/21/23 18:52	
Beryllium	0.500	U	0.500		ug/L		03/20/23 09:08	03/21/23 18:52	
- Cadmium	0.500	U	0.500		ug/L		03/20/23 09:08	03/21/23 18:52	
Chromium	5.00	U	5.00		ug/L		03/20/23 09:08	03/21/23 18:52	
Cobalt	0.500	U	0.500		ug/L		03/20/23 09:08	03/21/23 18:52	
Copper	5.00	U	5.00		ug/L		03/20/23 09:08	03/21/23 18:52	
Lead	2.50	U	2.50		ug/L		03/20/23 09:08	03/21/23 18:52	
Nickel	5.00	U	5.00		ug/L		03/20/23 09:08	03/21/23 18:52	
Silver	1.00	U	1.00		ug/L		03/20/23 09:08	03/21/23 18:52	
Thallium	1.00	U	1.00		ug/L		03/20/23 09:08	03/21/23 18:52	
Zinc	20.0	U	20.0		ug/L		03/20/23 09:08	03/21/23 18:52	
Manganese	57.3		5.00		ug/L		03/20/23 09:08	03/21/23 18:52	
S .									
Method: SW846 7470A - Mercury (CVA									

0.200

ug/L

0.200 U H H3

2

4

5

7

a

10

12

. .

Client: South Carolina Public Service Authority Project/Site: 125915/JM02.09.G01.1/36500

Job ID: 680-232196-1

Client Sample ID: AF56402

Lab Sample ID: 680-232196-10

Matrix: Water

Date Collected: 02/27/23 12:47

Mercury

Method: SW846 6010D - Me	etals (ICP)								
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
Lithium	50.0	U	50.0		ug/L		03/23/23 14:13	03/24/23 15:18	
Method: SW846 6010D - Me	etals (ICP) - Total Re	coverable							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
Calcium	204000		500		ug/L		03/20/23 09:08	03/21/23 23:03	
Iron	23500		100		ug/L		03/20/23 09:08	03/21/23 23:03	
Magnesium	24400		500		ug/L		03/20/23 09:08	03/21/23 23:03	
Molybdenum	10.0	U	10.0		ug/L		03/20/23 09:08	03/21/23 23:03	
Potassium	11400		1000		ug/L		03/20/23 09:08	03/21/23 23:03	
Selenium	20.0	U	20.0		ug/L		03/20/23 09:08	03/21/23 23:03	
Sodium	35500		2000		ug/L		03/20/23 09:08	03/21/23 23:03	
Method: SW846 6020B - Me	otals (ICP/MS) Total	Pocovorable							
Analyte	` '	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
Aluminum	386		100		ug/L		03/20/23 09:08	03/21/23 18:56	
Antimony	5.00	U	5.00		ug/L		03/20/23 09:08	03/21/23 18:56	
Arsenic	31.0		3.00		ug/L		03/20/23 09:08	03/21/23 18:56	
Barium	74.9		5.00		ug/L		03/20/23 09:08	03/21/23 18:56	
Beryllium	0.500	U	0.500		ug/L		03/20/23 09:08	03/21/23 18:56	
Cadmium	0.500	U	0.500		ug/L		03/20/23 09:08	03/21/23 18:56	
Chromium	5.00	U	5.00		ug/L		03/20/23 09:08	03/21/23 18:56	
Cobalt	0.500	U	0.500		ug/L		03/20/23 09:08	03/21/23 18:56	
Copper	5.00	U	5.00		ug/L		03/20/23 09:08	03/21/23 18:56	
Lead	2.50	U	2.50		ug/L		03/20/23 09:08	03/21/23 18:56	
Nickel	5.00	U	5.00		ug/L		03/20/23 09:08	03/21/23 18:56	
Silver	1.00	U	1.00		ug/L		03/20/23 09:08	03/21/23 18:56	
Thallium	1.00	U	1.00		ug/L		03/20/23 09:08	03/21/23 18:56	
Zinc	20.0	U	20.0		ug/L		03/20/23 09:08	03/21/23 18:56	
Manganese	283		5.00		ug/L		03/20/23 09:08	03/21/23 18:56	
	(0)(4.4)								
Method: SW846 7470A - Me	• ' '	Qualifier	RL	MD	Unit	D	Droparad	Analyzad	Dil Fa
Analyte	Result	Qualifier	KL	MDL	OHIL	ט	Prepared	Analyzed	ווט

0.200

ug/L

0.200 U

03/20/23 13:40

03/21/23 10:42

Client: South Carolina Public Service Authority Project/Site: 125915/JM02.09.G01.1/36500

Job ID: 680-232196-1

Client Sample ID: AF56403

Lab Sample ID: 680-232196-11 Date Collected: 02/27/23 09:57

Matrix: Water

Date Received: 03/17/23 10:30

Mercury

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
Lithium	51.4		50.0		ug/L		03/23/23 14:13	03/24/23 15:22	
Method: SW846 6010D - Meta	als (ICP) - Total Re	coverable							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
Calcium	644000		500		ug/L		03/20/23 09:08	03/21/23 23:06	
Iron	25200		100		ug/L		03/20/23 09:08	03/21/23 23:06	
Magnesium	90300		500		ug/L		03/20/23 09:08	03/21/23 23:06	
Molybdenum	10.0	U	10.0		ug/L		03/20/23 09:08	03/21/23 23:06	
Potassium	28200		1000		ug/L		03/20/23 09:08	03/21/23 23:06	
Selenium	20.0	U	20.0		ug/L		03/20/23 09:08	03/21/23 23:06	
Sodium	155000		2000		ug/L		03/20/23 09:08	03/21/23 23:06	
Method: SW846 6020B - Meta	olo (ICD/MS) Total	Bassyarahla							
Metriou. 300646 60206 - Meta Analyte	` '	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
Aluminum	100	U	100		ug/L		03/20/23 09:08	03/21/23 19:00	
Antimony	5.00	U	5.00		ug/L		03/20/23 09:08	03/21/23 19:00	
					-				
Arsenic	3.00	U	3.00		ug/L		03/20/23 09:08	03/21/23 19:00	
Arsenic Barium	3.00 332	U	3.00 5.00		ug/L ug/L		03/20/23 09:08 03/20/23 09:08	03/21/23 19:00 03/21/23 19:00	
Barium	332	U	5.00		ug/L		03/20/23 09:08	03/21/23 19:00	
Barium Beryllium	332 0.500	U U	5.00 0.500		ug/L ug/L		03/20/23 09:08 03/20/23 09:08	03/21/23 19:00 03/21/23 19:00	
Barium Beryllium Cadmium	332 0.500 0.500	บ บ บ	5.00 0.500 0.500		ug/L ug/L ug/L		03/20/23 09:08 03/20/23 09:08 03/20/23 09:08	03/21/23 19:00 03/21/23 19:00 03/21/23 19:00	
Barium Beryllium Cadmium Chromium	332 0.500 0.500 5.00	U U U	5.00 0.500 0.500 5.00		ug/L ug/L ug/L ug/L		03/20/23 09:08 03/20/23 09:08 03/20/23 09:08 03/20/23 09:08	03/21/23 19:00 03/21/23 19:00 03/21/23 19:00 03/21/23 19:00	
Barium Beryllium Cadmium Chromium Cobalt	332 0.500 0.500 5.00 0.500	U U U U	5.00 0.500 0.500 5.00 0.500		ug/L ug/L ug/L ug/L ug/L		03/20/23 09:08 03/20/23 09:08 03/20/23 09:08 03/20/23 09:08 03/20/23 09:08	03/21/23 19:00 03/21/23 19:00 03/21/23 19:00 03/21/23 19:00 03/21/23 19:00	
Barium Beryllium Cadmium Chromium Cobalt Copper	332 0.500 0.500 5.00 0.500 5.00	U U U U U	5.00 0.500 0.500 5.00 0.500 5.00		ug/L ug/L ug/L ug/L ug/L ug/L		03/20/23 09:08 03/20/23 09:08 03/20/23 09:08 03/20/23 09:08 03/20/23 09:08 03/20/23 09:08	03/21/23 19:00 03/21/23 19:00 03/21/23 19:00 03/21/23 19:00 03/21/23 19:00 03/21/23 19:00	
Barium Beryllium Cadmium Chromium Cobalt Copper Lead	332 0.500 0.500 5.00 0.500 5.00 2.50	U U U U U U	5.00 0.500 0.500 5.00 0.500 5.00 2.50		ug/L ug/L ug/L ug/L ug/L ug/L		03/20/23 09:08 03/20/23 09:08 03/20/23 09:08 03/20/23 09:08 03/20/23 09:08 03/20/23 09:08 03/20/23 09:08	03/21/23 19:00 03/21/23 19:00 03/21/23 19:00 03/21/23 19:00 03/21/23 19:00 03/21/23 19:00 03/21/23 19:00	
Barium Beryllium Cadmium Chromium Cobalt Copper Lead Nickel	332 0.500 0.500 5.00 0.500 5.00 2.50 5.00	U U U U U U U	5.00 0.500 0.500 5.00 0.500 5.00 2.50 5.00		ug/L ug/L ug/L ug/L ug/L ug/L ug/L		03/20/23 09:08 03/20/23 09:08 03/20/23 09:08 03/20/23 09:08 03/20/23 09:08 03/20/23 09:08 03/20/23 09:08 03/20/23 09:08	03/21/23 19:00 03/21/23 19:00 03/21/23 19:00 03/21/23 19:00 03/21/23 19:00 03/21/23 19:00 03/21/23 19:00 03/21/23 19:00	
Barium Beryllium Cadmium Chromium Cobalt Copper Lead Nickel	332 0.500 0.500 5.00 0.500 5.00 2.50 5.00	U U U U U U U	5.00 0.500 0.500 5.00 0.500 5.00 2.50 5.00		ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L		03/20/23 09:08 03/20/23 09:08 03/20/23 09:08 03/20/23 09:08 03/20/23 09:08 03/20/23 09:08 03/20/23 09:08 03/20/23 09:08 03/20/23 09:08	03/21/23 19:00 03/21/23 19:00 03/21/23 19:00 03/21/23 19:00 03/21/23 19:00 03/21/23 19:00 03/21/23 19:00 03/21/23 19:00 03/21/23 19:00	

0.200

ug/L

0.200 U

Client: South Carolina Public Service Authority Project/Site: 125915/JM02.09.G01.1/36500

Job ID: 680-232196-1

Client Sample ID: AF56404 Lab Sample ID: 680-232196-12 Date Collected: 02/27/23 10:02

Matrix: Water

Date Received: 03/17/23 10:30

Analyte

Mercury

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
Lithium	58.2		50.0		ug/L		03/23/23 14:13	03/24/23 15:27	
Method: SW846 6010D - N	letals (ICP) - Total Re	coverable							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
Calcium	659000		500		ug/L		03/20/23 09:08	03/21/23 23:10	
Iron	25100		100		ug/L		03/20/23 09:08	03/21/23 23:10	
Magnesium	91700		500		ug/L		03/20/23 09:08	03/21/23 23:10	
Molybdenum	10.0	U	10.0		ug/L		03/20/23 09:08	03/21/23 23:10	
Potassium	29000		1000		ug/L		03/20/23 09:08	03/21/23 23:10	
Selenium	20.0	U	20.0		ug/L		03/20/23 09:08	03/21/23 23:10	
Sodium	158000		2000		ug/L		03/20/23 09:08	03/21/23 23:10	
Analyte Aluminum	100	Qualifier U	RL 100		Unit ug/L	D	Prepared 03/20/23 09:08	Analyzed 03/21/23 19:03	Dil Fa
Method: SW846 6020B - N	Metals (ICP/MS) - Total	Recoverable	:						
					•				
Antimony	5.00	_	5.00		ug/L		03/20/23 09:08	03/21/23 19:03	
Arsenic	3.00		3.00		ug/L		03/20/23 09:08	03/21/23 19:03	
Barium	325		5.00		ug/L		03/20/23 09:08	03/21/23 19:03	
Beryllium	0.500	_	0.500		ug/L		03/20/23 09:08	03/21/23 19:03	
Cadmium	0.500		0.500		ug/L		03/20/23 09:08	03/21/23 19:03	
Chromium	5.00	_	5.00		ug/L		03/20/23 09:08	03/21/23 19:03	
	0.500		0.500		ug/L		03/20/23 09:08	03/21/23 19:03	
	5.00		5.00		ug/L		03/20/23 09:08	03/21/23 19:03	
			2.50		ug/L		03/20/23 09:08	03/21/23 19:03	
Cobalt Copper Lead	2.50						03/20/23 09:08	03/21/23 19:03	
Copper Lead			5.00		ug/L		00/20/20 00:00	00/21/20 10:00	
Copper Lead Nickel	2.50 5.00 1.00	U U			ug/L ug/L		03/20/23 09:08	03/21/23 19:03	
Copper Lead Nickel Silver	2.50 5.00	U U	5.00		-				
Copper	2.50 5.00 1.00	U U U	5.00 1.00		ug/L		03/20/23 09:08	03/21/23 19:03	

RL

0.200

MDL Unit

ug/L

Prepared

03/20/23 12:45

Result Qualifier

0.200 U

Dil Fac

Analyzed

Client: South Carolina Public Service Authority Project/Site: 125915/JM02.09.G01.1/36500

Job ID: 680-232196-1

Lab Sample ID: 680-232196-13

Matrix: Water

Client Sample ID: AF56434 Date Collected: 02/27/23 15:44

Mercury

Method: SW846 6010D - Metals (ICP)									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
Lithium	50.0	U	50.0		ug/L		03/23/23 14:13	03/24/23 15:32	
Method: SW846 6010D - Metals (ICP) - T	otal Re	coverable							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
Calcium	62900		500		ug/L		03/20/23 09:08	03/21/23 23:19	
Iron	3180		100		ug/L		03/20/23 09:08	03/21/23 23:19	
Magnesium	1950		500		ug/L		03/20/23 09:08	03/21/23 23:19	
Molybdenum	10.0	U	10.0		ug/L		03/20/23 09:08	03/21/23 23:19	
Potassium	1000	U	1000		ug/L		03/20/23 09:08	03/21/23 23:19	
Selenium	20.0	U	20.0		ug/L		03/20/23 09:08	03/21/23 23:19	
Sodium	4810		2000		ug/L		03/20/23 09:08	03/21/23 23:19	
Mathada CN04C COOOD Matala (ICD/MC	\ T-4-1	Dagawanahla							
Method: SW846 6020B - Metals (ICP/MS Analyte		Recoverable Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
Aluminum	1430		100		ug/L		03/20/23 09:08	03/21/23 19:07	
Antimony	5.00	U	5.00		ug/L		03/20/23 09:08	03/21/23 19:07	
Arsenic	3.00	U	3.00		ug/L		03/20/23 09:08	03/21/23 19:07	
Barium	41.2		5.00		ug/L		03/20/23 09:08	03/21/23 19:07	
Beryllium	0.500	U	0.500		ug/L		03/20/23 09:08	03/21/23 19:07	
Cadmium	0.500	U	0.500		ug/L		03/20/23 09:08	03/21/23 19:07	
Chromium	5.00	U	5.00		ug/L		03/20/23 09:08	03/21/23 19:07	
Cobalt	2.15		0.500		ug/L		03/20/23 09:08	03/21/23 19:07	
Copper	5.00	U	5.00		ug/L		03/20/23 09:08	03/21/23 19:07	
Lead	2.50	U	2.50		ug/L		03/20/23 09:08	03/21/23 19:07	
Nickel	5.00	U	5.00		ug/L		03/20/23 09:08	03/21/23 19:07	
MICKEI	1.00	U	1.00		ug/L		03/20/23 09:08	03/21/23 19:07	
			1.00		ug/L		03/20/23 09:08	03/21/23 19:07	
Silver	1.00	U			-				
Silver Thallium	1.00 264	U	20.0		ug/L		03/20/23 09:08	03/21/23 19:07	
Silver Thallium Zinc	264	Ü	20.0		•				
Silver Thallium	264 52.9	U			ug/L ug/L		03/20/23 09:08 03/20/23 09:08	03/21/23 19:07 03/21/23 19:07	

0.200

ug/L

0.200 U

03/20/23 12:45

Client: South Carolina Public Service Authority Project/Site: 125915/JM02.09.G01.1/36500

Client Sample ID: AF56433

ple ID: AF56433 Lab Sample ID: 680-232196-14

Matrix: Water

Job ID: 680-232196-1

Date Collected: 02/28/23 12:58 Date Received: 03/17/23 10:30

Mercury

Method: SW846 6010D - N	fletals (ICP)								
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Lithium	50.0	U	50.0		ug/L		03/23/23 14:13	03/24/23 15:37	
Method: SW846 6010D - N	letals (ICP) - Total Re	coverable							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Calcium	433000		500		ug/L		03/20/23 09:08	03/21/23 23:23	
Iron	17100		100		ug/L		03/20/23 09:08	03/21/23 23:23	
Magnesium	12200		500		ug/L		03/20/23 09:08	03/21/23 23:23	•
Molybdenum	10.0	U	10.0		ug/L		03/20/23 09:08	03/21/23 23:23	1
Potassium	5480		1000		ug/L		03/20/23 09:08	03/21/23 23:23	•
Selenium	20.0	U	20.0		ug/L		03/20/23 09:08	03/21/23 23:23	•
Sodium	10300		2000		ug/L		03/20/23 09:08	03/21/23 23:23	
Method: SW846 6020B - N	Metals (ICP/MS) - Total	Recoverable	•						
Analyte		Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
Aluminum	219		100		ug/L		03/20/23 09:08	03/21/23 19:11	
Antimony	5.00	U	5.00		ug/L		03/20/23 09:08	03/21/23 19:11	
Arsenic	3.00	U	3.00		ug/L		03/20/23 09:08	03/21/23 19:11	
Barium	51.1		5.00		ug/L		03/20/23 09:08	03/21/23 19:11	
Beryllium	0.500	U	0.500		ug/L		03/20/23 09:08	03/21/23 19:11	
Cadmium	0.500	U	0.500		ug/L		03/20/23 09:08	03/21/23 19:11	
Chromium	5.00	U	5.00		ug/L		03/20/23 09:08	03/21/23 19:11	
Cobalt	0.500	U	0.500		ug/L		03/20/23 09:08	03/21/23 19:11	•
Copper	5.00	U	5.00		ug/L		03/20/23 09:08	03/21/23 19:11	
Lead	2.50	U	2.50		ug/L		03/20/23 09:08	03/21/23 19:11	
Nickel	5.00	U	5.00		ug/L		03/20/23 09:08	03/21/23 19:11	
Silver	1.00	U	1.00		ug/L		03/20/23 09:08	03/21/23 19:11	
Thallium	1.00	U	1.00		ug/L		03/20/23 09:08	03/21/23 19:11	
Zinc	20.0	U	20.0		ug/L		03/20/23 09:08	03/21/23 19:11	
Manganese	1240		5.00		ug/L		03/20/23 09:08	03/21/23 19:11	
Method: SW846 7470A - N	Mercury (CVAA)								
Analyte	, ,	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
									

0.200

ug/L

0.200 U

03/20/23 12:45

Client: South Carolina Public Service Authority Project/Site: 125915/JM02.09.G01.1/36500

Job ID: 680-232196-1

Client Sample ID: AF56435 Lab Sample ID: 680-232196-15 Date Collected: 02/28/23 11:44

Matrix: Water

Mercury

Method: SW846 6010D - M	etals (ICP)								
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Lithium	50.0	U	50.0		ug/L		03/23/23 14:13	03/24/23 15:42	
Method: SW846 6010D - M	etals (ICP) - Total Re	coverable							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Calcium	20400		500		ug/L		03/20/23 09:08	03/21/23 23:26	
Iron	863		100		ug/L		03/20/23 09:08	03/21/23 23:26	
Magnesium	821		500		ug/L		03/20/23 09:08	03/21/23 23:26	
Molybdenum	10.0	U	10.0		ug/L		03/20/23 09:08	03/21/23 23:26	
Potassium	1000	U	1000		ug/L		03/20/23 09:08	03/21/23 23:26	
Selenium	20.0	U	20.0		ug/L		03/20/23 09:08	03/21/23 23:26	
Sodium	3070		2000		ug/L		03/20/23 09:08	03/21/23 23:26	
Mathada CMO4C CO20D M	otala (ICD/MC) Tatal	Dagawanahi							
Method: SW846 6020B - M Analyte		Qualifier	e RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
Aluminum	3470		100		ug/L		03/20/23 09:08	03/21/23 19:15	
Antimony	5.00	U	5.00		ug/L		03/20/23 09:08	03/21/23 19:15	
Arsenic	8.46		3.00		ug/L		03/20/23 09:08	03/21/23 19:15	
Barium	29.9		5.00		ug/L		03/20/23 09:08	03/21/23 19:15	
Beryllium	0.500	U	0.500		ug/L		03/20/23 09:08	03/21/23 19:15	
Cadmium	0.500	U	0.500		ug/L		03/20/23 09:08	03/21/23 19:15	
Chromium	5.00	U	5.00		ug/L		03/20/23 09:08	03/21/23 19:15	
Cobalt	1.03		0.500		ug/L		03/20/23 09:08	03/21/23 19:15	
Copper	5.00	U	5.00		ug/L		03/20/23 09:08	03/21/23 19:15	
Lead	2.50	U	2.50		ug/L		03/20/23 09:08	03/21/23 19:15	
Nickel	5.00	U	5.00		ug/L		03/20/23 09:08	03/21/23 19:15	
Silver	1.00	U	1.00		ug/L		03/20/23 09:08	03/21/23 19:15	
Thallium	1.00	U	1.00		ug/L		03/20/23 09:08	03/21/23 19:15	
Zinc	20.0	U	20.0		ug/L		03/20/23 09:08	03/21/23 19:15	
Manganese	24.2		5.00		ug/L		03/20/23 09:08	03/21/23 19:15	
Method: SW846 7470A - M	, ,				Unit	D			Dil Fa
Analyte	Recult	Qualifier	RL				Prepared	Analyzed	

0.200

ug/L

0.200 U

Client: South Carolina Public Service Authority Project/Site: 125915/JM02.09.G01.1/36500

Job ID: 680-232196-1

Lab Sample ID: 680-232196-16

Matrix: Water

Client Sample ID: AF56436 Date Collected: 02/28/23 10:19

Mercury

Analyte	(ICP) Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
Lithium	50.0	U	50.0		ug/L		03/23/23 14:13	03/24/23 15:46	
Method: SW846 6010D - Metals (
Analyte		Qualifier	RL	MDL		<u>D</u>	Prepared	Analyzed	Dil Fa
Calcium	85500		500		ug/L		03/20/23 09:08	03/21/23 23:29	
Iron	1170		100		ug/L		03/20/23 09:08	03/21/23 23:29	
Magnesium	1970		500		ug/L		03/20/23 09:08	03/21/23 23:29	
Molybdenum	10.0	U	10.0		ug/L		03/20/23 09:08	03/21/23 23:29	
Potassium	1460		1000		ug/L		03/20/23 09:08	03/21/23 23:29	
Selenium	20.0	U	20.0		ug/L		03/20/23 09:08	03/21/23 23:29	
Sodium	4490		2000		ug/L		03/20/23 09:08	03/21/23 23:29	
Method: SW846 6020B - Metals (Analyte	Result	Qualifier	RL	MDL		D	Prepared	Analyzed	Dil Fa
<u> </u>				MDL		D	<u>.</u>		
Aluminum	100		100		ug/L		03/20/23 09:08	03/21/23 19:19	
Antinoppy	E 00		E 00						
•	5.00	_	5.00		ug/L		03/20/23 09:08	03/21/23 19:19	
Arsenic	3.00	_	3.00		ug/L		03/20/23 09:08	03/21/23 19:19	
Arsenic Barium	3.00 35.5	U	3.00 5.00		ug/L ug/L		03/20/23 09:08 03/20/23 09:08	03/21/23 19:19 03/21/23 19:19	
Arsenic Barium Beryllium	3.00 35.5 0.500	U	3.00 5.00 0.500		ug/L ug/L ug/L		03/20/23 09:08 03/20/23 09:08 03/20/23 09:08	03/21/23 19:19 03/21/23 19:19 03/21/23 19:19	
Arsenic Barium Beryllium Cadmium	3.00 35.5 0.500 0.500	U U	3.00 5.00 0.500 0.500		ug/L ug/L		03/20/23 09:08 03/20/23 09:08 03/20/23 09:08 03/20/23 09:08	03/21/23 19:19 03/21/23 19:19 03/21/23 19:19 03/21/23 19:19	
Antimony Arsenic Barium Beryllium Cadmium Chromium	3.00 35.5 0.500	U U	3.00 5.00 0.500		ug/L ug/L ug/L		03/20/23 09:08 03/20/23 09:08 03/20/23 09:08	03/21/23 19:19 03/21/23 19:19 03/21/23 19:19	
Arsenic Barium Beryllium Cadmium Chromium	3.00 35.5 0.500 0.500	U U U	3.00 5.00 0.500 0.500		ug/L ug/L ug/L ug/L		03/20/23 09:08 03/20/23 09:08 03/20/23 09:08 03/20/23 09:08	03/21/23 19:19 03/21/23 19:19 03/21/23 19:19 03/21/23 19:19	
Arsenic Barium Beryllium Cadmium Chromium Cobalt	3.00 35.5 0.500 0.500 5.00	U U U U	3.00 5.00 0.500 0.500 5.00		ug/L ug/L ug/L ug/L ug/L		03/20/23 09:08 03/20/23 09:08 03/20/23 09:08 03/20/23 09:08 03/20/23 09:08	03/21/23 19:19 03/21/23 19:19 03/21/23 19:19 03/21/23 19:19 03/21/23 19:19	
Arsenic Barium Beryllium Cadmium Chromium Cobalt Copper	3.00 35.5 0.500 0.500 5.00	U U U U U	3.00 5.00 0.500 0.500 5.00		ug/L ug/L ug/L ug/L ug/L ug/L		03/20/23 09:08 03/20/23 09:08 03/20/23 09:08 03/20/23 09:08 03/20/23 09:08 03/20/23 09:08	03/21/23 19:19 03/21/23 19:19 03/21/23 19:19 03/21/23 19:19 03/21/23 19:19 03/21/23 19:19	
Arsenic Barium Beryllium Cadmium Chromium Cobalt Copper	3.00 35.5 0.500 0.500 5.00 0.500 5.00	U U U U U	3.00 5.00 0.500 0.500 5.00 0.500 5.00		ug/L ug/L ug/L ug/L ug/L ug/L		03/20/23 09:08 03/20/23 09:08 03/20/23 09:08 03/20/23 09:08 03/20/23 09:08 03/20/23 09:08 03/20/23 09:08	03/21/23 19:19 03/21/23 19:19 03/21/23 19:19 03/21/23 19:19 03/21/23 19:19 03/21/23 19:19	
Arsenic Barium Beryllium Cadmium Chromium Cobalt Copper Lead	3.00 35.5 0.500 0.500 5.00 0.500 5.00 2.50	U U U U U U	3.00 5.00 0.500 0.500 5.00 0.500 5.00 2.50		ug/L ug/L ug/L ug/L ug/L ug/L ug/L		03/20/23 09:08 03/20/23 09:08 03/20/23 09:08 03/20/23 09:08 03/20/23 09:08 03/20/23 09:08 03/20/23 09:08	03/21/23 19:19 03/21/23 19:19 03/21/23 19:19 03/21/23 19:19 03/21/23 19:19 03/21/23 19:19 03/21/23 19:19	
Arsenic Barium Beryllium Cadmium Chromium Cobalt Copper Lead Nickel	3.00 35.5 0.500 0.500 5.00 5.00 2.50 5.00	U U U U U U U U	3.00 5.00 0.500 0.500 5.00 0.500 5.00 2.50 5.00		ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L		03/20/23 09:08 03/20/23 09:08 03/20/23 09:08 03/20/23 09:08 03/20/23 09:08 03/20/23 09:08 03/20/23 09:08 03/20/23 09:08	03/21/23 19:19 03/21/23 19:19 03/21/23 19:19 03/21/23 19:19 03/21/23 19:19 03/21/23 19:19 03/21/23 19:19 03/21/23 19:19	
Arsenic Barium Beryllium Cadmium	3.00 35.5 0.500 0.500 5.00 5.00 2.50 5.00 1.00	U U U U U U U U	3.00 5.00 0.500 0.500 5.00 0.500 5.00 2.50 5.00		ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L		03/20/23 09:08 03/20/23 09:08 03/20/23 09:08 03/20/23 09:08 03/20/23 09:08 03/20/23 09:08 03/20/23 09:08 03/20/23 09:08 03/20/23 09:08	03/21/23 19:19 03/21/23 19:19 03/21/23 19:19 03/21/23 19:19 03/21/23 19:19 03/21/23 19:19 03/21/23 19:19 03/21/23 19:19 03/21/23 19:19	

0.200

ug/L

0.200 U

03/20/23 12:45

03/21/23 12:39

Client: South Carolina Public Service Authority Project/Site: 125915/JM02.09.G01.1/36500

Job ID: 680-232196-1

Client Sample ID: AF56437 Lab Sample ID: 680-232196-17

Date Collected: 02/28/23 10:24 Matrix: Water

Date	Received:	03/17/23	10:30

Analyte

Mercury

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
Lithium	50.0	U	50.0		ug/L		03/23/23 14:13	03/24/23 15:51	
Method: SW846 6010D - Me	etals (ICP) - Total Re	coverable							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
Calcium	92300		500		ug/L		03/20/23 09:08	03/21/23 23:32	
Iron	1310		100		ug/L		03/20/23 09:08	03/21/23 23:32	
Magnesium	1710		500		ug/L		03/20/23 09:08	03/21/23 23:32	
Molybdenum	10.0	U	10.0		ug/L		03/20/23 09:08	03/21/23 23:32	
Potassium	1230		1000		ug/L		03/20/23 09:08	03/21/23 23:32	
Selenium	20.0	U	20.0		ug/L		03/20/23 09:08	03/21/23 23:32	
Sodium	3600		2000		ug/L		03/20/23 09:08	03/21/23 23:32	
Analyte Aluminum	100	Qualifier U	RL	WIDE	Unit ug/L	D	Prepared 03/20/23 09:08	Analyzed 03/21/23 19:31	Dil Fa
Method: SW846 6020B - Me	tale (ICD/MS) Total	Pagayarable							
		_			ug/L				
Antimony	5.00	_	5.00		ug/L		03/20/23 09:08	03/21/23 19:31	
Arsenic	3.00	U	3.00		ug/L		03/20/23 09:08	03/21/23 19:31	
Barium	36.2		5.00		ug/L		03/20/23 09:08	03/21/23 19:31	
Beryllium	0.500	_	0.500		ug/L		03/20/23 09:08	03/21/23 19:31	
Cadmium	0.500		0.500		ug/L		03/20/23 09:08	03/21/23 19:31	
Chromium	5.00		5.00		ug/L		03/20/23 09:08	03/21/23 19:31	
Cobalt	0.500		0.500		ug/L		03/20/23 09:08	03/21/23 19:31	
Copper	5.00	U	5.00		ug/L		03/20/23 09:08	03/21/23 19:31	
Lead	2.50	U	2.50		ug/L		03/20/23 09:08	03/21/23 19:31	
Nickel	5.00	U	5.00		ug/L		03/20/23 09:08	03/21/23 19:31	
Silver	1.00	U	1.00		ug/L		03/20/23 09:08	03/21/23 19:31	
Thallium	1.00	U	1.00		ug/L		03/20/23 09:08	03/21/23 19:31	
Zinc	20.0	U	20.0		ug/L		03/20/23 09:08	03/21/23 19:31	
Manganese	88.0		5.00		ug/L		03/20/23 09:08	03/21/23 19:31	

RL

0.200

MDL Unit

ug/L

Prepared

03/20/23 13:40

Result Qualifier

0.200 U

Dil Fac

Analyzed

03/21/23 11:35

Client: South Carolina Public Service Authority Project/Site: 125915/JM02.09.G01.1/36500

Job ID: 680-232196-1

Client Sample ID: AF56438 Lab Sample ID: 680-232196-18 Date Collected: 02/28/23 14:31

Matrix: Water

Mercury

Method: SW846 6010D - Metals (ICP)									
Analyte F	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Lithium	50.0	U	50.0		ug/L		03/23/23 14:13	03/24/23 16:10	
Method: SW846 6010D - Metals (ICP) - Tota	al Red	coverable							
Analyte F	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
Calcium 28	87000		500		ug/L		03/20/23 09:08	03/21/23 23:36	
Iron	1800		100		ug/L		03/20/23 09:08	03/21/23 23:36	
Magnesium 2	28000		500		ug/L		03/20/23 09:08	03/21/23 23:36	
Molybdenum	10.0	U	10.0		ug/L		03/20/23 09:08	03/21/23 23:36	
Potassium	6740		1000		ug/L		03/20/23 09:08	03/21/23 23:36	
Selenium	20.0	U	20.0		ug/L		03/20/23 09:08	03/21/23 23:36	
Sodium 1	17500		2000		ug/L		03/20/23 09:08	03/21/23 23:36	
Method: SW846 6020B - Metals (ICP/MS) -	Total	Pacovarable							
		Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
Aluminum	100	U	100		ug/L		03/20/23 09:08	03/21/23 19:35	
Antimony	5.00	U	5.00		ug/L		03/20/23 09:08	03/21/23 19:35	
Arsenic	3.00	U	3.00		ug/L		03/20/23 09:08	03/21/23 19:35	
Barium	34.9		5.00		ug/L		03/20/23 09:08	03/21/23 19:35	
Beryllium	0.500	U	0.500		ug/L		03/20/23 09:08	03/21/23 19:35	
Cadmium	0.500	U	0.500		ug/L		03/20/23 09:08	03/21/23 19:35	
Chromium	5.00	U	5.00		ug/L		03/20/23 09:08	03/21/23 19:35	
Cobalt	0.500	U	0.500		ug/L		03/20/23 09:08	03/21/23 19:35	
Copper	5.00	U	5.00		ug/L		03/20/23 09:08	03/21/23 19:35	
Lead	2.50	U	2.50		ug/L		03/20/23 09:08	03/21/23 19:35	
Nickel	5.00	U	5.00		ug/L		03/20/23 09:08	03/21/23 19:35	
Silver	1.00	U	1.00		ug/L		03/20/23 09:08	03/21/23 19:35	
Thallium	1.00	U	1.00		ug/L		03/20/23 09:08	03/21/23 19:35	
Zinc	20.0	U	20.0		ug/L		03/20/23 09:08	03/21/23 19:35	
2.110			5.00		ug/L		03/20/23 09:08	03/21/23 19:35	
Manganese	495		5.00		ug/L		03/20/23 09.00	03/21/23 19.33	
	495		5.00		ug/L		03/20/23 09.00	03/21/23 19.33	

0.200

ug/L

0.200 U

Client: South Carolina Public Service Authority Project/Site: 125915/JM02.09.G01.1/36500

Job ID: 680-232196-1

Lab Sample ID: 680-232196-19 Client Sample ID: AF56409 Date Collected: 03/06/23 12:14

Matrix: Water

Date Received: 03/17/23 10:30

Mercury

Method: SW846 6010D -	Metals (ICP)								
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
Lithium	104		50.0		ug/L		03/23/23 14:13	03/24/23 16:14	
Method: SW846 6010D -	Metals (ICP) - Total Re	coverable							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
Calcium	1150000		5000		ug/L		03/20/23 09:08	03/22/23 11:50	1
Iron	100	U	100		ug/L		03/20/23 09:08	03/21/23 23:39	
Magnesium	31700		500		ug/L		03/20/23 09:08	03/21/23 23:39	
Molybdenum	10.0	U	10.0		ug/L		03/20/23 09:08	03/21/23 23:39	
Potassium	15800		1000		ug/L		03/20/23 09:08	03/21/23 23:39	
Selenium	20.0	U	20.0		ug/L		03/20/23 09:08	03/21/23 23:39	
Sodium	144000		2000		ug/L		03/20/23 09:08	03/21/23 23:39	
M. (I I. O)MO 40 0000D									
Method: SW846 6020B - Analyte	,	Recoverable Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
Aluminum	100		100		ug/L		03/20/23 09:08	03/21/23 19:39	
Antimony	5.00		5.00		ug/L		03/20/23 09:08	03/21/23 19:39	
Arsenic	13.8		3.00		ug/L		03/20/23 09:08	03/21/23 19:39	
Barium	57.7		5.00		ug/L		03/20/23 09:08	03/21/23 19:39	
Beryllium	0.500	U	0.500		ug/L		03/20/23 09:08	03/21/23 19:39	
Cadmium	0.500		0.500		ug/L		03/20/23 09:08	03/21/23 19:39	
Chromium	5.00		5.00		ug/L		03/20/23 09:08	03/21/23 19:39	
Cobalt	0.500		0.500		ug/L		03/20/23 09:08	03/21/23 19:39	
Copper	5.00	U	5.00		ug/L		03/20/23 09:08	03/21/23 19:39	
Lead	2.50		2.50		ug/L		03/20/23 09:08	03/21/23 19:39	
Nickel	5.00	U	5.00		ug/L		03/20/23 09:08	03/21/23 19:39	
Silver	1.00	U	1.00		ug/L		03/20/23 09:08	03/21/23 19:39	
Thallium	1.00	U	1.00		ug/L		03/20/23 09:08	03/21/23 19:39	
Zinc	20.0		20.0		ug/L		03/20/23 09:08	03/21/23 19:39	
Manganese	6.96		5.00		ug/L		03/20/23 09:08	03/21/23 19:39	
	0.00				3 · –				
Method: SW846 7470A -	Mercury (CVAA)								
Analyte	Pocult	Qualifier	RL	MDI	Unit	D	Prepared	Analyzed	Dil Fa

0.200

ug/L

0.200 U

Client: South Carolina Public Service Authority Project/Site: 125915/JM02.09.G01.1/36500

Job ID: 680-232196-1

Lab Sample ID: 680-232196-20 **Client Sample ID: AF56410** Date Collected: 03/06/23 12:19

Matrix: Water

Date Received: 03/17/23 10:30

Mercury

Method: SW846 6010D - I	Metals (ICP)								
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
Lithium	128		50.0		ug/L		03/23/23 14:13	03/24/23 16:19	
Method: SW846 6010D - I	Metals (ICP) - Total Re	coverable							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
Calcium	1130000		5000		ug/L		03/20/23 09:08	03/22/23 11:53	1
Iron	100	U	100		ug/L		03/20/23 09:08	03/21/23 23:42	
Magnesium	30600		500		ug/L		03/20/23 09:08	03/21/23 23:42	
Molybdenum	10.0	U	10.0		ug/L		03/20/23 09:08	03/21/23 23:42	
Potassium	15400		1000		ug/L		03/20/23 09:08	03/21/23 23:42	
Selenium	20.0	U	20.0		ug/L		03/20/23 09:08	03/21/23 23:42	
Sodium	138000		2000		ug/L		03/20/23 09:08	03/21/23 23:42	
	M ((IOD(MO) T (
Method: SW846 6020B - I Analyte	` '	Recoverable Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
Aluminum	100		100		ug/L	=	03/20/23 09:08	03/21/23 19:43	
Antimony	5.00		5.00		ug/L		03/20/23 09:08	03/21/23 19:43	
Arsenic	12.6		3.00		ug/L		03/20/23 09:08	03/21/23 19:43	
Barium	52.0		5.00		ug/L		03/20/23 09:08	03/21/23 19:43	
Beryllium	0.500	U	0.500		ug/L		03/20/23 09:08	03/21/23 19:43	
Cadmium	0.500		0.500		ug/L		03/20/23 09:08	03/21/23 19:43	
Chromium	5.00		5.00		ug/L		03/20/23 09:08	03/21/23 19:43	
Cobalt	0.500		0.500		ug/L		03/20/23 09:08	03/21/23 19:43	
Copper	5.00		5.00		ug/L		03/20/23 09:08	03/21/23 19:43	
Lead	2.50		2.50		ug/L		03/20/23 09:08	03/21/23 19:43	
Nickel	5.00		5.00		ug/L		03/20/23 09:08	03/21/23 19:43	
Silver	1.00		1.00		ug/L		03/20/23 09:08	03/21/23 19:43	
Thallium	1.00		1.00		ug/L		03/20/23 09:08	03/21/23 19:43	
Zinc	20.0		20.0		ug/L		03/20/23 09:08	03/21/23 19:43	
Manganese	7.61	-	5.00		ug/L		03/20/23 09:08	03/21/23 19:43	
nanganese	7.01		0.00		~9/L		33,20,20 00.00	33/2 1/20 13.40	
Method: SW846 7470A - I	Mercury (CVAA)								
Analyte		Qualifier	RL		Unit	D	Prepared	Analyzed	Dil Fa

0.200

ug/L

0.200 U

Client: South Carolina Public Service Authority Project/Site: 125915/JM02.09.G01.1/36500

Job ID: 680-232196-1

Client Sample ID: AF56411 Date Collected: 03/06/23 11:08

Lab Sample ID: 680-232196-21

Matrix: Water

Date	Received:	03/17/23	10:30

Thallium

Manganese

Zinc

Method: SW846 6010D - Metals (ICP)									
Analyte F	esult	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Lithium	77.1		50.0		ug/L		03/23/23 14:15	03/24/23 16:42	1
Method: SW846 6010D - Metals (ICP) - Tota	ıl Red	overable							
Analyte F	esult	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Calcium 79	6000		5000		ug/L		03/20/23 09:08	03/22/23 11:56	10
Iron	100	U	100		ug/L		03/20/23 09:08	03/21/23 20:50	1
Magnesium 4	0800		500		ug/L		03/20/23 09:08	03/21/23 20:50	1
Molybdenum	10.0	U	10.0		ug/L		03/20/23 09:08	03/21/23 20:50	1
Potassium	3000		1000		ug/L		03/20/23 09:08	03/21/23 20:50	1
Selenium	20.0	U F2 F1	20.0		ug/L		03/20/23 09:08	03/21/23 20:50	1
Carallinua 44	4000		2000		ug/L		03/20/23 09:08	03/21/23 20:50	1
Sodium	1000		2000		ug/L		03/20/23 03.00	00/2 1/20 20:00	•
Sodium 12 Method: SW846 6020B - Metals (ICP/MS) -		Recoverable			ug/L		03/20/23 03.00	00/2 1/20 20:00	
Method: SW846 6020B - Metals (ICP/MS) -	Total	Recoverable Qualifier		MDL	Unit	D	Prepared	Analyzed	Dil Fac
Method: SW846 6020B - Metals (ICP/MS) -	Total	Qualifier	•	MDL	J	<u>D</u>			Dil Fac
Method: SW846 6020B - Metals (ICP/MS) - Analyte F Aluminum	Total esult	Qualifier U	RL	MDL	Unit	<u>D</u>	Prepared	Analyzed	
Method: SW846 6020B - Metals (ICP/MS) - Analyte Aluminum Antimony	Total esult	Qualifier U	RL	MDL	Unit ug/L	<u>D</u>	Prepared 03/20/23 09:08	Analyzed 03/21/23 20:02	
Method: SW846 6020B - Metals (ICP/MS) - Analyte F Aluminum Antimony Arsenic	Total esult 100 5.00	Qualifier U	RL 100 5.00	MDL	Unit ug/L ug/L	<u>D</u>	Prepared 03/20/23 09:08 03/20/23 09:08	Analyzed 03/21/23 20:02 03/21/23 20:02	1
Method: SW846 6020B - Metals (ICP/MS) - Analyte F Aluminum Antimony Arsenic Barium	Total esult 100 5.00 8.18	Qualifier U	RL 100 5.00 3.00	MDL	Unit ug/L ug/L ug/L	<u>D</u>	Prepared 03/20/23 09:08 03/20/23 09:08 03/20/23 09:08	Analyzed 03/21/23 20:02 03/21/23 20:02 03/21/23 20:02	1 1
Method: SW846 6020B - Metals (ICP/MS) - Analyte Aluminum Antimony Arsenic Barium Beryllium	Total esult 100 5.00 8.18 95.4	Qualifier U U	RL 100 5.00 3.00 5.00	MDL	Unit ug/L ug/L ug/L ug/L	<u>D</u>	Prepared 03/20/23 09:08 03/20/23 09:08 03/20/23 09:08 03/20/23 09:08	Analyzed 03/21/23 20:02 03/21/23 20:02 03/21/23 20:02 03/21/23 20:02	1 1
Method: SW846 6020B - Metals (ICP/MS) - Analyte F Aluminum Antimony Arsenic Barium Beryllium Cadmium	Total esult 100 5.00 8.18 95.4 0.500	Qualifier U U U	RL 100 5.00 3.00 5.00 0.500	MDL	Unit ug/L ug/L ug/L ug/L ug/L	<u>D</u>	Prepared 03/20/23 09:08 03/20/23 09:08 03/20/23 09:08 03/20/23 09:08 03/20/23 09:08	Analyzed 03/21/23 20:02 03/21/23 20:02 03/21/23 20:02 03/21/23 20:02 03/21/23 20:02	1 1 1 1 1
Method: SW846 6020B - Metals (ICP/MS) - Analyte F Aluminum Antimony Arsenic Barium Beryllium Cadmium Chromium	Total esult 100 5.00 8.18 95.4 0.500 0.500	Qualifier U U U U U U	RL 100 5.00 3.00 5.00 0.500	MDL	Unit ug/L ug/L ug/L ug/L ug/L ug/L	<u>D</u>	Prepared 03/20/23 09:08 03/20/23 09:08 03/20/23 09:08 03/20/23 09:08 03/20/23 09:08 03/20/23 09:08	Analyzed 03/21/23 20:02 03/21/23 20:02 03/21/23 20:02 03/21/23 20:02 03/21/23 20:02 03/21/23 20:02	1 1 1 1 1
Method: SW846 6020B - Metals (ICP/MS) - Analyte F Aluminum Antimony Arsenic Barium Beryllium Cadmium Chromium Cobalt	Total esult 100 5.00 8.18 95.4 0.500 0.500 5.00	Qualifier U U U U U U U U	RL 100 5.00 3.00 5.00 0.500 0.500 5.00	MDL	Unit ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L	<u>D</u>	Prepared 03/20/23 09:08 03/20/23 09:08 03/20/23 09:08 03/20/23 09:08 03/20/23 09:08 03/20/23 09:08 03/20/23 09:08	Analyzed 03/21/23 20:02 03/21/23 20:02 03/21/23 20:02 03/21/23 20:02 03/21/23 20:02 03/21/23 20:02 03/21/23 20:02	1 1 1 1 1 1
Method: SW846 6020B - Metals (ICP/MS) - Analyte F Aluminum Antimony Arsenic Barium Beryllium Cadmium Chromium Cobalt Copper	Total esult 100 5.00 8.18 95.4 0.500 0.500 5.00 0.500	Qualifier U U U U U U U U U U U	RL 100 5.00 3.00 5.00 0.500 0.500 5.00 0.500	MDL	Unit ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L	<u>D</u>	Prepared 03/20/23 09:08 03/20/23 09:08 03/20/23 09:08 03/20/23 09:08 03/20/23 09:08 03/20/23 09:08 03/20/23 09:08 03/20/23 09:08	Analyzed 03/21/23 20:02 03/21/23 20:02 03/21/23 20:02 03/21/23 20:02 03/21/23 20:02 03/21/23 20:02 03/21/23 20:02 03/21/23 20:02	1 1 1 1 1 1
Method: SW846 6020B - Metals (ICP/MS) - Analyte F Aluminum Antimony Arsenic Barium Beryllium Cadmium Chromium	Total esult 100 5.00 8.18 95.4 0.500 0.500 5.00 0.500 5.00	Qualifier U U U U U U U U U U U	RL 100 5.00 3.00 5.00 0.500 0.500 5.00 0.500 5.00	MDL	Unit ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L	<u>D</u>	Prepared 03/20/23 09:08 03/20/23 09:08 03/20/23 09:08 03/20/23 09:08 03/20/23 09:08 03/20/23 09:08 03/20/23 09:08 03/20/23 09:08 03/20/23 09:08	Analyzed 03/21/23 20:02 03/21/23 20:02 03/21/23 20:02 03/21/23 20:02 03/21/23 20:02 03/21/23 20:02 03/21/23 20:02 03/21/23 20:02 03/21/23 20:02	1 1 1 1 1 1 1 1

Method: SW846 7470A - Mercury (0	CVAA)								
Analyte	Result	Qualifier	RL	MDL U	Jnit	D	Prepared	Analyzed	Dil Fac
Mercury	0.200	U	0.200	u	g/L		03/20/23 13:40	03/21/23 10:38	1

1.00

20.0

5.00

ug/L

ug/L

ug/L

03/20/23 09:08

03/20/23 09:08

03/20/23 09:08

03/21/23 20:02

03/21/23 20:02

03/21/23 20:02

1.00 UF1

199 F1

Client: South Carolina Public Service Authority Project/Site: 125915/JM02.09.G01.1/36500

Job ID: 680-232196-1

1 Tojectrone. 1200 To/olvio2.00.001.1/0000

Lab Sample ID: 680-232196-22

Matrix: Water

Client Sample ID: AF56412 Date Collected: 03/06/23 15:15

Mercury

Method: SW846 6010D - M	etals (ICP)								
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
Lithium	51.5		50.0		ug/L		03/23/23 14:15	03/24/23 16:51	
Method: SW846 6010D - M	etals (ICP) - Total Re	coverable							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
Calcium	701000		500		ug/L		03/20/23 09:08	03/21/23 21:00	
Iron	14700		100		ug/L		03/20/23 09:08	03/21/23 21:00	
Magnesium	30200		500		ug/L		03/20/23 09:08	03/21/23 21:00	
Molybdenum	10.0	U	10.0		ug/L		03/20/23 09:08	03/21/23 21:00	
Potassium	7240		1000		ug/L		03/20/23 09:08	03/21/23 21:00	
Selenium	20.0	U	20.0		ug/L		03/20/23 09:08	03/21/23 21:00	
Sodium	108000		2000		ug/L		03/20/23 09:08	03/21/23 21:00	
Mothod: CW046 6020B M	otale (ICD/MC) Total	Doogyanahla							
Method: SW846 6020B - M Analyte	` ,	Qualifier	; RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
Aluminum	100	U	100		ug/L		03/20/23 09:08	03/21/23 20:14	
Antimony	5.00	U	5.00		ug/L		03/20/23 09:08	03/21/23 20:14	
Arsenic	4.94		3.00		ug/L		03/20/23 09:08	03/21/23 20:14	
Barium	165		5.00		ug/L		03/20/23 09:08	03/21/23 20:14	
Beryllium	0.500	U	0.500		ug/L		03/20/23 09:08	03/21/23 20:14	
Cadmium	0.500	U	0.500		ug/L		03/20/23 09:08	03/21/23 20:14	
Chromium	5.00		5.00		ug/L		03/20/23 09:08	03/21/23 20:14	
Cobalt	0.500	U	0.500		ug/L		03/20/23 09:08	03/21/23 20:14	
Copper	5.00	U	5.00		ug/L		03/20/23 09:08	03/21/23 20:14	
Lead	2.50		2.50		ug/L		03/20/23 09:08	03/21/23 20:14	
Nickel	5.00	U	5.00		ug/L		03/20/23 09:08	03/21/23 20:14	
Silver	1.00	U	1.00		ug/L		03/20/23 09:08	03/21/23 20:14	
Thallium	1.00	U	1.00		ug/L		03/20/23 09:08	03/21/23 20:14	
Zinc	20.0	U	20.0		ug/L		03/20/23 09:08	03/21/23 20:14	
Manganese	355		5.00		ug/L		03/20/23 09:08	03/21/23 20:14	
Method: SW846 7470A - M	• • •	0 115	RL	MDL		D	Prepared	Analyzed	Dil Fa
Analyte	Pacult	Qualifier							

0.200

ug/L

0.200 U

Client: South Carolina Public Service Authority Project/Site: 125915/JM02.09.G01.1/36500

Job ID: 680-232196-1

Client Sample ID: AF56413 Lab Sample ID: 680-232196-23

Matrix: Water

Date Collected: 03/06/23 13:41 Date Received: 03/17/23 10:30

Mercury

Method: SW846 6010D - N	Metals (ICP)								
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
Lithium	50.0	U	50.0		ug/L		03/23/23 14:15	03/24/23 17:23	
Method: SW846 6010D - N	Metals (ICP) - Total Re	coverable							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
Calcium	163000		500		ug/L		03/20/23 09:08	03/21/23 21:03	
Iron	10100		100		ug/L		03/20/23 09:08	03/21/23 21:03	
Magnesium	11200		500		ug/L		03/20/23 09:08	03/21/23 21:03	
Molybdenum	10.0	U	10.0		ug/L		03/20/23 09:08	03/21/23 21:03	
Potassium	5010		1000		ug/L		03/20/23 09:08	03/21/23 21:03	
Selenium	20.0	U	20.0		ug/L		03/20/23 09:08	03/21/23 21:03	
Sodium	72500		2000		ug/L		03/20/23 09:08	03/21/23 21:03	
Mothod, SW046 6020D	Matala (ICD/MC) Tatal	l Doggvershie							
Method: SW846 6020B - I Analyte		Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
Aluminum	100	U	100		ug/L		03/20/23 09:08	03/21/23 20:18	
Antimony	5.00	U	5.00		ug/L		03/20/23 09:08	03/21/23 20:18	
Arsenic	3.00	U	3.00		ug/L		03/20/23 09:08	03/21/23 20:18	
Barium	88.7		5.00		ug/L		03/20/23 09:08	03/21/23 20:18	
Beryllium	0.500	U	0.500		ug/L		03/20/23 09:08	03/21/23 20:18	
Cadmium	0.500	U	0.500		ug/L		03/20/23 09:08	03/21/23 20:18	
Chromium	5.00	U	5.00		ug/L		03/20/23 09:08	03/21/23 20:18	
Cobalt	0.870		0.500		ug/L		03/20/23 09:08	03/21/23 20:18	
Copper	5.00	U	5.00		ug/L		03/20/23 09:08	03/21/23 20:18	
Lead	2.50	U	2.50		ug/L		03/20/23 09:08	03/21/23 20:18	
Nickel	5.00	U	5.00		ug/L		03/20/23 09:08	03/21/23 20:18	
Silver	1.00	U	1.00		ug/L		03/20/23 09:08	03/21/23 20:18	
Thallium	1.00	U	1.00		ug/L		03/20/23 09:08	03/21/23 20:18	
Zinc	20.0	U	20.0		ug/L		03/20/23 09:08	03/21/23 20:18	
Manganese	235		5.00		ug/L		03/20/23 09:08	03/21/23 20:18	
Mathad: CW/046 74704	Maraum (C) (A A)								
Method: SW846 7470A - N Analyte		Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil F
						- _		7111017200	

0.200

ug/L

0.200 U

03/20/23 12:45

03/21/23 13:46

Client: South Carolina Public Service Authority Project/Site: 125915/JM02.09.G01.1/36500

Job ID: 680-232196-1

Client Sample ID: AF56430

Lab Sample ID: 680-232196-24

Matrix: Water

Date Collected: 03/06/23 10:10 Date Received: 03/17/23 10:30

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Lithium	50.0	U	50.0		ug/L		03/23/23 14:15	03/24/23 17:28	1
Method: SW846 6010D - ∣	Metals (ICP) - Total Re	coverable							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Calcium	446000		500		ug/L		03/20/23 09:08	03/21/23 21:06	1
Iron	33300		100		ug/L		03/20/23 09:08	03/21/23 21:06	1
Magnesium	72500		500		ug/L		03/20/23 09:08	03/21/23 21:06	1
Molybdenum	10.0	U	10.0		ug/L		03/20/23 09:08	03/21/23 21:06	1
Potassium	6540		1000		ug/L		03/20/23 09:08	03/21/23 21:06	1
Selenium	20.0	U	20.0		ug/L		03/20/23 09:08	03/21/23 21:06	1
Sodium	87200		2000		ug/L		03/20/23 09:08	03/21/23 21:06	1

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Aluminum	100	U	100		ug/L		03/20/23 09:08	03/21/23 20:22	1
Antimony	5.00	U	5.00		ug/L		03/20/23 09:08	03/21/23 20:22	1
Arsenic	3.00	U	3.00		ug/L		03/20/23 09:08	03/21/23 20:22	1
Barium	36.3		5.00		ug/L		03/20/23 09:08	03/21/23 20:22	1
Beryllium	0.500	U	0.500		ug/L		03/20/23 09:08	03/21/23 20:22	1
Cadmium	0.500	U	0.500		ug/L		03/20/23 09:08	03/21/23 20:22	1
Chromium	5.00	U	5.00		ug/L		03/20/23 09:08	03/21/23 20:22	1
Cobalt	6.51		0.500		ug/L		03/20/23 09:08	03/21/23 20:22	1
Copper	5.00	U	5.00		ug/L		03/20/23 09:08	03/21/23 20:22	1
Lead	2.50	U	2.50		ug/L		03/20/23 09:08	03/21/23 20:22	1
Nickel	5.00	U	5.00		ug/L		03/20/23 09:08	03/21/23 20:22	1
Silver	1.00	U	1.00		ug/L		03/20/23 09:08	03/21/23 20:22	1
Thallium	1.00	U	1.00		ug/L		03/20/23 09:08	03/21/23 20:22	1
Zinc	20.0	U	20.0		ug/L		03/20/23 09:08	03/21/23 20:22	1
Manganese	3770		5.00		ug/L		03/20/23 09:08	03/21/23 20:22	1

Method: SW846 7470A - Mercury (CVAA))								
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Mercury	0.200	U	0.200		ug/L		03/20/23 12:45	03/21/23 14:10	1

Client: South Carolina Public Service Authority Project/Site: 125915/JM02.09.G01.1/36500

Job ID: 680-232196-1

Client Sample ID: AF56406

Lab Sample ID: 680-232196-25 Date Collected: 03/09/23 10:29

Matrix: Water

Mercury

Method: SW846 6010D - M	letals (ICP)								
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
Lithium	50.0	U	50.0		ug/L		03/23/23 14:15	03/24/23 17:33	
Method: SW846 6010D - M	letals (ICP) - Total Re	coverable							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
Calcium	203000		500		ug/L		03/20/23 09:08	03/21/23 21:09	
Iron	1450		100		ug/L		03/20/23 09:08	03/21/23 21:09	
Magnesium	18100		500		ug/L		03/20/23 09:08	03/21/23 21:09	
Molybdenum	10.0	U	10.0		ug/L		03/20/23 09:08	03/21/23 21:09	
Potassium	4990		1000		ug/L		03/20/23 09:08	03/21/23 21:09	
Selenium	20.0	U	20.0		ug/L		03/20/23 09:08	03/21/23 21:09	
Sodium	45500		2000		ug/L		03/20/23 09:08	03/21/23 21:09	
Method: SW846 6020B - M	lotals (ICD/MS) - Total	Pecoverable							
Analyte	• •	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
Aluminum	1940		100		ug/L		03/20/23 09:08	03/21/23 20:26	
Antimony	5.00	U	5.00		ug/L		03/20/23 09:08	03/21/23 20:26	
Arsenic	3.00	U	3.00		ug/L		03/20/23 09:08	03/21/23 20:26	
Barium	36.4		5.00		ug/L		03/20/23 09:08	03/21/23 20:26	
Beryllium	0.500	U	0.500		ug/L		03/20/23 09:08	03/21/23 20:26	
Cadmium	0.500	U	0.500		ug/L		03/20/23 09:08	03/21/23 20:26	
Chromium	5.00	U	5.00		ug/L		03/20/23 09:08	03/21/23 20:26	
Cobalt	1.84		0.500		ug/L		03/20/23 09:08	03/21/23 20:26	
Copper	5.00	U	5.00		ug/L		03/20/23 09:08	03/21/23 20:26	
Lead	2.50	U	2.50		ug/L		03/20/23 09:08	03/21/23 20:26	
Nickel	5.00	U	5.00		ug/L		03/20/23 09:08	03/21/23 20:26	
Silver	1.00	U	1.00		ug/L		03/20/23 09:08	03/21/23 20:26	
Thallium	1.00	U	1.00		ug/L		03/20/23 09:08	03/21/23 20:26	
Zinc	45.6		20.0		ug/L		03/20/23 09:08	03/21/23 20:26	
Manganese	183		5.00		ug/L		03/20/23 09:08	03/21/23 20:26	
Method: SW846 7470A - M	lercury (CVAA)								
Analyte	,	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
									

0.200

ug/L

0.200 U

03/20/23 12:45

03/21/23 13:13

Client: South Carolina Public Service Authority Project/Site: 125915/JM02.09.G01.1/36500

Job ID: 680-232196-1

Lab Sample ID: 680-232196-26

Matrix: Water

Client Sample ID: AF56407 Date Collected: 03/09/23 10:34

Mercury

Method: SW846 6010D - Metals (ICI	,					_			
Analyte		Qualifier	RL	MDL	Unit	<u>D</u>	Prepared	Analyzed	Dil Fa
Lithium -	100	U	100		ug/L		03/23/23 14:15	03/24/23 17:38	
Method: SW846 6010D - Metals (ICI	P) - Total Re	coverable							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
Calcium	207000		500		ug/L		03/20/23 09:08	03/21/23 21:13	
Iron	1440		100		ug/L		03/20/23 09:08	03/21/23 21:13	
Magnesium	18200		500		ug/L		03/20/23 09:08	03/21/23 21:13	
Molybdenum	10.0	U	10.0		ug/L		03/20/23 09:08	03/21/23 21:13	
Potassium	5150		1000		ug/L		03/20/23 09:08	03/21/23 21:13	
Selenium	20.0	U	20.0		ug/L		03/20/23 09:08	03/21/23 21:13	
Sodium	46200		2000		ug/L		03/20/23 09:08	03/21/23 21:13	
Method: SW846 6020B - Metals (ICI Analyte	,	Recoverable Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
Aluminum	2090		100		ug/L		03/20/23 09:08	03/21/23 20:30	
Antimony	5.00	U	5.00		ug/L		03/20/23 09:08	03/21/23 20:30	
Arsenic	3.00	U	3.00		ug/L		03/20/23 09:08	03/21/23 20:30	
Barium	36.9		5.00		ug/L		03/20/23 09:08	03/21/23 20:30	
Beryllium	0.500	U	0.500		ug/L		03/20/23 09:08	03/21/23 20:30	
Cadmium	0.500	U	0.500		ug/L		03/20/23 09:08	03/21/23 20:30	
Chromium	5.00	U	5.00		ug/L		03/20/23 09:08	03/21/23 20:30	
Cobalt	1.65		0.500		ug/L		03/20/23 09:08	03/21/23 20:30	
Copper	5.00	U	5.00		ug/L		03/20/23 09:08	03/21/23 20:30	
Lead	2.50	U	2.50		ug/L		03/20/23 09:08	03/21/23 20:30	
Nickel	5.00	U	5.00		ug/L		03/20/23 09:08	03/21/23 20:30	
Silver	1.00	U	1.00		ug/L		03/20/23 09:08	03/21/23 20:30	
Olivei	1.00	U	1.00		ug/L		03/20/23 09:08	03/21/23 20:30	
					ug/L		03/20/23 09:08	03/21/23 20:30	
Thallium	29.1		20.0		ug/ =		03/20/23 03.00	00/21/20 20:00	
Thallium Zinc Manganese	29.1 207		20.0 5.00		ug/L		03/20/23 09:08	03/21/23 20:30	
Thallium Zinc	207				-				

0.200

ug/L

03/20/23 12:45

03/21/23 13:03

0.200 U

Client: South Carolina Public Service Authority Project/Site: 125915/JM02.09.G01.1/36500

Job ID: 680-232196-1

Client Sample ID: AF56418

Lab Sample ID: 680-232196-27

Matrix: Water

Date Collected: 03/09/23 12:07 Date Received: 03/17/23 10:30

Mercury

Method: SW846 6010D - M	letals (ICP)								
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
Lithium	76.7		50.0		ug/L		03/23/23 14:15	03/24/23 17:42	
Method: SW846 6010D - N	letals (ICP) - Total Re	coverable							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
Calcium	94400		500		ug/L		03/20/23 09:08	03/21/23 21:22	
Iron	840		100		ug/L		03/20/23 09:08	03/21/23 21:22	
Magnesium	7510		500		ug/L		03/20/23 09:08	03/21/23 21:22	
Molybdenum	90.2		10.0		ug/L		03/20/23 09:08	03/21/23 21:22	
Potassium	7420		1000		ug/L		03/20/23 09:08	03/21/23 21:22	
Selenium	20.0	U	20.0		ug/L		03/20/23 09:08	03/21/23 21:22	
Sodium	25200		2000		ug/L		03/20/23 09:08	03/21/23 21:22	
Method: SW846 6020B - N	Metals (ICP/MS) - Total	Recoverable							
Analyte		Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
Aluminum	134		100		ug/L		03/20/23 09:08	03/21/23 20:41	
Antimony	5.00	U	5.00		ug/L		03/20/23 09:08	03/21/23 20:41	
Arsenic	249		3.00		ug/L		03/20/23 09:08	03/21/23 20:41	
Barium	127		5.00		ug/L		03/20/23 09:08	03/21/23 20:41	
Beryllium	0.500	U	0.500		ug/L		03/20/23 09:08	03/21/23 20:41	
Cadmium	0.500	U	0.500		ug/L		03/20/23 09:08	03/21/23 20:41	
Chromium	5.00	U	5.00		ug/L		03/20/23 09:08	03/21/23 20:41	
Cobalt	2.17		0.500		ug/L		03/20/23 09:08	03/21/23 20:41	
Copper	5.00	U	5.00		ug/L		03/20/23 09:08	03/21/23 20:41	
Lead	2.50	U	2.50		ug/L		03/20/23 09:08	03/21/23 20:41	
Nickel	5.00	U	5.00		ug/L		03/20/23 09:08	03/21/23 20:41	
Silver	1.00	U	1.00		ug/L		03/20/23 09:08	03/21/23 20:41	
Thallium	1.00	U	1.00		ug/L		03/20/23 09:08	03/21/23 20:41	
Zinc	20.0	U	20.0		ug/L		03/20/23 09:08	03/21/23 20:41	
Manganese	113		5.00		ug/L		03/20/23 09:08	03/21/23 20:41	
Method: SW846 7470A - N	Mercury (CVAA)								
Analyte	• ' '	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
		 -					·		

0.200

ug/L

0.200 U

03/20/23 12:45

03/21/23 12:36

2

1

5

7

0

10

11

13

Client: South Carolina Public Service Authority Project/Site: 125915/JM02.09.G01.1/36500

Job ID: 680-232196-1

Client Sample ID: AF56422

Lab Sample ID: 680-232196-28 Date Collected: 03/09/23 13:19

Matrix: Water

Mercury

	als (ICP)								
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
Lithium	50.0	U	50.0		ug/L		03/23/23 14:15	03/24/23 17:47	
Method: SW846 6010D - Met	als (ICP) - Total Re	coverable							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
Calcium	250000		500		ug/L		03/20/23 09:08	03/21/23 21:26	
Iron	15600		100		ug/L		03/20/23 09:08	03/21/23 21:26	
Magnesium	9000		500		ug/L		03/20/23 09:08	03/21/23 21:26	
Molybdenum	10.0	U	10.0		ug/L		03/20/23 09:08	03/21/23 21:26	
Potassium	3920		1000		ug/L		03/20/23 09:08	03/21/23 21:26	
Selenium	20.0	U	20.0		ug/L		03/20/23 09:08	03/21/23 21:26	
Sodium	74400		2000		ug/L		03/20/23 09:08	03/21/23 21:26	
Analyte		Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
Method: SW846 6020B - Met	als (ICP/MS) - Total	Recoverable	•						
Aluminum	100		100		ug/L		03/20/23 09:08	03/21/23 20:45	
A 4!	5.00	U	5.00		ug/L		03/20/23 09:08	03/21/23 20:45	
Antimony									
•	8.53		3.00		ug/L		03/20/23 09:08	03/21/23 20:45	
·	8.53 121				ug/L ug/L		03/20/23 09:08 03/20/23 09:08		
Arsenic	8.53	U	3.00 5.00 0.500					03/21/23 20:45	
Arsenic Barium Beryllium	8.53 121		3.00 5.00		ug/L		03/20/23 09:08	03/21/23 20:45 03/21/23 20:45	
Arsenic Barium Beryllium Cadmium	8.53 121 0.500	U	3.00 5.00 0.500		ug/L ug/L		03/20/23 09:08 03/20/23 09:08	03/21/23 20:45 03/21/23 20:45 03/21/23 20:45	
Arsenic Barium Beryllium Cadmium Chromium	8.53 121 0.500 0.500	U	3.00 5.00 0.500 0.500		ug/L ug/L ug/L		03/20/23 09:08 03/20/23 09:08 03/20/23 09:08	03/21/23 20:45 03/21/23 20:45 03/21/23 20:45 03/21/23 20:45	
Arsenic Barium Beryllium Cadmium Chromium Cobalt	8.53 121 0.500 0.500 5.00	U U	3.00 5.00 0.500 0.500 5.00		ug/L ug/L ug/L ug/L		03/20/23 09:08 03/20/23 09:08 03/20/23 09:08 03/20/23 09:08	03/21/23 20:45 03/21/23 20:45 03/21/23 20:45 03/21/23 20:45 03/21/23 20:45	
Arsenic Barium Beryllium Cadmium Chromium Cobalt Copper	8.53 121 0.500 0.500 5.00 0.500	U U U	3.00 5.00 0.500 0.500 5.00		ug/L ug/L ug/L ug/L ug/L		03/20/23 09:08 03/20/23 09:08 03/20/23 09:08 03/20/23 09:08 03/20/23 09:08	03/21/23 20:45 03/21/23 20:45 03/21/23 20:45 03/21/23 20:45 03/21/23 20:45 03/21/23 20:45	
Arsenic Barium Beryllium Cadmium Chromium Cobalt Copper	8.53 121 0.500 0.500 5.00 0.500 5.00	U U U U	3.00 5.00 0.500 0.500 5.00 0.500 5.00		ug/L ug/L ug/L ug/L ug/L ug/L		03/20/23 09:08 03/20/23 09:08 03/20/23 09:08 03/20/23 09:08 03/20/23 09:08 03/20/23 09:08	03/21/23 20:45 03/21/23 20:45 03/21/23 20:45 03/21/23 20:45 03/21/23 20:45 03/21/23 20:45 03/21/23 20:45	
Arsenic Barium Beryllium Cadmium Chromium Cobalt Copper Lead Nickel	8.53 121 0.500 0.500 5.00 0.500 5.00 2.50	U U U U U	3.00 5.00 0.500 0.500 5.00 0.500 5.00 2.50		ug/L ug/L ug/L ug/L ug/L ug/L		03/20/23 09:08 03/20/23 09:08 03/20/23 09:08 03/20/23 09:08 03/20/23 09:08 03/20/23 09:08 03/20/23 09:08	03/21/23 20:45 03/21/23 20:45 03/21/23 20:45 03/21/23 20:45 03/21/23 20:45 03/21/23 20:45 03/21/23 20:45 03/21/23 20:45	
Arsenic Barium Beryllium Cadmium Chromium Cobalt Copper Lead Nickel	8.53 121 0.500 0.500 5.00 0.500 5.00 2.50 5.00	U U U U U U	3.00 5.00 0.500 0.500 5.00 0.500 5.00 2.50 5.00		ug/L ug/L ug/L ug/L ug/L ug/L ug/L		03/20/23 09:08 03/20/23 09:08 03/20/23 09:08 03/20/23 09:08 03/20/23 09:08 03/20/23 09:08 03/20/23 09:08 03/20/23 09:08	03/21/23 20:45 03/21/23 20:45 03/21/23 20:45 03/21/23 20:45 03/21/23 20:45 03/21/23 20:45 03/21/23 20:45 03/21/23 20:45 03/21/23 20:45	
Arsenic Barium Beryllium Cadmium Chromium Cobalt Copper Lead Nickel Silver Thallium	8.53 121 0.500 0.500 5.00 0.500 5.00 2.50 5.00	U U U U U U	3.00 5.00 0.500 0.500 5.00 0.500 5.00 2.50 5.00		ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L		03/20/23 09:08 03/20/23 09:08 03/20/23 09:08 03/20/23 09:08 03/20/23 09:08 03/20/23 09:08 03/20/23 09:08 03/20/23 09:08 03/20/23 09:08	03/21/23 20:45 03/21/23 20:45 03/21/23 20:45 03/21/23 20:45 03/21/23 20:45 03/21/23 20:45 03/21/23 20:45 03/21/23 20:45 03/21/23 20:45 03/21/23 20:45	
	8.53 121 0.500 0.500 5.00 0.500 5.00 2.50 5.00 1.00	U U U U U U	3.00 5.00 0.500 0.500 5.00 0.500 5.00 2.50 5.00 1.00		ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L		03/20/23 09:08 03/20/23 09:08 03/20/23 09:08 03/20/23 09:08 03/20/23 09:08 03/20/23 09:08 03/20/23 09:08 03/20/23 09:08 03/20/23 09:08	03/21/23 20:45 03/21/23 20:45	
Arsenic Barium Beryllium Cadmium Chromium Cobalt Copper Lead Nickel Silver Thallium	8.53 121 0.500 0.500 5.00 0.500 5.00 2.50 5.00 1.00 37.7 272	U U U U U U	3.00 5.00 0.500 0.500 5.00 0.500 5.00 2.50 5.00 1.00 20.0		ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L		03/20/23 09:08 03/20/23 09:08 03/20/23 09:08 03/20/23 09:08 03/20/23 09:08 03/20/23 09:08 03/20/23 09:08 03/20/23 09:08 03/20/23 09:08 03/20/23 09:08	03/21/23 20:45 03/21/23 20:45	

0.200

ug/L

0.200 U

Client: South Carolina Public Service Authority Project/Site: 125915/JM02.09.G01.1/36500

Job ID: 680-232196-1

Client Sample ID: AF56419

Date Collected: 03/07/23 14:51 Date Received: 03/17/23 10:30 Lab Sample ID: 680-232196-29

Matrix: Water

Method: SW846 6010D - N	/letals (ICP)								
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Lithium	234		50.0		ug/L		03/23/23 14:15	03/24/23 17:52	1
- Method: SW846 6010D - N	/letals (ICP) - Total Re	coverable							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Calcium	601000		500		ug/L		03/20/23 09:08	03/21/23 21:29	1
Iron	19700		100		ug/L		03/20/23 09:08	03/21/23 21:29	1
Magnesium	88700		500		ug/L		03/20/23 09:08	03/21/23 21:29	1
Molybdenum	94.7		10.0		ug/L		03/20/23 09:08	03/21/23 21:29	1
Potassium	22200		1000		ug/L		03/20/23 09:08	03/21/23 21:29	1
Selenium	20.0	U	20.0		ug/L		03/20/23 09:08	03/21/23 21:29	1
Sodium	44900		2000		ug/L		03/20/23 09:08	03/21/23 21:29	1
- Method: SW846 6020B - N	/letals (ICP/MS) - Total	Recoverable)						
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Aluminum	672		100		ug/L		03/20/23 09:08	03/21/23 20:49	1
Antimony	5.00	U	5.00		ug/L		03/20/23 09:08	03/21/23 20:49	1
Arsenic	474		3.00		ug/L		03/20/23 09:08	03/21/23 20:49	1
Rarium	83.0		5.00		ua/l		03/20/23 09:08	03/21/23 20:49	

83.9	5.00	ug/L	03/20/23 09:08	03/21/23 20:49	1
0.500 U	0.500	ug/L	03/20/23 09:08	03/21/23 20:49	1
0.500 U	0.500	ug/L	03/20/23 09:08	03/21/23 20:49	1
5.00 U	5.00	ug/L	03/20/23 09:08	03/21/23 20:49	1
1.29	0.500	ug/L	03/20/23 09:08	03/21/23 20:49	1
5.00 U	5.00	ug/L	03/20/23 09:08	03/21/23 20:49	1
2.50 U	2.50	ug/L	03/20/23 09:08	03/21/23 20:49	1
5.00 U	5.00	ug/L	03/20/23 09:08	03/21/23 20:49	1
1.00 U	1.00	ug/L	03/20/23 09:08	03/21/23 20:49	1
1.00 U	1.00	ug/L	03/20/23 09:08	03/21/23 20:49	1
24.2	20.0	ug/L	03/20/23 09:08	03/21/23 20:49	1
1020	5.00	ug/L	03/20/23 09:08	03/21/23 20:49	1
	0.500 U 0.500 U 5.00 U 1.29 5.00 U 2.50 U 5.00 U 1.00 U 1.00 U 2.4.2	0.500 U 0.500 0.500 U 0.500 5.00 U 5.00 1.29 0.500 5.00 U 5.00 2.50 U 2.50 5.00 U 5.00 1.00 U 1.00 1.00 U 1.00 24.2 20.0	0.500 U 0.500 ug/L 0.500 U 0.500 ug/L 5.00 U 5.00 ug/L 1.29 0.500 ug/L 5.00 U 5.00 ug/L 5.00 U 5.00 ug/L 2.50 U 2.50 ug/L 5.00 U 5.00 ug/L 1.00 U 1.00 ug/L 1.00 U 1.00 ug/L 2.4.2 20.0 ug/L	0.500 U 0.500 ug/L 03/20/23 09:08 0.500 U 0.500 ug/L 03/20/23 09:08 5.00 U 5.00 ug/L 03/20/23 09:08 1.29 0.500 ug/L 03/20/23 09:08 5.00 U 5.00 ug/L 03/20/23 09:08 2.50 U 2.50 ug/L 03/20/23 09:08 5.00 U 5.00 ug/L 03/20/23 09:08 1.00 U 1.00 ug/L 03/20/23 09:08 1.00 U 1.00 ug/L 03/20/23 09:08 24.2 20.0 ug/L 03/20/23 09:08	0.500 U 0.500 ug/L 03/20/23 09:08 03/21/23 20:49 0.500 U 0.500 ug/L 03/20/23 09:08 03/21/23 20:49 5.00 U 5.00 ug/L 03/20/23 09:08 03/21/23 20:49 1.29 0.500 ug/L 03/20/23 09:08 03/21/23 20:49 5.00 U 5.00 ug/L 03/20/23 09:08 03/21/23 20:49 2.50 U 2.50 ug/L 03/20/23 09:08 03/21/23 20:49 5.00 U 5.00 ug/L 03/20/23 09:08 03/21/23 20:49 1.00 U 1.00 ug/L 03/20/23 09:08 03/21/23 20:49 1.00 U 1.00 ug/L 03/20/23 09:08 03/21/23 20:49 24.2 20.0 ug/L 03/20/23 09:08 03/21/23 20:49

Method: SW846 7470A - Mercury (CVAA))								
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Mercury	0.200	U	0.200		ug/L		03/20/23 13:40	03/21/23 11:22	1

Client: South Carolina Public Service Authority Project/Site: 125915/JM02.09.G01.1/36500

Job ID: 680-232196-1

Client Sample ID: AF56425

Lab Sample ID: 680-232196-30

Matrix: Water

Date Collected: 03/07/23 12:49 Date Received: 03/17/23 10:30

Mercury

Method: SW846 6010D - N	/letals (ICP)								
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
Lithium	50.0	U	50.0		ug/L		03/23/23 14:15	03/24/23 18:10	
Method: SW846 6010D - N	/letals (ICP) - Total Re	coverable							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
Calcium	68500		500		ug/L		03/20/23 09:08	03/21/23 21:32	
Iron	3190		100		ug/L		03/20/23 09:08	03/21/23 21:32	
Magnesium	2680		500		ug/L		03/20/23 09:08	03/21/23 21:32	
Molybdenum	10.0	U	10.0		ug/L		03/20/23 09:08	03/21/23 21:32	
Potassium	2060		1000		ug/L		03/20/23 09:08	03/21/23 21:32	
Selenium	20.0	U	20.0		ug/L		03/20/23 09:08	03/21/23 21:32	
Sodium	11100		2000		ug/L		03/20/23 09:08	03/21/23 21:32	
Method: SW846 6020B - N	Motals (ICD/MS) Total	Pacayarahla							
Analyte		Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil F
Aluminum	100	U	100		ug/L		03/20/23 09:08	03/21/23 20:53	
Antimony	5.00	U	5.00		ug/L		03/20/23 09:08	03/21/23 20:53	
Arsenic	3.00	U	3.00		ug/L		03/20/23 09:08	03/21/23 20:53	
Barium	9.10		5.00		ug/L		03/20/23 09:08	03/21/23 20:53	
Beryllium	0.500	U	0.500		ug/L		03/20/23 09:08	03/21/23 20:53	
Cadmium	0.500	U	0.500		ug/L		03/20/23 09:08	03/21/23 20:53	
Chromium	5.00	U	5.00		ug/L		03/20/23 09:08	03/21/23 20:53	
Cobalt	0.500	U	0.500		ug/L		03/20/23 09:08	03/21/23 20:53	
Copper	30.7		5.00		ug/L		03/20/23 09:08	03/21/23 20:53	
Lead	2.50	U	2.50		ug/L		03/20/23 09:08	03/21/23 20:53	
Nickel	5.00	U	5.00		ug/L		03/20/23 09:08	03/21/23 20:53	
Silver	1.00	U	1.00		ug/L		03/20/23 09:08	03/21/23 20:53	
Thallium	1.00	U	1.00		ug/L		03/20/23 09:08	03/21/23 20:53	
Zinc	20.0	U	20.0		ug/L		03/20/23 09:08	03/21/23 20:53	
Manganese	90.8		5.00		ug/L		03/20/23 09:08	03/21/23 20:53	
Method: SW846 7470A - N	Mercury (CVAA)								
Analyte	• ,	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
-									

0.200

ug/L

0.200 U

03/20/23 13:40

03/21/23 11:05

Client: South Carolina Public Service Authority Project/Site: 125915/JM02.09.G01.1/36500

Job ID: 680-232196-1

Lab Sample ID: 680-232196-31

Matrix: Water

Client Sample ID: AF56426 Date Collected: 03/07/23 10:22

Mercury

Method: SW846 6010D - N	letals (ICP)								
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
Lithium	50.0	U	50.0		ug/L		03/23/23 14:15	03/24/23 18:15	
Method: SW846 6010D - N	letals (ICP) - Total Re	coverable							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
Calcium	20600		500		ug/L		03/20/23 09:08	03/21/23 21:35	
Iron	386		100		ug/L		03/20/23 09:08	03/21/23 21:35	
Magnesium	1730		500		ug/L		03/20/23 09:08	03/21/23 21:35	
Molybdenum	10.0	U	10.0		ug/L		03/20/23 09:08	03/21/23 21:35	
Potassium	1000	U	1000		ug/L		03/20/23 09:08	03/21/23 21:35	
Selenium	20.0	U	20.0		ug/L		03/20/23 09:08	03/21/23 21:35	
Sodium	4370		2000		ug/L		03/20/23 09:08	03/21/23 21:35	
Method: SW846 6020B - N Analyte		Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
Aluminum	164		100		ug/L	— <u> </u>	03/20/23 09:08	03/21/23 20:57	
Antimony	5.00	U	5.00		ug/L		03/20/23 09:08	03/21/23 20:57	
Arsenic	3.00	U	3.00		ug/L		03/20/23 09:08	03/21/23 20:57	
Barium	34.6		5.00		ug/L		03/20/23 09:08	03/21/23 20:57	
Beryllium	0.500	U	0.500		ug/L		03/20/23 09:08	03/21/23 20:57	
Cadmium	0.500	U	0.500		ug/L		03/20/23 09:08	03/21/23 20:57	
Chromium	5.00	U	5.00		ug/L		03/20/23 09:08	03/21/23 20:57	
Cobalt	0.500	U	0.500		ug/L		03/20/23 09:08	03/21/23 20:57	
Copper	5.00	U	5.00		ug/L		03/20/23 09:08	03/21/23 20:57	
Lead	2.50	U	2.50		ug/L		03/20/23 09:08	03/21/23 20:57	
Nickel	5.00	U	5.00		ug/L		03/20/23 09:08	03/21/23 20:57	
Silver	1.00	U	1.00		ug/L		03/20/23 09:08	03/21/23 20:57	
Thallium	1.00	U	1.00		ug/L		03/20/23 09:08	03/21/23 20:57	
Zinc	32.7		20.0		ug/L		03/20/23 09:08	03/21/23 20:57	
Manganese	18.4		5.00		ug/L		03/20/23 09:08	03/21/23 20:57	
					-				
Method: SW846 7470A - N	,								
Analyte	Docult	Qualifier	RL		Unit	D	Prepared	Analyzed	Dil Fa

0.200

ug/L

0.200 U

Client: South Carolina Public Service Authority Project/Site: 125915/JM02.09.G01.1/36500

Job ID: 680-232196-1

Client Sample ID: AF56427

Lab Sample ID: 680-232196-32 Date Collected: 03/07/23 10:27

Matrix: Water

Date Received: 03/17/23 10:30

Mercury

Method: SW846 6010D - M	letals (ICP)								
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Lithium	50.0	U	50.0		ug/L		03/23/23 14:15	03/24/23 18:19	
Method: SW846 6010D - M	letals (ICP) - Total Re	coverable							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
Calcium	22400		500		ug/L		03/20/23 09:08	03/21/23 21:39	
Iron	392		100		ug/L		03/20/23 09:08	03/21/23 21:39	
Magnesium	1820		500		ug/L		03/20/23 09:08	03/21/23 21:39	
Molybdenum	10.0	U	10.0		ug/L		03/20/23 09:08	03/21/23 21:39	
Potassium	1000	U	1000		ug/L		03/20/23 09:08	03/21/23 21:39	
Selenium	20.0	U	20.0		ug/L		03/20/23 09:08	03/21/23 21:39	
Sodium	4470		2000		ug/L		03/20/23 09:08	03/21/23 21:39	
Method: SW846 6020B - M	lotals (ICD/MS) Total	Pocovorable							
Analyte		Qualifier	, RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
Aluminum	178		100		ug/L		03/20/23 09:08	03/21/23 21:01	
Antimony	5.00	U	5.00		ug/L		03/20/23 09:08	03/21/23 21:01	
Arsenic	3.00	U	3.00		ug/L		03/20/23 09:08	03/21/23 21:01	
Barium	34.5		5.00		ug/L		03/20/23 09:08	03/21/23 21:01	
Beryllium	0.500	U	0.500		ug/L		03/20/23 09:08	03/21/23 21:01	
Cadmium	0.500	U	0.500		ug/L		03/20/23 09:08	03/21/23 21:01	
Chromium	5.00	U	5.00		ug/L		03/20/23 09:08	03/21/23 21:01	
Cobalt	0.500	U	0.500		ug/L		03/20/23 09:08	03/21/23 21:01	
Copper	5.00	U	5.00		ug/L		03/20/23 09:08	03/21/23 21:01	
Lead	2.50	U	2.50		ug/L		03/20/23 09:08	03/21/23 21:01	
Nickel	5.00	U	5.00		ug/L		03/20/23 09:08	03/21/23 21:01	
Silver	1.00	U	1.00		ug/L		03/20/23 09:08	03/21/23 21:01	
Thallium	1.00	U	1.00		ug/L		03/20/23 09:08	03/21/23 21:01	
Zinc	20.0	U	20.0		ug/L		03/20/23 09:08	03/21/23 21:01	
Manganese	19.9		5.00		ug/L		03/20/23 09:08	03/21/23 21:01	
- Method: SW846 7470A - M	lercury (CVAA)								
Analyte		Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa

0.200

ug/L

0.200 U

03/20/23 13:40

03/21/23 10:35

Client: South Carolina Public Service Authority Project/Site: 125915/JM02.09.G01.1/36500

Job ID: 680-232196-1

Client Sample ID: AF56408 Lab Sample

Lab Sample ID: 680-232196-33 Matrix: Water

Date Collected: 03/08/23 13:38 Date Received: 03/17/23 10:30

Method: SW846 6010D - Metals (ICP)									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Lithium	50.0	U	50.0		ug/L		03/23/23 14:15	03/24/23 18:24	1
_									

Analyte	Result	Qualifier RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Calcium	416000	500		ug/L		03/20/23 09:08	03/21/23 21:42	1
Iron	56000	100		ug/L		03/20/23 09:08	03/21/23 21:42	1
Magnesium	30400	500		ug/L		03/20/23 09:08	03/21/23 21:42	1
Molybdenum	10.0	U 10.0		ug/L		03/20/23 09:08	03/21/23 21:42	1
Potassium	2780	1000		ug/L		03/20/23 09:08	03/21/23 21:42	1
Selenium	20.0	U 20.0		ug/L		03/20/23 09:08	03/21/23 21:42	1
Sodium	127000	2000		ug/L		03/20/23 09:08	03/21/23 21:42	1

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Aluminum	100	U	100		ug/L		03/20/23 09:08	03/21/23 21:05	1
Antimony	5.00	U	5.00		ug/L		03/20/23 09:08	03/21/23 21:05	1
Arsenic	3.00	U	3.00		ug/L		03/20/23 09:08	03/21/23 21:05	1
Barium	305		5.00		ug/L		03/20/23 09:08	03/21/23 21:05	1
Beryllium	0.500	U	0.500		ug/L		03/20/23 09:08	03/21/23 21:05	1
Cadmium	0.500	U	0.500		ug/L		03/20/23 09:08	03/21/23 21:05	1
Chromium	5.00	U	5.00		ug/L		03/20/23 09:08	03/21/23 21:05	1
Cobalt	0.555		0.500		ug/L		03/20/23 09:08	03/21/23 21:05	1
Copper	5.00	U	5.00		ug/L		03/20/23 09:08	03/21/23 21:05	1
Lead	2.50	U	2.50		ug/L		03/20/23 09:08	03/21/23 21:05	1
Nickel	5.00	U	5.00		ug/L		03/20/23 09:08	03/21/23 21:05	1
Silver	1.00	U	1.00		ug/L		03/20/23 09:08	03/21/23 21:05	1
Thallium	1.00	U	1.00		ug/L		03/20/23 09:08	03/21/23 21:05	1
Zinc	136		20.0		ug/L		03/20/23 09:08	03/21/23 21:05	1
Manganese	694		5.00		ug/L		03/20/23 09:08	03/21/23 21:05	1

Method: SW846 7470A - Mercury (CVAA)									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Mercury	0.200	U F1	0.200		ug/L		03/20/23 13:40	03/21/23 12:16	1

2

4

5

9

10

12

14

...

Client: South Carolina Public Service Authority Project/Site: 125915/JM02.09.G01.1/36500

Job ID: 680-232196-1

Client Sample ID: AF56415

Date Collected: 03/08/23 15:13

Lab Sample ID: AF56415

Lab Sample ID: 680-232196-34 Matrix: Water

Date Received: 03/17/23 10:30

Method: SW846 6010D - Metals (ICP)									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Lithium	50.0	U	50.0		ug/L		03/23/23 14:15	03/24/23 18:29	1

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Calcium	202000		500		ug/L		03/20/23 09:08	03/21/23 21:45	1
Iron	8580		100		ug/L		03/20/23 09:08	03/21/23 21:45	1
Magnesium	19800		500		ug/L		03/20/23 09:08	03/21/23 21:45	1
Molybdenum	10.0	U	10.0		ug/L		03/20/23 09:08	03/21/23 21:45	1
Potassium	11800		1000		ug/L		03/20/23 09:08	03/21/23 21:45	1
Selenium	20.0	U	20.0		ug/L		03/20/23 09:08	03/21/23 21:45	1
Sodium	128000		2000		ug/L		03/20/23 09:08	03/21/23 21:45	1

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Aluminum	100	U	100		ug/L		03/20/23 09:08	03/21/23 21:09	1
Antimony	5.00	U	5.00		ug/L		03/20/23 09:08	03/21/23 21:09	1
Arsenic	3.00	U	3.00		ug/L		03/20/23 09:08	03/21/23 21:09	1
Barium	86.8		5.00		ug/L		03/20/23 09:08	03/21/23 21:09	1
Beryllium	0.500	U	0.500		ug/L		03/20/23 09:08	03/21/23 21:09	1
Cadmium	0.500	U	0.500		ug/L		03/20/23 09:08	03/21/23 21:09	1
Chromium	5.00	U	5.00		ug/L		03/20/23 09:08	03/21/23 21:09	1
Cobalt	0.500	U	0.500		ug/L		03/20/23 09:08	03/21/23 21:09	1
Copper	5.00	U	5.00		ug/L		03/20/23 09:08	03/21/23 21:09	1
Lead	2.50	U	2.50		ug/L		03/20/23 09:08	03/21/23 21:09	1
Nickel	5.00	U	5.00		ug/L		03/20/23 09:08	03/21/23 21:09	1
Silver	1.00	U	1.00		ug/L		03/20/23 09:08	03/21/23 21:09	1
Thallium	1.00	U	1.00		ug/L		03/20/23 09:08	03/21/23 21:09	1
Zinc	39.3		20.0		ug/L		03/20/23 09:08	03/21/23 21:09	1
Manganese	203		5.00		ug/L		03/20/23 09:08	03/21/23 21:09	1

Method: SW846 7470A - Mercury (CVAA)									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Mercury	0.200	U	0.200		ug/L		03/20/23 12:45	03/21/23 13:43	1

6

8

10

12

13

Client: South Carolina Public Service Authority Project/Site: 125915/JM02.09.G01.1/36500

Job ID: 680-232196-1

Client Sample ID: AF56416

Lab Sample ID: 680-232196-35 Date Collected: 03/08/23 10:09

Matrix: Water

Date Received: 03/17/23 10:30

Mercury

Method: SW846 6010D - N	/letals (ICP)								
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
Lithium	50.0	U	50.0		ug/L		03/23/23 14:15	03/24/23 18:34	
Method: SW846 6010D - N	/letals (ICP) - Total Re	coverable							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
Calcium	260000		500		ug/L		03/20/23 09:08	03/21/23 21:48	
Iron	1570		100		ug/L		03/20/23 09:08	03/21/23 21:48	
Magnesium	38100		500		ug/L		03/20/23 09:08	03/21/23 21:48	
Molybdenum	18.0		10.0		ug/L		03/20/23 09:08	03/21/23 21:48	
Potassium	13800		1000		ug/L		03/20/23 09:08	03/21/23 21:48	
Selenium	20.0	U	20.0		ug/L		03/20/23 09:08	03/21/23 21:48	
Sodium	69700		2000		ug/L		03/20/23 09:08	03/21/23 21:48	
Method: SW846 6020B - N	/letals (ICP/MS) - Total	Recoverable	1						
Analyte		Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil F
Aluminum	100	U	100		ug/L		03/20/23 09:08	03/21/23 21:13	
Antimony	5.00	U	5.00		ug/L		03/20/23 09:08	03/21/23 21:13	
Arsenic	85.9		3.00		ug/L		03/20/23 09:08	03/21/23 21:13	
Barium	44.4		5.00		ug/L		03/20/23 09:08	03/21/23 21:13	
Beryllium	0.500	U	0.500		ug/L		03/20/23 09:08	03/21/23 21:13	
Cadmium	0.500	U	0.500		ug/L		03/20/23 09:08	03/21/23 21:13	
Chromium	5.00	U	5.00		ug/L		03/20/23 09:08	03/21/23 21:13	
Cobalt	0.500	U	0.500		ug/L		03/20/23 09:08	03/21/23 21:13	
Copper	5.00	U	5.00		ug/L		03/20/23 09:08	03/21/23 21:13	
_ead	2.50	U	2.50		ug/L		03/20/23 09:08	03/21/23 21:13	
Nickel	5.00	U	5.00		ug/L		03/20/23 09:08	03/21/23 21:13	
Silver	1.00	U	1.00		ug/L		03/20/23 09:08	03/21/23 21:13	
Thallium	1.00	U	1.00		ug/L		03/20/23 09:08	03/21/23 21:13	
Zinc	413		20.0		ug/L		03/20/23 09:08	03/21/23 21:13	
Vanganese	82.2		5.00		ug/L		03/20/23 09:08	03/21/23 21:13	
Method: SW846 7470A - N	Mercury (CVAA)								
Analyte	• ,	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil F
								00/01/00 10 77	

0.200

ug/L

0.200 U

03/20/23 12:45

03/21/23 13:23

Client: South Carolina Public Service Authority Project/Site: 125915/JM02.09.G01.1/36500

Job ID: 680-232196-1

Client Sample ID: AF56417

Lab Sample ID: 680-232196-36 Date Collected: 03/08/23 10:14

Matrix: Water

Mercury

Method: SW846 6010D - Metals (ICP)									
Analyte Re	esult	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
Lithium	50.0	U	50.0		ug/L		03/23/23 14:15	03/24/23 18:38	
Method: SW846 6010D - Metals (ICP) - Total	l Red	coverable							
Analyte Re	esult	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
Calcium 260	0000		500		ug/L		03/20/23 09:08	03/21/23 21:52	
Iron 1	1740		100		ug/L		03/20/23 09:08	03/21/23 21:52	
Magnesium 37	7600		500		ug/L		03/20/23 09:08	03/21/23 21:52	
Molybdenum	21.2		10.0		ug/L		03/20/23 09:08	03/21/23 21:52	
Potassium 13	3800		1000		ug/L		03/20/23 09:08	03/21/23 21:52	
Selenium	20.0	U	20.0		ug/L		03/20/23 09:08	03/21/23 21:52	
Sodium 69	9400		2000		ug/L		03/20/23 09:08	03/21/23 21:52	
Method: SW846 6020B - Metals (ICP/MS) - T	[otal	Recoverable	1						
•		Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
Aluminum	100	U	100		ug/L		03/20/23 09:08	03/21/23 21:17	
Antimony	5.00	U	5.00		ug/L		03/20/23 09:08	03/21/23 21:17	
Arsenic	85.8		3.00		ug/L		03/20/23 09:08	03/21/23 21:17	
Barium	45.4		5.00		ug/L		03/20/23 09:08	03/21/23 21:17	
Beryllium 0	.500	U	0.500		ug/L		03/20/23 09:08	03/21/23 21:17	
Cadmium 0	.500	U	0.500		ug/L		03/20/23 09:08	03/21/23 21:17	
Chromium	5.00	U	5.00		ug/L		03/20/23 09:08	03/21/23 21:17	
Cobalt 0	.500	U	0.500		ug/L		03/20/23 09:08	03/21/23 21:17	
Copper	5.00	U	5.00		ug/L		03/20/23 09:08	03/21/23 21:17	
Lead	2.50	U	2.50		ug/L		03/20/23 09:08	03/21/23 21:17	
Nickel	5.00	U	5.00		ug/L		03/20/23 09:08	03/21/23 21:17	
Silver	1.00	U	1.00		ug/L		03/20/23 09:08	03/21/23 21:17	
Thallium	1.00	U	1.00		ug/L		03/20/23 09:08	03/21/23 21:17	
Zinc	27.9		20.0		ug/L		03/20/23 09:08	03/21/23 21:17	
Manganese	84.4		5.00		ug/L		03/20/23 09:08	03/21/23 21:17	
Method: SW846 7470A - Mercury (CVAA)									

0.200

ug/L

0.200 U

Client: South Carolina Public Service Authority Project/Site: 125915/JM02.09.G01.1/36500

Job ID: 680-232196-1

Lab Sample ID: 680-232196-37 Client Sample ID: AF56429 Date Collected: 03/08/23 12:12

Matrix: Water

Date Received: 03/17/23 10:30

Mercury

Method: SW846 6010D - N	letals (ICP)								
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
Lithium	50.0	U	50.0		ug/L		03/23/23 14:15	03/24/23 18:43	
Method: SW846 6010D - N	letals (ICP) - Total Re	coverable							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
Calcium	73100		500		ug/L		03/20/23 09:08	03/21/23 22:01	
Iron	94400		100		ug/L		03/20/23 09:08	03/21/23 22:01	
Magnesium	26000		500		ug/L		03/20/23 09:08	03/21/23 22:01	
Molybdenum	10.0	U	10.0		ug/L		03/20/23 09:08	03/21/23 22:01	
Potassium	1000	U	1000		ug/L		03/20/23 09:08	03/21/23 22:01	
Selenium	20.0	U	20.0		ug/L		03/20/23 09:08	03/21/23 22:01	
Sodium	82200		2000		ug/L		03/20/23 09:08	03/21/23 22:01	
Mathada CW04C C020D - N	Intele (ICD/MC) Total	Dagawanahla							
Method: SW846 6020B - N _{Analyte}	, ,	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
Aluminum	2410	<u> </u>	100		ug/L		03/20/23 09:08	03/21/23 21:28	
Antimony	5.00	U	5.00		ug/L		03/20/23 09:08	03/21/23 21:28	
Arsenic	3.00	U	3.00		ug/L		03/20/23 09:08	03/21/23 21:28	
Barium	258		5.00		ug/L		03/20/23 09:08	03/21/23 21:28	
Beryllium	0.985		0.500		ug/L		03/20/23 09:08	03/21/23 21:28	
Cadmium	0.500	U	0.500		ug/L		03/20/23 09:08	03/21/23 21:28	
Chromium	5.00	U	5.00		ug/L		03/20/23 09:08	03/21/23 21:28	
Cobalt	18.6		0.500		ug/L		03/20/23 09:08	03/21/23 21:28	
Copper	5.00	U	5.00		ug/L		03/20/23 09:08	03/21/23 21:28	
Lead	3.19		2.50		ug/L		03/20/23 09:08	03/21/23 21:28	
Nickel	5.00	U	5.00		ug/L		03/20/23 09:08	03/21/23 21:28	
Silver	1.00	U	1.00		ug/L		03/20/23 09:08	03/21/23 21:28	
Thallium	1.00	U	1.00		ug/L		03/20/23 09:08	03/21/23 21:28	
Zinc	20.0	U	20.0		ug/L		03/20/23 09:08	03/21/23 21:28	
Manganese	1540		5.00		ug/L		03/20/23 09:08	03/21/23 21:28	
Method: SW846 7470A - M	,					_			
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa

0.200

ug/L

0.200 U

Client: South Carolina Public Service Authority Project/Site: 125915/JM02.09.G01.1/36500

Job ID: 680-232196-1

Client Sample ID: AF56421

Lab Sample ID: 680-232196-38

Matrix: Water

Date Collected: 03/01/23 14:41 Date Received: 03/17/23 10:30

Mercury

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil F
Lithium	50.0	U	50.0		ug/L		03/23/23 14:15	03/24/23 18:48	
Method: SW846 6010D - Metals (ICP) - Total Re	coverable							
Analyte	· · ·	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil F
Calcium	114000		500		ug/L		03/20/23 09:08	03/21/23 22:05	
Iron	4430		100		ug/L		03/20/23 09:08	03/21/23 22:05	
Magnesium	16900		500		ug/L		03/20/23 09:08	03/21/23 22:05	
Molybdenum	10.0	U	10.0		ug/L		03/20/23 09:08	03/21/23 22:05	
Potassium	10500		1000		ug/L		03/20/23 09:08	03/21/23 22:05	
Selenium	20.0	U	20.0		ug/L		03/20/23 09:08	03/21/23 22:05	
Sodium	21200		2000		ug/L		03/20/23 09:08	03/21/23 22:05	
Method: SW846 6020B - Metals (•	Recoverable Qualifier	RL	MDL	1114		D	A 1	Dil I
Analyte Aluminum	Result	Qualifier		WIDL	ug/L	D	Prepared 03/20/23 09:08	Analyzed 03/21/23 21:32	
Antimony	5.00		5.00		ug/L		03/20/23 09:08	03/21/23 21:32	
Arsenic	3.00		3.00		ug/L		03/20/23 09:08	03/21/23 21:32	
	37.8		5.00		ug/L		03/20/23 09:08	03/21/23 21:32	
					ug/L				
Barium Beryllium		П			ua/l		03/20/23 09:08		
Beryllium	0.500		0.500		ug/L		03/20/23 09:08	03/21/23 21:32	
Beryllium Cadmium	0.500 0.500	U	0.500 0.500		ug/L		03/20/23 09:08	03/21/23 21:32 03/21/23 21:32	
Beryllium Cadmium Chromium	0.500 0.500 5.00	U	0.500 0.500 5.00		ug/L ug/L		03/20/23 09:08 03/20/23 09:08	03/21/23 21:32 03/21/23 21:32 03/21/23 21:32	
Beryllium Cadmium Chromium Cobalt	0.500 0.500 5.00 0.500	U U U	0.500 0.500 5.00 0.500		ug/L ug/L ug/L		03/20/23 09:08 03/20/23 09:08 03/20/23 09:08	03/21/23 21:32 03/21/23 21:32 03/21/23 21:32 03/21/23 21:32	
Beryllium Cadmium Chromium Cobalt Copper	0.500 0.500 5.00 0.500 5.00	บ บ บ	0.500 0.500 5.00 0.500 5.00		ug/L ug/L ug/L ug/L		03/20/23 09:08 03/20/23 09:08 03/20/23 09:08 03/20/23 09:08	03/21/23 21:32 03/21/23 21:32 03/21/23 21:32 03/21/23 21:32 03/21/23 21:32	
Beryllium Cadmium Chromium Cobalt Copper Lead	0.500 0.500 5.00 0.500	U U U U	0.500 0.500 5.00 0.500		ug/L ug/L ug/L ug/L ug/L		03/20/23 09:08 03/20/23 09:08 03/20/23 09:08 03/20/23 09:08 03/20/23 09:08	03/21/23 21:32 03/21/23 21:32 03/21/23 21:32 03/21/23 21:32 03/21/23 21:32 03/21/23 21:32	
Beryllium Cadmium Chromium Cobalt Copper Lead	0.500 0.500 5.00 0.500 5.00 2.50	U U U U U	0.500 0.500 5.00 0.500 5.00 2.50		ug/L ug/L ug/L ug/L ug/L ug/L		03/20/23 09:08 03/20/23 09:08 03/20/23 09:08 03/20/23 09:08	03/21/23 21:32 03/21/23 21:32 03/21/23 21:32 03/21/23 21:32 03/21/23 21:32	
Beryllium Cadmium Chromium Cobalt Copper Lead Jickel Silver	0.500 0.500 5.00 0.500 5.00 2.50 5.00	U U U U U U	0.500 0.500 5.00 0.500 5.00 2.50 5.00 1.00		ug/L ug/L ug/L ug/L ug/L ug/L		03/20/23 09:08 03/20/23 09:08 03/20/23 09:08 03/20/23 09:08 03/20/23 09:08 03/20/23 09:08	03/21/23 21:32 03/21/23 21:32 03/21/23 21:32 03/21/23 21:32 03/21/23 21:32 03/21/23 21:32 03/21/23 21:32	
Beryllium Cadmium Chromium	0.500 0.500 5.00 0.500 5.00 2.50 5.00	U U U U U U	0.500 0.500 5.00 0.500 5.00 2.50 5.00		ug/L ug/L ug/L ug/L ug/L ug/L ug/L		03/20/23 09:08 03/20/23 09:08 03/20/23 09:08 03/20/23 09:08 03/20/23 09:08 03/20/23 09:08 03/20/23 09:08	03/21/23 21:32 03/21/23 21:32 03/21/23 21:32 03/21/23 21:32 03/21/23 21:32 03/21/23 21:32 03/21/23 21:32 03/21/23 21:32	
Beryllium Cadmium Chromium Cobalt Copper Lead Jickel Bilver Thallium	0.500 0.500 5.00 0.500 5.00 2.50 5.00 1.00	U U U U U U	0.500 0.500 5.00 0.500 5.00 2.50 5.00 1.00		ug/L ug/L ug/L ug/L ug/L ug/L		03/20/23 09:08 03/20/23 09:08 03/20/23 09:08 03/20/23 09:08 03/20/23 09:08 03/20/23 09:08 03/20/23 09:08 03/20/23 09:08	03/21/23 21:32 03/21/23 21:32 03/21/23 21:32 03/21/23 21:32 03/21/23 21:32 03/21/23 21:32 03/21/23 21:32 03/21/23 21:32 03/21/23 21:32	

0.200

ug/L

0.200 U F1

03/20/23 12:45

03/21/23 12:26

Client: South Carolina Public Service Authority Project/Site: 125915/JM02.09.G01.1/36500

Job ID: 680-232196-1

Lab Sample ID: 680-232196-39

Matrix: Water

Client Sample ID: AF56428 Date Collected: 03/01/23 13:37

Date Received: 03/17/23 10:30

Method:	SW846	6010D -	Motals ((ICP)

mothical director cores metale	(,								
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Lithium	50.0	U	50.0		ug/L		03/23/23 14:15	03/24/23 18:52	1

Analyte	Result	Qualifier RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Calcium	199000	500		ug/L		03/20/23 09:01	03/21/23 20:34	1
Iron	714	100		ug/L		03/20/23 09:01	03/21/23 20:34	1
Magnesium	15200	500		ug/L		03/20/23 09:01	03/21/23 20:34	1
Molybdenum	10.0	U 10.0		ug/L		03/20/23 09:01	03/21/23 20:34	1
Potassium	6130	1000		ug/L		03/20/23 09:01	03/21/23 20:34	1
Selenium	20.0	U 20.0		ug/L		03/20/23 09:01	03/21/23 20:34	1
Sodium	38200	2000		ug/L		03/20/23 09:01	03/21/23 20:34	1

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Aluminum	100	U	100		ug/L		03/20/23 09:01	03/21/23 17:45	1
Antimony	5.00	U	5.00		ug/L		03/20/23 09:01	03/21/23 17:45	1
Arsenic	3.00	U	3.00		ug/L		03/20/23 09:01	03/22/23 09:19	1
Barium	8.73		5.00		ug/L		03/20/23 09:01	03/21/23 17:45	1
Beryllium	0.500	U	0.500		ug/L		03/20/23 09:01	03/22/23 09:19	1
Cadmium	0.500	U	0.500		ug/L		03/20/23 09:01	03/21/23 17:45	1
Chromium	5.00	U	5.00		ug/L		03/20/23 09:01	03/21/23 17:45	1
Cobalt	0.500	U	0.500		ug/L		03/20/23 09:01	03/21/23 17:45	1
Copper	5.00	U	5.00		ug/L		03/20/23 09:01	03/21/23 17:45	1
Lead	2.50	U	2.50		ug/L		03/20/23 09:01	03/22/23 09:19	1
Nickel	5.00	U	5.00		ug/L		03/20/23 09:01	03/21/23 17:45	1
Silver	1.00	U	1.00		ug/L		03/20/23 09:01	03/21/23 17:45	1
Thallium	1.00	U	1.00		ug/L		03/20/23 09:01	03/22/23 09:19	1
Zinc	20.0	U	20.0		ug/L		03/20/23 09:01	03/21/23 17:45	1
Manganese	59.2		5.00		ug/L		03/20/23 09:01	03/21/23 17:45	1

Method: SW846 7470A - Mercury (CVAA))								
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Mercury	0.200	U	0.200		ug/L		03/20/23 13:40	03/21/23 11:39	1

2

4

6

8

10

11

13

Client: South Carolina Public Service Authority Project/Site: 125915/JM02.09.G01.1/36500

Job ID: 680-232196-1

Lab Sample ID: 680-232196-40

Matrix: Water

Date Collected: 03/01/23 10:22 Date Received: 03/17/23 10:30

Client Sample ID: AF56439

Method: SW846 6010D - Metals (ICP)									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Lithium	50.0	U	50.0		ug/L		03/23/23 14:15	03/24/23 19:11	1

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Calcium	138000		500		ug/L		03/20/23 09:08	03/21/23 22:08	1
Iron	9540		100		ug/L		03/20/23 09:08	03/21/23 22:08	1
Magnesium	14600		500		ug/L		03/20/23 09:08	03/21/23 22:08	1
Molybdenum	10.0	U	10.0		ug/L		03/20/23 09:08	03/21/23 22:08	1
Potassium	7790		1000		ug/L		03/20/23 09:08	03/21/23 22:08	1
Selenium	20.0	U	20.0		ug/L		03/20/23 09:08	03/21/23 22:08	1
Sodium	38300		2000		ug/L		03/20/23 09:08	03/21/23 22:08	1

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Aluminum	1000		100		ug/L		03/20/23 09:08	03/21/23 21:36	1
Antimony	5.00	U	5.00		ug/L		03/20/23 09:08	03/21/23 21:36	1
Arsenic	42.3		3.00		ug/L		03/20/23 09:08	03/21/23 21:36	1
Barium	104		5.00		ug/L		03/20/23 09:08	03/21/23 21:36	1
Beryllium	0.500	U	0.500		ug/L		03/20/23 09:08	03/21/23 21:36	1
Cadmium	0.500	U	0.500		ug/L		03/20/23 09:08	03/21/23 21:36	1
Chromium	5.00	U	5.00		ug/L		03/20/23 09:08	03/21/23 21:36	1
Cobalt	6.88		0.500		ug/L		03/20/23 09:08	03/21/23 21:36	1
Copper	5.00	U	5.00		ug/L		03/20/23 09:08	03/21/23 21:36	1
Lead	2.50	U	2.50		ug/L		03/20/23 09:08	03/21/23 21:36	1
Nickel	5.00	U	5.00		ug/L		03/20/23 09:08	03/21/23 21:36	1
Silver	1.00	U	1.00		ug/L		03/20/23 09:08	03/21/23 21:36	1
Thallium	1.00	U	1.00		ug/L		03/20/23 09:08	03/21/23 21:36	1
Zinc	67.1		20.0		ug/L		03/20/23 09:08	03/21/23 21:36	1
Manganese	167		5.00		ug/L		03/20/23 09:08	03/21/23 21:36	1

Method: SW846 7470A - Mercury (CVAA))								
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Mercury	0.200	U	0.200		ug/L		03/20/23 13:40	03/21/23 11:15	1

Client: South Carolina Public Service Authority Project/Site: 125915/JM02.09.G01.1/36500

Method: SW846 7470A - Mercury (CVAA)

Result Qualifier

0.200 U

Analyte

Mercury

Job ID: 680-232196-1

Client Sample ID: AF56441

Lab Sample ID: 680-232196-41

Matrix: Water

Date Collected: 03/01/23 11:45 Date Received: 03/17/23 10:30

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
Lithium	121		50.0		ug/L		03/23/23 14:17	03/24/23 19:24	
Method: SW846 6010D - N	Metals (ICP) - Total Re	coverable							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
Calcium	191000		500		ug/L		03/20/23 09:08	03/21/23 22:11	
Iron	5280		100		ug/L		03/20/23 09:08	03/21/23 22:11	
Magnesium	10900		500		ug/L		03/20/23 09:08	03/21/23 22:11	
Molybdenum	10.0	U	10.0		ug/L		03/20/23 09:08	03/21/23 22:11	
Potassium	5500		1000		ug/L		03/20/23 09:08	03/21/23 22:11	
Selenium	20.0	U	20.0		ug/L		03/20/23 09:08	03/21/23 22:11	
Sodium	24400		2000		ug/L		03/20/23 09:08	03/21/23 22:11	
Method: SW846 6020B - N	Metals (ICP/MS) - Total	l Recoverable	9						
Analyte	· · · · · · · · · · · · · · · · · · ·	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
Aluminum	100	U	100		ug/L		03/20/23 09:08	03/21/23 21:40	
Antimony	5.00	U	5.00		ug/L		03/20/23 09:08	03/21/23 21:40	
Arsenic	182		3.00		ug/L		03/20/23 09:08	03/21/23 21:40	
Barium	78.6		5.00		ug/L		03/20/23 09:08	03/21/23 21:40	
Beryllium	0.500	U	0.500		ug/L		03/20/23 09:08	03/21/23 21:40	
Cadmium	0.500	U	0.500		ug/L		03/20/23 09:08	03/21/23 21:40	
Chromium	5.00	U	5.00		ug/L		03/20/23 09:08	03/21/23 21:40	
Cobalt	0.500	U	0.500		ug/L		03/20/23 09:08	03/21/23 21:40	
Copper	5.00	U	5.00		ug/L		03/20/23 09:08	03/21/23 21:40	
Lead	2.50	U	2.50		ug/L		03/20/23 09:08	03/21/23 21:40	
Nickel	5.00	U	5.00		ug/L		03/20/23 09:08	03/21/23 21:40	
Silver	1.00	U	1.00		ug/L		03/20/23 09:08	03/21/23 21:40	
Olivei		II	1.00		ug/L		03/20/23 09:08	03/21/23 21:40	
	1.00	J							
Thallium Zinc	1.00 20.0		20.0		ug/L		03/20/23 09:08	03/21/23 21:40	

RL

0.200

MDL Unit

ug/L

Prepared

03/20/23 13:40

Dil Fac

Analyzed

03/21/23 11:02

Client: South Carolina Public Service Authority Project/Site: 125915/JM02.09.G01.1/36500

Job ID: 680-232196-1

Lab Sample ID: 680-232196-42

Matrix: Water

Client Sample ID: AF56414 Date Collected: 03/02/23 12:46

Mercury

Method: SW846 6010D - N	fletals (ICP)								
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
Lithium	50.0	U	50.0		ug/L		03/23/23 14:17	03/24/23 19:34	
Method: SW846 6010D - N	letals (ICP) - Total Re	coverable							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
Calcium	495000		500		ug/L		03/20/23 13:39	03/21/23 10:48	
Iron	27800		100		ug/L		03/20/23 13:39	03/21/23 10:48	
Magnesium	49100		500		ug/L		03/20/23 13:39	03/21/23 10:48	
Molybdenum	10.0	U	10.0		ug/L		03/20/23 13:39	03/21/23 10:48	
Potassium	6740		1000		ug/L		03/20/23 13:39	03/21/23 10:48	
Selenium	20.0	U	20.0		ug/L		03/20/23 13:39	03/21/23 10:48	
Sodium	101000		2000		ug/L		03/20/23 13:39	03/21/23 10:48	
Method: SW846 6020B - N	Motals (ICD/MS) - Total	Pecoverable							
Analyte		Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
Aluminum	100	U	100		ug/L		03/20/23 13:39	03/21/23 22:04	
Antimony	5.00	U	5.00		ug/L		03/20/23 13:39	03/21/23 22:04	
Arsenic	3.00	U	3.00		ug/L		03/20/23 13:39	03/21/23 22:04	
Barium	413		5.00		ug/L		03/20/23 13:39	03/21/23 22:04	
Beryllium	0.500	U	0.500		ug/L		03/20/23 13:39	03/21/23 22:04	
Cadmium	0.500	U	0.500		ug/L		03/20/23 13:39	03/21/23 22:04	
Chromium	5.00	U	5.00		ug/L		03/20/23 13:39	03/21/23 22:04	
Cobalt	0.500	U	0.500		ug/L		03/20/23 13:39	03/21/23 22:04	
Copper	5.00	U	5.00		ug/L		03/20/23 13:39	03/21/23 22:04	
Lead	2.50	U	2.50		ug/L		03/20/23 13:39	03/21/23 22:04	
Nickel	5.00	U	5.00		ug/L		03/20/23 13:39	03/21/23 22:04	
Silver	1.00	U	1.00		ug/L		03/20/23 13:39	03/21/23 22:04	
Thallium	1.00	U	1.00		ug/L		03/20/23 13:39	03/21/23 22:04	
Zinc	20.0	U	20.0		ug/L		03/20/23 13:39	03/21/23 22:04	
Manganese	626		5.00		ug/L		03/20/23 13:39	03/21/23 22:04	
Method: SW846 7470A - M	lercury (CVAA)								
Analyte	,	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa

0.200

ug/L

0.200 U

03/20/23 15:26

03/21/23 14:17

Client: South Carolina Public Service Authority Project/Site: 125915/JM02.09.G01.1/36500

Project/3ite: 123913/3ivi02.09.G01.1/3030

Lab Sample ID: 680-232196-43

Matrix: Water

Job ID: 680-232196-1

Date Collected: 03/02/23 10:56 Date Received: 03/17/23 10:30

Mercury

Client Sample ID: AF56423

Method: SW846 6010D - Me	etals (ICP)								
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Lithium	104		50.0		ug/L		03/23/23 14:17	03/24/23 19:38	
Method: SW846 6010D - Me	etals (ICP) - Total Re	coverable							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
Calcium	429000		500		ug/L		03/20/23 13:39	03/21/23 10:58	
Iron	16600		100		ug/L		03/20/23 13:39	03/21/23 10:58	
Magnesium	52600		500		ug/L		03/20/23 13:39	03/21/23 10:58	
Molybdenum	10.0	U	10.0		ug/L		03/20/23 13:39	03/21/23 10:58	
Potassium	13400		1000		ug/L		03/20/23 13:39	03/21/23 10:58	•
Selenium	20.0	U	20.0		ug/L		03/20/23 13:39	03/21/23 10:58	•
Sodium	92700		2000		ug/L		03/20/23 13:39	03/21/23 10:58	
	tala (ICD/MC) Tatal	Daaassanahla							
Method: SW846 6020B - Me Analyte	• •	Qualifier	; RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
Aluminum	100	U	100		ug/L		03/20/23 13:39	03/21/23 22:15	
Antimony	5.00	U	5.00		ug/L		03/20/23 13:39	03/21/23 22:15	
Arsenic	363		3.00		ug/L		03/20/23 13:39	03/21/23 22:15	
Barium	262		5.00		ug/L		03/20/23 13:39	03/21/23 22:15	,
Beryllium	0.500	U	0.500		ug/L		03/20/23 13:39	03/21/23 22:15	
Cadmium	0.500	U	0.500		ug/L		03/20/23 13:39	03/21/23 22:15	
Chromium	5.00		5.00		ug/L		03/20/23 13:39	03/21/23 22:15	,
Cobalt	0.500	U	0.500		ug/L		03/20/23 13:39	03/21/23 22:15	
Copper	5.00	U	5.00		ug/L		03/20/23 13:39	03/21/23 22:15	
Lead	2.50		2.50		ug/L		03/20/23 13:39	03/21/23 22:15	
Nickel	5.00	U	5.00		ug/L		03/20/23 13:39	03/21/23 22:15	
Silver	1.00	U	1.00		ug/L		03/20/23 13:39	03/21/23 22:15	
Thallium	1.00		1.00		ug/L		03/20/23 13:39	03/21/23 22:15	
Zinc	20.0	U	20.0		ug/L		03/20/23 13:39	03/21/23 22:15	
Manganese	887		5.00		ug/L		03/20/23 13:39	03/21/23 22:15	
	•				3				
Method: SW846 7470A - Me	ercury (CVAA)								

0.200

ug/L

03/20/23 15:26

03/21/23 12:02

0.200 U

Client: South Carolina Public Service Authority Project/Site: 125915/JM02.09.G01.1/36500

Job ID: 680-232196-1

Client Sample ID: AF56428

Lab Sample ID: 680-232196-44

Matrix: Water

Date Collected: 03/02/23 00:00 Date Received: 03/17/23 10:30

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Lithium	50.0	U	50.0		ug/L		03/23/23 14:17	03/24/23 20:11	1
Method: SW846 6010D - Met	als (ICP) - Total Re	coverable							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Calcium	102000		500		ug/L		03/20/23 13:39	03/21/23 11:01	1
Iron	89800		100		ug/L		03/20/23 13:39	03/21/23 11:01	1
Magnesium	23400		500		ug/L		03/20/23 13:39	03/21/23 11:01	1
Molybdenum	10.0	U	10.0		ug/L		03/20/23 13:39	03/21/23 11:01	1
Potassium	10800		1000		ug/L		03/20/23 13:39	03/21/23 11:01	1
Selenium	20.0	U	20.0		ug/L		03/20/23 13:39	03/21/23 11:01	1
Sodium	37100		2000		ug/L		03/20/23 13:39	03/21/23 11:01	1

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Aluminum	100	U	100		ug/L		03/20/23 13:39	03/21/23 22:19	1
Antimony	5.00	U	5.00		ug/L		03/20/23 13:39	03/21/23 22:19	1
Arsenic	88.3		3.00		ug/L		03/20/23 13:39	03/21/23 22:19	1
Barium	123		5.00		ug/L		03/20/23 13:39	03/21/23 22:19	1
Beryllium	0.500	U	0.500		ug/L		03/20/23 13:39	03/21/23 22:19	1
Cadmium	0.500	U	0.500		ug/L		03/20/23 13:39	03/21/23 22:19	1
Chromium	5.00	U	5.00		ug/L		03/20/23 13:39	03/21/23 22:19	1
Cobalt	0.630		0.500		ug/L		03/20/23 13:39	03/21/23 22:19	1
Copper	5.00	U	5.00		ug/L		03/20/23 13:39	03/21/23 22:19	1
Lead	2.50	U	2.50		ug/L		03/20/23 13:39	03/21/23 22:19	1
Nickel	5.00	U	5.00		ug/L		03/20/23 13:39	03/21/23 22:19	1
Silver	1.00	U	1.00		ug/L		03/20/23 13:39	03/21/23 22:19	1
Thallium	1.00	U	1.00		ug/L		03/20/23 13:39	03/21/23 22:19	1
Zinc	20.0	U	20.0		ug/L		03/20/23 13:39	03/21/23 22:19	1
Manganese	362		5.00		ug/L		03/20/23 13:39	03/21/23 22:19	1

Method: SW846 7470A - Mercury (CVAA))								
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Mercury	0.200	U	0.200		ug/L		03/20/23 15:26	03/21/23 14:14	1

Prep Batch: 604813

Prep Batch: 604813

Client Sample ID: AF56332

Client Sample ID: Method Blank

Client Sample ID: Lab Control Sample

Prep Type: Total/NA

Prep Batch: 604813

Prep Type: Total/NA

Prep Batch: 604815

Prep Type: Total/NA

Prep Batch: 604815

Prep Type: Total/NA

Client Sample ID: AF56412

Client Sample ID: AF56412

Method:	6010D	- Metals	(ICP)
---------	-------	----------	-------

Lab Sample ID: MB 160-604813/1-A Client Sample ID: Method Blank Prep Type: Total/NA

Matrix: Water

Analysis Batch: 605060

мв мв

Analyte Result Qualifier RLMDL Unit D Prepared Analyzed Dil Fac Lithium 50.0 U 50.0 ug/L 03/23/23 14:13 03/24/23 13:41

Lab Sample ID: LCS 160-604813/2-A Client Sample ID: Lab Control Sample Matrix: Water Prep Type: Total/NA

Analysis Batch: 605060

Spike LCS LCS %Rec Analyte Added Result Qualifier Unit D %Rec Limits Lithium 100 103.0 ug/L 103 80 - 120

Lab Sample ID: 680-232196-3 MS Client Sample ID: AF56332 Prep Type: Total/NA

Matrix: Water

Analysis Batch: 605060

Prep Batch: 604813 Spike Sample Sample MS MS %Rec

Result Qualifier Added Result Qualifier Unit D %Rec Limits Lithium 50.0 Ū 100 101.3 ug/L 101 75 - 125

Lab Sample ID: 680-232196-3 MSD

Matrix: Water

Analysis Batch: 605060

Sample Sample Spike MSD MSD

%Rec RPD Result Qualifier Added Limit Analyte Result Qualifier Unit %Rec Limits RPD Lithium 50.0 U 100 106.2 106 75 - 125 20 ug/L

Lab Sample ID: MB 160-604815/1-A

Matrix: Water

Analysis Batch: 605060

MR MR

Analyte Result Qualifier RL MDL Unit Prepared Analyzed Dil Fac 50.0 Lithium 50.0 U ug/L 03/23/23 14:15 03/24/23 16:33

Lab Sample ID: LCS 160-604815/2-A

Matrix: Water

Analysis Batch: 605060

Spike

LCS LCS %Rec Added Analyte Result Qualifier Unit D %Rec Limits Lithium 100 103.2 ug/L 103 80 - 120

Lab Sample ID: 680-232196-22 MS

Matrix: Water

Analysis Batch: 605060

Prep Batch: 604815 MS MS Sample Sample Spike %Rec Result Qualifier Result Qualifier Added Analyte Unit D %Rec Limits Lithium 51.5 100 160.3 109 75 - 125 ug/L

Lab Sample ID: 680-232196-22 MSD

Matrix: Water Prep Type: Total/NA Analysis Batch: 605060 Prep Batch: 604815 MSD MSD RPD Spike %Rec Sample Sample Analyte Result Qualifier Added Result Qualifier Unit %Rec Limits **RPD** Limit Lithium 51.5 100 167.3 ug/L 116 75 - 125

Eurofins Savannah

Client Sample ID: Method Blank

Prep Type: Total/NA

Prep Batch: 604817

Prep Batch: 604817

Method: 6010D - Metals (ICP)

Lab Sample ID: MB 160-604817/1-A

Matrix: Water

Analysis Batch: 605060

Analyte R

MB	MR							
Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
50.0	U	50.0		ua/l		03/23/23 14:17	03/24/23 19:15	

Lab Sample ID: LCS 160-604817/2-A Client Sample ID: Lab Control Sample Prep Type: Total/NA

Matrix: Water

Lithium

Analysis Batch: 605060

Spike LCS LCS %Rec Analyte Added Result Qualifier Unit D %Rec Limits Lithium 100 104.4 ug/L 104 80 - 120

Lab Sample ID: 680-232196-43 MS Client Sample ID: AF56423 Matrix: Water Prep Type: Total/NA

Analysis Batch: 605060 Prep Batch: 604817 Spike MS MS %Rec Sample Sample

Result Qualifier Added Result Qualifier Unit %Rec Limits Lithium 104 100 75 - 125 215.8 ug/L 112

Lab Sample ID: 680-232196-43 MSD

Matrix: Water

Analysis Batch: 605060

Prep Batch: 604817 Spike MSD MSD %Rec RPD Sample Sample Result Qualifier Added Result Qualifier %Rec Limit Unit Limits

Analyte Lithium 104 100 206.4 103 75 - 125 20 ug/L

Lab Sample ID: MB 680-768608/1-A

Matrix: Water

Analysis Batch: 768929

Client Sample ID: Method Blank Prep Type: Total Recoverable

Client Sample ID: AF56423

Prep Type: Total/NA

Prep Batch: 768608

	MB	MB							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Calcium	500	U	500		ug/L		03/20/23 13:39	03/21/23 10:42	1
Iron	100	U	100		ug/L		03/20/23 13:39	03/21/23 10:42	1
Magnesium	500	U	500		ug/L		03/20/23 13:39	03/21/23 10:42	1
Molybdenum	10.0	U	10.0		ug/L		03/20/23 13:39	03/21/23 10:42	1
Potassium	1000	U	1000		ug/L		03/20/23 13:39	03/21/23 10:42	1
Selenium	20.0	U	20.0		ug/L		03/20/23 13:39	03/21/23 10:42	1
Sodium	2000	U	2000		ug/L		03/20/23 13:39	03/21/23 10:42	1

Lab Sample ID: LCS 680-768608/2-A Client Sample ID: Lab Control Sample Matrix: Water **Prep Type: Total Recoverable**

Analysis Batch: 768929 Prep Batch: 768608

-	Spike	LCS	LCS				%Rec	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Calcium	5000	5036		ug/L		101	80 - 120	
Iron	5000	5196		ug/L		104	80 - 120	
Magnesium	5010	5075		ug/L		101	80 - 120	
Molybdenum	100	101.3		ug/L		101	80 - 120	
Potassium	6970	7195		ug/L		103	80 - 120	
Selenium	100	91.14		ug/L		91	80 - 120	
Sodium	5050	4981		ug/L		99	80 - 120	

Client: South Carolina Public Service Authority Project/Site: 125915/JM02.09.G01.1/36500

Job ID: 680-232196-1

Method: 6010D - Metals (ICP) (Continued)

Lab Sample ID: 680-232196-42 MS

Matrix: Water

Analysis Batch: 768929

Client Sample ID: AF56414 Prep Type: Total Recoverable **Prep Batch: 768608**

Allalysis Batoli. 100323									i icp bat	7 00000
	Sample	Sample	Spike	MS	MS				%Rec	
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Calcium	495000		5000	465900	4	ug/L		-584	75 - 125	
Iron	27800		5000	30980	4	ug/L		65	75 - 125	
Magnesium	49100		5010	51080	4	ug/L		40	75 - 125	
Molybdenum	10.0	U	100	99.69		ug/L		100	75 ₋ 125	
Potassium	6740		6970	13970		ug/L		104	75 - 125	
Selenium	20.0	U	100	99.11		ug/L		99	75 - 125	
Sodium	101000		5050	99940	4	ug/L		-27	75 - 125	

Lab Sample ID: 680-232196-42 MSD

Matrix: Water

Analysis Batch: 768929

Client Sample ID: AF56414 Prep Type: Total Recoverable

Prep Batch: 768608

Alialysis Datell. 100323									i ieb i	Jaccii. 1	00000
	Sample	Sample	Spike	MSD	MSD				%Rec		RPD
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Calcium	495000		5000	479700	4	ug/L		-308	75 - 125	3	20
Iron	27800		5000	31600	4	ug/L		77	75 - 125	2	20
Magnesium	49100		5010	51880	4	ug/L		55	75 - 125	2	20
Molybdenum	10.0	U	100	99.88		ug/L		100	75 - 125	0	20
Potassium	6740		6970	14290		ug/L		108	75 - 125	2	20
Selenium	20.0	U	100	98.21		ug/L		98	75 - 125	1	20
Sodium	101000		5050	101500	4	ug/L		4	75 - 125	2	20

Lab Sample ID: MB 680-768857/1-A

Matrix: Water

Analysis Batch: 768929

Client Sample ID: Method Blank **Prep Type: Total Recoverable**

Prep Batch: 768857

	MB	MB							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Calcium	500	U	500		ug/L		03/20/23 09:08	03/21/23 22:14	1
Iron	100	U	100		ug/L		03/20/23 09:08	03/21/23 22:14	1
Magnesium	500	U	500		ug/L		03/20/23 09:08	03/21/23 22:14	1
Molybdenum	10.0	U	10.0		ug/L		03/20/23 09:08	03/21/23 22:14	1
Potassium	1000	U	1000		ug/L		03/20/23 09:08	03/21/23 22:14	1
Selenium	20.0	U	20.0		ug/L		03/20/23 09:08	03/21/23 22:14	1
Sodium	2000	U	2000		ug/L		03/20/23 09:08	03/21/23 22:14	1

Lab Sample ID: LCS 680-768857/2-A Client Sample ID: Lab Control Sample Matrix: Water **Prep Type: Total Recoverable**

Analysis Batch: 768929

Prep Batch: 768857

	Spike	LCS	LCS				%Rec	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Calcium	5000	5172		ug/L	_	103	80 - 120	
Iron	5000	5307		ug/L		106	80 - 120	
Magnesium	5010	5182		ug/L		103	80 - 120	
Molybdenum	100	101.0		ug/L		101	80 - 120	
Potassium	6970	7569		ug/L		109	80 - 120	
Selenium	100	95.33		ug/L		95	80 - 120	
Sodium	5050	5064		ug/L		100	80 - 120	

Eurofins Savannah

Client: South Carolina Public Service Authority
Project/Site: 125915/JM02.09.G01.1/36500

Job ID: 680-232196-1

Method: 6010D - Metals (ICP) (Continued)

Lab Sample ID: 680-232196-1 MS

Matrix: Water

Analysis Batch: 768929

Client Sample ID: AF56394

Prep Type: Total Recoverable

Prep Batch: 768857

Sample Sample Spike MS MS Analyte Result Qualifier Added Result Qualifier %Rec Limits Unit Calcium 10600 5000 15760 ug/L 104 75 - 125 Iron 3060 5000 8285 ug/L 105 75 - 125 5010 6188 Magnesium 1000 ug/L 104 75 - 125 Molybdenum 10.0 U 100 100.6 ug/L 101 75 - 125 1000 U 6970 7931 107 75 - 125 Potassium ug/L 100 94.05 Selenium 20.0 ug/L 94 75 - 125 10600 75 - 125 Sodium 5460 5050 ug/L 102

Lab Sample ID: 680-232196-1 MSD

Matrix: Water

Analysis Batch: 768929

Client Sample ID: AF56394

Prep Type: Total Recoverable

Prep Batch: 768857

Sample Sample Spike MSD MSD RPD Analyte Qualifier Added Result Qualifier RPD Limit Result Unit D %Rec Limits 10600 5000 15550 Calcium ug/L 100 75 - 125 20

Iron 3060 5000 8180 ug/L 102 75 - 125 20 1000 5010 102 20 Magnesium 6135 ug/L 75 - 12599.59 Molybdenum 10.0 100 ug/L 100 75 - 125 20 6970 7836 105 20 Potassium 1000 U ug/L 75 - 125 100 89.89 75 - 125 Selenium 20.0 ug/L 90 20 Sodium 5460 5050 10460 ug/L 99 75 - 125 20

Lab Sample ID: MB 680-768858/1-A

Matrix: Water

Analysis Batch: 768929

Client Sample ID: Method Blank
Prep Type: Total Recoverable
Prep Batch: 768858

MB MB Analyte Result Qualifier RL MDL Unit D Prepared Analyzed Dil Fac 500 03/20/23 09:08 03/21/23 20:43 Calcium 500 U ug/L Iron 100 U 100 ug/L 03/20/23 09:08 03/21/23 20:43 500 03/20/23 09:08 03/21/23 20:43 Magnesium 500 U ug/L Molybdenum 10.0 U 10.0 ug/L 03/20/23 09:08 03/21/23 20:43 Potassium 1000 U 1000 ug/L 03/20/23 09:08 03/21/23 20:43 Selenium 20.0 U 20.0 ug/L 03/20/23 09:08 03/21/23 20:43 Sodium 2000 U 2000 ug/L 03/20/23 09:08 03/21/23 20:43

Lab Sample ID: LCS 680-768858/2-A

Matrix: Water

Analysis Batch: 768929

Client Sample ID: Lab Control Sample
Prep Type: Total Recoverable
Prep Batch: 768858

	Spike	LCS	LCS				%Rec	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Calcium	5000	5290		ug/L		106	80 - 120	
Iron	5000	5413		ug/L		108	80 - 120	
Magnesium	5010	5283		ug/L		105	80 - 120	
Molybdenum	100	104.8		ug/L		105	80 - 120	
Potassium	6970	7535		ug/L		108	80 - 120	
Selenium	100	92.88		ug/L		93	80 - 120	
Sodium	5050	5173		ug/L		103	80 - 120	

Eurofins Savannah

2

5

7

9

10

12

13

14

rep Batch: 768858 c

Job ID: 680-232196-1

Client: South Carolina Public Service Authority Project/Site: 125915/JM02.09.G01.1/36500

Method: 6010D - Metals (ICP) (Continued)

Lab Sample ID: 680-232196-21 MS

Matrix: Water

Analysis Batch: 768929

Client Sample ID: AF56411 Prep Type: Total Recoverable

Prep Batch: 768858

	Sample	Sample	Spike	MS	MS				%Rec	
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Iron	100	U	5000	5184		ug/L		102	75 - 125	
Magnesium	40800		5010	46170	4	ug/L		108	75 - 125	
Molybdenum	10.0	U	100	98.61		ug/L		99	75 - 125	
Potassium	13000		6970	20750		ug/L		111	75 - 125	
Selenium	20.0	U F2 F1	100	40.57	F1	ug/L		41	75 - 125	
Sodium	121000		5050	126600	4	ug/L		109	75 - 125	

Lab Sample ID: 680-232196-21 MS

Matrix: Water

Analysis Batch: 769167

Client Sample ID: AF56411 **Prep Type: Total Recoverable**

Prep Batch: 768858

	Sample	Sample	Spike	MS	MS				%Rec
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits
Calcium	796000		5000	822800	4	ug/L		536	75 - 125

Sample Sample

796000

Result Qualifier

Lab Sample ID: 680-232196-21 MSD

Matrix: Water

Analysis Batch: 768929

Client Sample ID: AF56411 **Prep Type: Total Recoverable**

Prep Batch: 768858

Allalysis Dalcil. 100323									riepi	Daton. I	00030
	Sample	Sample	Spike	MSD	MSD				%Rec		RPD
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Iron	100	U	5000	5335		ug/L		105	75 - 125	3	20
Magnesium	40800		5010	46540	4	ug/L		115	75 - 125	1	20
Molybdenum	10.0	U	100	102.3		ug/L		102	75 - 125	4	20
Potassium	13000		6970	21390		ug/L		120	75 - 125	3	20
Selenium	20.0	U F2 F1	100	51.00	F2 F1	ug/L		51	75 - 125	23	20
Sodium	121000		5050	127400	4	ug/L		125	75 - 125	1	20

Spike

Added

5000

MSD MSD

827000 4

Result Qualifier

Unit

ug/L

D

%Rec

620

Lab Sample ID: 680-232196-21 MSD

Matrix: Water

Analyte

Calcium

Analysis Batch: 769167

Client Sample ID: AF56411 **Prep Type: Total Recoverable**

Prep Batch: 768858 RPD %Rec Limits RPD Limit

Lab Sample ID: MB 680-768859/1-A

Matrix: Water

Analysis Batch: 768929

Client Sample ID: Method Blank **Prep Type: Total Recoverable**

75 - 125

Prep Batch: 768859

	MB	MB							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Calcium	500	U	500		ug/L		03/20/23 09:01	03/21/23 19:06	1
Iron	100	U	100		ug/L		03/20/23 09:01	03/21/23 19:06	1
Magnesium	500	U	500		ug/L		03/20/23 09:01	03/21/23 19:06	1
Molybdenum	10.0	U	10.0		ug/L		03/20/23 09:01	03/21/23 19:06	1
Potassium	1000	U	1000		ug/L		03/20/23 09:01	03/21/23 19:06	1
Selenium	20.0	U	20.0		ug/L		03/20/23 09:01	03/21/23 19:06	1
Sodium	2000	U	2000		ug/L		03/20/23 09:01	03/21/23 19:06	1

Client: South Carolina Public Service Authority Project/Site: 125915/JM02.09.G01.1/36500

Job ID: 680-232196-1

Method: 6010D - Metals (ICP) (Continued)

Lab Sample ID: LCS 680-768859/2-A Client Sample ID: Lab Control Sample Matrix: Water Analysis Batch: 768929

Prep Type: Total Recoverable Prep Batch: 768859

Analysis batch. 700329							i ieb De	11011. 700033
	Spike	LCS	LCS				%Rec	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Calcium	5000	5013		ug/L		100	80 - 120	
Iron	5000	5131		ug/L		103	80 - 120	
Magnesium	5010	5094		ug/L		102	80 - 120	
Molybdenum	100	100.7		ug/L		101	80 - 120	
Potassium	6970	7245		ug/L		104	80 - 120	
Selenium	100	95.19		ug/L		95	80 - 120	
Sodium	5050	5031		ug/L		100	80 - 120	

Method: 6020B - Metals (ICP/MS)

Lab Sample ID: MB 680-768540/1-A Client Sample ID: Method Blank Matrix: Water Prep Type: Total Recoverable

Analysis Batch: 768945								Prep Batch:	768540
-	МВ	MB							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Aluminum	100	U	100		ug/L		03/20/23 09:01	03/21/23 15:59	1
Antimony	5.00	U	5.00		ug/L		03/20/23 09:01	03/21/23 15:59	1
Arsenic	3.00	U	3.00		ug/L		03/20/23 09:01	03/21/23 15:59	1
Barium	5.00	U	5.00		ug/L		03/20/23 09:01	03/21/23 15:59	1
Beryllium	0.500	U	0.500		ug/L		03/20/23 09:01	03/21/23 15:59	1
Cadmium	0.500	U	0.500		ug/L		03/20/23 09:01	03/21/23 15:59	1
Chromium	5.00	U	5.00		ug/L		03/20/23 09:01	03/21/23 15:59	1
Cobalt	0.500	U	0.500		ug/L		03/20/23 09:01	03/21/23 15:59	1
Copper	5.00	U	5.00		ug/L		03/20/23 09:01	03/21/23 15:59	1
Lead	2.50	U	2.50		ug/L		03/20/23 09:01	03/21/23 15:59	1
Nickel	5.00	U	5.00		ug/L		03/20/23 09:01	03/21/23 15:59	1
Silver	1.00	U	1.00		ug/L		03/20/23 09:01	03/21/23 15:59	1
Thallium	1.00	U	1.00		ug/L		03/20/23 09:01	03/21/23 15:59	1
Zinc	20.0	U	20.0		ug/L		03/20/23 09:01	03/21/23 15:59	1
Manganese	5.00	U	5.00		ug/L		03/20/23 09:01	03/21/23 15:59	1

Lab Sample ID: LCS 680-768540/2-A Client Sample ID: Lab Control Sample Matrix: Water **Prep Type: Total Recoverable**

Analysis Batch: 768945							Prep Batch: 76	68540
	Spike	LCS	LCS				%Rec	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Aluminum	5000	5338		ug/L		107	80 - 120	
Antimony	50.0	51.80		ug/L		104	80 - 120	
Arsenic	100	103.7		ug/L		104	80 - 120	
Barium	100	102.1		ug/L		102	80 - 120	
Beryllium	50.0	54.66		ug/L		109	80 - 120	
Cadmium	50.0	51.98		ug/L		104	80 - 120	
Chromium	100	108.2		ug/L		108	80 - 120	
Cobalt	50.0	53.54		ug/L		107	80 - 120	
Copper	100	116.1		ug/L		116	80 - 120	
Lead	505	507.5		ug/L		101	80 - 120	
Nickel	100	105.2		ug/L		105	80 - 120	
Silver	50.0	54.86		ug/L		110	80 - 120	
Thallium	50.0	49.92		ug/L		100	80 - 120	

Eurofins Savannah

Page 73 of 121

Prep Batch: 768540

Client: South Carolina Public Service Authority Project/Site: 125915/JM02.09.G01.1/36500

Method: 6020B - Metals (ICP/MS) (Continued)

Lab Sample ID: LCS 680-768540/2-A Client Sample ID: Lab Control Sample Matrix: Water **Prep Type: Total Recoverable** Analysis Batch: 768945 Prep Batch: 768540

	Spike	LCS	LCS				%Rec
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits
Zinc	100	110.6		ug/L		111	80 - 120
Manganese	400	429.2		ug/L		107	80 - 120

Lab Sample ID: MB 680-768544/1-A Client Sample ID: Method Blank Matrix: Water Prep Type: Total Recoverable

Analysis Batch: 768945 **Prep Batch: 768544**

	MB	MB							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Aluminum	100	U	100		ug/L		03/20/23 09:08	03/21/23 17:57	1
Antimony	5.00	U	5.00		ug/L		03/20/23 09:08	03/21/23 17:57	1
Arsenic	3.00	U	3.00		ug/L		03/20/23 09:08	03/21/23 17:57	1
Barium	5.00	U	5.00		ug/L		03/20/23 09:08	03/21/23 17:57	1
Cadmium	0.500	U	0.500		ug/L		03/20/23 09:08	03/21/23 17:57	1
Chromium	5.00	U	5.00		ug/L		03/20/23 09:08	03/21/23 17:57	1
Cobalt	0.500	U	0.500		ug/L		03/20/23 09:08	03/21/23 17:57	1
Copper	5.00	U	5.00		ug/L		03/20/23 09:08	03/21/23 17:57	1
Lead	2.50	U	2.50		ug/L		03/20/23 09:08	03/21/23 17:57	1
Nickel	5.00	U	5.00		ug/L		03/20/23 09:08	03/21/23 17:57	1
Silver	1.00	U	1.00		ug/L		03/20/23 09:08	03/21/23 17:57	1
Thallium	1.00	U	1.00		ug/L		03/20/23 09:08	03/21/23 17:57	1
Zinc	20.0	U	20.0		ug/L		03/20/23 09:08	03/21/23 17:57	1
Manganese	5.00	U	5.00		ug/L		03/20/23 09:08	03/21/23 17:57	1

Lab Sample ID: MB 680-768544/1-A Client Sample ID: Method Blank Matrix: Water **Prep Type: Total Recoverable** Analysis Batch: 769014 **Prep Batch: 768544**

MB MB Analyte Result Qualifier RL MDL Unit Analyzed Dil Fac Prepared Beryllium 0.500 U 0.500 ug/L 03/20/23 09:08 03/22/23 09:23

Lab Sample ID: LCS 680-768544/2-A Client Sample ID: Lab Control Sample Matrix: Water **Prep Type: Total Recoverable**

						Prep Batch: 768	3544
Spike	LCS	LCS				%Rec	
Added	Result	Qualifier	Unit	D	%Rec	Limits	
5000	4884		ug/L		98	80 - 120	
50.0	49.01		ug/L		98	80 - 120	
100	95.38		ug/L		95	80 - 120	
100	95.86		ug/L		96	80 - 120	
50.0	50.36		ug/L		101	80 - 120	
100	100.9		ug/L		101	80 - 120	
50.0	50.80		ug/L		102	80 - 120	
100	105.9		ug/L		106	80 - 120	
505	477.8		ug/L		95	80 - 120	
100	92.93		ug/L		93	80 - 120	
50.0	51.72		ug/L		103	80 - 120	
50.0	47.32		ug/L		95	80 - 120	
100	105.9		ug/L		106	80 - 120	
400	409.6		ug/L		102	80 - 120	
	Added 5000 50.0 100 100 50.0 100 50.0 100 50.0 100 505 100 50.0 100 50.0	Added Result 5000 4884 50.0 49.01 100 95.38 100 95.86 50.0 50.36 100 100.9 50.0 50.80 100 105.9 505 477.8 100 92.93 50.0 51.72 50.0 47.32 100 105.9	Added Result Qualifier 5000 4884 50.0 49.01 100 95.38 100 95.86 50.0 50.36 100 100.9 50.0 50.80 100 105.9 505 477.8 100 92.93 50.0 51.72 50.0 47.32 100 105.9	Added Result Qualifier Unit 5000 4884 ug/L 50.0 49.01 ug/L 100 95.38 ug/L 100 95.86 ug/L 50.0 50.36 ug/L 100 100.9 ug/L 50.0 50.80 ug/L 100 105.9 ug/L 505 477.8 ug/L 50.0 51.72 ug/L 50.0 47.32 ug/L 100 105.9 ug/L	Added Result Qualifier Unit D 5000 4884 ug/L ug/L 50.0 49.01 ug/L ug/L 100 95.38 ug/L ug/L 50.0 50.36 ug/L ug/L 100 100.9 ug/L ug/L 50.0 50.80 ug/L ug/L 505 477.8 ug/L ug/L 50.0 51.72 ug/L ug/L 50.0 47.32 ug/L ug/L 100 105.9 ug/L ug/L	Added Result Qualifier Unit D %Rec 5000 4884 ug/L 98 50.0 49.01 ug/L 98 100 95.38 ug/L 95 100 95.86 ug/L 96 50.0 50.36 ug/L 101 100 100.9 ug/L 101 50.0 50.80 ug/L 102 100 105.9 ug/L 95 100 92.93 ug/L 93 50.0 51.72 ug/L 103 50.0 47.32 ug/L 95 100 105.9 ug/L 103	Spike LCS LCS WRec Added Result Qualifier Unit D %Rec Limits 5000 4884 ug/L 98 80 - 120 50.0 49.01 ug/L 98 80 - 120 100 95.38 ug/L 95 80 - 120 100 95.86 ug/L 96 80 - 120 50.0 50.36 ug/L 101 80 - 120 100 100.9 ug/L 101 80 - 120 50.0 50.80 ug/L 102 80 - 120 100 105.9 ug/L 106 80 - 120 505 477.8 ug/L 95 80 - 120 50.0 51.72 ug/L 103 80 - 120 50.0 47.32 ug/L 95 80 - 120 100 105.9 ug/L 106 80 - 120

Client: South Carolina Public Service Authority Project/Site: 125915/JM02.09.G01.1/36500

Job ID: 680-232196-1

Method: 6020B - Metals (ICP/MS) (Continued)

Lab Sample ID: LCS 680-768544/2-A Client Sample ID: Lab Control Sample Matrix: Water Prep Type: Total Recoverable Analysis Batch: 769014 **Prep Batch: 768544** Spike LCS LCS

Analyte Added Result Qualifier Unit %Rec Limits D Beryllium 50.0 56.61 ug/L 113 80 - 120

Lab Sample ID: 680-232196-1 MS Client Sample ID: AF56394 Matrix: Water **Prep Type: Total Recoverable**

Analysis Batch: 768945 **Prep Batch: 768544**

Sample	Sample	Spike	MS	MS				%Rec	
Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	
1280		5000	6366		ug/L		102	75 - 125	
5.00	U	50.0	51.68		ug/L		103	75 - 125	
5.88		100	108.0		ug/L		102	75 - 125	
76.0		100	176.8		ug/L		101	75 - 125	
0.500	U	50.0	50.40		ug/L		101	75 - 125	
5.00	U	100	102.8		ug/L		103	75 - 125	
0.705		50.0	51.99		ug/L		103	75 - 125	
5.00	U	100	108.0		ug/L		108	75 - 125	
2.50	U	505	489.2		ug/L		97	75 - 125	
5.00	U	100	98.15		ug/L		98	75 - 125	
1.00	U	50.0	52.85		ug/L		106	75 - 125	
1.00	U	50.0	48.51		ug/L		97	75 - 125	
24.9		100	132.5		ug/L		108	75 - 125	
27.1		400	434.5		ug/L		102	75 - 125	
	Result 1280 5.00 5.88 76.0 0.500 5.00 0.705 5.00 2.50 5.00 1.00 1.00 24.9	5.00 U 5.88 76.0 0.500 U 5.00 U 0.705 5.00 U 2.50 U 1.00 U 1.00 U 24.9	Result Qualifier Added 1280 5000 5.00 U 50.0 5.88 100 76.0 100 0.500 U 50.0 5.00 U 100 0.705 50.0 50.0 5.00 U 100 2.50 U 505 5.00 U 100 1.00 U 50.0 1.00 U 50.0 24.9 100	Result Qualifier Added Result 1280 5000 6366 5.00 U 50.0 51.68 5.88 100 108.0 76.0 100 176.8 0.500 U 50.0 50.40 5.00 U 100 102.8 0.705 50.0 51.99 5.00 U 100 108.0 2.50 U 505 489.2 5.00 U 100 98.15 1.00 U 50.0 52.85 1.00 U 50.0 48.51 24.9 100 132.5	Result Qualifier Added Result Qualifier 1280 5000 6366 5.00 U 50.0 51.68 5.88 100 108.0 76.0 100 176.8 0.500 U 50.0 50.40 5.00 U 100 102.8 0.705 50.0 51.99 5.00 U 100 108.0 2.50 U 505 489.2 5.00 U 100 98.15 1.00 U 50.0 52.85 1.00 U 50.0 48.51 24.9 100 132.5	Result Qualifier Added Result Qualifier Unit 1280 5000 6366 ug/L 5.00 U 50.0 51.68 ug/L 5.88 100 108.0 ug/L 76.0 100 176.8 ug/L 0.500 U 50.0 50.40 ug/L 5.00 U 100 102.8 ug/L 0.705 50.0 51.99 ug/L 5.00 U 100 108.0 ug/L 2.50 U 505 489.2 ug/L 5.00 U 100 98.15 ug/L 1.00 U 50.0 52.85 ug/L 1.00 U 50.0 48.51 ug/L 24.9 100 132.5 ug/L	Result Qualifier Added Result Qualifier Unit D 1280 5000 6366 ug/L ug/L 5.00 U 50.0 51.68 ug/L 5.88 100 108.0 ug/L 76.0 100 176.8 ug/L 0.500 U 50.0 50.40 ug/L 5.00 U 100 102.8 ug/L 5.00 U 100 108.0 ug/L 5.00 U 100 108.0 ug/L 2.50 U 505 489.2 ug/L 5.00 U 100 98.15 ug/L 1.00 U 50.0 52.85 ug/L 1.00 U 50.0 48.51 ug/L 24.9 100 132.5 ug/L	Result Qualifier Added Result Qualifier Unit D %Rec 1280 5000 6366 ug/L 102 5.00 U 50.0 51.68 ug/L 103 5.88 100 108.0 ug/L 102 76.0 100 176.8 ug/L 101 0.500 U 50.0 50.40 ug/L 101 5.00 U 100 102.8 ug/L 103 0.705 50.0 51.99 ug/L 103 5.00 U 100 108.0 ug/L 108 2.50 U 505 489.2 ug/L 97 5.00 U 100 98.15 ug/L 98 1.00 U 50.0 52.85 ug/L 97 24.9 100 132.5 ug/L 108	Result Qualifier Added Result Qualifier Unit D %Rec Limits 1280 5000 6366 ug/L 102 75 - 125 5.00 U 50.0 51.68 ug/L 103 75 - 125 5.88 100 108.0 ug/L 102 75 - 125 76.0 100 176.8 ug/L 101 75 - 125 0.500 U 50.0 50.40 ug/L 101 75 - 125 5.00 U 100 102.8 ug/L 103 75 - 125 5.00 U 100 102.8 ug/L 103 75 - 125 5.00 U 100 108.0 ug/L 103 75 - 125 5.00 U 100 108.0 ug/L 97 75 - 125 5.00 U 505 489.2 ug/L 97 75 - 125 5.00 U 50.0 52.85 ug/L 98

Lab Sample ID: 680-232196-1 MS Client Sample ID: AF56394 Matrix: Water **Prep Type: Total Recoverable**

Analysis Batch: 769014

Prep Batch: 768544 Sample Sample Spike MS MS %Rec Analyte Result Qualifier Added Result Qualifier Unit %Rec Limits Beryllium 0.500 U 50.0 56.69 113 75 - 125 ug/L

Lab Sample ID: 680-232196-1 MSD Client Sample ID: AF56394 Matrix: Water **Prep Type: Total Recoverable**

Analysis Batch: 768945 **Prep Batch: 768544** %Rec RPD Sample Sample Spike MSD MSD Analyte Result Qualifier Added Result Qualifier RPD Limit Unit %Rec Limits Aluminum 1280 5000 6254 20 100 75 - 125 2 ug/L Antimony 5.00 U 50.0 49.50 ug/L 99 75 - 125 20 5.88 100 108.9 ug/L 103 75 - 125 20 Arsenic Barium 76.0 100 172.6 ug/L 97 75 - 125 20 Cadmium 0.500 50.0 49.54 ug/L 99 75 - 125 20 100 Chromium 5.00 102.5 ug/L 102 75 - 125 20 Cobalt 0.705 50.0 51.45 ug/L 101 75 - 125 20 100 108.8 ug/L 109 75 - 125 20 Copper 5.00 U 505 485.5 96 75 - 125 20 Lead 2.50 U ug/L Nickel 98.23 98 75 - 125 5.00 U 100 ug/L 20 Silver 1.00 U 50.0 51.83 ug/L 104 75 - 125 20 Thallium 1 00 U 50.0 48.13 ug/L 96 75 - 125 20 Zinc 24.9 100 123.0 ug/L 98 75 - 125 20 400 432.3 101 Manganese 27.1 ug/L 75 - 125 20

Client: South Carolina Public Service Authority Project/Site: 125915/JM02.09.G01.1/36500

Job ID: 680-232196-1

Method: 6020B - Metals (ICP/MS) (Continued)

Lab Sample ID: 680-232196-1 MSD Client Sample ID: AF56394 Matrix: Water Prep Type: Total Recoverable Analysis Batch: 769014 **Prep Batch: 768544**

Sample Sample Spike MSD MSD RPD Result Qualifier Result Qualifier Analyte Added Unit %Rec Limits RPD Limit Beryllium 0.500 U 50.0 56.09 ug/L 112 75 - 125 20

Lab Sample ID: MB 680-768552/1-A Client Sample ID: Method Blank Matrix: Water **Prep Type: Total Recoverable**

Analysis Batch: 768945 Prep Batch: 768552

Allalysis Balcil. 100343								Frep Batch.	700332
	MB	MB							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Aluminum	100	U	100		ug/L		03/20/23 09:08	03/21/23 19:54	1
Antimony	5.00	U	5.00		ug/L		03/20/23 09:08	03/21/23 19:54	1
Arsenic	3.00	U	3.00		ug/L		03/20/23 09:08	03/21/23 19:54	1
Barium	5.00	U	5.00		ug/L		03/20/23 09:08	03/21/23 19:54	1
Beryllium	0.500	U	0.500		ug/L		03/20/23 09:08	03/21/23 19:54	1
Cadmium	0.500	U	0.500		ug/L		03/20/23 09:08	03/21/23 19:54	1
Chromium	5.00	U	5.00		ug/L		03/20/23 09:08	03/21/23 19:54	1
Cobalt	0.500	U	0.500		ug/L		03/20/23 09:08	03/21/23 19:54	1
Copper	5.00	U	5.00		ug/L		03/20/23 09:08	03/21/23 19:54	1
Lead	2.50	U	2.50		ug/L		03/20/23 09:08	03/21/23 19:54	1
Nickel	5.00	U	5.00		ug/L		03/20/23 09:08	03/21/23 19:54	1
Silver	1.00	U	1.00		ug/L		03/20/23 09:08	03/21/23 19:54	1
Thallium	1.00	U	1.00		ug/L		03/20/23 09:08	03/21/23 19:54	1
Zinc	20.0	U	20.0		ug/L		03/20/23 09:08	03/21/23 19:54	1
Manganese	5.00	U	5.00		ug/L		03/20/23 09:08	03/21/23 19:54	1
_									

Lab Sample ID: LCS 680-768552/2-A Client Sample ID: Lab Control Sample **Prep Type: Total Recoverable** Matrix: Water Analysis Batch: 768945 **Prep Batch: 768552**

Spike LCS LCS %Rec Analyte Added %Rec Limits Result Qualifier Unit D 5000 5381 108 80 - 120 Aluminum ug/L 50.0 106 Antimony 53.20 ug/L 80 - 120 100 109.8 80 - 120 Arsenic ug/L 110 Barium 100 104.9 ug/L 105 80 - 120 Beryllium 50.0 50.03 ug/L 100 80 - 120 Cadmium 50.0 54.49 ug/L 109 80 - 120 80 - 120 Chromium 100 107.2 ug/L 107 Cobalt 50.0 54.46 ug/L 109 80 - 120 100 111.4 111 80 - 120 Copper ug/L Lead 505 513.4 ug/L 102 80 - 120 Nickel 100 100.1 ug/L 100 80 - 120 Silver 50.0 54.03 ug/L 108 80 - 120 Thallium 50.0 51.46 ug/L 103 80 - 120 Zinc 100 103.8 104 80 - 120 ug/L 400 434.1 109 80 - 120 Manganese ug/L

Client: South Carolina Public Service Authority Project/Site: 125915/JM02.09.G01.1/36500

Method: 6020B - Metals (ICP/MS) (Continued)

Lab Sample ID: 680-232196-21 MS

Matrix: Water

Analysis Batch: 768945

Client Sample ID: AF56411 Prep Type: Total Recoverable Prep Batch: 768552

Alialysis Datcil. 100343									i iep batt	CII. 100332
	Sample	Sample	Spike	MS	MS				%Rec	
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Aluminum	100	U	5000	5779		ug/L		116	75 - 125	
Antimony	5.00	U	50.0	55.90		ug/L		112	75 - 125	
Arsenic	8.18		100	120.5		ug/L		112	75 - 125	
Barium	95.4		100	211.5		ug/L		116	75 ₋ 125	
Beryllium	0.500	U	50.0	55.57		ug/L		111	75 - 125	
Cadmium	0.500	U	50.0	53.63		ug/L		107	75 - 125	
Chromium	5.00	U	100	121.9		ug/L		122	75 - 125	
Cobalt	0.500	U	50.0	59.05		ug/L		118	75 - 125	
Copper	5.00	U	100	114.5		ug/L		114	75 - 125	
Lead	2.50	U	505	600.1		ug/L		119	75 - 125	
Nickel	5.00	U	100	110.8		ug/L		111	75 - 125	
Silver	1.00	U	50.0	53.16		ug/L		106	75 - 125	
Thallium	1.00	U F1	50.0	61.74		ug/L		123	75 - 125	
Zinc	199	F1	100	267.8	F1	ug/L		69	75 - 125	
Manganese	101		400	587.0		ug/L		122	75 ₋ 125	

Lab Sample ID: 680-232196-21 MSD

Matrix: Water

Client Sample ID: AF56411 **Prep Type: Total Recoverable**

Analysis Batch: 768945									Prep I	Batch: 7	68552
	Sample	Sample	Spike	MSD	MSD				%Rec		RPD
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Aluminum	100	U	5000	5957		ug/L		119	75 - 125	3	20
Antimony	5.00	U	50.0	58.11		ug/L		116	75 - 125	4	20
Arsenic	8.18		100	126.6		ug/L		118	75 - 125	5	20
Barium	95.4		100	218.6		ug/L		123	75 - 125	3	20
Beryllium	0.500	U	50.0	58.13		ug/L		116	75 - 125	5	20
Cadmium	0.500	U	50.0	56.57		ug/L		113	75 - 125	5	20
Chromium	5.00	U	100	119.1		ug/L		119	75 - 125	2	20
Cobalt	0.500	U	50.0	59.36		ug/L		119	75 - 125	1	20
Copper	5.00	U	100	116.8		ug/L		117	75 - 125	2	20
Lead	2.50	U	505	608.8		ug/L		121	75 - 125	1	20
Nickel	5.00	U	100	111.7		ug/L		112	75 - 125	1	20
Silver	1.00	U	50.0	53.81		ug/L		108	75 - 125	1	20
Thallium	1.00	U F1	50.0	62.76	F1	ug/L		126	75 - 125	2	20
Zinc	199	F1	100	301.0		ug/L		102	75 - 125	12	20
Manganese	101		400	576.8		ug/L		119	75 - 125	2	20

Lab Sample ID: MB 680-768613/1-A

Matrix: Water

Analysis Batch: 768945

Client Sample ID: Method Blank Prep Type: Total Recoverable

Prep Batch: 768613

	MB	MB							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Aluminum	100	U	100		ug/L		03/20/23 13:39	03/21/23 21:56	1
Antimony	5.00	U	5.00		ug/L		03/20/23 13:39	03/21/23 21:56	1
Arsenic	3.00	U	3.00		ug/L		03/20/23 13:39	03/21/23 21:56	1
Barium	5.00	U	5.00		ug/L		03/20/23 13:39	03/21/23 21:56	1
Beryllium	0.500	U	0.500		ug/L		03/20/23 13:39	03/21/23 21:56	1
Cadmium	0.500	U	0.500		ug/L		03/20/23 13:39	03/21/23 21:56	1
Chromium	5.00	U	5.00		ug/L		03/20/23 13:39	03/21/23 21:56	1

Eurofins Savannah

Page 77 of 121

Client: South Carolina Public Service Authority Project/Site: 125915/JM02.09.G01.1/36500

Job ID: 680-232196-1

Method: 6020B - Metals (ICP/MS) (Continued)

Lab Sample ID: MB 680-768613/1-A

Matrix: Water

Analysis Batch: 768945

Client Sample ID: Method Blank **Prep Type: Total Recoverable**

Prep Batch: 768613

	MB	MB							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Cobalt	0.500	U	0.500		ug/L		03/20/23 13:39	03/21/23 21:56	1
Copper	5.00	U	5.00		ug/L		03/20/23 13:39	03/21/23 21:56	1
Lead	2.50	U	2.50		ug/L		03/20/23 13:39	03/21/23 21:56	1
Nickel	5.00	U	5.00		ug/L		03/20/23 13:39	03/21/23 21:56	1
Silver	1.00	U	1.00		ug/L		03/20/23 13:39	03/21/23 21:56	1
Thallium	1.00	U	1.00		ug/L		03/20/23 13:39	03/21/23 21:56	1
Zinc	20.0	U	20.0		ug/L		03/20/23 13:39	03/21/23 21:56	1
Manganese	5.00	U	5.00		ug/L		03/20/23 13:39	03/21/23 21:56	1

Lab Sample ID: LCS 680-768613/2-A Matrix: Water

Analysis Batch: 768945

Client Sample ID: Lab Control Sample Prep Type: Total Recoverable

Prep Batch: 768613

Spike	LCS	LCS				%Rec	
Added	Result	Qualifier	Unit	D	%Rec	Limits	
5000	5081		ug/L		102	80 - 120	
50.0	50.30		ug/L		101	80 - 120	
100	96.86		ug/L		97	80 - 120	
100	96.16		ug/L		96	80 - 120	
50.0	49.35		ug/L		99	80 - 120	
50.0	49.86		ug/L		100	80 - 120	
100	98.60		ug/L		99	80 - 120	
50.0	50.99		ug/L		102	80 - 120	
100	100.7		ug/L		101	80 - 120	
505	475.9		ug/L		94	80 - 120	
100	96.51		ug/L		97	80 - 120	
50.0	49.14		ug/L		98	80 - 120	
50.0	47.31		ug/L		95	80 - 120	
100	101.1		ug/L		101	80 - 120	
400	400.6		ug/L		100	80 - 120	
	Added 5000 50.0 100 100 50.0 50.0 100 50.0 100 50.0 100 50.0 100 50.0 100 50.0 100 50.0	Added Result 5000 5081 50.0 50.30 100 96.86 100 96.16 50.0 49.35 50.0 49.86 100 98.60 50.0 50.99 100 100.7 505 475.9 100 96.51 50.0 49.14 50.0 47.31 100 101.1	Added Result Qualifier 5000 5081 Qualifier 50.0 50.30 Qualifier 100 96.86 Qualifier 100 96.86 Qualifier 100 96.16 Qualifier 50.0 49.35 Qualifier 50.0 49.86 Qualifier 100 98.60 Qualifier 50.0 49.86 Qualifier 100 98.60 Qualifier 100 98.60 Qualifier 100 100.7 Qualifier 100 100.7	Added Result Qualifier Unit 5000 5081 ug/L 50.0 50.30 ug/L 100 96.86 ug/L 100 96.16 ug/L 50.0 49.35 ug/L 50.0 49.86 ug/L 100 98.60 ug/L 50.0 50.99 ug/L 100 100.7 ug/L 505 475.9 ug/L 100 96.51 ug/L 50.0 49.14 ug/L 50.0 47.31 ug/L 100 101.1 ug/L	Added Result Qualifier Unit D 5000 5081 ug/L ug/L 50.0 50.30 ug/L ug/L 100 96.86 ug/L ug/L 50.0 49.85 ug/L 50.0 49.86 ug/L 100 98.60 ug/L 50.0 50.99 ug/L 100 100.7 ug/L 505 475.9 ug/L 100 96.51 ug/L 50.0 49.14 ug/L 50.0 47.31 ug/L 100 101.1 ug/L	Added Result Qualifier Unit D %Rec 5000 5081 ug/L 102 50.0 50.30 ug/L 101 100 96.86 ug/L 97 100 96.16 ug/L 96 50.0 49.35 ug/L 99 50.0 49.86 ug/L 99 50.0 50.99 ug/L 99 50.0 50.99 ug/L 101 505 475.9 ug/L 94 100 96.51 ug/L 97 50.0 49.14 ug/L 98 50.0 47.31 ug/L 95 100 101.1 ug/L 101	Added Result Qualifier Unit D %Rec Limits 5000 5081 ug/L 102 80 - 120 50.0 50.30 ug/L 101 80 - 120 100 96.86 ug/L 97 80 - 120 100 96.16 ug/L 96 80 - 120 50.0 49.35 ug/L 99 80 - 120 50.0 49.86 ug/L 100 80 - 120 100 98.60 ug/L 99 80 - 120 50.0 50.99 ug/L 102 80 - 120 100 100.7 ug/L 101 80 - 120 505 475.9 ug/L 94 80 - 120 50.0 49.14 ug/L 98 80 - 120 50.0 47.31 ug/L 98 80 - 120 50.0 47.31 ug/L 95 80 - 120 100 101.1 ug/L 101 80 - 120

Lab Sample ID: 680-232196-42 MS

Matrix: Water

Analysis Batch: 768945

Client Sample ID: AF56414 **Prep Type: Total Recoverable Prep Batch: 768613**

, thialy old Batolii i dod id									op Bato	
-	Sample	Sample	Spike	MS	MS				%Rec	
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Aluminum	100	U	5000	5171		ug/L		103	75 - 125	
Antimony	5.00	U	50.0	51.95		ug/L		104	75 - 125	
Arsenic	3.00	U	100	100.8		ug/L		100	75 - 125	
Barium	413		100	504.5	4	ug/L		91	75 - 125	
Beryllium	0.500	U	50.0	50.80		ug/L		101	75 - 125	
Cadmium	0.500	U	50.0	50.23		ug/L		100	75 - 125	
Chromium	5.00	U	100	103.6		ug/L		104	75 - 125	
Cobalt	0.500	U	50.0	51.77		ug/L		104	75 - 125	
Copper	5.00	U	100	103.1		ug/L		103	75 - 125	
Lead	2.50	U	505	527.4		ug/L		105	75 - 125	
Nickel	5.00	U	100	96.03		ug/L		96	75 - 125	
Silver	1.00	U	50.0	48.82		ug/L		98	75 - 125	
Thallium	1.00	U	50.0	53.92		ug/L		108	75 - 125	
Zinc	20.0	U	100	100.1		ug/L		100	75 - 125	

Client Sample ID: AF56414

Prep Type: Total Recoverable

Client Sample ID: Method Blank

Client Sample ID: Lab Control Sample

Client Sample ID: Method Blank

Prep Type: Total/NA

Prep Batch: 768588

Client: South Carolina Public Service Authority Project/Site: 125915/JM02.09.G01.1/36500

Method: 6020B - Metals (ICP/MS) (Continued)

Matrix: Water

Lab Sample ID: 680-232196-42 MS

Analysis Batch: 768945

Prep Batch: 768613 Sample Sample Spike MS MS %Rec Result Qualifier Added Result Qualifier Unit %Rec Limits D 626 400 1027 100 75 - 125 ug/L

Lab Sample ID: 680-232196-42 MSD Client Sample ID: AF56414 Matrix: Water **Prep Type: Total Recoverable**

Analyte

Manganese

Analysis Batch: 768945									Prep I	3atch: 7	68613
	Sample	Sample	Spike	MSD	MSD				%Rec		RPD
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Aluminum	100	U	5000	5419		ug/L		108	75 - 125	5	20
Antimony	5.00	U	50.0	53.96		ug/L		108	75 - 125	4	20
Arsenic	3.00	U	100	118.0		ug/L		117	75 - 125	16	20
Barium	413		100	527.2	4	ug/L		114	75 - 125	4	20
Beryllium	0.500	U	50.0	54.08		ug/L		107	75 - 125	6	20
Cadmium	0.500	U	50.0	53.48		ug/L		107	75 - 125	6	20
Chromium	5.00	U	100	110.0		ug/L		110	75 - 125	6	20
Cobalt	0.500	U	50.0	55.83		ug/L		112	75 - 125	8	20
Copper	5.00	U	100	108.4		ug/L		108	75 - 125	5	20
Lead	2.50	U	505	554.7		ug/L		110	75 - 125	5	20
Nickel	5.00	U	100	101.5		ug/L		102	75 - 125	6	20
Silver	1.00	U	50.0	50.75		ug/L		101	75 - 125	4	20
Thallium	1.00	U	50.0	56.00		ug/L		112	75 - 125	4	20
Zinc	20.0	U	100	108.5		ug/L		108	75 - 125	8	20
Manganese	626		400	1076		ug/L		112	75 - 125	5	20

Method: 7470A - Mercury (CVAA)

Lab Sample ID: MB 680-768588/1-A

Matrix: Water

Analysis Batch: 768864

мв мв

Analyte Result Qualifier RLMDL Unit Prepared Dil Fac Analyzed Mercury 0.200 U 0.200 ug/L 03/20/23 12:30 03/20/23 18:43

Lab Sample ID: LCS 680-768588/2-A

Matrix: Water

Prep Type: Total/NA Analysis Batch: 768864 **Prep Batch: 768588** LCS LCS Spike %Rec Analyte Added Result Qualifier Unit %Rec Limits Mercury 2.50 2.479 ug/L 80 - 120

Lab Sample ID: MB 680-768590/1-A

Matrix: Water

Analysis Batch: 768864

мв мв

Analyte Result Qualifier RL MDL Unit Prepared Analyzed Dil Fac 0.200 U 0.200 03/20/23 12:45 03/21/23 12:19 Mercury ug/L

Prep Type: Total/NA

Prep Batch: 768590

Client: South Carolina Public Service Authority Project/Site: 125915/JM02.09.G01.1/36500

Mercury

Mercury

Analysis Batch: 768864

Job ID: 680-232196-1

Method: 7470A - Mercury (CVAA) (Continued)

Lab Sample ID: LCS 680-768590/2-A	Client Sample ID: Lab Control Sample
Matrix: Water	Prep Type: Total/NA
Analysis Batch: 768864	Pren Batch: 768590

Spike LCS LCS Added Result Qualifier D %Rec Limits Analyte Unit

2.50

Lab Sample ID: 680-232196-38 MS Client Sample ID: AF56421 Matrix: Water Prep Type: Total/NA

2.311

0.8144

ug/L

ug/L

92

80 - 120

80 - 120

Prep Type: Total/NA

Prep Batch: 768609

Prep Batch: 768609

Analysis Batch: 768864 Prep Batch: 768590 Sample Sample Spike MS MS %Rec

Analyte Result Qualifier Added Result Qualifier Unit D %Rec Limits Mercury 0.200 UF1 1.00 0.7944 F1 ug/L 79 80 - 120

Client Sample ID: AF56421 Lab Sample ID: 680-232196-38 MSD Matrix: Water Prep Type: Total/NA Analysis Batch: 768864 Prep Batch: 768590 MSD MSD RPD Sample Sample Spike %Rec Analyte Result Qualifier Added Result Qualifier Unit %Rec Limits RPD Limit

Lab Sample ID: MB 680-768609/1-A Client Sample ID: Method Blank Matrix: Water

1.00

Analysis Batch: 768864

U F1

0.200

MB MB

MDL Unit Result Qualifier Analyte RL Prepared Analyzed Dil Fac 0.200 0.200 03/20/23 13:40 03/21/23 10:12 Mercury ug/L

Lab Sample ID: LCS 680-768609/2-A Client Sample ID: Lab Control Sample Matrix: Water Prep Type: Total/NA

Spike LCS LCS Analyte Added Result Qualifier Unit %Rec Limits

Mercury 2.50 2.338 ug/L 94 80 - 120

Lab Sample ID: 680-232196-33 MS Client Sample ID: AF56408 Matrix: Water Prep Type: Total/NA

Analysis Batch: 768864 Prep Batch: 768609 Sample Sample Spike MS MS %Rec Result Qualifier Added Analyte Result Qualifier Unit D %Rec Limits

Mercury 0.200 UF1 1.00 0.8587 F1 ug/L 80 - 120

Lab Sample ID: 680-232196-33 MSD Client Sample ID: AF56408 Matrix: Water Prep Type: Total/NA

Analysis Batch: 768864 Prep Batch: 768609 MSD MSD Sample Sample Spike %Rec RPD Result Qualifier Added Result Qualifier Analyte Unit D %Rec Limits **RPD** Limit Mercury 0.200 U F1 1.00 0.7309 F1 ug/L 65 80 - 120

Lab Sample ID: MB 680-768648/1-A Client Sample ID: Method Blank

Matrix: Water Prep Type: Total/NA Analysis Batch: 768864 **Prep Batch: 768648**

мв мв Analyte Result Qualifier RL MDL Unit Prepared Analyzed Dil Fac 0.200 Mercury 0.200 U ug/L 03/20/23 15:26 03/21/23 11:46

QC Sample Results

Client: South Carolina Public Service Authority Project/Site: 125915/JM02.09.G01.1/36500

Method: 7470A - Mercury (CVAA)

Mercury

Job ID: 680-232196-1

2

3

4

5

7

9

11

13

 Lab Sample ID: LCS 680-768648/2- <i>i</i>	Α						Client	t Sample	ID: Lab Control Sample
Matrix: Water								-	Prep Type: Total/NA
Analysis Batch: 768864									Prep Batch: 768648
			Spike	LCS	LCS				%Rec
Analyte			Added	Result	Qualifier	Unit	D	%Rec	Limits
Mercury			2.50	2.343		ug/L		94	80 - 120
Lab Sample ID: 680-232196-44 MS								Cli	ient Sample ID: AF56428
Matrix: Water									Prep Type: Total/NA
Analysis Batch: 768864									Prep Batch: 768648
	Sample	Sample	Spike	MS	MS				%Rec
Amelida	Desuit	Ouglifier	Addad	Deculé	Ovelifier	Hait		0/ Doo	Limita

0.8867

ug/L

89

80 - 120

Lab Sample ID: 680-232196-44 MSD)						Client Sample ID: AF5				56428
Matrix: Water	Matrix: Water								Prep T	ype: To	tal/NA
Analysis Batch: 768864 Prep Batch: 7								68648			
	Sample	Sample	Spike	MSD	MSD				%Rec		RPD
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Mercury	0.200	U	1.00	0.8738		ug/L		87	80 - 120	1	20

1.00

0.200 U

Client: South Carolina Public Service Authority Project/Site: 125915/JM02.09.G01.1/36500

Job ID: 680-232196-1

Metals

Prep Batch: 604813

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batc
680-232196-1	AF56394	Total/NA	Water	3010A	
680-232196-2	AF56331	Total/NA	Water	3010A	
680-232196-3	AF56332	Total/NA	Water	3010A	
680-232196-4	AF56395	Total/NA	Water	3010A	
680-232196-5	AF56396	Total/NA	Water	3010A	
680-232196-6	AF56397	Total/NA	Water	3010A	
680-232196-7	AF56400	Total/NA	Water	3010A	
680-232196-8	AF56442	Total/NA	Water	3010A	
680-232196-9	AF56443	Total/NA	Water	3010A	
680-232196-10	AF56402	Total/NA	Water	3010A	
680-232196-11	AF56403	Total/NA	Water	3010A	
680-232196-12	AF56404	Total/NA	Water	3010A	
680-232196-13	AF56434	Total/NA	Water	3010A	
680-232196-14	AF56433	Total/NA	Water	3010A	
680-232196-15	AF56435	Total/NA	Water	3010A	
680-232196-16	AF56436	Total/NA	Water	3010A	
680-232196-17	AF56437	Total/NA	Water	3010A	
680-232196-18	AF56438	Total/NA	Water	3010A	
680-232196-19	AF56409	Total/NA	Water	3010A	
680-232196-20	AF56410	Total/NA	Water	3010A	
MB 160-604813/1-A	Method Blank	Total/NA	Water	3010A	
LCS 160-604813/2-A	Lab Control Sample	Total/NA	Water	3010A	
680-232196-3 MS	AF56332	Total/NA	Water	3010A	
680-232196-3 MSD	AF56332	Total/NA	Water	3010A	

Pren Batch: 604815

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
680-232196-21	AF56411	Total/NA	Water	3010A	
680-232196-22	AF56412	Total/NA	Water	3010A	
680-232196-23	AF56413	Total/NA	Water	3010A	
680-232196-24	AF56430	Total/NA	Water	3010A	
680-232196-25	AF56406	Total/NA	Water	3010A	
680-232196-26	AF56407	Total/NA	Water	3010A	
680-232196-27	AF56418	Total/NA	Water	3010A	
680-232196-28	AF56422	Total/NA	Water	3010A	
680-232196-29	AF56419	Total/NA	Water	3010A	
680-232196-30	AF56425	Total/NA	Water	3010A	
680-232196-31	AF56426	Total/NA	Water	3010A	
680-232196-32	AF56427	Total/NA	Water	3010A	
680-232196-33	AF56408	Total/NA	Water	3010A	
680-232196-34	AF56415	Total/NA	Water	3010A	
680-232196-35	AF56416	Total/NA	Water	3010A	
680-232196-36	AF56417	Total/NA	Water	3010A	
680-232196-37	AF56429	Total/NA	Water	3010A	
680-232196-38	AF56421	Total/NA	Water	3010A	
680-232196-39	AF56428	Total/NA	Water	3010A	
680-232196-40	AF56439	Total/NA	Water	3010A	
MB 160-604815/1-A	Method Blank	Total/NA	Water	3010A	
LCS 160-604815/2-A	Lab Control Sample	Total/NA	Water	3010A	
680-232196-22 MS	AF56412	Total/NA	Water	3010A	
680-232196-22 MSD	AF56412	Total/NA	Water	3010A	

Eurofins Savannah

Page 82 of 121

Client: South Carolina Public Service Authority Project/Site: 125915/JM02.09.G01.1/36500

Job ID: 680-232196-1

Metals

Prep Batch: 604817

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
680-232196-41	AF56441	Total/NA	Water	3010A	
680-232196-42	AF56414	Total/NA	Water	3010A	
680-232196-43	AF56423	Total/NA	Water	3010A	
680-232196-44	AF56428	Total/NA	Water	3010A	
MB 160-604817/1-A	Method Blank	Total/NA	Water	3010A	
LCS 160-604817/2-A	Lab Control Sample	Total/NA	Water	3010A	
680-232196-43 MS	AF56423	Total/NA	Water	3010A	
680-232196-43 MSD	AF56423	Total/NA	Water	3010A	

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batcl
680-232196-1	AF56394	Total/NA	Water	6010D	60481
680-232196-2	AF56331	Total/NA	Water	6010D	60481
680-232196-3	AF56332	Total/NA	Water	6010D	60481
680-232196-4	AF56395	Total/NA	Water	6010D	60481
680-232196-5	AF56396	Total/NA	Water	6010D	60481
680-232196-6	AF56397	Total/NA	Water	6010D	60481
680-232196-7	AF56400	Total/NA	Water	6010D	60481
880-232196-8	AF56442	Total/NA	Water	6010D	60481
680-232196-9	AF56443	Total/NA	Water	6010D	60481
880-232196-10	AF56402	Total/NA	Water	6010D	60481
680-232196-11	AF56403	Total/NA	Water	6010D	60481
680-232196-12	AF56404	Total/NA	Water	6010D	60481
880-232196-13	AF56434	Total/NA	Water	6010D	60481
680-232196-14	AF56433	Total/NA	Water	6010D	60481
680-232196-15	AF56435	Total/NA	Water	6010D	60481
680-232196-16	AF56436	Total/NA	Water	6010D	60481
80-232196-17	AF56437	Total/NA	Water	6010D	60481
680-232196-18	AF56438	Total/NA	Water	6010D	60481
680-232196-19	AF56409	Total/NA	Water	6010D	60481
680-232196-20	AF56410	Total/NA	Water	6010D	60481
80-232196-21	AF56411	Total/NA	Water	6010D	60481
680-232196-22	AF56412	Total/NA	Water	6010D	60481
680-232196-23	AF56413	Total/NA	Water	6010D	60481
880-232196-24	AF56430	Total/NA	Water	6010D	60481
680-232196-25	AF56406	Total/NA	Water	6010D	60481
680-232196-26	AF56407	Total/NA	Water	6010D	60481
880-232196-27	AF56418	Total/NA	Water	6010D	60481
680-232196-28	AF56422	Total/NA	Water	6010D	60481
680-232196-29	AF56419	Total/NA	Water	6010D	60481
880-232196-30	AF56425	Total/NA	Water	6010D	60481
680-232196-31	AF56426	Total/NA	Water	6010D	60481
680-232196-32	AF56427	Total/NA	Water	6010D	60481
680-232196-33	AF56408	Total/NA	Water	6010D	60481
680-232196-34	AF56415	Total/NA	Water	6010D	60481
880-232196-35	AF56416	Total/NA	Water	6010D	60481
880-232196-36	AF56417	Total/NA	Water	6010D	60481
680-232196-37	AF56429	Total/NA	Water	6010D	60481
680-232196-38	AF56421	Total/NA	Water	6010D	60481
680-232196-39	AF56428	Total/NA	Water	6010D	60481
680-232196-40	AF56439	Total/NA	Water	6010D	60481

Client: South Carolina Public Service Authority Project/Site: 125915/JM02.09.G01.1/36500

Job ID: 680-232196-1

Metals (Continued)

Analysis Batch: 605060 (Continued)

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
680-232196-41	AF56441	Total/NA	Water	6010D	604817
680-232196-42	AF56414	Total/NA	Water	6010D	604817
680-232196-43	AF56423	Total/NA	Water	6010D	604817
680-232196-44	AF56428	Total/NA	Water	6010D	604817
MB 160-604813/1-A	Method Blank	Total/NA	Water	6010D	604813
MB 160-604815/1-A	Method Blank	Total/NA	Water	6010D	604815
MB 160-604817/1-A	Method Blank	Total/NA	Water	6010D	604817
LCS 160-604813/2-A	Lab Control Sample	Total/NA	Water	6010D	604813
LCS 160-604815/2-A	Lab Control Sample	Total/NA	Water	6010D	604815
LCS 160-604817/2-A	Lab Control Sample	Total/NA	Water	6010D	604817
680-232196-3 MS	AF56332	Total/NA	Water	6010D	604813
680-232196-3 MSD	AF56332	Total/NA	Water	6010D	604813
680-232196-22 MS	AF56412	Total/NA	Water	6010D	604815
680-232196-22 MSD	AF56412	Total/NA	Water	6010D	604815
680-232196-43 MS	AF56423	Total/NA	Water	6010D	604817
680-232196-43 MSD	AF56423	Total/NA	Water	6010D	604817

Prep Batch: 768540

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
680-232196-39	AF56428	Total Recoverable	Water	3005A	
MB 680-768540/1-A	Method Blank	Total Recoverable	Water	3005A	
LCS 680-768540/2-A	Lab Control Sample	Total Recoverable	Water	3005A	

Prep Batch: 768544

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
680-232196-1	AF56394	Total Recoverable	Water	3005A	
680-232196-2	AF56331	Total Recoverable	Water	3005A	
680-232196-3	AF56332	Total Recoverable	Water	3005A	
680-232196-4	AF56395	Total Recoverable	Water	3005A	
680-232196-5	AF56396	Total Recoverable	Water	3005A	
680-232196-6	AF56397	Total Recoverable	Water	3005A	
680-232196-7	AF56400	Total Recoverable	Water	3005A	
680-232196-8	AF56442	Total Recoverable	Water	3005A	
680-232196-9	AF56443	Total Recoverable	Water	3005A	
680-232196-10	AF56402	Total Recoverable	Water	3005A	
680-232196-11	AF56403	Total Recoverable	Water	3005A	
680-232196-12	AF56404	Total Recoverable	Water	3005A	
680-232196-13	AF56434	Total Recoverable	Water	3005A	
680-232196-14	AF56433	Total Recoverable	Water	3005A	
680-232196-15	AF56435	Total Recoverable	Water	3005A	
680-232196-16	AF56436	Total Recoverable	Water	3005A	
680-232196-17	AF56437	Total Recoverable	Water	3005A	
680-232196-18	AF56438	Total Recoverable	Water	3005A	
680-232196-19	AF56409	Total Recoverable	Water	3005A	
680-232196-20	AF56410	Total Recoverable	Water	3005A	
MB 680-768544/1-A	Method Blank	Total Recoverable	Water	3005A	
LCS 680-768544/2-A	Lab Control Sample	Total Recoverable	Water	3005A	
680-232196-1 MS	AF56394	Total Recoverable	Water	3005A	
680-232196-1 MSD	AF56394	Total Recoverable	Water	3005A	

Eurofins Savannah

3/28/2023

c

7

9

10

40

13

1

Client: South Carolina Public Service Authority Project/Site: 125915/JM02.09.G01.1/36500

Job ID: 680-232196-1

Metals

Prep Batch: 768552

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
880-232196-21	AF56411	Total Recoverable	Water	3005A	_
880-232196-22	AF56412	Total Recoverable	Water	3005A	
680-232196-23	AF56413	Total Recoverable	Water	3005A	
680-232196-24	AF56430	Total Recoverable	Water	3005A	
880-232196-25	AF56406	Total Recoverable	Water	3005A	
880-232196-26	AF56407	Total Recoverable	Water	3005A	
680-232196-27	AF56418	Total Recoverable	Water	3005A	
880-232196-28	AF56422	Total Recoverable	Water	3005A	
880-232196-29	AF56419	Total Recoverable	Water	3005A	
880-232196-30	AF56425	Total Recoverable	Water	3005A	
80-232196-31	AF56426	Total Recoverable	Water	3005A	
880-232196-32	AF56427	Total Recoverable	Water	3005A	
680-232196-33	AF56408	Total Recoverable	Water	3005A	
80-232196-34	AF56415	Total Recoverable	Water	3005A	
880-232196-35	AF56416	Total Recoverable	Water	3005A	
80-232196-36	AF56417	Total Recoverable	Water	3005A	
80-232196-37	AF56429	Total Recoverable	Water	3005A	
880-232196-38	AF56421	Total Recoverable	Water	3005A	
880-232196-40	AF56439	Total Recoverable	Water	3005A	
880-232196-41	AF56441	Total Recoverable	Water	3005A	
MB 680-768552/1-A	Method Blank	Total Recoverable	Water	3005A	
_CS 680-768552/2-A	Lab Control Sample	Total Recoverable	Water	3005A	
680-232196-21 MS	AF56411	Total Recoverable	Water	3005A	
680-232196-21 MSD	AF56411	Total Recoverable	Water	3005A	

Prep Batch: 768588

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
680-232196-1	AF56394	Total/NA	Water	7470A	
MB 680-768588/1-A	Method Blank	Total/NA	Water	7470A	
LCS 680-768588/2-A	Lab Control Sample	Total/NA	Water	7470A	

Prep Batch: 768590

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batc
680-232196-2	AF56331	Total/NA	Water	7470A	
680-232196-3	AF56332	Total/NA	Water	7470A	
680-232196-4	AF56395	Total/NA	Water	7470A	
680-232196-5	AF56396	Total/NA	Water	7470A	
680-232196-6	AF56397	Total/NA	Water	7470A	
680-232196-12	AF56404	Total/NA	Water	7470A	
680-232196-13	AF56434	Total/NA	Water	7470A	
680-232196-14	AF56433	Total/NA	Water	7470A	
680-232196-15	AF56435	Total/NA	Water	7470A	
680-232196-16	AF56436	Total/NA	Water	7470A	
680-232196-23	AF56413	Total/NA	Water	7470A	
680-232196-24	AF56430	Total/NA	Water	7470A	
680-232196-25	AF56406	Total/NA	Water	7470A	
680-232196-26	AF56407	Total/NA	Water	7470A	
680-232196-27	AF56418	Total/NA	Water	7470A	
680-232196-34	AF56415	Total/NA	Water	7470A	
680-232196-35	AF56416	Total/NA	Water	7470A	
680-232196-36	AF56417	Total/NA	Water	7470A	

Client: South Carolina Public Service Authority Project/Site: 125915/JM02.09.G01.1/36500

Job ID: 680-232196-1

Metals (Continued)

Prep Batch: 768590 (Continued)

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
680-232196-37	AF56429	Total/NA	Water	7470A	
680-232196-38	AF56421	Total/NA	Water	7470A	
MB 680-768590/1-A	Method Blank	Total/NA	Water	7470A	
LCS 680-768590/2-A	Lab Control Sample	Total/NA	Water	7470A	
680-232196-38 MS	AF56421	Total/NA	Water	7470A	
680-232196-38 MSD	AF56421	Total/NA	Water	7470A	

Prep Batch: 768608

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
680-232196-42	AF56414	Total Recoverable	Water	3005A	
680-232196-43	AF56423	Total Recoverable	Water	3005A	
680-232196-44	AF56428	Total Recoverable	Water	3005A	
MB 680-768608/1-A	Method Blank	Total Recoverable	Water	3005A	
LCS 680-768608/2-A	Lab Control Sample	Total Recoverable	Water	3005A	
680-232196-42 MS	AF56414	Total Recoverable	Water	3005A	
680-232196-42 MSD	AF56414	Total Recoverable	Water	3005A	

Prep Batch: 768609

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batc
680-232196-7	AF56400	Total/NA	Water	7470A	
680-232196-8	AF56442	Total/NA	Water	7470A	
680-232196-9	AF56443	Total/NA	Water	7470A	
680-232196-10	AF56402	Total/NA	Water	7470A	
680-232196-11	AF56403	Total/NA	Water	7470A	
680-232196-17	AF56437	Total/NA	Water	7470A	
680-232196-18	AF56438	Total/NA	Water	7470A	
680-232196-19	AF56409	Total/NA	Water	7470A	
680-232196-20	AF56410	Total/NA	Water	7470A	
680-232196-21	AF56411	Total/NA	Water	7470A	
680-232196-22	AF56412	Total/NA	Water	7470A	
680-232196-28	AF56422	Total/NA	Water	7470A	
680-232196-29	AF56419	Total/NA	Water	7470A	
680-232196-30	AF56425	Total/NA	Water	7470A	
680-232196-31	AF56426	Total/NA	Water	7470A	
680-232196-32	AF56427	Total/NA	Water	7470A	
680-232196-33	AF56408	Total/NA	Water	7470A	
680-232196-39	AF56428	Total/NA	Water	7470A	
680-232196-40	AF56439	Total/NA	Water	7470A	
680-232196-41	AF56441	Total/NA	Water	7470A	
MB 680-768609/1-A	Method Blank	Total/NA	Water	7470A	
LCS 680-768609/2-A	Lab Control Sample	Total/NA	Water	7470A	
680-232196-33 MS	AF56408	Total/NA	Water	7470A	
680-232196-33 MSD	AF56408	Total/NA	Water	7470A	

Prep Batch: 768613

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
680-232196-42	AF56414	Total Recoverable	Water	3005A	
680-232196-43	AF56423	Total Recoverable	Water	3005A	
680-232196-44	AF56428	Total Recoverable	Water	3005A	
MB 680-768613/1-A	Method Blank	Total Recoverable	Water	3005A	
LCS 680-768613/2-A	Lab Control Sample	Total Recoverable	Water	3005A	

Eurofins Savannah

3/28/2023

Page 86 of 121

2

3

6

8

40

4 4

12

13

14

Client: South Carolina Public Service Authority Project/Site: 125915/JM02.09.G01.1/36500

Job ID: 680-232196-1

Metals (Continued)

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
680-232196-42 MS	AF56414	Total Recoverable	Water	3005A	
680-232196-42 MSD	AF56414	Total Recoverable	Water	3005A	

Prep Batch: 768648

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
680-232196-42	AF56414	Total/NA	Water	7470A	
680-232196-43	AF56423	Total/NA	Water	7470A	
680-232196-44	AF56428	Total/NA	Water	7470A	
MB 680-768648/1-A	Method Blank	Total/NA	Water	7470A	
LCS 680-768648/2-A	Lab Control Sample	Total/NA	Water	7470A	
680-232196-44 MS	AF56428	Total/NA	Water	7470A	
680-232196-44 MSD	AF56428	Total/NA	Water	7470A	

Prep Batch: 768857

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batcl
680-232196-1	AF56394	Total Recoverable	Water	3005A	
680-232196-2	AF56331	Total Recoverable	Water	3005A	
680-232196-3	AF56332	Total Recoverable	Water	3005A	
680-232196-4	AF56395	Total Recoverable	Water	3005A	
680-232196-5	AF56396	Total Recoverable	Water	3005A	
680-232196-6	AF56397	Total Recoverable	Water	3005A	
680-232196-7	AF56400	Total Recoverable	Water	3005A	
680-232196-8	AF56442	Total Recoverable	Water	3005A	
680-232196-9	AF56443	Total Recoverable	Water	3005A	
680-232196-10	AF56402	Total Recoverable	Water	3005A	
680-232196-11	AF56403	Total Recoverable	Water	3005A	
680-232196-12	AF56404	Total Recoverable	Water	3005A	
680-232196-13	AF56434	Total Recoverable	Water	3005A	
680-232196-14	AF56433	Total Recoverable	Water	3005A	
680-232196-15	AF56435	Total Recoverable	Water	3005A	
680-232196-16	AF56436	Total Recoverable	Water	3005A	
680-232196-17	AF56437	Total Recoverable	Water	3005A	
680-232196-18	AF56438	Total Recoverable	Water	3005A	
680-232196-19	AF56409	Total Recoverable	Water	3005A	
680-232196-20	AF56410	Total Recoverable	Water	3005A	
MB 680-768857/1-A	Method Blank	Total Recoverable	Water	3005A	
LCS 680-768857/2-A	Lab Control Sample	Total Recoverable	Water	3005A	
680-232196-1 MS	AF56394	Total Recoverable	Water	3005A	
680-232196-1 MSD	AF56394	Total Recoverable	Water	3005A	

Prep Batch: 768858

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
680-232196-21	AF56411	Total Recoverable	Water	3005A	
680-232196-22	AF56412	Total Recoverable	Water	3005A	
680-232196-23	AF56413	Total Recoverable	Water	3005A	
680-232196-24	AF56430	Total Recoverable	Water	3005A	
680-232196-25	AF56406	Total Recoverable	Water	3005A	
680-232196-26	AF56407	Total Recoverable	Water	3005A	
680-232196-27	AF56418	Total Recoverable	Water	3005A	
680-232196-28	AF56422	Total Recoverable	Water	3005A	
680-232196-29	AF56419	Total Recoverable	Water	3005A	

Client: South Carolina Public Service Authority Project/Site: 125915/JM02.09.G01.1/36500

Job ID: 680-232196-1

Metals (Continued)

Prep Batch: 768858 (Continued)

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batc
680-232196-30	AF56425	Total Recoverable	Water	3005A	
680-232196-31	AF56426	Total Recoverable	Water	3005A	
680-232196-32	AF56427	Total Recoverable	Water	3005A	
680-232196-33	AF56408	Total Recoverable	Water	3005A	
680-232196-34	AF56415	Total Recoverable	Water	3005A	
680-232196-35	AF56416	Total Recoverable	Water	3005A	
680-232196-36	AF56417	Total Recoverable	Water	3005A	
680-232196-37	AF56429	Total Recoverable	Water	3005A	
680-232196-38	AF56421	Total Recoverable	Water	3005A	
680-232196-40	AF56439	Total Recoverable	Water	3005A	
680-232196-41	AF56441	Total Recoverable	Water	3005A	
MB 680-768858/1-A	Method Blank	Total Recoverable	Water	3005A	
LCS 680-768858/2-A	Lab Control Sample	Total Recoverable	Water	3005A	
680-232196-21 MS	AF56411	Total Recoverable	Water	3005A	
680-232196-21 MSD	AF56411	Total Recoverable	Water	3005A	

Prep Batch: 768859

Lab Sample ID 680-232196-39	Client Sample ID AF56428	Prep Type Total Recoverable	Matrix Water	Method 3005A	Prep Batch
MB 680-768859/1-A	Method Blank	Total Recoverable	Water	3005A	
LCS 680-768859/2-A	Lab Control Sample	Total Recoverable	Water	3005A	

Analysis Batch: 768864

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
680-232196-1	AF56394	Total/NA	Water	7470A	768588
680-232196-2	AF56331	Total/NA	Water	7470A	768590
680-232196-3	AF56332	Total/NA	Water	7470A	768590
680-232196-4	AF56395	Total/NA	Water	7470A	768590
680-232196-5	AF56396	Total/NA	Water	7470A	768590
680-232196-6	AF56397	Total/NA	Water	7470A	768590
680-232196-7	AF56400	Total/NA	Water	7470A	768609
680-232196-8	AF56442	Total/NA	Water	7470A	768609
680-232196-9	AF56443	Total/NA	Water	7470A	768609
680-232196-10	AF56402	Total/NA	Water	7470A	768609
680-232196-11	AF56403	Total/NA	Water	7470A	768609
680-232196-12	AF56404	Total/NA	Water	7470A	768590
680-232196-13	AF56434	Total/NA	Water	7470A	768590
680-232196-14	AF56433	Total/NA	Water	7470A	768590
680-232196-15	AF56435	Total/NA	Water	7470A	768590
680-232196-16	AF56436	Total/NA	Water	7470A	768590
680-232196-17	AF56437	Total/NA	Water	7470A	768609
680-232196-18	AF56438	Total/NA	Water	7470A	768609
680-232196-19	AF56409	Total/NA	Water	7470A	768609
680-232196-20	AF56410	Total/NA	Water	7470A	768609
680-232196-21	AF56411	Total/NA	Water	7470A	768609
680-232196-22	AF56412	Total/NA	Water	7470A	768609
680-232196-23	AF56413	Total/NA	Water	7470A	768590
680-232196-24	AF56430	Total/NA	Water	7470A	768590
680-232196-25	AF56406	Total/NA	Water	7470A	768590
680-232196-26	AF56407	Total/NA	Water	7470A	768590
680-232196-27	AF56418	Total/NA	Water	7470A	768590

Client: South Carolina Public Service Authority Project/Site: 125915/JM02.09.G01.1/36500

Job ID: 680-232196-1

Metals (Continued)

Analysis Batch: 768864 (Continued)

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
680-232196-28	AF56422	Total/NA	Water	7470A	768609
680-232196-29	AF56419	Total/NA	Water	7470A	768609
680-232196-30	AF56425	Total/NA	Water	7470A	768609
680-232196-31	AF56426	Total/NA	Water	7470A	768609
680-232196-32	AF56427	Total/NA	Water	7470A	768609
680-232196-33	AF56408	Total/NA	Water	7470A	768609
680-232196-34	AF56415	Total/NA	Water	7470A	768590
680-232196-35	AF56416	Total/NA	Water	7470A	768590
680-232196-36	AF56417	Total/NA	Water	7470A	768590
680-232196-37	AF56429	Total/NA	Water	7470A	768590
680-232196-38	AF56421	Total/NA	Water	7470A	768590
680-232196-39	AF56428	Total/NA	Water	7470A	768609
680-232196-40	AF56439	Total/NA	Water	7470A	768609
680-232196-41	AF56441	Total/NA	Water	7470A	768609
680-232196-42	AF56414	Total/NA	Water	7470A	768648
680-232196-43	AF56423	Total/NA	Water	7470A	768648
680-232196-44	AF56428	Total/NA	Water	7470A	768648
MB 680-768588/1-A	Method Blank	Total/NA	Water	7470A	768588
MB 680-768590/1-A	Method Blank	Total/NA	Water	7470A	768590
MB 680-768609/1-A	Method Blank	Total/NA	Water	7470A	768609
MB 680-768648/1-A	Method Blank	Total/NA	Water	7470A	768648
LCS 680-768588/2-A	Lab Control Sample	Total/NA	Water	7470A	768588
LCS 680-768590/2-A	Lab Control Sample	Total/NA	Water	7470A	768590
LCS 680-768609/2-A	Lab Control Sample	Total/NA	Water	7470A	768609
LCS 680-768648/2-A	Lab Control Sample	Total/NA	Water	7470A	768648
680-232196-33 MS	AF56408	Total/NA	Water	7470A	768609
680-232196-33 MSD	AF56408	Total/NA	Water	7470A	768609
680-232196-38 MS	AF56421	Total/NA	Water	7470A	768590
680-232196-38 MSD	AF56421	Total/NA	Water	7470A	768590
680-232196-44 MS	AF56428	Total/NA	Water	7470A	768648
680-232196-44 MSD	AF56428	Total/NA	Water	7470A	768648

Analysis Batch: 768929

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
680-232196-1	AF56394	Total Recoverable	Water	6010D	768857
680-232196-2	AF56331	Total Recoverable	Water	6010D	768857
680-232196-3	AF56332	Total Recoverable	Water	6010D	768857
680-232196-4	AF56395	Total Recoverable	Water	6010D	768857
680-232196-5	AF56396	Total Recoverable	Water	6010D	768857
680-232196-6	AF56397	Total Recoverable	Water	6010D	768857
680-232196-7	AF56400	Total Recoverable	Water	6010D	768857
680-232196-8	AF56442	Total Recoverable	Water	6010D	768857
680-232196-9	AF56443	Total Recoverable	Water	6010D	768857
680-232196-10	AF56402	Total Recoverable	Water	6010D	768857
680-232196-11	AF56403	Total Recoverable	Water	6010D	768857
680-232196-12	AF56404	Total Recoverable	Water	6010D	768857
680-232196-13	AF56434	Total Recoverable	Water	6010D	768857
680-232196-14	AF56433	Total Recoverable	Water	6010D	768857
680-232196-15	AF56435	Total Recoverable	Water	6010D	768857
680-232196-16	AF56436	Total Recoverable	Water	6010D	768857
680-232196-17	AF56437	Total Recoverable	Water	6010D	768857

Eurofins Savannah

3/28/2023

-

<u>л</u>

5

7

8

10

4 4

12

13

14

Client: South Carolina Public Service Authority Project/Site: 125915/JM02.09.G01.1/36500

Job ID: 680-232196-1

Metals (Continued)

Analysis Batch: 768929 (Continued)

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
680-232196-18	AF56438	Total Recoverable	Water	6010D	768857
680-232196-19	AF56409	Total Recoverable	Water	6010D	768857
680-232196-20	AF56410	Total Recoverable	Water	6010D	768857
680-232196-21	AF56411	Total Recoverable	Water	6010D	768858
680-232196-22	AF56412	Total Recoverable	Water	6010D	768858
680-232196-23	AF56413	Total Recoverable	Water	6010D	768858
680-232196-24	AF56430	Total Recoverable	Water	6010D	768858
680-232196-25	AF56406	Total Recoverable	Water	6010D	768858
680-232196-26	AF56407	Total Recoverable	Water	6010D	768858
680-232196-27	AF56418	Total Recoverable	Water	6010D	768858
680-232196-28	AF56422	Total Recoverable	Water	6010D	768858
680-232196-29	AF56419	Total Recoverable	Water	6010D	768858
680-232196-30	AF56425	Total Recoverable	Water	6010D	768858
680-232196-31	AF56426	Total Recoverable	Water	6010D	768858
680-232196-32	AF56427	Total Recoverable	Water	6010D	768858
680-232196-33	AF56408	Total Recoverable	Water	6010D	768858
680-232196-34	AF56415	Total Recoverable	Water	6010D	768858
680-232196-35	AF56416	Total Recoverable	Water	6010D	768858
680-232196-36	AF56417	Total Recoverable	Water	6010D	768858
680-232196-37	AF56429	Total Recoverable	Water	6010D	768858
680-232196-38	AF56421	Total Recoverable	Water	6010D	768858
680-232196-39	AF56428	Total Recoverable	Water	6010D	768859
680-232196-40	AF56439	Total Recoverable	Water	6010D	768858
680-232196-41	AF56441	Total Recoverable	Water	6010D	768858
680-232196-42	AF56414	Total Recoverable	Water	6010D	768608
680-232196-43	AF56423	Total Recoverable	Water	6010D	768608
680-232196-44	AF56428	Total Recoverable	Water	6010D	768608
MB 680-768608/1-A	Method Blank	Total Recoverable	Water	6010D	768608
MB 680-768857/1-A	Method Blank	Total Recoverable	Water	6010D	768857
MB 680-768858/1-A	Method Blank	Total Recoverable	Water	6010D	768858
MB 680-768859/1-A	Method Blank	Total Recoverable	Water	6010D	768859
LCS 680-768608/2-A	Lab Control Sample	Total Recoverable	Water	6010D	768608
LCS 680-768857/2-A	Lab Control Sample	Total Recoverable	Water	6010D	768857
LCS 680-768858/2-A	Lab Control Sample	Total Recoverable	Water	6010D	768858
LCS 680-768859/2-A	Lab Control Sample	Total Recoverable	Water	6010D	768859
680-232196-1 MS	AF56394	Total Recoverable	Water	6010D	768857
680-232196-1 MSD	AF56394	Total Recoverable	Water	6010D	768857
680-232196-21 MS	AF56411	Total Recoverable	Water	6010D	768858
680-232196-21 MSD	AF56411	Total Recoverable	Water	6010D	768858
680-232196-42 MS	AF56414	Total Recoverable	Water	6010D	768608
680-232196-42 MSD	AF56414	Total Recoverable	Water	6010D	768608

Analysis Batch: 768945

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
680-232196-1	AF56394	Total Recoverable	Water	6020B	768544
680-232196-2	AF56331	Total Recoverable	Water	6020B	768544
680-232196-3	AF56332	Total Recoverable	Water	6020B	768544
680-232196-4	AF56395	Total Recoverable	Water	6020B	768544
680-232196-5	AF56396	Total Recoverable	Water	6020B	768544
680-232196-6	AF56397	Total Recoverable	Water	6020B	768544
680-232196-7	AF56400	Total Recoverable	Water	6020B	768544

Eurofins Savannah

Page 90 of 121

2

-

5

7

9

10

12

13

II.

Client: South Carolina Public Service Authority Project/Site: 125915/JM02.09.G01.1/36500

Job ID: 680-232196-1

Metals (Continued)

Analysis Batch: 768945 (Continued)

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
680-232196-8	AF56442	Total Recoverable	Water	6020B	768544
680-232196-9	AF56443	Total Recoverable	Water	6020B	768544
680-232196-10	AF56402	Total Recoverable	Water	6020B	768544
680-232196-11	AF56403	Total Recoverable	Water	6020B	768544
680-232196-12	AF56404	Total Recoverable	Water	6020B	768544
680-232196-13	AF56434	Total Recoverable	Water	6020B	768544
680-232196-14	AF56433	Total Recoverable	Water	6020B	768544
680-232196-15	AF56435	Total Recoverable	Water	6020B	768544
680-232196-16	AF56436	Total Recoverable	Water	6020B	768544
680-232196-17	AF56437	Total Recoverable	Water	6020B	768544
680-232196-18	AF56438	Total Recoverable	Water	6020B	768544
680-232196-19	AF56409	Total Recoverable	Water	6020B	768544
680-232196-20	AF56410	Total Recoverable	Water	6020B	768544
680-232196-21	AF56411	Total Recoverable	Water	6020B	768552
680-232196-22	AF56412	Total Recoverable	Water	6020B	768552
680-232196-23	AF56413	Total Recoverable	Water	6020B	768552
680-232196-24	AF56430	Total Recoverable	Water	6020B	768552
680-232196-25	AF56406	Total Recoverable	Water	6020B	768552
680-232196-26	AF56407	Total Recoverable	Water	6020B	768552
680-232196-27	AF56418	Total Recoverable	Water	6020B	768552
680-232196-28	AF56422	Total Recoverable	Water	6020B	768552
680-232196-29	AF56419	Total Recoverable	Water	6020B	768552
680-232196-30	AF56425	Total Recoverable	Water	6020B	768552
680-232196-31	AF56426	Total Recoverable	Water	6020B	768552
680-232196-32	AF56427	Total Recoverable	Water	6020B	768552 768552
680-232196-33	AF56408	Total Recoverable	Water	6020B	768552 768552
680-232196-34	AF56415	Total Recoverable	Water	6020B	768552
680-232196-35	AF56417	Total Recoverable	Water	6020B	768552
680-232196-36	AF56417	Total Recoverable	Water	6020B	768552
680-232196-37	AF56429	Total Recoverable	Water	6020B	768552
680-232196-38	AF56421	Total Recoverable	Water	6020B	768552
680-232196-39	AF56428	Total Recoverable	Water	6020B	768540
680-232196-40	AF56439	Total Recoverable	Water	6020B	768552
680-232196-41	AF56441	Total Recoverable	Water	6020B	768552
680-232196-42	AF56414	Total Recoverable	Water	6020B	768613
680-232196-43	AF56423	Total Recoverable	Water	6020B	768613
680-232196-44	AF56428	Total Recoverable	Water	6020B	768613
MB 680-768540/1-A	Method Blank	Total Recoverable	Water	6020B	768540
MB 680-768544/1-A	Method Blank	Total Recoverable	Water	6020B	768544
MB 680-768552/1-A	Method Blank	Total Recoverable	Water	6020B	768552
MB 680-768613/1-A	Method Blank	Total Recoverable	Water	6020B	768613
LCS 680-768540/2-A	Lab Control Sample	Total Recoverable	Water	6020B	768540
LCS 680-768544/2-A	Lab Control Sample	Total Recoverable	Water	6020B	768544
LCS 680-768552/2-A	Lab Control Sample	Total Recoverable	Water	6020B	768552
LCS 680-768613/2-A	Lab Control Sample	Total Recoverable	Water	6020B	768613
680-232196-1 MS	AF56394	Total Recoverable	Water	6020B	768544
680-232196-1 MSD	AF56394	Total Recoverable	Water	6020B	768544
680-232196-21 MS	AF56411	Total Recoverable	Water	6020B	768552
680-232196-21 MSD	AF56411	Total Recoverable	Water	6020B	768552
680-232196-42 MS	AF56414	Total Recoverable	Water	6020B	768613
680-232196-42 MSD	AF56414	Total Recoverable	Water	6020B	768613

Eurofins Savannah

2

J

5

7

Q

10

12

13

L

Client: South Carolina Public Service Authority Project/Site: 125915/JM02.09.G01.1/36500

Job ID: 680-232196-1

Metals

Analysis Batch: 769014

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
680-232196-1	AF56394	Total Recoverable	Water	6020B	768544
680-232196-2	AF56331	Total Recoverable	Water	6020B	768544
680-232196-3	AF56332	Total Recoverable	Water	6020B	768544
680-232196-4	AF56395	Total Recoverable	Water	6020B	768544
680-232196-5	AF56396	Total Recoverable	Water	6020B	768544
680-232196-6	AF56397	Total Recoverable	Water	6020B	768544
680-232196-39	AF56428	Total Recoverable	Water	6020B	768540
MB 680-768544/1-A	Method Blank	Total Recoverable	Water	6020B	768544
LCS 680-768544/2-A	Lab Control Sample	Total Recoverable	Water	6020B	768544
680-232196-1 MS	AF56394	Total Recoverable	Water	6020B	768544
680-232196-1 MSD	AF56394	Total Recoverable	Water	6020B	768544

Analysis Batch: 769167

 Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
680-232196-19	AF56409	Total Recoverable	Water	6010D	768857
680-232196-20	AF56410	Total Recoverable	Water	6010D	768857
680-232196-21	AF56411	Total Recoverable	Water	6010D	768858
680-232196-21 MS	AF56411	Total Recoverable	Water	6010D	768858
680-232196-21 MSD	AF56411	Total Recoverable	Water	6010D	768858

Lab Chronicle

Client: South Carolina Public Service Authority Project/Site: 125915/JM02.09.G01.1/36500

Job ID: 680-232196-1

Lab Sample ID: 680-232196-1

Lab Sample ID: 680-232196-2

Matrix: Water

Client Sample ID: AF56394

Date Collected: 02/14/23 12:33 Date Received: 03/17/23 10:30

	Batch	Batch		Dilution	Batch			Prepared
Prep Type	Туре	Method	Run	Factor	Number	Analyst	Lab	or Analyzed
Total Recoverable	Prep	3005A			768857	BJB	EET SAV	03/20/23 09:08
Total Recoverable	Analysis	6010D		1	768929	BJB	EET SAV	03/21/23 22:21
Total/NA	Prep	3010A			604813	LKP	EET SL	03/23/23 14:13
Total/NA	Analysis	6010D		1	605060	LKP	EET SL	03/24/23 13:50
Total Recoverable	Prep	3005A			768544	RR	EET SAV	03/20/23 09:08
Total Recoverable	Analysis	6020B		1	768945	BWR	EET SAV	03/21/23 18:05
Total Recoverable	Prep	3005A			768544	RR	EET SAV	03/20/23 09:08
Total Recoverable	Analysis	6020B		1	769014	BWR	EET SAV	03/22/23 09:30
Total/NA	Prep	7470A			768588	ВСВ	EET SAV	03/20/23 12:30
Total/NA	Analysis	7470A		1	768864	ВСВ	EET SAV	03/20/23 19:57

Client Sample ID: AF56331

Date Collected: 02/14/23 13:51

Date Received: 03/17/23 10:30

_	Batch	Batch		Dilution	Batch			Prepared
Prep Type	Type	Method	Run	Factor	Number	Analyst	Lab	or Analyzed
Total Recoverable	Prep	3005A			768857	BJB	EET SAV	03/20/23 09:08
Total Recoverable	Analysis	6010D		1	768929	BJB	EET SAV	03/21/23 22:31
Total/NA	Prep	3010A			604813	LKP	EET SL	03/23/23 14:13
Total/NA	Analysis	6010D		1	605060	LKP	EET SL	03/24/23 14:13
Total Recoverable	Prep	3005A			768544	RR	EET SAV	03/20/23 09:08
Total Recoverable	Analysis	6020B		1	768945	BWR	EET SAV	03/21/23 18:16
Total Recoverable	Prep	3005A			768544	RR	EET SAV	03/20/23 09:08
Total Recoverable	Analysis	6020B		1	769014	BWR	EET SAV	03/22/23 09:50
Total/NA	Prep	7470A			768590	ВСВ	EET SAV	03/20/23 12:45
Total/NA	Analysis	7470A		1	768864	BCB	EET SAV	03/21/23 13:40

Client Sample ID: AF56332

Date Collected: 02/14/23 15:22

Date Received: 03/17/23 10:30

	Batch	Batch		Dilution	Batch			Prepared
Prep Type	Туре	Method	Run	Factor	Number	Analyst	Lab	or Analyzed
Total Recoverable	Prep	3005A			768857	BJB	EET SAV	03/20/23 09:08
Total Recoverable	Analysis	6010D		1	768929	BJB	EET SAV	03/21/23 22:40
Total/NA	Prep	3010A			604813	LKP	EET SL	03/23/23 14:13
Total/NA	Analysis	6010D		1	605060	LKP	EET SL	03/24/23 14:18
Total Recoverable	Prep	3005A			768544	RR	EET SAV	03/20/23 09:08
Total Recoverable	Analysis	6020B		1	768945	BWR	EET SAV	03/21/23 18:20
Total Recoverable	Prep	3005A			768544	RR	EET SAV	03/20/23 09:08
Total Recoverable	Analysis	6020B		1	769014	BWR	EET SAV	03/22/23 09:54
Total/NA	Prep	7470A			768590	ВСВ	EET SAV	03/20/23 12:45
Total/NA	Analysis	7470A		1	768864	BCB	EET SAV	03/21/23 13:20

Eurofins Savannah

2

3

_

6

8

10

12

13

Lab Sample ID: 680-232196-3 Matrix: Water

Matrix: Water

Lab Chronicle

Client: South Carolina Public Service Authority Project/Site: 125915/JM02.09.G01.1/36500

Client Sample ID: AF56395

Job ID: 680-232196-1

Lab Sample ID: 680-232196-4

Date Collected: 02/15/23 11:36 Matrix: Water Date Received: 03/17/23 10:30

	Batch	Batch		Dilution	Batch			Prepared
Prep Type	Туре	Method	Run	Factor	Number	Analyst	Lab	or Analyzed
Total Recoverable	Prep	3005A			768857	BJB	EET SAV	03/20/23 09:08
Total Recoverable	Analysis	6010D		1	768929	BJB	EET SAV	03/21/23 22:44
Total/NA	Prep	3010A			604813	LKP	EET SL	03/23/23 14:13
Total/NA	Analysis	6010D		1	605060	LKP	EET SL	03/24/23 14:36
Total Recoverable	Prep	3005A			768544	RR	EET SAV	03/20/23 09:08
Total Recoverable	Analysis	6020B		1	768945	BWR	EET SAV	03/21/23 18:24
Total Recoverable	Prep	3005A			768544	RR	EET SAV	03/20/23 09:08
Total Recoverable	Analysis	6020B		1	769014	BWR	EET SAV	03/22/23 09:58
Total/NA	Prep	7470A			768590	ВСВ	EET SAV	03/20/23 12:45
Total/NA	Analysis	7470A		1	768864	BCB	EET SAV	03/21/23 12:56

Client Sample ID: AF56396 Lab Sample ID: 680-232196-5

Date Collected: 02/15/23 13:21 Matrix: Water

Date Received: 03/17/23 10:30

	Batch	Batch		Dilution	Batch			Prepared
Prep Type	Туре	Method	Run	Factor	Number	Analyst	Lab	or Analyzed
Total Recoverable	Prep	3005A			768857	BJB	EET SAV	03/20/23 09:08
Total Recoverable	Analysis	6010D		1	768929	ВЈВ	EET SAV	03/21/23 22:47
Total/NA	Prep	3010A			604813	LKP	EET SL	03/23/23 14:13
Total/NA	Analysis	6010D		1	605060	LKP	EET SL	03/24/23 14:41
Total Recoverable	Prep	3005A			768544	RR	EET SAV	03/20/23 09:08
Total Recoverable	Analysis	6020B		1	768945	BWR	EET SAV	03/21/23 18:28
Total Recoverable	Prep	3005A			768544	RR	EET SAV	03/20/23 09:08
Total Recoverable	Analysis	6020B		1	769014	BWR	EET SAV	03/22/23 10:02
Total/NA	Prep	7470A			768590	ВСВ	EET SAV	03/20/23 12:45
Total/NA	Analysis	7470A		1	768864	ВСВ	EET SAV	03/21/23 14:04

Client Sample ID: AF56397 Lab Sample ID: 680-232196-6

Date Collected: 02/16/23 10:53 Matrix: Water Date Received: 03/17/23 10:30

	Batch	Batch		Dilution	Batch			Prepared
Prep Type	Туре	Method	Run	Factor	Number	Analyst	Lab	or Analyzed
Total Recoverable	Prep	3005A			768857	BJB	EET SAV	03/20/23 09:08
Total Recoverable	Analysis	6010D		1	768929	BJB	EET SAV	03/21/23 22:50
Total/NA	Prep	3010A			604813	LKP	EET SL	03/23/23 14:13
Total/NA	Analysis	6010D		1	605060	LKP	EET SL	03/24/23 14:45
Total Recoverable	Prep	3005A			768544	RR	EET SAV	03/20/23 09:08
Total Recoverable	Analysis	6020B		1	768945	BWR	EET SAV	03/21/23 18:32
Total Recoverable	Prep	3005A			768544	RR	EET SAV	03/20/23 09:08
Total Recoverable	Analysis	6020B		1	769014	BWR	EET SAV	03/22/23 10:06
Total/NA	Prep	7470A			768590	ВСВ	EET SAV	03/20/23 12:45
Total/NA	Analysis	7470A		1	768864	BCB	EET SAV	03/21/23 12:43

Client: South Carolina Public Service Authority Project/Site: 125915/JM02.09.G01.1/36500

Client Sample ID: AF56400

Lab Sample ID: 680-232196-7 Date Collected: 02/16/23 12:55

Matrix: Water

Date Received: 03/17/23 10:30

	Batch	Batch		Dilution	Batch			Prepared
Prep Type	Туре	Method	Run	Factor	Number	Analyst	Lab	or Analyzed
Total Recoverable	Prep	3005A			768857	BJB	EET SAV	03/20/23 09:08
Total Recoverable	Analysis	6010D		1	768929	BJB	EET SAV	03/21/23 22:53
Total/NA	Prep	3010A			604813	LKP	EET SL	03/23/23 14:13
Total/NA	Analysis	6010D		1	605060	LKP	EET SL	03/24/23 14:50
Total Recoverable	Prep	3005A			768544	RR	EET SAV	03/20/23 09:08
Total Recoverable	Analysis	6020B		1	768945	BWR	EET SAV	03/21/23 18:44
Total/NA	Prep	7470A			768609	ВСВ	EET SAV	03/20/23 13:40
Total/NA	Analysis	7470A		1	768864	BCB	EET SAV	03/21/23 11:09

Client Sample ID: AF56442

Lab Sample ID: 680-232196-8

Matrix: Water

Date Collected: 02/16/23 14:07 Date Received: 03/17/23 10:30

Batch Batch Dilution Batch Prepared **Prep Type** Type Method Run Factor Number Analyst Lab or Analyzed 3005A EET SAV 03/20/23 09:08 Total Recoverable Prep 768857 BJB Total Recoverable 6010D 03/21/23 22:57 Analysis 768929 BJB **EET SAV** Total/NA Prep 3010A 604813 LKP EET SL 03/23/23 14:13 Total/NA Analysis 6010D 1 605060 LKP EET SL 03/24/23 15:08 3005A 03/20/23 09:08 Total Recoverable Prep 768544 RR **EET SAV** Total Recoverable Analysis 6020B 768945 BWR **EET SAV** 03/21/23 18:48 03/20/23 13:40 Total/NA Prep 7470A 768609 BCB **EET SAV** Total/NA Analysis 7470A 1 768864 BCB **EET SAV** 03/21/23 11:19

Client Sample ID: AF56443

Lab Sample ID: 680-232196-9 Date Collected: 02/16/23 14:12

Matrix: Water

Date Received: 03/17/23 10:30

	Batch	Batch		Dilution	Batch			Prepared
Prep Type	Туре	Method	Run	Factor	Number	Analyst	Lab	or Analyzed
Total Recoverable	Prep	3005A			768857	BJB	EET SAV	03/20/23 09:08
Total Recoverable	Analysis	6010D		1	768929	BJB	EET SAV	03/21/23 23:00
Total/NA	Prep	3010A			604813	LKP	EET SL	03/23/23 14:13
Total/NA	Analysis	6010D		1	605060	LKP	EET SL	03/24/23 15:13
Total Recoverable	Prep	3005A			768544	RR	EET SAV	03/20/23 09:08
Total Recoverable	Analysis	6020B		1	768945	BWR	EET SAV	03/21/23 18:52
Total/NA	Prep	7470A			768609	всв	EET SAV	03/20/23 13:40
Total/NA	Analysis	7470A		1	768864	всв	EET SAV	03/21/23 10:52

Client Sample ID: AF56402

Lab Sample ID: 680-232196-10

Matrix: Water

Date Collected: 02/27/23 12:47 Date Received: 03/17/23 10:30

	Batch	Batch		Dilution	Batch			Prepared
Prep Type	Type	Method	Run	Factor	Number	Analyst	Lab	or Analyzed
Total Recoverable	Prep	3005A			768857	BJB	EET SAV	03/20/23 09:08
Total Recoverable	Analysis	6010D		1	768929	BJB	EET SAV	03/21/23 23:03

Client: South Carolina Public Service Authority

Project/Site: 125915/JM02.09.G01.1/36500

Client Sample ID: AF56402

Date Collected: 02/27/23 12:47 Date Received: 03/17/23 10:30

Lab Sample ID: 680-232196-10

Matrix: Water

	Batch	Batch		Dilution	Batch			Prepared
Prep Type	Type	Method	Run	Factor	Number	Analyst	Lab	or Analyzed
Total/NA	Prep	3010A			604813	LKP	EET SL	03/23/23 14:13
Total/NA	Analysis	6010D		1	605060	LKP	EET SL	03/24/23 15:18
Total Recoverable	Prep	3005A			768544	RR	EET SAV	03/20/23 09:08
Total Recoverable	Analysis	6020B		1	768945	BWR	EET SAV	03/21/23 18:56
Total/NA	Prep	7470A			768609	ВСВ	EET SAV	03/20/23 13:40
Total/NA	Analysis	7470A		1	768864	BCB	EET SAV	03/21/23 10:42

Client Sample ID: AF56403

Date Collected: 02/27/23 09:57 Date Received: 03/17/23 10:30 Lab Sample ID: 680-232196-11

Matrix: Water

	Batch	Batch		Dilution	Batch			Prepared
Prep Type	Type	Method	Run	Factor	Number	Analyst	Lab	or Analyzed
Total Recoverable	Prep	3005A			768857	BJB	EET SAV	03/20/23 09:08
Total Recoverable	Analysis	6010D		1	768929	BJB	EET SAV	03/21/23 23:06
Total/NA	Prep	3010A			604813	LKP	EET SL	03/23/23 14:13
Total/NA	Analysis	6010D		1	605060	LKP	EET SL	03/24/23 15:22
Total Recoverable	Prep	3005A			768544	RR	EET SAV	03/20/23 09:08
Total Recoverable	Analysis	6020B		1	768945	BWR	EET SAV	03/21/23 19:00
Total/NA	Prep	7470A			768609	ВСВ	EET SAV	03/20/23 13:40
Total/NA	Analysis	7470A		1	768864	BCB	EET SAV	03/21/23 10:32

Client Sample ID: AF56404

Date Collected: 02/27/23 10:02

Date Received: 03/17/23 10:30

Lab Sample ID: 680-232196-12	Lab	Sample	ID:	680-232196-12	
------------------------------	-----	--------	-----	---------------	--

Matrix: Water

	Batch	Batch		Dilution	Batch			Prepared
Prep Type	Туре	Method	Run	Factor	Number	Analyst	Lab	or Analyzed
Total Recoverable	Prep	3005A			768857	BJB	EET SAV	03/20/23 09:08
Total Recoverable	Analysis	6010D		1	768929	BJB	EET SAV	03/21/23 23:10
Total/NA	Prep	3010A			604813	LKP	EET SL	03/23/23 14:13
Total/NA	Analysis	6010D		1	605060	LKP	EET SL	03/24/23 15:27
Total Recoverable	Prep	3005A			768544	RR	EET SAV	03/20/23 09:08
Total Recoverable	Analysis	6020B		1	768945	BWR	EET SAV	03/21/23 19:03
Total/NA	Prep	7470A			768590	ВСВ	EET SAV	03/20/23 12:45
Total/NA	Analysis	7470A		1	768864	BCB	EET SAV	03/21/23 13:50

Client Sample ID: AF56434

Date Collected: 02/27/23 15:44

Date Received: 03/17/23 10:30

1 - 1-	0 1 -	ID.	000	2204	00 40
Lab	Sample	: טו	680-	2321	96-13

Matrix: Water

	Batch	Batch		Dilution	Batch			Prepared
Prep Type	Туре	Method	Run	Factor	Number	Analyst	Lab	or Analyzed
Total Recoverable	Prep	3005A			768857	BJB	EET SAV	03/20/23 09:08
Total Recoverable	Analysis	6010D		1	768929	BJB	EET SAV	03/21/23 23:19
Total/NA	Prep	3010A			604813	LKP	EET SL	03/23/23 14:13
Total/NA	Analysis	6010D		1	605060	LKP	EET SL	03/24/23 15:32

Client: South Carolina Public Service Authority Project/Site: 125915/JM02.09.G01.1/36500

Client Sample ID: AF56434

Lab Sample ID: 680-232196-13 Date Collected: 02/27/23 15:44

Matrix: Water

Date Received: 03/17/23 10:30

	Batch	Batch		Dilution	Batch			Prepared
Prep Type	Туре	Method	Run	Factor	Number	Analyst	Lab	or Analyzed
Total Recoverable	Prep	3005A			768544	RR	EET SAV	03/20/23 09:08
Total Recoverable	Analysis	6020B		1	768945	BWR	EET SAV	03/21/23 19:07
Total/NA	Prep	7470A			768590	ВСВ	EET SAV	03/20/23 12:45
Total/NA	Analysis	7470A		1	768864	ВСВ	EET SAV	03/21/23 13:36

Client Sample ID: AF56433

Date Received: 03/17/23 10:30

Lab Sample ID: 680-232196-14 Date Collected: 02/28/23 12:58

Matrix: Water

	Batch	Batch		Dilution	Batch			Prepared
Prep Type	Туре	Method	Run	Factor	Number	Analyst	Lab	or Analyzed
Total Recoverable	Prep	3005A			768857	BJB	EET SAV	03/20/23 09:08
Total Recoverable	Analysis	6010D		1	768929	BJB	EET SAV	03/21/23 23:23
Total/NA	Prep	3010A			604813	LKP	EET SL	03/23/23 14:13
Total/NA	Analysis	6010D		1	605060	LKP	EET SL	03/24/23 15:37
Total Recoverable	Prep	3005A			768544	RR	EET SAV	03/20/23 09:08
Total Recoverable	Analysis	6020B		1	768945	BWR	EET SAV	03/21/23 19:11
Total/NA	Prep	7470A			768590	ВСВ	EET SAV	03/20/23 12:45
Total/NA	Analysis	7470A		1	768864	BCB	EET SAV	03/21/23 13:16

Client Sample ID: AF56435

Lab Sample ID: 680-232196-15 Date Collected: 02/28/23 11:44 Matrix: Water

Date Received: 03/17/23 10:30

	Batch	Batch		Dilution	Batch			Prepared
Prep Type	Туре	Method	Run	Factor	Number	Analyst	Lab	or Analyzed
Total Recoverable	Prep	3005A			768857	BJB	EET SAV	03/20/23 09:08
Total Recoverable	Analysis	6010D		1	768929	BJB	EET SAV	03/21/23 23:26
Total/NA	Prep	3010A			604813	LKP	EET SL	03/23/23 14:13
Total/NA	Analysis	6010D		1	605060	LKP	EET SL	03/24/23 15:42
Total Recoverable	Prep	3005A			768544	RR	EET SAV	03/20/23 09:08
Total Recoverable	Analysis	6020B		1	768945	BWR	EET SAV	03/21/23 19:15
Total/NA	Prep	7470A			768590	ВСВ	EET SAV	03/20/23 12:45
Total/NA	Analysis	7470A		1	768864	всв	EET SAV	03/21/23 13:06

Client Sample ID: AF56436

Lab Sample ID: 680-232196-16 Date Collected: 02/28/23 10:19

Date Received: 03/17/23 10:30

	Batch	Batch		Dilution	Batch			Prepared
Prep Type	Type	Method	Run	Factor	Number	Analyst	Lab	or Analyzed
Total Recoverable	Prep	3005A			768857	BJB	EET SAV	03/20/23 09:08
Total Recoverable	Analysis	6010D		1	768929	BJB	EET SAV	03/21/23 23:29
Total/NA	Prep	3010A			604813	LKP	EET SL	03/23/23 14:13
Total/NA	Analysis	6010D		1	605060	LKP	EET SL	03/24/23 15:46
Total Recoverable	Prep	3005A			768544	RR	EET SAV	03/20/23 09:08
Total Recoverable	Analysis	6020B		1	768945	BWR	EET SAV	03/21/23 19:19

Eurofins Savannah

Page 97 of 121

Matrix: Water

Client: South Carolina Public Service Authority Project/Site: 125915/JM02.09.G01.1/36500

Client Sample ID: AF56436

Lab Sample ID: 680-232196-16 Date Collected: 02/28/23 10:19

Matrix: Water

Date Received: 03/17/23 10:30

	Batch	Batch		Dilution	Batch			Prepared
Prep Type	Туре	Method	Run	Factor	Number	Analyst	Lab	or Analyzed
Total/NA	Prep	7470A			768590	BCB	EET SAV	03/20/23 12:45
Total/NA	Analysis	7470A		1	768864	ВСВ	EET SAV	03/21/23 12:39

Client Sample ID: AF56437

Lab Sample ID: 680-232196-17

Matrix: Water

Date Collected: 02/28/23 10:24 Date Received: 03/17/23 10:30

	Batch	Batch		Dilution	Batch			Prepared
Prep Type	Туре	Method	Run	Factor	Number	Analyst	Lab	or Analyzed
Total Recoverable	Prep	3005A			768857	BJB	EET SAV	03/20/23 09:08
Total Recoverable	Analysis	6010D		1	768929	BJB	EET SAV	03/21/23 23:32
Total/NA	Prep	3010A			604813	LKP	EET SL	03/23/23 14:13
Total/NA	Analysis	6010D		1	605060	LKP	EET SL	03/24/23 15:51
Total Recoverable	Prep	3005A			768544	RR	EET SAV	03/20/23 09:08
Total Recoverable	Analysis	6020B		1	768945	BWR	EET SAV	03/21/23 19:31
Total/NA	Prep	7470A			768609	ВСВ	EET SAV	03/20/23 13:40
Total/NA	Analysis	7470A		1	768864	BCB	EET SAV	03/21/23 11:35

Client Sample ID: AF56438

Lab Sample ID: 680-232196-18 Date Collected: 02/28/23 14:31

Matrix: Water

Date Received: 03/17/23 10:30

	Batch	Batch		Dilution	Batch			Prepared
Prep Type	Туре	Method	Run	Factor	Number	Analyst	Lab	or Analyzed
Total Recoverable	Prep	3005A			768857	BJB	EET SAV	03/20/23 09:08
Total Recoverable	Analysis	6010D		1	768929	BJB	EET SAV	03/21/23 23:36
Total/NA	Prep	3010A			604813	LKP	EET SL	03/23/23 14:13
Total/NA	Analysis	6010D		1	605060	LKP	EET SL	03/24/23 16:10
Total Recoverable	Prep	3005A			768544	RR	EET SAV	03/20/23 09:08
Total Recoverable	Analysis	6020B		1	768945	BWR	EET SAV	03/21/23 19:35
Total/NA	Prep	7470A			768609	ВСВ	EET SAV	03/20/23 13:40
Total/NA	Analysis	7470A		1	768864	ВСВ	EET SAV	03/21/23 11:32

Client Sample ID: AF56409

Lab Sample ID: 680-232196-19 Date Collected: 03/06/23 12:14 Matrix: Water

Date Received: 03/17/23 10:30

	Batch	Batch		Dilution	Batch			Prepared
Prep Type	Туре	Method	Run	Factor	Number	Analyst	Lab	or Analyzed
Total Recoverable	Prep	3005A			768857	BJB	EET SAV	03/20/23 09:08
Total Recoverable	Analysis	6010D		1	768929	BJB	EET SAV	03/21/23 23:39
Total Recoverable	Prep	3005A			768857	BJB	EET SAV	03/20/23 09:08
Total Recoverable	Analysis	6010D		10	769167	BJB	EET SAV	03/22/23 11:50
Total/NA	Prep	3010A			604813	LKP	EET SL	03/23/23 14:13
Total/NA	Analysis	6010D		1	605060	LKP	EET SL	03/24/23 16:14
Total Recoverable	Prep	3005A			768544	RR	EET SAV	03/20/23 09:08
Total Recoverable	Analysis	6020B		1	768945	BWR	EET SAV	03/21/23 19:39

Client: South Carolina Public Service Authority Project/Site: 125915/JM02.09.G01.1/36500

Client Sample ID: AF56409

Lab Sample ID: 680-232196-19 Date Collected: 03/06/23 12:14

Matrix: Water

Date Received: 03/17/23 10:30

	Batch	Batch		Dilution	Batch			Prepared
Prep Type	Type	Method	Run	Factor	Number	Analyst	Lab	or Analyzed
Total/NA	Prep	7470A			768609	ВСВ	EET SAV	03/20/23 13:40
Total/NA	Analysis	7470A		1	768864	BCB	EET SAV	03/21/23 11:12

Client Sample ID: AF56410 Lab Sample ID: 680-232196-20

Matrix: Water

Date Collected: 03/06/23 12:19 Date Received: 03/17/23 10:30

	Batch	Batch		Dilution	Batch			Prepared
Prep Type	Туре	Method	Run	Factor	Number	Analyst	Lab	or Analyzed
Total Recoverable	Prep	3005A			768857	BJB	EET SAV	03/20/23 09:08
Total Recoverable	Analysis	6010D		1	768929	BJB	EET SAV	03/21/23 23:42
Total Recoverable	Prep	3005A			768857	BJB	EET SAV	03/20/23 09:08
Total Recoverable	Analysis	6010D		10	769167	BJB	EET SAV	03/22/23 11:53
Total/NA	Prep	3010A			604813	LKP	EET SL	03/23/23 14:13
Total/NA	Analysis	6010D		1	605060	LKP	EET SL	03/24/23 16:19
Total Recoverable	Prep	3005A			768544	RR	EET SAV	03/20/23 09:08
Total Recoverable	Analysis	6020B		1	768945	BWR	EET SAV	03/21/23 19:43
Total/NA	Prep	7470A			768609	ВСВ	EET SAV	03/20/23 13:40
Total/NA	Analysis	7470A		1	768864	BCB	EET SAV	03/21/23 10:59

Client Sample ID: AF56411 Lab Sample ID: 680-232196-21

Date Collected: 03/06/23 11:08 Matrix: Water Date Received: 03/17/23 10:30

	Batch	Batch		Dilution	Batch			Prepared
Prep Type	Туре	Method	Run	Factor	Number	Analyst	Lab	or Analyzed
Total Recoverable	Prep	3005A			768858	BJB	EET SAV	03/20/23 09:08
Total Recoverable	Analysis	6010D		1	768929	BJB	EET SAV	03/21/23 20:50
Total Recoverable	Prep	3005A			768858	BJB	EET SAV	03/20/23 09:08
Total Recoverable	Analysis	6010D		10	769167	BJB	EET SAV	03/22/23 11:56
Total/NA	Prep	3010A			604815	LKP	EET SL	03/23/23 14:15
Total/NA	Analysis	6010D		1	605060	LKP	EET SL	03/24/23 16:42
Total Recoverable	Prep	3005A			768552	RR	EET SAV	03/20/23 09:08
Total Recoverable	Analysis	6020B		1	768945	BWR	EET SAV	03/21/23 20:02
Total/NA	Prep	7470A			768609	ВСВ	EET SAV	03/20/23 13:40
Total/NA	Analysis	7470A		1	768864	BCB	EET SAV	03/21/23 10:38

Client Sample ID: AF56412 Lab Sample ID: 680-232196-22

Date Collected: 03/06/23 15:15 Matrix: Water Date Received: 03/17/23 10:30

	Batch	Batch		Dilution	Batch			Prepared
Prep Type	Type	Method	Run	Factor	Number	Analyst	Lab	or Analyzed
Total Recoverable	Prep	3005A			768858	BJB	EET SAV	03/20/23 09:08
Total Recoverable	Analysis	6010D		1	768929	BJB	EET SAV	03/21/23 21:00
Total/NA	Prep	3010A			604815	LKP	EET SL	03/23/23 14:15
Total/NA	Analysis	6010D		1	605060	LKP	EET SL	03/24/23 16:51

Client: South Carolina Public Service Authority Project/Site: 125915/JM02.09.G01.1/36500

Client Sample ID: AF56412

Date Collected: 03/06/23 15:15 Date Received: 03/17/23 10:30

Lab Sample ID: 680-232196-22

Matrix: Water

	Batch	Batch		Dilution	Batch			Prepared
Prep Type	Type	Method	Run	Factor	Number	Analyst	Lab	or Analyzed
Total Recoverable	Prep	3005A			768552	RR	EET SAV	03/20/23 09:08
Total Recoverable	Analysis	6020B		1	768945	BWR	EET SAV	03/21/23 20:14
Total/NA	Prep	7470A			768609	ВСВ	EET SAV	03/20/23 13:40
_Total/NA	Analysis	7470A		1	768864	BCB	EET SAV	03/21/23 14:20

Client Sample ID: AF56413

Lab Sample ID: 680-232196-23 Date Collected: 03/06/23 13:41

Matrix: Water

Date Received: 03/17/23 10:30

	Batch	Batch		Dilution	Batch			Prepared
Prep Type	Туре	Method	Run	Factor	Number	Analyst	Lab	or Analyzed
Total Recoverable	Prep	3005A			768858	BJB	EET SAV	03/20/23 09:08
Total Recoverable	Analysis	6010D		1	768929	BJB	EET SAV	03/21/23 21:03
Total/NA	Prep	3010A			604815	LKP	EET SL	03/23/23 14:15
Total/NA	Analysis	6010D		1	605060	LKP	EET SL	03/24/23 17:23
Total Recoverable	Prep	3005A			768552	RR	EET SAV	03/20/23 09:08
Total Recoverable	Analysis	6020B		1	768945	BWR	EET SAV	03/21/23 20:18
Total/NA	Prep	7470A			768590	ВСВ	EET SAV	03/20/23 12:45
Total/NA	Analysis	7470A		1	768864	BCB	EET SAV	03/21/23 13:46

Client Sample ID: AF56430

Date Received: 03/17/23 10:30

Lab Sample ID: 680-232196-24 Date Collected: 03/06/23 10:10 Matrix: Water

Batch Batch Dilution Batch Prepared or Analyzed **Prep Type** Type Method Run Factor Number Analyst Lab Total Recoverable 3005A 768858 BJB EET SAV 03/20/23 09:08 Prep Total Recoverable Analysis 6010D 768929 BJB **EET SAV** 03/21/23 21:06 1 Total/NA 3010A EET SL 03/23/23 14:15 Prep 604815 LKP Total/NA Analysis 6010D 1 605060 LKP EET SL 03/24/23 17:28 3005A 03/20/23 09:08 Total Recoverable Prep 768552 RR **EET SAV** Total Recoverable 6020B 768945 BWR **EET SAV** 03/21/23 20:22 Analysis Total/NA 7470A 768590 BCB EET SAV 03/20/23 12:45 Prep 768864 BCB Total/NA 7470A **EET SAV** 03/21/23 14:10 Analysis 1

Client Sample ID: AF56406

Date Collected: 03/09/23 10:29 Matrix: Water

Date Received: 03/17/23 10:30

	Batch	Batch		Dilution	Batch			Prepared
Prep Type	Туре	Method	Run	Factor	Number	Analyst	Lab	or Analyzed
Total Recoverable	Prep	3005A			768858	BJB	EET SAV	03/20/23 09:08
Total Recoverable	Analysis	6010D		1	768929	BJB	EET SAV	03/21/23 21:09
Total/NA	Prep	3010A			604815	LKP	EET SL	03/23/23 14:15
Total/NA	Analysis	6010D		1	605060	LKP	EET SL	03/24/23 17:33
Total Recoverable	Prep	3005A			768552	RR	EET SAV	03/20/23 09:08
Total Recoverable	Analysis	6020B		1	768945	BWR	EET SAV	03/21/23 20:26

Eurofins Savannah

Lab Sample ID: 680-232196-25

Client: South Carolina Public Service Authority

Project/Site: 125915/JM02.09.G01.1/36500

Client Sample ID: AF56406

Date Received: 03/17/23 10:30

Lab Sample ID: 680-232196-25 Date Collected: 03/09/23 10:29

Matrix: Water

	Batch	Batch		Dilution	Batch			Prepared
Prep Type	Type	Method	Run	Factor	Number	Analyst	Lab	or Analyzed
Total/NA	Prep	7470A			768590	ВСВ	EET SAV	03/20/23 12:45
Total/NA	Analysis	7470A		1	768864	всв	EET SAV	03/21/23 13:13

Client Sample ID: AF56407

Lab Sample ID: 680-232196-26 Date Collected: 03/09/23 10:34

Matrix: Water

Date Received: 03/17/23 10:30

	Batch	Batch		Dilution	Batch			Prepared
Prep Type	Type	Method	Run	Factor	Number	Analyst	Lab	or Analyzed
Total Recoverable	Prep	3005A			768858	BJB	EET SAV	03/20/23 09:08
Total Recoverable	Analysis	6010D		1	768929	BJB	EET SAV	03/21/23 21:13
Total/NA	Prep	3010A			604815	LKP	EET SL	03/23/23 14:15
Total/NA	Analysis	6010D		1	605060	LKP	EET SL	03/24/23 17:38
Total Recoverable	Prep	3005A			768552	RR	EET SAV	03/20/23 09:08
Total Recoverable	Analysis	6020B		1	768945	BWR	EET SAV	03/21/23 20:30
Total/NA	Prep	7470A			768590	ВСВ	EET SAV	03/20/23 12:45
Total/NA	Analysis	7470A		1	768864	BCB	EET SAV	03/21/23 13:03

Client Sample ID: AF56418

Lab Sample ID: 680-232196-27 Date Collected: 03/09/23 12:07

Matrix: Water

Date Received: 03/17/23 10:30

	Batch	Batch		Dilution	Batch			Prepared
Prep Type	Туре	Method	Run	Factor	Number	Analyst	Lab	or Analyzed
Total Recoverable	Prep	3005A			768858	BJB	EET SAV	03/20/23 09:08
Total Recoverable	Analysis	6010D		1	768929	BJB	EET SAV	03/21/23 21:22
Total/NA	Prep	3010A			604815	LKP	EET SL	03/23/23 14:15
Total/NA	Analysis	6010D		1	605060	LKP	EET SL	03/24/23 17:42
Total Recoverable	Prep	3005A			768552	RR	EET SAV	03/20/23 09:08
Total Recoverable	Analysis	6020B		1	768945	BWR	EET SAV	03/21/23 20:41
Total/NA	Prep	7470A			768590	ВСВ	EET SAV	03/20/23 12:45
Total/NA	Analysis	7470A		1	768864	BCB	EET SAV	03/21/23 12:36

Client Sample ID: AF56422

Lab Sample ID: 680-232196-28

Date Collected: 03/09/23 13:19 Matrix: Water Date Received: 03/17/23 10:30

	Batch	Batch		Dilution	Batch			Prepared
Prep Type	Туре	Method	Run	Factor	Number	Analyst	Lab	or Analyzed
Total Recoverable	Prep	3005A			768858	BJB	EET SAV	03/20/23 09:08
Total Recoverable	Analysis	6010D		1	768929	BJB	EET SAV	03/21/23 21:26
Total/NA	Prep	3010A			604815	LKP	EET SL	03/23/23 14:15
Total/NA	Analysis	6010D		1	605060	LKP	EET SL	03/24/23 17:47
Total Recoverable	Prep	3005A			768552	RR	EET SAV	03/20/23 09:08
Total Recoverable	Analysis	6020B		1	768945	BWR	EET SAV	03/21/23 20:45
Total/NA	Prep	7470A			768609	ВСВ	EET SAV	03/20/23 13:40
Total/NA	Analysis	7470A		1	768864	BCB	EET SAV	03/21/23 14:24

Client: South Carolina Public Service Authority Project/Site: 125915/JM02.09.G01.1/36500

Client Sample ID: AF56419

Date Collected: 03/07/23 14:51 Date Received: 03/17/23 10:30 Lab Sample ID: 680-232196-29

Matrix: Water

	Batch	Batch		Dilution	Batch			Prepared
Prep Type	Туре	Method	Run	Factor	Number	Analyst	Lab	or Analyzed
Total Recoverable	Prep	3005A			768858	BJB	EET SAV	03/20/23 09:08
Total Recoverable	Analysis	6010D		1	768929	BJB	EET SAV	03/21/23 21:29
Total/NA	Prep	3010A			604815	LKP	EET SL	03/23/23 14:15
Total/NA	Analysis	6010D		1	605060	LKP	EET SL	03/24/23 17:52
Total Recoverable	Prep	3005A			768552	RR	EET SAV	03/20/23 09:08
Total Recoverable	Analysis	6020B		1	768945	BWR	EET SAV	03/21/23 20:49
Total/NA	Prep	7470A			768609	ВСВ	EET SAV	03/20/23 13:40
Total/NA	Analysis	7470A		1	768864	BCB	EET SAV	03/21/23 11:22

Client Sample ID: AF56425

Date Collected: 03/07/23 12:49

Lab Sample ID: 680-232196-30

Matrix: Water

Date Received: 03/17/23 10:30

	Batch	Batch		Dilution	Batch			Prepared
Prep Type	Type	Method	Run	Factor	Number	Analyst	Lab	or Analyzed
Total Recoverable	Prep	3005A		- <u> </u>	768858	BJB	EET SAV	03/20/23 09:08
Total Recoverable	Analysis	6010D		1	768929	BJB	EET SAV	03/21/23 21:32
Total/NA	Prep	3010A			604815	LKP	EET SL	03/23/23 14:15
Total/NA	Analysis	6010D		1	605060	LKP	EET SL	03/24/23 18:10
Total Recoverable	Prep	3005A			768552	RR	EET SAV	03/20/23 09:08
Total Recoverable	Analysis	6020B		1	768945	BWR	EET SAV	03/21/23 20:53
Total/NA	Prep	7470A			768609	ВСВ	EET SAV	03/20/23 13:40
Total/NA	Analysis	7470A		1	768864	BCB	EET SAV	03/21/23 11:05

Client Sample ID: AF56426

Date Collected: 03/07/23 10:22

Date Received: 03/17/23 10:30

Lab Sam	ple II	D: 68	30-232°	196-31
---------	--------	-------	---------	--------

Matrix: Water

	Batch	Batch		Dilution	Batch			Prepared
Prep Type	Туре	Method	Run	Factor	Number	Analyst	Lab	or Analyzed
Total Recoverable	Prep	3005A			768858	BJB	EET SAV	03/20/23 09:08
Total Recoverable	Analysis	6010D		1	768929	BJB	EET SAV	03/21/23 21:35
Total/NA	Prep	3010A			604815	LKP	EET SL	03/23/23 14:15
Total/NA	Analysis	6010D		1	605060	LKP	EET SL	03/24/23 18:15
Total Recoverable	Prep	3005A			768552	RR	EET SAV	03/20/23 09:08
Total Recoverable	Analysis	6020B		1	768945	BWR	EET SAV	03/21/23 20:57
Total/NA	Prep	7470A			768609	ВСВ	EET SAV	03/20/23 13:40
Total/NA	Analysis	7470A		1	768864	ВСВ	EET SAV	03/21/23 10:55

Client Sample ID: AF56427

Date Collected: 03/07/23 10:27

Date Received: 03/17/23 10:30

.ab Sample ID: 680-232196-	32	2
----------------------------	----	---

Matrix: Water

	Batch	Batch		Dilution	Batch			Prepared
Prep Type	Туре	Method	Run	Factor	Number	Analyst	Lab	or Analyzed
Total Recoverable	Prep	3005A			768858	BJB	EET SAV	03/20/23 09:08
Total Recoverable	Analysis	6010D		1	768929	BJB	EET SAV	03/21/23 21:39

Eurofins Savannah

2

3

6

8

3

11

12

1/

Client: South Carolina Public Service Authority Project/Site: 125915/JM02.09.G01.1/36500

Client Sample ID: AF56427

Date Collected: 03/07/23 10:27 Date Received: 03/17/23 10:30 Lab Sample ID: 680-232196-32

Matrix: Water

	Batch	Batch		Dilution	Batch			Prepared
Prep Type	Type	Method	Run	Factor	Number	Analyst	Lab	or Analyzed
Total/NA	Prep	3010A			604815	LKP	EET SL	03/23/23 14:15
Total/NA	Analysis	6010D		1	605060	LKP	EET SL	03/24/23 18:19
Total Recoverable	Prep	3005A			768552	RR	EET SAV	03/20/23 09:08
Total Recoverable	Analysis	6020B		1	768945	BWR	EET SAV	03/21/23 21:01
Total/NA	Prep	7470A			768609	ВСВ	EET SAV	03/20/23 13:40
Total/NA	Analysis	7470A		1	768864	BCB	EET SAV	03/21/23 10:35

Client Sample ID: AF56408

Date Collected: 03/08/23 13:38 Date Received: 03/17/23 10:30 Lab Sample ID: 680-232196-33

Matrix: Water

	Batch	Batch		Dilution	Batch			Prepared
Prep Type	Туре	Method	Run	Factor	Number	Analyst	Lab	or Analyzed
Total Recoverable	Prep	3005A			768858	BJB	EET SAV	03/20/23 09:08
Total Recoverable	Analysis	6010D		1	768929	BJB	EET SAV	03/21/23 21:42
Total/NA	Prep	3010A			604815	LKP	EET SL	03/23/23 14:15
Total/NA	Analysis	6010D		1	605060	LKP	EET SL	03/24/23 18:24
Total Recoverable	Prep	3005A			768552	RR	EET SAV	03/20/23 09:08
Total Recoverable	Analysis	6020B		1	768945	BWR	EET SAV	03/21/23 21:05
Total/NA	Prep	7470A			768609	ВСВ	EET SAV	03/20/23 13:40
Total/NA	Analysis	7470A		1	768864	всв	EET SAV	03/21/23 12:16

Client Sample ID: AF56415

Date Collected: 03/08/23 15:13

Date Received: 03/17/23 10:30

Lab Sample ID	: 680-	-232196	3-34
---------------	--------	---------	------

Matrix: Water

	Batch	Batch		Dilution	Batch			Prepared
Prep Type	Type	Method	Run	Factor	Number	Analyst	Lab	or Analyzed
Total Recoverable	Prep	3005A			768858	BJB	EET SAV	03/20/23 09:08
Total Recoverable	Analysis	6010D		1	768929	BJB	EET SAV	03/21/23 21:45
Total/NA	Prep	3010A			604815	LKP	EET SL	03/23/23 14:15
Total/NA	Analysis	6010D		1	605060	LKP	EET SL	03/24/23 18:29
Total Recoverable	Prep	3005A			768552	RR	EET SAV	03/20/23 09:08
Total Recoverable	Analysis	6020B		1	768945	BWR	EET SAV	03/21/23 21:09
Total/NA	Prep	7470A			768590	ВСВ	EET SAV	03/20/23 12:45
Total/NA	Analysis	7470A		1	768864	ВСВ	EET SAV	03/21/23 13:43

Client Sample ID: AF56416

Date Collected: 03/08/23 10:09

Date Received: 03/17/23 10:30

Lah	Sample	ID.	680-232196-35
Lav	Jailible	II.	000-232130-33

Matrix: Water

	Batch	Batch		Dilution	Batch			Prepared
Prep Type	Туре	Method	Run	Factor	Number	Analyst	Lab	or Analyzed
Total Recoverable	Prep	3005A			768858	BJB	EET SAV	03/20/23 09:08
Total Recoverable	Analysis	6010D		1	768929	BJB	EET SAV	03/21/23 21:48
Total/NA	Prep	3010A			604815	LKP	EET SL	03/23/23 14:15
Total/NA	Analysis	6010D		1	605060	LKP	EET SL	03/24/23 18:34

Eurofins Savannah

2

4

5

8

10

11 12

13

i

Client: South Carolina Public Service Authority

Project/Site: 125915/JM02.09.G01.1/36500

Client Sample ID: AF56416

Date Received: 03/17/23 10:30

Date Collected: 03/08/23 10:09

Lab Sample ID: 680-232196-35

Matrix: Water

	Batch	Batch		Dilution	Batch			Prepared
Prep Type	Туре	Method	Run	Factor	Number	Analyst	Lab	or Analyzed
Total Recoverable	Prep	3005A			768552	RR	EET SAV	03/20/23 09:08
Total Recoverable	Analysis	6020B		1	768945	BWR	EET SAV	03/21/23 21:13
Total/NA	Prep	7470A			768590	ВСВ	EET SAV	03/20/23 12:45
Total/NA	Analysis	7470A		1	768864	BCB	EET SAV	03/21/23 13:23

Client Sample ID: AF56417

Date Collected: 03/08/23 10:14

Date Received: 03/17/23 10:30

Lab Sample ID: 680-232196-36

Matrix: Water

	Batch	Batch		Dilution	Batch			Prepared
Prep Type	Туре	Method	Run	Factor	Number	Analyst	Lab	or Analyzed
Total Recoverable	Prep	3005A			768858	BJB	EET SAV	03/20/23 09:08
Total Recoverable	Analysis	6010D		1	768929	BJB	EET SAV	03/21/23 21:52
Total/NA	Prep	3010A			604815	LKP	EET SL	03/23/23 14:15
Total/NA	Analysis	6010D		1	605060	LKP	EET SL	03/24/23 18:38
Total Recoverable	Prep	3005A			768552	RR	EET SAV	03/20/23 09:08
Total Recoverable	Analysis	6020B		1	768945	BWR	EET SAV	03/21/23 21:17
Total/NA	Prep	7470A			768590	всв	EET SAV	03/20/23 12:45
Total/NA	Analysis	7470A		1	768864	ВСВ	EET SAV	03/21/23 13:10

Client Sample ID: AF56429

Date Collected: 03/08/23 12:12

Date Received: 03/17/23 10:30

Lab Sample ID: 680-232196-37

Matrix: Water

	Batch	Batch		Dilution	Batch			Prepared
Prep Type	Туре	Method	Run	Factor	Number	Analyst	Lab	or Analyzed
Total Recoverable	Prep	3005A			768858	BJB	EET SAV	03/20/23 09:08
Total Recoverable	Analysis	6010D		1	768929	BJB	EET SAV	03/21/23 22:01
Total/NA	Prep	3010A			604815	LKP	EET SL	03/23/23 14:15
Total/NA	Analysis	6010D		1	605060	LKP	EET SL	03/24/23 18:43
Total Recoverable	Prep	3005A			768552	RR	EET SAV	03/20/23 09:08
Total Recoverable	Analysis	6020B		1	768945	BWR	EET SAV	03/21/23 21:28
Total/NA	Prep	7470A			768590	ВСВ	EET SAV	03/20/23 12:45
Total/NA	Analysis	7470A		1	768864	BCB	EET SAV	03/21/23 14:07

Client Sample ID: AF56421

Date Collected: 03/01/23 14:41

Date Received: 03/17/23 10:30

Lab Sample ID: 680-232196-38

Matrix: Water

	Batch	Batch		Dilution	Batch			Prepared
Prep Type	Туре	Method	Run	Factor	Number	Analyst	Lab	or Analyzed
Total Recoverable	Prep	3005A			768858	BJB	EET SAV	03/20/23 09:08
Total Recoverable	Analysis	6010D		1	768929	BJB	EET SAV	03/21/23 22:05
Total/NA	Prep	3010A			604815	LKP	EET SL	03/23/23 14:15
Total/NA	Analysis	6010D		1	605060	LKP	EET SL	03/24/23 18:48
Total Recoverable	Prep	3005A			768552	RR	EET SAV	03/20/23 09:08
Total Recoverable	Analysis	6020B		1	768945	BWR	EET SAV	03/21/23 21:32

Client: South Carolina Public Service Authority Project/Site: 125915/JM02.09.G01.1/36500

Client Sample ID: AF56421

Lab Sample ID: 680-232196-38 Date Collected: 03/01/23 14:41

Matrix: Water

Date Received: 03/17/23 10:30

	Batch	Batch		Dilution	Batch			Prepared
Prep Type	Type	Method	Run	Factor	Number	Analyst	Lab	or Analyzed
Total/NA	Prep	7470A			768590	ВСВ	EET SAV	03/20/23 12:45
Total/NA	Analysis	7470A		1	768864	BCB	EET SAV	03/21/23 12:26

Client Sample ID: AF56428 Lab Sample ID: 680-232196-39

Matrix: Water

Date Collected: 03/01/23 13:37 Date Received: 03/17/23 10:30

	Batch	Batch		Dilution	Batch			Prepared
Prep Type	Type	Method	Run	Factor	Number	Analyst	Lab	or Analyzed
Total Recoverable	Prep	3005A		- -	768859	BJB	EET SAV	03/20/23 09:01
Total Recoverable	Analysis	6010D		1	768929	BJB	EET SAV	03/21/23 20:34
Total/NA	Prep	3010A			604815	LKP	EET SL	03/23/23 14:15
Total/NA	Analysis	6010D		1	605060	LKP	EET SL	03/24/23 18:52
Total Recoverable	Prep	3005A			768540	RR	EET SAV	03/20/23 09:01
Total Recoverable	Analysis	6020B		1	768945	BWR	EET SAV	03/21/23 17:45
Total Recoverable	Prep	3005A			768540	RR	EET SAV	03/20/23 09:01
Total Recoverable	Analysis	6020B		1	769014	BWR	EET SAV	03/22/23 09:19
Total/NA	Prep	7470A			768609	ВСВ	EET SAV	03/20/23 13:40
Total/NA	Analysis	7470A		1	768864	BCB	EET SAV	03/21/23 11:39

Client Sample ID: AF56439

Lab Sample ID: 680-232196-40

Matrix: Water

Date Collected: 03/01/23 10:22 Date Received: 03/17/23 10:30

	Batch	Batch		Dilution	Batch			Prepared
Prep Type	Type Method Run		Factor	Number	Analyst	Lab	or Analyzed	
Total Recoverable	Prep	3005A			768858	BJB	EET SAV	03/20/23 09:08
Total Recoverable	Analysis	6010D		1	768929	BJB	EET SAV	03/21/23 22:08
Total/NA	Prep	3010A			604815	LKP	EET SL	03/23/23 14:15
Total/NA	Analysis	6010D		1	605060	LKP	EET SL	03/24/23 19:11
Total Recoverable	Prep	3005A			768552	RR	EET SAV	03/20/23 09:08
Total Recoverable	Analysis	6020B		1	768945	BWR	EET SAV	03/21/23 21:36
Total/NA	Prep	7470A			768609	ВСВ	EET SAV	03/20/23 13:40
Total/NA	Analysis	7470A		1	768864	BCB	EET SAV	03/21/23 11:15

Client Sample ID: AF56441

Lab Sample ID: 680-232196-41 Date Collected: 03/01/23 11:45 Matrix: Water

Date Received: 03/17/23 10:30

_	Batch	Batch		Dilution	Batch			Prepared
Prep Type	Type	Method	Run	Factor	Number	Analyst	Lab	or Analyzed
Total Recoverable	Prep	3005A			768858	BJB	EET SAV	03/20/23 09:08
Total Recoverable	Analysis	6010D		1	768929	BJB	EET SAV	03/21/23 22:11
Total/NA	Prep	3010A			604817	LKP	EET SL	03/23/23 14:17
Total/NA	Analysis	6010D		1	605060	LKP	EET SL	03/24/23 19:24
Total Recoverable	Prep	3005A			768552	RR	EET SAV	03/20/23 09:08
Total Recoverable	Analysis	6020B		1	768945	BWR	EET SAV	03/21/23 21:40

Client: South Carolina Public Service Authority Project/Site: 125915/JM02.09.G01.1/36500

Client Sample ID: AF56441

Date Received: 03/17/23 10:30

Lab Sample ID: 680-232196-41 Date Collected: 03/01/23 11:45

Matrix: Water

Batch Batch Dilution Batch Prepared Prep Type Туре Method Run Factor Number Analyst Lab or Analyzed 7470A EET SAV 03/20/23 13:40 Total/NA Prep 768609 всв 03/21/23 11:02 Total/NA Analysis 7470A 1 768864 BCB **EET SAV**

Client Sample ID: AF56414

Lab Sample ID: 680-232196-42

Matrix: Water

Date Collected: 03/02/23 12:46 Date Received: 03/17/23 10:30

	Batch	Batch		Dilution	Batch			Prepared	
Prep Type	Туре	Method	Run	Factor	Number	Analyst	Lab	or Analyzed	
Total Recoverable	Prep	3005A			768608	RR	EET SAV	03/20/23 13:39	
Total Recoverable	Analysis	6010D		1	768929	BJB	EET SAV	03/21/23 10:48	
Total/NA	Prep	3010A			604817	LKP	EET SL	03/23/23 14:17	
Total/NA	Analysis	6010D		1	605060	LKP	EET SL	03/24/23 19:34	
Total Recoverable	Prep	3005A			768613	RR	EET SAV	03/20/23 13:39	
Total Recoverable	Analysis	6020B		1	768945	BWR	EET SAV	03/21/23 22:04	
Total/NA	Prep	7470A			768648	всв	EET SAV	03/20/23 15:26	
Total/NA	Analysis	7470A		1	768864	BCB	EET SAV	03/21/23 14:17	

Client Sample ID: AF56423

Date Received: 03/17/23 10:30

Lab Sample ID: 680-232196-43 Date Collected: 03/02/23 10:56 Matrix: Water

Batch Batch Dilution Batch Prepared **Prep Type** Type Method Run Factor Number Analyst Lab or Analyzed Total Recoverable 3005A 768608 RR EET SAV 03/20/23 13:39 Prep 6010D 03/21/23 10:58 Total Recoverable Analysis 768929 BJB **EET SAV** 1 Total/NA Prep 3010A 604817 LKP EET SL 03/23/23 14:17 Total/NA Analysis 6010D 605060 LKP EET SL 03/24/23 19:38 1 Total Recoverable 3005A EET SAV 03/20/23 13:39 Prep 768613 RR 03/21/23 22:15 Total Recoverable Analysis 6020B 768945 BWR **EET SAV** Total/NA 7470A 768648 BCB EET SAV 03/20/23 15:26 Prep 03/21/23 12:02 Total/NA 7470A 768864 BCB **EET SAV** Analysis 1

Client Sample ID: AF56428

Lab Sample ID: 680-232196-44 Date Collected: 03/02/23 00:00 Matrix: Water

Date Received: 03/17/23 10:30

	Batch	Batch		Dilution	Batch			Prepared
Prep Type	pe Type Method Run		Factor	Number	Analyst	Lab	or Analyzed	
Total Recoverable	Prep	3005A			768608	RR	EET SAV	03/20/23 13:39
Total Recoverable	Analysis	6010D		1	768929	BJB	EET SAV	03/21/23 11:01
Total/NA	Prep	3010A			604817	LKP	EET SL	03/23/23 14:17
Total/NA	Analysis	6010D		1	605060	LKP	EET SL	03/24/23 20:11
Total Recoverable	Prep	3005A			768613	RR	EET SAV	03/20/23 13:39
Total Recoverable	Analysis	6020B		1	768945	BWR	EET SAV	03/21/23 22:19
Total/NA	Prep	7470A			768648	ВСВ	EET SAV	03/20/23 15:26
Total/NA	Analysis	7470A		1	768864	BCB	EET SAV	03/21/23 14:14

Lab Chronicle

Client: South Carolina Public Service Authority Project/Site: 125915/JM02.09.G01.1/36500

Job ID: 680-232196-1

Laboratory References:

EET SAV = Eurofins Savannah, 5102 LaRoche Avenue, Savannah, GA 31404, TEL (912)354-7858 EET SL = Eurofins St. Louis, 13715 Rider Trail North, Earth City, MO 63045, TEL (314)298-8566

. .

3

4

5

7

8

9

44

Ш

13

114

Customer Email/Report Recipient:

Project/Task/Unit #:

Chain of Custody

Date Results Needed by:

Santee Cooper One Riverwood Drive Moneks Corner, SC 29461 Phone (843)761-8000 Ext. 5148 Fax. (843)761-4175

Rerun request for any flagged QC

TOTAL

LCWILLIA 125915 / JM02.09.601.1/ 36500 Yes No _@santeecooper.com Analysis Group Labworks ID# Sample Location/ Comments TOTAL METALS Matrix(see below) (Internal use Description **Collection Date** Collection Time Total # of container (see Method # Sample Collector Sem Se Preservative (s below) only) Grab (G) or Composite (C) Reporting limit Bottle type: (G/Plastic-P) Misc sample info Any other notes 2DM GW 2/14/23 1233 G SEE SHEET FOR RLS AF56374 WAP-1 WHERE APPLICABLE 1351 WBW-HG 7470 32 WBW-AI-I 1522 B-6010 2/15/23 1136 AF 56395 WAP-2 ALL OTHERS 6020. 1321 96 WAP-3 ZDM 2/16/23 1053 * PLEASE SEND SAMPLES A+56397 WAP-4 MG TO ST LOUIS FOR B. WAP-7 1255 400 442 WLF A2-6 1407 443 WLF AZ 6D 1412 Sample Receiving (Internal Use Only) __ Initial: TEMP (°C): Correct pH: Yes Preservative Lot#:

Employee#	03/19-12 Date	<i>ት 10:ን</i> ነ
Employee#	Date	Time
Employee#	Date	Time
000000000000000000000000000000000000000	Employee#	Employee# Date

Date/Time/Init for preservative:

, □ METALS (all)			Nutrients	MISC.	Gypsum	Coal	Flyash	<u>Oil</u>
Ag Bai As	≱Cu ≱Fe ≽K	Sb Sc □ Sn	□ TOC □ DOC □ TP/TPO4	□ BTEX □ Naphthalene □ THM/HAA	□ Wallboard Gypsum(all below) □ AIM	□ Ultimate □ % Moisture □ Ash	☐ Ammonia ☐ LOI ☐ % Carbon	☐ Trans. Oil Qual. ☐ %Moisture ☐ Color ☐ Acidity
⊠Ba ⊠Ba ⊠Be)⊉Li XMg XMn	□ Sr □ Ti □ Ti	□ NH3-N □ F □ Cl □ NO2	□ VOC □ Coll & Grease □ E. Coli □ Total Coliform □ pH □ Dissolved As □ Dissolved Fe □ Rad 226 □ Rad 228 □ PCB	☐ TOC ☐ Total metals ☐ Soluble Metals ☐ Purity (CaSO4)	☐ Sulfur ☐ BTUs ☐ Volatile Matter ☐ CHN	☐ Mineral Analysis ☐ Sieve ☐ % Moisture	☐ Dielectric Streng ☐ IFT ☐ Dissolved Gas ☐ Used Oil
∑ Ca X∮ Cd	MMo Na	□ V ØZn	□ Br □ NO3 □ SO4		□ % Moisture □ Sulfites □ pH	Other Tests: XRF Scan HGI	NPDES	☐ Flashpoint ☐ Metals in oil (As,Cd,Cr,Ni
∏′Co Ø Cr	XNi XPb)⊈Hg □ CrVI			☐ Chlorides ☐ Particle Size ☐ Sulfur	☐ Fineness ☐ Particulate Matter	☐ As ☐ TSS	Hg) ☐ TX ☐ GOFER

18.3/18.2

680-232196 Chain of Custody

Matrix codes. GW-groundwater, DW-drinking water, SW-surface water, WW-waste water, BW-boller water, C-coal, G-gypsum, FA-flyash, BA-bottom ash, M-misc (describe in comment section) Preservative code- 1=<4°C 2=HNO₃ 3=H₂SO₄ 4-HCl 5=Na₂S₂O₃ 6-Other (Specify)

Chain of Custody

TOTAL

Santee Cooper One Riverwood Drive Moncks Corner, SC 29461 Phone (843)761-8000 Ext., 5148 Fax. (843)761-4175

Labw (Inter	orks IE			@santeeco	oner com													Rerun request for any flagged QC				
(Inter	rnal use	D#											<u> J</u> M	02.0	9.GØ).[/	3 6500 (Yes)	Yes) No					
(Inter	rnal use	D#														Analysis Group						
Labworks ID # (Internal use only)		Sample Location/ Description		Collection Date	Collection Time	Sample Collector	Total # of containers		Bottle type: (Glass- G/Plastic-P)	Grab (G) or Composite (C)	Matrix(see below)	Preservative (see	Method Reportin Misc, sa Any other	ng limit mple info	TOTAL METALS SEE BELOW							
AF56402 WAP 9			2/27/23	1247	ZDM ML	_ (P	G	GW	2	SEE SH	HEET FOR RLS	X								
1	۴	o3	W	4P-10			0957								WHERE	APPLICABLE.						
	c	04	WAP-IOD			1002								HG-7470 B-6010								
	4	चप	WLF-A -2				1244								ALL OTHER	RS 602D ·	ornicas and the					
AF56433 WLF-H-1			2/28/23	3 1258								* PLEASE										
	2	35	WLF-AI-3				।।५५								BORON.	.,,,						
	1	36	WLF-AI-4				1019															
	â	37	WLF-A1-40			1024																
1 38 WLF-AI-5		<u> </u>	14-31	1	1					<u> </u>			1.									
Relinquished by: Employee# Date Synusum 35594 3/16/23 Relinquished by: Employee# Date		Time [3の Time	om			Employee # Date P1// 7 Employee # Date		7/23					, , ,	-								
Re	linguish	hed by:		Employee#	Date	Time	Receiv	ed by:		Employee # Date			Date	9	Time							
	,															Date/Time/Init for preserv	ative:					
A A A B A B A C A C	Q Ba		u c (g (n (o a		C DBTEX C Naphthalene TPO4 DTHM/HAA J-N Oil & Grease E Coli Total Coliform The Dissolved As Dissolved Fe Rad 226 Rad 228 DPCB			Gypsum Wallboard Gypsum(all below) AIM TOC Total metals Soluble Metals Purity (CaSO4) Moisture Sulfites PH Chlorides Particle Size			all tals Metals aSO4) are	Coal Ultimate Moisture Ash Sulfur BTUs Volatile Matter CHN Other Tests: XRF Scan HGI Fineness Particulate Matter Ash Oil & Grease Ash Oil & Grease Ash Oil & Grease Ash				issolve d Oll lashpoi fetals in As,Cd,(lg) X	Qual ure Streng d Gas nt n oil	(h				

santee cooper

Santee Cooper One Riverwood Drive Moneks Corner, SC 29461 Phone (843)761-8000 Ext. 5148 Fex (843)761-4175

TOTAL **Customer Email/Report Recipient:** Date Results Needed by: Project/Task/Unit #: Rerun request for any flagged QC JM02 09. GØ1.1/ 36500 LCWILLIA (Yes) @santeecooper.com No **Analysis Group** Labworks ID# Sample Location/ Comments Matrix(see below) Preservative (see below) TOTAL METAL **Collection Time** BELOW Bottle type: (Glass-G/Plastic-P) (Internal use Description Collection Date Method # Sample Collector Total # of contail only) Grab (G) or Composite (C) Reporting limit Misc. sample info Any other notes SEE SHEET FOR RUS ZOM 2 × 3/6/23 P GW 1214 G AF 56409 WAP -14 ML WHERE APPLICABLE 46-1470 10 WAP - 14D 1219 B-6010 BU OTHERS 6020. 1108 WAP-MA 1515 12 * PLEASE SEAD OUT WAP - 14B FOR BORDN. 13 WAP - I4C 1341 30 WAP-29 1010 AF56406 3/9/23 WAP-12 1029 07 WAP-12D 1034 18 WAP -18 1207 WAP-22 22 1319 Sample Receiving (Internal Use Only) Relinguished by: Employee# Received by: Date Time Employee # Date Time TEMP (°C):_ Initial: Des 03/19 35594 1300 Moun 3/16/23 /orz Correct pH: Yes No Relinquished by: Employee# Date Time Received by: Employee # Time Preservative Lot#: Relinquished by: Employee# Date Time Received by: Employee # Date Time Date/Time/init for preservative: ☐ METALS (all) **Nutrients** MISC. Gypsum Coal Oil Flyash Ag **⊅**(Cu 汝 Sb □ TOC D BTEX □ Wallboard □ Ultimate Trans. Oil Qual. ☐ Ammonia KA1 Ø.Fe ⊠ Se □ Naphthalene Gypsum(all %Moisture \Box DOC ☐ % Moisture O LOI □ THM/HAA ⊠ As XΚ □ Sn Color □ TP/TPO4 below) □ % Carbon ☐ Ash □ VOC Acidity □ NH3-N ☐ Sulfur ØВ (Li □ Sr ☐ Mineral Dielectric Strength ☐ Oil & Grease DTOC OF ☐ BTUs Analysis □ E. Coli **Д** Ва **⊠**Mg □ Ti □ Total metals D CI ☐ Total Coliform ☐ Volatile Matter ☐ Sieve Dissolved Gases ☐ Soluble Metals ⊠ Be 炒 Mn IT ØK □ NO2 □ CHN □ % Moisture Used Oil □pH □ Purity (CaSO4) Flashpoint
Metals in oil
(As,Cd,Cr,Ni,Pb
Hg) □ Dissolved As □ Br Other Tests: □ % Moisture ДМо Ж Са $\square V$ Dissolved Fe □ NO3 □ Sulfites ☐ XRF Scan **NPDES** Ø Cd X Zn Na ☐ Rad 226 □ SO4 □рН □ Oil & Grease □ Rad 228 ☐ Chlorides □ Fineness ⊠ Hg X Co Ni Ni **DPCB** ☐ Particle Size ☐ Particulate Matter GOFER D/Pb □ CrVI

Santee Cooper One Riverwood Drive Moncks Corner, SC 29461 Phone (843)761-8000 Ext. 5148 Fax (843)761-4175

TOTAL **Customer Email/Report Recipient:** Date Results Needed by: Project/Task/Unit #: Rerun request for any flagged QC LCWILLIA 125915 / JM02.09.601.1/ 36500 @santeecooper.com (Yes) No Analysis Group Labworks ID# Sample Location/ Comments MELOW Matrix(see below) Preservative (see below) Collection Date (Internal use Description Collection Time fotal # of container Method# Sample Collector only) Grab (G) or Composite (C) Reporting limit Bottle type: (G/Plastic-P) Misc. sample info SER B Any other notes ZOM SEE SHEET FOR MLS 3/7/23 P X AF56419 WAP-19 1451 G G₩ ML WHERE APPLICABLE WAP-25 1249 HG-7470 B-6010 1022 WAP-26 26 WAP-26D ALL OTHERS 6020. 27 1027 AF56408 3/8/23 WAP-13 1338 * PLEASE SEND OUT 15 WAP-16 1213 FOR BORON. 16 WAP-17 1009 17 WAP-17D 1014 27 WAP-28 1212 Sample Receiving (Internal Use Only) Relinquished by: Time Received by: Employee# Date Employee# Date Time TEMP (°C): Initial: 00/A Domoun 35594 3/16/23 1300 カタン resto Correct pH: Yes Relinquished by: Employee# Date Received by: Date Time Time Employee# Preservative Lot#: Relinquished by: Employee# Date Time Received by: Employee# Date Time Date/Time/Init for preservative: ☐ METALS (all) **Nutrients** MISC. **Gypsum** Coal Oil <u>Flyash</u> X Ag X Al XÚ Sb Ø Cu п тос O BTEX □ Wallboard Trans. Oll Qual. ☐ Ultimate ☐ Ammonia ₽ Fe ⊠ Se □ Naphthalene □ DOC Gypsum(all ☐ % Moisture %Moisture Ø(As ØΚ □ Sn □ THM/HAA below) □ TP/TPO4 □ Asb □ % Carbon □ AIM □ TOC □ VOC Acidity
 Dielectric Strength ☐ NH3-N ☐ Sulfur ЮB K Li ☐ Mineral □ Sr □ Oil & Grease OF □ BTUs Analysis □ E. Coli HFT ⊠ Ba ☐ Total metals Ø Mg □ Ti □ C1 ☐ Volatile Matter □ Sieve Dissolved Gases ☐ Total Coliform ☐ Soluble Metals ⊠ Mn ⊠ Ве M TI □ NO2 □ CHN ☐ % Moisture Used Oil □pH □ Purity (CaSO4) Flashpoint
Metals in oil
(As,Cd,Cr,Ni,Pb □ Br □ Dissolved As □ % Moisture Other Tests: X Ca ⊠′Mo ΠV ☐ Dissolved Fe □ Sulfites ☐ XRF Scan I) NO3 <u>NPDES</u> ⊠ Cd Na Na y⊉ Zn ☐ Rad 226 OHOL □ SO4 □рН □ Oil & Grease ☐ Rad 228 □ Chlorides ☐ Fineness Xo Co ⊠ Ni Ø Hg □ PCB ☐ Particulate Matter ☐ Particle Size □ TSS 🛭 Ст Ø Pb GOFER □ CrVI □ Sulfur

Sanice Cooper One Riverwood Drive Moncks Corner, SC 29461 Phone (843)761-8000 Ext. 5148 Fax (843)761-4175 TOTAL **Customer Email/Report Recipient:** Date Results Needed by: Project/Task/Unit #: Rerun request for any flagged QC JM02.09. GØ1.1 / LCWILLIA @santeecooper.com **(es)** No Analysis Group Labworks ID# Sample Location/ Comments TOTAL METAS Matrix(see below) **Collection Date** (Internal use Description **Collection Time** (Glass see) Total # of container Method # BELDW Sample Collector Preservative (s below) only) Reporting limit Grab (G) or Composite (C) Bottle type: (I G/Plastic-P) Misc. sample mfo Any other notes SEE ZDM SEE SHEET FOR KUS 2 P 3/1/23 G AF56421 1441 X WAP-21 ML WHERE APPLICABLE. 1337 24 WAP-24 HG-7470 39 1022 WLF-A2-1 8-6010 1145 41 ALL OTHERS 6020 WLF- A2-2 G AF56414 WAP -15 3/2/23 1246 GW WAP-23 0952 * PLEASE SEAD BUT FOR BORDH. 28 WAP-27 1056 Sample Receiving (Internal Use Only) Received by: Relinquished by: Employee# Date Time Employee# Date Time TEMP (°C):_ ___Initial: ters のりノイチ Sproun 35514 23 Correct pH: Yes 3/16/23 1300 u Relinquished by: Date Time Received by: Time Employee# Employee# Date Preservative Lot#: Received by: Date Time Relinquished by: Employee# Date Time Employee # Date/Time/Init for preservative: ☐ METALS (all) **Nutrients** MISC. <u>Gypsum</u> Coal <u>Flyash</u> Oil)⊠ Sb ⊠ Ag ⊠ Cu □ Wallboard □ TOC □ BTEX □ Ultimate ☐ Ammonia Trans, Oil Qual. ⊠Se X Al ∦ Fe D DOC □ Naphthalene Gypsum(all %Moisture □ % Moisture ØК □ Sn ☐ THM/HAA Ø As below) ☐ TP/TPO4 □ Ash ☐ % Carbon □ AIM □ TOC □ VOC Acidity □ NH3-N ☐ Sulfur Ŋ-Li ØВ ☐ Sr ☐ Mineral ☐ Oil & Grease Dielectric Strength $\square F$ □ BTUs Analysis □ E. Coli IFT Ø Ba Ø Mg □ Ti ☐ Total metals \square CI ☐ Volatile Matter ☐ Sieve ☐ Total Coliform Dissolved Gases ☐ Soluble Metals
☐ Purity (CaSO4) Mn 🗷 14;T1 D NO2 ДВе □ CHN ☐ % Moisture Used Oll □рН Flashpoint
Metals in oil
(As, Cd, Cr, Ni, Pb
Hg) □ Br ☐ Dissolved As Other Tests: □ % Moisture ⊠ Ca ⊠ Mo $\square V$ ☐ Dissolved Fe □ XRF Scan O NO3 ☐ Sulfites <u>NPDES</u> Ø Cd X Na X Zn ☐ Rad 226 □ HGI □рН □ SO4 □ Oil & Grease ☐ Rad 228 ☐ Fineness ☐ Chlorides X Co XÚ Ní Ø/Hg □ PCB □ Particulate Matter ☐ Particle Size □ TSS GOFER Ø Cr X Pb ☐ CrVI □ Sulfur

Table of	Reporting	Limits fo	r Groundwater
	Samples	Metals	Only

Analyte	Unit	GWPS/ MCL/ RSL	Reporting Limits best case
Aluminum	mg/L	0.05 to 0.2	
Antimony	ug/L	6	5
Arsenic	ug/L	10	5
Arsenic Dissolved	ug/L		
Barium	ug/L	2000	5
Beryllium	ug/L	4	0.5
Boron	ug/L		10 to 15
Cadmium	ug/L	5	0.5
Calcium	ug/L		0.1
Chromium	ug/L	100	5
Cobalt	ug/L	6	0.5
Copper	mg/L	1	
Iron	ug/L	300	
Lead	ug/L	15	1
Lithium	ug/L	40	5
Magnesium	ug/L		
Mercury	ug/L	2	0.2
Molybdenum	ug/L	100	5
Nickel	ug/L		
Potassium	mg/L		
Selenium	ug/L	50	5
Sodium	mg/L		
Thallium	ug/L	2	1 %
Zinc	ug/L	5000	

Ver: 06/08/2021

Chain of Custody Red

Savannah, GA 31404 Phone: 912-354-7858 Fax: 912-352-0165

Eurofins Savannah 5102 LaRoche Avenue

out when
cord

Environment Testing

💸 eurofins

Client Information (Sub Contract Lab)	Sampler:			Lab PM Lanier	Lab PM: Lanier, Jerry A	∢			Carrier Tracking No(s)	No(s):	COC No 680-73	COC No: 680-731060.1	
Client Contact: Shipping/Receiving	Phone			E-Mail Jerry	ı. /.Lanier@	E-Mail: Jerry Lanier@et.eurofinsus.com	sus.com		State of Origin: South Carolina	8	Page 1 of 5	of 5	
Company: TestAmerica Laboratories, Inc.					Accreditat NELAP	Accreditations Required (See note) NELAP - Florida; State - So	d (See note) State - Sout	th Caroling	Accreditations Required (See note): NELAP - Florida: State - South Carolina: State Program	 	Job #:	Job #:	
Address: 13715 Rider Trail North.	Due Date Requested: 3/27/2023	ed:					Aleak	Analysis Doggod	potaon		Presen	l g	
City:	TAT Requested (days):	ays):					-		Descen		A - HCL B - NaOH	ı	M - Hexane N - None
State Zip MO, 63045	T										C - Zn Acetate D - Nitric Acid E - NaHSO4		0 - AsnaO2 P - Na2O4S Q - Na2SO3
Phone: 314-298-8566(Tel) 314-298-8757(Fax)	# Od				(F - MeOH G - Amchlor		R - Na2S2O3 S - H2SO4 T - TSP Dodecahydrate
Email	#OM				(0)	СР				14-14		Acid	U - Acetone V - MCAA
Project Name: 125915/JM02.09.G01.1/36500	Project #: 68008190			1	f 10. at	ıw pλ ı							W - pH 4-5 Y - Trizma Z - other (specify)
Site	SSOW#:					14317 9					Other:		
			Sample	Matrix	W/SW U	PS_A010) 1edmi		
Sample Identification - Client ID (Lab ID)	Sample Date	Sample	C=comp, G=qrab)	S=solid, O=waste/oil, BT=Tissue, A=Air	mořie	05/Q010D/30					uN lebo	- Cicoca	
	X	X	Preserva	Preservation Code:	-							pecial IIIsu	uctions/Note:
AF56394 (680-232196-1)	2/14/23	12:33 Eastern		Water		×					-		
AF56331 (680-232196-2)	2/14/23	13:51 Eastern		Water		×					-		
AF56332 (680-232196-3)	2/14/23	15:22 Eastern		Water		×					-		
AF56395 (680-232196-4)	2/15/23	11:36 Eastern		Water		×					-		
AF56396 (680-232196-5)	2/15/23	13:21 Eastern		Water		×					-		
AF56397 (680-232196-6)	2/16/23	10:53 Eastern		Water		×					-		
AF56400 (680-232196-7)	2/16/23	12:55 Eastern		Water		×					-		
AF56442 (680-232196-8)	2/16/23	14:07 Eastern		Water		×					1		
AF56443 (680-232196-9)	2/16/23	14:12		Water		×					-		

river. Since abundons are subject to change, Euforms Environment Testing Southeast, LLC places the ownership of method, analyte & accreditation compliance upon our subcontract laboratories. This sample shipment is forwarded under chain-of-custody. If the laboratory does not currently maintain accreditation in the State of Origin listed above for analysis/lests/maintx being analyzed, the samples must be shipped back to the Eurofins Environment Testing Southeast, LLC attention immediately. If all requested accreditations are current to date, return the signed Chain of Custody attesting to Eurofins Environment Testing Southeast, LLC attention immediately. If all requested accreditations are current to date, return the signed Chain of Custody attesting to said compliance to Eurofins Environment Testing Southeast, LLC. Possible Hazard Identification

				Sample Disposal (A fee may be assessed if samples are retained longer than 1 month)	samples are retained longer than 1	nonth)
	Unconfirmed			Return To Client Disposal By Lab	Lab Archive For	Months
	Deliverable Requested: I, II, III, IV, Other (specify)	Primary Deliverable Rank: 1		Requ	ı	
	Empty Kit Relinquished by:	Date:	111	Time: Method	Method of Shipment:	
	Relinquished by:	Date/Time:	Company	Received by.	Date/Time:	Company
3/	Relinquished by.	Date/Time:	Company	Received by	Date/Time:	Company
28/	Relinquished by:	Date/Time:	Company	Received by:	Date/Time. CC/CS C710 6-745 7	Company
2023	Custody Seals Intact: Custody Seal No.:			Cooler Temperature(s) ^o C and Other Remarks:		

Chain of Custody Record

Seurofins Environment Testing	Carrier Tracking No(s) COC No: 1680-731060.2	State of Origin: South Carolina
Chain of Custody Record	Sampler. Lanier, Jerry A	Phone. E-Mait. Jerry Lanier@et eurofinsus.com
Eurofins Savannah 5102 LaRoche Avenue Savannah, GA 31404 Phone: 912-354-7858 Fax: 912-352-0165	prmation (Sub Contract Lab)	Client Contact Shipping/Receiving

	Sampler			I ah PM			C	Openior Teacher 11 / 12	000		
Client Information (Sub Contract Lab)				Lanier,	Lanier, Jerry A			(c)ON Brayes	680-731060.2	360.2	
Culant contact Shipping/Receiving	Phone			E-Mail: Jerry.L	anier@e	E-Mail: Jerry.Lanier@et.eurofinsus.com		State of Origin: South Carolina	Page: Page 2 of 5	f 5	
Company: TestAmerica Laboratories, Inc.				₹Z	creditation	Accreditations Required (See note) NELAP - Florida: State - Soi	uth Carolina	Program	Job #:	90	
Address: 13715 Rider Trail North,	Due Date Requested: 3/27/2023						Analysis Requested		Preservat	မ္မီ	
City Earth City State Zio	TAT Requested (days):								A - HCL B - NaOH C - Zn Acetate		M - Hexane N - None O - AsNaO2 P - Na2O4S
MO, 63045 Phone:	# C a				1810				D - Nitric A E - NaHSO F - MeOH		Q - Na2SO3 R - Na2S2O3
314-298-8566(Tel) 314-298-8757(Fax)				(0					G - Amchlor H - Ascorbic Acid	7	S - H2SO4 T - TSP Dodecahydrate
Email	# OM			N: 10	(0)				and the last of	2	U - Acetone V - MCAA
Project Name 125915/JM02.09.G01.1/36500	Project #: 68008190			29Y) 9	A 10 SE						W - pH 4-5 Y - Trizma Z - other (specify)
Site	SSOW#:			Idmes	SD (A				other:		
Samula Identification - Client ID 11 at 101				Matrix (w-water, Smolld, O-waterioll,	MISM mothe				sedimuM listo		
	Sample Date		Preservation Code:	-	d X					ecial Instru	Special Instructions/Note:
AF56402 (680-232196-10)	2/27/23		3	Water	×				-		
AF56403 (680-232196-11)	2/27/23	09:57 Eastern	3	Water	×				-		
AF56404 (680-232196-12)	2/27/23 E	10:02 Eastern	3	Water	×				-		
AF56434 (680-232196-13)	2/27/23 E	15:44 Eastern	8	Water	×				-		
AF56433 (680-232196-14)	2/28/23 E	12:58 Eastern	M	Water	×				-		
AF56435 (680-232196-15)	2/28/23 E	11:44 Eastern	>	Water	×						
AF56436 (680-232196-16)	2/28/23 E	10:19 Eastern	3	Water	×				1		
AF56437 (680-232196-17)	2/28/23 E	10:24 Eastern	>	Water	×				-		
AF56438 (680-232196-18)	2/28/23 E	14.31 Eastern	8	Water	×				1		
Note: Since laboratory accreditations are subject to change, Eurofins Environment Testing Southeast, LLC places the ownership of method, analyte & accreditation compliance upon our subcontract laboratory. This sample shipment is forwarded under chain-of-custody. If the laboratory or other instructions will be provided. Any changes to accreditation in the State of Origin listed above for analysis/lests/matrix being analyzed, the samples must be shipped back to the Eurofins Environment Testing Southeast, LLC attention immediately. If all requested accreditations are current to date, return the signed Chain of Custody attesting Southeast, LLC attention immediately. If all requested accreditations are current to date, return the signed Chain of Custody attesting to said compliance to Eurofins Environment Testing Southeast, LLC.	ment Testing Southeast, LLC ; analysis/tests/matrix being ar ention immediately. If all requ	places the own nalyzed, the sar ested accredita	ership of method mples must be sl itions are current	analyte & a lipped back to date, retu	ccreditatio to the Euro rn the sign	n compliance u ofins Environmed Chain of Cu	C places the ownership of method, analyte & accreditation compliance upon our subcontract laboratories. This sample shipment is forwarded under chain-of-custody. If the laboratory analyzed, the samples must be shipped back to the Eurofins Environment Testing Southeast, LLC laboratory or other instructions will be provided. Any changes to accreditation quested accreditations are current to date, return the signed Chain of Custody attesting to said compliance to Eurofins Environment Testing Southeast, LLC.	es. This sample shi oratory or other instr ince to Eurofins Envi	oment is forwarded und uctions will be provided ronment Testing South	der chain-of-cu d. Any change neast, LLC.	ustody. If the laboratory es to accreditation
Possible Hazard Identification					Sample	Disposal (Sample Disposal (A fee may be assessed if samples are retained longer than 1 month)	d if samples are	retained longer	than 1 mor	nth)
Unconfirmed						Return To Client	ient Disposal By Lab	By Lab	Archive For		Months
Deliverable Requested: I, II, III, IV, Other (specify)	Primary Deliverable	ble Rank: 1			Special	Instructions	Special Instructions/QC Requirements:				
Empty Kit Relinquished by:	Date	te:			Time:		Me	Method of Shipment:			
Relinquished by	Date/Time:		Сотрапу	ý	Rece	Received by:		Date/Time:		Co	Сомрапу
Relinquished by: F€D€×	Date/Time		Company	ν	Reg	Received by:	sharpey -	Date/Time:	3/11/13 0	Collo	Company
	Date/Time:		Company	'n	Rece	Received by:		Date/Time:			Company
Custody Seals Intact: Custody Seal No. Δ Yes Δ No					Coo	er Temperature	Cooler Temperature(s) °C and Other Remarks:				
					$\frac{1}{1}$						

💸 eurofins | Environment Testing

Chain of Custody Record

Eurofins Savannah 5102 LaRoche Avenue Savannah, GA 31404 Phone: 912-354-7858 Fax: 912-352-0165

	Sampler			Lab PM:			Carrier Tracking No(s)	a No(s):	COC No.	
Client Information (Sub Contract Lab)	ē			Lanier, Jerry A	erry A				680-731060.3	
Cirent Contact. Shipping/Receiving	Phone			E-Mail: Jerry.Lal	nier@et.e	E-Mail: Jerry.Lanier@et.eurofinsus.com	State of Origin: South Carolina	ina	Page: Page 3 of 5	
Company: TestAmerica Laboratories, Inc.				Acc NE	editations F LAP - Flo	Accreditations Required (See note): NELAP - Florida; State - South Carolina; State Program	lina: State Prod	ram	Job #:	
Address. 13715 Rider Trail North,	Due Date Requested: 3/27/2023					Analysis Requested	eanested		Preservation Codes	
City: Farth City	TAT Requested (days):								A - HCL B - NaOH	M - nexane N - None
State Zip MO, 63045									C - Zn Acetate D - Nitric Acid	O - AsnaO2 P - Na2O4S Q - Na2SO3
Phone: 314-298-8566(Tel) 314-298-8757(Fax)	# Od			(900				F - MeOH G - Amchlor	R - Na2S2O3 S - H2SO4 T - TSP Dodecahvdrate
Email:	# OM			ON 10	-					U - Acetone V - MCAA
Project Name. 125915/JM02.09.G01.1/36500	Project #: 68008190			S9/)/8					K-EDTA L-EDA	W - pH 4-5 Y - Trizma Z - other (specify)
Site:	#MOSS			dms					Other:	
Sample Identification . Client ID (1 sh ID)		Sample (C	Sample Market Type Sample Careempt Care	Matrix (www.ter. Smoolid. Oww.estaloid.	M/2M mrofts				sedmulf late	
	\\				-					Special Instructions/Note:
AF56409 (680-232196-19)	3/6/23	12:14 Fastern	3	Water	×				1-	
AF56410 (680-232196-20)	3/6/23	12:19 Fastern	3	Water	×				1	
AF56411 (680-232196-21)	3/6/23	11:08 Eastern	3	Water	×					
AF56412 (680-232196-22)	3/6/23	15:15 Eastern	8	Water	×				1	
AF56413 (680-232196-23)	3/6/23	13:41 Eastern	3	Water	×				-	
AF56430 (680-232196-24)	3/6/23	10:10 Eastern	*	Water	×					
AF56406 (680-232196-25)	3/9/23	10:29 Eastern	*	Water	×					
AF56407 (680-232196-26)	3/9/23	10:34 Eastern	8	Water	×				-	
AF56418 (680-232196-27)	3/9/23	12:07 Eastern	*	Water	×				-	
Note. Since laboratory accreditations are subject to change. Eurofins Environment Testing Southeast, LLC places the ownership of method, analyte & accreditation compliance upon our subcontract laboratories. This samples thingen to form analysis/lests/matrix being analyzed, the samples must be shipped back to the Eurofins Environment Testing Southeast, LLC laboratory or other instructions will be provided. Any changes to accreditation in the Status should be brought to Eurofins Environment Testing Southeast, LLC attention immediately. If all requested accreditations are current to date, return the signed Chain of Custody attesting to said compliance to Eurofins Environment Testing Southeast, LLC.	nt Testing Southeast, LLC nalysis/tests/matrix being a ion immediately. If all req	places the owr analyzed, the sa sested accredit	iership of method imples must be st ations are current	analyte & accipped back to to date, return	reditation of the Eurofir	compliance upon our subcontribers is Environment Testing South (Chain of Custody attesting to	act laboratories. The sast, LLC taboratory said compliance to	us sample shipmen y or other instruction Eurofins Environm	it is forwarded under chair ns will be provided. Any c ent Testing Southeast, LL	-of-custody. If the laboratory hanges to accreditation C.
Possible Hazard Identification					Sample L	Sample Disposal (A fee may be assessed if samples are retained longer than 1 month)	assessed if s	amples are ret	ained longer than 1	month)
Unconfirmed					Ref	Return To Client	Disposal By Lab	op qe	Archive For	Months
Deliverable Requested: I, II, III, IV, Other (specify)	Primary Deliverabl	le Rank: 1		٥	Special In	Special Instructions/QC Requirements	ents:			Silver
Empty Kit Relinquished by:		ate:		Time	ا ده		Method of	Method of Shipment:		
Relinquished by:	Date/Time:		Company	'n	Received by	.kg pe		Date/Time		Company
Relinquished by: F206X	Date/Time:		Company) h	Received by	eceived by:	7	Date/Time:	125/28 0910	Company
	Date/Time		Сомрапу	λυ	Received by:	2	00	Date/Time:	3	Company
Custody Seals Infact: Custody Seal No.:					Cooler	Cooler Temperature(s) °C and Other Remarks:	Remarks:			

Eurofins Savannah 5102 LaRoche Avenue

5102 LaRoche Avenue		Chain	مال ال	pin of Custody Docord										
Savannah, GA 31404 Phone: 912-354-7858 Fax: 912-352-0165				rody N		5						.		Environment Testing
Client Information (Sub Contract Lab)	Sampler			Lab PM: Lanier,	Lab PM: Lanier, Jerry A	<			Carrier	Carrier Tracking No(s)	÷	COC No: 680-731060.4	60.4	
Client Contact: Shipping/Receiving	Phone:			E-Mail Jerry	Lanier	get.euro	E-Mail: Jerry.Lanier@et.eurofinsus.com	٤	State o	State of Origin: South Carolina		Page Page 4 of 5	15	
Company. TestAmerica Laboratories, Inc.					Accredita NELAP	tions Requ	Accreditations Required (See note) NELAP - Florida; State - Soi	ote): South Car	olina: Stat	Accreditations Required (See note): NELAP - Florida; State - South Carolina; State Program		Job #:	1-96	
Address: 13715 Rider Trail North, ,	Due Date Requested: 3/27/2023	.pe					₹	Analysis Requested	Sequest	pe		Preservati	ego.	
City. Earth City State, Zip.: No. GRADA.	TAT Requested (days):	ays):										A - HCL B - NaOH C - Zn Acetate D - Nitric Acid		ane ao 2 24 S
74-298-8566(Tel) 314-298-8757(Fax)	#O4				- (F - NATION F - MeOH G - Amchlor	:	R - Na2S2O3 S - H2SO4 T - TSP Dodecahydrale
Email	*OM				(0)	СР						I - Ice J - Di Water		one A
Project Name. 125915/JM02.09.G01.1/36500	Project #: 68008190				s or h	w pλ į								W - pH 4-5 Y - Trizma 7 - other (cooolie)
Site	**NOSS				ed (xe	niusia s					_	of cont		(Speeds)
Sample Identification - Client ID (Lab ID)	Sample Date	Sample	Sample Type (C=comp, G=grab)	Matrix (w-water, S-solid, O-waste/olf,		.S_A0105\Q0108						tedmul/listo		
	X	X	Preserva	Preservation Code:	X							L	acidi mistrucio	IIS/NOTE:
AF56422 (680-232196-28)	3/9/23	13:19 Fastern		Water		×						1-		
AF56419 (680-232196-29)	3/7/23	14:51 Eastern		Water		×						-		
AF56425 (680-232196-30)	3/7/23	12:49 Eastern		Water		×					_	-		
AF56426 (680-232196-31)	3/7/23	10:22 Eastern		Water		×						1		
AF56427 (680-232196-32)	3/7/23	10:27 Eastern		Water		×						-		
AF56408 (680-232196-33)	3/8/23	13:38 Eastern		Water		×						-		
AF56415 (680-232196-34)	3/8/23	15:13 Eastern		Water		×						1		
AF56416 (680-232196-35)	3/8/23	10:09 Eastern		Water		×						1		
AF56417 (680-232196-36)	3/8/23	10:14		Water		×					L			

Testing Southeast, LLC attention immediately. If all requested accreditations are current to date, return the signed Chain of Custody attesting to said compilance to Eurofins Environment Testing Southeast, LLC. Possible Hazard Identification

					demplo disposal (A ree may be assessed it samples are retained longer than 1 month)	ed II samb	les are retained longer than 1	month)
	Unconfirmed				Return To Client Disposal By Lab	al By Lab	Archive For	Months
	Deliverable Requested: I, II, III, IV, Other (specify)	Primary Deliverable Rank:	rable Rank: 1		Requ			Simoling
	Empty Kit Relinquished by:		Date:	-	Time:	Method of Shipment	nent	
	Relinquished by:	Date/Time:		Company	Received by:	Date	Date/Time:	Сотрапу
3	Relinquished by:	Date/Time.		Company	Received by:	Date	Date/Time / /	Company
3/28	Relinquished by:	Date/Time:		Company	Received by:	Dat	Date/Time: \$22/23 0110 67ASTC	Company
/2023	Custody Seals Intact: Custody Seal No.				Cooler Temperature(s) ^o C and Other Remarks:			

Ver: 06/08/2021

ETASTI

3/22/23 0910

Date/Time:

SOU

Sharman

Received by eceived by:

Company

Date/Time Date/Time

Date/Time

FEDER

telinquished by dinquished by yd peysinbu Custody Seal No.

Custody Seals Intact: △ Yes △ No

Ime

eceived by

Date/Time

Company Company

Cooler Temperature(s) °C and Other Remarks.

Chain of Custody Record

Phone: 912-354-7858 Fax: 912-352-0165

Savannah, GA 31404 5102 LaRoche Avenue

Eurofins Savannah

Environment Testing

💸 eurofins

T - TSP Dodecahydrate

U - Acetone V - MCAA W - pH 4-5

N - None O - AsNaO2 P - Na2O4S Q - Na2SO3 R - Na2S2O3 S - H2SO4

Z - other (specify)

Special Instructions/Note:

Preservation Codes: COC No 680-731060.5 G - Amchlor H - Ascorbic Acíd 680-232196-1 A - HCL B - NaOH C - Zn Acetate D - Nitric Acid E - NaHSO4 F - MeOH Page: Page 5 of 5 I - Ice J - Di Water K - EDTA L - EDA Total Number of containers Carrier Tracking No(s) State of Origin: South Carolina Accreditations Required (See note).
NELAP - Florida; State - South Carolina; State Program **Analysis Requested** Jerry Lanier@et.eurofinsus.com Lab PM: Lanier, Jerry A 6010D/3010A_2% Lithium by ICP × × × × × × × × Perform MS/MSD (Yes or No) BT=Tissue, A=Air (W=water, S=solid, O=waste/oil, Preservation Code: Water Matrix Water Water Water Water Water Water Water Type (C=comp, G=grab) Sample Eastern 13.37 Eastern 10:22 Eastern 11:45 Eastern 12:46 Eastern 14.41 Eastern 10:56 Eastern Eastern 12:12 (AT Requested (days) Due Date Requested: 3/27/2023 Sample Date 3/8/23 3/1/23 Project #: 68008190 3/1/23 3/1/23 3/1/23 3/2/23 3/2/23 3/2/23 Phone # ON Client Information (Sub Contract Lab) Sample Identification - Client ID (Lab ID) 314-298-8757(Fax) FestAmerica Laboratories, Inc. 125915/JM02.09.G01.1/36500 AF56441 (680-232196-41) AF56428 (680-232196-44) AF56428 (680-232196-39) AF56439 (680-232196-40) AF56423 (680-232196-43) AF56429 (680-232196-37) AF56421 (680-232196-38) AF56414 (680-232196-42) 13715 Rider Trail North 314-298-8566(Tel) Shipping/Receiving State, Zip: MO, 63045 Earth City

Note: Since laboratory accreditations are subject to change, Eurofins Environment Testing Southeast, LLC places the ownership of method, analyte & accreditation our subcontract laboratory or other instructions will be provided. Any changes to accreditation in the State of Origin listed above for analysis/tests/matrix being analyzed, the samples must be shipped back to the Eurofins Environment Testing Southeast, LLC aboratory or other instructions will be provided. Any changes to accreditation status should be brought to Eurofins Environment Testing Southeast, LLC. Months Sample Disposal (A fee may be assessed if samples are retained longer than 1 month) Archive For Method of Shipment: Disposal By Lab Special Instructions/QC Requirements Return To Client Primary Deliverable Rank Deliverable Requested: I, II, III, IV, Other (specify) Possible Hazard Identification Empty Kit Relinquished by Unconfirmed

Login Sample Receipt Checklist

Client: South Carolina Public Service Authority

Job Number: 680-232196-1

Login Number: 232196 List Source: Eurofins Savannah

List Number: 1

Creator: Padayao, Abigail

Question	Answer Comment
Radioactivity wasn't checked or is = background as measured by a survey</td <td>N/A</td>	N/A
meter.	19// 1
The cooler's custody seal, if present, is intact.	True
Sample custody seals, if present, are intact.	True
The cooler or samples do not appear to have been compromised or tampered with.	True
Samples were received on ice.	True
Cooler Temperature is acceptable.	True
Cooler Temperature is recorded.	True
COC is present.	True
COC is filled out in ink and legible.	True
COC is filled out with all pertinent information.	True
Is the Field Sampler's name present on COC?	True
There are no discrepancies between the containers received and the COC.	True
Samples are received within Holding Time (excluding tests with immediate HTs)	True
Sample containers have legible labels.	True
Containers are not broken or leaking.	True
Sample collection date/times are provided.	True
Appropriate sample containers are used.	True
Sample bottles are completely filled.	True
Sample Preservation Verified.	True
There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs	True
Containers requiring zero headspace have no headspace or bubble is <6mm (1/4").	True
Multiphasic samples are not present.	True
Samples do not require splitting or compositing.	True
Residual Chlorine Checked.	N/A

3

4

-

0

9

10

12

13

Login Sample Receipt Checklist

Client: South Carolina Public Service Authority

Job Number: 680-232196-1

Login Number: 232196
List Source: Eurofins St. Louis
List Number: 2
List Creation: 03/22/23 01:44 PM

Creator: Sharkey-Gonzalez, Briana L

Creator: Sharkey-Gonzalez, Briana L		
Question	Answer	Comment
Radioactivity wasn't checked or is = background as measured by a survey meter.</td <td>True</td> <td></td>	True	
The cooler's custody seal, if present, is intact.	True	
Sample custody seals, if present, are intact.	True	
The cooler or samples do not appear to have been compromised or tampered with.	True	
Samples were received on ice.	N/A	
Cooler Temperature is acceptable.	True	
Cooler Temperature is recorded.	True	
COC is present.	True	
COC is filled out in ink and legible.	True	
COC is filled out with all pertinent information.	True	
s the Field Sampler's name present on COC?	True	
There are no discrepancies between the containers received and the COC.	True	
Samples are received within Holding Time (excluding tests with immediate HTs)	True	
Sample containers have legible labels.	True	
Containers are not broken or leaking.	True	
Sample collection date/times are provided.	True	
Appropriate sample containers are used.	True	
Sample bottles are completely filled.	True	
Sample Preservation Verified.	True	
There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs	True	
Containers requiring zero headspace have no headspace or bubble is <6mm (1/4").	True	
Multiphasic samples are not present.	True	
Samples do not require splitting or compositing.	True	
Residual Chlorine Checked.	N/A	

3

4

5

7

9

11

Accreditation/Certification Summary

Client: South Carolina Public Service Authority Project/Site: 125915/JM02.09.G01.1/36500

Job ID: 680-232196-1

Laboratory: Eurofins Savannah

The accreditations/certifications listed below are applicable to this report.

Authority	Program	Identification Number	Expiration Date
South Carolina	State	98001	06-30-23

Laboratory: Eurofins St. Louis

All accreditations/certifications held by this laboratory are listed. Not all accreditations/certifications are applicable to this report.

Authority	Program	Identification Number	Expiration Date
Alaska (UST)	State	20-001	05-06-25
ANAB	Dept. of Defense ELAP	L2305	04-06-25
ANAB	Dept. of Energy	L2305.01	04-06-25
ANAB	ISO/IEC 17025	L2305	04-06-25
Arizona	State	AZ0813	12-08-23
California	Los Angeles County Sanitation Districts	10259	06-30-22 *
California	State	2886	06-30-23
Connecticut	State	PH-0241	03-31-23
Florida	NELAP	E87689	06-30-23
HI - RadChem Recognition	State	n/a	06-30-23
Illinois	NELAP	200023	11-30-23
lowa	State	373	12-01-24
Kansas	NELAP	E-10236	10-31-23
Kentucky (DW)	State	KY90125	12-31-23
Kentucky (WW)	State	KY90125 (Permit KY0004049)	12-31-23
Louisiana (All)	NELAP	04080	06-30-23
Louisiana (DW)	State	LA011	12-31-23
Maryland	State	310	09-30-23
MI - RadChem Recognition	State	9005	06-30-23
Missouri	State	780	06-30-25
Nevada	State	MO000542020-1	07-31-23
New Jersey	NELAP	MO002	06-30-23
New York	NELAP	11616	04-01-23
North Carolina (DW)	State	29700	07-31-23
North Dakota	State	R-207	06-30-23
Oklahoma	NELAP	9997	08-31-23
Oregon	NELAP	4157	09-01-23
Pennsylvania	NELAP	68-00540	02-28-24
South Carolina	State	85002001	06-30-23
Texas	NELAP	T104704193	07-31-23
US Fish & Wildlife	US Federal Programs	058448	07-31-23
USDA	US Federal Programs	P330-17-00028	06-11-23
Utah	NELAP	MO000542021-14	07-31-23
Virginia	NELAP	10310	06-14-24
- Washington	State	C592	08-30-23
West Virginia DEP	State	381	10-31-23

Eurofins Savannah

5

7

9

1 0

12

 $^{{}^{\}star}\operatorname{Accreditation/Certification\ renewal\ pending\ -\ accreditation/certification\ considered\ valid}.$

ANALYTICAL REPORT

PREPARED FOR

Attn: Linda Williams
South Carolina Public Service Authority
Santee Cooper
PO BOX 2946101
Moncks Corner, South Carolina 29461-2901

Generated 4/24/2023 3:13:36 PM

JOB DESCRIPTION

125915/JM02.09.G01.1/36500

JOB NUMBER

680-233704-2

Eurofins Savannah 5102 LaRoche Avenue Savannah GA 31404

Eurofins Savannah

Job Notes

This report may not be reproduced except in full, and with written approval from the laboratory. The results relate only to the samples tested. For questions please contact the Project Manager at the e-mail address or telephone number listed on this page.

The test results in this report relate only to the samples as received by the laboratory and will meet all requirements of the methodology, with any exceptions noted. This report shall not be reproduced except in full, without the express written approval of the laboratory. All questions should be directed to the Eurofins Environment Testing Southeast, LLC Project Manager.

Authorization

Generated 4/24/2023 3:13:36 PM

Authorized for release by Jerry Lanier, Project Manager I <u>Jerry.Lanier@et.eurofinsus.com</u> (912)250-0281

2

4

<u>6</u>

8

9

10

11

12

Client: South Carolina Public Service Authority Project/Site: 125915/JM02.09.G01.1/36500

Laboratory Job ID: 680-233704-2

Table of Contents

Cover Page	1
Table of Contents	3
Case Narrative	4
Sample Summary	5
Method Summary	6
Definitions	7
Detection Summary	8
Client Sample Results	9
QC Sample Results	13
QC Association	14
Chronicle	15
Chain of Custody	16
Receipt Checklists	21
Certification Summary	22

Case Narrative

Client: South Carolina Public Service Authority Project/Site: 125915/JM02.09.G01.1/36500

Job ID: 680-233704-2

Job ID: 680-233704-2

Laboratory: Eurofins Savannah

Narrative

Job Narrative 680-233704-2

Receipt

The samples were received on 4/18/2023 10:00 AM. Unless otherwise noted below, the samples arrived in good condition, and, where required, properly preserved and on ice. The temperature of the cooler at receipt time was 16.4°C

Metals

No additional analytical or quality issues were noted, other than those described above or in the Definitions/ Glossary page.

3

A

5

_

10

13

Sample Summary

Client: South Carolina Public Service Authority Project/Site: 125915/JM02.09.G01.1/36500

Job ID: 680-233704-2

680-233704-11 AF60586 GW 04/10/23 12:25 04/18/23 10:00 680-233704-12 AF60587 GW 04/10/23 09:58 04/18/23 10:00	Lab Sample ID 680-233704-10	Client Sample ID AF60585	Matrix GW	Collected 04/10/23 12:20	Received 04/18/23 10:00
	680-233704-12 680-233704-13	AF60587 AF60588	GW	04/10/23 09:58 04/10/23 11:04	04/18/23 10:00 04/18/23 10:00

4

7

10

11

12

Method Summary

Client: South Carolina Public Service Authority Project/Site: 125915/JM02.09.G01.1/36500

Job ID: 680-233704-2

Method	Method Description	Protocol	Laboratory
6020B	Metals (ICP/MS)	SW846	EET SAV
7470A	Mercury (CVAA)	SW846	EET SAV
3005A	Preparation, Total Recoverable or Dissolved Metals	SW846	EET SAV
7470A	Preparation, Mercury	SW846	EET SAV

Protocol References:

SW846 = "Test Methods For Evaluating Solid Waste, Physical/Chemical Methods", Third Edition, November 1986 And Its Updates.

Laboratory References:

EET SAV = Eurofins Savannah, 5102 LaRoche Avenue, Savannah, GA 31404, TEL (912)354-7858

E

5

7

8

3

11

Definitions/Glossary

Client: South Carolina Public Service Authority Project/Site: 125915/JM02.09.G01.1/36500

Job ID: 680-233704-2

Qualifiers

B A	1 - 4	4 -	
IV/I	Ο.	га	ls

Qualifier **Qualifier Description**

Indicates the analyte was analyzed for but not detected.

Glossary	
Abbreviation	These commonly used abbreviations may or may not be present in this report.
¤	Listed under the "D" column to designate that the result is reported on a dry weight basis
%R	Percent Recovery
CFL	Contains Free Liquid
CFU	Colony Forming Unit
CNF	Contains No Free Liquid
DER	Duplicate Error Ratio (normalized absolute difference)
Dil Fac	Dilution Factor
DL	Detection Limit (DoD/DOE)
DL, RA, RE, IN	Indicates a Dilution, Re-analysis, Re-extraction, or additional Initial metals/anion analysis of the sample
DLC	Decision Level Concentration (Radiochemistry)
EDL	Estimated Detection Limit (Dioxin)
LOD	Limit of Detection (DoD/DOE)
LOQ	Limit of Quantitation (DoD/DOE)
MCL	EPA recommended "Maximum Contaminant Level"
MDA	Minimum Detectable Activity (Radiochemistry)
MDC	Minimum Detectable Concentration (Radiochemistry)

MDL Method Detection Limit MLMinimum Level (Dioxin) Most Probable Number MPN MQL Method Quantitation Limit

NC Not Calculated

Not Detected at the reporting limit (or MDL or EDL if shown) ND

NEG Negative / Absent POS Positive / Present

PQL Practical Quantitation Limit

PRES Presumptive QC **Quality Control**

RER Relative Error Ratio (Radiochemistry)

Reporting Limit or Requested Limit (Radiochemistry) RL

RPD Relative Percent Difference, a measure of the relative difference between two points

TEF Toxicity Equivalent Factor (Dioxin) TEQ Toxicity Equivalent Quotient (Dioxin)

Too Numerous To Count **TNTC**

4/24/2023

Detection Summary

Client: South Carolina Public Service Authority Project/Site: 125915/JM02.09.G01.1/36500

Client Sample ID: AF60585

Job ID: 680-233704-2

Lab Sample	ID:	680-233704-10

Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type
Arsenic	89.3		3.00		ug/L	1	_	6020B	Total
									Recoverable
Barium	136		5.00		ug/L	1		6020B	Total
									Recoverable
Calcium	95700		500		ug/L	1		6020B	Total
									Recoverable
Cobalt	0.570		0.500		ug/L	1		6020B	Total
									Recoverable

Client Sample ID: AF60586 Lab Sample ID: 680-233704-11

Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type
Arsenic	94.8		3.00		ug/L	1	_	6020B	Total
									Recoverable
Barium	130		5.00		ug/L	1		6020B	Total
									Recoverable
Calcium	94800		500		ug/L	1		6020B	Total
									Recoverable
Cobalt	0.535		0.500		ug/L	1		6020B	Total
									Recoverable

Client Sample ID: AF60587 Lab Sample ID: 680-233704-12

Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type
Barium	229		5.00		ug/L	1	_	6020B	Total
									Recoverable
Beryllium	1.00		0.500		ug/L	1		6020B	Total
									Recoverable
Calcium	75200		500		ug/L	1		6020B	Total
									Recoverable
Cobalt	17.7		0.500		ug/L	1		6020B	Total
									Recoverable
Lead	3.09		2.50		ug/L	1		6020B	Total
									Recoverable

Client Sample ID: AF60588 Lab Sample ID: 680-233704-13

Analyte	Result Qua	lifier RL	MDL Unit	Dil Fac	D Method	Prep Type
Barium	34.4	5.00	ug/L	1	6020B	Total
						Recoverable
Calcium	576000	5000	ug/L	10	6020B	Total
						Recoverable
Cobalt	7.19	0.500	ug/L	1	6020B	Total
						Recoverable

This Detection Summary does not include radiochemical test results.

Client: South Carolina Public Service Authority Project/Site: 125915/JM02.09.G01.1/36500

Method: SW846 6020B - Metals (ICP/MS) - Total Recoverable

Client Sample ID: AF60585

Result Qualifier

5.00

89.3

Lab Sample ID: 680-233704-10 Matrix: GW

Job ID: 680-233704-2

Date Collected: 04/10/23 12:20 Date Received: 04/18/23 10:00

Analyte

Antimony

Arsenic

Barium

MDL	Unit	D	Prepared	Analyzed	Dil Fac
	ug/L	_	04/20/23 05:28	04/20/23 17:16	1
	ug/L		04/20/23 05:28	04/20/23 17:16	1
	ug/L		04/20/23 05:28	04/20/23 17:16	1
	ug/L		04/20/23 05:28	04/20/23 17:16	1

136 0.500 U Beryllium 0.500 Cadmium 0.500 U 0.500 ug/L 04/20/23 05:28 04/20/23 17:16 Calcium 95700 500 ug/L 04/20/23 05:28 04/20/23 17:16 Chromium 5.00 U 5.00 ug/L 04/20/23 05:28 04/20/23 17:16 0.500 04/20/23 05:28 04/20/23 17:16 Cobalt 0.570 ug/L 2.50 U 2.50 ug/L 04/20/23 05:28 04/20/23 17:16 Selenium 2.50 U 2.50 ug/L 04/20/23 05:28 04/20/23 17:16 Thallium 1.00 U 1.00 ug/L 04/20/23 05:28 04/20/23 17:16

RL

5.00

3.00

5.00

Method: SW846 7470A - Mercury (CVAA)										
Analyte	Result	Qualifier	RL	MDL Unit	D	Prepared	Analyzed	Dil Fac		
Mercury	0.200	U	0.200	ug/L		04/20/23 17:02	04/21/23 13:59	1		

Client: South Carolina Public Service Authority Project/Site: 125915/JM02.09.G01.1/36500

Lab Sample ID: 680-233704-11

Matrix: GW

Job ID: 680-233704-2

Client Sample ID: AF60586 Date Collected: 04/10/23 12:25

Date Received: 04/18/23 10:00

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Antimony	5.00	U	5.00		ug/L		04/20/23 05:28	04/20/23 17:21	1
Arsenic	94.8		3.00		ug/L		04/20/23 05:28	04/20/23 17:21	1
Barium	130		5.00		ug/L		04/20/23 05:28	04/20/23 17:21	1
Beryllium	0.500	U	0.500		ug/L		04/20/23 05:28	04/20/23 17:21	1
Cadmium	0.500	U	0.500		ug/L		04/20/23 05:28	04/20/23 17:21	1
Calcium	94800		500		ug/L		04/20/23 05:28	04/20/23 17:21	1
Chromium	5.00	U	5.00		ug/L		04/20/23 05:28	04/20/23 17:21	1
Cobalt	0.535		0.500		ug/L		04/20/23 05:28	04/20/23 17:21	1
Lead	2.50	U	2.50		ug/L		04/20/23 05:28	04/20/23 17:21	1
Selenium	2.50	U	2.50		ug/L		04/20/23 05:28	04/20/23 17:21	1
Thallium	1.00	U	1.00		ug/L		04/20/23 05:28	04/20/23 17:21	1
- Method: SW846 7470A	- Mercury (CVAA)								
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Mercury	0.200	U	0.200		ug/L		04/20/23 17:02	04/21/23 14:04	1

Eurofins Savannah

Client: South Carolina Public Service Authority Project/Site: 125915/JM02.09.G01.1/36500

Lab Sample ID: 680-233704-12

Matrix: GW

Job ID: 680-233704-2

Client Sample ID: AF60587 Date Collected: 04/10/23 09:58

Date Received: 04/18/23 10:00

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Antimony	5.00	U	5.00		ug/L		04/20/23 05:28	04/20/23 17:25	1
Arsenic	3.00	U	3.00		ug/L		04/20/23 05:28	04/20/23 17:25	1
Barium	229		5.00		ug/L		04/20/23 05:28	04/20/23 17:25	1
Beryllium	1.00		0.500		ug/L		04/20/23 05:28	04/20/23 17:25	1
Cadmium	0.500	U	0.500		ug/L		04/20/23 05:28	04/20/23 17:25	1
Calcium	75200		500		ug/L		04/20/23 05:28	04/20/23 17:25	1
Chromium	5.00	U	5.00		ug/L		04/20/23 05:28	04/20/23 17:25	1
Cobalt	17.7		0.500		ug/L		04/20/23 05:28	04/20/23 17:25	1
Lead	3.09		2.50		ug/L		04/20/23 05:28	04/20/23 17:25	1
Selenium	2.50	U	2.50		ug/L		04/20/23 05:28	04/20/23 17:25	1
Thallium	1.00	U	1.00		ug/L		04/20/23 05:28	04/20/23 17:25	1
- Method: SW846 7470A -	Mercury (CVAA)								
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Mercury	0.200	U	0.200		ug/L		04/20/23 17:02	04/21/23 14:06	

_

J

6

8

9

10

12

Client: South Carolina Public Service Authority Project/Site: 125915/JM02.09.G01.1/36500

Job ID: 680-233704-2

Analyzed

04/21/23 14:07

Prepared

04/20/23 17:02

Lab Sample ID: 680-233704-13

Matrix: GW

Client Sample ID: AF60588 Date Collected: 04/10/23 11:04

Date Received: 04/18/23 10:00

Analyte

Mercury

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Antimony	5.00	U	5.00		ug/L		04/20/23 05:28	04/20/23 17:29	1
Arsenic	3.00	U	3.00		ug/L		04/20/23 05:28	04/20/23 17:29	1
Barium	34.4		5.00		ug/L		04/20/23 05:28	04/20/23 17:29	1
Beryllium	0.500	U	0.500		ug/L		04/20/23 05:28	04/20/23 17:29	1
Cadmium	0.500	U	0.500		ug/L		04/20/23 05:28	04/20/23 17:29	1
Calcium	576000		5000		ug/L		04/20/23 05:28	04/21/23 11:13	10
Chromium	5.00	U	5.00		ug/L		04/20/23 05:28	04/20/23 17:29	1
Cobalt	7.19		0.500		ug/L		04/20/23 05:28	04/20/23 17:29	1
Lead	2.50	U	2.50		ug/L		04/20/23 05:28	04/20/23 17:29	1
Selenium	2.50	U	2.50		ug/L		04/20/23 05:28	04/20/23 17:29	1
Thallium	1.00	U	1.00		ug/L		04/20/23 05:28	04/20/23 17:29	1

RL

0.200

MDL Unit

ug/L

Result Qualifier

0.200 U

Dil Fac

12

13

Job ID: 680-233704-2

Client: South Carolina Public Service Authority Project/Site: 125915/JM02.09.G01.1/36500

Method: 6020B - Metals (ICP/MS)

Lab Sample ID: MB 680-774333/1-A

Client Sample ID: Method Blank

Matrix: Water Prep Type: Total Recoverable
Analysis Batch: 774617 Prep Batch: 774333

Analysis Batch: 774617 Prep Batch: 774333

	INID	IVID							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Antimony	5.00	U	5.00		ug/L		04/20/23 05:28	04/20/23 16:16	1
Arsenic	3.00	U	3.00		ug/L		04/20/23 05:28	04/20/23 16:16	1
Barium	5.00	U	5.00		ug/L		04/20/23 05:28	04/20/23 16:16	1
Beryllium	0.500	U	0.500		ug/L		04/20/23 05:28	04/20/23 16:16	1
Cadmium	0.500	U	0.500		ug/L		04/20/23 05:28	04/20/23 16:16	1
Calcium	500	U	500		ug/L		04/20/23 05:28	04/20/23 16:16	1
Chromium	5.00	U	5.00		ug/L		04/20/23 05:28	04/20/23 16:16	1
Cobalt	0.500	U	0.500		ug/L		04/20/23 05:28	04/20/23 16:16	1
Lead	2.50	U	2.50		ug/L		04/20/23 05:28	04/20/23 16:16	1
Selenium	2.50	U	2.50		ug/L		04/20/23 05:28	04/20/23 16:16	1
Thallium	1.00	U	1.00		ug/L		04/20/23 05:28	04/20/23 16:16	1

Lab Sample ID: LCS 680-774333/2-A

Client Sample ID: Lab Control Sample

Matrix: Water

Prep Type: Total Recoverable

Analysis Batch: 774617 Prep Batch: 774333

Alialysis batch. 114011							Fieb Date	JII. 114333
	Spike	LCS	LCS				%Rec	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Antimony	50.0	56.78		ug/L		114	80 - 120	
Arsenic	100	111.2		ug/L		111	80 - 120	
Barium	100	106.3		ug/L		106	80 - 120	
Beryllium	50.0	54.86		ug/L		110	80 - 120	
Cadmium	50.0	55.87		ug/L		112	80 - 120	
Calcium	5000	5504		ug/L		110	80 - 120	
Chromium	100	113.4		ug/L		113	80 - 120	
Cobalt	50.0	53.95		ug/L		108	80 - 120	
Lead	500	522.7		ug/L		105	80 - 120	
Selenium	100	108.4		ug/L		108	80 - 120	
Thallium	50.0	52.38		ug/L		105	80 - 120	

Method: 7470A - Mercury (CVAA)

Lab Sample ID: MB 680-774521/1-A Client Sample ID: Method Blank

Matrix: Water Prep Type: Total/NA

Analysis Batch: 774740 Prep Batch: 774521

 Analyte
 Result Mercury
 Qualifier
 RL N. 200
 MDL Unit Ug/L
 D Prepared N4/20/23 17:02
 Analyzed Dil Fac Nalyzed Nalyzed Dil Fac Nalyzed Nalyz

Lab Sample ID: LCS 680-774521/2-A

Client Sample ID: Lab Control Sample

Matrix: Water Prep Type: Total/NA Analysis Batch: 774740 Prep Batch: 774521

Spike LCS LCS %Rec Analyte Added Result Qualifier Unit %Rec Limits Mercury 2.50 2.439 ug/L 98 80 - 120

4/24/2023

QC Association Summary

Client: South Carolina Public Service Authority Project/Site: 125915/JM02.09.G01.1/36500

Job ID: 680-233704-2

Metals

Prep Batch: 774333

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
680-233704-10	AF60585	Total Recoverable	GW	3005A	
680-233704-11	AF60586	Total Recoverable	GW	3005A	
680-233704-12	AF60587	Total Recoverable	GW	3005A	
680-233704-13	AF60588	Total Recoverable	GW	3005A	
MB 680-774333/1-A	Method Blank	Total Recoverable	Water	3005A	
LCS 680-774333/2-A	Lab Control Sample	Total Recoverable	Water	3005A	

Prep Batch: 774521

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
680-233704-10	AF60585	Total/NA	GW	7470A	
680-233704-11	AF60586	Total/NA	GW	7470A	
680-233704-12	AF60587	Total/NA	GW	7470A	
680-233704-13	AF60588	Total/NA	GW	7470A	
MB 680-774521/1-A	Method Blank	Total/NA	Water	7470A	
LCS 680-774521/2-A	Lab Control Sample	Total/NA	Water	7470A	

Analysis Batch: 774617

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
680-233704-10	AF60585	Total Recoverable	GW	6020B	774333
680-233704-11	AF60586	Total Recoverable	GW	6020B	774333
680-233704-12	AF60587	Total Recoverable	GW	6020B	774333
680-233704-13	AF60588	Total Recoverable	GW	6020B	774333
MB 680-774333/1-A	Method Blank	Total Recoverable	Water	6020B	774333
LCS 680-774333/2-A	Lab Control Sample	Total Recoverable	Water	6020B	774333

Analysis Batch: 774740

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
680-233704-10	AF60585	Total/NA	GW	7470A	774521
680-233704-11	AF60586	Total/NA	GW	7470A	774521
680-233704-12	AF60587	Total/NA	GW	7470A	774521
680-233704-13	AF60588	Total/NA	GW	7470A	774521
MB 680-774521/1-A	Method Blank	Total/NA	Water	7470A	774521
LCS 680-774521/2-A	Lab Control Sample	Total/NA	Water	7470A	774521

Analysis Batch: 774895

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
680-233704-13	AF60588	Total Recoverable	GW	6020B	774333

Job ID: 680-233704-2

Client: South Carolina Public Service Authority Project/Site: 125915/JM02.09.G01.1/36500

Client Sample ID: AF60585 Date Collected: 04/10/23 12:20

Lab Sample ID: 680-233704-10

Matrix: GW

Date Received: 04/18/23 10:00

	Batch	Batch		Dilution	Batch			Prepared
Prep Type	Туре	Method	Run	Factor	Number	Analyst	Lab	or Analyzed
Total Recoverable	Prep	3005A			774333	RR	EET SAV	04/20/23 05:28
Total Recoverable	Analysis	6020B		1	774617	BWR	EET SAV	04/20/23 17:16
Total/NA	Prep	7470A			774521	JKL	EET SAV	04/20/23 17:02
Total/NA	Analysis	7470A		1	774740	JKL	EET SAV	04/21/23 13:59

Client Sample ID: AF60586

Lab Sample ID: 680-233704-11

Matrix: GW

Date Collected: 04/10/23 12:25 Date Received: 04/18/23 10:00

	Batch	Batch		Dilution	Batch			Prepared
Prep Type	Type	Method	Run	Factor	Number	Analyst	Lab	or Analyzed
Total Recoverable	Prep	3005A			774333	RR	EET SAV	04/20/23 05:28
Total Recoverable	Analysis	6020B		1	774617	BWR	EET SAV	04/20/23 17:21
Total/NA	Prep	7470A			774521	JKL	EET SAV	04/20/23 17:02
Total/NA	Analysis	7470A		1	774740	JKL	EET SAV	04/21/23 14:04

Client Sample ID: AF60587

Lab Sample ID: 680-233704-12

Matrix: GW

Date Collected: 04/10/23 09:58 Date Received: 04/18/23 10:00

	Batch	Batch		Dilution	Batch			Prepared
Prep Type	Type	Method	Run	Factor	Number	Analyst	Lab	or Analyzed
Total Recoverable	Prep	3005A			774333	RR	EET SAV	04/20/23 05:28
Total Recoverable	Analysis	6020B		1	774617	BWR	EET SAV	04/20/23 17:25
Total/NA	Prep	7470A			774521	JKL	EET SAV	04/20/23 17:02
Total/NA	Analysis	7470A		1	774740	JKL	EET SAV	04/21/23 14:06

Client Sample ID: AF60588	Lab Sample ID: 680-233704-13
Date Collected: 04/10/23 11:04	Matrix: GW
Date Received: 04/18/23 10:00	

	Batch	Batch		Dilution	Batch			Prepared
Prep Type	Туре	Method	Run	Factor	Number	Analyst	Lab	or Analyzed
Total Recoverable	Prep	3005A			774333	RR	EET SAV	04/20/23 05:28
Total Recoverable	Analysis	6020B		1	774617	BWR	EET SAV	04/20/23 17:29
Total Recoverable	Prep	3005A			774333	RR	EET SAV	04/20/23 05:28
Total Recoverable	Analysis	6020B		10	774895	BWR	EET SAV	04/21/23 11:13
Total/NA	Prep	7470A			774521	JKL	EET SAV	04/20/23 17:02
Total/NA	Analysis	7470A		1	774740	JKL	EET SAV	04/21/23 14:07

Laboratory References:

EET SAV = Eurofins Savannah, 5102 LaRoche Avenue, Savannah, GA 31404, TEL (912)354-7858

Santee Cooper One Riverwood Drive Moneke Corner, SC 29946 Phone (843)761-8000 Ext, 5148 Fax. (843)761-4175

Customer Email/Report Recipient: Date Results Needed by: Project/Task/Unit #: Rerun request for any flagged QC LCWILLIA 125915 / JMOZ.09.601.1/ 36500 Yes (No @santeecooper.com Analysis Group Labworks ID# Sample Location/ Comments TOTAL METALS Collection Time (Internal use Description Collection Date Method # Sample Collector Matrix(see belo Bottle type: (Gla G/Plastic-P) only) Reporting limit Total # of conta Grab (G) or Composite (C) Misc. sample info Any other notes ZOM Hg-7470 2 6 GW X AF 60585 WAP-27 1220 4/10/23 BWM ALL OTHERS 6020. 1225 WAP - 27D 86 PLEASE REFER TO SHEET WAP - 28 87 0958 FOR RLS. 88 WAP - 29 1104 * PLEASE RETURN COCLER. Sample Receiving (Internal Use Only) Relinquished by: Employee# Time Received by: Employee # Date Time Date TEMP (°C):_ Initial: 418.23 1000 35594 4/17/23 m Sambun 1300 Correct pH: Yes Relinquished by: Employee# Date Time Received by: Employee # Date Time Preservative Lot#: Relinquished by: Employee# Date Time Received by: Employee # Date Time Date/Time/Init for preservative: ☐ METALS (all) Gypsum Nutrients MISC. Coal Oil Flyash Trans, Oil Qual. %Moisture Color □ Ag X Sb X Se □ Cu DTOC DBTEX ☐ Wallboard □ Ultimate C Ammonia D AI □ Fe Gypsum(all □ Napthalene DDOC ☐ % Moisture 0101 DTHM/HAA XAs DК □ Sn □ TP/TPO4 below) □ Ash 0 % Carbon DVOC □ NH3-N O AIM □ Sulfur O Li □ Sr ☐ Mineral \Box B □ Oil & Grease DITOC OF □ BTUs Analysis DE, Coli ☐ Total metals
☐ Soluble Metals **⊠**,Ba □ Mg O Ti □ Volatile Matter □ Sieve Dissolved Gases U CI ☐ Total Coliform X Be □ Mn M TI D NO2 O CHN □ % Moisture Used Oll Hall ☐ Purity (CaSO4) Other Tests: Flashpoint Metals in oil (As,Cd,Cr,N),Pb ☐ Dissolved As D Br ☐ % Moisture X Ca □ Mo OV □ Dissolved Fe □ NO3 ☐ Sulfites NPDES XX,Cd □ Na □ Zn D Red 226 D HGI □ SO4 □ pH □ Oil & Grease Hg) ☐ Rad 228 □ Chlorides O Fineness X Co KHg O Ni ☐ Particulate Matter GOFER □ PCB Particle Size DISS 'S.Pb □ CrVI X Cr

_

3

6

8

40

11

13

- 1

Table of Reporting Limits for Groundwater Samples-- Metals Only

Analyte	Unit	GWPS/ MCL/ RSL	Reporting Limits best case	
Aluminum	mg/L	0.05 to 0.2		
Antimony	ug/L	6	5	
Arsenic	ug/L	10	5	
Arsenic Dissolved	ug/L			
Barium	ug/L	2000	5	
Beryllium	ug/L	4	0.5	
Boron	ug/L		10 to 15	
Cadmium	ug/L	5	0.5	
Calcium	ug/L		0.1	
Chromium	uġ/L	100	5	
Cobalt	ug/L	6	0.5	
Copper	mg/L	1	122	
Iron	ug/L	300		
Lead	ug/L	15	1	
Lithium	ug/L	40	5	
Magnesium	ug/L			
Mercury	ug/L	2	0.2	
Molybdenum	ug/L	100	5	
Nickel	ug/L			
Potassium	mg/L			
Selenium	ug/L	50	5	
Sodium	mg/L		7	
Thallium	ug/L	2	1	
Zinc	ug/L	5000	-	

Santee Cooper One Riverwood Drive Moncks Corner, SC 29461 Phone (843)761-8000 Ext, 5148 Fax. (843)761-4175

Chain of Custody

Custo	mer Email	l/Rep	ort Recipi	ent:	D	ate R	esults Ne	eded b	y:		Pr	oject/	Task/l	Unit #: Rerun request for any flagged Q	C
LC	ALLIIW		@santeed	cooper.com		/	//.			125	9]5	<u> </u>	02.6	8.G81.5/36500 Yes No	
														Analysis Group	
	orks ID # nal use		nple Locatio cription	on/	Collection Date		Collection Time	Sample Collector	Total # of containers	Bottle type: (Glass- G/Plastic-P)	Grab (G) or Composite (C)	Matrix(see below)	Preservative (see below)	Comments Method # Reporting limit Misc. sample info Any other notes	_
AF6	0141	GG	-SMW-	4	4/6	1/23	11 38	ZDM BWM		P	G	GW	2	METHOD 6020 X	
	42		}	5			1300				1			PLEASE REFER TO SHEET	
	43			6			[033							FOR MLS.	
	44	_		9		_	1223	I			1	1	L	* PLEASE RETURN	_
4F6	0138			1	4/=	1/23	[033		1	1		1)	COCLER.	
	39			2			1144								
	40			3	L		1403								
	45			10			1320								
	46	-	<u></u>	11	<u> </u>	-	1226					_			
														680-233704 Chain of Custody	
Reli	nquished by:		Employee#	Date	Tim		Receiv	ed hv:	- F	mployee	#	Date		Sample Receiving (Internal Use Only)	-
87m			35594	4/17/23	130		AIL			M		18-23		TEMP (°C): /5 .*/ Initial:	-
	nquished by:		Employee#	Date	Tim		Receive	ed by:		mployee		Date	/	Time Correct pH: Yes No	
					NC-20-20					*****				Preservative Lot#:	- Constitution
Reli	nquished by:		Employee#	Date	Tim	e	Receiv	ed by:	1	mployee	#	Date		Time	
	and the second of the second o													Date/Time/Init for preservative:	
			LS (all)	Nuti	ient	S	MIS	iC.		Gy	psun	<u>n</u>		<u>Coal</u> <u>Flyash</u> <u>Oil</u>	
□ Ag □ Al	为这 知Fe		□ Sb >≰ Se	D TO			D BTEX	-portono	∦ c	Wallbo			0	Ultimate	
X As			□ Sn	DO			☐ Napthale ☐ THM/HA			Gyp belo	sum(a w)	11	1	☐ % Moisture ☐ LOI ☐ % Moisture ☐ Color ☐ Color	
□B	O Li		□ Sr	□NH			□ VOC □ Oil & Gr	ease	1	D AL				☐ Sulfur ☐ Mineral Acidity	
Χβa		***	□ Ti				□ E. Coli			□ To	tal meta			□ BTUs Analysis IF I □ Volatile Matter □ Sieve Dissolved Gases	
□Ве	ΩМ	n	ЖTI	□ NO.	2		☐ Total Col				luble Mo rity (Cal			☐ CHN ☐ % Moisture Used Oil	
□ Ca	ОΜ	0	ŪV	□ Br	1		☐ Dissolved				Moistur			ther Tests: Flashpoint	STEEL STORY
⋉Cd	□ Na	ì	∑Zn	□ SO4			□ Rad 226	9-8-¥		Hg 🔾			o I	HGI (As, Cd, Cr, Ni, Pb	W. S.
□Со			□Hg				☐ Rad 228 ☐ PCB				lorides ticle Siz	e.		Fineness Dil & Gresse Hg) Particulate Matter D As 1X	
⊠ Cr	≱Pb)	☐ CrVI				Halpita			() Sulfur			1	□TSS GOFER	

Matrix codes: GW-groundwater, DW-drinking water, SW-surface water, WW-waste water, BW-boiler water, L-limestone, Oil-oil, S-Soil, SL-solid, C-coal, G-gypsum, FA-flyash, BA-bottom ash, M-misc (describe in comment section) Preservative code- 1=<4°C 2=HNO3 3=H₂SO₄ 4-HCl 5=Na₂S₂O₃ 6-Other (S

__ Contract Lab Due Date (Lab Only).

Santee cooper

Santee Cooper One Riverwood Drive Moneks Corner SC 29461 Phone (843)761-8000 Ext. 5148 Fax: (843)761-4175

Custo	omer Emai	I/Repo	ort Recipie	ent:	D	Date Results Needed by:			Project/Task/Unit #: Reru					Rerun re	run request for any flagged QC					
LC	WILLIA		@santeec	ooper.com		/	·/_			1250	115	/ JM	02.0	9.6¢1.1	J_365∞	Yes ①	19			
																		lysis G	iroup)
	rorks ID # rnal use		ple Locatio cription	n/	Collection Date		Collection Time	Sample Collector	Total # of containers	Bottle type: (Glass-G/Plastic-P)	Grab (G) or Composite (C)	Matrix(see below)	Preservative (see	Met Rep Mis Any	Comments hod # orting limit c. sample info other notes		SEE BELOW			
AT	60585	WA	P-27		4/1	0/23	1220	ZDM BWM	l	Р	G	GW	2	Hg-7	470		x			
1	86	WA	P-27D			<u> </u>	1225	ļ	1	1	1	1		ALL OTH	HERS 6020.				1	
	87	WA	P-28				e958							PLEASE FOR RLS	REFER TO SHE	E	\prod			
I	88	WA	P~29			_	1104	1					1					T	1	
								***											1	
								****						* PUE	ISE REJURN			1	1	
														<i>c</i>	oder.				1	
				, , , , , , , , , , , , , , , , , , , ,														1		_
																			1	
			**************************************										······································				1		\dagger	
											* 1				Sample Receiving (Int	ernal Use	Only)			
	inquished by:		imployee#	Date	Tim		Receiv	ed by:	E	mployee		Date		Time	TEMP (°C):	In	itial:_		-	
	ಚರ್ಚು inquished by:		5594 imployee#	4/17/23 Date	30 Tim		Receive	ad by	-	M		Date		1000	Correct pH: Yes	No				
1350	indamica oti	•	mbokeem	Pare	. 19111	-	neuciv	eu by.	1 8	mployee	*	Date		Time	Preservative Lot#:					
D-11							K					***		-						
Vali	nguished by:		mployee#	Date	Tim		Receiv	eo bys	- "	mployee	*	Date		Time	B-1-17-11-1-1-1					
															Date/Time/Init for pr	reservativ	/e:			
			S (all)	Nuti	<u>rien</u> t	<u>s</u>	MIS	ic.		Gy	psur	Δ		Coal	Flyash			Oil		
□ Ag		CONTRACTOR OF THE PERSON NAMED IN	X Sb X Se	□ TO			□ BTEX	and and dis	٥	Wallbo	ard			Ultimate	☐ Ammonia	10	Trans.		ual.	
≱As		************	□ Sn	DO			□ Napthale□ THM/HA				sum(<i>a</i>	11		□ % Moist	ure 🛮 LOI		□ %M □ Cole		r	
<u> </u>				□ TP/			□ VOC	****		belo □ AI				□ Ash □ Sulfur	☐ % Carbon ☐ Mineral		Acid	ity		
□ B	OL	-	□ Sr	OF	•		□ Oil & Gr □ E. Coli	ease		□ TO	C	lo.		□ BTUs	Analysi		⊖Diele ⊝IFT	etric St	rength	
⊠Ba			□ Ti	D C1			☐ Total Col	liform			al meta uble M			□ Volatile	Matter ☐ Sieve		Diss		Gase	5
⊠,Be	1		ΧTI	□ NO □ Br	2		□ pH □ Dissolved	l Ao		🛛 Put	ity (Ca	SO4)	6	☐ CHN ther Tests:	□ % Moistur		Used			
XXI Ca		2 110 110 cres 10	υV	□ NO	3		□ Dissolved			□ % ! □ Sul	Moistur fites	e.		XRF Scan	NPDES		Flasi Meta	ls in c	il	
X,Cd	ΟN	a	□ Zn	□ SO ₄			□ Rad 226 □ Rad 228			□pH			ים 🏻	HGI	□ Oil & Grease		(As, Hg)	Cd,Cr	,Ni,P	b
⊠ C₀			β(Hg				□ Rad 228 □ PCB				orides ticle Siz	.e		Fineness Particulate Mi	ntter 🗆 🗅 As		TX			
XX Cr)≱⊈.Pt)	□ CrVI							3 Sulfur				-	D TSS		GOFE	R		

Table of Reporting Limits for Groundwater Samples-- Metals Only

Samp	ies ivietai	5 Only	
Analyte	Unit	GWPS/ MCL/ RSL	Reporting Limits best case
Aluminum	mg/L	0.05 to 0.2	
Antimony	ug/L	6	5
Arsenic	ug/L	10	5
Arsenic Dissolved	ug/L		
Barium	ug/L	2000	5
Beryllium	ug/L	4	0.5
Boron	ug/L		10 to 15
Cadmium	ug/L	5	0.5
Calcium	ug/L		0.1
Chromium	uġ/L	100	5
Cobalt	ug/L	6	0.5
Copper	mg/L	1	
Iron	ug/L	300	
Lead	ug/L	15	
Lithium	ug/L	40	5
Magnesium	ug/L		
Mercury	ug/L	2	0.2
Molybdenum	ug/L	100	5
Nickel	ug/L		
Potassium	mg/L		
Selenium	ug/L	50	5
Sodium	mg/L		
Thallium	ug/L	2	1
Zinc	ug/L	5000	H

Login Sample Receipt Checklist

Client: South Carolina Public Service Authority

Job Number: 680-233704-2

Login Number: 233704 List Source: Eurofins Savannah

List Number: 1

Creator: Daughtry, Beth A

Creator: Daugntry, Beth A		
Question	Answer	Comment
Radioactivity wasn't checked or is = background as measured by a survey meter.</td <td>N/A</td> <td></td>	N/A	
The cooler's custody seal, if present, is intact.	True	
Sample custody seals, if present, are intact.	True	
The cooler or samples do not appear to have been compromised or tampered with.	True	
Samples were received on ice.	False	Thermal preservation not required.
Cooler Temperature is acceptable.	True	
Cooler Temperature is recorded.	True	
COC is present.	True	
COC is filled out in ink and legible.	True	
COC is filled out with all pertinent information.	True	
Is the Field Sampler's name present on COC?	True	
There are no discrepancies between the containers received and the COC.	True	
Samples are received within Holding Time (excluding tests with immediate HTs)	True	
Sample containers have legible labels.	True	
Containers are not broken or leaking.	True	
Sample collection date/times are provided.	True	
Appropriate sample containers are used.	True	
Sample bottles are completely filled.	True	
Sample Preservation Verified.	N/A	
There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs	True	
Containers requiring zero headspace have no headspace or bubble is <6mm (1/4").	N/A	
Multiphasic samples are not present.	True	
Samples do not require splitting or compositing.	True	
Residual Chlorine Checked.	N/A	

2

4

5

7

9

10

12

13

Accreditation/Certification Summary

Client: South Carolina Public Service Authority Project/Site: 125915/JM02.09.G01.1/36500

Job ID: 680-233704-2

Laboratory: Eurofins Savannah

The accreditations/certifications listed below are applicable to this report.

Authority	Program	Identification Number	Expiration Date
South Carolina	State	98001	06-30-23

_3

4

6

8

9

11

12

gel.com

August 11, 2023

Ms. Jeanette Gilmetti Santee Cooper P.O. Box 2946101 OCO3 Moncks Corner, South Carolina 29461

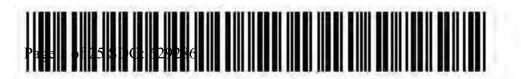
Re: ABS Lab Analytical Work Order: 629286

Dear Ms. Gilmetti:

GEL Laboratories, LLC (GEL) appreciates the opportunity to provide the enclosed analytical results for the sample(s) we received on July 14, 2023. This original data report has been prepared and reviewed in accordance with GEL's standard operating procedures.

The samples were delivered with proper chain of custody documentation and signatures. All sample containers arrived without any visible signs of tampering or breakage. There are no additional comments concerning sample receipt.

Test results for NELAP or ISO 17025 accredited tests are verified to meet the requirements of those standards, with any exceptions noted. The results reported relate only to the items tested and to the sample as received by the laboratory. These results may not be reproduced except as full reports without approval by the laboratory. Copies of GEL's accreditations and certifications can be found on our website at www.gel.com.


Our policy is to provide high quality, personalized analytical services to enable you to meet your analytical needs on time every time. We trust that you will find everything in order and to your satisfaction. If you have any questions, please do not hesitate to call me at (843) 556-8171, ext. 4289.

Sincerely,

Julie Robinson Project Manager

Purchase Order: 398684

Enclosures

GEL LABORATORIES LLC

2040 Savage Road Charleston SC 29407 - (843) 556-8171 - www.gel.com

Certificate of Analysis Report for

SOOP001 Santee Cooper

Client SDG: 629286 GEL Work Order: 629286

The Qualifiers in this report are defined as follows:

- * A quality control analyte recovery is outside of specified acceptance criteria
- ** Analyte is a Tracer compound
- ** Analyte is a surrogate compound
- U Analyte was analyzed for, but not detected above the MDL, MDA, MDC or LOD.

Where the analytical method has been performed under NELAP certification, the analysis has met all of the requirements of the NELAC standard unless qualified on the Certificate of Analysis.

The designation ND, if present, appears in the result column when the analyte concentration is not detected above the limit as defined in the 'U' qualifier above.

This data report has been prepared and reviewed in accordance with GEL Laboratories LLC standard operating procedures. Please direct any questions to your Project Manager, Julie Robinson.

	Julia	Kni
Reviewed by		

Page 2 of 25 SDG: 629286

2040 Savage Road Charleston SC 29407 - (843) 556-8171 - www.gel.com

Certificate of Analysis

Project:

Client ID:

Report Date: August 11, 2023

SOOP00119

SOOP001

Company: Santee Cooper Address: P.O. Box 2946101

OCO3

Moncks Corner, South Carolina 29461

Contact: Ms. Jeanette Gilmetti Project: ABS Lab Analytical

Client Sample ID: AF68757 Sample ID: 629286001

Matrix: GW

Collect Date: 11-JUL-23 09:51
Receive Date: 14-JUL-23
Collector: Client

Parameter	Qualifier	Result U	Uncertainty	MDC	RL	Units	PF	DF	Analy	st Date	Time Batch	Method
Rad Gas Flow Proport	ional Counting	Ţ										
GFPC, Ra228, Liquid	"As Received'	1										
Radium-228		3.22	+/-1.48	1.97	3.00	pCi/L			JE1	08/10/23	0842 2472078	1
Radium-226+Radium-	228 Calculation	n "See Pare	ent Products"									
Radium-226+228 Sum		5.93	+/-1.65			pCi/L		1	NXL1	08/11/23	1032 2460567	2
Rad Radium-226												
Lucas Cell, Ra226, Lic	quid "As Recei	ived"										
Radium-226	_	2.72	+/-0.749	0.537	1.00	pCi/L			LXP1	08/11/23	0818 2460555	3

The following Analytical Methods were performed:

Method	Description		Analyst Co	omments	
1	EPA 904.0/SW846 9320 Modified		-		
2	Calculation				
3	EPA 903.1 Modified				
Cuma cata/Traca	or Dagayary Tost	D agult	Naminal	Dagayamı0/	A acontoble Limits

Surrogate/Tracer Recovery Test Result Nominal Recovery% Acceptable Limits

Barium-133 Tracer GFPC, Ra228, Liquid "As Received" 66.9 (15%-125%)

Notes:

Counting Uncertainty is calculated at the 95% confidence level (1.96-sigma).

Column headers are defined as follows:

DF: Dilution Factor Lc/LC: Critical Level
DL: Detection Limit PF: Prep Factor
MDA: Minimum Detectable Activity RL: Reporting Limit

MDC: Minimum Detectable Concentration SQL: Sample Quantitation Limit

Page 3 of 25 SDG: 629286

2040 Savage Road Charleston SC 29407 - (843) 556-8171 - www.gel.com

Certificate of Analysis

Report Date: August 11, 2023

Company: Santee Cooper Address: P.O. Box 2946101

OCO3

Moncks Corner, South Carolina 29461

Contact: Ms. Jeanette Gilmetti Project: ABS Lab Analytical

Client Sample ID: AF68749 Sample ID: 629286002

Matrix: GW

Collect Date: 11-JUL-23 10:52
Receive Date: 14-JUL-23
Collector: Client

: AF68749 Project: SOOP00119 629286002 Client ID: SOOP001

Parameter	Qualifier	Result	Uncertainty	MDC	RL	Units	PF	DF	Analy	st Date	Time	Batch	Method
Rad Gas Flow Proportional Counting													
GFPC, Ra228, Liquid "	As Received"												
Radium-228	U	0.544	+/-0.893	1.57	3.00	pCi/L			JE1	08/10/23	0842	2472078	1
Radium-226+Radium-2	28 Calculatio	n "See Pa	arent Products"										
Radium-226+228 Sum		1.24	+/-1.00			pCi/L		1	NXL1	08/11/23	1032	2460567	2
Rad Radium-226													
Lucas Cell, Ra226, Liqu	uid "As Recei	ved"											
Radium-226		0.697	+/-0.455	0.623	1.00	pCi/L			LXP1	08/11/23	0818	2460555	3
The following Analytic	eal Methods w	ere perfo	ormed:										
Method	Description					I	Analys	st Co	mment	S			

1 E	PA 904.0/SW846 9320 Modified				
2	Calculation				
3 E	EPA 903.1 Modified				
Surrogate/Tracer Recovery	y Test	Result	Nominal	Recovery%	Acceptable Limits
Barium-133 Tracer	GFPC, Ra228, Liquid "As Received"			69.1	(15%-125%)

Notes:

Counting Uncertainty is calculated at the 95% confidence level (1.96-sigma).

Column headers are defined as follows:

DF: Dilution Factor Lc/LC: Critical Level
DL: Detection Limit PF: Prep Factor
MDA: Minimum Detectable Activity RL: Reporting Limit

MDC: Minimum Detectable Concentration SQL: Sample Quantitation Limit

Page 4 of 25 SDG: 629286

2040 Savage Road Charleston SC 29407 - (843) 556-8171 - www.gel.com

Certificate of Analysis

Project:

Client ID:

Analyst Comments

Report Date: August 11, 2023

SOOP00119

SOOP001

Company: Santee Cooper Address: P.O. Box 2946101

OCO3

Moncks Corner, South Carolina 29461

Contact: Ms. Jeanette Gilmetti Project: ABS Lab Analytical

Client Sample ID: AF68751 Sample ID: 629286003

Matrix: GW

Collect Date: 10-JUL-23 10:00
Receive Date: 14-JUL-23
Collector: Client

MDC RLParameter Qualifier Result Uncertainty Units PF DF Analyst Date Time Batch Method Rad Gas Flow Proportional Counting GFPC, Ra228, Liquid "As Received" Radium-228 2.87 +/-1.41 2.04 3.00 pCi/L JE1 08/10/23 0842 2472078 1 Radium-226+Radium-228 Calculation "See Parent Products" Radium-226+228 Sum 4.17 +/-1.51 pCi/L NXL1 08/11/23 1032 2460567 2 Rad Radium-226 Lucas Cell, Ra226, Liquid "As Received" Radium-226 1.30 +/-0.536 0.479 1.00 pCi/L LXP1 08/11/23 0849 2460555 3

The following Analytical Methods were performed:

Description

1 EPA 904.0/SW846 9320 Modified
2 Calculation
3 EPA 903.1 Modified

Surrogate/Tracer Recovery Test Result Nominal Recovery% Acceptable Limits

Barium-133 Tracer GFPC, Ra228, Liquid "As Received"

Result Nonlinial Recovery Acceptable Lilli

74.2 (15%-125%)

Notes:

Method

Counting Uncertainty is calculated at the 95% confidence level (1.96-sigma).

Column headers are defined as follows:

DF: Dilution Factor Lc/LC: Critical Level
DL: Detection Limit PF: Prep Factor
MDA: Minimum Detectable Activity RL: Reporting Limit

MDC: Minimum Detectable Concentration SQL: Sample Quantitation Limit

Page 5 of 25 SDG: 629286

2040 Savage Road Charleston SC 29407 - (843) 556-8171 - www.gel.com

Certificate of Analysis

Report Date: August 11, 2023

Company: Santee Cooper Address: P.O. Box 2946101

OCO3

Moncks Corner, South Carolina 29461

Contact: Ms. Jeanette Gilmetti Project: ABS Lab Analytical

Client Sample ID: AF68750 Sample ID:

Matrix: GW

Collect Date: 10-JUL-23 11:18 Receive Date: 14-JUL-23 Client Collector:

Description

Project: SOOP00119 629286004 Client ID: SOOP001

Parameter	Oualifier	Result	Uncertainty	MDC	RL	Units	PF	DF	Analy	st Date	Time	Batch	Method
Rad Gas Flow Proportio													
GFPC, Ra228, Liquid "A	Č												
Radium-228	U	0.458	+/-1.13	2.03	3.00	pCi/L			JE1	08/10/23	0842	2472078	1
Radium-226+Radium-228 Calculation "See Parent Products"													
Radium-226+228 Sum		1.43	+/-1.23			pCi/L		1	NXL1	08/11/23	1032	2460567	2
Rad Radium-226													
Lucas Cell, Ra226, Liquid "As Received"													
Radium-226		0.970	+/-0.485	0.536	1.00	pCi/L			LXP1	08/11/23	0849	2460555	3
The following Analytical Methods were performed:													

1	EPA 904.0/SW846 9320 Modified				
2	Calculation				
3	EPA 903.1 Modified				
Surrogate/Tracer Recove	ery Test	Result	Nominal	Recovery%	Acceptable Limits

Analyst Comments

Barium-133 Tracer GFPC, Ra228, Liquid "As Received" 64.6 (15%-125%)

Notes:

Method

Counting Uncertainty is calculated at the 95% confidence level (1.96-sigma).

Column headers are defined as follows:

DF: Dilution Factor Lc/LC: Critical Level DL: Detection Limit PF: Prep Factor MDA: Minimum Detectable Activity **RL**: Reporting Limit

MDC: Minimum Detectable Concentration SQL: Sample Quantitation Limit

Page 6 of 25 SDG: 629286

2040 Savage Road Charleston SC 29407 - (843) 556-8171 - www.gel.com

Certificate of Analysis

Report Date: August 11, 2023

Company: Santee Cooper Address: P.O. Box 2946101

OCO3

Moncks Corner, South Carolina 29461

Contact: Ms. Jeanette Gilmetti Project: ABS Lab Analytical

Client Sample ID: AF68755 Sample ID: 629286005

Matrix: GW

Collect Date: 10-JUL-23 12:59
Receive Date: 14-JUL-23
Collector: Client

Description

D: AF68755 Project: SOOP00119 629286005 Client ID: SOOP001

Parameter	Qualifier	Result	Uncertainty	MDC	RL	Units	PF	DF	Analy	st Date	Time	e Batch	Method
Rad Gas Flow Proportio	nal Counting												
GFPC, Ra228, Liquid "A	As Received"												
Radium-228	U	1.17	+/-1.06	1.72	3.00	pCi/L			JE1	08/10/23	0842	2472078	1
Radium-226+Radium-22	28 Calculation	n "See Pa	arent Products"										
Radium-226+228 Sum		2.19	+/-1.17			pCi/L		1	NXL1	08/11/23	1032	2460567	2
Rad Radium-226													
Lucas Cell, Ra226, Liqu	iid "As Recei	ved"											
Radium-226		1.03	+/-0.485	0.517	1.00	pCi/L			LXP1	08/11/23	0849	2460555	3
The following Analytic	al Methods w	ere perfo	ormed:										

1	EPA 904.0/SW846 9320 Modified				
2	Calculation				
3	EPA 903.1 Modified				
Surrogate/Tracer Recov	ery Test	Result	Nominal	Recovery%	Acceptable Limits

Analyst Comments

Barium-133 Tracer GFPC, Ra228, Liquid "As Received" 69.5 (15%-125%)

Notes:

Method

Counting Uncertainty is calculated at the 95% confidence level (1.96-sigma).

Column headers are defined as follows:

DF: Dilution Factor Lc/LC: Critical Level
DL: Detection Limit PF: Prep Factor
MDA: Minimum Detectable Activity RL: Reporting Limit

MDC: Minimum Detectable Concentration SQL: Sample Quantitation Limit

Page 7 of 25 SDG: 629286

2040 Savage Road Charleston SC 29407 - (843) 556-8171 - www.gel.com

Certificate of Analysis

Report Date: August 11, 2023

Company: Santee Cooper Address: P.O. Box 2946101

OCO3

Moncks Corner, South Carolina 29461

Contact: Ms. Jeanette Gilmetti Project: ABS Lab Analytical

Client Sample ID: AF68733 Sample ID: 629286006

Matrix: GW

Collect Date: 10-JUL-23 14:10
Receive Date: 14-JUL-23
Collector: Client

F68733 Project: SOOP00119 9286006 Client ID: SOOP001

Parameter	Qualifier	Result	Uncertainty	MDC	RL	Units	PF	DF A	nalyst Date	Time Batch	Method
Rad Gas Flow Proportion	onal Counting	;									
GFPC, Ra228, Liquid "	As Received"	1									
Radium-228		1.80	+/-1.14	1.65	3.00	pCi/L		JH	E1 08/10/2	8 0842 2472078	3 1
Radium-226+Radium-2	228 Calculatio	n "See Pa	arent Products"								
Radium-226+228 Sum		3.41	+/-1.31			pCi/L		1 N	XL1 08/11/2	3 1032 246056	7 2
Rad Radium-226											
Lucas Cell, Ra226, Liqu	uid "As Recei	ved"									
Radium-226		1.61	+/-0.663	0.592	1.00	pCi/L		L	XP1 08/11/2	0849 246055	5 3
The following Analytical Methods were performed:											
Method	Description					1	Analys	st Comn	nents		

1	EPA 904.0/SW846 9320 Modified		•		
2	Calculation				
3	EPA 903.1 Modified				
Surrogate/Tracer Recov	ery Test	Result	Nominal	Recovery%	Acceptable Limits

Barium-133 Tracer GFPC, Ra228, Liquid "As Received" 68 (15%-125%)

Notes:

Counting Uncertainty is calculated at the 95% confidence level (1.96-sigma).

Column headers are defined as follows:

DF: Dilution Factor Lc/LC: Critical Level
DL: Detection Limit PF: Prep Factor
MDA: Minimum Detectable Activity RL: Reporting Limit

MDC: Minimum Detectable Concentration SQL: Sample Quantitation Limit

Page 8 of 25 SDG: 629286

2040 Savage Road Charleston SC 29407 - (843) 556-8171 - www.gel.com

Certificate of Analysis

Project:

Client ID:

Analyst Comments

Report Date: August 11, 2023

SOOP00119

SOOP001

Company: Santee Cooper Address: P.O. Box 2946101

OCO3

Moncks Corner, South Carolina 29461

Contact: Ms. Jeanette Gilmetti Project: ABS Lab Analytical

Client Sample ID: AF68734 Sample ID: 629286007

Matrix: GW

Collect Date: 10-JUL-23 14:15
Receive Date: 14-JUL-23
Collector: Client

Parameter	Qualifier	Result	Uncertainty	MDC	RL	Units	PF	DF Anal	yst Date	Time Batch	Method
Rad Gas Flow Proport	ional Counting	5									
GFPC, Ra228, Liquid	"As Received"										
Radium-228	U	1.00	+/-1.01	1.66	3.00	pCi/L		JE1	08/10/23	0842 2472078	1
Radium-226+Radium-	-228 Calculatio	n "See Pa	rent Products"								
Radium-226+228 Sum		2.38	+/-1.15			pCi/L		1 NXL	08/11/23	1032 2460567	2
Rad Radium-226											
Lucas Cell, Ra226, Lie	quid "As Recei	ved"									
Radium-226		1.38	+/-0.544	0.546	1.00	pCi/L		LXP1	08/11/23	0849 2460555	3
The following Analyt	ical Mathade v	zara narfo	rmad:								

The following Analytical Methods were performed:

1 EPA	A 904.0/SW846 9320 Modified				
2 Cale	lculation				
3 EPA	A 903.1 Modified				
Surrogate/Tracer Recovery	Test	Result	Nominal	Recovery%	Acceptable Limits

Barium-133 Tracer GFPC, Ra228, Liquid "As Received"

Description

GFPC, Ra228, Liquid "As Received" 68.5 (15%-125%)

Counting Uncertainty is calculated at the 95% confidence level (1.96-sigma). *Column headers are defined as follows:*

Method

Notes:

DF: Dilution Factor Lc/LC: Critical Level
DL: Detection Limit PF: Prep Factor
MDA: Minimum Detectable Activity RL: Reporting Limit

MDC: Minimum Detectable Concentration SQL: Sample Quantitation Limit

Page 9 of 25 SDG: 629286

2040 Savage Road Charleston SC 29407 - (843) 556-8171 - www.gel.com

Certificate of Analysis

Report Date: August 11, 2023

Company: Santee Cooper Address: P.O. Box 2946101

OCO3

Moncks Corner, South Carolina 29461

Contact: Ms. Jeanette Gilmetti Project: ABS Lab Analytical

Client Sample ID: AF68740 Sample ID: 629286008

Matrix: GW

Collect Date: 12-JUL-23 11:01
Receive Date: 14-JUL-23
Collector: Client

Description

D: AF68740 Project: SOOP00119 629286008 Client ID: SOOP001

Parameter	Qualifier	Result	Uncertainty	MDC	RL	Units	PF	DF A	nalyst Date	Time Batch	Method
Rad Gas Flow Proportion	onal Counting										
GFPC, Ra228, Liquid "A	As Received"										
Radium-228	U	0.589	+/-1.25	2.22	3.00	pCi/L		JE	1 08/10/23	0842 2472078	1
Radium-226+Radium-2	28 Calculatio	n "See Pa	arent Products"								
Radium-226+228 Sum		2.99	+/-1.40			pCi/L		1 N	XL1 08/11/23	1032 2460567	2
Rad Radium-226											
Lucas Cell, Ra226, Liqu	uid "As Recei	ved"									
Radium-226		2.40	+/-0.623	0.312	1.00	pCi/L		L	KP1 08/11/23	0849 2460555	3
The following Analytic	al Methods w	ere perfo	rmed:								

1	EPA 904.0/SW846 9320 Modified				
2	Calculation				
3	EPA 903.1 Modified				
Surrogate/Tracer Recov	ery Test	Result	Nominal	Recovery%	Acceptable Limits

Analyst Comments

Barium-133 Tracer GFPC, Ra228, Liquid "As Received"

64.8 (15%-125%)

Notes:

Method

Counting Uncertainty is calculated at the 95% confidence level (1.96-sigma).

Column headers are defined as follows:

DF: Dilution Factor Lc/LC: Critical Level
DL: Detection Limit PF: Prep Factor
MDA: Minimum Detectable Activity RL: Reporting Limit

MDC: Minimum Detectable Concentration SQL: Sample Quantitation Limit

Page 10 of 25 SDG: 629286

2040 Savage Road Charleston SC 29407 - (843) 556-8171 - www.gel.com

Certificate of Analysis

Project:

Client ID:

Analyst Comments

Report Date: August 11, 2023

SOOP00119

SOOP001

Company: Santee Cooper Address: P.O. Box 2946101

OCO3

Moncks Corner, South Carolina 29461

Ms. Jeanette Gilmetti Contact: Project: ABS Lab Analytical

Client Sample ID: AF68743 Sample ID: 629286009

Matrix: GW

Collect Date: 12-JUL-23 13:23 Receive Date: 14-JUL-23 Client Collector:

Parameter	Qualifier	Result	Uncertainty	MDC	RL	Units	PF	DF	Analy	st Date	Time Batch	Method
Rad Gas Flow Proportion	onal Counting											
GFPC, Ra228, Liquid "	As Received"											
Radium-228	U	0.685	+/-1.18	2.05	3.00	pCi/L			JE1	08/10/23	0842 2472078	1
Radium-226+Radium-2	228 Calculatio	n "See Pa	rent Products"									
Radium-226+228 Sum		3.51	+/-1.39			pCi/L		1	NXL1	08/11/23	1032 2460567	2
Rad Radium-226												
Lucas Cell, Ra226, Liqu	uid "As Recei	ved"										
Radium-226		2.82	+/-0.733	0.542	1.00	pCi/L			LXP1	08/11/23	0849 2460555	3

The following Analytical Methods were performed:

Description

2 Cal	lculation				
3 EP.	A 903.1 Modified				
Surrogate/Tracer Recovery	Test	Result	Nominal	Recovery%	Acceptable Limits
D : 122 F	CEDC D 220 II : IIIA D . III			72.2	(150/ 1050/)

Barium-133 Tracer GFPC, Ra228, Liquid "As Received" 72.2 (15%-125%)

Method

Counting Uncertainty is calculated at the 95% confidence level (1.96-sigma).

EPA 904.0/SW846 9320 Modified

Column headers are defined as follows:

DF: Dilution Factor Lc/LC: Critical Level DL: Detection Limit PF: Prep Factor MDA: Minimum Detectable Activity **RL**: Reporting Limit

MDC: Minimum Detectable Concentration SQL: Sample Quantitation Limit

Page 11 of 25 SDG: 629286

2040 Savage Road Charleston SC 29407 - (843) 556-8171 - www.gel.com

Certificate of Analysis

Report Date: August 11, 2023

SOOP00119

SOOP001

Company: Santee Cooper Address: P.O. Box 2946101

OCO3

Moncks Corner, South Carolina 29461

Ms. Jeanette Gilmetti Contact: Project: ABS Lab Analytical

Client Sample ID: AF68744 Sample ID: 629286010

Matrix: GW

Collect Date: Receive Date: 14-JUL-23 Collector:

12-JUL-23 13:28 Client

Project:

Client ID:

Analyst Comments

Parameter	Qualifier	Result	Uncertainty	MDC	RL	Units	PF	DF Anal	yst Date	Time Batch	Method
Rad Gas Flow Proportion	onal Counting	5									
GFPC, Ra228, Liquid "	As Received"										
Radium-228	U	0.0630	+/-0.807	1.56	3.00	pCi/L		JE1	08/10/23	0842 2472078	1
Radium-226+Radium-2	228 Calculatio	n "See Pa	arent Products"								
Radium-226+228 Sum		1.35	+/-0.976			pCi/L		1 NXL1	08/11/23	1032 2460567	2
Rad Radium-226											
Lucas Cell, Ra226, Liqu	uid "As Recei	ved"									
Radium-226		1.29	+/-0.549	0.548	1.00	pCi/L		LXP1	08/11/23	0849 2460555	3
The following Analytic	eal Methods w	ere perfo	rmed:								

Description

EPA 904.0/SW846 9320 Modified Calculation EPA 903.1 Modified

Nominal Acceptable Limits Surrogate/Tracer Recovery Test Result Recovery% Barium-133 Tracer GFPC, Ra228, Liquid "As Received" (15%-125%) 69.1

Notes:

Method

Counting Uncertainty is calculated at the 95% confidence level (1.96-sigma).

Column headers are defined as follows:

DF: Dilution Factor Lc/LC: Critical Level DL: Detection Limit PF: Prep Factor MDA: Minimum Detectable Activity **RL**: Reporting Limit

MDC: Minimum Detectable Concentration SQL: Sample Quantitation Limit

Page 12 of 25 SDG: 629286

2040 Savage Road Charleston SC 29407 - (843) 556-8171 - www.gel.com

Certificate of Analysis

Report Date: August 11, 2023

Company: Santee Cooper Address: P.O. Box 2946101

OCO3

Moncks Corner, South Carolina 29461

Contact: Ms. Jeanette Gilmetti Project: ABS Lab Analytical

Client Sample ID: AF68738 Sample ID: 629286011

Matrix: GW

Collect Date: 12-JUL-23 12:28 Receive Date: 14-JUL-23 Collector: Client

Description

D: AF68738 Project: SOOP00119 629286011 Client ID: SOOP001

Parameter	Qualifier	Result	Uncertainty	MDC	RL	Units	PF	DF.	Analy	st Date	Time	e Batch	Method
Rad Gas Flow Proportio	nal Counting												
GFPC, Ra228, Liquid "A	As Received"												
Radium-228	U	0.925	+/-1.25	2.13	3.00	pCi/L			JE1	08/10/23	0842	2472078	1
Radium-226+Radium-22	28 Calculation	n "See Pa	arent Products"										
Radium-226+228 Sum		1.75	+/-1.34			pCi/L		1	NXL1	08/11/23	1032	2460567	2
Rad Radium-226													
Lucas Cell, Ra226, Liqu	id "As Recei	ved"											
Radium-226		0.823	+/-0.494	0.633	1.00	pCi/L			LXP1	08/11/23	0921	2460555	3
The following Analytica	al Methods w	ere perfo	ormed:										

1	EPA 904.0/SW846 9320 Modified				
2	Calculation				
3	EPA 903.1 Modified				
Surrogate/Tracer Recov	erv Test	Result	Nominal	Recoverv%	Acceptable Limits

Analyst Comments

Barium-133 Tracer GFPC, Ra228, Liquid "As Received" 69.2 (15%-125%)

Notes:

Method

Counting Uncertainty is calculated at the 95% confidence level (1.96-sigma).

Column headers are defined as follows:

DF: Dilution Factor Lc/LC: Critical Level
DL: Detection Limit PF: Prep Factor
MDA: Minimum Detectable Activity RL: Reporting Limit

MDC: Minimum Detectable Concentration SQL: Sample Quantitation Limit

Page 13 of 25 SDG: 629286

2040 Savage Road Charleston SC 29407 - (843) 556-8171 - www.gel.com

Certificate of Analysis

Report Date: August 11, 2023

Company: Santee Cooper Address: P.O. Box 2946101

OCO3

Moncks Corner, South Carolina 29461

Contact: Ms. Jeanette Gilmetti Project: ABS Lab Analytical

Client Sample ID: AF68732 Sample ID: 629286012

Matrix: GW

Collect Date: 12-JUL-23 14:32
Receive Date: 14-JUL-23
Collector: Client

Project: SOOP00119 Client ID: SOOP001

Parameter	Qualifier	Result	Uncertainty	MDC	RL	Units	PF	DF	Analy	st Date	Time Batch	Method
Rad Gas Flow Proportio	nal Counting											
GFPC, Ra228, Liquid "A	As Received"											
Radium-228	U	1.24	+/-1.50	2.54	3.00	pCi/L			JE1	08/10/23	1038 2472078	1
Radium-226+Radium-22	28 Calculation	n "See Pa	arent Products"									
Radium-226+228 Sum		3.96	+/-1.68			pCi/L		1	NXL1	08/11/23	1032 2460567	2
Rad Radium-226												
Lucas Cell, Ra226, Liqu	id "As Recei	ved"										
Radium-226		2.72	+/-0.746	0.393	1.00	pCi/L			LXP1	08/11/23	0921 2460555	3
The following Analytica	al Methods w	ere perfo	rmed:									
Method	Description	·				F	Analys	t Co	mment	S		

1	EPA 904.0/SW846 9320 Modified				
2	Calculation				
3	EPA 903.1 Modified				
Surrogate/Tracer Recov	ery Test	Result	Nominal	Recovery%	Acceptable Limits

Barium-133 Tracer GFPC, Ra228, Liquid "As Received"

71.1 (15%-125%)

Notes:

Counting Uncertainty is calculated at the 95% confidence level (1.96-sigma).

Column headers are defined as follows:

DF: Dilution Factor Lc/LC: Critical Level
DL: Detection Limit PF: Prep Factor
MDA: Minimum Detectable Activity RL: Reporting Limit

MDC: Minimum Detectable Concentration SQL: Sample Quantitation Limit

Page 14 of 25 SDG: 629286

2040 Savage Road Charleston SC 29407 - (843) 556-8171 - www.gel.com

Certificate of Analysis

Report Date: August 11, 2023

SOOP00119

Company: Santee Cooper Address: P.O. Box 2946101

OCO3

Moncks Corner, South Carolina 29461

Ms. Jeanette Gilmetti Contact: Project: ABS Lab Analytical

Client Sample ID: AF68741 Sample ID:

Matrix: GW

Collect Date: 11-JUL-23 12:51 Receive Date: 14-JUL-23 Client Collector:

Project: 629286013 Client ID: SOOP001

Parameter	Qualifier	Result	Uncertainty	MDC	RL	Units	PF	DF	Analy	st Date	Time	e Batch	Method
Rad Gas Flow Proportio	nal Counting												
GFPC, Ra228, Liquid "A	As Received"												
Radium-228	U	0.845	+/-0.937	1.56	3.00	pCi/L			JE1	08/10/23	0843	2472078	1
Radium-226+Radium-22	28 Calculation	n "See Pa	arent Products"										
Radium-226+228 Sum		1.64	+/-1.02			pCi/L		1	NXL1	08/11/23	1032	2460567	2
Rad Radium-226													
Lucas Cell, Ra226, Liqu	iid "As Recei	ved"											
Radium-226		0.794	+/-0.405	0.422	1.00	pCi/L			LXP1	08/11/23	0921	2460555	3
The following Analytic	al Methods w	ere perfo	rmed:										

Method	Description	Analyst Comments
1	EPA 904.0/SW846 9320 Modified	•

2 Calculation EPA 903.1 Modified

Nominal Recovery% Acceptable Limits Surrogate/Tracer Recovery Test Result Barium-133 Tracer GFPC, Ra228, Liquid "As Received" 63.5 (15%-125%)

Notes:

Counting Uncertainty is calculated at the 95% confidence level (1.96-sigma).

Column headers are defined as follows:

DF: Dilution Factor Lc/LC: Critical Level DL: Detection Limit PF: Prep Factor MDA: Minimum Detectable Activity **RL**: Reporting Limit

MDC: Minimum Detectable Concentration SQL: Sample Quantitation Limit

Page 15 of 25 SDG: 629286

2040 Savage Road Charleston SC 29407 - (843) 556-8171 - www.gel.com

Certificate of Analysis

Report Date: August 11, 2023

SOOP00119

Company: Santee Cooper Address: P.O. Box 2946101

OCO3

Moncks Corner, South Carolina 29461

Contact: Ms. Jeanette Gilmetti Project: ABS Lab Analytical

Client Sample ID: AF68745 Sample ID: 629286014

Matrix: GW

Collect Date: 11-JUL-23 15:21
Receive Date: 14-JUL-23
Collector: Client

Description

629286014 Client ID: SOOP001

Project:

Analyst Comments

Parameter	Qualifier	Result	Uncertainty	MDC	RL	Units	PF	DF	Analy	st Date	Time	Batch	Method
Rad Gas Flow Proportion	nal Counting												
GFPC, Ra228, Liquid "A	As Received"												
Radium-228	U	0.768	+/-0.851	1.42	3.00	pCi/L			JE1	08/10/23	0843	2472078	1
Radium-226+Radium-2	28 Calculation	n "See Pa	arent Products"										
Radium-226+228 Sum		1.41	+/-0.959			pCi/L		1	NXL1	08/11/23	1032	2460567	2
Rad Radium-226													
Lucas Cell, Ra226, Liqu	iid "As Recei	ved"											
Radium-226		0.638	+/-0.442	0.588	1.00	pCi/L			LXP1	08/11/23	0921	2460555	3
The following Analytic	al Methods w	ere perfo	ormed:										

Surrogate/Tracer Recov	erv Test	Result	Nominal	Recovery%	Acceptable Limits
3	EPA 903.1 Modified				
2	Calculation				
1	EPA 904.0/SW846 9320 Modified				

Barium-133 Tracer GFPC, Ra228, Liquid "As Received" 72.8 (15%-125%)

Notes:

Method

Counting Uncertainty is calculated at the 95% confidence level (1.96-sigma).

Column headers are defined as follows:

DF: Dilution Factor Lc/LC: Critical Level
DL: Detection Limit PF: Prep Factor
MDA: Minimum Detectable Activity RL: Reporting Limit

MDC: Minimum Detectable Concentration SQL: Sample Quantitation Limit

Page 16 of 25 SDG: 629286

2040 Savage Road Charleston, SC 29407 - (843) 556-8171 - www.gel.com

QC Summary

Report Date: August 11, 2023

Santee Cooper P.O. Box 2946101

OCO3

Moncks Corner, South Carolina

Contact: Ms. Jeanette Gilmetti

Workorder: 629286

Parmname			NOM	Sample	Qual	QC	Units	RPD%	REC%	Range	Anlst	Date Time
Rad Gas Flow Batch 247	72078											
QC1205480715 Radium-228	629286001	DUP	Uncertainty	3.22 +/-1.48		1.58 +/-1.02	pCi/L	68.4		(0% - 100%)	JE1	08/10/23 08:43
QC1205480716 Radium-228	LCS		80.5 Uncertainty			89.3 +/-5.27	pCi/L		111	(75%-125%)		08/10/23 08:43
QC1205480714 Radium-228	МВ		Uncertainty		U	0.162 +/-0.894	pCi/L					08/10/23 08:43
Rad Ra-226 Batch 246	60555											
QC1205460757 Radium-226	629286001	DUP	Uncertainty	2.72 +/-0.749		1.82 +/-0.601	pCi/L	39.5*		(0%-20%)	LXP1	08/11/23 09:21
QC1205460759 Radium-226	LCS		26.3 Uncertainty			28.2 +/-2.27	pCi/L		107	(75%-125%)		08/11/23 09:21
QC1205460756 Radium-226	MB		Uncertainty		U	0.261 +/-0.295	pCi/L					08/11/23 09:21
QC1205460758 Radium-226	629286001	MS	131 Uncertainty	2.72 +/-0.749		126 +/-10.6	pCi/L		93.9	(75%-125%)		08/11/23 09:21

Notes:

Counting Uncertainty is calculated at the 95% confidence level (1.96-sigma).

The Qualifiers in this report are defined as follows:

U Analyte was analyzed for, but not detected above the MDL, MDA, MDC or LOD.

J Value is estimated

X Consult Case Narrative, Data Summary package, or Project Manager concerning this qualifier

H Analytical holding time was exceeded

< Result is less than value reported

Page 17 of 25 SDG: 629286

Page 1 of 2

2040 Savage Road Charleston, SC 29407 - (843) 556-8171 - www.gel.com

QC Summary

Workorder: 629286

Page 2 of 2

Parmame

NOM Sample Qual OC Units RPD% REC% Range Ankt Date Time

Parmname	NOM	Sample (Qual	QC	Units	RPD%	REC%	Range	Anlst	Date	Time

- > Result is greater than value reported
- UI Gamma Spectroscopy--Uncertain identification
- BD Results are either below the MDC or tracer recovery is low
- h Preparation or preservation holding time was exceeded
- R Sample results are rejected
- ^ RPD of sample and duplicate evaluated using +/-RL. Concentrations are <5X the RL. Qualifier Not Applicable for Radiochemistry.
- N/A RPD or %Recovery limits do not apply.
- ND Analyte concentration is not detected above the detection limit
- M M if above MDC and less than LLD
- NJ Consult Case Narrative, Data Summary package, or Project Manager concerning this qualifier
- FA Failed analysis.
- UJ Gamma Spectroscopy--Uncertain identification
- Q One or more quality control criteria have not been met. Refer to the applicable narrative or DER.
- K Analyte present. Reported value may be biased high. Actual value is expected to be lower.
- UL Not considered detected. The associated number is the reported concentration, which may be inaccurate due to a low bias.
- L Analyte present. Reported value may be biased low. Actual value is expected to be higher.
- N1 See case narrative
- Y Other specific qualifiers were required to properly define the results. Consult case narrative.
- ** Analyte is a Tracer compound
- M REMP Result > MDC/CL and < RDL
- J See case narrative for an explanation

N/A indicates that spike recovery limits do not apply when sample concentration exceeds spike conc. by a factor of 4 or more or %RPD not applicable.

- ^ The Relative Percent Difference (RPD) obtained from the sample duplicate (DUP) is evaluated against the acceptance criteria when the sample is greater than five times (5X) the contract required detection limit (RL). In cases where either the sample or duplicate value is less than 5X the RL, a control limit of +/- the RL is used to evaluate the DUP result.
- * Indicates that a Quality Control parameter was not within specifications.

For PS, PSD, and SDILT results, the values listed are the measured amounts, not final concentrations.

Where the analytical method has been performed under NELAP certification, the analysis has met all of the requirements of the NELAC standard unless qualified on the QC Summary.

Page 18 of 25 SDG: 629286

Radiochemistry Technical Case Narrative Santee Cooper SDG #: 629286

Product: GFPC, Ra228, Liquid

Analytical Method: EPA 904.0/SW846 9320 Modified **Analytical Procedure:** GL-RAD-A-063 REV# 5

Analytical Batch: 2472078

The following samples were analyzed using the above methods and analytical procedure(s).

GEL Sample ID#	Client Sample Identification
629286001	AF68757
629286002	AF68749
629286003	AF68751
629286004	AF68750
629286005	AF68755
629286006	AF68733
629286007	AF68734
629286008	AF68740
629286009	AF68743
629286010	AF68744
629286011	AF68738
629286012	AF68732
629286013	AF68741
629286014	AF68745
1205480714	Method Blank (MB)
1205480715	629286001(AF68757) Sample Duplicate (DUP)
1205480716	Laboratory Control Sample (LCS)

The samples in this SDG were analyzed on an "as received" basis.

Data Summary:

All sample data provided in this report met the acceptance criteria specified in the analytical methods and procedures for initial calibration, continuing calibration, instrument controls and process controls where applicable, with the following exceptions.

Preparation Information

Homogenous Matrix

Samples 629286004 (AF68750), 629286006 (AF68733), 629286007 (AF68734), 629286011 (AF68738) and 629286012 (AF68732) were non-homogenous matrix. sample 12 is brown the others are a light yellow 629286004 (AF68750), 629286006 (AF68733), 629286007 (AF68734), 629286011 (AF68738) and 629286012 (AF68732).

Technical Information

Sample Re-prep/Re-analysis

Samples were reprepped due to high blank activity. The re-analysis is being reported.

Recounts

Page 19 of 25 SDG: 629286

Samples were re-eluted and recounted to verify sample results. The recounts are reported.

Product: Lucas Cell, Ra226, Liquid **Analytical Method:** EPA 903.1 Modified

Analytical Procedure: GL-RAD-A-008 REV# 15

Analytical Batch: 2460555

The following samples were analyzed using the above methods and analytical procedure(s).

GEL Sample ID#	Client Sample Identification
629286001	AF68757
629286002	AF68749
629286003	AF68751
629286004	AF68750
629286005	AF68755
629286006	AF68733
629286007	AF68734
629286008	AF68740
629286009	AF68743
629286010	AF68744
629286011	AF68738
629286012	AF68732
629286013	AF68741
629286014	AF68745
1205460756	Method Blank (MB)
1205460757	629286001(AF68757) Sample Duplicate (DUP)
1205460758	629286001(AF68757) Matrix Spike (MS)
1205460759	Laboratory Control Sample (LCS)

The samples in this SDG were analyzed on an "as received" basis.

Data Summary:

All sample data provided in this report met the acceptance criteria specified in the analytical methods and procedures for initial calibration, continuing calibration, instrument controls and process controls where applicable, with the following exceptions.

Quality Control (QC) Information

Duplication Criteria between QC Sample and Duplicate Sample

The Sample and the Duplicate, (See Below), did not meet the relative percent difference requirement; however, they do meet the relative error ratio requirement with the value listed below.

Sample	Analyte	Value
1205460757 (AF68757DUP)	Radium-226	RPD 39.5* (0.00%-20.00%) RER 1.5 (0-3)

Miscellaneous Information

Additional Comments

The matrix spike, 1205460758 (AF68757MS), aliquot was reduced to conserve sample volume.

Page 20 of 25 SDG: 629286

Certification Statement

Where the analytical method has been performed under NELAP certification, the analysis has met all of the requirements of the NELAC standard unless otherwise noted in the analytical case narrative.

Page 21 of 25 SDG: 629286

Chain of Custody 624 280

Santee Cooper One Riverwood Drive Moncks Corner, SC 29461 Phone: (843)761-8000 Ext. 5148 Fax: (843)761-4175

Customer Email/Report Recipient: Date Results Needed by: Project/Task/Unit #: Rerun request for any flagged QC 125915 / JM02.08. GØ1.1 / 36500 LCWILLIA @santeecooper.com (Yes) No Analysis Group Labworks ID# Sample Location/ Comments Matrix(see below) Preservative (see below) Collection Date (Internal use Description (Glass Method # Collection Tim Sample Collecto Total # of contail only) Grab (G) or Composite (C) Reporting limit Bottle type: (G/Plastic-P) 226 228 BA Misc. sample info RAD TATAL Any other notes RAD WJK 2 P 2 G X 7/11/23 GW 1 AF68757 WLF-A2-2 0951 1052 WBW-A1-1 AF68749 7/10/23 WLF-AI-2 1000 AF68751 WLF-AI-1. 1118 AF68750 WLF-AI-5 1259 AF68755 1410 AF 68 733 WAP-17 1415 AF68734 WAP-IT DUP Sample Receiving (Internal Use Only) Relinquished by: Received by: Employee# Date Time Employee # Date Time TEMP (°C):_____ Initial: Somoun GEL 35594 7/14/23 0859 7/14/23 0859 Correct pH: Yes Time Relinquished by: Employee# Date Time Received by: Employee # Date Preservative Lot#: BEL 7/4/23 US Relinquished by: Date Received by: Employee# Employee # Date Time Date/Time/Init for preservative: ☐ METALS (all) Nutrients MISC. Gypsum Coal Flyash Oil □ Ag □ Cu □ Sb □ TOC BTEX ☐ Wallboard ☐ Ultimate □ Ammonia Trans. Oil Qual. □ A1 □ Se □ Fe DOC □ Naphthalene Gypsum(all %Moisture ☐ % Moisture □ LOI □ THM/HAA □ As $\Box K$ □ Sn below) ☐ TP/TPO4 □ Ash Color ☐ % Carbon □ VOC □ AIM Acidity □ NH3-N □ Sulfur \square B □ Li □ Sr ☐ Mineral □ Oil & Grease Dielectric Strength □ TOC DF ☐ BTUs Analysis ☐ E. Coli IFT □ Ti □ Ba □Mg □ Total metals □ Cl ☐ Volatile Matter ☐ Total Coliform ☐ Sieve Dissolved Gases ☐ Soluble Metals □ T1 □ NO2 □ Be □ Mn □рН □ CHN ☐ % Moisture Used Oil □ Purity (CaSO4) □ Br ☐ Dissolved As □ % Moisture Other Tests: Flashpoint □ Ca □Мо $\Box V$ □ Dissolved Fe □ NO3 ☐ XRF Scan Metals in oil □ Sulfites **NPDES** □ Cd □ Na □ Zn ☐ Rad 226 (As,Cd,Cr,Ni,Pb □ HGI □ SO4 □pH □ Oil & Grease □ Rad 228 Hg) □ Chlorides ☐ Fineness □ Hg □ Co □ Ni □ PCB □ As ☐ Particulate Matter TX ☐ Particle Size □ TSS □ Cr □ Pb □ CrVI GOFER □ Sulfur

Chain of Custody

Santee Cooper One Riverwood Drive Moncks Corner, SC 29461 Phone: (843)761-8000 Ext. 5148 Fax: (843)761-4175

LCWILL		Report Recipie @santeec	ent: ooper.com	Date I	Results N	eeded b	y:	1259		oject/		Unit #:	1/3650	Rerun reque		ny fla	igged (ДC
																Analys	is Group	
Labworks I	ID#	Sample Locatio	n/	F. 7. 103	The second	P. Barr	7.15		5.25			医空动脉形	Com	ments	30	1	1 .;1	_
(Internal us only)	NAME OF TAXABLE PARTY.	Description		Collection Date	Collection Time	Sample Collector	Total # of containers	Bottle type: (Glass-G/Plastic-P)	Grab (G) or Composite (C)	Matrix(see below)	Preservative (see	Me Rep Mis An	thod # porting lim sc. sample y other not	it info	RAD 226	RAD 228	TOTALKAD ONC.	
AF6'8 74	10	WAP- 23		7/12/23	1101	WIK	2	P	G	GW	2				ı	1	×	
AF 68 74	1 3	WAP-26			1323										1	1		
AF6874	4	WAP-26 DU	P	1	[328	1	Ī	1	1		1							
AF68739	8	WAP-21			1228			1	1									
AF6873	2	WAP-16		1	1432	1												
AF6874	-1	WAP-24		7/11/23	1251													
AF6874	5	WAP-27	1.00	1	1521	1	1	1	1	_	1				1	1	1	
Relinquish	had hv	Employee#	Date	Time	Recei	ed by:	l Fi	mployee	# [Date		Time		Receiving (Interne				
8912 wun		35594	7/14/23		. M	0		GEL		/14/2		0859	TEME	(°C):	Initia	l:	-	
Relinquish		Employee#	Date	Time	Receiv	ed by:	_	mployee	_	Date	-	Time	Corre	ct pH: Yes N	No			
Relinquish	hed by:	GE L Employee#	7.14.27 Date	1455 Time	har- Receiv	ved by:		EL		Date		1955 Time	Preservative Lot#: Date/Time/Init for preservative:					
		TALS (all)	Nuti	rients	MI	SC.		Gy	psun	n		Coa		Flyash		Oi	1	
□ Ag	□ Cu		□ TO	C	□ BTEX		0	Wallbo	ard			Ultimate		□ Ammonia		ins. O	il Qual.	
□ As	□K	Section of the second seco			□ Naphtha □ THM/H			Gyp	sum(a	H		☐ % Mois	ture	□ LOI		Mois color	sture	
□ B	□ Li	(表) (計畫 (表)	□NH	March 2007/400	□ VOC □ Oil & G	ranca		□ AI	M			□ Sulfur		☐ % Carbon ☐ Mineral	112	cidity	c Strength	
□Ba		Table College Ass	□F	1	□ E. Coli		1	□ To	C al meta	ls		□ BTUs		Analysis	[1]	FT		
□ Be		COLUMN BURNS SERVICE		2	□ Total Co	oliform	1		uble Me			□ Volatile	atile Matter ☐ Sieve N ☐ % Moisture			Dissolved Gases Used Oil		
□ Ca		San San San San San	□Br		□ Dissolve		1	□%1	Moistur		THE REAL PROPERTY.	ther Tests:			11.5	lashpo	oint	
□ Cd	□ Na		□ NO.	200	☐ Dissolve ☐ Rad 226		1	□ Sul □ pH			THE RESERVE	XRF Scan HGI		NPDES	(in oil l.Cr.Ni.P	ь
□Со	□Ni	ATTENDED			□ Rad 228 □ PCB		N L	□ Chl	lorides		100 100 100 100	Fineness Particulate M	atter	□ Oil & Grease □ As		lg) X		
□ Cr	□ Pb	The second secon			2100		1	☐ Par ☐ Sulfur	ticle Siz	Ze	1	i dittediate iv	atter			GOFER		

Laboratories LLC SAMPLE RECEIPT & REVIEW FORM Client: SOOF SDG/AR/COC/Work Order: (12) 250 Received By: QG Date Received: 7/14/23 FedEx Express FedEx Ground UPS Field Services Courier Carrier and Tracking Number Suspected Hazard Information *If yet Counts > 100cpm on samples not marked "radioactive", contact the Radiation Safety Group for further investigation. Hazara Class Shipped: UN#: If UN2910, Is the Radioactive Shipment Survey Compliant? Yes___No__ A)Shipped as a DOT Hazardous? B) Did the client designate the samples are to be notation or radioactive stickers on containers equal client designation. received as radioactive? Mayamum Net Counts Observed* (Observed Counts - Area Background Counts): C) Did the RSO classify the samples as CPM / mR/Hr Classified as: Rad 1 Rad 2 Rad 3 radioactive? notation or hazard labels on containers equal client designation. D) Did the client designate samples are hazardous. If D or E is yes, select Hazards below. PCB's Flammable Foreign Soil RCRA Asbestos Beryllium E) Did the RSO identify possible hazards? Z Z Z Sample Receipt Criteria Comments/Qualifiers (Required for Non-Conforming Items) Circle Applicable: Seals broken Damaged container Leaking container Other (describe) Shipping containers received intact and scaled? Chain of custody documents included Circle Applicable: Client contacted and provided COC COC created upon receipt with shipment? Preservation Method: Wet Ice ce Packs Dry ice None Other. Samples requiring cold preservation *all temperatures are seeded in Celsius TEMP: 3 C within $(0 \le 6 \text{ deg. C})$?* Daily check performed and passed on IR Temperature Device Serial #: IR4-23 temperature gun? Secondary Temperature Device Serial # (If Applicable): Circle Applicable: Seals broken Damaged container Leaking container Other (describe) Sample containers intact and sealed? Samples requiring chemical preservation Sample ID's and Containers Affected: at proper pH? servation added. Lot#: If tes, are Encores or Soil Kits present for solids? Yes ___ No___ NA__(If yes, take to VOA Freezer) Do liquid VOA vials contain acid preservation? Yes____No__ Do any samples require Volatile NA_(If unknown, select No) Are liquid VOA vials free of headspace? Yes___ No___ NA_ Analysis? Sample ID's and containers affected: ID's and tests affected: 8 Samples received within holding time? Sample ID's on COC match ID's on ID's and containers affected: Date & time on COC match date & time Circle Applicable: No dates on containers No times on containers COC missing info Other (describe) 10 on bottles? Circle Applicable: No container count on COC Other (describe) Number of containers received match number indicated on COC? Are sample containers identifiable as GEL provided by use of GEL labels? COC form is properly signed in Circle Applicable: Not relinquished Other (describe) relinquished/received sections? Comments (Use Continuation Form if needed):

GL-CHL-SR-001 Rev 7

133 Page ____ of ___

PM (or PMA) review: Initials 7

List of current GEL Certifications as of 11 August 2023

State	Certification
Alabama	42200
Alaska	17-018
Alaska Drinking Water	SC00012
Arkansas	88-0651
CLIA	42D0904046
California	2940
Colorado	SC00012
Connecticut	PH-0169
DoD ELAP/ ISO17025 A2LA	2567.01
Florida NELAP	E87156
Foreign Soils Permit	P330-15-00283, P330-15-00253
Georgia	SC00012
Georgia SDWA	967
Hawaii	SC00012
Idaho	SC00012
Illinois NELAP	200029
Indiana	C-SC-01
Kansas NELAP	E-10332
Kentucky SDWA	90129
Kentucky Wastewater	90129
Louisiana Drinking Water	LA024
Louisiana NELAP	03046 (AI33904)
Maine	2019020
Maryland	270
Massachusetts	M-SC012
Massachusetts PFAS Approv	Letter
Michigan	9976
Mississippi	SC00012
Nebraska	NE-OS-26-13
Nevada	SC000122023-4
New Hampshire NELAP	2054
New Jersey NELAP	SC002
New Mexico	SC00012
New York NELAP	11501
North Carolina	233
North Carolina SDWA	45709
North Dakota	R-158
Oklahoma	2022-160
Pennsylvania NELAP	68-00485
Puerto Rico	SC00012
S. Carolina Radiochem	10120002
Sanitation Districts of L	9255651
South Carolina Chemistry	10120001
Tennessee	TN 02934
Texas NELAP	T104704235-22-20
Utah NELAP	SC000122022-37
Vermont	VT87156
Virginia NELAP	460202
Washington	C780
	<u> </u>

ANALYTICAL REPORT

PREPARED FOR

Attn: Linda Williams
South Carolina Public Service Authority
Santee Cooper
PO BOX 2946101
Moncks Corner, South Carolina 29461-2901

JOB DESCRIPTION

Generated 9/13/2023 6:37:26 PM Revision 1

125915/JM02.09.G01.1/36500

JOB NUMBER

680-239668-1

Eurofins Savannah 5102 LaRoche Avenue Savannah GA 31404

Eurofins Savannah

Job Notes

This report may not be reproduced except in full, and with written approval from the laboratory. The results relate only to the samples tested. For questions please contact the Project Manager at the e-mail address or telephone number listed on this page.

The test results in this report relate only to the samples as received by the laboratory and will meet all requirements of the methodology, with any exceptions noted. This report shall not be reproduced except in full, without the express written approval of the laboratory. All questions should be directed to the Eurofins Environment Testing Southeast, LLC Project Manager.

Authorization

Generated 9/13/2023 6:37:26 PM Revision 1

Authorized for release by Jerry Lanier, Project Manager I <u>Jerry.Lanier@et.eurofinsus.com</u> (912)250-0281

Table of Contents

Cover Page	1
Table of Contents	3
Case Narrative	4
Sample Summary	5
Method Summary	6
Definitions	7
Detection Summary	8
Client Sample Results	9
QC Sample Results	13
QC Association	14
Chronicle	15
Chain of Custody	16
Receipt Checklists	18
Certification Summary	19

4

6

9

10

12

1 /

Case Narrative

Client: South Carolina Public Service Authority Project/Site: 125915/JM02.09.G01.1/36500

Job ID: 680-239668-1

Job ID: 680-239668-1

Laboratory: Eurofins Savannah

Narrative

Job Narrative 680-239668-1

REVISION

The report being provided is a revision of the original report sent on 9/1/2023. The report (revision 1) is being revised due to Client needs mercury re-run due to failing CCV..

Receipt

The samples were received on 8/30/2023 9:10 AM. Unless otherwise noted below, the samples arrived in good condition, and, where required, properly preserved and on ice. The temperature of the cooler at receipt time was 22.7°C

Metals

No additional analytical or quality issues were noted, other than those described above or in the Definitions/ Glossary page.

3

4

5

6

0

0

10

13

114

Sample Summary

Matrix

Water

Water

Water

Water

Client: South Carolina Public Service Authority Project/Site: 125915/JM02.09.G01.1/36500

Client Sample ID

AF75783

AF75784

AF75785

AF75786

Lab Sample ID

680-239668-1

680-239668-2

680-239668-3

680-239668-4

Job ID: 680-239668-1

Collected	Received
08/28/23 13:49	08/30/23 09:10
08/28/23 11:09	08/30/23 09:10
08/28/23 11:14	08/30/23 09:10

08/28/23 12:35 08/30/23 09:10

1

6

8

9

11

12

1

Method Summary

Client: South Carolina Public Service Authority Project/Site: 125915/JM02.09.G01.1/36500

Job ID: 680-239668-1

Method	Method Description	Protocol	Laboratory
7470A	Mercury (CVAA)	SW846	EET SAV
7470A	Preparation, Mercury	SW846	EET SAV

Protocol References:

SW846 = "Test Methods For Evaluating Solid Waste, Physical/Chemical Methods", Third Edition, November 1986 And Its Updates.

Laboratory References:

EET SAV = Eurofins Savannah, 5102 LaRoche Avenue, Savannah, GA 31404, TEL (912)354-7858

6

Ω

9

11

12

1/

Definitions/Glossary

Client: South Carolina Public Service Authority

Job ID: 680-239668-1

Project/Site: 125915/JM02.09.G01.1/36500

Qualifiers

Metals

Qualifier Qualifier Description

U Indicates the analyte was analyzed for but not detected.

Glossary

Abbreviation These commonly used abbreviations may or may not be present in this report.

Listed under the "D" column to designate that the result is reported on a dry weight basis

%R Percent Recovery
CFL Contains Free Liquid
CFU Colony Forming Unit
CNF Contains No Free Liquid

DER Duplicate Error Ratio (normalized absolute difference)

Dil Fac Dilution Factor

DL Detection Limit (DoD/DOE)

DL, RA, RE, IN Indicates a Dilution, Re-analysis, Re-extraction, or additional Initial metals/anion analysis of the sample

DLC Decision Level Concentration (Radiochemistry)

EDL Estimated Detection Limit (Dioxin)

LOD Limit of Detection (DoD/DOE)

LOQ Limit of Quantitation (DoD/DOE)

MCL EPA recommended "Maximum Contaminant Level"

MDA Minimum Detectable Activity (Radiochemistry)

MDC Minimum Detectable Concentration (Radiochemistry)

MDL Method Detection Limit
ML Minimum Level (Dioxin)
MPN Most Probable Number
MQL Method Quantitation Limit

NC Not Calculated

ND Not Detected at the reporting limit (or MDL or EDL if shown)

NEG Negative / Absent
POS Positive / Present

PQL Practical Quantitation Limit

PRES Presumptive
QC Quality Control

RER Relative Error Ratio (Radiochemistry)

RL Reporting Limit or Requested Limit (Radiochemistry)

RPD Relative Percent Difference, a measure of the relative difference between two points

TEF Toxicity Equivalent Factor (Dioxin)
TEQ Toxicity Equivalent Quotient (Dioxin)

TNTC Too Numerous To Count

5

6

7

8

4.0

10

12

13

Detection Summary

 Project/Site: 125915/JM02.09.G01.1/36500

 Client Sample ID: AF75783
 Lab Sample ID: 680-239668-1

 No Detections.
 Lab Sample ID: 680-239668-2

 No Detections.
 Lab Sample ID: 680-239668-3

 No Detections.
 Lab Sample ID: 680-239668-4

3

Job ID: 680-239668-1

4

_

7

10

12

- -

Client: South Carolina Public Service Authority

No Detections.

Client: South Carolina Public Service Authority
Project/Site: 125915/JM02.09.G01.1/36500

Lab Sample ID: 680-239668-1

Matrix: Water

Job ID: 680-239668-1

Date Collected: 08/28/23 13:49 Date Received: 08/30/23 09:10

Client Sample ID: AF75783

Method: SW846 7470A - Mercury (CVAA)

Analyte Result Qualifier RL MDL Unit D Prepared Analyzed Dil Fac

Mercury 0.200 U 0.200 ug/L 09/11/23 12:16 09/12/23 12:41

8

9

10

12

13

11

Client: South Carolina Public Service Authority

Project/Site: 125915/JM02.09.G01.1/36500

Lab Sample ID: 680-239668-2 **Client Sample ID: AF75784** Date Collected: 08/28/23 11:09

Matrix: Water

Job ID: 680-239668-1

Date Received: 08/30/23 09:10

Method: SW846 7470A - Mercury (CVAA)

Analyte Result Qualifier RL MDL Unit Prepared Analyzed Dil Fac

Mercury 0.200 U 0.200 ug/L 09/11/23 12:16 09/12/23 12:43

Eurofins Savannah

Client: South Carolina Public Service Authority
Project/Site: 125915/JM02.09.G01.1/36500

Client Sample ID: AF75785 Lab Sample ID: 680-239668-3

Date Collected: 08/28/23 11:14 Matrix: Water

Date Received: 08/30/23 09:10

 Method: SW846 7470A - Mercury (CVAA)

 Analyte
 Result
 Qualifier
 RL
 MDL
 Unit
 D
 Prepared
 Analyzed
 Dil Fac

 Mercury
 0.200
 U
 0.200
 0.200
 09/11/23 12:16
 09/11/23 12:16
 09/12/23 12:44
 1

Job ID: 680-239668-1

4

5

6

8

10

12

13

14

Client: South Carolina Public Service Authority Project/Site: 125915/JM02.09.G01.1/36500

Lab Sample ID: 680-239668-4

Matrix: Water

Job ID: 680-239668-1

Client Sample ID: AF75786 Date Collected: 08/28/23 12:35

Date Received: 08/30/23 09:10

Method: SW846 7470A - Mercury (CVAA)

Analyte Result Qualifier RL MDL Unit Prepared Analyzed Dil Fac

Mercury 0.200 U 0.200 ug/L 09/11/23 12:16 09/12/23 12:46

QC Sample Results

Client: South Carolina Public Service Authority Project/Site: 125915/JM02.09.G01.1/36500

Job ID: 680-239668-1

Method: 7470A - Mercury (CVAA)

Lab Sample ID: MB 680-797380/1-A Client Sample ID: Method Blank

Matrix: Water Prep Type: Total/NA

Analysis Batch: 797609 Prep Batch: 797380

MB MB

 $\frac{\text{Analyte}}{\text{Mercury}} \qquad \frac{\text{Result}}{\text{0.200}} \quad \frac{\text{Qualifier}}{\text{U}} \qquad \frac{\text{RL}}{\text{0.200}} \qquad \frac{\text{MDL}}{\text{ug/L}} \qquad \frac{\text{Unit}}{\text{ug/L}} \qquad \frac{\text{D}}{\text{09/11/23 11:54}} \quad \frac{\text{Analyzed}}{\text{09/11/23 11:54}} \qquad \frac{\text{Dil Fac}}{\text{09/12/23 12:08}} \qquad 1$

Lab Sample ID: LCS 680-797380/2-A

Client Sample ID: Lab Control Sample

Matrix: Water Prep Type: Total/NA

Analysis Batch: 797609 Prep Batch: 797380
Spike LCS LCS %Rec

 Analyte
 Added Mercury
 Result Qualifier Unit ug/L
 Unit ug/L
 D %Rec Limits 106 80 - 120

2

4

5

6

7

8

9

10

12

13

QC Association Summary

Client: South Carolina Public Service Authority Job ID: 680-239668-1 Project/Site: 125915/JM02.09.G01.1/36500

Metals

Prep Batch: 797380

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
680-239668-1	AF75783	Total/NA	Water	7470A	
680-239668-2	AF75784	Total/NA	Water	7470A	
680-239668-3	AF75785	Total/NA	Water	7470A	
680-239668-4	AF75786	Total/NA	Water	7470A	
MB 680-797380/1-A	Method Blank	Total/NA	Water	7470A	
LCS 680-797380/2-A	Lab Control Sample	Total/NA	Water	7470A	

Analysis Batch: 797609

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
680-239668-1	AF75783	Total/NA	Water	7470A	797380
680-239668-2	AF75784	Total/NA	Water	7470A	797380
680-239668-3	AF75785	Total/NA	Water	7470A	797380
680-239668-4	AF75786	Total/NA	Water	7470A	797380
MB 680-797380/1-A	Method Blank	Total/NA	Water	7470A	797380
LCS 680-797380/2-A	Lab Control Sample	Total/NA	Water	7470A	797380

D CHI OHICIE

Client: South Carolina Public Service Authority Project/Site: 125915/JM02.09.G01.1/36500

Client Sample ID: AF75783

Lab Sample ID: 680-239668-1

Matrix: Water

Job ID: 680-239668-1

Date Collected: 08/28/23 13:49 Date Received: 08/30/23 09:10

	Batch	Batch		Dilution	Batch			Prepared
Prep Type	Type	Method	Run	Factor	Number	Analyst	Lab	or Analyzed
Total/NA	Prep	7470A			797380	DW	EET SAV	09/11/23 12:16
Total/NA	Analysis	7470A		1	797609	DW	EET SAV	09/12/23 12:41

Client Sample ID: AF75784 Lab Sample ID: 680-239668-2

Matrix: Water

Date Collected: 08/28/23 11:09 Date Received: 08/30/23 09:10

	Batch	Batch		Dilution	Batch			Prepared
Prep Type	Type	Method	Run	Factor	Number	Analyst	Lab	or Analyzed
Total/NA	Prep	7470A			797380	DW	EET SAV	09/11/23 12:16
Total/NA	Analysis	7470A		1	797609	DW	EET SAV	09/12/23 12:43

Client Sample ID: AF75785 Lab Sample ID: 680-239668-3

Lab Cample 1D. At 19705

Date Collected: 08/28/23 11:14

Date Received: 08/30/23 09:10

Matrix: Water

Batch Batch **Dilution** Batch **Prepared** Number Analyst **Prep Type** Type Method Run **Factor** or Analyzed Lab Total/NA Prep 7470A 797380 DW **EET SAV** 09/11/23 12:16 Total/NA Analysis 7470A 797609 DW **EET SAV** 09/12/23 12:44 1

Client Sample ID: AF75786 Lab Sample ID: 680-239668-4

Date Collected: 08/28/23 12:35 Matrix: Water

Date Received: 08/30/23 09:10

	Batch	Batch		Dilution	Batch			Prepared
Prep Type	Туре	Method	Run	Factor	Number	Analyst	Lab	or Analyzed
Total/NA	Prep	7470A			797380	DW	EET SAV	09/11/23 12:16
Total/NA	Analysis	7470A		1	797609	DW	EET SAV	09/12/23 12:46

Laboratory References:

EET SAV = Eurofins Savannah, 5102 LaRoche Avenue, Savannah, GA 31404, TEL (912)354-7858

Eurofins Savannah

Chain of Custody

santee cooper

One Riverwood Drive Moncks Comer, SC 29461 Phone: (843)761-8000 Ext. 5148 Fax: (843)761-4175

Customer Email/Report Recipient: Date Results Needed by: Project/Task/Unit #: Rerun request for any flagged QC LINDA . WILLIAMS @santeecooper.com 125915 / JMO2.09.GØ1.1 / 36500 Yes No **Analysis Group** Labworks ID# Sample Location/ Comments Preservative (see below) Matrix(see below) Glass-(Internal use Description Collection Date Method # Collector only) Reporting limit Grab (G) or Composite (C) Bottle type: (G/Plastic-P) Collection Misc. sample info Sample Any other notes \$ EDM BSB ew. G 2 RLS 0.2 or 2 49/L AF 75783 WAP 27 8/28/23 1349 7 7471 X WAP-28 1109 85 WAP-28D 1114 WAP- 29 1235 86 Sample Receiving (Internal Use Only) Time Employee# Received by: Employee # Date Time TEMP (°C): Initial: 8/29/23 Sproan 35594 1300 Correct pH: Yes No Relinquished by: Date Time Received by: Employee # Date Time Preservative Lot#: Relinquished by: Employee# Date Time Received by: Employee # Date Time Date/Time/Init for preservative: ☐ METALS (all) MISC. Gypsum Oil Coal □ Ag □ Cu □ Sb Trans. Oil Qual. %Moisture Color □ TOC □ BTEX □ Wallboard □ Ultimate Gypsum(all below)

□ AIM
□ TOC O Al □ Fe □ Se □ Naphthalene
□ THM/HAA U DOC ☐ % Moisture □ LOI □ As OK. □ Sn □ TP/TPO4 E ASE □%Fa ... □ VOC □ NH3-N □ Sulfur ΩВ □ Sr ① Mineral □ Li □ Oil & Grease D BTUs Analysis □ Ва ☐ E. Coli
☐ Total Coliform □ Mg □ Ti aer □ Volatile Matter ☐ Be □ Mn D.N. O TI Used Oil DCHN Dissolved As Other Tests C Ca □Мо OV ☐ Dissolved Fe
☐ Rad 226 (AS,Cd,Cr,NLPb, Hg) TX d Cd □ Na □ Zn ☐ SO4 DHGI □ Oil & Grease □ Rad 228
□ PCB O Co □Ni **X**Hg ☐ As ☐ TSS. ☐ Particulate Matter □ Cr □ Pb □ CrVI COFER

Matrix codes: GW-groundwater, DW-drinking water, SW-surface water, WW-waste water, BW-boiler water, L-limestone, Oil-oil, S-Soil, SL-solid, C-coal, G-gypsum, FA-flyash, BA-bottom ash, M-misc (describe in comment section)

Precervative code, 1=<4°C 2=HNO₁ 3=H₁SO₄ 4-HCl 5=Na₂S₂O₃ 6-Other (Specify)

		Units	Screening Value	
	Ag	mg kg		
	AJ	g kg		
	As	mg kg	13.1	6010
	В	mg kg	200	
	Ва	mg kg	1000	
-	Ве	mg kg	? 2.5	6020
	Ca	g kg		6010
	Cd	mg kg	1	6010
	Co	mg kg	20	
_	Cr(III)	mg kg	100	-010
	Cu	mg kg	95	
	Fe	g kg		
-	Hg	mg kg	2.5	
	Mg	g kg.		6010
	Mn	mg kg	1500	
	Мо	mg kg	10	6010
-	Ni	mg kg	100	6010
	Pb	mg kg	30	
	5	gkg	220	CFL
-	Sb	mg kg	1.5	6020
-	Se	mg kg	50	6010
	Sn	mg kg		
-	TI .	mg kg	1	6020
	V	mg kg	136	
	Zn	mg kg	125	
	Rad 226	pCi/g	10	

10 Continue analysis monthly 16 Analyze quarterly

Page 17 of 19

Login Sample Receipt Checklist

Client: South Carolina Public Service Authority

Job Number: 680-239668-1

Login Number: 239668 List Source: Eurofins Savannah

List Number: 1

Creator: Johnson, Corey M

	•	
Question	Answer	Comment
Radioactivity wasn't checked or is = background as measured by a survey meter.</td <td>N/A</td> <td></td>	N/A	
The cooler's custody seal, if present, is intact.	True	
Sample custody seals, if present, are intact.	True	
The cooler or samples do not appear to have been compromised or tampered with.	True	
Samples were received on ice.	True	
Cooler Temperature is acceptable.	True	
Cooler Temperature is recorded.	True	
COC is present.	True	
COC is filled out in ink and legible.	True	
COC is filled out with all pertinent information.	True	
Is the Field Sampler's name present on COC?	True	
There are no discrepancies between the containers received and the COC.	True	
Samples are received within Holding Time (excluding tests with immediate HTs)	True	
Sample containers have legible labels.	True	
Containers are not broken or leaking.	True	
Sample collection date/times are provided.	True	
Appropriate sample containers are used.	True	
Sample bottles are completely filled.	True	
Sample Preservation Verified.	N/A	
There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs	True	
Containers requiring zero headspace have no headspace or bubble is <6mm (1/4").	N/A	
Multiphasic samples are not present.	True	
Samples do not require splitting or compositing.	True	
Residual Chlorine Checked.	N/A	

7

6

0

10

12

13

Accreditation/Certification Summary

Client: South Carolina Public Service Authority Project/Site: 125915/JM02.09.G01.1/36500

Job ID: 680-239668-1

Laboratory: Eurofins Savannah

The accreditations/certifications listed below are applicable to this report.

Authority	Program	Identification Number	Expiration Date
South Carolina	State	98001	06-30-23 *

 $^{^{\}star} \ \text{Accreditation/Certification renewal pending - accreditation/certification considered valid}.$

ANALYTICAL REPORT

PREPARED FOR

Attn: Linda Williams
South Carolina Public Service Authority
Santee Cooper
PO BOX 2946101
Moncks Corner, South Carolina 29461-2901

JOB DESCRIPTION

125915/JM02.09.G01.1/36500

Generated 8/16/2023 12:48:34 PM Revision 1

JOB NUMBER

680-238537-1

Eurofins Savannah 5102 LaRoche Avenue Savannah GA 31404

Eurofins Savannah

Job Notes

This report may not be reproduced except in full, and with written approval from the laboratory. The results relate only to the samples tested. For questions please contact the Project Manager at the e-mail address or telephone number listed on this page.

The test results in this report relate only to the samples as received by the laboratory and will meet all requirements of the methodology, with any exceptions noted. This report shall not be reproduced except in full, without the express written approval of the laboratory. All questions should be directed to the Eurofins Environment Testing Southeast, LLC Project Manager.

Authorization

Generated 8/16/2023 12:48:34 PM Revision 1

Authorized for release by Jerry Lanier, Project Manager I <u>Jerry.Lanier@et.eurofinsus.com</u> (912)250-0281

Table of Contents

Cover Page	1
Table of Contents	3
Case Narrative	4
Sample Summary	5
Method Summary	6
Definitions	7
Detection Summary	8
Client Sample Results	9
QC Sample Results	13
QC Association	16
Chronicle	18
Chain of Custody	19
Receipt Checklists	21
Certification Summary	22

3

4

2

9

10

12

Л

Case Narrative

Client: South Carolina Public Service Authority Project/Site: 125915/JM02.09.G01.1/36500

Job ID: 680-238537-1

Job ID: 680-238537-1

Laboratory: Eurofins Savannah

Narrative

Job Narrative 680-238537-1

REVISION

The report being provided is a revision of the original report sent on 8/9/2023. The report (revision 1) is being revised due to Client is requesting add'l metals to be reported under method 6020A (AI, Cu, Fe, Mg, Ni & Zn).

Receipt

The samples were received on 8/2/2023 10:45 AM. Unless otherwise noted below, the samples arrived in good condition, and, where required, properly preserved and on ice. The temperature of the cooler at receipt time was 4.3°C

Metals

No additional analytical or quality issues were noted, other than those described above or in the Definitions/ Glossary page.

2

3

4

__

_

7

8

9

10

13

Sample Summary

Client: South Carolina Public Service Authority Project/Site: 125915/JM02.09.G01.1/36500

Job ID: 680-238537-1

Lab Sample ID 680-238537-1	Client Sample ID AF68739	Matrix Water	Collected 07/05/23 10:44	Received 08/02/23 10:45
680-238537-2	Af68748	Water	06/27/23 10:15	08/02/23 10:45
680-238537-3	Af68711	Water	06/27/23 11:26	08/02/23 10:45
680-238537-4	Af68717	Water	06/27/23 13:57	08/02/23 10:45

4

J

a

10

11

13

Method Summary

Client: South Carolina Public Service Authority Project/Site: 125915/JM02.09.G01.1/36500

Job ID: 680-238537-1

Method	Method Description	Protocol	Laboratory
6010D	Metals (ICP)	SW846	EET SAV
6020B	Metals (ICP/MS)	SW846	EET SAV
3005A	Preparation, Total Recoverable or Dissolved Metals	SW846	EET SAV

Protocol References:

SW846 = "Test Methods For Evaluating Solid Waste, Physical/Chemical Methods", Third Edition, November 1986 And Its Updates.

Laboratory References:

EET SAV = Eurofins Savannah, 5102 LaRoche Avenue, Savannah, GA 31404, TEL (912)354-7858

-

4

5

7

8

4.0

11

13

Definitions/Glossary

Client: South Carolina Public Service Authority

Job ID: 680-238537-1

Project/Site: 125915/JM02.09.G01.1/36500

Qualifiers

Metals

Qualifier Qualifier Description

U Indicates the analyte was analyzed for but not detected.

Glossary

Abbreviation These commonly used abbreviations may or may not be present in this report.

Listed under the "D" column to designate that the result is reported on a dry weight basis

%R Percent Recovery
CFL Contains Free Liquid
CFU Colony Forming Unit
CNF Contains No Free Liquid

DER Duplicate Error Ratio (normalized absolute difference)

Dil Fac Dilution Factor

DL Detection Limit (DoD/DOE)

DL, RA, RE, IN Indicates a Dilution, Re-analysis, Re-extraction, or additional Initial metals/anion analysis of the sample

DLC Decision Level Concentration (Radiochemistry)

EDL Estimated Detection Limit (Dioxin)

LOD Limit of Detection (DoD/DOE)

LOQ Limit of Quantitation (DoD/DOE)

MCL EPA recommended "Maximum Contaminant Level"

MDA Minimum Detectable Activity (Radiochemistry)

MDC Minimum Detectable Concentration (Radiochemistry)

MDL Method Detection Limit
ML Minimum Level (Dioxin)
MPN Most Probable Number
MQL Method Quantitation Limit

NC Not Calculated

ND Not Detected at the reporting limit (or MDL or EDL if shown)

NEG Negative / Absent
POS Positive / Present

PQL Practical Quantitation Limit

PRES Presumptive
QC Quality Control

RER Relative Error Ratio (Radiochemistry)

RL Reporting Limit or Requested Limit (Radiochemistry)

RPD Relative Percent Difference, a measure of the relative difference between two points

TEF Toxicity Equivalent Factor (Dioxin)
TEQ Toxicity Equivalent Quotient (Dioxin)

TNTC Too Numerous To Count

J

4

ט

0

9

10

19

13

Client: South Carolina Public Service Authority Project/Site: 125915/JM02.09.G01.1/36500

Job ID: 680-238537-1

D: 680-238537-1

Client Sample ID: AF68739	Lab Sample ID:

Analyte	Result Qualifier	RL	MDL Unit	Dil Fac D	Method	Prep Type
Calcium	227000	500	ug/L		6010D	Total
						Recoverable
Arsenic	8.46	3.00	ug/L	1	6020B	Total
						Recoverable
Barium	97.2	5.00	ug/L	1	6020B	Total
						Recoverable
Iron	17200	100	ug/L	1	6020B	Total
						Recoverable
Magnesium	8080	250	ug/L	1	6020B	Total
						Recoverable

Client Sample ID: Af68748 Lab Sample ID: 680-238537-2

Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type
Calcium	3260		500		ug/L	1	_	6010D	Total
									Recoverable
Aluminum	938		100		ug/L	1		6020B	Total
									Recoverable
Barium	53.4		5.00		ug/L	1		6020B	Total
									Recoverable
Cobalt	2.00		0.500		ug/L	1		6020B	Total
									Recoverable
Magnesium	1280		250		ug/L	1		6020B	Total
									Recoverable

Client Sample ID: Af68711 Lab Sample ID: 680-238537-3

Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type
Calcium	8490		500		ug/L	1	_	6010D	Total
									Recoverable
Aluminum	1140		100		ug/L	1		6020B	Total
									Recoverable
Arsenic	8.50	(3.00		ug/L	1		6020B	Total
									Recoverable
Barium	77.1	į.	5.00		ug/L	1		6020B	Total
									Recoverable
Cobalt	0.595	0.	500		ug/L	1		6020B	Total
									Recoverable
Iron	2200		100		ug/L	1		6020B	Total
									Recoverable
Magnesium	733		250		ug/L	1		6020B	Total
									Recoverable

Client Sample ID: Af68717 Lab Sample ID: 680-238537-4

Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type
Calcium	605000		500		ug/L	1	_	6010D	Total
									Recoverable
Barium	42.8		5.00		ug/L	1		6020B	Total
									Recoverable
Iron	169		100		ug/L	1		6020B	Total
									Recoverable
Magnesium	13800		250		ug/L	1		6020B	Total
									Recoverable

This Detection Summary does not include radiochemical test results.

Eurofins Savannah

Client: South Carolina Public Service Authority Project/Site: 125915/JM02.09.G01.1/36500

Client Sample ID: AF68739

Lab Sample ID: 680-238537-1

Matrix: Water

Job ID: 680-238537-1

Date Collected: 07/05/23 10:44 Date Received: 08/02/23 10:45

Method: SW846 6010D - Metals (ICP) - Total Recoverable										
	Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
	Calcium	227000		500		ug/L		08/03/23 06:38	08/04/23 17:08	1
	Selenium	20.0	U	20.0		ug/L		08/03/23 06:38	08/04/23 17:08	1

_	20.0	O	20.0		ug/L		00/00/20 00.00	00/04/20 17.00	Į.
	B - Metals (ICP/MS)	- Total Reco	overable						
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Aluminum	100	U	100		ug/L		08/03/23 06:38	08/08/23 15:01	1
Antimony	5.00	U	5.00		ug/L		08/03/23 06:38	08/08/23 15:01	1
Arsenic	8.46		3.00		ug/L		08/03/23 06:38	08/08/23 15:01	1
Barium	97.2		5.00		ug/L		08/03/23 06:38	08/08/23 15:01	1
Beryllium	0.500	U	0.500		ug/L		08/03/23 06:38	08/08/23 15:01	1
Cadmium	0.500	U	0.500		ug/L		08/03/23 06:38	08/08/23 15:01	1
Chromium	5.00	U	5.00		ug/L		08/03/23 06:38	08/08/23 15:01	1
Cobalt	0.500	U	0.500		ug/L		08/03/23 06:38	08/08/23 15:01	1
Copper	5.00	U	5.00		ug/L		08/03/23 06:38	08/08/23 15:01	1
Iron	17200		100		ug/L		08/03/23 06:38	08/08/23 15:01	1
Lead	2.50	U	2.50		ug/L		08/03/23 06:38	08/08/23 15:01	1
Magnesium	8080		250		ug/L		08/03/23 06:38	08/08/23 15:01	1
Nickel	5.00	U	5.00		ug/L		08/03/23 06:38	08/08/23 15:01	1
Thallium	1.00	U	1.00		ug/L		08/03/23 06:38	08/08/23 15:01	1
Zinc	20.0	U	20.0		ug/L		08/03/23 06:38	08/08/23 15:01	1
_									

Client: South Carolina Public Service Authority Job ID: 680-238537-1 Project/Site: 125915/JM02.09.G01.1/36500

Client Sample ID: Af68748

Lab Sample ID: 680-238537-2

Date Collected: 06/27/23 10:15 Matrix: Water Date Received: 08/02/23 10:45

Method: SW846 6010D - Metals (ICP) - Total Recoverable										
	Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
	Calcium	3260		500		ug/L		08/03/23 05:51	08/03/23 15:18	1
	Selenium	20.0	U	20.0		ug/L		08/03/23 05:51	08/03/23 15:18	1

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Aluminum	938		100		ug/L		08/03/23 05:51	08/07/23 16:42	1
Antimony	5.00	U	5.00		ug/L		08/03/23 05:51	08/07/23 16:42	1
Arsenic	3.00	U	3.00		ug/L		08/03/23 05:51	08/07/23 16:42	1
Barium	53.4		5.00		ug/L		08/03/23 05:51	08/07/23 16:42	1
Beryllium	0.500	U	0.500		ug/L		08/03/23 05:51	08/07/23 16:42	1
Cadmium	0.500	U	0.500		ug/L		08/03/23 05:51	08/07/23 16:42	1
Chromium	5.00	U	5.00		ug/L		08/03/23 05:51	08/07/23 16:42	1
Cobalt	2.00		0.500		ug/L		08/03/23 05:51	08/07/23 16:42	1
Copper	5.00	U	5.00		ug/L		08/03/23 05:51	08/07/23 16:42	1
Iron	100	U	100		ug/L		08/03/23 05:51	08/07/23 16:42	1
Lead	2.50	U	2.50		ug/L		08/03/23 05:51	08/07/23 16:42	1
Magnesium	1280		250		ug/L		08/03/23 05:51	08/07/23 16:42	1
Nickel	5.00	U	5.00		ug/L		08/03/23 05:51	08/07/23 16:42	1
Thallium	1.00	U	1.00		ug/L		08/03/23 05:51	08/07/23 16:42	1
Zinc	20.0	U	20.0		ug/L		08/03/23 05:51	08/07/23 16:42	1

Client: South Carolina Public Service Authority Job ID: 680-238537-1 Project/Site: 125915/JM02.09.G01.1/36500

Client Sample ID: Af68711 Lab Sample ID: 680-238537-3

Matrix: Water

Date Collected: 06/27/23 11:26 Date Received: 08/02/23 10:45

Method: SW846 6010	D - Metals (ICP) - To	tal Recovera	able						
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Calcium	8490		500		ug/L		08/03/23 06:38	08/04/23 17:10	1
Selenium	20.0	U	20.0		ug/L		08/03/23 06:38	08/04/23 17:10	1
_ Method: SW846 6020	AP Metale (ICD/MC)	Total Book	versble						

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Aluminum	1140		100		ug/L		08/03/23 06:38	08/08/23 15:05	1
Antimony	5.00	U	5.00		ug/L		08/03/23 06:38	08/08/23 15:05	1
Arsenic	8.50		3.00		ug/L		08/03/23 06:38	08/08/23 15:05	1
Barium	77.1		5.00		ug/L		08/03/23 06:38	08/08/23 15:05	1
Beryllium	0.500	U	0.500		ug/L		08/03/23 06:38	08/08/23 15:05	1
Cadmium	0.500	U	0.500		ug/L		08/03/23 06:38	08/08/23 15:05	1
Chromium	5.00	U	5.00		ug/L		08/03/23 06:38	08/08/23 15:05	1
Cobalt	0.595		0.500		ug/L		08/03/23 06:38	08/08/23 15:05	1
Copper	5.00	U	5.00		ug/L		08/03/23 06:38	08/08/23 15:05	1
Iron	2200		100		ug/L		08/03/23 06:38	08/08/23 15:05	1
Lead	2.50	U	2.50		ug/L		08/03/23 06:38	08/08/23 15:05	1
Magnesium	733		250		ug/L		08/03/23 06:38	08/08/23 15:05	1
Nickel	5.00	U	5.00		ug/L		08/03/23 06:38	08/08/23 15:05	1
Thallium	1.00	U	1.00		ug/L		08/03/23 06:38	08/08/23 15:05	1
Zinc	20.0	U	20.0		ug/L		08/03/23 06:38	08/08/23 15:05	1

Client: South Carolina Public Service Authority Job ID: 680-238537-1 Project/Site: 125915/JM02.09.G01.1/36500

Client Sample ID: Af68717

Lab Sample ID: 680-238537-4

Matrix: Water

Date Collected: 06/27/23 13:57 Date Received: 08/02/23 10:45

Method: SW846 6010	DD - Metals (ICP) - To	tal Recovera	able						
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Calcium	605000		500		ug/L		08/03/23 06:38	08/04/23 17:13	1
Selenium	20.0	U	20.0		ug/L		08/03/23 06:38	08/04/23 17:13	1
	DR - Motals (ICP/MS)	- Total Reco	werable						

	20.0	J	20.0		ug/L		00/00/20 00.00	00/0-7/20 17.10	•
- Method: SW846 6020E	B - Metals (ICP/MS)	- Total Reco	overable						
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Aluminum	100	U	100		ug/L		08/03/23 06:38	08/08/23 15:09	1
Antimony	5.00	U	5.00		ug/L		08/03/23 06:38	08/08/23 15:09	1
Arsenic	3.00	U	3.00		ug/L		08/03/23 06:38	08/08/23 15:09	1
Barium	42.8		5.00		ug/L		08/03/23 06:38	08/08/23 15:09	1
Beryllium	0.500	U	0.500		ug/L		08/03/23 06:38	08/08/23 15:09	1
Cadmium	0.500	U	0.500		ug/L		08/03/23 06:38	08/08/23 15:09	1
Chromium	5.00	U	5.00		ug/L		08/03/23 06:38	08/08/23 15:09	1
Cobalt	0.500	U	0.500		ug/L		08/03/23 06:38	08/08/23 15:09	1
Copper	5.00	U	5.00		ug/L		08/03/23 06:38	08/08/23 15:09	1
Iron	169		100		ug/L		08/03/23 06:38	08/08/23 15:09	1
Lead	2.50	U	2.50		ug/L		08/03/23 06:38	08/08/23 15:09	1
Magnesium	13800		250		ug/L		08/03/23 06:38	08/08/23 15:09	1
Nickel	5.00	U	5.00		ug/L		08/03/23 06:38	08/08/23 15:09	1
Thallium	1.00	U	1.00		ug/L		08/03/23 06:38	08/08/23 15:09	1
Zinc	20.0	U	20.0		ug/L		08/03/23 06:38	08/08/23 15:09	1
_									

Job ID: 680-238537-1

Client: South Carolina Public Service Authority Project/Site: 125915/JM02.09.G01.1/36500

Method: 6010D - Metals (ICP)

Lab Sample ID: MB 680-791516/1-A

Matrix: Water

Analysis Batch: 791719

Client Sample ID: Method Blank Prep Type: Total Recoverable

Prep Batch: 791516

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Calcium	500	U	500		ug/L		08/03/23 05:51	08/03/23 14:52	1
Selenium	20.0	U	20.0		ug/L		08/03/23 05:51	08/03/23 14:52	1

MB MB

Lab Sample ID: LCS 680-791516/2-A

Matrix: Water

Analysis Batch: 791719

Client Sample ID: Lab Control Sample **Prep Type: Total Recoverable**

Prep Batch: 791516

•	Spike	LCS	LCS				%Rec	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Calcium	5000	4950		ug/L		99	80 - 120	
Selenium	100	94.39		ug/L		94	80 - 120	

Lab Sample ID: MB 680-791519/1-A

Matrix: Water

Analysis Batch: 791897

Client Sample ID: Method Blank Prep Type: Total Recoverable

Prep Batch: 791519

	MB	MB							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Calcium	500	U	500		ug/L		08/03/23 06:38	08/04/23 16:50	1
Selenium	20.0	U	20.0		ug/L		08/03/23 06:38	08/04/23 16:50	1

Lab Sample ID: LCS 680-791519/2-A

Matrix: Water

Analysis Batch: 791897

Client Sample ID: Lab Control Sample Prep Type: Total Recoverable

Prep Batch: 791519

-	Spike	LCS	LCS				%Rec	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Calcium	5000	4801		ug/L		96	80 - 120	
Selenium	100	99.73		ug/L		100	80 - 120	

Method: 6020B - Metals (ICP/MS)

Lab Sample ID: MB 680-791513/1-A

Matrix: Water

Analysis Batch: 792230

Client Sample ID: Method Blank Prep Type: Total Recoverable

Prep Batch: 791513

MB MB **MDL** Unit **Analyte** Result Qualifier RL D Prepared Analyzed Dil Fac Aluminum 100 U 100 ug/L 08/03/23 05:51 08/07/23 15:57 5.00 U Antimony 5.00 ug/L 08/03/23 05:51 08/07/23 15:57 Arsenic 3.00 U 3.00 ug/L 08/03/23 05:51 08/07/23 15:57 5.00 Barium 5.00 U 08/03/23 05:51 08/07/23 15:57 ug/L Beryllium 0.500 U 0.500 08/03/23 05:51 08/07/23 15:57 ug/L Cadmium 0.500 U 0.500 ug/L 08/03/23 05:51 08/07/23 15:57 Chromium 5.00 U 5.00 ug/L 08/03/23 05:51 08/07/23 15:57 Cobalt 0.500 U 0.500 ug/L 08/03/23 05:51 08/07/23 15:57 Copper 5.00 U 5.00 ug/L 08/03/23 05:51 08/07/23 15:57 Iron 100 U 100 ug/L 08/03/23 05:51 08/07/23 15:57 Lead 2.50 U 2.50 ug/L 08/03/23 05:51 08/07/23 15:57 Magnesium 250 U 250 ug/L 08/03/23 05:51 08/07/23 15:57 Nickel 5.00 U 5.00 08/03/23 05:51 08/07/23 15:57 ug/L Thallium 1.00 U 08/03/23 05:51 08/07/23 15:57 1.00 ug/L Zinc 20.0 U 20.0 ug/L 08/03/23 05:51 08/07/23 15:57

Eurofins Savannah

Job ID: 680-238537-1

Client: South Carolina Public Service Authority Project/Site: 125915/JM02.09.G01.1/36500

Method: 6020B - Metals (ICP/MS) (Continued)

Lab Sample ID: LCS 680-791513/2-A

Matrix: Water

Analysis Batch: 792230

Spike

Client Sample ID: Lab Control Sample

Prep Type: Total Recoverable

Prep Batch: 791513

Rec

Rec

•	Spike	LCS	LCS				%Rec	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Aluminum	5050	5120		ug/L		101	80 - 120	
Antimony	50.0	50.97		ug/L		102	80 - 120	
Arsenic	100	106.4		ug/L		106	80 - 120	
Barium	100	102.9		ug/L		103	80 - 120	
Beryllium	50.0	49.97		ug/L		100	80 - 120	
Cadmium	50.0	50.92		ug/L		102	80 - 120	
Chromium	100	109.3		ug/L		109	80 - 120	
Cobalt	50.0	55.15		ug/L		110	80 - 120	
Copper	100	113.2		ug/L		113	80 - 120	
Iron	4990	5167		ug/L		104	80 - 120	
Lead	500	530.5		ug/L		106	80 - 120	
Magnesium	5000	4977		ug/L		100	80 - 120	
Nickel	100	110.4		ug/L		110	80 - 120	
Thallium	50.0	50.20		ug/L		100	80 - 120	
Zinc	100	110.4		ug/L		110	80 - 120	

Lab Sample ID: MB 680-791518/1-A

Matrix: Water

Analysis Batch: 792490

Client Sample ID: Method Blank
Prep Type: Total Recoverable

Prep Batch: 791518

, ,									
	MB	MB							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Aluminum	100	U	100		ug/L		08/03/23 06:38	08/08/23 14:41	1
Antimony	5.00	U	5.00		ug/L		08/03/23 06:38	08/08/23 14:41	1
Arsenic	3.00	U	3.00		ug/L		08/03/23 06:38	08/08/23 14:41	1
Barium	5.00	U	5.00		ug/L		08/03/23 06:38	08/08/23 14:41	1
Beryllium	0.500	U	0.500		ug/L		08/03/23 06:38	08/08/23 14:41	1
Cadmium	0.500	U	0.500		ug/L		08/03/23 06:38	08/08/23 14:41	1
Chromium	5.00	U	5.00		ug/L		08/03/23 06:38	08/08/23 14:41	1
Cobalt	0.500	U	0.500		ug/L		08/03/23 06:38	08/08/23 14:41	1
Copper	5.00	U	5.00		ug/L		08/03/23 06:38	08/08/23 14:41	1
Iron	100	U	100		ug/L		08/03/23 06:38	08/08/23 14:41	1
Lead	2.50	U	2.50		ug/L		08/03/23 06:38	08/08/23 14:41	1
Magnesium	250	U	250		ug/L		08/03/23 06:38	08/08/23 14:41	1
Nickel	5.00	U	5.00		ug/L		08/03/23 06:38	08/08/23 14:41	1
Thallium	1.00	U	1.00		ug/L		08/03/23 06:38	08/08/23 14:41	1
Zinc	20.0	U	20.0		ug/L		08/03/23 06:38	08/08/23 14:41	1

Lab Sample ID: LCS 680-791518/2-A

Matrix: Water

Analysis Batch: 792490

Client Sample ID: Lab Control Sample
Prep Type: Total Recoverable

Prep Batch: 791518

ı	Analysis Baton, 102-100							1 Top Batom. 101	0.0
I		Spike	LCS	LCS				%Rec	
I	Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
I	Aluminum	5050	4652		ug/L		92	80 - 120	
I	Antimony	50.0	46.52		ug/L		93	80 - 120	
I	Arsenic	100	97.80		ug/L		98	80 - 120	
İ	Barium	100	95.86		ug/L		96	80 - 120	
I	Beryllium	50.0	48.56		ug/L		97	80 - 120	
I	Cadmium	50.0	46.20		ug/L		92	80 - 120	
İ	Chromium	100	100.4		ug/L		100	80 - 120	

Eurofins Savannah

_

3

4

6

8

40

11

QC Sample Results

Client: South Carolina Public Service Authority Project/Site: 125915/JM02.09.G01.1/36500

Job ID: 680-238537-1

Client Sample ID: Lab Control Sample

Prep Type: Total Recoverable

Method: 6020B - Metals (ICP/MS) (Continued)

Lab Sample ID: LCS 680-791518/2-A

Matrix: Water

Analysis Batch: 792490							Prep Batch: 791518
	Spike	LCS	LCS				%Rec
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits
Cobalt	50.0	47.54		ug/L		95	80 - 120
Copper	100	102.8		ug/L		103	80 - 120
Iron	4990	5052		ug/L		101	80 - 120
Lead	500	485.1		ug/L		97	80 - 120
Magnesium	5000	4591		ug/L		92	80 - 120
Nickel	100	98.89		ug/L		99	80 - 120
Thallium	50.0	46.82		ug/L		94	80 - 120
Zinc	100	101.9		ug/L		102	80 - 120

QC Association Summary

Client: South Carolina Public Service Authority Project/Site: 125915/JM02.09.G01.1/36500

Job ID: 680-238537-1

Metals

Lab Sample ID 680-238537-2	Client Sample ID Af68748	Prep Type Total Recoverable	Matrix Water	Method 3005A	Prep Batch
MB 680-791513/1-A	Method Blank	Total Recoverable	Water	3005A	
LCS 680-791513/2-A	Lab Control Sample	Total Recoverable	Water	3005A	

Prep Batch: 791516

Lab Sample ID 680-238537-2	Client Sample ID Af68748	Prep Type Total Recoverable	Matrix Water	Method 3005A	Prep Batch
MB 680-791516/1-A	Method Blank	Total Recoverable	Water	3005A	
LCS 680-791516/2-A	Lab Control Sample	Total Recoverable	Water	3005A	

Prep Batch: 791518

Lab Sample ID 680-238537-1	Client Sample ID AF68739	Prep Type Total Recoverable	Matrix Water	Method 3005A	Prep Batch
680-238537-3	Af68711	Total Recoverable	Water	3005A 3005A	
680-238537-4	Af68717	Total Recoverable	Water	3005A	
MB 680-791518/1-A	Method Blank	Total Recoverable	Water	3005A	
LCS 680-791518/2-A	Lab Control Sample	Total Recoverable	Water	3005A	

Prep Batch: 791519

Lab Sample ID 680-238537-1	Client Sample ID AF68739	Prep Type Total Recoverable	Matrix Water	Method 3005A	Prep Batch
680-238537-3	Af68711	Total Recoverable	Water	3005A	
680-238537-4	Af68717	Total Recoverable	Water	3005A	
MB 680-791519/1-A	Method Blank	Total Recoverable	Water	3005A	
LCS 680-791519/2-A	Lab Control Sample	Total Recoverable	Water	3005A	

Analysis Batch: 791719

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
680-238537-2	Af68748	Total Recoverable	Water	6010D	791516
MB 680-791516/1-A	Method Blank	Total Recoverable	Water	6010D	791516
LCS 680-791516/2-A	Lab Control Sample	Total Recoverable	Water	6010D	791516

Analysis Batch: 791897

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
680-238537-1	AF68739	Total Recoverable	Water	6010D	791519
680-238537-3	Af68711	Total Recoverable	Water	6010D	791519
680-238537-4	Af68717	Total Recoverable	Water	6010D	791519
MB 680-791519/1-A	Method Blank	Total Recoverable	Water	6010D	791519
LCS 680-791519/2-A	Lab Control Sample	Total Recoverable	Water	6010D	791519

Analysis Batch: 792230

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
680-238537-2	Af68748	Total Recoverable	Water	6020B	791513
MB 680-791513/1-A	Method Blank	Total Recoverable	Water	6020B	791513
LCS 680-791513/2-A	Lab Control Sample	Total Recoverable	Water	6020B	791513

Analysis Batch: 792490

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
680-238537-1	AF68739	Total Recoverable	Water	6020B	791518
680-238537-3	Af68711	Total Recoverable	Water	6020B	791518
680-238537-4	Af68717	Total Recoverable	Water	6020B	791518

Page 16 of 22

QC Association Summary

Client: South Carolina Public Service Authority

Project/Site: 125915/JM02.09.G01.1/36500

Job ID: 680-238537-1

Metals (Continued)

Analysis Batch: 792490 (Continued)

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
MB 680-791518/1-A	Method Blank	Total Recoverable	Water	6020B	791518
LCS 680-791518/2-A	Lab Control Sample	Total Recoverable	Water	6020B	791518

2

3

4

5

7

Ö

10

11

12

Job ID: 680-238537-1

Client: South Carolina Public Service Authority Project/Site: 125915/JM02.09.G01.1/36500

Client Sample ID: AF68739

Lab Sample ID: 680-238537-1

Matrix: Water

Date Collected: 07/05/23 10:44 Date Received: 08/02/23 10:45

	Batch	Batch		Dilution	Batch			Prepared
Prep Type	Type	Method	Run	Factor	Number	Analyst	Lab	or Analyzed
Total Recoverable	Prep	3005A			791519	RR	EET SAV	08/03/23 06:38
Total Recoverable	Analysis	6010D		1	791897	BJB	EET SAV	08/04/23 17:08
Total Recoverable	Prep	3005A			791518	RR	EET SAV	08/03/23 06:38
Total Recoverable	Analysis	6020B		1	792490	BWR	EET SAV	08/08/23 15:01

Client Sample ID: Af68748 Lab Sample ID: 680-238537-2

Matrix: Water

Date Collected: 06/27/23 10:15 Date Received: 08/02/23 10:45

	Batch	Batch		Dilution	Batch			Prepared
Prep Type	Type	Method	Run	Factor	Number	Analyst	Lab	or Analyzed
Total Recoverable	Prep	3005A			791516	RR	EET SAV	08/03/23 05:51
Total Recoverable	Analysis	6010D		1	791719	BJB	EET SAV	08/03/23 15:18
Total Recoverable	Prep	3005A			791513	RR	EET SAV	08/03/23 05:51
Total Recoverable	Analysis	6020B		1	792230	BWR	EET SAV	08/07/23 16:42

Client Sample ID: Af68711 Lab Sample ID: 680-238537-3

Matrix: Water

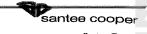
Date Collected: 06/27/23 11:26 Date Received: 08/02/23 10:45

	Batch	Batch		Dilution	Batch			Prepared
Prep Type	Type	Method	Run	Factor	Number	Analyst	Lab	or Analyzed
Total Recoverable	Prep	3005A			791519	RR	EET SAV	08/03/23 06:38
Total Recoverable	Analysis	6010D		1	791897	BJB	EET SAV	08/04/23 17:10
Total Recoverable	Prep	3005A			791518	RR	EET SAV	08/03/23 06:38
Total Recoverable	Analysis	6020B		1	792490	BWR	EET SAV	08/08/23 15:05

Client Sample ID: Af68717 Lab Sample ID: 680-238537-4

Date Collected: 06/27/23 13:57 Matrix: Water

Date Received: 08/02/23 10:45


	Batch	Batch		Dilution	Batch			Prepared
Prep Type	Type	Method	Run	Factor	Number	Analyst	Lab	or Analyzed
Total Recoverable	Prep	3005A			791519	RR	EET SAV	08/03/23 06:38
Total Recoverable	Analysis	6010D		1	791897	BJB	EET SAV	08/04/23 17:13
Total Recoverable	Prep	3005A			791518	RR	EET SAV	08/03/23 06:38
Total Recoverable	Analysis	6020B		1	792490	BWR	EET SAV	08/08/23 15:09

Laboratory References:

EET SAV = Eurofins Savannah, 5102 LaRoche Avenue, Savannah, GA 31404, TEL (912)354-7858

Eurofins Savannah

Chain of Custody

Santee Coope One Riverwood Drive Moneks Comer, SC 29461 Phone (843)761 8000 Ext. 5148 Fax. (843)761-4175

Custome	er Email,	/Report Recipi	ient:	Date	Results Ne	eded b	y:		P	roject/	Task/	Unit #:	Rerun reques	t for any fi	agged QC
LCWIL	LIA	@santee	cooper.com		J			125	715	<u>/</u>	102.0	9. GØI .1/	36500 (Ye)s	No	
															sis Group
Labwork: (Internal only)		Sample Location Description	on/	Collection Date	Collection Time	Sample Collector	Total # of containers	Bottle type: (Glass-G/Plastic-P)	Grab (G) or Composite (C)	Matrix(see below)	Preservative (see	Method Report Misc. s Any ot	Comments d # ung limit sample info her notes	TOTAL METALS	
AF687	139	WAP-22		7/5/23	1044	VILW	1	P	G	G-W	2	6020		×	
AF-687	4-8	WBW-I		6/27/2	3 1012				1		1	- SEE SH	EET FOR RLS		
AF-687	111	WAP-I			1126										
AF-68-	רוז	WA-P-7			1357	1		Ţ]	 	RETURN SAMPLES		
												UPON CON	MACETION.		
												7			
												680-23	8537 Chain of Custody		
Relingui	shed by:	Employee#	Date	Time	Receiv	ed by:	T Er	nployee	# 1	Date		Time	Sample Receiving (Internal	Use Only)	
SHywa	ln	35594	8/2/23	0756	SHOC	1 -		SURIE		3/2/23		6756	TEMP (°C): 2 2/ 2 3	Initial:	
Relinqui	shed by:	Employee#	Date	Time	Receive			nployee		Date		Time	Correct pH: Yes No		
EHock	re	courier	8/2/23	1644	1)/1	Manager and the second	7,	A	8	-2.23	> /	1045	Preservative Lot#:		
Relinquis	shed by:	Employee#	Date	Time	Receive	ed by:	En	nployee	#	Date		Time			
					1 1111								Date/Time/Init for preserv	ative:	
	□ ME	TALS (all)	Nut	rients	MIS	r		Gw	psur	n		Coal		σ.	
□ Ag □ Al	□ Cu				□ BTEX	<u></u>	b	Wallbe		<u>u</u>	1	<u>Coai</u> Ultimate	Flyash	Oi Trans. O	
⊿ As	□ Fe		DC		□ Naphthal			200	sum(a	II.		□ % Moisture		□ %Mos	
D B	D Li	□ Sn	□ TP. □ NH	/TPO4 I3-N	□ VOC			below All				☐ Ash ☐ Sulfur	☐ % Carbon ☐ Mineral	☐ Color ☐ Acidity	
ØBa			OF.		□ Oil & Gre	ease		□ TO	C al meta	te.		□ BTUs	□ Minerai Analysis	Dielectri IF I	c Strength
Ø Be	□Mn		□ Cl □ NO	0	☐ Total Col	iform		□ Sol	ıble M	etals		☐ Volatile Ma		Dissolv	ed Gases
Z/Ca		/	□ Br		□ pH □ Dissolved	l As		Section 18 Section 18	ity (Ca: 4oistur			☐ CHN her Tests:	□ % Moisture	Used Oi	24/24/2004/00/00 (2007/00)
Д¦Са ДCd	□ Ma	□ Zn	□ NO		☐ Dissolved			□ Sulf	ites		(ם	CRF Scan	NPDES	Metals	in oil
ZÍ C₀			□ SO	4	☐ Rad 228			□ pH □ Chlo				IGI ineness	□ Oil & Grease	Hg)	Cr,Ni,Pb
Z/Cr	□ Ni	☐ Hg	-		□PCB			🗆 Part		te.	□P	articulate Matter	□ As □ TSS	TX GOFER	
	17-40	1 - 22.11				64.	J <u> </u>	Sulfur			<u> </u>			.4371 1018	

Table of Reporting Limits for Groundwater Samples-- Metals Only

Samples Metals Only											
Analyte	Unit	GWPS/ MCL/ RSL	Reporting Limits best case								
Aluminum	mg/L	0.05 to 0.2									
Antimony	ug/L	6	5								
Arsenic	ug/L	10	5								
Arsenic Dissolved	ug/L										
Barium	ug/L	2000	5								
Beryllium	ug/L	4	0.5								
Boron	ug/L		10 to 15								
Cadmium	ug/L	5	0.5								
Calcium	ug/L		0.1								
Chromium	uġ/L	100	5								
Cobalt	ug/L	6	0.5								
Copper	mg/L	1									
Iron	ug/L	300									
Lead	ug/L	15	1								
Lithium	ug/L	40	5								
Magnesium	ug/L										
Mercury	ug/L	2	02								
Molybdenum	ug/L	100	5								
Nickel	ug/L										
Potassium	mg/L										
Selenium	ug/L	50	5								
Sodium	mg/L										
Thallium	ug/L	2	1								
Zinc	ug/L	5000									

Login Sample Receipt Checklist

Client: South Carolina Public Service Authority

Job Number: 680-238537-1

Login Number: 238537 List Source: Eurofins Savannah

List Number: 1

Creator: Sims, Robert D

Creator. Sillis, Robert D		
Question	Answer	Comment
Radioactivity wasn't checked or is = background as measured by a survey meter.</td <td>N/A</td> <td></td>	N/A	
The cooler's custody seal, if present, is intact.	True	
Sample custody seals, if present, are intact.	True	
The cooler or samples do not appear to have been compromised or tampered with.	True	
Samples were received on ice.	True	
Cooler Temperature is acceptable.	True	
Cooler Temperature is recorded.	True	
COC is present.	True	
COC is filled out in ink and legible.	True	
COC is filled out with all pertinent information.	True	
Is the Field Sampler's name present on COC?	True	
There are no discrepancies between the containers received and the COC.	True	
Samples are received within Holding Time (excluding tests with immediate HTs)	True	
Sample containers have legible labels.	True	
Containers are not broken or leaking.	True	
Sample collection date/times are provided.	True	
Appropriate sample containers are used.	True	
Sample bottles are completely filled.	True	
Sample Preservation Verified.	N/A	
There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs	True	
Containers requiring zero headspace have no headspace or bubble is <6mm (1/4").	N/A	
Multiphasic samples are not present.	True	
Samples do not require splitting or compositing.	True	
Residual Chlorine Checked.	N/A	

6

0

9

11

46

П

Accreditation/Certification Summary

Client: South Carolina Public Service Authority Project/Site: 125915/JM02.09.G01.1/36500

Job ID: 680-238537-1

Laboratory: Eurofins Savannah

The accreditations/certifications listed below are applicable to this report.

Authority	Program	Identification Number	Expiration Date
South Carolina	State	98001	06-30-23 *

 $^{\star} \ \text{Accreditation/Certification renewal pending - accreditation/certification considered valid}.$

Eurofins Savannah

gel.com

August 17, 2023

Ms. Jeanette Gilmetti Santee Cooper P.O. Box 2946101 OCO3 Moncks Corner, South Carolina 29461

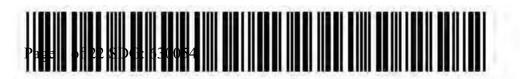
Re: ABS Lab Analytical Work Order: 630054

Dear Ms. Gilmetti:

GEL Laboratories, LLC (GEL) appreciates the opportunity to provide the enclosed analytical results for the sample(s) we received on July 21, 2023. This original data report has been prepared and reviewed in accordance with GEL's standard operating procedures.

The samples were delivered with proper chain of custody documentation and signatures. All sample containers arrived without any visible signs of tampering or breakage. There are no additional comments concerning sample receipt.

Test results for NELAP or ISO 17025 accredited tests are verified to meet the requirements of those standards, with any exceptions noted. The results reported relate only to the items tested and to the sample as received by the laboratory. These results may not be reproduced except as full reports without approval by the laboratory. Copies of GEL's accreditations and certifications can be found on our website at www.gel.com.


Our policy is to provide high quality, personalized analytical services to enable you to meet your analytical needs on time every time. We trust that you will find everything in order and to your satisfaction. If you have any questions, please do not hesitate to call me at (843) 556-8171, ext. 4289.

Sincerely,

Julie Robinson Project Manager

Purchase Order: 398684

Enclosures

2040 Savage Road Charleston SC 29407 - (843) 556-8171 - www.gel.com

Certificate of Analysis Report for

SOOP001 Santee Cooper

Client SDG: 630054 GEL Work Order: 630054

The Qualifiers in this report are defined as follows:

- * A quality control analyte recovery is outside of specified acceptance criteria
- ** Analyte is a Tracer compound
- ** Analyte is a surrogate compound
- U Analyte was analyzed for, but not detected above the MDL, MDA, MDC or LOD.

Where the analytical method has been performed under NELAP certification, the analysis has met all of the requirements of the NELAC standard unless qualified on the Certificate of Analysis.

The designation ND, if present, appears in the result column when the analyte concentration is not detected above the limit as defined in the 'U' qualifier above.

This data report has been prepared and reviewed in accordance with GEL Laboratories LLC standard operating procedures. Please direct any questions to your Project Manager, Julie Robinson.

Reviewed by Pulit Rnc

Page 2 of 22 SDG: 630054

2040 Savage Road Charleston SC 29407 - (843) 556-8171 - www.gel.com

Certificate of Analysis

Report Date: August 17, 2023

Company: Santee Cooper Address: P.O. Box 2946101

OCO3

Moncks Corner, South Carolina 29461

Contact: Ms. Jeanette Gilmetti Project: ABS Lab Analytical

Client Sample ID: AF68725 Sample ID: 630054001

Matrix: GW

Collect Date: 18-JUL-23 11:49
Receive Date: 21-JUL-23
Collector: Client

Project: SOOP00119
Client ID: SOOP001

Parameter	Qualifier	Result	Uncertainty	MDC	RL	Units	PF	DF Analy	st Date	Time Batch	Method
Rad Gas Flow Proporti	onal Counting	5									
GFPC, Ra228, Liquid '	"As Received"										
Radium-228		1.69	+/-1.08	1.60	3.00	pCi/L		JE1	08/09/23	1337 2464193	1
Radium-226+Radium-2	228 Calculatio	n "See Pa	rent Products"								
Radium-226+228 Sum		3.46	+/-1.25			pCi/L		NXL1	08/17/23	1207 2464198	2
Rad Radium-226											
Lucas Cell, Ra226, Liq	լuid "As Recei	ved"									
Radium-226		1.76	+/-0.637	0.695	1.00	pCi/L		LXP1	08/17/23	0843 2464194	3
The following Analytic	cal Methods w	vere perfo	rmed:								
3.511	ъ						. 1	~			

Method Description Analyst Comments

FPA 904 0/SW846 9320 Modified

1 EPA 904.0/SW846 9320 Modified

2 Calculation 3 EPA 903.1 Modified

Surrogate/Tracer RecoveryTestResultNominalRecovery%Acceptable LimitsBarium-133 TracerGFPC, Ra228, Liquid "As Received"83.5(15%-125%)

Notes:

Counting Uncertainty is calculated at the 95% confidence level (1.96-sigma).

Column headers are defined as follows:

DF: Dilution Factor Lc/LC: Critical Level
DL: Detection Limit PF: Prep Factor
MDA: Minimum Detectable Activity RL: Reporting Limit

MDC: Minimum Detectable Concentration SQL: Sample Quantitation Limit

Page 3 of 22 SDG: 630054

2040 Savage Road Charleston SC 29407 - (843) 556-8171 - www.gel.com

Certificate of Analysis

Report Date: August 17, 2023

SOOP00119

Company: Santee Cooper Address: P.O. Box 2946101

OCO3

Moncks Corner, South Carolina 29461

Contact: Ms. Jeanette Gilmetti Project: ABS Lab Analytical

Client Sample ID: AF68742 Sample ID: 630054002

Matrix: GW

Collect Date: 18-JUL-23 14:53
Receive Date: 21-JUL-23
Collector: Client

630054002 Client ID: SOOP001

Project:

Parameter	Qualifier	Result	Uncertainty	MDC	RL	Units	PF	DF Analys	t Date	Time Batch	Method
Rad Gas Flow Proportio	nal Counting										
GFPC, Ra228, Liquid "A	As Received"										
Radium-228	U	-0.146	+/-0.647	1.34	3.00	pCi/L		JE1	08/09/23	1337 2464193	1
Radium-226+Radium-22	28 Calculation	n "See Pa	rent Products"								
Radium-226+228 Sum		0.686	+/-0.748			pCi/L		NXL1	08/17/23	1207 2464198	2
Rad Radium-226											
Lucas Cell, Ra226, Liqu	id "As Recei	ved"									
Radium-226		0.686	+/-0.376	0.411	1.00	pCi/L		LXP1	08/17/23	0843 2464194	3
The following Analytica	al Methods w	ere perfo	rmed:								
Method	Description					F	Analys	t Comments			

1	EPA 904.0/SW846 9320 Modified				
2	Calculation				
3	EPA 903.1 Modified				
Surrogate/Tracer Recove	ery Test	Result	Nominal	Recovery%	Acceptable Limits

Barium-133 Tracer GFPC, Ra228, Liquid "As Received" 80.9 (15%-125%)

Notes:

Counting Uncertainty is calculated at the 95% confidence level (1.96-sigma).

Column headers are defined as follows:

DF: Dilution Factor Lc/LC: Critical Level
DL: Detection Limit PF: Prep Factor
MDA: Minimum Detectable Activity RL: Reporting Limit

MDC: Minimum Detectable Concentration SQL: Sample Quantitation Limit

Page 4 of 22 SDG: 630054

2040 Savage Road Charleston SC 29407 - (843) 556-8171 - www.gel.com

Certificate of Analysis

Report Date: August 17, 2023

Company: Santee Cooper Address: P.O. Box 2946101

OCO3

Moncks Corner, South Carolina 29461

Contact: Ms. Jeanette Gilmetti Project: ABS Lab Analytical

Client Sample ID: AF68747 Sample ID: 630054003

Matrix: GW

Collect Date: 17-JUL-23 10:08
Receive Date: 21-JUL-23
Collector: Client

Project: SOOP00119 Client ID: SOOP001

Parameter	Qualifier	Result	Uncertainty	MDC	RL	Units	PF	DF Analyst Date	Time Batch	Method
Rad Gas Flow Proportion	onal Counting									
GFPC, Ra228, Liquid "	As Received"									
Radium-228	U	0.780	+/-1.07	1.83	3.00	pCi/L		JE1 08/09/23	1337 2464193	1
Radium-226+Radium-2	28 Calculatio	n "See Pa	arent Products"							
Radium-226+228 Sum		0.830	+/-1.12			pCi/L		NXL1 08/17/23	1207 2464198	2
Rad Radium-226										
Lucas Cell, Ra226, Liqu	uid "As Recei	ved"								
Radium-226	U	0.0502	+/-0.326	0.672	1.00	pCi/L		LXP1 08/17/23	0843 2464194	3
The following Analytic	al Methods w	ere perfo	ormed:							
Method	Description					I	Analys	st Comments		

1	EPA 904.0/SW846 9320 Modified				
2	Calculation				
3	EPA 903.1 Modified				
Surrogate/Tracer Recov	ery Test	Result	Nominal	Recovery%	Acceptable Limits

Barium-133 Tracer GFPC, Ra228, Liquid "As Received" 83.6 (15%-125%)

Notes:

Counting Uncertainty is calculated at the 95% confidence level (1.96-sigma).

Column headers are defined as follows:

DF: Dilution Factor Lc/LC: Critical Level
DL: Detection Limit PF: Prep Factor
MDA: Minimum Detectable Activity RL: Reporting Limit

MDC: Minimum Detectable Concentration SQL: Sample Quantitation Limit

Page 5 of 22 SDG: 630054

2040 Savage Road Charleston SC 29407 - (843) 556-8171 - www.gel.com

Certificate of Analysis

Report Date: August 17, 2023

Company: Santee Cooper Address: P.O. Box 2946101

OCO3

Moncks Corner, South Carolina 29461

Ms. Jeanette Gilmetti Contact: Project: ABS Lab Analytical

Client Sample ID: AF68731 Sample ID:

Matrix: GW

Collect Date: 17-JUL-23 11:15 Receive Date: 21-JUL-23 Client Collector:

Description

Project: SOOP00119 630054004 Client ID: SOOP001

Parameter	Qualifier	Result	Uncertainty	MDC	RL	Units	PF	DF Anal	yst Date	Time Batch	Method
Rad Gas Flow Proportional Counting											
GFPC, Ra228, Liquid "A	As Received"										
Radium-228	U	1.43	+/-0.956	1.46	3.00	pCi/L		JE1	08/09/23	1337 246419	3 1
Radium-226+Radium-228 Calculation "See Parent Products"											
Radium-226+228 Sum		3.62	+/-1.18			pCi/L		NXL1	08/17/23	1207 246419	8 2
Rad Radium-226											
Lucas Cell, Ra226, Liqu	uid "As Recei	ved"									
Radium-226		2.19	+/-0.690	0.625	1.00	pCi/L		LXP1	08/17/23	0915 246419	4 3
The following Analytical Methods were performed:											

Surrogata/Tracar Pacove	ery Test	Recult	Nominal	Recovery0/2	Acceptable Limits
3	EPA 903.1 Modified				
2	Calculation				
1	EPA 904.0/SW846 9320 Modified				

Analyst Comments

Surrogate/Tracer Recovery Nominal Recovery% Acceptable Limits Result Barium-133 Tracer GFPC, Ra228, Liquid "As Received" 90.9 (15%-125%)

Method

Counting Uncertainty is calculated at the 95% confidence level (1.96-sigma).

Column headers are defined as follows:

DF: Dilution Factor Lc/LC: Critical Level DL: Detection Limit PF: Prep Factor MDA: Minimum Detectable Activity **RL**: Reporting Limit

MDC: Minimum Detectable Concentration SQL: Sample Quantitation Limit

Page 6 of 22 SDG: 630054

2040 Savage Road Charleston SC 29407 - (843) 556-8171 - www.gel.com

Certificate of Analysis

Project:

Client ID:

Analyst Comments

Report Date: August 17, 2023

SOOP00119

SOOP001

Company: Santee Cooper Address: P.O. Box 2946101

OCO3

Moncks Corner, South Carolina 29461

Contact: Ms. Jeanette Gilmetti Project: ABS Lab Analytical

Client Sample ID: AF68723 Sample ID: 630054005

Matrix: GW

Collect Date: 17-JUL-23 13:00
Receive Date: 21-JUL-23
Collector: Client

Parameter	Qualifier	Result	Uncertainty	MDC	RL	Units	PF	DF Analy	yst Date	Time Batch	Method
Rad Gas Flow Propor	tional Counting	3									
GFPC, Ra228, Liquid	l "As Received	"									
Radium-228		2.31	+/-0.984	1.25	3.00	pCi/L		JE1	08/09/23	1337 2464193	1
Radium-226+Radium	-228 Calculation	on "See Par	rent Products"								
Radium-226+228 Sum		2.99	+/-1.09			pCi/L		NXL1	08/17/23	1207 2464198	2
Rad Radium-226											
Lucas Cell, Ra226, Li	iquid "As Rece	ived"									
Radium-226	_	0.688	+/-0.472	0.659	1.00	pCi/L		LXP1	08/17/23	0915 2464194	3
The fellowing Analys	tical Mathada r	rrana nanfan	mad.								

The following Analytical Methods were performed:

Description

1	EPA 904.0/SW846 9320 Modified				
2	Calculation				
3	EPA 903.1 Modified				
Surrogate/Tracer Recove	ery Test	Result	Nominal	Recovery%	Acceptable Limits

Barium-133 Tracer GFPC, Ra228, Liquid "As Received" 86 (15%-125%)

Notes:

Method

Counting Uncertainty is calculated at the 95% confidence level (1.96-sigma).

Column headers are defined as follows:

DF: Dilution Factor Lc/LC: Critical Level
DL: Detection Limit PF: Prep Factor
MDA: Minimum Detectable Activity RL: Reporting Limit

MDC: Minimum Detectable Concentration SQL: Sample Quantitation Limit

Page 7 of 22 SDG: 630054

2040 Savage Road Charleston SC 29407 - (843) 556-8171 - www.gel.com

Certificate of Analysis

Report Date: August 17, 2023

Company: Santee Cooper Address: P.O. Box 2946101

OCO3

Moncks Corner, South Carolina 29461

Contact: Ms. Jeanette Gilmetti Project: ABS Lab Analytical

Client Sample ID: AF68724 Sample ID: 630054006

Matrix: GW

Collect Date: 17-JUL-23 13:05
Receive Date: 21-JUL-23
Collector: Client

Description

Project: SOOP00119
Client ID: SOOP001

Parameter	Qualifier	Result	Uncertainty	MDC	RL	Units	PF	DF Analy	st Date	Time Batch	Method
Rad Gas Flow Proportional Counting											
GFPC, Ra228, Liquid "A	As Received"										
Radium-228	U	0.607	+/-0.706	1.18	3.00	pCi/L		JE1	08/09/23	1337 2464193	3 1
Radium-226+Radium-228 Calculation "See Parent Products"											
Radium-226+228 Sum		1.46	+/-0.825			pCi/L		NXL1	08/17/23	1207 246419	3 2
Rad Radium-226											
Lucas Cell, Ra226, Liquid "As Received"											
Radium-226		0.856	+/-0.428	0.473	1.00	pCi/L		LXP1	08/17/23	0915 2464194	4 3
The following Analytical Methods were performed:											

Surrogate/Tracer Recove		Result	Nominal	Recovery%	Acceptable Limits					
3	EPA 903.1 Modified									
2	Calculation									
1	EPA 904.0/SW846 9320 Modified									

Analyst Comments

Barium-133 Tracer GFPC, Ra228, Liquid "As Received" 91.2 (15%-125%)

Notes:

Method

Counting Uncertainty is calculated at the 95% confidence level (1.96-sigma).

Column headers are defined as follows:

DF: Dilution Factor Lc/LC: Critical Level
DL: Detection Limit PF: Prep Factor
MDA: Minimum Detectable Activity RL: Reporting Limit

MDC: Minimum Detectable Concentration SQL: Sample Quantitation Limit

Page 8 of 22 SDG: 630054

2040 Savage Road Charleston SC 29407 - (843) 556-8171 - www.gel.com

Certificate of Analysis

Report Date: August 17, 2023

Company: Santee Cooper Address: P.O. Box 2946101

OCO3

Moncks Corner, South Carolina 29461

Contact: Ms. Jeanette Gilmetti Project: ABS Lab Analytical

Client Sample ID: AF68746 Sample ID: 630054007

Matrix: GW

Collect Date: 17-JUL-23 14:24
Receive Date: 21-JUL-23
Collector: Client

Description

Project: SOOP00119 Client ID: SOOP001

Analyst Comments

Parameter	Qualifier	Result	Uncertainty	MDC	RL	Units	PF	DF Anal	yst Date	Time Batch	Method
Rad Gas Flow Proportion	onal Counting										
GFPC, Ra228, Liquid "A	As Received"										
Radium-228		1.92	+/-0.974	1.34	3.00	pCi/L		JE1	08/09/23	1337 2464193	1
Radium-226+Radium-2	28 Calculation	n "See Pa	arent Products"								
Radium-226+228 Sum		6.65	+/-1.45			pCi/L		NXL1	08/17/23	1207 2464198	2
Rad Radium-226											
Lucas Cell, Ra226, Liqu	uid "As Recei	ved"									
Radium-226		4.73	+/-1.07	0.573	1.00	pCi/L		LXP1	08/17/23	0916 2464194	3
The following Analytic	al Methods w	ere perfo	ormed:								

1	EPA 904.0/SW846 9320 Modified				
2	Calculation				
3	EPA 903.1 Modified				
Surrogate/Tracer Recov	ery Test	Result	Nominal	Recovery%	Acceptable Limits

Barium-133 Tracer GFPC, Ra228, Liquid "As Received" 85.2 (15%-125%)

Notes:

Method

Counting Uncertainty is calculated at the 95% confidence level (1.96-sigma).

Column headers are defined as follows:

DF: Dilution Factor Lc/LC: Critical Level
DL: Detection Limit PF: Prep Factor
MDA: Minimum Detectable Activity RL: Reporting Limit

MDC: Minimum Detectable Concentration SQL: Sample Quantitation Limit

Page 9 of 22 SDG: 630054

2040 Savage Road Charleston SC 29407 - (843) 556-8171 - www.gel.com

Certificate of Analysis

Project:

Client ID:

Analyst Comments

Report Date: August 17, 2023

SOOP00119

SOOP001

Company: Santee Cooper Address: P.O. Box 2946101

OCO3

Moncks Corner, South Carolina 29461

Contact: Ms. Jeanette Gilmetti Project: ABS Lab Analytical

Client Sample ID: AF68726 Sample ID: 630054008

Matrix: GW

Collect Date: 13-JUL-23 14:16
Receive Date: 21-JUL-23
Collector: Client

Parameter	Qualifier	Result	Uncertainty	MDC	RL	Units	PF	DF Anal	yst Date	Time Batch	Method
Rad Gas Flow Proportion	onal Counting	5									
GFPC, Ra228, Liquid "	'As Received'	1									
Radium-228	U	1.84	+/-1.23	1.93	3.00	pCi/L		JE1	08/09/23	1338 2464193	1
Radium-226+Radium-2	228 Calculation	on "See Pa	rent Products"								
Radium-226+228 Sum		2.85	+/-1.31			pCi/L		NXL1	08/17/23	1207 2464198	2
Rad Radium-226											
Lucas Cell, Ra226, Liqi	uid "As Recei	ived"									
Radium-226		1.01	+/-0.469	0.559	1.00	pCi/L		LXP1	08/17/23	0916 2464194	3
The following Analytic	ral Methods w	vere nerfo	rmed:								

The following Analytical Methods were performed:

Description

2	Calculation				
3	EPA 903.1 Modified				
Surrogate/Tracer Recov	ery Test	Result	Nominal	Recovery%	Acceptable Limits

Barium-133 Tracer GFPC, Ra228, Liquid "As Received"

93.9

(15%-125%)

Notes:

Method

Counting Uncertainty is calculated at the 95% confidence level (1.96-sigma).

EPA 904.0/SW846 9320 Modified

Column headers are defined as follows:

DF: Dilution Factor Lc/LC: Critical Level
DL: Detection Limit PF: Prep Factor
MDA: Minimum Detectable Activity RL: Reporting Limit

MDC: Minimum Detectable Concentration SQL: Sample Quantitation Limit

Page 10 of 22 SDG: 630054

2040 Savage Road Charleston SC 29407 - (843) 556-8171 - www.gel.com

Certificate of Analysis

Report Date: August 17, 2023

Company: Santee Cooper Address: P.O. Box 2946101

OCO3

Moncks Corner, South Carolina 29461

Contact: Ms. Jeanette Gilmetti Project: ABS Lab Analytical

Client Sample ID: AF68727 Sample ID: 630054009

Matrix: GW

Collect Date: 13-JUL-23 14:21
Receive Date: 21-JUL-23
Collector: Client

Description

Project: SOOP00119 Client ID: SOOP001

Analyst Comments

Parameter	Qualifier	Result	Uncertainty	MDC	RL	Units	PF	DF Analy	st Date	Time Batch	Method
Rad Gas Flow Proportion	onal Counting										
GFPC, Ra228, Liquid ".	As Received"										
Radium-228	U	1.25	+/-0.862	1.32	3.00	pCi/L		JE1	08/09/23	1337 2464193	1
Radium-226+Radium-2	28 Calculatio	n "See Pa	arent Products"								
Radium-226+228 Sum		2.17	+/-0.944			pCi/L		NXL1	08/17/23	1207 2464198	2
Rad Radium-226											
Lucas Cell, Ra226, Liqu	uid "As Recei	ved"									
Radium-226		0.927	+/-0.386	0.295	1.00	pCi/L		LXP1	08/17/23	0916 2464194	3
The following Analytic	cal Methods w	ere perfo	ormed:								

1	EPA 904.0/SW846 9320 Modified				
2	Calculation				
3	EPA 903.1 Modified				
Surrogate/Tracer Recov	ery Test	Result	Nominal	Recovery%	Acceptable Limits

Barium-133 Tracer GFPC, Ra228, Liquid "As Received" 91.6 (15%-125%)

Notes:

Method

Counting Uncertainty is calculated at the 95% confidence level (1.96-sigma).

Column headers are defined as follows:

DF: Dilution Factor Lc/LC: Critical Level
DL: Detection Limit PF: Prep Factor
MDA: Minimum Detectable Activity RL: Reporting Limit

MDC: Minimum Detectable Concentration SQL: Sample Quantitation Limit

Page 11 of 22 SDG: 630054

2040 Savage Road Charleston SC 29407 - (843) 556-8171 - www.gel.com

Certificate of Analysis

Report Date: August 17, 2023

Company: Santee Cooper Address: P.O. Box 2946101

OCO3

Moncks Corner, South Carolina 29461

Contact: Ms. Jeanette Gilmetti Project: ABS Lab Analytical

Client Sample ID: AF68730 Sample ID: 630054010

Matrix: GW

Collect Date: 13-JUL-23 10:01
Receive Date: 21-JUL-23
Collector: Client

730 Project: SOOP00119 4010 Client ID: SOOP001

Parameter	Qualifier	Result	Uncertainty	MDC	RL	Units	PF	DF Analyst Date	Time Batch	Method
Rad Gas Flow Proportion	onal Counting									
GFPC, Ra228, Liquid ".	As Received"									
Radium-228	U	0.272	+/-0.745	1.38	3.00	pCi/L		JE1 08/09/23	1337 2464193	1
Radium-226+Radium-2	28 Calculatio	n "See Pa	arent Products"							
Radium-226+228 Sum		2.75	+/-1.03			pCi/L		NXL1 08/17/23	1207 2464198	2
Rad Radium-226										
Lucas Cell, Ra226, Liqu	uid "As Recei	ved"								
Radium-226		2.47	+/-0.719	0.614	1.00	pCi/L		LXP1 08/17/23	0916 2464194	3
The following Analytic	al Methods w	ere perfo	ormed:							
Method	Description					F	Analys	st Comments		

1	EPA 904.0/SW846 9320 Modified	EPA 904.0/SW846 9320 Modified							
2	Calculation								
3	EPA 903.1 Modified								
Surrogate/Tracer Recov	ery Test	Result	Nominal	Recovery%	Acceptable Limits				

Barium-133 Tracer GFPC, Ra228, Liquid "As Received" 82 (15%-125%)

Notes:

Counting Uncertainty is calculated at the 95% confidence level (1.96-sigma).

Column headers are defined as follows:

DF: Dilution Factor Lc/LC: Critical Level
DL: Detection Limit PF: Prep Factor
MDA: Minimum Detectable Activity RL: Reporting Limit

MDC: Minimum Detectable Concentration SQL: Sample Quantitation Limit

Page 12 of 22 SDG: 630054

2040 Savage Road Charleston SC 29407 - (843) 556-8171 - www.gel.com

Certificate of Analysis

Report Date: August 17, 2023

Company: Santee Cooper Address: P.O. Box 2946101

OCO3

Moncks Corner, South Carolina 29461

Contact: Ms. Jeanette Gilmetti Project: ABS Lab Analytical

Client Sample ID: AF68729 Sample ID: 630054011

Matrix: GW

Collect Date: 13-JUL-23 11:24
Receive Date: 21-JUL-23
Collector: Client

Project: SOOP00119
Client ID: SOOP001

Parameter	Qualifier	Result	Uncertainty	MDC	RL	Units	PF	DF Analy	st Date	Time Batch	Method
Rad Gas Flow Proportion	onal Counting	5									
GFPC, Ra228, Liquid ".	As Received"										
Radium-228		2.66	+/-1.11	1.42	3.00	pCi/L		JE1	08/09/23	1337 2464193	1
Radium-226+Radium-2	28 Calculatio	n "See Pa	arent Products"								
Radium-226+228 Sum		8.89	+/-1.58			pCi/L		NXL1	08/17/23	1207 2464198	2
Rad Radium-226											
Lucas Cell, Ra226, Liqu	uid "As Recei	ved"									
Radium-226		6.23	+/-1.12	0.394	1.00	pCi/L		LXP1	08/17/23	0916 2464194	3
The following Analytic	cal Methods w	vere perfo	ormed:								

Method	Description	Analyst Comments
1	EPA 904.0/SW846 9320 Modified	-
2	Calculation	
3	EPA 903.1 Modified	

Surrogate/Tracer RecoveryTestResultNominalRecovery%Acceptable LimitsBarium-133 TracerGFPC, Ra228, Liquid "As Received"80.5(15%-125%)

Notes:

Counting Uncertainty is calculated at the 95% confidence level (1.96-sigma).

Column headers are defined as follows:

DF: Dilution Factor Lc/LC: Critical Level
DL: Detection Limit PF: Prep Factor
MDA: Minimum Detectable Activity RL: Reporting Limit

MDC: Minimum Detectable Concentration SQL: Sample Quantitation Limit

Page 13 of 22 SDG: 630054

2040 Savage Road Charleston SC 29407 - (843) 556-8171 - www.gel.com

Certificate of Analysis

Project:

Client ID:

Analyst Comments

Report Date: August 17, 2023

SOOP00119

SOOP001

Company: Santee Cooper Address: P.O. Box 2946101

OCO3

Moncks Corner, South Carolina 29461

Contact: Ms. Jeanette Gilmetti Project: ABS Lab Analytical

Client Sample ID: AF68728 Sample ID: 630054012

Matrix: GW

Collect Date: 13-JUL-23 13:32
Receive Date: 21-JUL-23
Collector: Client

Parameter	Qualifier	Result	Uncertainty	MDC	RL	Units	PF	DF Analy	st Date	Time Batch	Method
Rad Gas Flow Proporti	onal Counting	ζ	<u> </u>					-	<u> </u>		
GFPC, Ra228, Liquid '	"As Received"	1									
Radium-228		2.03	+/-1.14	1.70	3.00	pCi/L		JE1	08/09/23	1337 2464193	1
Radium-226+Radium-2	228 Calculatio	n "See Pa	arent Products"								
Radium-226+228 Sum		3.68	+/-1.28			pCi/L		NXL1	08/17/23	1207 2464198	2
Rad Radium-226											
Lucas Cell, Ra226, Liq	juid "As Recei	ved"									
Radium-226		1.65	+/-0.572	0.492	1.00	pCi/L		LXP1	08/17/23	0947 2464194	3
The following Analyti	cal Methods w	vere perfo	ormed:								

Method		Description
Monitor		Description

EPA 904.0/SW846 9320 Modified

2 Calculation 3 EPA 903.1 Modified

Surrogate/Tracer Recovery	Test	Result	Nominal	Recovery%	Acceptable Limits
Barium-133 Tracer	GEPC, Ra228, Liquid "As Received"			80	(15%-125%)

Notes:

Counting Uncertainty is calculated at the 95% confidence level (1.96-sigma).

Column headers are defined as follows:

DF: Dilution Factor Lc/LC: Critical Level
DL: Detection Limit PF: Prep Factor
MDA: Minimum Detectable Activity RL: Reporting Limit

MDC: Minimum Detectable Concentration SQL: Sample Quantitation Limit

Page 14 of 22 SDG: 630054

2040 Savage Road Charleston, SC 29407 - (843) 556-8171 - www.gel.com

QC Summary

Report Date: August 17, 2023

Santee Cooper P.O. Box 2946101

OCO3

Moncks Corner, South Carolina

Contact: Ms. Jeanette Gilmetti

Workorder: 630054

Parmname	NOM	Sample	Qual	QC	Units	RPD%	REC%	Range	Anlst	Date Ti	me
Rad Gas Flow											
Batch 2464193 —											
QC1205466431 630054001 DUP											
Radium-228		1.69		1.53	pCi/L	10.2		(0% - 100%)	JE1	08/09/23 1	13:36
	Uncertainty	+/-1.08		+/-0.862							
QC1205466432 LCS											
Radium-228	79.4			73.7	pCi/L		92.8	(75%-125%)		08/09/23 1	13:36
	Uncertainty			+/-4.40							
QC1205466430 MB											
Radium-228			U	0.374	pCi/L					08/09/23 1	13:36
	Uncertainty			+/-1.10							
Rad Ra-226											
Batch 2464194 ——											
QC1205466427 630054001 DUP											
Radium-226		1.76		1.93	pCi/L	9.03		(0% - 100%)	LXP1	08/17/23 0)9:47
	Uncertainty	+/-0.637		+/-0.646							
QC1205466429 LCS											
Radium-226	25.6			20.0	pCi/L		78.3	(75%-125%)		08/17/23 0)9:47
	Uncertainty			+/-1.70							
QC1205466426 MB											
Radium-226			U	0.222	pCi/L					08/17/23 0)9:47
	Uncertainty			+/-0.288							
QC1205466428 630054001 MS											
Radium-226	131	1.76		121	pCi/L		91.2	(75%-125%)		08/17/23 0)9:47
	Uncertainty	+/-0.637		+/-9.22							

Notes:

Counting Uncertainty is calculated at the 95% confidence level (1.96-sigma).

The Qualifiers in this report are defined as follows:

U Analyte was analyzed for, but not detected above the MDL, MDA, MDC or LOD.

J Value is estimated

X Consult Case Narrative, Data Summary package, or Project Manager concerning this qualifier

H Analytical holding time was exceeded

< Result is less than value reported

Page 15 of 22 SDG: 630054

Page 1 of 2

2040 Savage Road Charleston, SC 29407 - (843) 556-8171 - www.gel.com

QC Summary

Workorder: 630054

Parmname NOM Sample Qual QC Units RPD% REC% Range Anlst Date Time

Parmname	NOM	Sample Qual	QC	Units	RPD%	REC%	Range	Anlst	Date	Time

- > Result is greater than value reported
- UI Gamma Spectroscopy--Uncertain identification
- BD Results are either below the MDC or tracer recovery is low
- h Preparation or preservation holding time was exceeded
- R Sample results are rejected
- ^ RPD of sample and duplicate evaluated using +/-RL. Concentrations are <5X the RL. Qualifier Not Applicable for Radiochemistry.
- N/A RPD or %Recovery limits do not apply.
- ND Analyte concentration is not detected above the detection limit
- M M if above MDC and less than LLD
- NJ Consult Case Narrative, Data Summary package, or Project Manager concerning this qualifier
- FA Failed analysis.
- UJ Gamma Spectroscopy--Uncertain identification
- Q One or more quality control criteria have not been met. Refer to the applicable narrative or DER.
- K Analyte present. Reported value may be biased high. Actual value is expected to be lower.
- UL Not considered detected. The associated number is the reported concentration, which may be inaccurate due to a low bias.
- L Analyte present. Reported value may be biased low. Actual value is expected to be higher.
- N1 See case narrative
- Y Other specific qualifiers were required to properly define the results. Consult case narrative.
- ** Analyte is a Tracer compound
- M REMP Result > MDC/CL and < RDL
- J See case narrative for an explanation

N/A indicates that spike recovery limits do not apply when sample concentration exceeds spike conc. by a factor of 4 or more or %RPD not applicable.

For PS, PSD, and SDILT results, the values listed are the measured amounts, not final concentrations.

Where the analytical method has been performed under NELAP certification, the analysis has met all of the requirements of the NELAC standard unless qualified on the QC Summary.

Page 16 of 22 SDG: 630054

[^] The Relative Percent Difference (RPD) obtained from the sample duplicate (DUP) is evaluated against the acceptance criteria when the sample is greater than five times (5X) the contract required detection limit (RL). In cases where either the sample or duplicate value is less than 5X the RL, a control limit of +/- the RL is used to evaluate the DUP result.

^{*} Indicates that a Quality Control parameter was not within specifications.

Radiochemistry Technical Case Narrative Santee Cooper SDG #: 630054

Product: GFPC, Ra228, Liquid

Analytical Method: EPA 904.0/SW846 9320 Modified **Analytical Procedure:** GL-RAD-A-063 REV# 5

Analytical Batch: 2464193

The following samples were analyzed using the above methods and analytical procedure(s).

GEL Sample ID#	Client Sample Identification
630054001	AF68725
630054002	AF68742
630054003	AF68747
630054004	AF68731
630054005	AF68723
630054006	AF68724
630054007	AF68746
630054008	AF68726
630054009	AF68727
630054010	AF68730
630054011	AF68729
630054012	AF68728
1205466430	Method Blank (MB)
1205466431	630054001(AF68725) Sample Duplicate (DUP)
1205466432	Laboratory Control Sample (LCS)

The samples in this SDG were analyzed on an "as received" basis.

Data Summary:

There are no exceptions, anomalies or deviations from the specified methods. All sample data provided in this report met the acceptance criteria specified in the analytical methods and procedures for initial calibration, continuing calibration, instrument controls and process controls where applicable.

<u>Product:</u> Lucas Cell, Ra226, Liquid <u>Analytical Method:</u> EPA 903.1 Modified

Analytical Procedure: GL-RAD-A-008 REV# 15

Analytical Batch: 2464194

The following samples were analyzed using the above methods and analytical procedure(s).

GEL Sample ID#	Client Sample Identification
630054001	AF68725
630054002	AF68742
630054003	AF68747
630054004	AF68731

Page 17 of 22 SDG: 630054

630054005	AF68723
630054006	AF68724
630054007	AF68746
630054008	AF68726
630054009	AF68727
630054010	AF68730
630054011	AF68729
630054012	AF68728
1205466426	Method Blank (MB)
1205466427	630054001(AF68725) Sample Duplicate (DUP)
1205466428	630054001(AF68725) Matrix Spike (MS)
1205466429	Laboratory Control Sample (LCS)

The samples in this SDG were analyzed on an "as received" basis.

Data Summary:

All sample data provided in this report met the acceptance criteria specified in the analytical methods and procedures for initial calibration, continuing calibration, instrument controls and process controls where applicable, with the following exceptions.

Miscellaneous Information

Additional Comments

The matrix spike, 1205466428 (AF68725MS), aliquot was reduced to conserve sample volume.

Certification Statement

Where the analytical method has been performed under NELAP certification, the analysis has met all of the requirements of the NELAC standard unless otherwise noted in the analytical case narrative.

Page 18 of 22 SDG: 630054

Customer Email/Report Recipient:

Chain of Custody

Date Results Needed by:

630054

Project/Task/Unit #:

	WILLA	ll/Report Recip @santee	cooper.com	Date R	desults N	eeded b	y:	125				Unit #: 09. GØ1. 1	Rerun re		No		gged	
	orks ID # nal use	Sample Locati Description	on/	Collection Date	Collection Time	Sample Collector	Total # of containers	Bottle type: (Glass-G/Plastic-P)	Grab (G) or Composite (C)	Matrix(see below)	Preservative (see	Rep Mis	Comments thod # corting limit c. sample info other notes		RAD 226	RAD 228	TOTAL RAD CALC	
AFE	8725	WAP-13		7/18/23	1149	WK	2	P	G	GW	2				1	1	X	
AF6	8742	WAP-25		1	1453	1	1	1	1		1				1	1	1	
	8747	WAP - 29		7/17/23	1008										1	1		
1	31	WAP-15		1	1115										\dagger			
	23	WAP-12			(300													
	24	WAP-12 DU	P		1305													
1	46	WAP-28		1	1424		1	1	1	_	1				1	1	1	
	nquished by:	Employee#	Date	Time	Receiv	red by:	Er	nployee	#	Date		Time	Sample Receiving (In TEMP (°C):_		se On nitial			
Sylan		35594	7/21/23	0945	114	0	_	GEL		/21/2	3	248	Correct pH: Yes	No				7
Relii	nquished by:		Date	Time	Receiv	red by:	-	nployee	#	Date		Time	Preservative Lot#:	140				
Relin	iquished by:	Employee#	7.21.21 Date	Time	UAX.	ed by:	-	JEC nployee	<i> </i>	21 2 Date	3	Time	Treservative Edul					
		7.10 6201 600 600					SHTMS			Signaline	No.		Date/Time/Init for p	reservat	tive:			
☐ Ag ☐ Al ☐ As ☐ B ☐ Ba ☐ Ca ☐ Cd ☐ Co ☐ Cr	MH Ct Ct Fe Ct Ct Ct Ct Ct Ct Ct C	B □ Se □ Sn □ Sr □ Sr □ Ti □ Ti □ V □ □ Zn □ Hg	Nutropy Too	C TPO4 3-N 2	MIS DETEX Naphtha THM/H VOC Oil & Gr E. Coli Total Co pH Dissolve Dissolve Rad 226 Rad 228	lene AA ease liform		Walfbor	sum(a y) M C al meta able Ma ty (Cal foistum ites	ls etals SO4)	O D:	Coal Ultimate % Moist Ash Sulfur BTUs Volatile CHN ther Tests: XRF Scan HGI Fineness Particulate Ma	Ure ☐ Animonia ☐ LOI ☐ % Carbon ☐ Mineral Analys Matter ☐ Sieve ☐ % Moistur NPDES ☐ Oil & Greas	sis	DA DE DE DE DE DE DE DE DE DE DE DE DE DE	Mois olor oldity electric T issolve d Oil ashpo etals i is, Cd.	Qual. ture Strengt ed Gas	th es

Customer Email/Report Recipient:

Date Results Needed by:

Chain of Custody

Santee Cooper One Riverwood Drive Moncks Corner, SC 29461 Phone: (843)761-8000 Ext. 5148 Fax: (843)761-4175

LCWIL		Report Recipi @santee	ient: cooper.com		Results N	eeded b /	y:	1250				Unit #:	1 /3650	Rerun red			agged (
			,							<u> </u>		,			Yes No		sis Group
Labwork (Internal only)	A CONTRACTOR OF THE PARTY	Sample Locati Description	on/	Collection Date	Collection Time	Sample Collector	Total # of containers	Bottle type: (Glass-G/Plastic-P)	Grab (G) or Composite (C)	Matrix(see below)	Preservative (see	•	Com Method # Reporting lim Misc. sample Any other not	info	CC ANO	RAD 228	2.0
AF68-	126	WAP-14		7/13/23	1416	WJK	2	P	G	GW	2				1	1	X
AF687	27	WAP-14 DI	UP.	1	1421	1	1	1	1	1	1				1	1	11
4F687	30	WAP-140		1	1001		1	1	1	1	1					+	H
AF687		WAP-14B					1				+					+	H
		WAL 14b		+-	1124		+	+	-							+	
AF687	2.8	WAP-14A		7	1332	1	7	7			1	-			- 1	1	11
					-											1	
																-	
										_							
Relinquis	shed by:	Employee#	Date	Time	Receiv	ed by:	En	nployee i	#	Date		Time	Sample TEMP	Receiving (Inte	rnal Use C Initia		
Mysour		35594		०९५५	De			GEL	7	121/2	3 0	0945					-
Relinquis	hed by:	Employee#	Date	Time	Receiv	ed by:	En	nployee #	#	Date		Time	Correc	t pH: Yes	No		
SII	7	RE.1	721-23	1555	EL	Met	16	all	17	121	M	1555	Preser	vative Lot#:			
Relinquis	hed by:	Employee#	Date	Time	Receiv	ed by:	En	ployee t	*	Date	200	Time					
													Date/T	ime/Init for pre	servative:	E.	
		TALS (all)	Nutr	ients	B.A.I.C			C						700000	100	8/8	50 P (0)
□Ag	□ Cu	□ Sb	□ TO	ENGINEERING AND ADDRESS.	MIS BTEX	<u></u>		Wallbo:	osum		4	Co		Flyash	100	Oi	
□ A1	□ Fe	□ Se			☐ Naphthal				um(al	L		Ultimate ☐ % Mo		☐ Ammonia ☐ LOI	CHIEF STRANGESCO	ans. Oi	l Qual.
□ As	□К	□ Sn	□ TP/	ГРО4	□ THM/HA	AA		below)			□ Ash	.istato	□ % Carbon	E.	Color .	
□В	□ Li	□ Sr	□ NH3	3-N	□ VOC □ Oil & Gr	ease	4 -	I AIN				☐ Sulfur		☐ Mineral		Acidity	
□ Ba	□Mg	□ Ti			□ E. Coli			Tota	metal			□ BTUs		Analysis		FT	Strength
□ Be	□Mn	□ TI		,	☐ Total Col ☐ pH	iform		□ Solu	ble Me	tals			ile Matter	☐ Sieve	177	Dissolv	ed Gases
□ Ca	□Мо	υV	□ Br		□ pH □ Dissolved	l As	4		ty (CaS loisture			☐ CHN her Test	S:	☐ % Moisture		ed Oil	
To District			□ NO3		☐ Dissolved			□ Sulfi			MEDICAL PROPERTY.	RF Scan		NPDES		Flashpo Metals i	
□ Cd	□ Na	□ Zn	□ SO4	And in concession of the	☐ Rad 226 ☐ Rad 228	1	1	□ pH			OH		15	□ Oil & Grease		(As.Cd.	Cr,Ni.Pb
□ Co	□ Ni	□ Hg		200 mm	□ PCB			☐ Chlo		TAIL T	100000	ineness articulate	Matter	☐ As		Hg)	
□ Cr	□РЬ	□ CrVI												OTSS			

Client: 500F			SD	G/AR/COC/Work Order: 4000000000000000000000000000000000000
Received By: EG			1	te Received: 7/21/23 15.55
Carrier and Tracking Number			Da	Circle Applicable: FedEx Express FedEx Ground UPS Field Services Courier Other
Suspected Hazard Information	Yes	°N.	*If	Net Counts > 100cpm on samples not marked "radioactive", contact the Radiation Safety Group for further investigation.
A)Shipped as a DOT Hazardous?		>	Haz	ard Class Shipped: UN#: If UN2910, Is the Radioactive Shipment Survey Compliant? Yes No
Did the client designate the samples are to be eccived as radioactive?		y	co	C notation or radioactive stickers on containers equal client designation.
Did the RSO classify the samples as adioactive?		X	Ma	kimum Net Counts Observed* (Observed Counts - Area Background Counts):CPM/mR/Hr Classified as: Rad 1 Rad 2 Rad 3
Did the client designate samples are hazardous?		X		C notation or bazard labels on containers equal client designation.
E) Did the RSO identify possible hazards?		X	III	or E is yes, select Hazards below. PCB's Flammable Foreign Soil RCRA Asbestos Beryllium Other:
Sample Receipt Criteria	Yes	NA	No.	Comments/Qualifiers (Required for Non-Conforming Items)
Shipping containers received intact and sealed?	1			Circle Applicable: Seals broken Damaged container Leaking container Other (describe)
2 Chain of custody documents included with shipment?	1			Circle Applicable: Client contacted and provided COC COC created upon receipt
3 Samples requiring cold preservation within (0 ≤ 6 deg, C)?*	1			Preservation Method: (Wet Ice Ice Packs Dry ice None Other: *all temperatures are recorded in Celsius TEMP:
Daily check performed and passed on IR temperature gun?	1			Temperature Device Serial #: IR5-23 Secondary Temperature Device Serial # (If Applicable):
5 Sample containers intact and sealed?	/			Circle Applicable: Seals broken Damaged container Leaking container Other (describe)
6 Samples requiring chemical preservation at proper pH?			1	Sample ID's and Containers Affected: WAP-14 DUP, WAP-15, WAP-14 PH > 3
7 Do any samples require Volatile Analysis?			1	If Yes, are Encores or Soil Kits present for solids? Yes No NA (If yes, take to VOA Freezer) Do liquid VOA vials contain acid preservation? Yes No NA (If unknown, select No) Are liquid VOA vials free of headspace? Yes No NA Sample ID's and containers affected:
8 Samples received within holding time?	1			ID's and tests affected:
9 Sample ID's on COC match ID's on bottles?	1			fD's and containers affected:
Date & time on COC match date & time on bottles?	1			Circle Applicable: No dates on containers No times on containers COC missing info Other (describe)
Number of containers received match number indicated on COC?	V	***		Circle Applicable: No container count on COC Other (describe)
Are sample containers identifiable as GEL provided by use of GEL labels?	1			Cal Saladia Manaya il di Obrata il
COC form is properly signed in relinquished/received sections?	1			Circle Applicable: Not relinquished Other (describe)

GL-CHL-SR-001 Rev 7

List of current GEL Certifications as of 17 August 2023

State	Certification
Alabama	42200
Alaska	17-018
Alaska Drinking Water	SC00012
Arkansas	88-0651
CLIA	42D0904046
California	2940
Colorado	SC00012
Connecticut	PH-0169
DoD ELAP/ ISO17025 A2LA	2567.01
Florida NELAP	E87156
Foreign Soils Permit	P330-15-00283, P330-15-00253
Georgia	SC00012
Georgia SDWA	967
Hawaii	SC00012
Idaho	SC00012
Illinois NELAP	200029
Indiana	C-SC-01
Kansas NELAP	E-10332
Kentucky SDWA	90129
Kentucky Wastewater	90129
Louisiana Drinking Water	LA024
Louisiana NELAP	03046 (AI33904)
Maine	2019020
Maryland	270
Massachusetts	M-SC012
Massachusetts PFAS Approv	Letter
Michigan	9976
Mississippi	SC00012
Nebraska	NE-OS-26-13
Nevada	SC000122023-4
New Hampshire NELAP	2054
New Jersey NELAP	SC002
New Mexico	SC002 SC00012
New York NELAP	11501
North Carolina	233
North Carolina SDWA	45709
North Dakota	R-158
Oklahoma	2022-160
Pennsylvania NELAP	68-00485
Pennsylvania NELAP Puerto Rico	SC00012
S. Carolina Radiochem	10120002
Sanitation Districts of L	9255651
South Carolina Chemistry	10120001
Tennessee Teves NEL A P	TN 02934
Texas NELAP	T104704235-22-20
Utah NELAP	SC000122022-37
Vermont	VT87156
Virginia NELAP	460202
Washington	C780

2040 Savage Road | Charleston, SC 29407 843 556 8171

gel.com

September 08, 2023

Ms. Jeanette Gilmetti Santee Cooper P.O. Box 2946101 OCO3 Moncks Corner, South Carolina 29461

Re: ABS Lab Analytical Work Order: 635742

Dear Ms. Gilmetti:

GEL Laboratories, LLC (GEL) appreciates the opportunity to provide the enclosed analytical results for the sample(s) we received on September 01, 2023. This original data report has been prepared and reviewed in accordance with GEL's standard operating procedures.

The samples were delivered with proper chain of custody documentation and signatures. All sample containers arrived without any visible signs of tampering or breakage. There are no additional comments concerning sample receipt.

Test results for NELAP or ISO 17025 accredited tests are verified to meet the requirements of those standards, with any exceptions noted. The results reported relate only to the items tested and to the sample as received by the laboratory. These results may not be reproduced except as full reports without approval by the laboratory. Copies of GEL's accreditations and certifications can be found on our website at www.gel.com.

Our policy is to provide high quality, personalized analytical services to enable you to meet your analytical needs on time every time. We trust that you will find everything in order and to your satisfaction. If you have any questions, please do not hesitate to call me at (843) 556-8171, ext. 4289.

Sincerely,

Julie Robinson Project Manager

Purchase Order: 398684

Enclosures

2040 Savage Road Charleston SC 29407 - (843) 556-8171 - www.gel.com

Certificate of Analysis Report for

SOOP001 Santee Cooper

Client SDG: 635742 GEL Work Order: 635742

The Qualifiers in this report are defined as follows:

- * A quality control analyte recovery is outside of specified acceptance criteria
- ** Analyte is a Tracer compound
- ** Analyte is a surrogate compound
- H Analytical holding time was exceeded
- J Value is estimated
- U Analyte was analyzed for, but not detected above the MDL, MDA, MDC or LOD.

Where the analytical method has been performed under NELAP certification, the analysis has met all of the requirements of the NELAC standard unless qualified on the Certificate of Analysis.

The designation ND, if present, appears in the result column when the analyte concentration is not detected above the limit as defined in the 'U' qualifier above.

This data report has been prepared and reviewed in accordance with GEL Laboratories LLC standard operating procedures. Please direct any questions to your Project Manager, Julie Robinson.

Reviewed by

Page 2 of 13 SDG: 635742

2040 Savage Road Charleston SC 29407 - (843) 556-8171 - www.gel.com

Certificate of Analysis

Project:

Client ID:

Report Date: September 8, 2023

SOOP00119

SOOP001

Company: Santee Cooper P.O. Box 2946101 Address:

OCO3

Moncks Corner, South Carolina 29461

Contact: Ms. Jeanette Gilmetti Project: ABS Lab Analytical

Client Sample ID: AF75783 Sample ID: 635742001

Matrix: GW

Collect Date: 23-AUG-23 13:49 Receive Date: 01-SEP-23

Collector: Client

Parameter	Qualifier	Result	DL	RL	Units	PF	DF Anal	yst Date	Time Batch	Method
Ion Chromatograp	ohy									
EPA 300.0 Fluorio	de, Liquid "As Rece	eived"								
Chloride		212	3.35	10.0	mg/L		50 JLD1	09/03/23	1326 2486861	1
Sulfate		57.6	6.65	20.0	mg/L		50			
Fluoride	J	0.0685	0.0330	0.100	mg/L		1 JLD1	09/02/23	1419 2486861	2
The following Ar	nalytical Methods w	ere performed:								
Method	Description				1	Analys	st Commen	ts		

EPA 300.0 EPA 300.0

Notes:

Column headers are defined as follows:

DF: Dilution Factor Lc/LC: Critical Level DL: Detection Limit PF: Prep Factor MDA: Minimum Detectable Activity **RL**: Reporting Limit

SQL: Sample Quantitation Limit MDC: Minimum Detectable Concentration

Page 3 of 13 SDG: 635742

2040 Savage Road Charleston SC 29407 - (843) 556-8171 - www.gel.com

Certificate of Analysis

Project:

Client ID:

Report Date: September 8, 2023

SOOP00119

SOOP001

Company: Santee Cooper Address: P.O. Box 2946101

OCO3

Moncks Corner, South Carolina 29461

Contact: Ms. Jeanette Gilmetti Project: ABS Lab Analytical

Client Sample ID: AF75784 Sample ID: 635742002

Matrix: GW

Collect Date: 23-AUG-23 11:09

Receive Date: 01-SEP-23 Collector: Client

Parameter	Oualifier	Result	DL	RL	Units	PF	DF Anal	vet Data	Time Batch	Mathod
1 aranicici	Qualifier	Result	DL	KL	Omis	11	DI Allai	ysi Daic	Time Batch	Memou
Ion Chromatograp	phy									
EPA 300.0 Fluori	de, Liquid "As Rec	eived"								
Chloride		354	6.70	20.0	mg/L		100 JLD1	09/03/23	1358 2486861	1
Sulfate		99.8	13.3	40.0	mg/L		100			
Fluoride		0.233	0.0330	0.100	mg/L		1 JLD1	09/02/23	1451 2486861	2
The following A	nalytical Methods v	were performed:								
Method	Description	1		-		Analys	st Commen	ts	-	

1 EPA 300.0 2 EPA 300.0

Notes:

Column headers are defined as follows:

DF: Dilution Factor Lc/LC: Critical Level
DL: Detection Limit PF: Prep Factor
MDA: Minimum Detectable Activity RL: Reporting Limit

MDC: Minimum Detectable Concentration SQL: Sample Quantitation Limit

Page 4 of 13 SDG: 635742

2040 Savage Road Charleston SC 29407 - (843) 556-8171 - www.gel.com

Certificate of Analysis

Project:

Client ID:

Report Date: September 8, 2023

SOOP00119

SOOP001

Company: Santee Cooper Address: P.O. Box 2946101

OCO3

Moncks Corner, South Carolina 29461

Contact: Ms. Jeanette Gilmetti Project: ABS Lab Analytical

Client Sample ID: AF75785 Sample ID: 635742003

Matrix: GW

Collect Date: 23-AUG-23 11:14
Receive Date: 01-SEP-23
Collector: Client

DLRL Units PF Parameter Qualifier Result DF Analyst Date Time Batch Method Ion Chromatography EPA 300.0 Fluoride, Liquid "As Received" Fluoride 0.0330 0.100 0.237 mg/L 1 JLD1 09/02/23 1523 2486861 1 Chloride 6.70 20.0 100 JLD1 09/03/23 1430 2486861 mg/L Sulfate 96.0 13.3 40.0 mg/L 100 The following Analytical Methods were performed:

Method Description Analyst Comments

1 EPA 300.0 2 EPA 300.0

Notes:

Column headers are defined as follows:

DF: Dilution Factor Lc/LC: Critical Level
DL: Detection Limit PF: Prep Factor
MDA: Minimum Detectable Activity RL: Reporting Limit

MDC: Minimum Detectable Concentration SQL: Sample Quantitation Limit

Page 5 of 13 SDG: 635742

2040 Savage Road Charleston SC 29407 - (843) 556-8171 - www.gel.com

Certificate of Analysis

Project:

Client ID:

Report Date: September 8, 2023

SOOP00119

SOOP001

Company: Santee Cooper Address: P.O. Box 2946101

OCO3

Moncks Corner, South Carolina 29461

Contact: Ms. Jeanette Gilmetti Project: ABS Lab Analytical

Client Sample ID: AF75786 Sample ID: 635742004

Matrix: GW

Collect Date: 23-AUG-23 12:35 Receive Date: 01-SEP-23

Collector: Client

Parameter	Qualifier	Result	DL	RL	Units	PF	DF	Analy	st Date	Time	Batch	Method
Ion Chromatograp	phy											
EPA 300.0 Fluori	ide, Liquid "As Rec	eived"										
Chloride	_	862	13.4	40.0	mg/L		200	JLD1	09/03/23	1502	2486861	1
Sulfate		650	26.6	80.0	mg/L		200					
Fluoride	U	ND	0.0330	0.100	mg/L		1	JLD1	09/02/23	1554	2486861	2
The following A	nalytical Methods v	vere performed:										
Method	Description				1	Analys	st Coi	nment	s			
1	ED 1 200 0											

EPA 300.0 2 EPA 300.0

Notes:

Column headers are defined as follows:

DF: Dilution Factor Lc/LC: Critical Level
DL: Detection Limit PF: Prep Factor
MDA: Minimum Detectable Activity RL: Reporting Limit

MDC: Minimum Detectable Concentration SQL: Sample Quantitation Limit

Page 6 of 13 SDG: 635742

2040 Savage Road Charleston, SC 29407 - (843) 556-8171 - www.gel.com

QC Summary

Report Date: September 8, 2023

Page 1 of 2

Santee Cooper P.O. Box 2946101

OCO3

Moncks Corner, South Carolina

Contact: Ms. Jeanette Gilmetti

Workorder: 635742

Parmname	NOM	Sample	Qual	QC	Units	RPD%	REC%	Range Anlst	Date Time
Ion Chromatography Batch 2486861									
QC1205506681 635758008 DUP Chloride	Н	8.12	Н	8.10	mg/L	0.269		(0%-20%) JLD1	09/03/23 02:32
Fluoride	Н	0.123	Н	0.126	mg/L	2.81		(+/-0.100)	
Sulfate	Н	22.7	Н	22.6	mg/L	0.432		(0%-20%)	09/03/23 16:06
QC1205506678 LCS Chloride	5.00			4.70	mg/L		94.1	(90%-110%)	09/03/23 00:56
Fluoride	2.50			2.41	mg/L		96.4	(90%-110%)	
Sulfate	10.0			9.54	mg/L		95.4	(90%-110%)	
QC1205506677 MB Chloride			U	ND	mg/L				09/03/23 00:24
Fluoride			U	ND	mg/L				
Sulfate			U	ND	mg/L				
QC1205506682 635758008 PS Chloride	5.00 Н	8.12	Н	13.4	mg/L		105	(90%-110%)	09/03/23 03:04
Fluoride	2.50 Н	0.123	Н	2.43	mg/L		92.2	(90%-110%)	
Sulfate	10.0 Н	11.3	Н	21.1	mg/L		97.4	(90%-110%)	09/03/23 16:38

Notes:

Page 7 of 13 SDG: 635742

2040 Savage Road Charleston, SC 29407 - (843) 556-8171 - www.gel.com

QC Summary

Workorder: 635742

Parmname

NOM Sample Qual QC Units RPD% REC% Range Anlst Date Time

The Qualifiers in this report are defined as follows:

- U Analyte was analyzed for, but not detected above the MDL, MDA, MDC or LOD.
- J Value is estimated
- X Consult Case Narrative, Data Summary package, or Project Manager concerning this qualifier
- H Analytical holding time was exceeded
- < Result is less than value reported
- > Result is greater than value reported
- h Preparation or preservation holding time was exceeded
- R Sample results are rejected
- Z Paint Filter Test--Particulates passed through the filter, however no free liquids were observed.
- d 5-day BOD--The 2:1 depletion requirement was not met for this sample
- ^ RPD of sample and duplicate evaluated using +/-RL. Concentrations are <5X the RL. Qualifier Not Applicable for Radiochemistry.
- N/A RPD or %Recovery limits do not apply.
- ND Analyte concentration is not detected above the detection limit
- NJ Consult Case Narrative, Data Summary package, or Project Manager concerning this qualifier
- E General Chemistry--Concentration of the target analyte exceeds the instrument calibration range
- Q One or more quality control criteria have not been met. Refer to the applicable narrative or DER.
- N1 See case narrative
- R Per section 9.3.4.1 of Method 1664 Revision B, due to matrix spike recovery issues, this result may not be reported or used for regulatory compliance purposes.
- B The target analyte was detected in the associated blank.
- e 5-day BOD--Test replicates show more than 30% difference between high and low values. The data is qualified per the method and can be used for reporting purposes
- J See case narrative for an explanation

N/A indicates that spike recovery limits do not apply when sample concentration exceeds spike conc. by a factor of 4 or more or %RPD not applicable.

- ^ The Relative Percent Difference (RPD) obtained from the sample duplicate (DUP) is evaluated against the acceptance criteria when the sample is greater than five times (5X) the contract required detection limit (RL). In cases where either the sample or duplicate value is less than 5X the RL, a control limit of +/- the RL is used to evaluate the DUP result.
- * Indicates that a Quality Control parameter was not within specifications.

For PS, PSD, and SDILT results, the values listed are the measured amounts, not final concentrations.

Where the analytical method has been performed under NELAP certification, the analysis has met all of the requirements of the NELAC standard unless qualified on the QC Summary.

Page 8 of 13 SDG: 635742

General Chemistry Technical Case Narrative Santee Cooper SDG #: 635742

Product: Ion Chromatography Analytical Method: EPA 300.0

Analytical Procedure: GL-GC-E-086 REV# 33

Analytical Batch: 2486861

The following samples were analyzed using the above methods and analytical procedure(s).

GEL Sample ID#	Client Sample Identification
635742001	AF75783
635742002	AF75784
635742003	AF75785
635742004	AF75786
1205506677	Method Blank (MB)
1205506678	Laboratory Control Sample (LCS)
1205506681	635758008(AF71297) Sample Duplicate (DUP)
1205506682	635758008(AF71297) Post Spike (PS)

The samples in this SDG were analyzed on an "as received" basis.

Data Summary:

All sample data provided in this report met the acceptance criteria specified in the analytical methods and procedures for initial calibration, continuing calibration, instrument controls and process controls where applicable, with the following exceptions.

Technical Information

Holding Times

Samples (See Below) were received by the laboratory outside of the method specified holding time. The data is qualified.

Sample	Analyte	Value
1205506681 (AF71297DUP)		Received 01-SEP-23, out of holding 30-AUG-23
1205506682 (AF71297PS)		Received 01-SEP-23, out of holding 30-AUG-23

Sample Dilutions

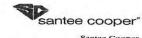
The following samples 1205506681 (AF71297DUP), 1205506682 (AF71297PS), 635742001 (AF75783), 635742002 (AF75784), 635742003 (AF75785) and 635742004 (AF75786) were diluted because target analyte concentrations exceeded the calibration range. Dilutions may be required for many reasons, including to minimize matrix interferences or to bring over range target analyte concentrations into the linear calibration range.

Amalasta	635742								
Analyte	001	002	003	004					
Chloride	50X	100X	100X	200X					

Page 9 of 13 SDG: 635742

Miscellaneous Information

Manual Integrations


Sample 635742004 (AF75786) was manually integrated to correctly position the baseline as set in the calibration standards.

Certification Statement

Where the analytical method has been performed under NELAP certification, the analysis has met all of the requirements of the NELAC standard unless otherwise noted in the analytical case narrative.

Page 10 of 13 SDG: 635742

Chain of Custody

Santee Cooper

	3 67 mer Email	니고 /Report Rec	ipient:	Date R	esults N	eeded b	y:		Pro	oject/	Task/l	Jnit #:		Phone:	loneks ((843)76 Far	Corner, 1-8000 k: (843	sc 2946 Ext. 514 ()761-417
LIND	A. WILL	AMS @sant	eecooper.con	,		,		125	915	, JM	102.0	9.GØ1.1	1 3650	∞ Yes	No		
			ccoopenion													nalysis	Group
(Internonly)	orks ID # nal use	Sample Loo Description		Collection Date	Collection Time	Sample Collector	Total # of containers	Bottle type: (Glass-G/Plastic-P)	Grab (G) or Composite (C)	Matrix(see below)	Preservative (see below)	MetlRepoMisoAny	Comr nod # orting limi a sample i other note	nfo	F, CI, SO4		
AF7	5783	WAP-27		8/23/23	1349	ZDM BB	ı	P	G	G-W	1				×		
1	84	WAP - 25	3		1109				1						×		
	85	WAP- 28	D		1114										×		
1	86	WAP-29			1235	1	1	1	1]	1				×		
Reli	nquished by:	Employe	ee# Date	Time	Rece	ived by:		mployee	#	Date	2	Time		e Receiving (Interna			
de	-W	- 3485			1	W		GEL		7/1/2	-	0847		ct pH: Yes N			
Reli	nquished by:		B OF PARTY	Time	Recei	ived by:		mployee	# /	Date		Time /		vative Lot#:			
Keli	quished by:	Employe	9-j-73 ee# Date	Time	Recei	ived by:) (O+(#	Date	20	Time					
		101-101-101-101-101-101-101-101-101-101	200-00-00-00-00-00-00-00-00-00-00-00-00-										Date/1	Fime/Init for preser	vative:		
□Ag		ETALS (al	ALL SECTION AND ADDRESS OF THE PARTY OF THE	utrients	M □ BTEX	ISC.		Gy Wallb	/psur	n		<u>Coal</u> Ultimate		Flyash	e Te	Oi	l l Qual.
□ A1	□F		01	DOC	□ Naphth	alene			sum(a	ıll		□ % Mois	ture	□ Ammonia □ LOI	《 连集	Mois Colur	
□As	□ K	A STORY OF STREET		P/TPO4 NH3-N	□ VOC			DA	IM		1	☐ Ash ☐ Sulfur	253	☐ % Carbon ☐ Mineral	711	Acidity	
□B				A CONTRACTOR	□ Oil & O			OTO	otal meta	als	M	□ BTUs		Analysis	"""想	FT	Strength
□Ba				C1 NO2	☐ Total C			□Sc	luble M	letals		☐ Volatile	Matter	☐ Sieve ☐ % Moisture		Dissolved Oi	ed Gases
□ Be				SUSSECULARIES SHOWN	□ pH □ Dissolv	red As			rity (Ca Moistur		C	ther Tests:		1.76 MOISTUIC		lashpo	
□ Ca		A CHARLES A PROPERTY		NO3	☐ Dissolv	ed Fe		□ Su	dfites		ALC: NO.	XRF Scan	as TVI	NPDES	DI	Metals	
□ Cd	No. 19 Charles	公里美国公司		804	☐ Rad 22			10 D	l dorides	K PA	0	HGI Fineness	13/3	□ Oil & Grease		Hg)	Salu Marie
□ Co	□N		and the same of th	7	□ PCB		- 1		miele Si		D	Particulate M	atter	□ As □ TSS		DEER	
□ Cr	□Р	b	VI	No and an	4-0-2	9/9/10		e Sunur	To Sale	2013		7 77 18	CTC EST		1	100	

	ent: OF			SE	G/AR/COC/Work Order: USS 14'L						
Rec	eived By: MVH				ate Received:						
	Carrier and Tracking Number				Date Received: Circle Applicable: FedEx Express FedEx Ground UPS Field Services Courier Other						
Susp	oected Hazard Information	Yes	No.	*If	Net Counts > 100cpm on samples not marked "radioactive", contact the Radiation Safety Group for further investigation.						
A)SI	nipped as a DOT Hazardous?		1	Ha	zard Class Shipped: If UN2910, Is the Radioactive Shipment Survey Compliant? Yes No						
	id the client designate the samples are to be ved as radioactive?		/	CC	OC notation or radioactive stickers on containers equal client designation.						
	id the RSO classify the samples as active?		1	Ma	ximum Net Counts Observed* (Observed Counts - Area Background Counts): CPM/ mR/Hr Classified as: Rad 1 Rad 2 Rad 3						
DV P			/	CC	C notation or hazard labels on containers equal client designation.						
J) L	id the client designate samples are hazardous?			ИI	O or E is yes, select Hazards below.						
E) D	id the RSO identify possible hazards?		_		PCB's Flammable Foreign Soil RCRA Asbestos Beryllium Other:						
	Sample Receipt Criteria	Yes	NA	No							
1	Shipping containers received intact and sealed?	-			Circle Applicable: Seals broken Damaged container Leaking container Other (describe)						
2	Chain of custody documents included with shipment?	-			Circle Applicable: Client contacted and provided COC COC created upon receipt						
3	Samples requiring cold preservation within $(0 \le 6 \text{ deg. C})$?*	/	-		Preservation Method: Wet Ice Ice Packs Dry ice None Other: *all temperatures are recorded in Celsius TEMP:						
4	Daily check performed and passed on IR temperature gun?	-			Temperature Device Serial #: IR2-21 Secondary Temperature Device Serial # (If Applicable):						
5	Sample containers intact and sealed?	/			Circle Applicable: Seals broken Damaged container Leaking container Other (describe)						
6	Samples requiring chemical preservation at proper pH?	/	X		Sample ID's and Containers Affected: NUL 9 If Preservation added, Lot#:						
7	Do any samples require Volatile Analysis?			1	If Yes, are Encores or Soil Kits present for solids? YesNoNA(If yes, take to VOA Freezer) Voliquid VOA vials contain acid preservation? YesNoNA(If unknown, select No) Are liquid VOA vials free of headspace? YesNoNA Sample ID's and containers affected:						
8	Samples received within holding time?	/			ID's and tests affected:						
9	Sample ID's on COC match ID's on bottles?	1			ID's and containers affected:						
	Date & time on COC match date & time on bottles?	1			Circle Applicable: No dates on containers No times on containers COC missing info Other (describe)						
	Number of containers received match number indicated on COC?	/			Circle Applicable: No container count on COC Other (describe)						
-	Are sample containers identifiable as GEL provided by use of GEL labels?			-							
13	COC form is properly signed in relinquished/received sections?	1			Circle Applicable: Not relinquished Other (describe)						

GL-CHL-SR-001 Rev 7

List of current GEL Certifications as of 08 September 2023

State	Certification
Alabama	42200
Alaska	17-018
Alaska Drinking Water	SC00012
Arkansas	88-0651
CLIA	42D0904046
California	2940
Colorado	SC00012
Connecticut	PH-0169
DoD ELAP/ ISO17025 A2LA	2567.01
Florida NELAP	E87156
Foreign Soils Permit	P330-15-00283, P330-15-00253
Georgia	SC00012
Georgia SDWA	967
Hawaii	SC00012
Idaho	SC00012
Illinois NELAP	200029
Indiana	C-SC-01
Kansas NELAP	E-10332
Kentucky SDWA	90129
Kentucky Wastewater	90129
Louisiana Drinking Water	LA024
Louisiana NELAP	03046 (AI33904)
Maine	2019020
Maryland	270
Massachusetts	M-SC012
Massachusetts PFAS Approv	Letter
Michigan	9976
Mississippi	SC00012
Nebraska	NE-OS-26-13
Nevada	SC000122023-4
New Hampshire NELAP	2054
New Jersey NELAP	SC002
New Mexico	SC002 SC00012
New York NELAP	11501
North Carolina	233
North Carolina SDWA	45709
North Dakota	R-158
Oklahoma	2022-160
Pennsylvania NELAP	68-00485
Pennsylvania NELAP Puerto Rico	SC00012
S. Carolina Radiochem	10120002
Sanitation Districts of L	9255651
South Carolina Chemistry	10120001
Tennessee Teves NEL A P	TN 02934
Texas NELAP	T104704235-22-20
Utah NELAP	SC000122022-37
Vermont	VT87156
Virginia NELAP	460202
Washington	C780

ANALYTICAL REPORT

PREPARED FOR

Attn: Linda Williams
South Carolina Public Service Authority
Santee Cooper
PO BOX 2946101
Moncks Corner, South Carolina 29461-2901

Generated 8/9/2023 8:43:07 AM

JOB DESCRIPTION

125915/JM02.08.G01.1/36500

JOB NUMBER

680-238535-1

Eurofins Savannah 5102 LaRoche Avenue Savannah GA 31404

Eurofins Savannah

Job Notes

This report may not be reproduced except in full, and with written approval from the laboratory. The results relate only to the samples tested. For questions please contact the Project Manager at the e-mail address or telephone number listed on this page.

The test results in this report relate only to the samples as received by the laboratory and will meet all requirements of the methodology, with any exceptions noted. This report shall not be reproduced except in full, without the express written approval of the laboratory. All questions should be directed to the Eurofins Environment Testing Southeast, LLC Project Manager.

Authorization

Generated 8/9/2023 8:43:07 AM

Authorized for release by Jerry Lanier, Project Manager I Jerry.Lanier@et.eurofinsus.com (912)250-0281

Table of Contents

Cover Page	1
Table of Contents	3
Case Narrative	4
Sample Summary	5
Method Summary	6
Definitions	7
Detection Summary	8
Client Sample Results	10
QC Sample Results	18
QC Association	21
Chronicle	23
Chain of Custody	25
Receipt Checklists	27
Certification Summary	28

3

4

6

<u>'</u>

9

10

12

13

Case Narrative

Client: South Carolina Public Service Authority Project/Site: 125915/JM02.08.G01.1/36500

Job ID: 680-238535-1

Job ID: 680-238535-1

Laboratory: Eurofins Savannah

Narrative

Job Narrative 680-238535-1

Receipt

The samples were received on 8/2/2023 10:45 AM. Unless otherwise noted below, the samples arrived in good condition, and, where required, properly preserved and on ice. The temperature of the cooler at receipt time was 4.3°C

Receipt Exceptions

The following samples were listed on the Chain of Custody (COC); however, no samples were received: AF68753 (680-238535-1), AF68759 (680-238535-2), AF68752 (680-238535-3), AF68735 (680-238535-4), AF68756 (680-238535-5), AF68758 (680-238535-6), AF68759 (680-238535-7), AF68736 (680-238535-8) and AF68754 (680-238535-9).

Sample -7 not found in cooler.

Sample 9 not listed on COC.

Metals

No additional analytical or quality issues were noted, other than those described above or in the Definitions/ Glossary page.

Sample Summary

Client: South Carolina Public Service Authority Project/Site: 125915/JM02.08.G01.1/36500

Job ID: 680-238535-1

Lab Sample ID	Client Sample ID	Matrix	Collected	Received
680-238535-1	AF68753	Water	07/06/23 13:08	08/02/23 10:45
680-238535-2	AF68759	Water	07/06/23 13:13	08/02/23 10:45
680-238535-3	AF68752	Water	07/06/23 14:09	08/02/23 10:45
680-238535-4	AF68735	Water	07/05/23 09:35	08/02/23 10:45
680-238535-5	AF68756	Water	07/05/23 11:39	08/02/23 10:45
680-238535-6	AF68758	Water	07/06/23 09:47	08/02/23 10:45
680-238535-8	AF68736	Water	07/06/23 11:21	08/02/23 10:45
680-238535-9	AF68754	Water	07/06/23 13:13	08/02/23 10:45

Δ

É

5

7

8

9

10

111

13

14

Method Summary

Client: South Carolina Public Service Authority Project/Site: 125915/JM02.08.G01.1/36500

Job ID: 680-238535-1

Method	Method Description	Protocol	Laboratory
6010D	Metals (ICP)	SW846	EET SAV
6020B	Metals (ICP/MS)	SW846	EET SAV
3005A	Preparation, Total Recoverable or Dissolved Metals	SW846	EET SAV

Protocol References:

SW846 = "Test Methods For Evaluating Solid Waste, Physical/Chemical Methods", Third Edition, November 1986 And Its Updates.

Laboratory References:

EET SAV = Eurofins Savannah, 5102 LaRoche Avenue, Savannah, GA 31404, TEL (912)354-7858

-

3

-

5

7

8

10

111

13

14

Definitions/Glossary

Client: South Carolina Public Service Authority
Project/Site: 125915/JM02.08.G01.1/36500

Job ID: 680-238535-1

Qualifiers

Metals

Qualifier Description

U Indicates the analyte was analyzed for but not detected.

Glossary

MDC

Clossary	
Abbreviation	These commonly used abbreviations may or may not be present in this report.
¤	Listed under the "D" column to designate that the result is reported on a dry weight basis
%R	Percent Recovery
CFL	Contains Free Liquid
CFU	Colony Forming Unit
CNF	Contains No Free Liquid
DER	Duplicate Error Ratio (normalized absolute difference)
Dil Fac	Dilution Factor
DL	Detection Limit (DoD/DOE)
DL, RA, RE, IN	Indicates a Dilution, Re-analysis, Re-extraction, or additional Initial metals/anion analysis of the sample
DLC	Decision Level Concentration (Radiochemistry)
EDL	Estimated Detection Limit (Dioxin)
LOD	Limit of Detection (DoD/DOE)
LOQ	Limit of Quantitation (DoD/DOE)
MCL	EPA recommended "Maximum Contaminant Level"
MDA	Minimum Detectable Activity (Radiochemistry)

MDL Method Detection Limit
ML Minimum Level (Dioxin)
MPN Most Probable Number
MQL Method Quantitation Limit

NC Not Calculated

ND Not Detected at the reporting limit (or MDL or EDL if shown)

Minimum Detectable Concentration (Radiochemistry)

NEG Negative / Absent
POS Positive / Present

PQL Practical Quantitation Limit

PRES Presumptive
QC Quality Control

RER Relative Error Ratio (Radiochemistry)

RL Reporting Limit or Requested Limit (Radiochemistry)

RPD Relative Percent Difference, a measure of the relative difference between two points

TEF Toxicity Equivalent Factor (Dioxin)
TEQ Toxicity Equivalent Quotient (Dioxin)

TNTC Too Numerous To Count

Detection Summary

Client: South Carolina Public Service Authority Project/Site: 125915/JM02.08.G01.1/36500

Client Sample ID: AF68753

Job ID: 680-238535-1

Lab	Sample	ID:	680-238535-1

Analyte Calcium	Result 90200	Qualifier	RL	MDL	Unit ug/L	Dil Fac	D —	Method 6010D	Prep Type Total
Calculii	90200		300		ug/L	'		0010D	Recoverable
Barium	38.4		5.00		ug/L	1		6020B	Total Recoverable
Iron	3330		100		ug/L	1		6020B	Total Recoverable

Client Sample ID: AF68759 Lab Sample ID: 680-238535-2

Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type
Calcium	190000		500		ug/L	1	_	6010D	Total
									Recoverable
Arsenic	4.53		3.00		ug/L	1		6020B	Total
									Recoverable
Barium	41.7		5.00		ug/L	1		6020B	Total
									Recoverable
Iron	433		100		ug/L	1		6020B	Total
									Recoverable

Client Sample ID: AF68752 Lab Sample ID: 680-238535-3

Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type
Calcium	18700		500		ug/L	1	_	6010D	Total
									Recoverable
Arsenic	10.7		3.00		ug/L	1		6020B	Total
									Recoverable
Barium	32.8		5.00		ug/L	1		6020B	Total
									Recoverable
Cobalt	0.810		0.500		ug/L	1		6020B	Total
									Recoverable
Iron	608		100		ug/L	1		6020B	Total
									Recoverable

Client Sample ID: AF68735 Lab Sample ID: 680-238535-4

Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type
Calcium	92600		500		ug/L	1	_	6010D	Total
									Recoverable
Arsenic	216		3.00		ug/L	1		6020B	Total
									Recoverable
Barium	139		5.00		ug/L	1		6020B	Total
									Recoverable
Cobalt	0.780		0.500		ug/L	1		6020B	Total
									Recoverable
Iron	1040		100		ug/L	1		6020B	Total
									Recoverable

Client Sample ID: AF68756 Lab Sample ID: 680-238535-5

Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type
Calcium	62200		500		ug/L	1	_	6010D	Total
									Recoverable
Arsenic	77.6		3.00		ug/L	1		6020B	Total
									Recoverable
Barium	33.3		5.00		ug/L	1		6020B	Total
									Recoverable
Cobalt	1.09		0.500		ug/L	1		6020B	Total
									Recoverable

This Detection Summary does not include radiochemical test results.

Eurofins Savannah

8/9/2023

Page 8 of 28

2

3

_

7

_

9

4 4

12

15

14

Detection Summary

Client: South Carolina Public Service Authority Project/Site: 125915/JM02.08.G01.1/36500

Job ID: 680-238535-1

Client Sample ID: AF68756 (Continued)	Lab Sample ID: 680-238535-5
---------------------------------------	-----------------------------

Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fa	c D	Method	Prep Type
Iron	1750		100		ug/L		- 1	6020B	Total
									Recoverable

Client Sample ID: AF68758 Lab Sample ID: 680-238535-6

Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type
Calcium	193000		500		ug/L	1	_	6010D	Total
									Recoverable
Arsenic	4.57		3.00		ug/L	1		6020B	Total
									Recoverable
Barium	41.4		5.00		ug/L	1		6020B	Total
									Recoverable
Iron	466		100		ug/L	1		6020B	Total
									Recoverable

Client Sample ID: AF68736 Lab Sample ID: 680-238535-8

Analyte	Result	Qualifier R	_ MDL	Unit	Dil Fac	D	Method	Prep Type
Calcium	639000	50)	ug/L	1	_	6010D	Total
								Recoverable
Arsenic	173	3.0)	ug/L	1		6020B	Total
								Recoverable
Barium	104	5.0)	ug/L	1		6020B	Total
								Recoverable
Cobalt	0.640	0.50)	ug/L	1		6020B	Total
								Recoverable
Iron	2750	10)	ug/L	1		6020B	Total
_								Recoverable

Client Sample ID: AF68754 Lab Sample ID: 680-238535-9

Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type
Calcium	88000		500		ug/L	1	_	6010D	Total
									Recoverable
Barium	38.4		5.00		ug/L	1		6020B	Total
									Recoverable
Iron	3320		100		ug/L	1		6020B	Total
									Recoverable

8/9/2023

9

5

7

9

10

12

Client: South Carolina Public Service Authority Project/Site: 125915/JM02.08.G01.1/36500

Lab Sample ID: 680-238535-1

.......

Job ID: 680-238535-1

Matrix: Water

Client Sample ID: AF68753

Date Collected: 07/06/23 13:08 Date Received: 08/02/23 10:45

Method: SW846 6010D - Metals (IC	P) - Total Re	coverable							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Calcium	90200		500		ug/L		08/03/23 06:38	08/04/23 17:33	1
Selenium	20.0	U	20.0		ug/L		08/03/23 06:38	08/04/23 17:33	1
_									

	20.0	· ·	20.0		ug/L		00/00/20 00:00	00/01/2017:00	
- Method: SW846 6020B -	Metals (ICP/MS) - Total	Recoverable	9						
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Antimony	5.00	U	5.00		ug/L		08/03/23 06:38	08/08/23 15:42	1
Arsenic	3.00	U	3.00		ug/L		08/03/23 06:38	08/08/23 15:42	1
Barium	38.4		5.00		ug/L		08/03/23 06:38	08/08/23 15:42	1
Beryllium	0.500	U	0.500		ug/L		08/03/23 06:38	08/08/23 15:42	1
Cadmium	0.500	U	0.500		ug/L		08/03/23 06:38	08/08/23 15:42	1
Chromium	5.00	U	5.00		ug/L		08/03/23 06:38	08/08/23 15:42	1
Cobalt	0.500	U	0.500		ug/L		08/03/23 06:38	08/08/23 15:42	1
Copper	5.00	U	5.00		ug/L		08/03/23 06:38	08/08/23 15:42	1
Iron	3330		100		ug/L		08/03/23 06:38	08/08/23 15:42	1
Lead	2.50	U	2.50		ug/L		08/03/23 06:38	08/08/23 15:42	1
Nickel	5.00	U	5.00		ug/L		08/03/23 06:38	08/08/23 15:42	1
Thallium	1.00	U	1.00		ug/L		08/03/23 06:38	08/08/23 15:42	1
Zinc	20.0	U	20.0		ug/L		08/03/23 06:38	08/08/23 15:42	1

8/9/2023

_

5

8

10

11

Client: South Carolina Public Service Authority Project/Site: 125915/JM02.08.G01.1/36500

Lab Sample ID: 680-238535-2

Matrix: Water

Job ID: 680-238535-1

Client Sample ID: AF68759 Date Collected: 07/06/23 13:13

Date Received: 08/02/23 10:45

Method: SW846 60	10D - Metals (ICP) - Total Red	overable							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Calcium	190000		500		ug/L		08/03/23 06:38	08/04/23 17:30	1
Selenium	20.0	U	20.0		ug/L		08/03/23 06:38	08/04/23 17:30	1

_					3				-
- Method: SW846 6020B -	Metals (ICP/MS) - Total	Recoverable	9						
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Antimony	5.00	U	5.00		ug/L		08/03/23 06:38	08/08/23 15:38	1
Arsenic	4.53		3.00		ug/L		08/03/23 06:38	08/08/23 15:38	1
Barium	41.7		5.00		ug/L		08/03/23 06:38	08/08/23 15:38	1
Beryllium	0.500	U	0.500		ug/L		08/03/23 06:38	08/08/23 15:38	1
Cadmium	0.500	U	0.500		ug/L		08/03/23 06:38	08/08/23 15:38	1
Chromium	5.00	U	5.00		ug/L		08/03/23 06:38	08/08/23 15:38	1
Cobalt	0.500	U	0.500		ug/L		08/03/23 06:38	08/08/23 15:38	1
Copper	5.00	U	5.00		ug/L		08/03/23 06:38	08/08/23 15:38	1
Iron	433		100		ug/L		08/03/23 06:38	08/08/23 15:38	1
Lead	2.50	U	2.50		ug/L		08/03/23 06:38	08/08/23 15:38	1
Nickel	5.00	U	5.00		ug/L		08/03/23 06:38	08/08/23 15:38	1
Thallium	1.00	U	1.00		ug/L		08/03/23 06:38	08/08/23 15:38	1
Zinc	20.0	U	20.0		ug/L		08/03/23 06:38	08/08/23 15:38	1

Client: South Carolina Public Service Authority Project/Site: 125915/JM02.08.G01.1/36500

Lab Sample ID: 680-238535-3

Matrix: Water

Job ID: 680-238535-1

Client Sample ID: AF68752

Date Collected: 07/06/23 14:09 Date Received: 08/02/23 10:45

Method: SW846 6010D - Metals (IC	P) - Total Rec	overable							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Calcium	18700		500		ug/L		08/03/23 06:38	08/04/23 17:38	1
Selenium	20.0	U	20.0		ug/L		08/03/23 06:38	08/04/23 17:38	1

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Antimony	5.00	U	5.00		ug/L		08/03/23 06:38	08/08/23 15:50	1
Arsenic	10.7		3.00		ug/L		08/03/23 06:38	08/08/23 15:50	1
Barium	32.8		5.00		ug/L		08/03/23 06:38	08/08/23 15:50	1
Beryllium	0.500	U	0.500		ug/L		08/03/23 06:38	08/08/23 15:50	1
Cadmium	0.500	U	0.500		ug/L		08/03/23 06:38	08/08/23 15:50	1
Chromium	5.00	U	5.00		ug/L		08/03/23 06:38	08/08/23 15:50	1
Cobalt	0.810		0.500		ug/L		08/03/23 06:38	08/08/23 15:50	1
Copper	5.00	U	5.00		ug/L		08/03/23 06:38	08/08/23 15:50	1
Iron	608		100		ug/L		08/03/23 06:38	08/08/23 15:50	1
Lead	2.50	U	2.50		ug/L		08/03/23 06:38	08/08/23 15:50	1
Nickel	5.00	U	5.00		ug/L		08/03/23 06:38	08/08/23 15:50	1
Thallium	1.00	U	1.00		ug/L		08/03/23 06:38	08/08/23 15:50	1
Zinc	20.0	U	20.0		ug/L		08/03/23 06:38	08/08/23 15:50	1

Client: South Carolina Public Service Authority Project/Site: 125915/JM02.08.G01.1/36500

Lab Sample ID: 680-238535-4

Matrix: Water

Job ID: 680-238535-1

Client Sample ID: AF68735 Date Collected: 07/05/23 09:35

Date Received: 08/02/23 10:45

Method: SW846 6010D - Metals (ICF	P) - Total Red	coverable							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Calcium	92600		500		ug/L		08/07/23 12:18	08/08/23 14:06	1
Selenium	20.0	U	20.0		ug/L		08/07/23 12:18	08/08/23 14:06	1

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Antimony	5.00	U	5.00		ug/L		08/07/23 12:18	08/08/23 20:45	1
Arsenic	216		3.00		ug/L		08/07/23 12:18	08/08/23 20:45	1
Barium	139		5.00		ug/L		08/07/23 12:18	08/08/23 20:45	1
Beryllium	0.500	U	0.500		ug/L		08/07/23 12:18	08/08/23 20:45	1
Cadmium	0.500	U	0.500		ug/L		08/07/23 12:18	08/08/23 20:45	1
Chromium	5.00	U	5.00		ug/L		08/07/23 12:18	08/08/23 20:45	1
Cobalt	0.780		0.500		ug/L		08/07/23 12:18	08/08/23 20:45	1
Copper	5.00	U	5.00		ug/L		08/07/23 12:18	08/08/23 20:45	1
Iron	1040		100		ug/L		08/07/23 12:18	08/08/23 20:45	1
Lead	2.50	U	2.50		ug/L		08/07/23 12:18	08/08/23 20:45	1
Nickel	5.00	U	5.00		ug/L		08/07/23 12:18	08/08/23 20:45	1
Thallium	1.00	U	1.00		ug/L		08/07/23 12:18	08/08/23 20:45	1
Zinc	20.0	U	20.0		ug/L		08/07/23 12:18	08/08/23 20:45	1

2

5

7

8

9

10

12

Client: South Carolina Public Service Authority Project/Site: 125915/JM02.08.G01.1/36500

Lab Sample ID: 680-238535-5

Matrix: Water

Job ID: 680-238535-1

Client Sample ID: AF68756 Date Collected: 07/05/23 11:39

Date Received: 08/02/23 10:45

Method: SW846 6010D - Metals (I	CP) - Total Red	coverable							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Calcium	62200		500		ug/L		08/07/23 12:18	08/08/23 14:04	1
Selenium	20.0	U	20.0		ug/L		08/07/23 12:18	08/08/23 14:04	1
_									

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Antimony	5.00	U	5.00		ug/L		08/07/23 12:18	08/08/23 20:41	1
Arsenic	77.6		3.00		ug/L		08/07/23 12:18	08/08/23 20:41	1
Barium	33.3		5.00		ug/L		08/07/23 12:18	08/08/23 20:41	1
Beryllium	0.500	U	0.500		ug/L		08/07/23 12:18	08/08/23 20:41	1
Cadmium	0.500	U	0.500		ug/L		08/07/23 12:18	08/08/23 20:41	1
Chromium	5.00	U	5.00		ug/L		08/07/23 12:18	08/08/23 20:41	1
Cobalt	1.09		0.500		ug/L		08/07/23 12:18	08/08/23 20:41	1
Copper	5.00	U	5.00		ug/L		08/07/23 12:18	08/08/23 20:41	1
Iron	1750		100		ug/L		08/07/23 12:18	08/08/23 20:41	1
Lead	2.50	U	2.50		ug/L		08/07/23 12:18	08/08/23 20:41	1
Nickel	5.00	U	5.00		ug/L		08/07/23 12:18	08/08/23 20:41	1
Thallium	1.00	U	1.00		ug/L		08/07/23 12:18	08/08/23 20:41	1
Zinc	20.0	U	20.0		ua/L		08/07/23 12:18	08/08/23 20:41	1

Client: South Carolina Public Service Authority Project/Site: 125915/JM02.08.G01.1/36500

Client Sample ID: AF68758 Lab Sample ID: 680-238535-6

Date Collected: 07/06/23 09:47 Matrix: Water

Date Received: 08/02/23 10:45

Method: SW846 6010D - Metals (ICF	P) - Total Re	coverable							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Calcium	193000		500		ug/L		08/03/23 06:38	08/04/23 17:43	1
Selenium	20.0	U	20.0		ug/L		08/03/23 06:38	08/04/23 17:43	1
_									

-	20.0	U	20.0		ug/L		00/03/23 00.30	00/04/23 17.43	i
- Method: SW846 6020B -	· Metals (ICP/MS) - Total	Recoverable	9						
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Antimony	5.00	U	5.00		ug/L		08/03/23 06:38	08/08/23 15:54	1
Arsenic	4.57		3.00		ug/L		08/03/23 06:38	08/08/23 15:54	1
Barium	41.4		5.00		ug/L		08/03/23 06:38	08/08/23 15:54	1
Beryllium	0.500	U	0.500		ug/L		08/03/23 06:38	08/08/23 15:54	1
Cadmium	0.500	U	0.500		ug/L		08/03/23 06:38	08/08/23 15:54	1
Chromium	5.00	U	5.00		ug/L		08/03/23 06:38	08/08/23 15:54	1
Cobalt	0.500	U	0.500		ug/L		08/03/23 06:38	08/08/23 15:54	1
Copper	5.00	U	5.00		ug/L		08/03/23 06:38	08/08/23 15:54	1
Iron	466		100		ug/L		08/03/23 06:38	08/08/23 15:54	1
Lead	2.50	U	2.50		ug/L		08/03/23 06:38	08/08/23 15:54	1
Nickel	5.00	U	5.00		ug/L		08/03/23 06:38	08/08/23 15:54	1
Thallium	1.00	U	1.00		ug/L		08/03/23 06:38	08/08/23 15:54	1
Zinc	20.0	U	20.0		ug/L		08/03/23 06:38	08/08/23 15:54	1

Job ID: 680-238535-1

9

10

12

Client: South Carolina Public Service Authority Project/Site: 125915/JM02.08.G01.1/36500

Matrix: Water

Job ID: 680-238535-1

Lab Sample ID: 680-238535-8

Date Collected: 07/06/23 11:21 Date Received: 08/02/23 10:45

Client Sample ID: AF68736

Method: SW846 6010D - Metals (ICI	P) - Total Red	coverable							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Calcium	639000		500		ug/L		08/03/23 06:38	08/04/23 17:55	1
Selenium	20.0	U	20.0		ug/L		08/03/23 06:38	08/04/23 17:55	1

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Antimony	5.00	U	5.00		ug/L		08/03/23 06:38	08/08/23 16:02	1
Arsenic	173		3.00		ug/L		08/03/23 06:38	08/08/23 16:02	1
Barium	104		5.00		ug/L		08/03/23 06:38	08/08/23 16:02	1
Beryllium	0.500	U	0.500		ug/L		08/03/23 06:38	08/08/23 16:02	1
Cadmium	0.500	U	0.500		ug/L		08/03/23 06:38	08/08/23 16:02	1
Chromium	5.00	U	5.00		ug/L		08/03/23 06:38	08/08/23 16:02	1
Cobalt	0.640		0.500		ug/L		08/03/23 06:38	08/08/23 16:02	1
Copper	5.00	U	5.00		ug/L		08/03/23 06:38	08/08/23 16:02	1
Iron	2750		100		ug/L		08/03/23 06:38	08/08/23 16:02	1
Lead	2.50	U	2.50		ug/L		08/03/23 06:38	08/08/23 16:02	1
Nickel	5.00	U	5.00		ug/L		08/03/23 06:38	08/08/23 16:02	1
Thallium	1.00	U	1.00		ug/L		08/03/23 06:38	08/08/23 16:02	1
Zinc	20.0	U	20.0		ug/L		08/03/23 06:38	08/08/23 16:02	1

_

4

5

9

10

12

Client: South Carolina Public Service Authority Project/Site: 125915/JM02.08.G01.1/36500

Lab Sample ID: 680-238535-9

Matrix: Water

Job ID: 680-238535-1

Client Sample ID: AF68754

Date Collected: 07/06/23 13:13 Date Received: 08/02/23 10:45

Method: SW846 6010D - Metals (ICF) - Total Red	coverable							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Calcium	88000		500		ug/L		08/03/23 06:38	08/04/23 17:35	1
Selenium 	20.0	U	20.0		ug/L		08/03/23 06:38	08/04/23 17:35	1

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Antimony	5.00	U	5.00		ug/L		08/03/23 06:38	08/08/23 15:46	1
Arsenic	3.00	U	3.00		ug/L		08/03/23 06:38	08/08/23 15:46	1
Barium	38.4		5.00		ug/L		08/03/23 06:38	08/08/23 15:46	1
Beryllium	0.500	U	0.500		ug/L		08/03/23 06:38	08/08/23 15:46	1
Cadmium	0.500	U	0.500		ug/L		08/03/23 06:38	08/08/23 15:46	1
Chromium	5.00	U	5.00		ug/L		08/03/23 06:38	08/08/23 15:46	1
Cobalt	0.500	U	0.500		ug/L		08/03/23 06:38	08/08/23 15:46	1
Copper	5.00	U	5.00		ug/L		08/03/23 06:38	08/08/23 15:46	1
Iron	3320		100		ug/L		08/03/23 06:38	08/08/23 15:46	1
Lead	2.50	U	2.50		ug/L		08/03/23 06:38	08/08/23 15:46	1
Nickel	5.00	U	5.00		ug/L		08/03/23 06:38	08/08/23 15:46	1
Thallium	1.00	U	1.00		ug/L		08/03/23 06:38	08/08/23 15:46	1
Zinc	20.0	U	20.0		ug/L		08/03/23 06:38	08/08/23 15:46	1

Job ID: 680-238535-1

Client: South Carolina Public Service Authority Project/Site: 125915/JM02.08.G01.1/36500

Method: 6010D - Metals (ICP)

Lab Sample ID: MB 680-791519/1-A

Matrix: Water

Analysis Batch: 791897

Client Sample ID: Method Blank Prep Type: Total Recoverable

Prep Batch: 791519

мв мв

Dil Fac Analyte Result Qualifier RL MDL Unit D Prepared Analyzed Calcium 500 U 500 ug/L 08/03/23 06:38 08/04/23 16:50 Selenium 20.0 U 20.0 ug/L 08/03/23 06:38 08/04/23 16:50

> Client Sample ID: Lab Control Sample **Prep Type: Total Recoverable**

Prep Batch: 791519

Lab Sample ID: LCS 680-791519/2-A Matrix: Water

Analysis Batch: 791897

	Spike	LCS	LCS			%Rec	
Analyte	Added	Result	Qualifier Unit	D	%Rec	Limits	
Calcium	5000	4801	ug/L		96	80 - 120	
Selenium	100	99.73	ug/L		100	80 - 120	

Lab Sample ID: MB 680-792124/1-A

Matrix: Water

Analysis Batch: 792466

Client Sample ID: Method Blank Prep Type: Total Recoverable

Prep Batch: 792124

MB MB

Analyte	Result	Qualifier	RL	MDL U	Jnit	C)	Prepared	Analyzed	Dil Fac
Calcium	500	U	500	u	ıg/L			08/07/23 12:18	08/08/23 13:37	1
Selenium	20.0	U	20.0	u	ıg/L			08/07/23 12:18	08/08/23 13:37	1

Lab Sample ID: LCS 680-792124/2-A

Matrix: Water

Analysis Batch: 792466

Client Sample ID: Lab Control Sample Prep Type: Total Recoverable

Prep Batch: 792124

Spike LCS LCS Analyte Added Result Qualifier Limits Unit %Rec Calcium 5000 4954 ug/L 99 80 - 120 Selenium 100 93.06 ug/L 93 80 - 120

Method: 6020B - Metals (ICP/MS)

Lab Sample ID: MB 680-791518/1-A

Matrix: Water

Analysis Batch: 792490

Client Sample ID: Method Blank **Prep Type: Total Recoverable**

Prep Batch: 791518

	MB	MB							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Antimony	5.00	U	5.00		ug/L		08/03/23 06:38	08/08/23 14:41	1
Arsenic	3.00	U	3.00		ug/L		08/03/23 06:38	08/08/23 14:41	1
Barium	5.00	U	5.00		ug/L		08/03/23 06:38	08/08/23 14:41	1
Beryllium	0.500	U	0.500		ug/L		08/03/23 06:38	08/08/23 14:41	1
Cadmium	0.500	U	0.500		ug/L		08/03/23 06:38	08/08/23 14:41	1
Chromium	5.00	U	5.00		ug/L		08/03/23 06:38	08/08/23 14:41	1
Cobalt	0.500	U	0.500		ug/L		08/03/23 06:38	08/08/23 14:41	1
Copper	5.00	U	5.00		ug/L		08/03/23 06:38	08/08/23 14:41	1
Iron	100	U	100		ug/L		08/03/23 06:38	08/08/23 14:41	1
Lead	2.50	U	2.50		ug/L		08/03/23 06:38	08/08/23 14:41	1
Nickel	5.00	U	5.00		ug/L		08/03/23 06:38	08/08/23 14:41	1
Thallium	1.00	U	1.00		ug/L		08/03/23 06:38	08/08/23 14:41	1
Zinc	20.0	U	20.0		ug/L		08/03/23 06:38	08/08/23 14:41	1

Eurofins Savannah

Job ID: 680-238535-1

Client: South Carolina Public Service Authority Project/Site: 125915/JM02.08.G01.1/36500

Zinc

Method: 6020B - Metals (ICP/MS) (Continued)

Lab Sample ID: LCS 680-791518/2-A	Client Sample ID: Lab Control Sample
Matrix: Water	Prep Type: Total Recoverable
Analysis Batch: 792490	Prep Batch: 791518

	Spike	LCS	LCS				%Rec	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Antimony	50.0	46.52		ug/L		93	80 - 120	
Arsenic	100	97.80		ug/L		98	80 - 120	
Barium	100	95.86		ug/L		96	80 - 120	
Beryllium	50.0	48.56		ug/L		97	80 - 120	
Cadmium	50.0	46.20		ug/L		92	80 - 120	
Chromium	100	100.4		ug/L		100	80 - 120	
Cobalt	50.0	47.54		ug/L		95	80 - 120	
Copper	100	102.8		ug/L		103	80 - 120	
Iron	4990	5052		ug/L		101	80 - 120	
Lead	500	485.1		ug/L		97	80 - 120	
Nickel	100	98.89		ug/L		99	80 - 120	
Thallium	50.0	46.82		ug/L		94	80 - 120	
Zinc	100	101.9		ug/L		102	80 - 120	

Lab Sample ID: MB 680-792127/1-A Client Sample ID: Method Blank Matrix: Water Prep Type: Total Recoverable Analysis Batch: 792446 Prep Batch: 792127

MB MB Result Qualifier MDL Dil Fac Analyte RL Unit D Prepared Analyzed 5.00 U 5.00 Antimony ug/L 08/07/23 12:18 08/08/23 19:49 Arsenic 3.00 U 3.00 ug/L 08/07/23 12:18 08/08/23 19:49 5.00 ug/L Barium 5.00 U 08/07/23 12:18 08/08/23 19:49 Beryllium 0.500 U 0.500 ug/L 08/07/23 12:18 08/08/23 19:49 Cadmium 0.500 U 0.500 08/08/23 19:49 ug/L 08/07/23 12:18 Chromium 5.00 U 5.00 ug/L 08/07/23 12:18 08/08/23 19:49 Cobalt 0.500 U 0.500 08/07/23 12:18 08/08/23 19:49 ug/L Copper 5.00 U 5.00 ug/L 08/07/23 12:18 08/08/23 19:49 Iron 100 U 100 ug/L 08/07/23 12:18 08/08/23 19:49 Lead 2.50 U 2.50 ug/L 08/07/23 12:18 08/08/23 19:49 5.00 U Nickel 5.00 ug/L 08/07/23 12:18 08/08/23 19:49 Thallium 1.00 U 1.00 ug/L 08/07/23 12:18 08/08/23 19:49

Lab Sample ID: LCS 680-792127/2-A	Client Sample ID: Lab Control Sample
Matrix: Water	Prep Type: Total Recoverable
Analysis Batch: 792446	Prep Batch: 792127

20.0

ug/L

08/07/23 12:18

08/08/23 19:49

20.0 U

Analysis Batch: /92446							Prep Bato	cn: /9212/
	Spike	LCS	LCS				%Rec	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Antimony	50.0	45.43		ug/L		91	80 - 120	
Arsenic	100	96.81		ug/L		97	80 - 120	
Barium	100	94.51		ug/L		95	80 - 120	
Beryllium	50.0	47.73		ug/L		95	80 - 120	
Cadmium	50.0	45.92		ug/L		92	80 - 120	
Chromium	100	96.26		ug/L		96	80 - 120	
Cobalt	50.0	45.66		ug/L		91	80 - 120	
Copper	100	98.43		ug/L		98	80 - 120	
Iron	4990	4813		ug/L		96	80 - 120	
Lead	500	453.3		ug/L		91	80 - 120	
Nickel	100	96.32		ug/L		96	80 - 120	

Page 19 of 28

Eurofins Savannah

QC Sample Results

Client: South Carolina Public Service Authority Project/Site: 125915/JM02.08.G01.1/36500

Job ID: 680-238535-1

Method: 6020B - Metals (ICP/MS) (Continued)

	Lab Sample ID: LCS 680-792127/2-A			Client Sample ID: Lab Control Sample
	Matrix: Water			Prep Type: Total Recoverable
	Analysis Batch: 792446			Prep Batch: 792127
ı		Spike	LCS LCS	%Rec

П	· · · · · · · · · · · · · · · · · · ·								
		Spike	LCS	LCS				%Rec	
	Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
	Thallium	50.0	44.90		ug/L		90	80 - 120	
ĺ	Zinc	100	97.52		ua/L		98	80 - 120	

A

i

e 6

9

10

12

13

QC Association Summary

Client: South Carolina Public Service Authority Project/Site: 125915/JM02.08.G01.1/36500

Job ID: 680-238535-1

Metals

Prep Batch: 791518

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
680-238535-1	AF68753	Total Recoverable	Water	3005A	
680-238535-2	AF68759	Total Recoverable	Water	3005A	
680-238535-3	AF68752	Total Recoverable	Water	3005A	
680-238535-6	AF68758	Total Recoverable	Water	3005A	
680-238535-8	AF68736	Total Recoverable	Water	3005A	
680-238535-9	AF68754	Total Recoverable	Water	3005A	
MB 680-791518/1-A	Method Blank	Total Recoverable	Water	3005A	
LCS 680-791518/2-A	Lab Control Sample	Total Recoverable	Water	3005A	

Prep Batch: 791519

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
680-238535-1	AF68753	Total Recoverable	Water	3005A	<u> </u>
680-238535-2	AF68759	Total Recoverable	Water	3005A	
680-238535-3	AF68752	Total Recoverable	Water	3005A	
680-238535-6	AF68758	Total Recoverable	Water	3005A	
680-238535-8	AF68736	Total Recoverable	Water	3005A	
680-238535-9	AF68754	Total Recoverable	Water	3005A	
MB 680-791519/1-A	Method Blank	Total Recoverable	Water	3005A	
LCS 680-791519/2-A	Lab Control Sample	Total Recoverable	Water	3005A	

Analysis Batch: 791897

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
680-238535-1	AF68753	Total Recoverable	Water	6010D	791519
680-238535-2	AF68759	Total Recoverable	Water	6010D	791519
680-238535-3	AF68752	Total Recoverable	Water	6010D	791519
680-238535-6	AF68758	Total Recoverable	Water	6010D	791519
680-238535-8	AF68736	Total Recoverable	Water	6010D	791519
680-238535-9	AF68754	Total Recoverable	Water	6010D	791519
MB 680-791519/1-A	Method Blank	Total Recoverable	Water	6010D	791519
LCS 680-791519/2-A	Lab Control Sample	Total Recoverable	Water	6010D	791519

Prep Batch: 792124

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
680-238535-4	AF68735	Total Recoverable	Water	3005A	
680-238535-5	AF68756	Total Recoverable	Water	3005A	
MB 680-792124/1-A	Method Blank	Total Recoverable	Water	3005A	
LCS 680-792124/2-A	Lab Control Sample	Total Recoverable	Water	3005A	

Prep Batch: 792127

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
680-238535-4	AF68735	Total Recoverable	Water	3005A	
680-238535-5	AF68756	Total Recoverable	Water	3005A	
MB 680-792127/1-A	Method Blank	Total Recoverable	Water	3005A	
LCS 680-792127/2-A	Lab Control Sample	Total Recoverable	Water	3005A	

Analysis Batch: 792446

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
680-238535-4	AF68735	Total Recoverable	Water	6020B	792127
680-238535-5	AF68756	Total Recoverable	Water	6020B	792127
MB 680-792127/1-A	Method Blank	Total Recoverable	Water	6020B	792127
LCS 680-792127/2-A	Lab Control Sample	Total Recoverable	Water	6020B	792127

Eurofins Savannah

Page 21 of 28

8/9/2023

QC Association Summary

Client: South Carolina Public Service Authority Project/Site: 125915/JM02.08.G01.1/36500

Job ID: 680-238535-1

Metals

Analysis Batch: 792466

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
680-238535-4	AF68735	Total Recoverable	Water	6010D	792124
680-238535-5	AF68756	Total Recoverable	Water	6010D	792124
MB 680-792124/1-A	Method Blank	Total Recoverable	Water	6010D	792124
LCS 680-792124/2-A	Lab Control Sample	Total Recoverable	Water	6010D	792124

Analysis Batch: 792490

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
680-238535-1	AF68753	Total Recoverable	Water	6020B	791518
680-238535-2	AF68759	Total Recoverable	Water	6020B	791518
680-238535-3	AF68752	Total Recoverable	Water	6020B	791518
680-238535-6	AF68758	Total Recoverable	Water	6020B	791518
680-238535-8	AF68736	Total Recoverable	Water	6020B	791518
680-238535-9	AF68754	Total Recoverable	Water	6020B	791518
MB 680-791518/1-A	Method Blank	Total Recoverable	Water	6020B	791518
LCS 680-791518/2-A	Lab Control Sample	Total Recoverable	Water	6020B	791518

Job ID: 680-238535-1

Client: South Carolina Public Service Authority Project/Site: 125915/JM02.08.G01.1/36500

Client Sample ID: AF68753

Lab Sample ID: 680-238535-1 Date Collected: 07/06/23 13:08

Matrix: Water

Date Received: 08/02/23 10:45

	Batch	Batch		Dilution	Batch			Prepared
Prep Type	Туре	Method	Run	Factor	Number	Analyst	Lab	or Analyzed
Total Recoverable	Prep	3005A			791519	RR	EET SAV	08/03/23 06:38
Total Recoverable	Analysis	6010D		1	791897	BJB	EET SAV	08/04/23 17:33
Total Recoverable	Prep	3005A			791518	RR	EET SAV	08/03/23 06:38
Total Recoverable	Analysis	6020B		1	792490	BWR	EET SAV	08/08/23 15:42

Client Sample ID: AF68759

Lab Sample ID: 680-238535-2 Date Collected: 07/06/23 13:13

Matrix: Water

Date Received: 08/02/23 10:45

	Batch	Batch		Dilution	Batch			Prepared
Prep Type	Туре	Method	Run	Factor	Number	Analyst	Lab	or Analyzed
Total Recoverable	Prep	3005A			791519	RR	EET SAV	08/03/23 06:38
Total Recoverable	Analysis	6010D		1	791897	BJB	EET SAV	08/04/23 17:30
Total Recoverable	Prep	3005A			791518	RR	EET SAV	08/03/23 06:38
Total Recoverable	Analysis	6020B		1	792490	BWR	EET SAV	08/08/23 15:38

Client Sample ID: AF68752

Lab Sample ID: 680-238535-3 Date Collected: 07/06/23 14:09

Matrix: Water

Date Received: 08/02/23 10:45

Batch Batch Dilution Batch Prepared Method or Analyzed **Prep Type** Туре Run Factor **Number Analyst** Lab Total Recoverable Prep 3005A 791519 RR EET SAV 08/03/23 06:38 6010D 08/04/23 17:38 Total Recoverable Analysis 791897 BJB **EET SAV** Total Recoverable Prep 3005A 791518 RR EET SAV 08/03/23 06:38 792490 BWR 08/08/23 15:50 Total Recoverable Analysis 6020B **EET SAV** 1

Client Sample ID: AF68735

Lab Sample ID: 680-238535-4 Date Collected: 07/05/23 09:35 Matrix: Water

Date Received: 08/02/23 10:45

	Batch	Batch		Dilution	Batch			Prepared
Prep Type	Туре	Method	Run	Factor	Number	Analyst	Lab	or Analyzed
Total Recoverable	Prep	3005A			792124	RR	EET SAV	08/07/23 12:18
Total Recoverable	Analysis	6010D		1	792466	BJB	EET SAV	08/08/23 14:06
Total Recoverable	Prep	3005A			792127	RR	EET SAV	08/07/23 12:18
Total Recoverable	Analysis	6020B		1	792446	BWR	EET SAV	08/08/23 20:45

Lab Sample ID: 680-238535-5 Client Sample ID: AF68756

Date Collected: 07/05/23 11:39 Matrix: Water

Date Received: 08/02/23 10:45

	Batch	Batch		Dilution	Batch			Prepared
Prep Type	Type	Method	Run	Factor	Number	Analyst	Lab	or Analyzed
Total Recoverable	Prep	3005A			792124	RR	EET SAV	08/07/23 12:18
Total Recoverable	Analysis	6010D		1	792466	BJB	EET SAV	08/08/23 14:04
Total Recoverable	Prep	3005A			792127	RR	EET SAV	08/07/23 12:18
Total Recoverable	Analysis	6020B		1	792446	BWR	EET SAV	08/08/23 20:41

Eurofins Savannah

Page 23 of 28

Lab Chronicle

Client: South Carolina Public Service Authority Project/Site: 125915/JM02.08.G01.1/36500

Lab Sample ID: 680-238535-6

ipic ib: 000 200000 0

Job ID: 680-238535-1

Matrix: Water

Client Sample ID: AF68758 Date Collected: 07/06/23 09:47

Date Received: 08/02/23 10:45

Client Sample ID: AF68736

Date Collected: 07/06/23 11:21

Date Received: 08/02/23 10:45

	Batch	Batch		Dilution	Batch			Prepared
Prep Type	Туре	Method	Run	Factor	Number	Analyst	Lab	or Analyzed
Total Recoverable	Prep	3005A			791519	RR	EET SAV	08/03/23 06:38
Total Recoverable	Analysis	6010D		1	791897	BJB	EET SAV	08/04/23 17:43
Total Recoverable	Prep	3005A			791518	RR	EET SAV	08/03/23 06:38
Total Recoverable	Analysis	6020B		1	792490	BWR	EET SAV	08/08/23 15:54

Lab Sample ID: 680-238535-8

ab Sample ID. 000-230333-0

Matrix: Water

Batch Batch Dilution Batch Prepared **Prep Type** Туре Method Run Factor **Number Analyst** Lab or Analyzed Total Recoverable 3005A 791519 RR EET SAV 08/03/23 06:38 Prep 6010D Total Recoverable Analysis 791897 BJB 08/04/23 17:55 **EET SAV** Total Recoverable Prep 3005A 791518 RR **EET SAV** 08/03/23 06:38 08/08/23 16:02 Total Recoverable Analysis 6020B 792490 BWR **EET SAV** 1

Client Sample ID: AF68754 Lab Sample ID: 680-238535-9

Date Collected: 07/06/23 13:13 Matrix: Water

Date Received: 08/02/23 10:45

	Batch	Batch		Dilution	Batch			Prepared
Prep Type	Type	Method	Run	Factor	Number	Analyst	Lab	or Analyzed
Total Recoverable	Prep	3005A			791519	RR	EET SAV	08/03/23 06:38
Total Recoverable	Analysis	6010D		1	791897	BJB	EET SAV	08/04/23 17:35
Total Recoverable	Prep	3005A			791518	RR	EET SAV	08/03/23 06:38
Total Recoverable	Analysis	6020B		1	792490	BWR	EET SAV	08/08/23 15:46

Laboratory References:

EET SAV = Eurofins Savannah, 5102 LaRoche Avenue, Savannah, GA 31404, TEL (912)354-7858

4

5

0

8

10

11

13

Chain of Custody

Santee Cooper One Riverwood Drive Moneks Corner, SC 29461 Phone (843)761-8000 Ext. 5148 Fax (843)761-4175

Customer Email/Report Recipient: Date Results Needed by: Project/Task/Unit #: Rerun request for any flagged QC LCWILLIA 125915 / JM02.08. G-Ø1.1/ 36500 @santeecooper.com (Yes No **Analysis Group** Labworks ID# Sample Location/ Comments SAU METALS BELOW Collection Time Matrix(see below) Collection Date Preservative (see below) (Internal use Description Total # of containers (Glass Collecto Method # only) Reporting limit Bottle type: ((G/Plastic-P) Grab (G) or Composite (Misc sample info Sample (TOTAL SEE Any other notes WJK 7/6/23 2 P G GW AF68753 WLF-A1-4 1308 6020 X - SEE SHEET FOR RLS WLF-AI-4 DUP 1313 AF68759 A+68752 WLF-A1-3 1409 7/5/23 AF 68735 0935 WAP-18 PLEASE RETURN UPON COMPLETION. AF-68756 WLF-A2-1 1139 WLF - AZ-6 7/6/23 AF68758 1490 AF68759 WLF-A2-6 DUP 0952 AF68736 WAP-19 1121 680-238535 Chain of Custody Sample Receiving (Internal Use Only) Relinquished by: Employee# Date Time Received by: Employee # Date Time TEMP (°C):4 2/4 | Initial: HODEL 35594 8/2/23 0756 6756 Maroun COURIER 8/2/23 Correct pH: Yes Relinquished by: Employee# Time Received by: Employee # Date Time Preservative Lot#: M EHOGGE Relinquished by: Councr 812123 (644 8.2-23 1045 Employee# Time Received by: Date Employee # Date Time Date/Time/init for preservative: ☐ METALS (all) **Nutrients** MISC. Gypsum Coal Oil Flyash □ Ag Z Cu □ TOC □ BTEX □ Wallboard ☐ Ultimate ☐ Ammonia Trans. Oll Qual. ℤ Se √ Fe □ DOC ☐ Naphthalene 3 %Moisture Gypsum(all □ % Moisture □ LOI Ø As $\square K$ □ Sn ☐ THM/HAA Color ☐ TP/TPO4 below) □ Ash ☐ % Carbon □ VOC Acidity □ AIM □ NH3-N □В ☐ Sulfur □ Li □ Sr ☐ Mineral Dielectric Strength ☐ Oil & Grease O TOC OF □ BTUs Analysis ☑ Ba 🛮 Ti □ E. Coli ☐ Total metals O CI ☐ Volatile Matter Dissolved Gases ☐ Total Coliform □ Sieve ☐ Soluble Metals ☑ Be □ Mn Z TI FI NO2 □рН □ CHN ☐ % Moisture Used Oil ☐ Purity (CaSO4) Flashpoint Metals in oil (As.Cd.Cr.Ni.Pb O Br ☐ Dissolved As Other Tests: √Ca □ Mo $\Box V$ ☐ % Moisture ☐ Dissolved Fe □ NO3 ☐ Sulfites □ XRF Scan **NPDES** A Cd □ Na ℤ Zn □ Rad 226 □pH □ HGI □ SO4 Oil & Grease Hg) ☐ Rad 228 ☐ Chlorides ☐ Fineness Ø Ni Z Co □Hg □ As □ РСВ · TX ☐ Particulate Matter ☐ Particle Size □ TSS Ø Cr Ø Pb □ CrVI GOFER ☐ Suffer

Chain of Custody

santee cooper*

Customer Email/Report Recipient: Date Results Needed by: Project/Task/Unit #: Rerun request for any flagged QC LCWILLIA 125915 / JM02.08. G-81.1/ 36500 @santeecooper.com (Yes No **Analysis Group** Labworks ID# Sample Location/ Comments BELOW Matrix(see below) Preservative (see below) (internal use Description **Collection Date** Collection Time Collector Method # only) Total # of contail Grab (G) or Composite (C) Reporting limit Misc sample info JEE I Any other notes WLF-AI-4 7/6/23 P 2 AF68753 GW 1308 G 6020 X AF68754 9 - SEE SHEET FOR RLS AF68759 WLF-A-1-4 DUP 1313 A+68752 Mrt-41-3 1409 7/5/23 AF 68735 0935 WAP-18 PLEASE RETURN UPON COMPLETION. WLF-42-1 AF-68756 1139 WLF - A2-6 AF68758 7/6/23 1490 AF68759 WLF-A2-6 DUP 0952 AF68736 WAP-19 1121 680-238535 Chain of Custody Relinguished by: Sample Receiving (Internal Use Only) Received by: Employee# Date Time Employee # Date Time TEMP (°C):42 Hodge Initial: Sylproun 35594 8/2/23 0756 COURIER 8/2/23 0756 Correct pH: Yes Relinquished by: **Employee#** Date Received by: Employee# Date Time EHOOGE Preservative Lot#: Councr 8/2/23 8.2-23 (644 M 1045 Relinquished by: **Employee#** Time Date Received by: Employee # Date Time Date/Time/init for preservative: ☐ METALS (all) Nutrients MISC. DAg Z Sb A Cu DITOC LI BTEX O Olderife DAL Z Fe n doc ⊇ tp/tp04 U Naphthalene G & Meisture LICI Z As DK □ Sp O THM/HAA DAN O'% Calbo □ VOC UB O NH3-N ūLi D Sr D Sulfur □ Oil & Grease Z Ba BTUS D Mg DTi DE Coli 位的 (1) Total Coliform D Volatile Matter ØBe Z TI D Mn UpH O CHN Dissolved As D'Ca □ Mo DV Other Tests: EI NOS ☐ Dissolved Fe DXRF Scan ZÍ Cđ Zn O Na D Rad 226 UHG 1304 17.00 de Obeau D Rad 228 O Fineness d Co ØNi □Hg O PCB D'Particulate Matter Z Cr **☑**Pb □ CrVI

Login Sample Receipt Checklist

Client: South Carolina Public Service Authority

Job Number: 680-238535-1

Login Number: 238535 List Source: Eurofins Savannah

List Number: 1

Creator: Sims, Robert D

Question	Answer	Comment
Radioactivity wasn't checked or is = background as measured by a survey meter.</td <td>N/A</td> <td></td>	N/A	
The cooler's custody seal, if present, is intact.	True	
Sample custody seals, if present, are intact.	True	
The cooler or samples do not appear to have been compromised or tampered with.	True	
Samples were received on ice.	True	
Cooler Temperature is acceptable.	True	
Cooler Temperature is recorded.	True	
COC is present.	True	
COC is filled out in ink and legible.	True	
COC is filled out with all pertinent information.	True	
Is the Field Sampler's name present on COC?	True	
There are no discrepancies between the containers received and the COC.	False	Refer to Job Narrative for details.
Samples are received within Holding Time (excluding tests with immediate HTs)	True	
Sample containers have legible labels.	True	
Containers are not broken or leaking.	True	
Sample collection date/times are provided.	True	
Appropriate sample containers are used.	True	
Sample bottles are completely filled.	True	
Sample Preservation Verified.	N/A	
There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs	True	
Containers requiring zero headspace have no headspace or bubble is <6mm (1/4").	N/A	
Multiphasic samples are not present.	True	
Samples do not require splitting or compositing.	True	
Residual Chlorine Checked.	N/A	

3

4

5

7

9

10

12

13

Accreditation/Certification Summary

Client: South Carolina Public Service Authority Project/Site: 125915/JM02.08.G01.1/36500

Job ID: 680-238535-1

Laboratory: Eurofins Savannah

The accreditations/certifications listed below are applicable to this report.

Authority	Program	Identification Number	Expiration Date
South Carolina	State	98001	06-30-23 *

 $^{\star} \ \text{Accreditation/Certification renewal pending - accreditation/certification considered valid}.$

Page 28 of 28

ANALYTICAL REPORT

PREPARED FOR

Attn: Linda Williams
South Carolina Public Service Authority
Santee Cooper
PO BOX 2946101
Moncks Corner, South Carolina 29461-2901

Generated 8/9/2023 8:32:53 AM

JOB DESCRIPTION

125915/JM02.08.G01.3/36500

JOB NUMBER

680-238533-1

Eurofins Savannah 5102 LaRoche Avenue Savannah GA 31404

Eurofins Savannah

Job Notes

This report may not be reproduced except in full, and with written approval from the laboratory. The results relate only to the samples tested. For questions please contact the Project Manager at the e-mail address or telephone number listed on this page.

The test results in this report relate only to the samples as received by the laboratory and will meet all requirements of the methodology, with any exceptions noted. This report shall not be reproduced except in full, without the express written approval of the laboratory. All questions should be directed to the Eurofins Environment Testing Southeast, LLC Project Manager.

Authorization

Generated 8/9/2023 8:32:53 AM

Authorized for release by Jerry Lanier, Project Manager I <u>Jerry.Lanier@et.eurofinsus.com</u> (912)250-0281

Table of Contents

Cover Page	1
Table of Contents	3
Case Narrative	4
Sample Summary	5
Method Summary	6
Definitions	7
Detection Summary	8
Client Sample Results	9
QC Sample Results	14
QC Association	16
Chronicle	18
Chain of Custody	20
Receipt Checklists	21
Certification Summary	22

2

4

5

7

0

3

11

13

Case Narrative

Client: South Carolina Public Service Authority Project/Site: 125915/JM02.08.G01.3/36500

Job ID: 680-238533-1

Job ID: 680-238533-1

Laboratory: Eurofins Savannah

Narrative

Job Narrative 680-238533-1

Receipt

The samples were received on 8/2/2023 10:45 AM. Unless otherwise noted below, the samples arrived in good condition, and, where required, properly preserved and on ice. The temperature of the cooler at receipt time was 4.3°C

Metals

No additional analytical or quality issues were noted, other than those described above or in the Definitions/ Glossary page.

/

4

5

6

_/

8

46

10

12

13

Sample Summary

Client: South Carolina Public Service Authority Project/Site: 125915/JM02.08.G01.3/36500

Job ID: 680-238533-1

Lab Sample ID	Client Sample ID	Matrix	Collected	Received
680-238533-1	AF68718	Water	06/27/23 13:07	08/02/23 10:45
680-238533-2	AF68716	Water	06/28/23 10:32	08/02/23 10:45
680-238533-3	AF69285	Water	06/28/23 12:36	08/02/23 10:45
680-238533-4	AF68715	Water	06/29/23 09:47	08/02/23 10:45
680-238533-5	AF68722	Water	06/29/23 14:53	08/02/23 10:45

3

4

_

6

8

3

11

Method Summary

Client: South Carolina Public Service Authority Project/Site: 125915/JM02.08.G01.3/36500

Job ID: 680-238533-1

Method	Method Description	Protocol	Laboratory
6010D	Metals (ICP)	SW846	EET SAV
6020B	Metals (ICP/MS)	SW846	EET SAV
3005A	Preparation, Total Recoverable or Dissolved Metals	SW846	EET SAV

Protocol References:

SW846 = "Test Methods For Evaluating Solid Waste, Physical/Chemical Methods", Third Edition, November 1986 And Its Updates.

Laboratory References:

EET SAV = Eurofins Savannah, 5102 LaRoche Avenue, Savannah, GA 31404, TEL (912)354-7858

Eurofins Savannah

Page 6 of 22 8/9/2023

Definitions/Glossary

Client: South Carolina Public Service Authority

Project/Site: 125915/JM02.08.G01.3/36500

Job ID: 680-238533-1

Qualifiers

Metals

U Indicates the analyte was analyzed for but not detected.

Glossary

Abbreviation These commonly used abbreviations may or may not be present in this report.

Listed under the "D" column to designate that the result is reported on a dry weight basis

%R Percent Recovery
CFL Contains Free Liquid
CFU Colony Forming Unit
CNF Contains No Free Liquid

DER Duplicate Error Ratio (normalized absolute difference)

Dil Fac Dilution Factor

DL Detection Limit (DoD/DOE)

DL, RA, RE, IN Indicates a Dilution, Re-analysis, Re-extraction, or additional Initial metals/anion analysis of the sample

DLC Decision Level Concentration (Radiochemistry)

EDL Estimated Detection Limit (Dioxin)

LOD Limit of Detection (DoD/DOE)

LOQ Limit of Quantitation (DoD/DOE)

MCL EPA recommended "Maximum Contaminant Level"

MDA Minimum Detectable Activity (Radiochemistry)

MDC Minimum Detectable Concentration (Radiochemistry)

MDL Method Detection Limit
ML Minimum Level (Dioxin)
MPN Most Probable Number
MQL Method Quantitation Limit

NC Not Calculated

ND Not Detected at the reporting limit (or MDL or EDL if shown)

NEG Negative / Absent
POS Positive / Present

PQL Practical Quantitation Limit

PRES Presumptive
QC Quality Control

RER Relative Error Ratio (Radiochemistry)

RL Reporting Limit or Requested Limit (Radiochemistry)

RPD Relative Percent Difference, a measure of the relative difference between two points

TEF Toxicity Equivalent Factor (Dioxin)
TEQ Toxicity Equivalent Quotient (Dioxin)

TNTC Too Numerous To Count

7

8

40

11

12

1

Eurofins Savannah

Client: South Carolina Public Service Authority Project/Site: 125915/JM02.08.G01.3/36500

Barium

Magnesium

Iron

Job ID: 680-238533-1

Total Recoverable

Total Recoverable

Total Recoverable

Client Sample ID: AF68718						Lal	o S	Sample ID:	680-238533-1
- Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type
Calcium	487000		500		ug/L	1	_	6010D	Total
									Recoverable
Arsenic	253		3.00		ug/L	1		6020B	Total
									Recoverable
Barium	214		5.00		ug/L	1		6020B	Total
									Recoverable
Iron	6310		100		ug/L	1		6020B	Total
									Recoverable
Magnesium	93200		250		ug/L	1		6020B	Total
-									Recoverable
Client Sample ID: AF68716						Lal	o S	Sample ID:	680-238533-2
Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type
Calcium	100000		500		ug/L	1	_	6010D	Total
									Recoverable
Aluminum	1580		100		ug/L	1		6020B	Total
									Recoverable

Client Sample ID: AF69285 Lab Sample

5.00

100

250

ug/L

ug/L

ug/L

6020B

6020B

6020B

60.1

4140

2340

Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type
Calcium	49000		500		ug/L	1	_	6010D	Total
									Recoverable
Iron	130		100		ug/L	1		6020B	Total
									Recoverable
Magnesium	3000		250		ug/L	1		6020B	Total
									Recoverable

Client Sample ID: AF68715 Lab Sample ID: 680-238533-4

Analyte	Result Qu	ualifier RL	MDL	Unit	Dil Fac	D Meth	od	Prep Type
Calcium	63600	500		ug/L	1	6010	D D	Total
								Recoverable
Barium	9.33	5.00		ug/L	1	6020	В	Total
								Recoverable
Magnesium	5390	250		ug/L	1	6020	В	Total
								Recoverable

Client Sample ID: AF68722 Lab Sample ID: 680-238533-5

Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type
Calcium	235000		500		ug/L	1	_	6010D	Total
									Recoverable
Barium	77.3		5.00		ug/L	1		6020B	Total
									Recoverable
Iron	8390		100		ug/L	1		6020B	Total
									Recoverable
Magnesium	9610		250		ug/L	1		6020B	Total
_									Recoverable

This Detection Summary does not include radiochemical test results.

Eurofins Savannah

6

4

5

7

10

12

13

14

8/9/2023

Client: South Carolina Public Service Authority Project/Site: 125915/JM02.08.G01.3/36500

Lab Sample ID: 680-238533-1

Matrix: Water

Job ID: 680-238533-1

Client Sample ID: AF68718

Date Collected: 06/27/23 13:07 Date Received: 08/02/23 10:45

Method: SW846 6010D - Metals (ICP) - Total Recoverable										
	Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
	Calcium	487000		500		ug/L		08/03/23 05:51	08/03/23 15:22	1
	Selenium	20.0	U	20.0		ug/L		08/03/23 05:51	08/03/23 15:22	1
	_									

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Aluminum	100	U	100		ug/L		08/03/23 05:51	08/07/23 16:55	1
Arsenic	253		3.00		ug/L		08/03/23 05:51	08/07/23 16:55	1
Barium	214		5.00		ug/L		08/03/23 05:51	08/07/23 16:55	1
Cadmium	0.500	U	0.500		ug/L		08/03/23 05:51	08/07/23 16:55	1
Chromium	5.00	U	5.00		ug/L		08/03/23 05:51	08/07/23 16:55	1
Copper	5.00	U	5.00		ug/L		08/03/23 05:51	08/07/23 16:55	1
Iron	6310		100		ug/L		08/03/23 05:51	08/07/23 16:55	1
Lead	2.50	U	2.50		ug/L		08/03/23 05:51	08/07/23 16:55	1
Magnesium	93200		250		ug/L		08/03/23 05:51	08/07/23 16:55	1
Zinc	20.0	U	20.0		ug/L		08/03/23 05:51	08/07/23 16:55	1

__

3

5

6

8

9

11

13

Client: South Carolina Public Service Authority Project/Site: 125915/JM02.08.G01.3/36500

Lab Sample ID: 680-238533-2

Matrix: Water

Job ID: 680-238533-1

Client Sample ID: AF68716

Date Collected: 06/28/23 10:32 Date Received: 08/02/23 10:45

Method: SW846 6010D - Metals (ICP) - Total Recoverable										
	Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
	Calcium	100000		500		ug/L		08/03/23 05:51	08/03/23 15:08	1
	Selenium	20.0	U	20.0		ug/L		08/03/23 05:51	08/03/23 15:08	1
	_									

Method: SW846 6020B - Met	als (ICP/MS) - Total	Recoverable	е						
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Aluminum	1580		100		ug/L		08/03/23 05:51	08/07/23 16:18	1
Arsenic	3.00	U	3.00		ug/L		08/03/23 05:51	08/07/23 16:18	1
Barium	60.1		5.00		ug/L		08/03/23 05:51	08/07/23 16:18	1
Cadmium	0.500	U	0.500		ug/L		08/03/23 05:51	08/07/23 16:18	1
Chromium	5.00	U	5.00		ug/L		08/03/23 05:51	08/07/23 16:18	1
Copper	5.00	U	5.00		ug/L		08/03/23 05:51	08/07/23 16:18	1
Iron	4140		100		ug/L		08/03/23 05:51	08/07/23 16:18	1
Lead	2.50	U	2.50		ug/L		08/03/23 05:51	08/07/23 16:18	1
Magnesium	2340		250		ug/L		08/03/23 05:51	08/07/23 16:18	1
Zinc	20.0	U	20.0		ug/L		08/03/23 05:51	08/07/23 16:18	1

Client: South Carolina Public Service Authority Project/Site: 125915/JM02.08.G01.3/36500

Lab Sample ID: 680-238533-3

Matrix: Water

Job ID: 680-238533-1

Client Sample ID: AF69285

Date Collected: 06/28/23 12:36 Date Received: 08/02/23 10:45

Method: SW846 6010D - Metals (ICP) - Total Recoverable									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Calcium	49000		500		ug/L		08/03/23 06:38	08/04/23 17:25	1
Selenium	20.0	U	20.0		ug/L		08/03/23 06:38	08/04/23 17:25	1

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Aluminum	100	U	100		ug/L		08/03/23 06:38	08/08/23 15:30	1
Arsenic	3.00	U	3.00		ug/L		08/03/23 06:38	08/08/23 15:30	1
Barium	5.00	U	5.00		ug/L		08/03/23 06:38	08/08/23 15:30	1
Cadmium	0.500	U	0.500		ug/L		08/03/23 06:38	08/08/23 15:30	1
Chromium	5.00	U	5.00		ug/L		08/03/23 06:38	08/08/23 15:30	1
Copper	5.00	U	5.00		ug/L		08/03/23 06:38	08/08/23 15:30	1
Iron	130		100		ug/L		08/03/23 06:38	08/08/23 15:30	1
Lead	2.50	U	2.50		ug/L		08/03/23 06:38	08/08/23 15:30	1
Magnesium	3000		250		ug/L		08/03/23 06:38	08/08/23 15:30	1
Zinc	20.0	U	20.0		ug/L		08/03/23 06:38	08/08/23 15:30	1

Client: South Carolina Public Service Authority Project/Site: 125915/JM02.08.G01.3/36500

Lab Sample ID: 680-238533-4

Matrix: Water

Job ID: 680-238533-1

Client Sample ID: AF68715

Date Collected: 06/29/23 09:47 Date Received: 08/02/23 10:45

Method: SW846 6010D - Metals (ICP) - Total Recoverable									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Calcium	63600		500		ug/L		08/03/23 05:51	08/03/23 15:20	1
Selenium 	20.0	U	20.0		ug/L		08/03/23 05:51	08/03/23 15:20	1

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Aluminum	100	U	100		ug/L		08/03/23 05:51	08/07/23 16:46	1
Arsenic	3.00	U	3.00		ug/L		08/03/23 05:51	08/07/23 16:46	1
Barium	9.33		5.00		ug/L		08/03/23 05:51	08/07/23 16:46	1
Cadmium	0.500	U	0.500		ug/L		08/03/23 05:51	08/07/23 16:46	1
Chromium	5.00	U	5.00		ug/L		08/03/23 05:51	08/07/23 16:46	1
Copper	5.00	U	5.00		ug/L		08/03/23 05:51	08/07/23 16:46	1
Iron	100	U	100		ug/L		08/03/23 05:51	08/07/23 16:46	1
Lead	2.50	U	2.50		ug/L		08/03/23 05:51	08/07/23 16:46	1
Magnesium	5390		250		ug/L		08/03/23 05:51	08/07/23 16:46	1
Zinc	20.0	U	20.0		ua/L		08/03/23 05:51	08/07/23 16:46	1

Client: South Carolina Public Service Authority Project/Site: 125915/JM02.08.G01.3/36500

Lab Sample ID: 680-238533-5

Matrix: Water

Job ID: 680-238533-1

Client Sample ID: AF68722 Date Collected: 06/29/23 14:53

Date Received: 08/02/23 10:45

Method: SW846 6010D - Metals (ICP) - Total Recoverable										
	Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
	Calcium	235000		500		ug/L		08/03/23 06:38	08/04/23 17:28	1
	Selenium 	20.0	U	20.0		ug/L		08/03/23 06:38	08/04/23 17:28	1

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Aluminum	100	U	100		ug/L		08/03/23 06:38	08/08/23 15:34	1
Arsenic	3.00	U	3.00		ug/L		08/03/23 06:38	08/08/23 15:34	1
Barium	77.3		5.00		ug/L		08/03/23 06:38	08/08/23 15:34	1
Cadmium	0.500	U	0.500		ug/L		08/03/23 06:38	08/08/23 15:34	1
Chromium	5.00	U	5.00		ug/L		08/03/23 06:38	08/08/23 15:34	1
Copper	5.00	U	5.00		ug/L		08/03/23 06:38	08/08/23 15:34	1
Iron	8390		100		ug/L		08/03/23 06:38	08/08/23 15:34	1
Lead	2.50	U	2.50		ug/L		08/03/23 06:38	08/08/23 15:34	1
Magnesium	9610		250		ug/L		08/03/23 06:38	08/08/23 15:34	1
Zinc	20.0	U	20.0		ug/L		08/03/23 06:38	08/08/23 15:34	1

Method: 6010D - Metals (ICP)

Lab Sample ID: MB 680-791516/1-A

Matrix: Water

Analysis Batch: 791719

Client Sample ID: Method Blank Prep Type: Total Recoverable

Prep Batch: 791516

	Analyte	Result	Qualifier	RL	MDL Unit	D	Prepared	Analyzed	Dil Fac
	Calcium	500	U	500	ug/L		08/03/23 05:51	08/03/23 14:52	1
	Selenium	20.0	U	20.0	ua/L		08/03/23 05:51	08/03/23 14:52	1

Lab Sample ID: LCS 680-791516/2-A

Matrix: Water

Analysis Batch: 791719

MR MR

Client Sample ID: Lab Control Sample **Prep Type: Total Recoverable** Prep Batch: 791516

%Rec

Spike LCS LCS Analyte Added Result Qualifier Unit %Rec Limits Calcium 5000 4950 99 80 - 120 ug/L Selenium 100 94.39 ug/L 94 80 - 120

Lab Sample ID: MB 680-791519/1-A

Matrix: Water

Analysis Batch: 791897

Client Sample ID: Method Blank Prep Type: Total Recoverable

Prep Batch: 791519

	MR	MR							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Calcium	500	U	500		ug/L		08/03/23 06:38	08/04/23 16:50	1
Selenium	20.0	U	20.0		ug/L		08/03/23 06:38	08/04/23 16:50	1

Lab Sample ID: LCS 680-791519/2-A

Matrix: Water

Analysis Batch: 791897

Client Sample ID: Lab Control Sample **Prep Type: Total Recoverable**

Prep Batch: 791519

	Spike	LCS	LCS				%Rec	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Calcium	5000	4801		ug/L		96	80 - 120	
Selenium	100	99.73		ug/L		100	80 - 120	

Method: 6020B - Metals (ICP/MS)

Lab Sample ID: MB 680-791513/1-A

Matrix: Water

Analysis Batch, 702220

Client Sample ID: Method Blank **Prep Type: Total Recoverable**

Pren Batch: 791513

Analysis Batch: 792230								Prep Batch:	791513
	МВ	MB							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Aluminum	100	U	100		ug/L		08/03/23 05:51	08/07/23 15:57	1
Arsenic	3.00	U	3.00		ug/L		08/03/23 05:51	08/07/23 15:57	1
Barium	5.00	U	5.00		ug/L		08/03/23 05:51	08/07/23 15:57	1
Cadmium	0.500	U	0.500		ug/L		08/03/23 05:51	08/07/23 15:57	1
Chromium	5.00	U	5.00		ug/L		08/03/23 05:51	08/07/23 15:57	1
Copper	5.00	U	5.00		ug/L		08/03/23 05:51	08/07/23 15:57	1
Iron	100	U	100		ug/L		08/03/23 05:51	08/07/23 15:57	1
Lead	2.50	U	2.50		ug/L		08/03/23 05:51	08/07/23 15:57	1
Magnesium	250	U	250		ug/L		08/03/23 05:51	08/07/23 15:57	1
Zinc	20.0	U	20.0		ug/L		08/03/23 05:51	08/07/23 15:57	1

Client: South Carolina Public Service Authority Project/Site: 125915/JM02.08.G01.3/36500

Job ID: 680-238533-1

Method: 6020B - Metals (ICP/MS) (Continued)

Lab Sample ID: LCS 680-791513/2-A Client Sample ID: Lab Control Sample Matrix: Water Prep Type: Total Recoverable Analysis Batch: 792230 Prep Batch: 791513

	Spike	LCS	LCS				%Rec	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Aluminum	5050	5120		ug/L		101	80 - 120	
Arsenic	100	106.4		ug/L		106	80 - 120	
Barium	100	102.9		ug/L		103	80 - 120	
Cadmium	50.0	50.92		ug/L		102	80 - 120	
Chromium	100	109.3		ug/L		109	80 - 120	
Copper	100	113.2		ug/L		113	80 - 120	
Iron	4990	5167		ug/L		104	80 - 120	
Lead	500	530.5		ug/L		106	80 - 120	
Magnesium	5000	4977		ug/L		100	80 - 120	
Zinc	100	110.4		ug/L		110	80 - 120	

Lab Sample ID: MB 680-791518/1-A Client Sample ID: Method Blank Matrix: Water **Prep Type: Total Recoverable**

Analysis Batch: 792490 **Prep Batch: 791518**

	MB	МВ							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Aluminum	100	U	100		ug/L		08/03/23 06:38	08/08/23 14:41	1
Arsenic	3.00	U	3.00		ug/L		08/03/23 06:38	08/08/23 14:41	1
Barium	5.00	U	5.00		ug/L		08/03/23 06:38	08/08/23 14:41	1
Cadmium	0.500	U	0.500		ug/L		08/03/23 06:38	08/08/23 14:41	1
Chromium	5.00	U	5.00		ug/L		08/03/23 06:38	08/08/23 14:41	1
Copper	5.00	U	5.00		ug/L		08/03/23 06:38	08/08/23 14:41	1
Iron	100	U	100		ug/L		08/03/23 06:38	08/08/23 14:41	1
Lead	2.50	U	2.50		ug/L		08/03/23 06:38	08/08/23 14:41	1
Magnesium	250	U	250		ug/L		08/03/23 06:38	08/08/23 14:41	1
Zinc	20.0	U	20.0		ua/L		08/03/23 06:38	08/08/23 14:41	1

Lab Sample ID: LCS 680-791518/2-A Client Sample ID: Lab Control Sample Matrix: Water **Prep Type: Total Recoverable**

Analysis Batch: 792490							Prep Batc	h: 791518
	Spike	LCS	LCS				%Rec	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Aluminum	5050	4652		ug/L		92	80 - 120	
Arsenic	100	97.80		ug/L		98	80 - 120	
Barium	100	95.86		ug/L		96	80 - 120	
Cadmium	50.0	46.20		ug/L		92	80 - 120	
Chromium	100	100.4		ug/L		100	80 - 120	
Copper	100	102.8		ug/L		103	80 - 120	
Iron	4990	5052		ug/L		101	80 - 120	
Lead	500	485.1		ug/L		97	80 - 120	
Magnesium	5000	4591		ug/L		92	80 - 120	
Zinc	100	101.9		ua/l		102	80 120	

QC Association Summary

Client: South Carolina Public Service Authority Project/Site: 125915/JM02.08.G01.3/36500

Job ID: 680-238533-1

Metals

Prep	Batch:	791513
------	--------	--------

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
680-238533-1	AF68718	Total Recoverable	Water	3005A	
680-238533-2	AF68716	Total Recoverable	Water	3005A	
680-238533-4	AF68715	Total Recoverable	Water	3005A	
MB 680-791513/1-A	Method Blank	Total Recoverable	Water	3005A	
LCS 680-791513/2-A	Lab Control Sample	Total Recoverable	Water	3005A	

Prep Batch: 791516

[Olivert Overville ID	D T		M. d	D D. (.)
Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
680-238533-1	AF68718	Total Recoverable	Water	3005A	
680-238533-2	AF68716	Total Recoverable	Water	3005A	
680-238533-4	AF68715	Total Recoverable	Water	3005A	
MB 680-791516/1-A	Method Blank	Total Recoverable	Water	3005A	
LCS 680-791516/2-A	Lab Control Sample	Total Recoverable	Water	3005A	

Prep Batch: 791518

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
680-238533-3	AF69285	Total Recoverable	Water	3005A	
680-238533-5	AF68722	Total Recoverable	Water	3005A	
MB 680-791518/1-A	Method Blank	Total Recoverable	Water	3005A	
LCS 680-791518/2-A	Lab Control Sample	Total Recoverable	Water	3005A	

Prep Batch: 791519

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
680-238533-3	AF69285	Total Recoverable	Water	3005A	
680-238533-5	AF68722	Total Recoverable	Water	3005A	
MB 680-791519/1-A	Method Blank	Total Recoverable	Water	3005A	
LCS 680-791519/2-A	Lab Control Sample	Total Recoverable	Water	3005A	

Analysis Batch: 791719

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
680-238533-1	AF68718	Total Recoverable	Water	6010D	791516
680-238533-2	AF68716	Total Recoverable	Water	6010D	791516
680-238533-4	AF68715	Total Recoverable	Water	6010D	791516
MB 680-791516/1-A	Method Blank	Total Recoverable	Water	6010D	791516
LCS 680-791516/2-A	Lab Control Sample	Total Recoverable	Water	6010D	791516

Analysis Batch: 791897

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch	
680-238533-3	AF69285	Total Recoverable	Water	6010D	791519	
680-238533-5	AF68722	Total Recoverable	Water	6010D	791519	
MB 680-791519/1-A	Method Blank	Total Recoverable	Water	6010D	791519	
LCS 680-791519/2-A	Lab Control Sample	Total Recoverable	Water	6010D	791519	

Analysis Batch: 792230

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
680-238533-1	AF68718	Total Recoverable	Water	6020B	791513
680-238533-2	AF68716	Total Recoverable	Water	6020B	791513
680-238533-4	AF68715	Total Recoverable	Water	6020B	791513
MB 680-791513/1-A	Method Blank	Total Recoverable	Water	6020B	791513
LCS 680-791513/2-A	Lab Control Sample	Total Recoverable	Water	6020B	791513

Eurofins Savannah

Page 16 of 22

QC Association Summary

Client: South Carolina Public Service Authority Project/Site: 125915/JM02.08.G01.3/36500

Job ID: 680-238533-1

Metals

Analysis Batch: 792490

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
680-238533-3	AF69285	Total Recoverable	Water	6020B	791518
680-238533-5	AF68722	Total Recoverable	Water	6020B	791518
MB 680-791518/1-A	Method Blank	Total Recoverable	Water	6020B	791518
LCS 680-791518/2-A	Lab Control Sample	Total Recoverable	Water	6020B	791518

Job ID: 680-238533-1

Client: South Carolina Public Service Authority Project/Site: 125915/JM02.08.G01.3/36500

Client Sample ID: AF68718

Date Collected: 06/27/23 13:07 Date Received: 08/02/23 10:45 Lab Sample ID: 680-238533-1

Matrix: Water

	Batch	Batch		Dilution	Batch			Prepared
Prep Type	Туре	Method	Run	Factor	Number	Analyst	Lab	or Analyzed
Total Recoverable	Prep	3005A			791516	RR	EET SAV	08/03/23 05:51
Total Recoverable	Analysis	6010D		1	791719	BJB	EET SAV	08/03/23 15:22
Total Recoverable	Prep	3005A			791513	RR	EET SAV	08/03/23 05:51
Total Recoverable	Analysis	6020B		1	792230	BWR	EET SAV	08/07/23 16:55

Client Sample ID: AF68716

Date Collected: 06/28/23 10:32

Date Received: 08/02/23 10:45

Lab Sample ID: 680-238533-2

Matrix: Water

	Batch	Batch		Dilution	Batch			Prepared
Prep Type	Туре	Method	Run	Factor	Number	Analyst	Lab	or Analyzed
Total Recoverable	Prep	3005A			791516	RR	EET SAV	08/03/23 05:51
Total Recoverable	Analysis	6010D		1	791719	BJB	EET SAV	08/03/23 15:08
Total Recoverable	Prep	3005A			791513	RR	EET SAV	08/03/23 05:51
Total Recoverable	Analysis	6020B		1	792230	BWR	EET SAV	08/07/23 16:18

Client Sample ID: AF69285

Date Collected: 06/28/23 12:36

Date Received: 08/02/23 10:45

Lab Sample ID: 680-238533-3

Matrix: Water

watiix. wate

	Batch	Batch		Dilution	Batch			Prepared
Prep Type	Type	Method	Run	Factor	Number	Analyst	Lab	or Analyzed
Total Recoverable	Prep	3005A			791519	RR	EET SAV	08/03/23 06:38
Total Recoverable	Analysis	6010D		1	791897	BJB	EET SAV	08/04/23 17:25
Total Recoverable	Prep	3005A			791518	RR	EET SAV	08/03/23 06:38
Total Recoverable	Analysis	6020B		1	792490	BWR	EET SAV	08/08/23 15:30

Client Sample ID: AF68715

Date Collected: 06/29/23 09:47

Date Received: 08/02/23 10:45

Lab Sample ID: 680-238533-4

Matrix: Water

	Batch	Batch		Dilution	Batch			Prepared
Prep Type	Туре	Method	Run	Factor	Number	Analyst	Lab	or Analyzed
Total Recoverable	Prep	3005A			791516	RR	EET SAV	08/03/23 05:51
Total Recoverable	Analysis	6010D		1	791719	BJB	EET SAV	08/03/23 15:20
Total Recoverable	Prep	3005A			791513	RR	EET SAV	08/03/23 05:51
Total Recoverable	Analysis	6020B		1	792230	BWR	EET SAV	08/07/23 16:46

Client Sample ID: AF68722

Date Collected: 06/29/23 14:53

Date Received: 08/02/23 10:45

Lab Sample ID: 680-238533-5

Matrix: Water

	Batch	Batch		Dilution	Batch			Prepared
Prep Type	Type	Method	Run	Factor	Number	Analyst	Lab	or Analyzed
Total Recoverable	Prep	3005A			791519	RR	EET SAV	08/03/23 06:38
Total Recoverable	Analysis	6010D		1	791897	BJB	EET SAV	08/04/23 17:28
Total Recoverable	Prep	3005A			791518	RR	EET SAV	08/03/23 06:38
Total Recoverable	Analysis	6020B		1	792490	BWR	EET SAV	08/08/23 15:34

Eurofins Savannah

_

1

5

7

0

10

12

Lab Chronicle

Client: South Carolina Public Service Authority Project/Site: 125915/JM02.08.G01.3/36500

Job ID: 680-238533-1

Laboratory References:

EET SAV = Eurofins Savannah, 5102 LaRoche Avenue, Savannah, GA 31404, TEL (912)354-7858

4

5

_

10

11

13

Chain of Custody

Santee Cooper One Riverwood Drive Moneks Corner, SC 29461 e (843)761-8000 Ext 5148 Fax. (843)761-4175

Customer Email/Report Recipient: Project/Task/Unit #: Date Results Needed by: Rerun request for any flagged QC LCWILLIA 125915 / JM02.08.601.3/ 36500 @santeecooper.com (Yes) No **Analysis Group** Labworks ID# Sample Location/ Comments METALS BELOW Preservative (see below) (Glass-Matrix(see below) Collection Time **Collection Date** Total # of containers (Internal use Description Method # Sample Collector only) Reporting limit Grab (G) or Composite (C) Bottle type: (G/Plastic-P) Misc. sample info TOTAL -Any other notes WJK P 2 X 6 €W AF-68718 WAP-8 6/27/<u>2</u>3 1307 METHOD 6020 ML -SEE SHEET FOR RLS. WAP-6 6/28/23 1032 AF68716 1236 *PLEASE RETURN SAMPLES PPZW-6D A-F69285 UPON COMPLETION. 6/29/23 WAP-5 0947 AF68715 1453 WAP-11 AF68722 680-238533 Chain of Custody Sample Receiving (Internal Use Only) Received by: Time Relinquished by: Employee# Date Time Employee# Date TEMP (°C): 42/43 Initial: XOD CO 35594 Albroan 8/2/23 COURIER 8/2/23 0756 0756 Correct pH: Yes Relinquished by: Received by: Employee# Date Time Employee# Date Time Preservative Lot#: 1044 8-2-23 1045 812123 EHODGE *courier* Relinquished by: Employee# Date Time Received by: Employee # Date Time Date/Time/Init for preservative: ☐ METALS (all) **Nutrients** MISC. **Gypsum** Coal Oil Flyash Z Cu □ Ag □ Sb □ TOC □ Wallboard □ BTEX ☐ Ultimate ☐ Ammonia Trans. Oil Qual. Z AI ☑ Fe Ø Se □ Naphthalene Gypsum(all ☐ % Moisture 2 %Moisture D DOC ☑ As $\Box K$ □ Sn ☐ THM/HAA Color ☐ TP/TPO4 below) □ Ash □ % Carbon Acidity
Dielectric Strength
IFT □ VOC O AIM □ NH3-N ☐ Sulfur □ Mineral $\Box B$ □Li □ Sr ☐ Oil & Grease o toc ΠF ☐ BTUs Analysis D∕Ba □ E. Coli Ø Mg □ Ti ☼ Total metals ☐ Volatile Matter □ Sieve ☐ Total Coliform Dissolved Gases ☐ Soluble Metals □Ве □ Mn □ NO2 □ CHN ☐ % Moisture Used Oil □pH ☐ Purity (CaSO4) Flashpoint Metals in oil (As,Cd,Cr,Ni;Pb ☐ Dissolved As Other Tests: () Br ☐% Moisture Z Ca $\square V$ □ Mo □ NO3 ☐ Dissolved Fe ☐ Sulfites ☐ XRF Scan **NPDES** Z Cd Z Zn □ Na □ Rad 226 □ HGI □pH □ SO4 Hg) Oil & Grease ☐ Rad 228 11 Chlorides ☐ Fineness □Со □ Ni □ Hg O As □ PCB ☐ Particulate Matter ☐ Particle Size □ TSS GOFER Cr Cr Z Pb □ CrVI

Login Sample Receipt Checklist

Client: South Carolina Public Service Authority

Job Number: 680-238533-1

Login Number: 238533 List Source: Eurofins Savannah

List Number: 1

Creator: Sims, Robert D

0 1	
Question	Answer Comment
Radioactivity wasn't checked or is = background as measured by a survey meter.</td <td>N/A</td>	N/A
The cooler's custody seal, if present, is intact.	True
Sample custody seals, if present, are intact.	True
The cooler or samples do not appear to have been compromised or tampered with.	True
Samples were received on ice.	True
Cooler Temperature is acceptable.	True
Cooler Temperature is recorded.	True
COC is present.	True
COC is filled out in ink and legible.	True
COC is filled out with all pertinent information.	True
Is the Field Sampler's name present on COC?	True
There are no discrepancies between the containers received and the COC.	True
Samples are received within Holding Time (excluding tests with immediate HTs)	True
Sample containers have legible labels.	True
Containers are not broken or leaking.	True
Sample collection date/times are provided.	True
Appropriate sample containers are used.	True
Sample bottles are completely filled.	True
Sample Preservation Verified.	N/A
There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs	True
Containers requiring zero headspace have no headspace or bubble is <6mm (1/4").	N/A
Multiphasic samples are not present.	True
Samples do not require splitting or compositing.	True
Residual Chlorine Checked.	N/A

4

5

7

9

10

13

Accreditation/Certification Summary

Client: South Carolina Public Service Authority Project/Site: 125915/JM02.08.G01.3/36500

Job ID: 680-238533-1

Laboratory: Eurofins Savannah

The accreditations/certifications listed below are applicable to this report.

Authority	Program	Identification Number	Expiration Date
South Carolina	State	98001	06-30-23 *

 $^{\star} \ \text{Accreditation/Certification renewal pending - accreditation/certification considered valid}.$

Page 22 of 22

6

6

8

10

11

13

14

Eurofins Savannah

ANALYTICAL REPORT

PREPARED FOR

Attn: Linda Williams
South Carolina Public Service Authority
Santee Cooper
PO BOX 2946101
Moncks Corner, South Carolina 29461-2901

Generated 1/9/2024 10:02:26 AM Revision 1

JOB DESCRIPTION

125915/JM02 09 G011/36500

JOB NUMBER

680-244376-1

Eurofins Savannah 5102 LaRoche Avenue Savannah GA 31404

Eurofins Savannah

Job Notes

This report may not be reproduced except in full, and with written approval from the laboratory. The results relate only to the samples tested. For questions please contact the Project Manager at the e-mail address or telephone number listed on this page.

The test results in this report relate only to the samples as received by the laboratory and will meet all requirements of the methodology, with any exceptions noted. This report shall not be reproduced except in full, without the express written approval of the laboratory. All questions should be directed to the Eurofins Environment Testing Southeast, LLC Project Manager.

Authorization

Generated 1/9/2024 10:02:26 AM Revision 1

Authorized for release by Jerry Lanier, Project Manager I <u>Jerry.Lanier@et.eurofinsus.com</u> (912)250-0281

Table of Contents

Cover Page	1
Table of Contents	3
Case Narrative	4
Sample Summary	5
Method Summary	6
Definitions	7
Detection Summary	8
Client Sample Results	9
QC Sample Results	13
QC Association	14
Chronicle	15
Chain of Custody	16
Receipt Checklists	17
Certification Summary	18

3

4

5

8

9

11

12

Case Narrative

Client: South Carolina Public Service Authority

Project: 125915/JM02 09 G011/36500

Job ID: 680-244376-1 Eurofins Savannah

Job Narrative 680-244376-1

REVISION

The report being provided is a revision of the original report sent on 12/15/2023. The report (revision 1) is being revised due to Client is requesting batch QC to be reported..

Analytical test results meet all requirements of the associated regulatory program listed on the Accreditation/Certification Summary Page unless otherwise noted under the individual analysis. Data qualifiers are applied to indicate exceptions. Noncompliant quality control (QC) is further explained in narrative comments.

- Matrix QC may not be reported if insufficient sample or site-specific QC samples were not submitted. In these situations, to demonstrate precision and accuracy at a batch level, a LCS/LCSD may be performed, unless otherwise specified in the method.
- Surrogate and/or isotope dilution analyte recoveries (if applicable) which are outside of the QC window are confirmed unless attributed to a dilution or otherwise noted in the narrative.

Regulated compliance samples (e.g. SDWA, NPDES) must comply with the associated agency requirements/permits.

Receipt

The samples were received on 12/14/2023 10:32 AM. Unless otherwise noted below, the samples arrived in good condition, and, where required, properly preserved and on ice. The temperature of the cooler at receipt time was 13.6°C

Metals

No additional analytical or quality issues were noted, other than those described above or in the Definitions/ Glossary page.

Eurofins Savannah

Job ID: 680-244376-1

3

А

5

6

8

9

10

12

Sample Summary

Client: South Carolina Public Service Authority Project/Site: 125915/JM02 09 G011/36500

Job ID: 680-244376-1

Lab Sample ID	Client Sample ID	Matrix	Collected	Received
680-244376-1	AF85222	Water	12/11/23 13:19	12/14/23 10:32
680-244376-2	AF85223	Water	12/11/23 10:24	12/14/23 10:32
680-244376-3	AF85224	Water	12/11/23 10:29	12/14/23 10:32
680-244376-4	AF85225	Water	12/11/23 11:50	12/14/23 10:32

Δ

J

9

10

11

13

Method Summary

Client: South Carolina Public Service Authority Project/Site: 125915/JM02 09 G011/36500

Job ID: 680-244376-1

Method	Method Description	Protocol	Laboratory
7470A	Mercury (CVAA)	SW846	EET SAV
7470A	Preparation, Mercury	SW846	EET SAV

Protocol References:

SW846 = "Test Methods For Evaluating Solid Waste, Physical/Chemical Methods", Third Edition, November 1986 And Its Updates.

Laboratory References:

EET SAV = Eurofins Savannah, 5102 LaRoche Avenue, Savannah, GA 31404, TEL (912)354-7858

3

J

7

ŏ

10

11

13

Definitions/Glossary

Client: South Carolina Public Service Authority

Job ID: 680-244376-1

Project/Site: 125915/JM02 09 G011/36500

Qualifiers

Metals

Qualifier Qualifier Description

F1 MS and/or MSD recovery exceeds control limits.
U Indicates the analyte was analyzed for but not detected.

Glossary

Abbreviation These commonly used abbreviations may or may not be present in this report.

Listed under the "D" column to designate that the result is reported on a dry weight basis

%R Percent Recovery
CFL Contains Free Liquid
CFU Colony Forming Unit
CNF Contains No Free Liquid

DER Duplicate Error Ratio (normalized absolute difference)

Dil Fac Dilution Factor

DL Detection Limit (DoD/DOE)

DL, RA, RE, IN Indicates a Dilution, Re-analysis, Re-extraction, or additional Initial metals/anion analysis of the sample

DLC Decision Level Concentration (Radiochemistry)

EDL Estimated Detection Limit (Dioxin)

LOD Limit of Detection (DoD/DOE)

LOQ Limit of Quantitation (DoD/DOE)

MCL EPA recommended "Maximum Contaminant Level"

MDA Minimum Detectable Activity (Radiochemistry)

MDC Minimum Detectable Concentration (Radiochemistry)

MDL Method Detection Limit
ML Minimum Level (Dioxin)
MPN Most Probable Number
MQL Method Quantitation Limit

NC Not Calculated

ND Not Detected at the reporting limit (or MDL or EDL if shown)

NEG Negative / Absent POS Positive / Present

PQL Practical Quantitation Limit

PRES Presumptive
QC Quality Control

RER Relative Error Ratio (Radiochemistry)

RL Reporting Limit or Requested Limit (Radiochemistry)

RPD Relative Percent Difference, a measure of the relative difference between two points

TEF Toxicity Equivalent Factor (Dioxin)
TEQ Toxicity Equivalent Quotient (Dioxin)

TNTC Too Numerous To Count

4

8

9

1 0

12

13

Eurofins Savannah

Detection Summary

Project/Site: 125915/JM02 09 G011/36500	
Client Sample ID: AF85222	Lab Sample ID: 680-244376-1
No Detections.	
Client Sample ID: AF85223	Lab Sample ID: 680-244376-2
No Detections.	
Client Sample ID: AF85224	Lab Sample ID: 680-244376-3
No Detections.	
Client Sample ID: AF85225	Lab Sample ID: 680-244376-4

8

Job ID: 680-244376-1

9

11

1<u>4</u> 13

14

Client: South Carolina Public Service Authority

No Detections.

Client: South Carolina Public Service Authority

Project/Site: 125915/JM02 09 G011/36500

Job ID: 680-244376-1

Client Sample ID: AF85222 Lab Sample ID: 680-244376-1

Date Collected: 12/11/23 13:19

Matrix: Water

Date Received: 12/14/23 10:32

Method: SW846 7470A - Mercury (CVAA)
Analyte Result Qualifier RL MDL Unit D Prepared Analyzed

2

4

5

6

8

9

11

13

Client: South Carolina Public Service Authority
Project/Site: 125915/JM02 09 G011/36500

Client Sample ID: AF85223 Lab Sample ID: 680-244376-2

Matrix: Water

Job ID: 680-244376-1

Date Collected: 12/11/23 10:24 Date Received: 12/14/23 10:32

Method: SW846 7470A - Mercury (CVAA)

Analyte Result Qualifier RL MDL Unit D Prepared Analyzed Dil Fac

Mercury 0.200 U 0.200 ug/L 12/15/23 09:10 12/15/23 16:04 1

8

9

10

12

Client: South Carolina Public Service Authority

Project/Site: 125915/JM02 09 G011/36500

Job ID: 680-244376-1

Client Sample ID: AF85224 Lab Sample ID: 680-244376-3

Matrix: Water

Date Collected: 12/11/23 10:29 Date Received: 12/14/23 10:32

Method: SW846 7470A - Mercury (CVAA)

Analyte Result Qualifier RL MDL Unit D Prepared Analyzed Dil Fac

Mercury 0.200 U 0.200 ug/L 12/15/23 09:10 12/15/23 16:06

Eurofins Savannah

1/9/2024 (Rev. 1)

2

3

4

5

6

8

9

11

12

Client: South Carolina Public Service Authority
Project/Site: 125915/ IM02 09 G011/36500

Job ID: 680-244376-1

Project/Site: 125915/JM02 09 G011/36500

Client Sample ID: AF85225 Lab Sample ID: 680-244376-4

Matrix: Water

Date Collected: 12/11/23 11:50 Date Received: 12/14/23 10:32

Method: SW846 7470A - Mercury (CVAA)

Analyte Result Qualifier RL MDL Unit D Prepared Analyzed Dil Fac

Mercury 0.200 U 0.200 ug/L 12/15/23 09:10 12/15/23 16:08

Eurofins Savannah

2

3

4

5

7

8

10

10

Client: South Carolina Public Service Authority Project/Site: 125915/JM02 09 G011/36500

Job ID: 680-244376-1

Method: 7470A - Mercury (CVAA)

Lab Sample ID: MB 680-813640/1-A Client Sample ID: Method Blank

Matrix: Water

Analysis Batch: 813777

Prep Type: Total/NA

Prep Batch: 813640

MB MB

0.200 UF1

Dil Fac Result Qualifier RL **MDL** Unit Analyzed Analyte **Prepared** 0.200 <u>12/15/23 09:10</u> <u>12/15/23 12:50</u> Mercury 0.200 U ug/L

Lab Sample ID: LCS 680-813640/2-A Client Sample ID: Lab Control Sample

Matrix: Water

Analysis Batch: 813777

Prep Type: Total/NA **Prep Batch: 813640**

ug/L

Spike LCS LCS %Rec Added Result Qualifier Limits **Analyte** Unit D %Rec

2.50 80 - 120 Mercury 2.453 ug/L 98

Lab Sample ID: 680-244329-G-1-D MS Client Sample ID: Matrix Spike

Matrix: Water

Analysis Batch: 813777

Prep Type: Total/NA **Prep Batch: 813640**

0.8064

Sample Sample Spike MS MS %Rec Analyte Result Qualifier Added Result Qualifier Limits Unit %Rec

1.00

Lab Sample ID: 680-244329-G-1-E MSD Client Sample ID: Matrix Spike Duplicate

Matrix: Water

Mercury

Prep Type: Total/NA **Analysis Batch: 813777 Prep Batch: 813640**

%Rec

80 - 120

MSD MSD **RPD** Spike Sample Sample **Analyte** Result Qualifier Added Result Qualifier Unit %Rec Limits RPD Limit 0.200 U F1 0.7930 F1 Mercury 1.00 ug/L 79 80 - 120 2

QC Association Summary

Client: South Carolina Public Service Authority
Project/Site: 125915/JM02 09 G011/36500

Job ID: 680-244376-1

Metals

Prep Batch: 813640

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
680-244376-1	AF85222	Total/NA	Water	7470A	
680-244376-2	AF85223	Total/NA	Water	7470A	
680-244376-3	AF85224	Total/NA	Water	7470A	
680-244376-4	AF85225	Total/NA	Water	7470A	
MB 680-813640/1-A	Method Blank	Total/NA	Water	7470A	
LCS 680-813640/2-A	Lab Control Sample	Total/NA	Water	7470A	
680-244329-G-1-D MS	Matrix Spike	Total/NA	Water	7470A	
680-244329-G-1-E MSD	Matrix Spike Duplicate	Total/NA	Water	7470A	

Analysis Batch: 813777

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
680-244376-1	AF85222	Total/NA	Water	7470A	813640
680-244376-2	AF85223	Total/NA	Water	7470A	813640
680-244376-3	AF85224	Total/NA	Water	7470A	813640
680-244376-4	AF85225	Total/NA	Water	7470A	813640
MB 680-813640/1-A	Method Blank	Total/NA	Water	7470A	813640
LCS 680-813640/2-A	Lab Control Sample	Total/NA	Water	7470A	813640
680-244329-G-1-D MS	Matrix Spike	Total/NA	Water	7470A	813640
680-244329-G-1-E MSD	Matrix Spike Duplicate	Total/NA	Water	7470A	813640

5

6

8

9

10

<u>11</u>

13

Lab Chronicle

Client: South Carolina Public Service Authority Project/Site: 125915/JM02 09 G011/36500

Job ID: 680-244376-1

Lab Sample ID: 680-244376-1

Matrix: Water

Client Sample ID: AF85222

Date Collected: 12/11/23 13:19 Date Received: 12/14/23 10:32

	Batch	Batch		Dilution	Batch			Prepared
Prep Type	Туре	Method	Run	Factor	Number	Analyst	Lab	or Analyzed
Total/NA	Prep	7470A			813640	DW	EET SAV	12/15/23 09:10
Total/NA	Analysis	7470A		1	813777	DW	EET SAV	12/15/23 16:02

Lab Sample ID: 680-244376-2 **Client Sample ID: AF85223**

Date Collected: 12/11/23 10:24 Matrix: Water

Date Received: 12/14/23 10:32

	Batch	Batch		Dilution	Batch			Prepared
Prep Type	Type	Method	Run	Factor	Number	Analyst	Lab	or Analyzed
Total/NA	Prep	7470A			813640	DW	EET SAV	12/15/23 09:10
Total/NA	Analysis	7470A		1	813777	DW	EET SAV	12/15/23 16:04

Client Sample ID: AF85224 Lab Sample ID: 680-244376-3

Date Collected: 12/11/23 10:29 Matrix: Water

Date Received: 12/14/23 10:32

	Batch	Batch		Dilution	Batch			Prepared
Prep Type	Туре	Method	Run	Factor	Number	Analyst	Lab	or Analyzed
Total/NA	Prep	7470A			813640	DW	EET SAV	12/15/23 09:10
Total/NA	Analysis	7470A		1	813777	DW	EET SAV	12/15/23 16:06

Lab Sample ID: 680-244376-4 Client Sample ID: AF85225

Date Collected: 12/11/23 11:50 Matrix: Water

Date Received: 12/14/23 10:32

	Batch	Batch		Dilution	Batch			Prepared
Prep Type	Туре	Method	Run	Factor	Number	Analyst	Lab	or Analyzed
Total/NA	Prep	7470A			813640	DW	EET SAV	12/15/23 09:10
Total/NA	Analysis	7470A		1	813777	DW	EET SAV	12/15/23 16:08

Laboratory References:

EET SAV = Eurofins Savannah, 5102 LaRoche Avenue, Savannah, GA 31404, TEL (912)354-7858

Eurofins Savannah

santee cooper.

Smites Cooper One Riverwood Drive Monoks Comer, SC 29461 Phone: (843)761-8000 Ext. 5148 Fax: (843)761-4175

Chain of Custody

												1/9/
D182 GCOKK				antine t	T			200		LICENT	□ bp	
(3) (3) (3) (1) (1) (1) (1) (1) (1) (1) (1) (1) (1	Ci Particulate Mai		esbisol (S alou	чэн			© 6CB □ Kuq 558		os a	8H 🗆	IN O	90.6
NEDES SPORTURE	DXRF Soan		SØH))			oy b	□ Dissolve □ Rad 226		DNO ===	uz□ A□	oM □ BV □	□ cq □ cs
iii (in all a a a a a a a a a a a a a a a a a	Other Tests:		meiok Pa) Alb				Hq □ □ Dissolve	- 8	HE D BE	13.0	uM□	_ Be
ABECT STORE STOREM	A stitutoV 🗆 🗆		ea shqiri Qolu qua				□ Loral Co □ E Coli		10.0	ilo 🗀	3M 🗆	i Ri
Agricult Accepted Paragraph (2) Agricult Accepted (2) Agricult Acc	ndlu2 🛭			01.0 W Ø	1		⊞O!! & GI ∏AOC	N°C	HNO -	48.0	170	a D
(1) (2) (2) (1) (2) (3) (4) (4) (4) (4) (4) (4) (4) (4) (4) (4	utsioM % □ □ Ash	,		ojag 🗸			erbrigen 🗆 Hannt 🗅	PO4T	ald	us 🗆	UΚ	sy⊡
Jan 10 Just 13 anoman 13	-stamilly 🛚		p. (8)	OHEAL	ō _		D BTRX) j	ora –	- 9S □ -	_1.O.∏ - 97.□	- 9A □ IA □
Flyash	<u>[603]</u>	U	Test.	15		')S	ME	stnen	ann	(१११) इत्रा	Lam t	l 🥌
Date/Time/init for preservative:												
	amil	ateO	#	npjovee	J3	eq p\(\dagger):	Viecelv	əwiT	918Q	Employees	eq pλ:	ųsiupuli s i
Ргезегуяйуе Сой:												
Correct pH:- Yes No	9WJI_	əsed	#	nployee	J3	:Ag pə		amiT	əsed	Employee#	eq pAs	risiupnileA
I I	1035	ES 41/2	1		-	$\rightarrow \rightarrow$	A	OO.S.	E2/21/21	+655E		hmys
Somple Receiving (Internal Use Only)	əmiT	915Q	#	иріоуее	J3	ed pk:	Receiv	9miT	Sind	Employee#	ed by:	riziuprile#
						l						
80-244376 Chain of Cuatody	9											
												of 1
												9 16
- Veoletin of Custody	mn											Pade 16
		ĪĪ	7	~	Ī	Ī	ंडा।	7		PS-44	M 2	7528 1 ∀
			\vdash	H	\vdash	\vdash	LZ01	- - 	aho	182-441	M h	7758 1 ∀
			(,	tu <u>sol</u>			85 - 9AN		7758 1√
× 7/6m	70-74.	GW S	9	a	١	ηW WZ	bl8i	EZ/11/21		LS-94	M Z	2228 7 A
h h		v 2	Q Q	ெர	4	government-	O	6		general transport of the second of the secon		
opper project	ynA • €	Matrix(see below Preservative (see	Grab (G) or Composite (C)	Bottle type: (Glass- G/Plastic-P)	Total # of containers	Sample Collector	Collection Time	Collection Date			ŀ	
Amil guin olin əlqmız	• Repo	see b	() 당 ()	S 70	Cont	Colle	jon j	Š				(Ajuo
	nboM •	elow)		lass.	ners.	× 8	lme	ate	Í	mple Location scription		Labworks II (Internal usi
Comments	<u> </u>		<u> </u>	<u> </u>	F	K					enante de moi en en en en en en en en en en en en en	
quoto sizvienA							. _/		mosysda	osaataps@_		
3655 No	ा ७५ है।	SOME /	SI.	LS71			/	1		~~aatans@	SWALL	JIM AGUIJ
Rerun request for any flagged QC	k/Unit #.	lzsT\təs[c	ነባ		•	eqeq p	evits Ne	Date Re	3r	ielqiseA Joo	mail/Reg	Customer E
C/16-30/(cho) 1883												

Login Sample Receipt Checklist

Client: South Carolina Public Service Authority

Job Number: 680-244376-1

Login Number: 244376 List Source: Eurofins Savannah

List Number: 1

Creator: Stewart, Rendaisha

Question	Answer	Comment
Radioactivity wasn't checked or is = background as measured by a survey meter.</td <td>N/A</td> <td></td>	N/A	
The cooler's custody seal, if present, is intact.	True	
Sample custody seals, if present, are intact.	True	
The cooler or samples do not appear to have been compromised or tampered with.	True	
Samples were received on ice.	True	
Cooler Temperature is acceptable.	True	
Cooler Temperature is recorded.	True	
COC is present.	True	
COC is filled out in ink and legible.	True	
COC is filled out with all pertinent information.	True	
Is the Field Sampler's name present on COC?	True	
There are no discrepancies between the containers received and the COC.	True	
Samples are received within Holding Time (excluding tests with immediate HTs)	True	
Sample containers have legible labels.	True	
Containers are not broken or leaking.	True	
Sample collection date/times are provided.	True	
Appropriate sample containers are used.	True	
Sample bottles are completely filled.	True	
Sample Preservation Verified.	N/A	
There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs	True	
Containers requiring zero headspace have no headspace or bubble is <6mm (1/4").	N/A	
Multiphasic samples are not present.	True	
Samples do not require splitting or compositing.	True	
Residual Chlorine Checked.	N/A	

Eurofins Savannah

3

4

5

7

q

10

12

13

Accreditation/Certification Summary

Client: South Carolina Public Service Authority Project/Site: 125915/JM02 09 G011/36500

Job ID: 680-244376-1

Laboratory: Eurofins Savannah

The accreditations/certifications listed below are applicable to this report.

Authority	Program	Identification Number	Expiration Date
South Carolina	State	98001	06-30-24

ANALYTICAL REPORT

PREPARED FOR

Attn: Linda Williams
South Carolina Public Service Authority
Santee Cooper
PO BOX 2946101
Moncks Corner, South Carolina 29461-2901

Generated 8/25/2023 9:18:19 AM

JOB DESCRIPTION

125915/JM02-08-G01.1/36500

JOB NUMBER

680-237959-2

Eurofins Savannah 5102 LaRoche Avenue Savannah GA 31404

Eurofins Savannah

Job Notes

This report may not be reproduced except in full, and with written approval from the laboratory. The results relate only to the samples tested. For questions please contact the Project Manager at the e-mail address or telephone number listed on this page.

The test results in this report relate only to the samples as received by the laboratory and will meet all requirements of the methodology, with any exceptions noted. This report shall not be reproduced except in full, without the express written approval of the laboratory. All questions should be directed to the Eurofins Environment Testing Southeast, LLC Project Manager.

Authorization

Generated 8/25/2023 9:18:19 AM

Authorized for release by Jerry Lanier, Project Manager I <u>Jerry.Lanier@et.eurofinsus.com</u> (912)250-0281 Client: South Carolina Public Service Authority Project/Site: 125915/JM02-08-G01.1/36500

Laboratory Job ID: 680-237959-2

Table of Contents

Cover Page	1
Table of Contents	3
Case Narrative	4
Sample Summary	5
Method Summary	6
Definitions	7
Detection Summary	8
Client Sample Results	11
QC Sample Results	28
QC Association	30
Chronicle	32
Chain of Custody	36
Receipt Checklists	39
Cartification Summary	4۲

3

4

<u>'</u>

9

10

Case Narrative

Client: South Carolina Public Service Authority Project/Site: 125915/JM02-08-G01.1/36500

Job ID: 680-237959-2

Job ID: 680-237959-2

Laboratory: Eurofins Savannah

Narrative

Job Narrative 680-237959-2

Receipt

The samples were received on 7/20/2023 9:45 AM. Unless otherwise noted below, the samples arrived in good condition, and, where required, properly preserved and on ice. The temperature of the cooler at receipt time was 21.7°C

Metals

No additional analytical or quality issues were noted, other than those described above or in the Definitions/ Glossary page.

3

4

5

7

8

3

- -

14

Sample Summary

Client: South Carolina Public Service Authority Project/Site: 125915/JM02-08-G01.1/36500

Job ID: 680-237959-2

Lab Sample ID	Client Sample ID	Matrix	Collected	Received
680-237959-1	AF68738	Water	07/12/23 12:28	07/20/23 09:45
680-237959-2	AF68732	Water	07/12/23 14:32	07/20/23 09:45
680-237959-3	AF68740	Water	07/12/23 11:01	07/20/23 09:45
680-237959-4	AF68743	Water	07/12/23 13:23	07/20/23 09:45
680-237959-5	AF68744	Water	07/12/23 13:28	07/20/23 09:45
680-237959-8	AF68725	Water	07/18/23 11:49	07/20/23 09:45
680-237959-9	AF68742	Water	07/18/23 14:53	07/20/23 09:45
680-237959-10	AF68747	Water	07/17/23 10:08	07/20/23 09:45
680-237959-11	AF68731	Water	07/17/23 11:15	07/20/23 09:45
680-237959-12	AF68723	Water	07/17/23 13:00	07/20/23 09:45
680-237959-13	AF68724	Water	07/17/23 13:05	07/20/23 09:45
680-237959-14	AF68746	Water	07/17/23 14:24	07/20/23 09:45
680-237959-15	AF68726	Water	07/13/23 14:16	07/20/23 09:45
680-237959-16	AF68727	Water	07/13/23 14:21	07/20/23 09:45
680-237959-17	AF68730	Water	07/13/23 10:01	07/20/23 09:45
680-237959-18	AF68729	Water	07/13/23 11:24	07/20/23 09:45
680-237959-19	AF68728	Water	07/13/23 13:32	07/20/23 09:45

Method Summary

Client: South Carolina Public Service Authority Project/Site: 125915/JM02-08-G01.1/36500

Job ID: 680-237959-2

Method	Method Description	Protocol	Laboratory
6010D	Metals (ICP)	SW846	EET SAV
6020B	Metals (ICP/MS)	SW846	EET SAV
3005A	Preparation, Total Recoverable or Dissolved Metals	SW846	EET SAV

Protocol References:

SW846 = "Test Methods For Evaluating Solid Waste, Physical/Chemical Methods", Third Edition, November 1986 And Its Updates.

Laboratory References:

EET SAV = Eurofins Savannah, 5102 LaRoche Avenue, Savannah, GA 31404, TEL (912)354-7858

Definitions/Glossary

Client: South Carolina Public Service Authority

Project/Site: 125915/JM02-08-G01.1/36500

Job ID: 680-237959-2

Qualifiers

PQL

QC RER

RL RPD

TEF TEQ

TNTC

PRES

Practical Quantitation Limit

Relative Error Ratio (Radiochemistry)

Toxicity Equivalent Factor (Dioxin)

Too Numerous To Count

Toxicity Equivalent Quotient (Dioxin)

Reporting Limit or Requested Limit (Radiochemistry)

Relative Percent Difference, a measure of the relative difference between two points

Presumptive Quality Control

Metals	
Qualifier	Qualifier Description
4	MS, MSD: The analyte present in the original sample is greater than 4 times the matrix spike concentration; therefore, control limits are not applicable.
U	Indicates the analyte was analyzed for but not detected.

Glossary	
Abbreviation	These commonly used abbreviations may or may not be present in this report.
¤	Listed under the "D" column to designate that the result is reported on a dry weight basis
%R	Percent Recovery
CFL	Contains Free Liquid
CFU	Colony Forming Unit
CNF	Contains No Free Liquid
DER	Duplicate Error Ratio (normalized absolute difference)
Dil Fac	Dilution Factor
DL	Detection Limit (DoD/DOE)
DL, RA, RE, IN	Indicates a Dilution, Re-analysis, Re-extraction, or additional Initial metals/anion analysis of the sample
DLC	Decision Level Concentration (Radiochemistry)
EDL	Estimated Detection Limit (Dioxin)
LOD	Limit of Detection (DoD/DOE)
LOQ	Limit of Quantitation (DoD/DOE)
MCL	EPA recommended "Maximum Contaminant Level"
MDA	Minimum Detectable Activity (Radiochemistry)
MDC	Minimum Detectable Concentration (Radiochemistry)
MDL	Method Detection Limit
ML	Minimum Level (Dioxin)
MPN	Most Probable Number
MQL	Method Quantitation Limit
NC	Not Calculated
ND	Not Detected at the reporting limit (or MDL or EDL if shown)
NEG	Negative / Absent
POS	Positive / Present

J

4

5

8

40

11

Client: South Carolina Public Service Authority Project/Site: 125915/JM02-08-G01.1/36500

Client Sample ID: AF68738

Job ID: 680-237959-2

Lab Sample ID: 680-237959-1

4

5

7

10

12

14

Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type
Calcium	97000		500		ug/L	1	_	6010D	Total
									Recoverable
Arsenic	5.72		3.00		ug/L	1		6020B	Total
Destina	70.0		5.00			4		COOOD	Recoverable
Barium	79.2		5.00		ug/L	1		6020B	Total Recoverable
Chromium	29.6		5.00		ug/L			6020B	Total
			5.55		g, <u> </u>	•			Recoverable
Cobalt	2.31		0.500		ug/L	1		6020B	Total
									Recoverable
Lead	11.0		2.50		ug/L	1		6020B	Total
									Recoverable
Client Sample ID: AF68732						Lal	b S	Sample ID	: 680-237959-2
Analida	Danulé	Ovelifien	D.	MDI	I I mid	D:: F	_	Madhad	Duan Tuna
Analyte		Qualifier	RL	MDL	Unit		<u>D</u>	Method	Prep Type
Calcium	220000		500		ug/L	1		6010D	Total Recoverable
Barium	94.3		5.00		ug/L	1		6020B	Total
Banam	01.0		0.00		agri			00208	Recoverable
Client Sample ID: AF68740						l al	h S	Sample ID	: 680-237959-3
						Lai		Jampie ID	. 000-201 333-3
Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type
Calcium	348000		500		ug/L	1	_	6010D	Total
									Recoverable
Arsenic	443		3.00		ug/L	1		6020B	Total
Basilian	100		5.00					C000D	Recoverable
Barium	186		5.00		ug/L	1		6020B	Total Recoverable
Client Sample ID: AF68743						Lal	b S	Sample ID	: 680-237959-4
Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type
Calcium	19200		500		ug/L	1	_	6010D	Total
									Recoverable
Barium	35.1		5.00		ug/L	1		6020B	Total
									Recoverable
Client Sample ID: AF68744						Lal	b S	Sample ID	: 680-237959-5
Anglyto	Pocult	Qualifier	RL	MDI	Unit	Dil Fac	_	Method	Prep Type
Analyte Calcium	20300	Quannet	500	MIDL	ug/L	<u></u>	_	6010D	Total
Calcium	20300		300		ug/L	'		0010D	Recoverable
Barium	36.9		5.00		ug/L	1		6020B	Total
					· ·				Recoverable
Client Sample ID: AF68725						l al	h S	Sample ID	: 680-237959-8
Chefit Sample ID. At 00723						Lai	0 0	Dample ID	. 000-237 333-0
Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type
Calcium	400000		500		ug/L	1		6010D	Total
									Recoverable
Barium	270		5.00		ug/L	1		6020B	Total
Cohalt	0.500		0.500		ua/l	4		6020B	Recoverable
Cobalt	0.500		0.500		ug/L	1		UUZUD	Total Recoverable
									Noovelable

This Detection Summary does not include radiochemical test results.

Eurofins Savannah

Client: South Carolina Public Service Authority Project/Site: 125915/JM02-08-G01.1/36500

Barium

Job ID: 680-237959-2

Client Sample ID: AF68742						Lak	s S	ample ID:	680-237959-9
– Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type
Calcium	61400		500		ug/L	1	_	6010D	Total
									Recoverable
Barium	8.14		5.00		ug/L	1		6020B	Total
_									Recoverable
Client Sample ID: AF68747						Lab	Sa	mple ID: (680-237959-10
	Result	Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type
Calcium	519000		500		ug/L	1	_	6010D	Total
									Recoverable
Barium	36.3		5.00		ug/L	1		6020B	Total
									Recoverable
Cobalt	4.31		0.500		ug/L	1		6020B	Total
_									Recoverable
Client Sample ID: AF68731						Lab	Sa	mple ID:	680-237959-1
 Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type
Calcium	176000		500		ug/L	1	_	6010D	Total

Client Sample ID: AF68723	Lab Sample ID: 680-237959-12

5.00

ug/L

153

Analyte	Result	Qualifier	RL MI	L Unit	Dil Fac	D	Method	Prep Type
Calcium	139000		000	ug/L	1	_	6010D	Total
								Recoverable
Barium	21.6	5	.00	ug/L	1		6020B	Total
								Recoverable
Cobalt	0.925	0.5	600	ug/L	1		6020B	Total
								Recoverable

Client Sample ID: AF68724 Lab Sample ID: 680-237959-13

Analyte	Result Qu	ualifier RL	MDL (Unit	Dil Fac	D	Method	Prep Type
Calcium	139000	500		ug/L	1	_	6010D	Total
								Recoverable
Barium	22.9	5.00	ι	ug/L	1		6020B	Total
								Recoverable
Cobalt	0.975	0.500	ι	ug/L	1		6020B	Total
								Recoverable

Client Sample ID: AF68746 Lab Sample ID: 680-237959-14

Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type
Calcium	97500		500		ug/L	1	_	6010D	Total
									Recoverable
Barium	191		5.00		ug/L	1		6020B	Total
									Recoverable
Beryllium	0.695		0.500		ug/L	1		6020B	Total
									Recoverable
Cobalt	18.8		0.500		ug/L	1		6020B	Total
									Recoverable

This Detection Summary does not include radiochemical test results.

Eurofins Savannah

Recoverable

Total Recoverable

6020B

Client: South Carolina Public Service Authority
Project/Site: 125915/JM02-08-G01.1/36500

Client Sample ID: AF68726

Job ID: 680-237959-2

Lab Sample ID: 680-237959-15

4

7

9

11

13

Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type
Calcium	1160000		5000		ug/L	10	_	6010D	Total
									Recoverable
Arsenic	22.3		3.00		ug/L	1		6020B	Total
Barium	49.8		5.00		ua/l	1		6020B	Recoverable
Barium	49.8		5.00		ug/L	1		0020B	Total Recoverable
									Necoverable
Client Sample ID: AF68727						Lab	Sa	mple ID:	680-237959-16
Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type
Calcium	1230000		5000		ug/L		_	6010D	Total
									Recoverable
Arsenic	18.2		3.00		ug/L	1		6020B	Total
									Recoverable
Barium	46.7		5.00		ug/L	1		6020B	Total
									Recoverable
Client Sample ID: AF68730						Lab	Sa	mple ID:	680-237959-17
Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type
Calcium	165000		500		ug/L		_	6010D	Total
					· ·				Recoverable
Barium	85.4		5.00		ug/L	1		6020B	Total
									Recoverable
Cobalt	0.735		0.500		ug/L	1		6020B	Total
									Recoverable
Client Sample ID: AF68729						Lab	Sa	mple ID:	680-237959-18
Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type
Calcium	688000		500		ug/L		_	6010D	Total
					J				Recoverable
Arsenic	7.80		3.00		ug/L	1		6020B	Total
									Recoverable
Barium	133		5.00		ug/L	1		6020B	Total
									Recoverable
Client Sample ID: AF68728						Lab	Sa	mple ID:	680-237959-19
Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type
Calcium	832000		5000		ug/L		_	6010D	Total
					J. –				Recoverable
Arsenic	6.75		3.00		ug/L	1		6020B	Total
					-				Recoverable
Barium	82.3		5.00		ug/L	1		6020B	Total
									Recoverable
									Total Recove Total

Client: South Carolina Public Service Authority Project/Site: 125915/JM02-08-G01.1/36500

Client Sample ID: AF68738 Lab Sample ID: 680-237959-1

Matrix: Water

Job ID: 680-237959-2

Date Collected: 07/12/23 12:28 Date Received: 07/20/23 09:45

Method: SW846 6010D - Metals (ICF	P) - Total Reco	verable							
Analyte	Result Q	ualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Calcium	97000		500		ug/L		08/24/23 05:25	08/24/23 10:28	1
Selenium	20.0 U		20.0		ug/L		08/24/23 05:25	08/24/23 10:28	1

Method: SW846 6020B - Metals (ICP/MS) - Total Recoverable												
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac			
Antimony	5.00	U	5.00		ug/L		08/24/23 05:25	08/24/23 11:15	1			
Arsenic	5.72		3.00		ug/L		08/24/23 05:25	08/24/23 11:15	1			
Barium	79.2		5.00		ug/L		08/24/23 05:25	08/24/23 11:15	1			
Beryllium	0.500	U	0.500		ug/L		08/24/23 05:25	08/24/23 11:15	1			
Cadmium	0.500	U	0.500		ug/L		08/24/23 05:25	08/24/23 11:15	1			
Chromium	29.6		5.00		ug/L		08/24/23 05:25	08/24/23 11:15	1			
Cobalt	2.31		0.500		ug/L		08/24/23 05:25	08/24/23 11:15	1			
Lead	11.0		2.50		ug/L		08/24/23 05:25	08/24/23 11:15	1			
Thallium	1.00	U	1.00		ug/L		08/24/23 05:25	08/24/23 11:15	1			

Client: South Carolina Public Service Authority Project/Site: 125915/JM02-08-G01.1/36500

Lab Sample ID: 680-237959-2

b Sample 1b. 000-237 939-2

Matrix: Water

Job ID: 680-237959-2

Client Sample ID: AF68732

Date Collected: 07/12/23 14:32 Date Received: 07/20/23 09:45

Method: SW846 6010D - Metals (ICF	P) - Total Red	coverable							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Calcium	220000		500		ug/L		08/24/23 05:25	08/24/23 10:21	1
Selenium 	20.0	U	20.0		ug/L		08/24/23 05:25	08/24/23 10:21	1

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Antimony	5.00	U	5.00		ug/L		08/24/23 05:25	08/24/23 11:02	1
Arsenic	3.00	U	3.00		ug/L		08/24/23 05:25	08/24/23 11:02	1
Barium	94.3		5.00		ug/L		08/24/23 05:25	08/24/23 11:02	1
Beryllium	0.500	U	0.500		ug/L		08/24/23 05:25	08/24/23 11:02	1
Cadmium	0.500	U	0.500		ug/L		08/24/23 05:25	08/24/23 11:02	1
Chromium	5.00	U	5.00		ug/L		08/24/23 05:25	08/24/23 11:02	1
Cobalt	0.500	U	0.500		ug/L		08/24/23 05:25	08/24/23 11:02	1
Lead	2.50	U	2.50		ug/L		08/24/23 05:25	08/24/23 11:02	1
Thallium	1.00	U	1.00		ug/L		08/24/23 05:25	08/24/23 11:02	1

2

4

6

0

10

11

Client: South Carolina Public Service Authority Project/Site: 125915/JM02-08-G01.1/36500

Lab Sample ID: 680-237959-3

Matrix: Water

Job ID: 680-237959-2

Client Sample ID: AF68740

Date Collected: 07/12/23 11:01 Date Received: 07/20/23 09:45

ethod: SW846 6010D - Metals (ICP) - Total Recoverable									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Calcium	348000		500		ug/L		08/24/23 05:25	08/24/23 10:30	1
Selenium	20.0	U	20.0		ug/L		08/24/23 05:25	08/24/23 10:30	1

Method: SW846 6020B - Metals (ICP/MS) - Total Recoverable									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Antimony	5.00	U	5.00		ug/L		08/24/23 05:25	08/24/23 11:19	1
Arsenic	443		3.00		ug/L		08/24/23 05:25	08/24/23 11:19	1
Barium	186		5.00		ug/L		08/24/23 05:25	08/24/23 11:19	1
Beryllium	0.500	U	0.500		ug/L		08/24/23 05:25	08/24/23 11:19	1
Cadmium	0.500	U	0.500		ug/L		08/24/23 05:25	08/24/23 11:19	1
Chromium	5.00	U	5.00		ug/L		08/24/23 05:25	08/24/23 11:19	1
Cobalt	0.500	U	0.500		ug/L		08/24/23 05:25	08/24/23 11:19	1
Lead	2.50	U	2.50		ug/L		08/24/23 05:25	08/24/23 11:19	1
Thallium	1.00	U	1.00		ua/l		08/24/23 05:25	08/24/23 11:19	1

4

6

8

9

10

12

Client: South Carolina Public Service Authority Project/Site: 125915/JM02-08-G01.1/36500

Lab Sample ID: 680-237959-4

Matrix: Water

Job ID: 680-237959-2

Client Sample ID: AF68743

Date Collected: 07/12/23 13:23

Date Received: 07/20/23 09:45

Method: SW846 6010D - Metals (ICP) - Total Red	coverable							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Calcium	19200		500		ug/L		08/24/23 05:25	08/24/23 10:33	1
Selenium	20.0	U	20.0		ug/L		08/24/23 05:25	08/24/23 10:33	1

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Antimony	5.00	U	5.00		ug/L		08/24/23 05:25	08/24/23 11:23	1
Arsenic	3.00	U	3.00		ug/L		08/24/23 05:25	08/24/23 11:23	1
Barium	35.1		5.00		ug/L		08/24/23 05:25	08/24/23 11:23	1
Beryllium	0.500	U	0.500		ug/L		08/24/23 05:25	08/24/23 11:23	1
Cadmium	0.500	U	0.500		ug/L		08/24/23 05:25	08/24/23 11:23	1
Chromium	5.00	U	5.00		ug/L		08/24/23 05:25	08/24/23 11:23	1
Cobalt	0.500	U	0.500		ug/L		08/24/23 05:25	08/24/23 11:23	1
Lead	2.50	U	2.50		ug/L		08/24/23 05:25	08/24/23 11:23	1
Thallium	1.00	U	1.00		ug/L		08/24/23 05:25	08/24/23 11:23	1

Δ

6

0

10

11

12

4 /

Client: South Carolina Public Service Authority Project/Site: 125915/JM02-08-G01.1/36500

Lab Sample ID: 680-237959-5

Matrix: Water

Job ID: 680-237959-2

Client Sample ID: AF68744

Date Collected: 07/12/23 13:28 Date Received: 07/20/23 09:45

	Method: SW846 6010D - Metals (IC	CP) - Total Red	coverable							
	Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
	Calcium	20300		500		ug/L		08/24/23 05:25	08/24/23 10:35	1
L	Selenium	20.0	U	20.0		ug/L		08/24/23 05:25	08/24/23 10:35	1

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Antimony	5.00	U	5.00		ug/L		08/24/23 05:25	08/24/23 11:27	1
Arsenic	3.00	U	3.00		ug/L		08/24/23 05:25	08/24/23 11:27	1
Barium	36.9		5.00		ug/L		08/24/23 05:25	08/24/23 11:27	1
Beryllium	0.500	U	0.500		ug/L		08/24/23 05:25	08/24/23 11:27	1
Cadmium	0.500	U	0.500		ug/L		08/24/23 05:25	08/24/23 11:27	1
Chromium	5.00	U	5.00		ug/L		08/24/23 05:25	08/24/23 11:27	1
Cobalt	0.500	U	0.500		ug/L		08/24/23 05:25	08/24/23 11:27	1
Lead	2.50	U	2.50		ug/L		08/24/23 05:25	08/24/23 11:27	1
Thallium	1.00	U	1.00		ug/L		08/24/23 05:25	08/24/23 11:27	1

Client: South Carolina Public Service Authority Project/Site: 125915/JM02-08-G01.1/36500

Lab Sample ID: 680-237959-8

Matrix: Water

Job ID: 680-237959-2

Client Sample ID: AF68725

Date Collected: 07/18/23 11:49 Date Received: 07/20/23 09:45

Method: SW846 6010D - Metals (ICF) - Total Re	coverable							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Calcium	400000		500		ug/L		08/24/23 05:25	08/24/23 10:47	1
Selenium	20.0	U	20.0		ug/L		08/24/23 05:25	08/24/23 10:47	1
	20.0	U	20.0		ug/L		00/24/23 05.25	00/24/23 10.47	

Method: SW846 6020B - M	etals (ICP/MS) - Total	l Recoverabl	е						
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Antimony	5.00	U	5.00		ug/L		08/24/23 05:25	08/24/23 11:47	1
Arsenic	3.00	U	3.00		ug/L		08/24/23 05:25	08/24/23 11:47	1
Barium	270		5.00		ug/L		08/24/23 05:25	08/24/23 11:47	1
Beryllium	0.500	U	0.500		ug/L		08/24/23 05:25	08/24/23 11:47	1
Cadmium	0.500	U	0.500		ug/L		08/24/23 05:25	08/24/23 11:47	1
Chromium	5.00	U	5.00		ug/L		08/24/23 05:25	08/24/23 11:47	1
Cobalt	0.500		0.500		ug/L		08/24/23 05:25	08/24/23 11:47	1
Lead	2.50	U	2.50		ug/L		08/24/23 05:25	08/24/23 11:47	1
Thallium	1.00	U	1.00		ug/L		08/24/23 05:25	08/24/23 11:47	1

4

5

7

Ö

10

11

13

Client: South Carolina Public Service Authority Project/Site: 125915/JM02-08-G01.1/36500

Lab Sample ID: 680-237959-9

Matrix: Water

Job ID: 680-237959-2

Client Sample ID: AF68742

Date Collected: 07/18/23 14:53 Date Received: 07/20/23 09:45

Method: SW846 6010D - Metals (ICF	P) - Total Red	coverable							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Calcium	61400		500		ug/L		08/24/23 05:25	08/24/23 10:49	1
Selenium 	20.0	U	20.0		ug/L		08/24/23 05:25	08/24/23 10:49	1

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Antimony	5.00	U	5.00		ug/L		08/24/23 05:25	08/24/23 11:51	1
Arsenic	3.00	U	3.00		ug/L		08/24/23 05:25	08/24/23 11:51	1
Barium	8.14		5.00		ug/L		08/24/23 05:25	08/24/23 11:51	1
Beryllium	0.500	U	0.500		ug/L		08/24/23 05:25	08/24/23 11:51	1
Cadmium	0.500	U	0.500		ug/L		08/24/23 05:25	08/24/23 11:51	1
Chromium	5.00	U	5.00		ug/L		08/24/23 05:25	08/24/23 11:51	1
Cobalt	0.500	U	0.500		ug/L		08/24/23 05:25	08/24/23 11:51	1
Lead	2.50	U	2.50		ug/L		08/24/23 05:25	08/24/23 11:51	1
Thallium	1.00	U	1.00		ua/L		08/24/23 05:25	08/24/23 11:51	1

Client: South Carolina Public Service Authority

Project/Site: 125915/JM02-08-G01.1/36500

Lab Sample ID: 680-237959-10

Matrix: Water

Job ID: 680-237959-2

Client Sample ID: AF68747 Date Collected: 07/17/23 10:08 Date Received: 07/20/23 09:45

Method: SW846 6010D - Metals (IC	P) - Total Red	coverable							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Calcium	519000		500		ug/L		08/24/23 05:25	08/24/23 10:51	1
Selenium	20.0	U	20.0		ug/L		08/24/23 05:25	08/24/23 10:51	1

Method: SW846 6020B - Me	tals (ICP/MS) - Total	Recoverable	9						
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Antimony	5.00	U	5.00		ug/L		08/24/23 05:25	08/24/23 11:55	1
Arsenic	3.00	U	3.00		ug/L		08/24/23 05:25	08/24/23 11:55	1
Barium	36.3		5.00		ug/L		08/24/23 05:25	08/24/23 11:55	1
Beryllium	0.500	U	0.500		ug/L		08/24/23 05:25	08/24/23 11:55	1
Cadmium	0.500	U	0.500		ug/L		08/24/23 05:25	08/24/23 11:55	1
Chromium	5.00	U	5.00		ug/L		08/24/23 05:25	08/24/23 11:55	1
Cobalt	4.31		0.500		ug/L		08/24/23 05:25	08/24/23 11:55	1
Lead	2.50	U	2.50		ug/L		08/24/23 05:25	08/24/23 11:55	1
Thallium	1.00	U	1.00		ug/L		08/24/23 05:25	08/24/23 11:55	1

Client: South Carolina Public Service Authority Project/Site: 125915/JM02-08-G01.1/36500

Lab Sample ID: 680-237959-11

Matrix: Water

Job ID: 680-237959-2

Client Sample ID: AF68731

Date Collected: 07/17/23 11:15

Date Received: 07/20/23 09:45

Method: SW846 6010D - Metals (ICF	P) - Total Red	coverable							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Calcium	176000		500		ug/L		08/24/23 05:25	08/24/23 10:54	1
Selenium	20.0	U	20.0		ug/L		08/24/23 05:25	08/24/23 10:54	1
<u> </u>									

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Antimony	5.00	U	5.00		ug/L		08/24/23 05:25	08/24/23 11:59	1
Arsenic	3.00	U	3.00		ug/L		08/24/23 05:25	08/24/23 11:59	1
Barium	153		5.00		ug/L		08/24/23 05:25	08/24/23 11:59	1
Beryllium	0.500	U	0.500		ug/L		08/24/23 05:25	08/24/23 11:59	1
Cadmium	0.500	U	0.500		ug/L		08/24/23 05:25	08/24/23 11:59	1
Chromium	5.00	U	5.00		ug/L		08/24/23 05:25	08/24/23 11:59	1
Cobalt	0.500	U	0.500		ug/L		08/24/23 05:25	08/24/23 11:59	1
Lead	2.50	U	2.50		ug/L		08/24/23 05:25	08/24/23 11:59	1
Thallium	1.00	U	1.00		ug/L		08/24/23 05:25	08/24/23 11:59	1

_

Δ

5

7

8

9

11

Client: South Carolina Public Service Authority Project/Site: 125915/JM02-08-G01.1/36500

Client Sample ID: AF68723 Lab Sample ID: 680-237959-12 Date Collected: 07/17/23 13:00

Matrix: Water

Job ID: 680-237959-2

Date Received: 07/20/23 09:45

Method: SW846 6010D - Metals (ICP) - Total Recoverable										
	Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
	Calcium	139000		500		ug/L		08/24/23 05:25	08/24/23 10:56	1
	Selenium	20.0	U	20.0		ug/L		08/24/23 05:25	08/24/23 10:56	1

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Antimony	5.00	U	5.00		ug/L		08/24/23 05:25	08/24/23 12:03	1
Arsenic	3.00	U	3.00		ug/L		08/24/23 05:25	08/24/23 12:03	1
Barium	21.6		5.00		ug/L		08/24/23 05:25	08/24/23 12:03	1
Beryllium	0.500	U	0.500		ug/L		08/24/23 05:25	08/24/23 12:03	1
Cadmium	0.500	U	0.500		ug/L		08/24/23 05:25	08/24/23 12:03	1
Chromium	5.00	U	5.00		ug/L		08/24/23 05:25	08/24/23 12:03	1
Cobalt	0.925		0.500		ug/L		08/24/23 05:25	08/24/23 12:03	1
Lead	2.50	U	2.50		ug/L		08/24/23 05:25	08/24/23 12:03	1
Thallium	1.00	U	1.00		ug/L		08/24/23 05:25	08/24/23 12:03	1

Client: South Carolina Public Service Authority Project/Site: 125915/JM02-08-G01.1/36500

Client Sample ID: AF68724

Lab Sample ID: 680-237959-13

Matrix: Water

Job ID: 680-237959-2

Date Collected: 07/17/23 13:05 Date Received: 07/20/23 09:45

Method: SW846 6010D - Metals (ICP) - Total Recoverable										
	Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
	Calcium	139000		500		ug/L		08/24/23 05:25	08/24/23 10:58	1
	Selenium	20.0	U	20.0		ug/L		08/24/23 05:25	08/24/23 10:58	1
			U							

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Antimony	5.00	U	5.00		ug/L		08/24/23 05:25	08/24/23 12:07	1
Arsenic	3.00	U	3.00		ug/L		08/24/23 05:25	08/24/23 12:07	1
Barium	22.9		5.00		ug/L		08/24/23 05:25	08/24/23 12:07	1
Beryllium	0.500	U	0.500		ug/L		08/24/23 05:25	08/24/23 12:07	1
Cadmium	0.500	U	0.500		ug/L		08/24/23 05:25	08/24/23 12:07	1
Chromium	5.00	U	5.00		ug/L		08/24/23 05:25	08/24/23 12:07	1
Cobalt	0.975		0.500		ug/L		08/24/23 05:25	08/24/23 12:07	1
Lead	2.50	U	2.50		ug/L		08/24/23 05:25	08/24/23 12:07	1
Thallium	1.00	U	1.00		ug/L		08/24/23 05:25	08/24/23 12:07	1

-

6

8

9

10

4.0

Client: South Carolina Public Service Authority Project/Site: 125915/JM02-08-G01.1/36500

Lab Sample ID: 680-237959-14

Matrix: Water

Job ID: 680-237959-2

Client Sample ID: AF68746 Date Collected: 07/17/23 14:24

Date Received: 07/20/23 09:45

Method: SW846 6010D - Metals (ICP) - Total Recoverable RL MDL Unit Dil Fac Result Qualifier Prepared Analyzed 97500 500 ug/L 08/24/23 05:25 08/24/23 11:01 Calcium 20.0 U 20.0 08/24/23 05:25 Selenium ug/L 08/24/23 11:01

Method: SW846 6020B - Metals (ICP/MS) - Total Recoverable									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Antimony	5.00	U	5.00		ug/L		08/24/23 05:25	08/24/23 12:11	1
Arsenic	3.00	U	3.00		ug/L		08/24/23 05:25	08/24/23 12:11	1
Barium	191		5.00		ug/L		08/24/23 05:25	08/24/23 12:11	1
Beryllium	0.695		0.500		ug/L		08/24/23 05:25	08/24/23 12:11	1
Cadmium	0.500	U	0.500		ug/L		08/24/23 05:25	08/24/23 12:11	1
Chromium	5.00	U	5.00		ug/L		08/24/23 05:25	08/24/23 12:11	1
Cobalt	18.8		0.500		ug/L		08/24/23 05:25	08/24/23 12:11	1
Lead	2.50	U	2.50		ug/L		08/24/23 05:25	08/24/23 12:11	1
Thallium	1.00	U	1.00		ug/L		08/24/23 05:25	08/24/23 12:11	1

4

6

8

9

10

12

Client: South Carolina Public Service Authority Project/Site: 125915/JM02-08-G01.1/36500

Lab Sample ID: 680-237959-15

Job ID: 680-237959-2

Matrix: Water

Date Collected: 07/13/23 14:16 Date Received: 07/20/23 09:45

Client Sample ID: AF68726

Method: SW846 6010D - Metals (ICP) - Total Recoverable										
Analyte	Result Qualifier	RL	MDL Unit	D	Prepared	Analyzed	Dil Fac			
Calcium	1160000	5000	ug/L		08/24/23 05:25	08/25/23 09:25	10			
Selenium	20.0 U	20.0	ug/L		08/24/23 05:25	08/24/23 11:03	1			

Method: SW846 6020B -	Metals (ICP/MS) - Total	Recoverable	е						
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Antimony	5.00	U	5.00		ug/L		08/24/23 05:25	08/24/23 12:15	1
Arsenic	22.3		3.00		ug/L		08/24/23 05:25	08/24/23 12:15	1
Barium	49.8		5.00		ug/L		08/24/23 05:25	08/24/23 12:15	1
Beryllium	0.500	U	0.500		ug/L		08/24/23 05:25	08/24/23 12:15	1
Cadmium	0.500	U	0.500		ug/L		08/24/23 05:25	08/24/23 12:15	1
Chromium	5.00	U	5.00		ug/L		08/24/23 05:25	08/24/23 12:15	1
Cobalt	0.500	U	0.500		ug/L		08/24/23 05:25	08/24/23 12:15	1
Lead	2.50	U	2.50		ug/L		08/24/23 05:25	08/24/23 12:15	1
Thallium	1.00	U	1.00		ug/L		08/24/23 05:25	08/24/23 12:15	1

Client: South Carolina Public Service Authority Project/Site: 125915/JM02-08-G01.1/36500

Lab Sample ID: 680-237959-16

Matrix: Water

Job ID: 680-237959-2

Client Sample ID: AF68727 Date Collected: 07/13/23 14:21

Date Received: 07/20/23 09:45

Method: SW846 6010D - Metals (ICP) - Total Recoverable										
Analyte	R	esult	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Calciur	n 123	0000		5000		ug/L		08/24/23 05:25	08/25/23 09:27	10
Seleniu	m	20.0	U	20.0		ug/L		08/24/23 05:25	08/24/23 11:05	1

Method: SW846 6020B -	Metals (ICP/MS) - Total	Recoverable	е						
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Antimony	5.00	U	5.00		ug/L		08/24/23 05:25	08/24/23 12:19	1
Arsenic	18.2		3.00		ug/L		08/24/23 05:25	08/24/23 12:19	1
Barium	46.7		5.00		ug/L		08/24/23 05:25	08/24/23 12:19	1
Beryllium	0.500	U	0.500		ug/L		08/24/23 05:25	08/24/23 12:19	1
Cadmium	0.500	U	0.500		ug/L		08/24/23 05:25	08/24/23 12:19	1
Chromium	5.00	U	5.00		ug/L		08/24/23 05:25	08/24/23 12:19	1
Cobalt	0.500	U	0.500		ug/L		08/24/23 05:25	08/24/23 12:19	1
Lead	2.50	U	2.50		ug/L		08/24/23 05:25	08/24/23 12:19	1
Thallium	1.00	U	1.00		ug/L		08/24/23 05:25	08/24/23 12:19	1

4

6

Ö

10

11

13

Client: South Carolina Public Service Authority Project/Site: 125915/JM02-08-G01.1/36500

Lab Sample ID: 680-237959-17

Matrix: Water

Job ID: 680-237959-2

Client Sample ID: AF68730 Date Collected: 07/13/23 10:01

Date Received: 07/20/23 09:45

Method: SW846 6010D - Metals (ICP) - Total Recoverable										
	Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
	Calcium	165000		500		ug/L		08/24/23 05:25	08/24/23 11:12	1
	Selenium	20.0	U	20.0		ug/L		08/24/23 05:25	08/24/23 11:12	1

Method: SW846 6020B - I	Metals (ICP/MS) - Total	(ICP/MS) - Total Recoverable							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Antimony	5.00	U	5.00		ug/L		08/24/23 05:25	08/24/23 12:31	1
Arsenic	3.00	U	3.00		ug/L		08/24/23 05:25	08/24/23 12:31	1
Barium	85.4		5.00		ug/L		08/24/23 05:25	08/24/23 12:31	1
Beryllium	0.500	U	0.500		ug/L		08/24/23 05:25	08/24/23 12:31	1
Cadmium	0.500	U	0.500		ug/L		08/24/23 05:25	08/24/23 12:31	1
Chromium	5.00	U	5.00		ug/L		08/24/23 05:25	08/24/23 12:31	1
Cobalt	0.735		0.500		ug/L		08/24/23 05:25	08/24/23 12:31	1
Lead	2.50	U	2.50		ug/L		08/24/23 05:25	08/24/23 12:31	1
Thallium	1.00	U	1.00		ug/L		08/24/23 05:25	08/24/23 12:31	1

4

6

0

10

11

13

1.

Client: South Carolina Public Service Authority

Project/Site: 125915/JM02-08-G01.1/36500

Lab Sample ID: 680-237959-18

Matrix: Water

Job ID: 680-237959-2

Date Collected: 07/13/23 11:24 Date Received: 07/20/23 09:45

Client Sample ID: AF68729

Method: SW846 6010D - Metals (ICP) - Total Recoverable									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Calcium	688000		500		ug/L		08/24/23 05:25	08/24/23 11:15	1
Selenium	20.0	U	20.0		ug/L		08/24/23 05:25	08/24/23 11:15	1

Method: SW846 6020B - Metals (ICP/MS) - Total Recoverable											
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac		
Antimony	5.00	U	5.00		ug/L		08/24/23 05:25	08/24/23 12:36	1		
Arsenic	7.80		3.00		ug/L		08/24/23 05:25	08/24/23 12:36	1		
Barium	133		5.00		ug/L		08/24/23 05:25	08/24/23 12:36	1		
Beryllium	0.500	U	0.500		ug/L		08/24/23 05:25	08/24/23 12:36	1		
Cadmium	0.500	U	0.500		ug/L		08/24/23 05:25	08/24/23 12:36	1		
Chromium	5.00	U	5.00		ug/L		08/24/23 05:25	08/24/23 12:36	1		
Cobalt	0.500	U	0.500		ug/L		08/24/23 05:25	08/24/23 12:36	1		
Lead	2.50	U	2.50		ug/L		08/24/23 05:25	08/24/23 12:36	1		
Thallium	1.00	U	1.00		ug/L		08/24/23 05:25	08/24/23 12:36	1		

Client: South Carolina Public Service Authority Project/Site: 125915/JM02-08-G01.1/36500

Lab Sample ID: 680-237959-19

Job ID: 680-237959-2

Matrix: Water

Client Sample ID: AF68728

Date Collected: 07/13/23 13:32 Date Received: 07/20/23 09:45

Method: SW846 6010D - Metals (ICI	P) - Total Re	coverable							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Calcium	832000		5000		ug/L		08/24/23 05:25	08/25/23 09:30	10
Selenium	20.0	U	20.0		ug/L		08/24/23 05:25	08/24/23 11:17	1

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Antimony	5.00	U	5.00		ug/L		08/24/23 05:25	08/24/23 12:40	1
Arsenic	6.75		3.00		ug/L		08/24/23 05:25	08/24/23 12:40	1
Barium	82.3		5.00		ug/L		08/24/23 05:25	08/24/23 12:40	1
Beryllium	0.500	U	0.500		ug/L		08/24/23 05:25	08/24/23 12:40	1
Cadmium	0.500	U	0.500		ug/L		08/24/23 05:25	08/24/23 12:40	1
Chromium	5.00	U	5.00		ug/L		08/24/23 05:25	08/24/23 12:40	1
Cobalt	0.500	U	0.500		ug/L		08/24/23 05:25	08/24/23 12:40	1
Lead	2.50	U	2.50		ug/L		08/24/23 05:25	08/24/23 12:40	1
Thallium	1.00	U	1.00		ug/L		08/24/23 05:25	08/24/23 12:40	1

_

1

5

6

8

3

10

12

Client: South Carolina Public Service Authority Project/Site: 125915/JM02-08-G01.1/36500

Method: 6010D - Metals (ICP)

Lab Sample ID: MB 680-794834/1-A

Matrix: Water

Analysis Batch: 795099

Client Sample ID: Method Blank Prep Type: Total Recoverable Prep Batch: 794834

мв мв

Analyte	Result	Qualifier	RL	MDL U	Unit	D	Prepared	Analyzed	Dil Fac
Calcium	500	U	500		ug/L		08/24/23 05:25	08/24/23 10:16	1
Selenium	20.0	U	20.0	ι	ug/L		08/24/23 05:25	08/24/23 10:16	1

Lab Sample ID: LCS 680-794834/2-A

Analysis Batch: 795099

Client Sample ID: Lab Control Sample Matrix: Water **Prep Type: Total Recoverable**

Prep Batch: 794834

Spike LCS LCS %Rec Analyte Added Result Qualifier Unit %Rec Limits Calcium 5000 4816 96 80 - 120 ug/L Selenium 100 93.62 ug/L 94 80 - 120

Lab Sample ID: 680-237959-2 MS

Matrix: Water

Analysis Batch: 795099

Client Sample ID: AF68732

Prep Type: Total Recoverable Prep Batch: 794834

Spike MS MS %Rec Sample Sample Analyte Result Qualifier Added Result Qualifier Unit D %Rec

Limits Calcium 220000 5000 215400 4 75 - 125 ug/L -88 Selenium 20.0 U 100 96.81 ug/L 97 75 - 125

Lab Sample ID: 680-237959-2 MSD

Matrix: Water

Analysis Batch: 795099

Client Sample ID: AF68732 **Prep Type: Total Recoverable**

Prep Batch: 794834

Sample Sample Spike MSD MSD %Rec RPD Analyte Result Qualifier Added Result Qualifier Limits RPD Limit Unit %Rec Calcium 220000 5000 215500 4 ug/L -86 75 - 125 0 20 Selenium 20.0 U 100 95.16 ug/L 95 75 - 125 2 20

Method: 6020B - Metals (ICP/MS)

Lab Sample ID: MB 680-794835/1-A

Matrix: Water

Analysis Batch: 795151

Client Sample ID: Method Blank **Prep Type: Total Recoverable**

Prep Batch: 794835

мв мв

	IVID	IVID							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Antimony	5.00	U	5.00		ug/L		08/24/23 05:25	08/24/23 10:54	1
Arsenic	3.00	U	3.00		ug/L		08/24/23 05:25	08/24/23 10:54	1
Barium	5.00	U	5.00		ug/L		08/24/23 05:25	08/24/23 10:54	1
Beryllium	0.500	U	0.500		ug/L		08/24/23 05:25	08/24/23 10:54	1
Cadmium	0.500	U	0.500		ug/L		08/24/23 05:25	08/24/23 10:54	1
Chromium	5.00	U	5.00		ug/L		08/24/23 05:25	08/24/23 10:54	1
Cobalt	0.500	U	0.500		ug/L		08/24/23 05:25	08/24/23 10:54	1
Lead	2.50	U	2.50		ug/L		08/24/23 05:25	08/24/23 10:54	1
Thallium	1.00	U	1.00		ug/L		08/24/23 05:25	08/24/23 10:54	1

Lab Sample ID: LCS 680-794835/2-A

Matrix: Water

Analysis Batch: 795151

Client Sample ID: Lab Control Sample **Prep Type: Total Recoverable**

Prep Batch: 794835

		Spike	LCS	LCS				%Rec	
Analyte		Added	Result	Qualifier	Unit	D	%Rec	Limits	
Antimony	 	50.0	49.39		ug/L		99	80 - 120	

Eurofins Savannah

Client: South Carolina Public Service Authority Job ID: 680-237959-2 Project/Site: 125915/JM02-08-G01.1/36500

Method: 6020B - Metals (ICP/MS) (Continued)

Lab Sample ID: LCS 680-794835/2-A Matrix: Water Analysis Batch: 795151					Client Sample ID: Lab Control Sampl Prep Type: Total Recoverab Prep Batch: 79483				
	Spike	LCS	LCS				%Rec		
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits		
Arsenic	100	105.6		ug/L		106	80 - 120		
Barium	100	100.0		ug/L		100	80 - 120		
Beryllium	50.0	50.74		ug/L		101	80 - 120		
Cadmium	50.0	48.95		ug/L		98	80 - 120		
Chromium	100	106.9		ug/L		107	80 - 120		
Cobalt	50.0	54.47		ug/L		109	80 - 120		
Lead	500	504.3		ug/L		101	80 - 120		
Thallium	50.0	48.11		ug/L		96	80 - 120		

Lab Sample ID: 680-237959-2 MS Client Sample ID: AF68732 Matrix: Water Prep Type: Total Recoverable Analysis Batch: 795151 **Prep Batch: 794835**

Allalysis Datell. 133131									i iep bat	CII. 13403C
	Sample	Sample	Spike	MS	MS				%Rec	
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Antimony	5.00	U	50.0	50.20		ug/L		100	75 - 125	
Arsenic	3.00	U	100	103.6		ug/L		104	75 - 125	
Barium	94.3		100	179.3		ug/L		85	75 - 125	
Beryllium	0.500	U	50.0	51.30		ug/L		103	75 - 125	
Cadmium	0.500	U	50.0	49.86		ug/L		100	75 - 125	
Chromium	5.00	U	100	105.6		ug/L		104	75 - 125	
Cobalt	0.500	U	50.0	53.02		ug/L		106	75 - 125	
Lead	2.50	U	500	503.2		ug/L		101	75 - 125	
Thallium	1.00	U	50.0	48.43		ug/L		97	75 - 125	

Lab Sample ID: 680-237959-2 MSD Client Sample ID: AF68732 Matrix: Water Prep Type: Total Recoverable

Analysis Batch: 795151 **Prep Batch: 794835**

,											
	Sample	Sample	Spike	MSD	MSD				%Rec		RPD
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Antimony	5.00	U	50.0	54.09		ug/L		108	75 - 125	7	20
Arsenic	3.00	U	100	109.0		ug/L		109	75 - 125	5	20
Barium	94.3		100	192.8		ug/L		98	75 - 125	7	20
Beryllium	0.500	U	50.0	51.49		ug/L		103	75 - 125	0	20
Cadmium	0.500	U	50.0	52.76		ug/L		106	75 - 125	6	20
Chromium	5.00	U	100	110.4		ug/L		109	75 - 125	5	20
Cobalt	0.500	U	50.0	56.07		ug/L		112	75 - 125	6	20
Lead	2.50	U	500	525.7		ug/L		105	75 - 125	4	20
Thallium	1.00	U	50.0	51.37		ug/L		103	75 - 125	6	20

QC Association Summary

Client: South Carolina Public Service Authority Project/Site: 125915/JM02-08-G01.1/36500

Job ID: 680-237959-2

Metals

Prep Batch: 794834

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batc
680-237959-1	AF68738	Total Recoverable	Water	3005A	_
680-237959-2	AF68732	Total Recoverable	Water	3005A	
680-237959-3	AF68740	Total Recoverable	Water	3005A	
680-237959-4	AF68743	Total Recoverable	Water	3005A	
680-237959-5	AF68744	Total Recoverable	Water	3005A	
680-237959-8	AF68725	Total Recoverable	Water	3005A	
680-237959-9	AF68742	Total Recoverable	Water	3005A	
680-237959-10	AF68747	Total Recoverable	Water	3005A	
680-237959-11	AF68731	Total Recoverable	Water	3005A	
680-237959-12	AF68723	Total Recoverable	Water	3005A	
680-237959-13	AF68724	Total Recoverable	Water	3005A	
680-237959-14	AF68746	Total Recoverable	Water	3005A	
680-237959-15	AF68726	Total Recoverable	Water	3005A	
680-237959-16	AF68727	Total Recoverable	Water	3005A	
680-237959-17	AF68730	Total Recoverable	Water	3005A	
680-237959-18	AF68729	Total Recoverable	Water	3005A	
680-237959-19	AF68728	Total Recoverable	Water	3005A	
MB 680-794834/1-A	Method Blank	Total Recoverable	Water	3005A	
LCS 680-794834/2-A	Lab Control Sample	Total Recoverable	Water	3005A	
680-237959-2 MS	AF68732	Total Recoverable	Water	3005A	
680-237959-2 MSD	AF68732	Total Recoverable	Water	3005A	

Prep Batch: 794835

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batc
680-237959-1	AF68738	Total Recoverable	Water	3005A	
680-237959-2	AF68732	Total Recoverable	Water	3005A	
680-237959-3	AF68740	Total Recoverable	Water	3005A	
680-237959-4	AF68743	Total Recoverable	Water	3005A	
880-237959-5	AF68744	Total Recoverable	Water	3005A	
80-237959-8	AF68725	Total Recoverable	Water	3005A	
80-237959-9	AF68742	Total Recoverable	Water	3005A	
80-237959-10	AF68747	Total Recoverable	Water	3005A	
80-237959-11	AF68731	Total Recoverable	Water	3005A	
80-237959-12	AF68723	Total Recoverable	Water	3005A	
80-237959-13	AF68724	Total Recoverable	Water	3005A	
80-237959-14	AF68746	Total Recoverable	Water	3005A	
80-237959-15	AF68726	Total Recoverable	Water	3005A	
80-237959-16	AF68727	Total Recoverable	Water	3005A	
80-237959-17	AF68730	Total Recoverable	Water	3005A	
80-237959-18	AF68729	Total Recoverable	Water	3005A	
80-237959-19	AF68728	Total Recoverable	Water	3005A	
/IB 680-794835/1-A	Method Blank	Total Recoverable	Water	3005A	
.CS 680-794835/2-A	Lab Control Sample	Total Recoverable	Water	3005A	
80-237959-2 MS	AF68732	Total Recoverable	Water	3005A	
680-237959-2 MSD	AF68732	Total Recoverable	Water	3005A	

Analysis Batch: 795099

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
680-237959-1	AF68738	Total Recoverable	Water	6010D	794834
680-237959-2	AF68732	Total Recoverable	Water	6010D	794834
680-237959-3	AF68740	Total Recoverable	Water	6010D	794834

Eurofins Savannah

Page 30 of 40

2

_

5

7

0

10

11

13

14

Н

QC Association Summary

Client: South Carolina Public Service Authority Project/Site: 125915/JM02-08-G01.1/36500

Job ID: 680-237959-2

Metals (Continued)

Analysis Batch: 795099 (Continued)

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
680-237959-4	AF68743	Total Recoverable	Water	6010D	794834
680-237959-5	AF68744	Total Recoverable	Water	6010D	794834
680-237959-8	AF68725	Total Recoverable	Water	6010D	794834
680-237959-9	AF68742	Total Recoverable	Water	6010D	794834
680-237959-10	AF68747	Total Recoverable	Water	6010D	794834
680-237959-11	AF68731	Total Recoverable	Water	6010D	794834
680-237959-12	AF68723	Total Recoverable	Water	6010D	794834
680-237959-13	AF68724	Total Recoverable	Water	6010D	794834
680-237959-14	AF68746	Total Recoverable	Water	6010D	794834
680-237959-15	AF68726	Total Recoverable	Water	6010D	794834
680-237959-16	AF68727	Total Recoverable	Water	6010D	794834
680-237959-17	AF68730	Total Recoverable	Water	6010D	794834
680-237959-18	AF68729	Total Recoverable	Water	6010D	794834
680-237959-19	AF68728	Total Recoverable	Water	6010D	794834
MB 680-794834/1-A	Method Blank	Total Recoverable	Water	6010D	794834
LCS 680-794834/2-A	Lab Control Sample	Total Recoverable	Water	6010D	794834
680-237959-2 MS	AF68732	Total Recoverable	Water	6010D	794834
680-237959-2 MSD	AF68732	Total Recoverable	Water	6010D	794834

Analysis Batch: 795151

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
680-237959-1	AF68738	Total Recoverable	Water	6020B	794835
680-237959-2	AF68732	Total Recoverable	Water	6020B	794835
680-237959-3	AF68740	Total Recoverable	Water	6020B	794835
680-237959-4	AF68743	Total Recoverable	Water	6020B	794835
680-237959-5	AF68744	Total Recoverable	Water	6020B	794835
680-237959-8	AF68725	Total Recoverable	Water	6020B	794835
680-237959-9	AF68742	Total Recoverable	Water	6020B	794835
680-237959-10	AF68747	Total Recoverable	Water	6020B	794835
680-237959-11	AF68731	Total Recoverable	Water	6020B	794835
680-237959-12	AF68723	Total Recoverable	Water	6020B	794835
680-237959-13	AF68724	Total Recoverable	Water	6020B	794835
680-237959-14	AF68746	Total Recoverable	Water	6020B	794835
680-237959-15	AF68726	Total Recoverable	Water	6020B	794835
680-237959-16	AF68727	Total Recoverable	Water	6020B	794835
680-237959-17	AF68730	Total Recoverable	Water	6020B	794835
680-237959-18	AF68729	Total Recoverable	Water	6020B	794835
680-237959-19	AF68728	Total Recoverable	Water	6020B	794835
MB 680-794835/1-A	Method Blank	Total Recoverable	Water	6020B	794835
LCS 680-794835/2-A	Lab Control Sample	Total Recoverable	Water	6020B	794835
680-237959-2 MS	AF68732	Total Recoverable	Water	6020B	794835
680-237959-2 MSD	AF68732	Total Recoverable	Water	6020B	794835

Analysis Batch: 795156

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
680-237959-15	AF68726	Total Recoverable	Water	6010D	794834
680-237959-16	AF68727	Total Recoverable	Water	6010D	794834
680-237959-19	AF68728	Total Recoverable	Water	6010D	794834

Eurofins Savannah

9

1

7

_

10

11

12

13

Job ID: 680-237959-2

Client: South Carolina Public Service Authority Project/Site: 125915/JM02-08-G01.1/36500

Client Sample ID: AF68738

Lab Sample ID: 680-237959-1 Date Collected: 07/12/23 12:28

Matrix: Water

Date Received: 07/20/23 09:45

	Batch	Batch		Dilution	Batch			Prepared
Prep Type	Туре	Method	Run	Factor	Number	Analyst	Lab	or Analyzed
Total Recoverable	Prep	3005A			794834	RR	EET SAV	08/24/23 05:25
Total Recoverable	Analysis	6010D		1	795099	BJB	EET SAV	08/24/23 10:28
Total Recoverable	Prep	3005A			794835	RR	EET SAV	08/24/23 05:25
Total Recoverable	Analysis	6020B		1	795151	BWR	EET SAV	08/24/23 11:15

Client Sample ID: AF68732

Lab Sample ID: 680-237959-2 Date Collected: 07/12/23 14:32

Matrix: Water

Date Received: 07/20/23 09:45

	Batch	Batch		Dilution	Batch			Prepared
Prep Type	Type	Method	Run	Factor	Number	Analyst	Lab	or Analyzed
Total Recoverable	Prep	3005A			794834	RR	EET SAV	08/24/23 05:25
Total Recoverable	Analysis	6010D		1	795099	BJB	EET SAV	08/24/23 10:21
Total Recoverable	Prep	3005A			794835	RR	EET SAV	08/24/23 05:25
Total Recoverable	Analysis	6020B		1	795151	BWR	EET SAV	08/24/23 11:02

Client Sample ID: AF68740

Lab Sample ID: 680-237959-3 Date Collected: 07/12/23 11:01

Matrix: Water

Date Received: 07/20/23 09:45

Batch Batch Dilution Batch Prepared Method or Analyzed **Prep Type** Туре Run Factor Number Analyst Lab Total Recoverable Prep 3005A 794834 RR EET SAV 08/24/23 05:25 6010D 08/24/23 10:30 Total Recoverable Analysis 795099 BJB **EET SAV** Total Recoverable Prep 3005A 794835 RR EET SAV 08/24/23 05:25 795151 BWR 08/24/23 11:19 Total Recoverable Analysis 6020B **EET SAV** 1

Client Sample ID: AF68743

Lab Sample ID: 680-237959-4 Date Collected: 07/12/23 13:23

Date Received: 07/20/23 09:45

	Batch	Batch		Dilution	Batch			Prepared
Prep Type	Туре	Method	Run	Factor	Number	Analyst	Lab	or Analyzed
Total Recoverable	Prep	3005A			794834	RR	EET SAV	08/24/23 05:25
Total Recoverable	Analysis	6010D		1	795099	BJB	EET SAV	08/24/23 10:33
Total Recoverable	Prep	3005A			794835	RR	EET SAV	08/24/23 05:25
Total Recoverable	Analysis	6020B		1	795151	BWR	EET SAV	08/24/23 11:23

Client Sample ID: AF68744 Lab Sample ID: 680-237959-5

Date Collected: 07/12/23 13:28 Matrix: Water

Date Received: 07/20/23 09:45

	Batch	Batch		Dilution	Batch			Prepared
Prep Type	Туре	Method	Run	Factor	Number	Analyst	Lab	or Analyzed
Total Recoverable	Prep	3005A		<u> </u>	794834	RR	EET SAV	08/24/23 05:25
Total Recoverable	Analysis	6010D		1	795099	BJB	EET SAV	08/24/23 10:35
Total Recoverable	Prep	3005A			794835	RR	EET SAV	08/24/23 05:25
Total Recoverable	Analysis	6020B		1	795151	BWR	EET SAV	08/24/23 11:27

Eurofins Savannah

Matrix: Water

Job ID: 680-237959-2

Client: South Carolina Public Service Authority Project/Site: 125915/JM02-08-G01.1/36500

Client Sample ID: AF68725

Lab Sample ID: 680-237959-8 Date Collected: 07/18/23 11:49

Matrix: Water

Date Received: 07/20/23 09:45

	Batch	Batch		Dilution	Batch			Prepared
Prep Type	Туре	Method	Run	Factor	Number	Analyst	Lab	or Analyzed
Total Recoverable	Prep	3005A			794834	RR	EET SAV	08/24/23 05:25
Total Recoverable	Analysis	6010D		1	795099	BJB	EET SAV	08/24/23 10:47
Total Recoverable	Prep	3005A			794835	RR	EET SAV	08/24/23 05:25
Total Recoverable	Analysis	6020B		1	795151	BWR	EET SAV	08/24/23 11:47

Client Sample ID: AF68742 Date Collected: 07/18/23 14:53

Lab Sample ID: 680-237959-9

Matrix: Water

Date Received: 07/20/23 09:45

	Batch	Batch		Dilution	Batch			Prepared
Prep Type	Type	Method	Run	Factor	Number	Analyst	Lab	or Analyzed
Total Recoverable	Prep	3005A			794834	RR	EET SAV	08/24/23 05:25
Total Recoverable	Analysis	6010D		1	795099	BJB	EET SAV	08/24/23 10:49
Total Recoverable	Prep	3005A			794835	RR	EET SAV	08/24/23 05:25
Total Recoverable	Analysis	6020B		1	795151	BWR	EET SAV	08/24/23 11:51

Client Sample ID: AF68747

Lab Sample ID: 680-237959-10

Matrix: Water

Date Collected: 07/17/23 10:08 Date Received: 07/20/23 09:45

	Batch	Batch		Dilution	Batch			Prepared
Prep Type	Type	Method	Run	Factor	Number	Analyst	Lab	or Analyzed
Total Recoverable	Prep	3005A			794834	RR	EET SAV	08/24/23 05:25
Total Recoverable	Analysis	6010D		1	795099	BJB	EET SAV	08/24/23 10:51
Total Recoverable	Prep	3005A			794835	RR	EET SAV	08/24/23 05:25
Total Recoverable	Analysis	6020B		1	795151	BWR	EET SAV	08/24/23 11:55

Client Sample ID: AF68731

Date Collected: 07/17/23 11:15

Date Received: 07/20/23 09:45

Matrix: Water

	Batch	Batch		Dilution	Batch			Prepared
Prep Type	Туре	Method	Run	Factor	Number	Analyst	Lab	or Analyzed
Total Recoverable	Prep	3005A			794834	RR	EET SAV	08/24/23 05:25
Total Recoverable	Analysis	6010D		1	795099	BJB	EET SAV	08/24/23 10:54
Total Recoverable	Prep	3005A			794835	RR	EET SAV	08/24/23 05:25
Total Recoverable	Analysis	6020B		1	795151	BWR	EET SAV	08/24/23 11:59

Client Sample ID: AF68723

Lab Sample ID: 680-237959-12

Matrix: Water

Date Collected: 07/17/23 13:00 Date Received: 07/20/23 09:45

	Batch	Batch		Dilution	Batch			Prepared
Prep Type	Type	Method	Run	Factor	Number	Analyst	Lab	or Analyzed
Total Recoverable	Prep	3005A			794834	RR	EET SAV	08/24/23 05:25
Total Recoverable	Analysis	6010D		1	795099	BJB	EET SAV	08/24/23 10:56
Total Recoverable	Prep	3005A			794835	RR	EET SAV	08/24/23 05:25
Total Recoverable	Analysis	6020B		1	795151	BWR	EET SAV	08/24/23 12:03

Eurofins Savannah

8/25/2023

Job ID: 680-237959-2

Client: South Carolina Public Service Authority Project/Site: 125915/JM02-08-G01.1/36500

Client Sample ID: AF68724

Date Collected: 07/17/23 13:05 Date Received: 07/20/23 09:45 Lab Sample ID: 680-237959-13

Lab Sample ID: 680-237959-14

Matrix: Water

Matrix: Water

	Batch	Batch		Dilution	Batch			Prepared
Prep Type	Туре	Method	Run	Factor	Number	Analyst	Lab	or Analyzed
Total Recoverable	Prep	3005A			794834	RR	EET SAV	08/24/23 05:25
Total Recoverable	Analysis	6010D		1	795099	BJB	EET SAV	08/24/23 10:58
Total Recoverable	Prep	3005A			794835	RR	EET SAV	08/24/23 05:25
Total Recoverable	Analysis	6020B		1	795151	BWR	EET SAV	08/24/23 12:07

Client Sample ID: AF68746

Date Collected: 07/17/23 14:24

Date Received: 07/20/23 09:45

	Batch	Batch		Dilution	Batch			Prepared
Prep Type	Туре	Method	Run	Factor	Number	Analyst	Lab	or Analyzed
Total Recoverable	Prep	3005A			794834	RR	EET SAV	08/24/23 05:25
Total Recoverable	Analysis	6010D		1	795099	BJB	EET SAV	08/24/23 11:01
Total Recoverable	Prep	3005A			794835	RR	EET SAV	08/24/23 05:25
Total Recoverable	Analysis	6020B		1	795151	BWR	EET SAV	08/24/23 12:11

Client Sample ID: AF68726

Lab Sample ID: 680-237959-15

Date Collected: 07/13/23 14:16 Matrix: Water

Date Received: 07/20/23 09:45

_	Batch	Batch		Dilution	Batch			Prepared
Prep Type	Type	Method	Run	Factor	Number	Analyst	Lab	or Analyzed
Total Recoverable	Prep	3005A			794834	RR	EET SAV	08/24/23 05:25
Total Recoverable	Analysis	6010D		1	795099	BJB	EET SAV	08/24/23 11:03
Total Recoverable	Prep	3005A			794834	RR	EET SAV	08/24/23 05:25
Total Recoverable	Analysis	6010D		10	795156	BJB	EET SAV	08/25/23 09:25
Total Recoverable	Prep	3005A			794835	RR	EET SAV	08/24/23 05:25
Total Recoverable	Analysis	6020B		1	795151	BWR	EET SAV	08/24/23 12:15

Client Sample ID: AF68727

Date Collected: 07/13/23 14:21 Matrix: Water

Date Received: 07/20/23 09:45

_	Batch	Batch		Dilution	Batch			Prepared
Prep Type	Type	Method	Run	Factor	Number	Analyst	Lab	or Analyzed
Total Recoverable	Prep	3005A			794834	RR	EET SAV	08/24/23 05:25
Total Recoverable	Analysis	6010D		1	795099	BJB	EET SAV	08/24/23 11:05
Total Recoverable	Prep	3005A			794834	RR	EET SAV	08/24/23 05:25
Total Recoverable	Analysis	6010D		10	795156	BJB	EET SAV	08/25/23 09:27
Total Recoverable	Prep	3005A			794835	RR	EET SAV	08/24/23 05:25
Total Recoverable	Analysis	6020B		1	795151	BWR	EET SAV	08/24/23 12:19

Client Sample ID: AF68730

Lab Sample ID: 680-237959-17 Date Collected: 07/13/23 10:01

Matrix: Water Date Received: 07/20/23 09:45

	Batch	Batch		Dilution	Batch			Prepared
Prep Type	Туре	Method	Run	Factor	Number	Analyst	Lab	or Analyzed
Total Recoverable	Prep	3005A			794834	RR	EET SAV	08/24/23 05:25
Total Recoverable	Analysis	6010D		1	795099	BJB	EET SAV	08/24/23 11:12

Eurofins Savannah

Page 34 of 40

Lab Sample ID: 680-237959-16

Lab Chronicle

Client: South Carolina Public Service Authority Project/Site: 125915/JM02-08-G01.1/36500

Job ID: 680-237959-2

Client Sample ID: AF68730

Lab Sample ID: 680-237959-17

Matrix: Water

Date Collected: 07/13/23 10:01

Date Received: 07/20/23 09:45

	Batch	Batch		Dilution	Batch			Prepared
Prep Type	Туре	Method	Run	Factor	Number	Analyst	Lab	or Analyzed
Total Recoverable	Prep	3005A			794835	RR	EET SAV	08/24/23 05:25
Total Recoverable	Analysis	6020B		1	795151	BWR	EET SAV	08/24/23 12:31

Client Sample ID: AF68729

Lab Sample ID: 680-237959-18

Matrix: Water

Date Collected: 07/13/23 11:24 Date Received: 07/20/23 09:45

	Batch	Batch		Dilution	Batch			Prepared
Prep Type	Туре	Method	Run	Factor	Number	Analyst	Lab	or Analyzed
Total Recoverable	Prep	3005A			794834	RR	EET SAV	08/24/23 05:25
Total Recoverable	Analysis	6010D		1	795099	BJB	EET SAV	08/24/23 11:15
Total Recoverable	Prep	3005A			794835	RR	EET SAV	08/24/23 05:25
Total Recoverable	Analysis	6020B		1	795151	BWR	EET SAV	08/24/23 12:36

Client Sample ID: AF68728

Lab Sample ID: 680-237959-19

Matrix: Water

Date Collected: 07/13/23 13:32

Date Received: 07/20/23 09:45

	Batch	Batch		Dilution	Batch			Prepared
Prep Type	Туре	Method	Run	Factor	Number	Analyst	Lab	or Analyzed
Total Recoverable	Prep	3005A			794834	RR	EET SAV	08/24/23 05:25
Total Recoverable	Analysis	6010D		1	795099	BJB	EET SAV	08/24/23 11:17
Total Recoverable	Prep	3005A			794834	RR	EET SAV	08/24/23 05:25
Total Recoverable	Analysis	6010D		10	795156	BJB	EET SAV	08/25/23 09:30
Total Recoverable	Prep	3005A			794835	RR	EET SAV	08/24/23 05:25
Total Recoverable	Analysis	6020B		1	795151	BWR	EET SAV	08/24/23 12:40

Laboratory References:

EET SAV = Eurofins Savannah, 5102 LaRoche Avenue, Savannah, GA 31404, TEL (912)354-7858

Chain of Custody

Santee Cooper One Riverwood Drive Moneks Corner, SC 29461 Phone: (843)761-8000 Ext. 5148 Fax: (843)761-4175

ustomer E	mail/R	il/Report Recipient: Date Results Needed by: Project/Task/Unit #: Rerun				Rerun	request fo	or any	flagg	ed QC								
LCWILL	A	@:	santeecoo	per.com					1259	115	JM	02.0	9.601.1	36500	Yes	No .	1	
																	alysis G	roup
Labworks ID (Internal use only)		Sampl Descri	e Location/ ption		Collection Date	Collection Time	Sample Collector	Total # of containers	Bottle type: (Glass-G/Plastic-P)	Grab (G) or Composite (C)	Matrix(see below)	Preservative (see	Misc.	Comments d # ting limit sample info ther notes		TOTAL METALS -SEE BELOW		
AF 68 72	6	WAP	-14		1/13/23	1416	WJK	١	P	G	GW	2	Ca, Se	- 6010		X	_	
+F6872		WAT	-14 DUP		1	1421	1	1		1			ALL OTH	ERS-6020		1		
AF6874		WAP			7/17/23	1003							-SEE	SHEET FOR R	LS.			-
AF6873		WAP			1	1115												\perp
AF-6872		WAP	-12			1300											-	_
AF 68724		WAP	-12 Dul	2		1305												
AF-68746		WAT	-28			1424	Ī	1	1	-	1	1						-
AF 6874	2	WAF	-25		7/18/23	1453	1	1	1	1		1				1		+
														Sample Receiving	- (Internal	Uca O	du)	
Relinquis	hed by:	LE	imployee#	Date	Time	Rece	ived by:		Employe	e#	Dat	e	Time	TEMP (°C):	g (mternar		'' <i>y)</i> l:	
Softgroun			5594	8/23/23	0900									Correct pH:	Yes No			
Relinquis		E	imployee#	Date	Time	Rece	ived by:		Employe	e#	Dat	e	Time	Preservative Lo				
Relinquis	hed by:	E	Employee#	Date	Time	Rece	ived by:		Employe	e#	Dat	te	Time					
														Date/Time/Init	for preserv	ative:		
		ETAI	LS (all)	Nur	trients	М	ISC.		G	ypsu	m		Coal	Fly	ash		Oil	
□Ag	□ Ct	u	Sb	- Company	OC OC	BTEX			□ Wall	board			□ Ultimate	□ Amm	nonia	UTr	ans. Oil	Qual:
□ Al	□ Fe		₽ Se	ED	oc	□ Napht				psum(low)	all		☐ % Moist ☐ Ash	ture LOI	erbon		Color	
As	ΠK		□ Sn		P/TPO4 H3-N	□ VOC			CI .	AIM			□ Sulfur	Mine Mine	eral		Acidity Dielectric	Strength
□В	□ Li	_	□ Sr	II.F	EASTERN .	□ Oil &				roc Fotal me	tals		☐ BTUs		nalysis		HFT Dissolva	ed Gases
Ba	□ M		□ Ti	n C		☐ Total	Coliform		0.5	soluble !	Metals		☐ Volatile	Matter Sieve		BU	sed Oil	
Be	□ M		₽TI	B		□ pH □ Dissol	ved As			urity (C Moist	CaSO4)		Other Tests:				Flushpo Metals	n oil
□ Ca	□M	_	UV	- IN	O3	☐ Dissol	ved Fe		0.5	Sulfites			□ XRF Scan □ HGI		DES		(As.Cd	Cr.Ni.Pb
∠ Cd	O N	ía	□ Zn	ii S	04	☐ Rad 2 ☐ Rad 2			01	oH Chloride	es		☐ Fineness	FI As	Grease		Hg) TX	
Co	□N		□Hg			□РСВ				Particle	Size		□ Particulate M	atter TSS			OFER	
Z Cr	OP.	b	☐ CrVI					[El Sulf	ui								

Chain of Custody

Santce Couper One Riverwood Drive Moneks Corner, SC 29461 Phone: (843)761-8000 Ext. 5148 Fax: (843)761-4175

Custon	ner Ema	il/Report Reci	ipient:	Date	Results N	eeded l	by:		Pr	roject/	/Task/	Unit #:	Rerun req	uest fo	or any f	lagged Q
LCWI	LLIA	@sante	ecooper.co	m	J	/		125	915	J_JN	102,0	9.601.1/2	6500	es I	No	
															Analy	sis Group
(Internationally)		Sample Loca Description	ition/	Collection Date	Collection Time	Sample Collector	Total # of containers	Bottle type: (Glass- G/Plastic-P)	Grab (G) or Composite (C)	Matrix(see below)	Preservative (see	Method # Reporting Misc. sam Any other	ole info		TOTAL METALS -SEE BELOW	
AF68	738	WAP-21		7/12/2	3 1228	WJK	1	P	G	GW	2	ca, Se - 60	210		×	
AF68	732	WAP-16		T	1432	1	})	1	1	ALL OTHERS	6050		V	
AF68	140	WAP-23			101	Ī						-SEE SHEE	et for RLs.			
AF68	743	WAP-26			1323											
AF68	744	WAP-26 [NIP 911C	1	1328											
AF687	30	WAT-140		7/13/23	3 1001											
AF687	129	WAP-148			1124											
AF687	128	WAP-14A			1332	1	_		1		1					
AF687	125	WAP-13		7/18/23	1149											
Relingu	ished by:	Employee#	Date	Time	Receive	ed by:	Em	ployee #		Date		Time Samp	ole Receiving (Intern	nal Use	Only)	
Symon	un	35594	8/23/23	0900					1			TEM	IP (°C):	Init	ial:	
Relinqui	ished by:	Employee#	Date	Time	Receive	d by:	Em	ployee #		Date		rime		No		
Relinqui	ished by:	Employee#	Date	Time	Receive	d by:	Em	ployee #		Date		Time	ervative Lot#:			
												Date	/Time/Init for prese	ervative	: :	
	□ ME	TALS (all)	Nut	rients	MIS	C.		Gyp	sum			Coal		T		
□ Ag □ Al	☐ Cu ☐ Fe	₩ Sb	□ TO		□ BTEX		100	Wallioa			_ u	Itimate	Flyash Ammonia	25/8	Oil rans. Oil	
As	□K	□Sn	DC TP	TPO4	☐ Naphthale ☐ THM/HA			Gypsu below)				3 % Moisture	□ LO3	13	*iMoist	
В	□ Li	□Sr	DNE	MANOR OF THE REAL PROPERTY.	□ VOC			□ AIM			11	3 Ash 3 Sulfur	2 % Carbon		Color	- 1111
Ва	□Mg		- DF		☐ Oil & Grea	ase		□ TOC □ Total	mi stata			BTUs	☐ Mineral Analysis	- 41	Dielectric	Strength
Be	□Mn		□ NO	0	☐ Total Colin	form		D Solub		ls		Volatile Matter	☐ Sieve	1000	IFT Dissolve	d Gases
2 Ca	□ Mo		Br		☐ pH ☐ Dissolved.	As		D Purity		14)		CHN er Tests:	☐ % Moisture	III U	sed Oil	
Cd	□ Na	□ Zn	U NO	3	☐ Dissolved			□ % Mc				RF Scan	NPDES		Flashpoi Metals in	
			O SO		☐ Rad 226 ☐ Rad 228		Hái	□ pH □ Chlori	idae	1 1	2 HG	GI neness	DOil & Grease		(As.Cd.C	ENLP6
Co Cr	Ni Pb	□ Hg	100	_	□ PCB		No.	Partic				ticulate Matter	□ As		Hg) TX	
- 01	ro	☐ CrVI					0.5	Sulfur			FR		□ TSS		OFER	

Table of Reporting Limits for Groundwater Samples-- Metals Only

- Julii	pies Met	ulo Olliy	Departing
Analyte	Unit	GWPS/ MCL/ RSL	Reporting Limits best case
Aluminum	mg/L	0.05 to 0.2	
Antimony	ug/L	6	5
Arsenic	ug/L	10	5
Arsenic Dissolved	ug/L		
Barium	ug/L	2000	5
Beryllium	ug/L	4	0.5
Boron	ug/L		10 to 15
Cadmium	ug/L	5	0.5
Calcium	ug/L		0.1
Chromium	ug/L	100	5
Cobalt	ug/L	6	0.5
Copper	mg/L	1	
Iron	ug/L	300	
Lead	ug/L	15	1
Lithium	ug/L	40	5
Magnesium	ug/L		
Mercury	ug/L	2	0.2
Molybdenum	ug/L	100	5
Nickel	ug/L		
Potassium	mg/L		
Selenium	ug/L	50	5
Sodium	mg/L		
Thallium	ug/L	2	1
Zinc	ug/L	5000	

_

Login Sample Receipt Checklist

Client: South Carolina Public Service Authority

Job Number: 680-237959-2

Login Number: 237959 List Source: Eurofins Savannah

List Number: 1

Creator: Johnson, Corey M

Creator. Johnson, Corey M		
Question	Answer	Comment
Radioactivity wasn't checked or is = background as measured by a survey meter.</td <td>N/A</td> <td></td>	N/A	
The cooler's custody seal, if present, is intact.	True	
Sample custody seals, if present, are intact.	True	
The cooler or samples do not appear to have been compromised or tampered with.	True	
Samples were received on ice.	True	
Cooler Temperature is acceptable.	True	
Cooler Temperature is recorded.	True	
COC is present.	True	
COC is filled out in ink and legible.	True	
COC is filled out with all pertinent information.	True	
Is the Field Sampler's name present on COC?	True	
There are no discrepancies between the containers received and the COC.	True	
Samples are received within Holding Time (excluding tests with immediate HTs)	True	
Sample containers have legible labels.	True	
Containers are not broken or leaking.	True	
Sample collection date/times are provided.	True	
Appropriate sample containers are used.	True	
Sample bottles are completely filled.	True	
Sample Preservation Verified.	N/A	
There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs	True	
Containers requiring zero headspace have no headspace or bubble is <6mm (1/4").	N/A	
Multiphasic samples are not present.	True	
Samples do not require splitting or compositing.	True	
Residual Chlorine Checked.	N/A	

5

4

5

7

9

10

12

13

Accreditation/Certification Summary

Client: South Carolina Public Service Authority Project/Site: 125915/JM02-08-G01.1/36500

Job ID: 680-237959-2

Laboratory: Eurofins Savannah

The accreditations/certifications listed below are applicable to this report.

Authority	Program	Identification Number	Expiration Date		
South Carolina	State	98001	06-30-23 *		

-3

4

6

8

10

11

13

^{*} Accreditation/Certification renewal pending - accreditation/certification considered valid.

2040 Savage Road | Charleston, SC 29407

a member of The GEL Group INC

gel.com

September 21, 2023

Ms. Jeanette Gilmetti Santee Cooper P.O. Box 2946101 OCO3 Moncks Corner, South Carolina 29461

Re: ABS Lab Analytical Work Order: 634957

Dear Ms. Gilmetti:

GEL Laboratories, LLC (GEL) appreciates the opportunity to provide the enclosed analytical results for the sample(s) we received on August 25, 2023. This original data report has been prepared and reviewed in accordance with GEL's standard operating procedures.

The samples were delivered with proper chain of custody documentation and signatures. All sample containers arrived without any visible signs of tampering or breakage. There are no additional comments concerning sample receipt.

Test results for NELAP or ISO 17025 accredited tests are verified to meet the requirements of those standards, with any exceptions noted. The results reported relate only to the items tested and to the sample as received by the laboratory. These results may not be reproduced except as full reports without approval by the laboratory. Copies of GEL's accreditations and certifications can be found on our website at www.gel.com.

Our policy is to provide high quality, personalized analytical services to enable you to meet your analytical needs on time every time. We trust that you will find everything in order and to your satisfaction. If you have any questions, please do not hesitate to call me at (843) 556-8171, ext. 4289.

Sincerely,

Julie Robinson Project Manager

Purchase Order: 398684

Enclosures

2040 Savage Road Charleston SC 29407 - (843) 556-8171 - www.gel.com

Certificate of Analysis Report for

SOOP001 Santee Cooper

Client SDG: 634957 GEL Work Order: 634957

The Qualifiers in this report are defined as follows:

- * A quality control analyte recovery is outside of specified acceptance criteria
- ** Analyte is a Tracer compound
- ** Analyte is a surrogate compound
- U Analyte was analyzed for, but not detected above the MDL, MDA, MDC or LOD.

Where the analytical method has been performed under NELAP certification, the analysis has met all of the requirements of the NELAC standard unless qualified on the Certificate of Analysis.

The designation ND, if present, appears in the result column when the analyte concentration is not detected above the limit as defined in the 'U' qualifier above.

This data report has been prepared and reviewed in accordance with GEL Laboratories LLC standard operating procedures. Please direct any questions to your Project Manager, Julie Robinson.

Reviewed by

Page 2 of 13 SDG: 634957

2040 Savage Road Charleston SC 29407 - (843) 556-8171 - www.gel.com

Certificate of Analysis

Report Date: September 21, 2023

SOOP00119

SOOP001

Company: Santee Cooper Address: P.O. Box 2946101

OCO3

Moncks Corner, South Carolina 29461

Ms. Jeanette Gilmetti Contact: Project: ABS Lab Analytical

Client Sample ID: AF75783 Sample ID: 634957001

Matrix: GW

Collect Date: 23-AUG-23 13:49 Receive Date: 25-AUG-23

Collector: Client

Project:

Client ID:

Analyst Comments

Parameter	Qualifier	Result	Uncertainty	MDC	RL	Units	PF	DF Anal	yst Date	Time Batch	Method
Rad Gas Flow Proportion	onal Counting										
GFPC, Ra228, Liquid "A	As Received"										
Radium-228	U	0.864	+/-0.711	1.13	3.00	pCi/L		JE1	09/21/23	1011 2494000	1
Radium-226+Radium-2	28 Calculatio	n "See Pa	arent Products"								
Radium-226+228 Sum		1.79	+/-0.825			pCi/L		1 LXB3	09/21/23	1536 2492737	2
Rad Radium-226											
Lucas Cell, Ra226, Liqu	uid "As Recei	ved"									
Radium-226		0.923	+/-0.419	0.492	1.00	pCi/L		LXP1	09/20/23	1030 2486922	3
The following Analytic	al Methods w	ere nerfo	ormed:								

Description

EPA 904.0/SW846 9320 Modified Calculation EPA 903.1 Modified Nominal

Surrogate/Tracer Recovery Test Result Recovery% Acceptable Limits Barium-133 Tracer 99.1 (15%-125%) GFPC, Ra228, Liquid "As Received"

Notes:

Method

Counting Uncertainty is calculated at the 95% confidence level (1.96-sigma).

Column headers are defined as follows:

DF: Dilution Factor Lc/LC: Critical Level DL: Detection Limit PF: Prep Factor MDA: Minimum Detectable Activity **RL**: Reporting Limit

MDC: Minimum Detectable Concentration **SQL**: Sample Quantitation Limit

Page 3 of 13 SDG: 634957

2040 Savage Road Charleston SC 29407 - (843) 556-8171 - www.gel.com

Certificate of Analysis

Report Date: September 21, 2023

SOOP00119

SOOP001

Company: Santee Cooper Address: P.O. Box 2946101

OCO3

Moncks Corner, South Carolina 29461

Ms. Jeanette Gilmetti Contact: Project: ABS Lab Analytical

Client Sample ID: AF75784 Sample ID: 634957002

Matrix: GW

Collect Date: 23-AUG-23 11:09 Receive Date: 25-AUG-23

Collector: Client

Project:

Client ID:

Parameter	Qualifier	Result	Uncertainty	MDC	RL	Units	PF	DF Anal	yst Date	Time Batch	Method
Rad Gas Flow Proportion	onal Counting										
GFPC, Ra228, Liquid ".	As Received"										
Radium-228		1.83	+/-0.906	1.21	3.00	pCi/L		JE1	09/21/23	1011 2494000	1
Radium-226+Radium-2	28 Calculatio	n "See Pa	arent Products"								
Radium-226+228 Sum		3.55	+/-1.01			pCi/L		1 LXB3	09/21/23	1536 2492737	2
Rad Radium-226											
Lucas Cell, Ra226, Liqu	uid "As Recei	ved"									
Radium-226		1.72	+/-0.436	0.213	1.00	pCi/L		LXP1	09/20/23	1030 2486922	3
The following Analytic	al Methods w	ere perfo	ormed:								

Method Description **Analyst Comments** EPA 904.0/SW846 9320 Modified

Calculation EPA 903.1 Modified

Nominal Acceptable Limits Surrogate/Tracer Recovery Test Result Recovery% Barium-133 Tracer (15%-125%) GFPC, Ra228, Liquid "As Received" 86.4

Notes:

Counting Uncertainty is calculated at the 95% confidence level (1.96-sigma).

Column headers are defined as follows:

DF: Dilution Factor Lc/LC: Critical Level DL: Detection Limit PF: Prep Factor MDA: Minimum Detectable Activity **RL**: Reporting Limit

MDC: Minimum Detectable Concentration **SQL**: Sample Quantitation Limit

Page 4 of 13 SDG: 634957

2040 Savage Road Charleston SC 29407 - (843) 556-8171 - www.gel.com

Certificate of Analysis

Project:

Client ID:

Analyst Comments

Report Date: September 21, 2023

SOOP00119

SOOP001

Company: Santee Cooper Address: P.O. Box 2946101

OCO3

Moncks Corner, South Carolina 29461

Contact: Ms. Jeanette Gilmetti Project: ABS Lab Analytical

Client Sample ID: AF75785 Sample ID: 634957003

Matrix: GW

Collect Date: 23-AUG-23 11:14
Receive Date: 25-AUG-23
Collector: Client

MDC RL Parameter Qualifier Result Uncertainty Units PF DF Analyst Date Time Batch Method Rad Gas Flow Proportional Counting GFPC, Ra228, Liquid "As Received" Radium-228 1.70 +/-0.8331.16 3.00 pCi/L JE1 09/21/23 1011 2494000 1 Radium-226+Radium-228 Calculation "See Parent Products" Radium-226+228 Sum +/-1.08pCi/L LXB3 09/21/23 1536 2492737 2 Rad Radium-226 Lucas Cell, Ra226, Liquid "As Received" Radium-226 2.74 +/-0.684 0.591 1.00 pCi/L LXP1 09/20/23 1030 2486922 3

The following Analytical Methods were performed:

Description

2 Calculation
3 EPA 903.1 Modified

Surrogate/Tracer Recovery Test Result Nominal Recovery% Acceptable Limits

Barium-133 Tracer GFPC, Ra228, Liquid "As Received"

95.9 (15%-125%)

Notes:

Method

Counting Uncertainty is calculated at the 95% confidence level (1.96-sigma).

EPA 904.0/SW846 9320 Modified

Column headers are defined as follows:

DF: Dilution Factor Lc/LC: Critical Level
DL: Detection Limit PF: Prep Factor
MDA: Minimum Detectable Activity RL: Reporting Limit

MDC: Minimum Detectable Concentration SQL: Sample Quantitation Limit

Page 5 of 13 SDG: 634957

2040 Savage Road Charleston SC 29407 - (843) 556-8171 - www.gel.com

Certificate of Analysis

Report Date: September 21, 2023

Company: Santee Cooper Address: P.O. Box 2946101

OCO3

Moncks Corner, South Carolina 29461

Contact: Ms. Jeanette Gilmetti Project: ABS Lab Analytical

Client Sample ID: AF75786 Sample ID: 634957004

Matrix: GW

Collect Date: 23-AUG-23 12:35
Receive Date: 25-AUG-23
Collector: Client

Description

Project: SOOP00119 Client ID: SOOP001

Analyst Comments

Parameter	Qualifier	Result	Uncertainty	MDC	RL	Units	PF	DF Ana	yst Date	Time Batch	Method
Rad Gas Flow Proportion	onal Counting										
GFPC, Ra228, Liquid "A	As Received"										
Radium-228	U	0.958	+/-0.758	1.18	3.00	pCi/L		JE1	09/21/23	1011 2494000	1
Radium-226+Radium-2	28 Calculation	n "See Pa	arent Products"								
Radium-226+228 Sum		1.18	+/-0.789			pCi/L		1 LXB	3 09/21/23	1536 2492737	2
Rad Radium-226											
Lucas Cell, Ra226, Liqu	uid "As Recei	ved"									
Radium-226	U	0.226	+/-0.221	0.347	1.00	pCi/L		LXP	09/20/23	1030 2486922	3
The following Analytic	al Methods w	ere perfo	rmed:								

1	EPA 904.0/SW846 9320 Modified				
2	Calculation				
3	EPA 903.1 Modified				
Surrogate/Tracer Recov	ery Test	Result	Nominal	Recovery%	Acceptable Limits

Barium-133 Tracer GFPC, Ra228, Liquid "As Received"

Result Nonlinial Recovery Acceptable Lilli
89.1 (15%-125%)

Notes:

Method

Counting Uncertainty is calculated at the 95% confidence level (1.96-sigma).

Column headers are defined as follows:

DF: Dilution Factor Lc/LC: Critical Level
DL: Detection Limit PF: Prep Factor
MDA: Minimum Detectable Activity RL: Reporting Limit

MDC: Minimum Detectable Concentration SQL: Sample Quantitation Limit

Page 6 of 13 SDG: 634957

2040 Savage Road Charleston, SC 29407 - (843) 556-8171 - www.gel.com

QC Summary

Report Date: September 21, 2023

Page 1 of 2

Santee Cooper P.O. Box 2946101

OCO3

Moncks Corner, South Carolina

Contact: Ms. Jeanette Gilmetti

Workorder: 634957

NOM	Sample	Qual	QC	Units	RPD%	REC%	Range A	Anlst	Date Time
	1.83	IJ	0 940	nCi/L	64.2		(0% - 100%)	IF1	09/21/23 10:11
Uncertainty	+/-0.906		+/-0.764	ренд	01.2		(070 10070)	321	03/21/23 10:11
			60. 2	G: /r		00.4	(===(1===()		00/01/00 10 10
77.6 Uncertainty			69.3 +/-3.77	pC1/L		89.3	(75%-125%)		09/21/23 10:10
Uncertainty		U	0.0450 +/-0.480	pCi/L					09/21/23 10:11
	0.023		1 10	nCi/I	24.0		(00/- 1000/-)	I VD1	00/20/23 11:02
Uncertainty	+/-0.419		+/-0.525	pCI/L	24.9		(076 - 10076)	LAIT	09/20/23 11:02
25.4			20.1	G'/I		405	(550/ 1050/)		00/00/00 11 00
27.1 Uncertainty			29.1 +/-1.95	pCı/L		107	(75%-125%)		09/20/23 11:03
Uncertainty		U	0.104 +/-0.264	pCi/L					09/20/23 11:02
135 Uncertainty	0.923 +/-0.419		154 +/-9.54	pCi/L		113	(75%-125%)		09/20/23 11:02
	Uncertainty 77.6 Uncertainty Uncertainty 27.1 Uncertainty Uncertainty	1.83 Uncertainty	1.83 U Uncertainty +/-0.906 77.6 Uncertainty U Uncertainty 27.1 Uncertainty U Uncertainty U Uncertainty	1.83 U 0.940 Uncertainty +/-0.906	1.83 U 0.940 pCi/L Uncertainty +/-0.906	Uncertainty	Uncertainty	Uncertainty	1.83 U 0.940 pCi/L 64.2 (0% - 100%) JE1 Uncertainty +/-0.906 +/-0.764

Notes:

Counting Uncertainty is calculated at the 95% confidence level (1.96-sigma).

The Qualifiers in this report are defined as follows:

U Analyte was analyzed for, but not detected above the MDL, MDA, MDC or LOD.

J Value is estimated

X Consult Case Narrative, Data Summary package, or Project Manager concerning this qualifier

H Analytical holding time was exceeded

< Result is less than value reported

Page 7 of 13 SDG: 634957

2040 Savage Road Charleston, SC 29407 - (843) 556-8171 - www.gel.com

QC Summary

Workorder: 634957

Parmname

NOM Sample Qual QC Units RPD% REC% Range AnIst Date Time

>	Result is greater than value reported	

- UI Gamma Spectroscopy--Uncertain identification
- BD Results are either below the MDC or tracer recovery is low
- h Preparation or preservation holding time was exceeded
- R Sample results are rejected
- ^ RPD of sample and duplicate evaluated using +/-RL. Concentrations are <5X the RL. Qualifier Not Applicable for Radiochemistry.
- N/A RPD or %Recovery limits do not apply.
- ND Analyte concentration is not detected above the detection limit
- M If above MDC and less than LLD
- NJ Consult Case Narrative, Data Summary package, or Project Manager concerning this qualifier
- FA Failed analysis.
- UJ Gamma Spectroscopy--Uncertain identification
- Q One or more quality control criteria have not been met. Refer to the applicable narrative or DER.
- K Analyte present. Reported value may be biased high. Actual value is expected to be lower.
- UL Not considered detected. The associated number is the reported concentration, which may be inaccurate due to a low bias.
- L Analyte present. Reported value may be biased low. Actual value is expected to be higher.
- N1 See case narrative
- Y Other specific qualifiers were required to properly define the results. Consult case narrative.
- ** Analyte is a Tracer compound
- M REMP Result > MDC/CL and < RDL
- J See case narrative for an explanation

N/A indicates that spike recovery limits do not apply when sample concentration exceeds spike conc. by a factor of 4 or more or %RPD not applicable.

- ^ The Relative Percent Difference (RPD) obtained from the sample duplicate (DUP) is evaluated against the acceptance criteria when the sample is greater than five times (5X) the contract required detection limit (RL). In cases where either the sample or duplicate value is less than 5X the RL, a control limit of +/- the RL is used to evaluate the DUP result.
- * Indicates that a Quality Control parameter was not within specifications.

For PS, PSD, and SDILT results, the values listed are the measured amounts, not final concentrations.

Where the analytical method has been performed under NELAP certification, the analysis has met all of the requirements of the NELAC standard unless qualified on the QC Summary.

Page 8 of 13 SDG: 634957

Radiochemistry Technical Case Narrative Santee Cooper SDG #: 634957

Product: Radium-226+Radium-228 Calculation

Analytical Method: Calculation

Analytical Procedure: GL-RAD-D-003 REV# 45

Analytical Batch: 2492737

The following samples were analyzed using the above methods and analytical procedure(s).

GEL Sample ID#	Client Sample Identification
634957001	AF75783
634957002	AF75784
634957003	AF75785
634957004	AF75786

The samples in this SDG were analyzed on an "as received" basis.

Data Summary:

There are no exceptions, anomalies or deviations from the specified methods. All sample data provided in this report met the acceptance criteria specified in the analytical methods and procedures for initial calibration, continuing calibration, instrument controls and process controls where applicable.

Product: GFPC, Ra228, Liquid

<u>Analytical Method:</u> EPA 904.0/SW846 9320 Modified <u>Analytical Procedure:</u> GL-RAD-A-063 REV# 5

Analytical Batch: 2494000

The following samples were analyzed using the above methods and analytical procedure(s).

GEL Sample ID#	Client Sample Identification
634957001	AF75783
634957002	AF75784
634957003	AF75785
634957004	AF75786
1205519878	Method Blank (MB)
1205519879	634957002(AF75784) Sample Duplicate (DUP)
1205519881	Laboratory Control Sample (LCS)

The samples in this SDG were analyzed on an "as received" basis.

Data Summary:

All sample data provided in this report met the acceptance criteria specified in the analytical methods and procedures for initial calibration, continuing calibration, instrument controls and process controls where applicable, with the following exceptions.

Page 9 of 13 SDG: 634957

Technical Information

Sample Re-prep/Re-analysis

Samples were reprepped due to low carrier/tracer yield. The re-analysis is being reported.

<u>Product:</u> Lucas Cell, Ra226, Liquid <u>Analytical Method:</u> EPA 903.1 Modified

Analytical Procedure: GL-RAD-A-008 REV# 15

Analytical Batch: 2486922

The following samples were analyzed using the above methods and analytical procedure(s).

GEL Sample ID#	Client Sample Identification
634957001	AF75783
634957002	AF75784
634957003	AF75785
634957004	AF75786
1205506770	Method Blank (MB)
1205506771	634957001(AF75783) Sample Duplicate (DUP)
1205506773	634957001(AF75783) Matrix Spike (MS)
1205506775	Laboratory Control Sample (LCS)

The samples in this SDG were analyzed on an "as received" basis.

Data Summary:

All sample data provided in this report met the acceptance criteria specified in the analytical methods and procedures for initial calibration, continuing calibration, instrument controls and process controls where applicable, with the following exceptions.

Preparation Information

Aliquot Reduced

1205506773 (AF75783MS) Aliquot was reduced due to limited sample volume.

Certification Statement

Where the analytical method has been performed under NELAP certification, the analysis has met all of the requirements of the NELAC standard unless otherwise noted in the analytical case narrative.

Page 10 of 13 SDG: 634957

Chain of Custody

10341957

Santee Cooper One Riverwood Drive Moneks Comer, SC 29461 Phone: (843)761-8000 Ext. 5148 Fax: (843)761-4175

Custon	ustomer Email/Report Recipient: LCWILLA @santeecooper.com			Date R								for ar	ny fla	gged QC			
LCI	MULLA	@santee	cooper.com					1259	915	J_JM	102.0	9.601-1	7 3620	Yes	No		
															<u>A</u>	nalysi	Group
Labwo (Intern only)	rks ID # al use	Sample Locati Description	on/	Collection Date	Collection Time	Sample Collector	Total # of containers	Bottle type: (Glass-G/Plastic-P)	Grab (G) or Composite (C)	Matrix(see below)	Preservative (see	Mei Rep Mis Any	Comm thod # porting limit sc. sample in y other note	t nfo	RAD 226/238	TOTAL RAD CALC.	F, U, SO¥
AF7	5783	WAP-27		8/23/23	1349	2DM	3	P	G	GW	2/1				2	×	1
1	84	WAP-28		1	1109		1	1	1	1	1				1	1	1
	85	WAP-28 D			1114												
1	86	WAP-29		1	1235		1	1	1	1	I					1	1
														-			
Relin	quished by:	Employee#	Date	Time	Receiv	ed by:	S I E	mployee	#	Date	2	Time		Receiving (Interna			
L		34158	/	0940	Sall	7		GEL	8	3/25/	23	0940					
Relin	quished by:			Time	Receiv	ved by:	E	mployee		Date		Time	Correc	t pH: Yes N	0		
M	quished by:	GE L Employee#	9.75.33 Date	15015 Time	Sid	ut ved by:		G EL		25/2 Date		1545 Time	Preserv	vative Lot#:			
⇒Keiin	quisned by:	Етрюуеен	Date	Time	Recen	reu by.		mpioyee		Date		Time	Date/T	ime/Init for preser	vative:		
		ETALS (all)	Nuit	rients	BAL	cc		GV	psui	m	Tig.	Coa		Flunck		Oi	
□Ag	□С	u □ Sb	D TO	COLUMN TO CHEST STATE OF THE PARTY OF THE PA	MI □ BTEX	<u>sc.</u>		Wallbo	THE RESERVE			Ultimate		Flyash Ammonia	HTr		l Qual.
□ Al			□ DC	C	□ Naphtha			Gyp	sum(a	all		☐ % Mois	sture	□ LOI	11	%Mois	
□ As	□К	二十二十二十二十二十二十二十二十二十二十二十二十二十二十二十二十二十二十二十		TPO4	□ THM/H □ VOC	AA	-	belo Al				☐ Ash ☐ Sulfur		□ % Carbon	ER/	Color Acidity	
□В	□ L		D F	ID-IN	□ Oil & G	rease	1	□ТО	C			BTUs		☐ Mineral Analysis		Dielectri FT	e Strength
□ Ba			D CI		☐ E. Coli ☐ Total Co	oliform	3		tal metal			□ Volatile	e Matter	□ Sieve	0.1	Dissolv	ed Gases
□ Be	□М		DNO	CHATCH CONTRACTOR	□ pH □ Dissolve		1	□ Pui	rity (Ca	sO4)		☐ CHN Other Tests:		□ % Moisture		lashpo	
□ Ca	□M	lo 🗆 V	□ Br		□ Dissolve		-	[] % [Moistu Ifites	re	577.0	XRF Scan		NPDES	01	Metals	in oil
□ Cd	□N	a □ Zn	□ SO		☐ Rad 226			□pH				HGI Fineness		□ Oil & Grease		(As,Co	.Cr.Ni.Pb
□Со	□N	i 🗆 Hg		A PARTIES	□ PCB		1		lorides		THE RESERVED	Particulate N	fatter	□As	01	ΓX	
□ Cr	□ Pl	b □ CrVI		duta la				C Sulfur						□ TSS	GC	DEER	

Client: SOOT			SDG/AR/COC/Work Order: 030057
Received By: MAH - JIA)			Date Received: 8-25-23
Carrier and Tracking Number			Citcle Applicable: FedEx Express FedEx Ground UPS Field Services Couries Other
uspected Hazard Information	Yes	°Z	*If Net Counts > 100cpm on samples not marked "radioactive", contact the Radiation Safety Group for further investigation.
)Shipped as a DOT Hazardous?		1	Hazard Class Shipped: UN#: If UN2910, Is the Radioactive Shipment Survey Compliant? Yes No
Did the client designate the samples are to be ceived as radioactive?		1	COC notation or radioactive stickers on containers equal client designation.
Did the RSO classify the samples as dioactive?		1	Maximum Net Counts Observed* (Observed Counts - Area Background Counts):CPM/mR/Hr Classified as: Rad 1 Rad 2 Rad 3
) Did the client designate samples are hazardous?		1	COC notation or hazard labels on containers equal client designation.
Did the RSO identify possible hazards?		1	1f D or E is yes, select Hazards below. PCB's Flammable Foreign Soil RCRA Asbestos Beryllium Other:
Sample Receipt Criteria	Yes	NA	Z Comments/Qualifiers (Required for Non-Conforming Items)
Shipping containers received intact and sealed?	/		Circle Applicable: Seals broken Damaged container Leaking container Other (describe)
Chain of custody documents included with shipment?	/		Circle Applicable: Client contacted and provided COC COC created upon receipt
Samples requiring cold preservation within $(0 \le 6 \text{ deg. C})$?*	1		Preservation Method: Wet Ice Ice Packs Dry ice None Other: *all temperatures are recorded in Celsius TEMP:
Daily check performed and passed on IR temperature gun?	1		Temperature Device Serial #: IR2-21 Secondary Temperature Device Serial # (If Applicable):
Sample containers intact and sealed?			Circle Applicable: Seals broken Damaged container Leaking container Other (describe)
Samples requiring chemical preservation at proper pH?	1		Sample ID's and Containers Affected: If Preservation added, Lot#:
Do any samples require Volatile Analysis?			If Yes, are Encores or Soil Kits present for solids? Yes No NA (If yes, take to VOA Freezer) Do liquid VOA vials contain acid preservation? Yes No NA (If unknown, select No) Are liquid VOA vials free of headspace? Yes No NA
Samples received within holding time?			Sample ID's and containers affected: ID's and tests affected:
Sample ID's on COC match ID's on			ID's and containers affected:
bottles? Date & time on COC match date & time on bottles?	1		Circle Applicable: No dates on containers No times on containers COC missing info Other (describe)
Number of containers received match number indicated on COC?	/		Circle Applicable: No container count on COC Other (describe)
Are sample containers identifiable as GEL provided by use of GEL labels?	1		
COC form is properly signed in relinquished/received sections?	/		Circle Applicable: Not relinquished Other (describe)
mments (Use Continuation Form if needed):			

GL-CHL-SR-001 Rev 7

PM (or PMA) review: Initials

List of current GEL Certifications as of 21 September 2023

State	Certification
Alabama	42200
Alaska	17-018
Alaska Drinking Water	SC00012
Arkansas	88-0651
CLIA	42D0904046
California	2940
Colorado	SC00012
Connecticut	PH-0169
DoD ELAP/ ISO17025 A2LA	2567.01
Florida NELAP	E87156
Foreign Soils Permit	P330-15-00283, P330-15-00253
Georgia	SC00012
Georgia SDWA	967
Hawaii	SC00012
Idaho	SC00012
Illinois NELAP	200029
Indiana	C-SC-01
Kansas NELAP	E-10332
Kentucky SDWA	90129
Kentucky Wastewater	90129
Louisiana Drinking Water	LA024
Louisiana NELAP	03046 (AI33904)
Maine	2019020
Maryland	270
Massachusetts	M-SC012
Massachusetts PFAS Approv	Letter
Michigan	9976
Mississippi	SC00012
Nebraska	NE-OS-26-13
Nevada	SC000122023-4
New Hampshire NELAP	2054
New Jersey NELAP	SC002
New Mexico	SC00012
New York NELAP	11501
North Carolina	233
North Carolina SDWA	45709
North Dakota	R-158
Oklahoma	2022-160
Pennsylvania NELAP	68-00485
Puerto Rico	SC00012
S. Carolina Radiochem	10120002
Sanitation Districts of L	9255651
South Carolina Chemistry	10120001
Tennessee	TN 02934
Texas NELAP	T104704235-23-21
Utah NELAP	SC000122022-37
Vermont	VT87156
Virginia NELAP	460202
Washington	C780
w asimigion	C/80

gel.com

August 03, 2023

Ms. Jeanette Gilmetti Santee Cooper P.O. Box 2946101 OCO3 Moncks Corner, South Carolina 29461

Re: ABS Lab Analytical Work Order: 628441

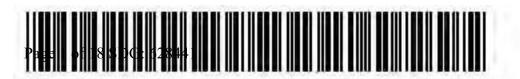
Dear Ms. Gilmetti:

GEL Laboratories, LLC (GEL) appreciates the opportunity to provide the enclosed analytical results for the sample(s) we received on July 07, 2023. This original data report has been prepared and reviewed in accordance with GEL's standard operating procedures.

The samples were delivered with proper chain of custody documentation and signatures. All sample containers arrived without any visible signs of tampering or breakage. There are no additional comments concerning sample receipt.

Test results for NELAP or ISO 17025 accredited tests are verified to meet the requirements of those standards, with any exceptions noted. The results reported relate only to the items tested and to the sample as received by the laboratory. These results may not be reproduced except as full reports without approval by the laboratory. Copies of GEL's accreditations and certifications can be found on our website at www.gel.com.

Our policy is to provide high quality, personalized analytical services to enable you to meet your analytical needs on time every time. We trust that you will find everything in order and to your satisfaction. If you have any questions, please do not hesitate to call me at (843) 556-8171, ext. 4289.


Sincerely,

Jessica Ward for Julie Robinson

Project Manager

Purchase Order: 398684

Enclosures

2040 Savage Road Charleston SC 29407 - (843) 556-8171 - www.gel.com

Certificate of Analysis Report for

SOOP001 Santee Cooper

Client SDG: 628441 GEL Work Order: 628441

The Qualifiers in this report are defined as follows:

- * A quality control analyte recovery is outside of specified acceptance criteria
- ** Analyte is a Tracer compound
- ** Analyte is a surrogate compound
- U Analyte was analyzed for, but not detected above the MDL, MDA, MDC or LOD.

Where the analytical method has been performed under NELAP certification, the analysis has met all of the requirements of the NELAC standard unless qualified on the Certificate of Analysis.

The designation ND, if present, appears in the result column when the analyte concentration is not detected above the limit as defined in the 'U' qualifier above.

This data report has been prepared and reviewed in accordance with GEL Laboratories LLC standard operating procedures. Please direct any questions to your Project Manager, Julie Robinson.

	Street south	
Reviewed by	V	

1 12/201

Page 2 of 18 SDG: 628441

2040 Savage Road Charleston SC 29407 - (843) 556-8171 - www.gel.com

Certificate of Analysis

Project:

Client ID:

Analyst Comments

Report Date: August 3, 2023

SOOP00119

SOOP001

Company: Santee Cooper Address: P.O. Box 2946101

OCO3

Moncks Corner, South Carolina 29461

Contact: Ms. Jeanette Gilmetti Project: ABS Lab Analytical

Client Sample ID: AF68739 Sample ID: 628441001

Matrix: GW

Collect Date: 05-JUL-23 10:44
Receive Date: 07-JUL-23
Collector: Client

MDC RL Parameter Qualifier Result Uncertainty Units PF DF Analyst Date Time Batch Method Rad Gas Flow Proportional Counting GFPC, Ra228, Liquid "As Received" Radium-228 4.57 +/-1.50 1.82 3.00 pCi/L JE1 07/18/23 0924 2455718 1 Radium-226+Radium-228 Calculation "See Parent Products" Radium-226+228 Sum 4.74 +/-1.53 pCi/L NXL1 08/02/23 0858 2455717 2 Rad Radium-226 Lucas Cell, Ra226, Liquid "As Received" Radium-226 0.165 +/-0.281 0.523 1.00 pCi/L LXP1 08/01/23 0944 2455712 3

The following Analytical Methods were performed:

Description

1 EPA 904.0/SW846 9320 Modified
2 Calculation
3 EPA 903.1 Modified

Surrogate/Tracer Recovery Test Result Nominal Recovery% Acceptable Limits

Barium-133 Tracer GFPC, Ra228, Liquid "As Received" 69.8 (15%-125%)

Notes:

Method

Counting Uncertainty is calculated at the 95% confidence level (1.96-sigma).

Column headers are defined as follows:

DF: Dilution Factor Lc/LC: Critical Level
DL: Detection Limit PF: Prep Factor
MDA: Minimum Detectable Activity RL: Reporting Limit

MDC: Minimum Detectable Concentration SQL: Sample Quantitation Limit

Page 3 of 18 SDG: 628441

2040 Savage Road Charleston SC 29407 - (843) 556-8171 - www.gel.com

Certificate of Analysis

Report Date: August 3, 2023

SOOP00119

Company: Santee Cooper Address: P.O. Box 2946101

OCO3

Moncks Corner, South Carolina 29461

Contact: Ms. Jeanette Gilmetti Project: ABS Lab Analytical

Client Sample ID: AF68735 Sample ID: 628441002

Matrix: GW

Collect Date: 05-JUL-23 09:35
Receive Date: 07-JUL-23
Collector: Client

Section Sectin Section Section Section Section Section Section Section Section

Project:

Parameter	Qualifier	Result	Uncertainty	MDC	RL	Units	PF	DF Analyst Date	Time Batch	Method
Rad Gas Flow Proportion	onal Counting									
GFPC, Ra228, Liquid "	As Received"									
Radium-228		3.43	+/-1.21	1.39	3.00	pCi/L		JE1 07/18/23	0924 2455718	1
Radium-226+Radium-2	228 Calculatio	n "See Pa	arent Products"							
Radium-226+228 Sum		4.18	+/-1.28			pCi/L		NXL1 08/02/23	0858 2455717	2
Rad Radium-226										
Lucas Cell, Ra226, Liq	uid "As Recei	ved"								
Radium-226		0.746	+/-0.413	0.408	1.00	pCi/L		LXP1 08/01/23	1005 2455712	3
The following Analytic	cal Methods w	ere perfo	ormed:							
Method	Description					I	Analys	st Comments		

1	EPA 904.0/SW846 9320 Modified				
2	Calculation				
3	EPA 903.1 Modified				
Surrogate/Tracer Recov	ery Test	Result	Nominal	Recovery%	Acceptable Limits

Barium-133 Tracer GFPC, Ra228, Liquid "As Received" 71.5 (15%-125%)

Notes:

Counting Uncertainty is calculated at the 95% confidence level (1.96-sigma).

Column headers are defined as follows:

DF: Dilution Factor Lc/LC: Critical Level
DL: Detection Limit PF: Prep Factor
MDA: Minimum Detectable Activity RL: Reporting Limit

MDC: Minimum Detectable Concentration SQL: Sample Quantitation Limit

Page 4 of 18 SDG: 628441

2040 Savage Road Charleston SC 29407 - (843) 556-8171 - www.gel.com

Certificate of Analysis

Report Date: August 3, 2023

SOOP00119

Company: Santee Cooper Address: P.O. Box 2946101

OCO3

Moncks Corner, South Carolina 29461

Contact: Ms. Jeanette Gilmetti Project: ABS Lab Analytical

Client Sample ID: AF68756 Sample ID: 628441003

Matrix: GW

Collect Date: 05-JUL-23 11:39
Receive Date: 07-JUL-23
Collector: Client

628441003 Client ID: SOOP001 GW

Project:

Parameter	Qualifier	Result	Uncertainty	MDC	RL	Units	PF	DF Analy	st Date	Time Batch	Method
Rad Gas Flow Propor	rtional Counting										
GFPC, Ra228, Liquio	d "As Received"										
Radium-228		3.86	+/-1.36	1.70	3.00	pCi/L		JE1	07/18/23	0924 2455718	1
Radium-226+Radium	n-228 Calculatio	n "See Pa	rent Products"								
Radium-226+228 Sum		4.33	+/-1.42			pCi/L		NXL1	08/02/23	0858 2455717	2
Rad Radium-226											
Lucas Cell, Ra226, L	iquid "As Recei	ved"									
Radium-226	U	0.471	+/-0.397	0.579	1.00	pCi/L		LXP1	08/01/23	1005 2455712	3
The following Analy	rtical Methods w	ere perfo	rmed:								
Method	Description					1	Analys	st Comment	s		
1	EPA 904.0/SW	/846 9320 N	Modified								

2 Calculation
3 EPA 903.1 Modified

Surrogate/Tracer Recovery Test Result Nominal Recovery% Acceptable Limits

Barium-133 Tracer GFPC, Ra228, Liquid "As Received"

Result Nominal Recovery% Acceptable Limit Recovery% Acceptable Limit Recovery% Test Result Nominal Recovery% Acceptable Limit Reco

Notes:

Counting Uncertainty is calculated at the 95% confidence level (1.96-sigma).

Column headers are defined as follows:

DF: Dilution Factor Lc/LC: Critical Level
DL: Detection Limit PF: Prep Factor
MDA: Minimum Detectable Activity RL: Reporting Limit

MDC: Minimum Detectable Concentration SQL: Sample Quantitation Limit

Page 5 of 18 SDG: 628441

2040 Savage Road Charleston SC 29407 - (843) 556-8171 - www.gel.com

Certificate of Analysis

Project:

Client ID:

Analyst Comments

Report Date: August 3, 2023

SOOP00119

SOOP001

Company: Santee Cooper Address: P.O. Box 2946101

OCO3

Moncks Corner, South Carolina 29461

Contact: Ms. Jeanette Gilmetti Project: ABS Lab Analytical

Client Sample ID: AF68758 Sample ID: 628441004

Matrix: GW

Collect Date: 06-JUL-23 09:47
Receive Date: 07-JUL-23
Collector: Client

Parameter	Qualifier	Result	Uncertainty	MDC	RL	Units	PF	DF Analy	st Date	Time Batch	Method
Rad Gas Flow Proportion	onal Counting	5									
GFPC, Ra228, Liquid "	As Received"										
Radium-228	U	0.938	+/-1.42	2.44	3.00	pCi/L		JE1	07/18/23	0924 2455718	1
Radium-226+Radium-2	228 Calculatio	n "See Pa	arent Products"								
Radium-226+228 Sum		1.48	+/-1.46			pCi/L		NXL1	08/02/23	0858 2455717	2
Rad Radium-226											
Lucas Cell, Ra226, Liqu	uid "As Recei	ved"									
Radium-226		0.542	+/-0.339	0.302	1.00	pCi/L		LXP1	08/01/23	1005 2455712	. 3

The following Analytical Methods were performed:

Description

1	EPA 904.0/SW846 9320 Modified				
2	Calculation				
3	EPA 903.1 Modified				
Surrogate/Tracer Recov	ery Test	Result	Nominal	Recovery%	Acceptable Limits

Barium-133 Tracer GFPC, Ra228, Liquid "As Received" 70.9 (15%-125%)

Notes:

Method

Counting Uncertainty is calculated at the 95% confidence level (1.96-sigma).

Column headers are defined as follows:

DF: Dilution Factor Lc/LC: Critical Level
DL: Detection Limit PF: Prep Factor
MDA: Minimum Detectable Activity RL: Reporting Limit

MDC: Minimum Detectable Concentration SQL: Sample Quantitation Limit

Page 6 of 18 SDG: 628441

2040 Savage Road Charleston SC 29407 - (843) 556-8171 - www.gel.com

Certificate of Analysis

Project:

Client ID:

Analyst Comments

Report Date: August 3, 2023

SOOP00119

SOOP001

Company: Santee Cooper Address: P.O. Box 2946101

OCO3

Moncks Corner, South Carolina 29461

Contact: Ms. Jeanette Gilmetti Project: ABS Lab Analytical

Client Sample ID: AF68759 Sample ID: 628441005

Matrix: GW

Collect Date: 06-JUL-23 09:52
Receive Date: 07-JUL-23
Collector: Client

Parameter	Qualifier	Result	Uncertainty	MDC	RL	Units	PF	DF Analy	yst Date	Time Batch	Method
Rad Gas Flow Proport	tional Counting										
GFPC, Ra228, Liquid	"As Received"										
Radium-228		4.73	+/-1.48	1.61	3.00	pCi/L		JE1	07/18/23	0924 2455718	1
Radium-226+Radium-	-228 Calculation	n "See Pa	arent Products"								
Radium-226+228 Sum		5.19	+/-1.52			pCi/L		NXL1	08/02/23	0858 2455717	2
Rad Radium-226											
Lucas Cell, Ra226, Li	quid "As Receiv	ved"									
Radium-226		0.462	+/-0.347	0.361	1.00	pCi/L		LXP1	08/01/23	1005 2455712	3
The fellowing Applyt	ical Mathada yy	ana nanfa	mm adı								

The following Analytical Methods were performed:

Description

1 EPA 904.0/SW846 9320 Modified
2 Calculation
3 EPA 903.1 Modified

Surrogate/Tracer Recovery Test Result Nominal Recovery% Acceptable Limits

Surrogate/Tracer Recovery Test Result Nominal Recovery% Acceptable Limits

Barium-133 Tracer GFPC, Ra228, Liquid "As Received"

69.5 (15%-125%)

Notes:

Method

Counting Uncertainty is calculated at the 95% confidence level (1.96-sigma).

Column headers are defined as follows:

DF: Dilution Factor Lc/LC: Critical Level
DL: Detection Limit PF: Prep Factor
MDA: Minimum Detectable Activity RL: Reporting Limit

MDC: Minimum Detectable Concentration SQL: Sample Quantitation Limit

Page 7 of 18 SDG: 628441

2040 Savage Road Charleston SC 29407 - (843) 556-8171 - www.gel.com

Certificate of Analysis

Report Date: August 3, 2023

SOOP00119

Company: Santee Cooper Address: P.O. Box 2946101

OCO3

Moncks Corner, South Carolina 29461

Contact: Ms. Jeanette Gilmetti Project: ABS Lab Analytical

Client Sample ID: AF68736 Sample ID: 628441006

Matrix: GW

Collect Date: 06-JUL-23 11:21
Receive Date: 07-JUL-23
Collector: Client

Section Sectin Section Section Section Section Section Section Section Section

Project:

Parameter	Qualifier	Result	Uncertainty	MDC	RL	Units	PF	DF Analyst Date	Time Batch	Method
Rad Gas Flow Proportion	onal Counting	5								
GFPC, Ra228, Liquid "	As Received"	1								
Radium-228		4.13	+/-1.65	2.22	3.00	pCi/L		JE1 07/18/23	0924 2455718	1
Radium-226+Radium-2	228 Calculatio	n "See Pa	arent Products"							
Radium-226+228 Sum		4.94	+/-1.71			pCi/L		NXL1 08/02/23	$0858 \ 2455717$	2
Rad Radium-226										
Lucas Cell, Ra226, Liq	uid "As Recei	ved"								
Radium-226		0.812	+/-0.450	0.518	1.00	pCi/L		LXP1 08/01/23	1005 2455712	3
The following Analytic	cal Methods w	vere perfo	rmed:							
Method	Description					I	Analys	st Comments		

1	EPA 904.0/SW846 9320 Modified				
2	Calculation				
3	EPA 903.1 Modified				
Surrogate/Tracer Recov	erv Test	Result	Nominal	Recoverv%	Acceptable Limits

Barium-133 Tracer GFPC, Ra228, Liquid "As Received" 61.2 (15%-125%)

Notes:

Counting Uncertainty is calculated at the 95% confidence level (1.96-sigma).

Column headers are defined as follows:

DF: Dilution Factor Lc/LC: Critical Level
DL: Detection Limit PF: Prep Factor
MDA: Minimum Detectable Activity RL: Reporting Limit

MDC: Minimum Detectable Concentration SQL: Sample Quantitation Limit

Page 8 of 18 SDG: 628441

2040 Savage Road Charleston SC 29407 - (843) 556-8171 - www.gel.com

Certificate of Analysis

Report Date: August 3, 2023

SOOP00119

Company: Santee Cooper Address: P.O. Box 2946101

OCO3

Moncks Corner, South Carolina 29461

Contact: Ms. Jeanette Gilmetti Project: ABS Lab Analytical

Client Sample ID: AF68753 Sample ID: 628441007

Matrix: GW

Collect Date: 06-JUL-23 13:08
Receive Date: 07-JUL-23
Collector: Client

628441007 Client ID: SOOP001

Project:

Parameter	Qualifier	Result	Uncertainty	MDC	RL	Units	PF	DF Analyst Date Tin	ne Batch	Method
Rad Gas Flow Proportion	onal Counting									
GFPC, Ra228, Liquid ".	As Received"									
Radium-228	U	1.28	+/-0.974	1.50	3.00	pCi/L		JE1 07/18/23 092	4 2455718	1
Radium-226+Radium-2	28 Calculatio	n "See Pa	arent Products"							
Radium-226+228 Sum		2.34	+/-1.08			pCi/L		NXL1 08/02/23 085	8 2455717	2
Rad Radium-226										
Lucas Cell, Ra226, Liqu	uid "As Recei	ved"								
Radium-226		1.05	+/-0.469	0.389	1.00	pCi/L		LXP1 08/01/23 100	5 2455712	3
The following Analytic	al Methods w	ere perfo	ormed:							
Method	Description					I	Analys	t Comments		

1	EPA 904.0/SW846 9320 Modified				
2	Calculation				
3	EPA 903.1 Modified				
Surrogate/Tracer Recov	erv Test	Result	Nominal	Recoverv%	Acceptable Limits

Barium-133 Tracer GFPC, Ra228, Liquid "As Received" 69.4 (15%-125%)

Notes:

Counting Uncertainty is calculated at the 95% confidence level (1.96-sigma).

Column headers are defined as follows:

DF: Dilution Factor Lc/LC: Critical Level
DL: Detection Limit PF: Prep Factor
MDA: Minimum Detectable Activity RL: Reporting Limit

MDC: Minimum Detectable Concentration SQL: Sample Quantitation Limit

Page 9 of 18 SDG: 628441

2040 Savage Road Charleston SC 29407 - (843) 556-8171 - www.gel.com

Certificate of Analysis

Report Date: August 3, 2023

Company: Santee Cooper Address: P.O. Box 2946101

OCO3

Moncks Corner, South Carolina 29461

Contact: Ms. Jeanette Gilmetti Project: ABS Lab Analytical

Client Sample ID: AF68754 Sample ID: 628441008

Matrix: GW

Collect Date: 06-JUL-23 13:13
Receive Date: 07-JUL-23
Collector: Client

Description

D: AF68754 Project: SOOP00119 628441008 Client ID: SOOP001

Parameter	Qualifier	Result	Uncertainty	MDC	RL	Units	PF	DF Anal	yst Date	Time Batch	Method
Rad Gas Flow Proportion	onal Counting										
GFPC, Ra228, Liquid ".	As Received"										
Radium-228		2.81	+/-1.24	1.67	3.00	pCi/L		JE1	07/18/23	0924 2455718	3 1
Radium-226+Radium-228 Calculation "See Parent Products"											
Radium-226+228 Sum		3.13	+/-1.28			pCi/L		NXL1	08/02/23	0858 2455717	7 2
Rad Radium-226											
Lucas Cell, Ra226, Liquid "As Received"											
Radium-226	U	0.321	+/-0.315	0.466	1.00	pCi/L		LXP1	08/01/23	1005 2455712	2 3
The following Analytical Methods were performed:											

Analyst Comments

1	EPA 904.0/SW846 9320 Modified
2	Calculation
3	EPA 903.1 Modified

Surrogate/Tracer RecoveryTestResultNominalRecovery%Acceptable LimitsBarium-133 TracerGFPC, Ra228, Liquid "As Received"73.4(15%-125%)

Notes:

Method

Counting Uncertainty is calculated at the 95% confidence level (1.96-sigma).

Column headers are defined as follows:

DF: Dilution Factor Lc/LC: Critical Level
DL: Detection Limit PF: Prep Factor
MDA: Minimum Detectable Activity RL: Reporting Limit

MDC: Minimum Detectable Concentration SQL: Sample Quantitation Limit

Page 10 of 18 SDG: 628441

2040 Savage Road Charleston SC 29407 - (843) 556-8171 - www.gel.com

Certificate of Analysis

Report Date: August 3, 2023

SOOP00119

Company: Santee Cooper Address: P.O. Box 2946101

OCO3

Moncks Corner, South Carolina 29461

Contact: Ms. Jeanette Gilmetti Project: ABS Lab Analytical

Client Sample ID: AF68752 Sample ID:

Matrix: GW

Collect Date: 06-JUL-23 14:09 Receive Date: 07-JUL-23 Collector: Client

Project: 628441009 Client ID: SOOP001

Parameter	Qualifier	Result	Uncertainty	MDC	RL	Units	PF	DF Analyst I	Date	Time	Batch	Method
Rad Gas Flow Proportion	onal Counting											
GFPC, Ra228, Liquid "	As Received"											
Radium-228		3.55	+/-1.26	1.46	3.00	pCi/L		JE1 07/	18/23	0924	2455718	1
Radium-226+Radium-2	228 Calculatio	n "See Pa	arent Products"									
Radium-226+228 Sum		3.61	+/-1.28			pCi/L		NXL1 08/	02/23	0858	2455717	2
Rad Radium-226												
Lucas Cell, Ra226, Liq	uid "As Recei	ved"										
Radium-226	U	0.0603	+/-0.237	0.525	1.00	pCi/L		LXP1 08/	01/23	1005	2455712	3
The following Analytic	cal Methods w	ere perfo	ormed:									
Method	Description					I	Analys	st Comments				

1	EPA 904.0/SW846 9320 Modified				
2	Calculation				
3	EPA 903.1 Modified				
Surrogate/Tracer Recov	ery Test	Result	Nominal	Recovery%	Acceptable Limits

68.7 Barium-133 Tracer GFPC, Ra228, Liquid "As Received" (15%-125%)

Notes:

Counting Uncertainty is calculated at the 95% confidence level (1.96-sigma).

Column headers are defined as follows:

DF: Dilution Factor Lc/LC: Critical Level DL: Detection Limit PF: Prep Factor MDA: Minimum Detectable Activity **RL**: Reporting Limit

MDC: Minimum Detectable Concentration SQL: Sample Quantitation Limit

Page 11 of 18 SDG: 628441

2040 Savage Road Charleston, SC 29407 - (843) 556-8171 - www.gel.com

QC Summary

Report Date: August 3, 2023

Santee Cooper P.O. Box 2946101

OCO3

Moncks Corner, South Carolina

Contact: Ms. Jeanette Gilmetti

Workorder: 628441

Parmname	NOM	Sample Qua	l QC	Units	RPD%	REC%	Range A	Anlst	Date Time
Rad Gas Flow Batch 2455718									
QC1205453175 628441001 DUP Radium-228	Uncertainty	4.57 +/-1.50	2.31 +/-1.23	pCi/L	65.8		(0% - 100%)	JE1	07/18/23 09:23
QC1205453176 LCS Radium-228	77.9 Uncertainty		79.3 +/-4.58	pCi/L		102	(75%-125%)		07/18/23 09:23
QC1205453174 MB Radium-228	Uncertainty	U	1.22 +/-1.25	pCi/L					07/18/23 11:01
Rad Ra-226 Batch 2455712 —— QC1205453161 628343001 DUP Radium-226	Uncertainty	5.77 +/-1.15	4.99 +/-1.05	pCi/L	14.5		(0%-20%)	LXP1	08/01/23 10:28
QC1205453163 LCS Radium-226	26.3 Uncertainty		21.5 +/-1.96	pCi/L		81.7	(75%-125%)		08/01/23 10:28
QC1205453160 MB Radium-226	Uncertainty	U	0.275 +/-0.333	pCi/L					08/01/23 10:28
QC1205453162 628343001 MS Radium-226	131 Uncertainty	5.77 +/-1.15	158 +/-13.8	pCi/L		116	(75%-125%)		08/01/23 10:28

Notes:

Counting Uncertainty is calculated at the 95% confidence level (1.96-sigma).

The Qualifiers in this report are defined as follows:

U Analyte was analyzed for, but not detected above the MDL, MDA, MDC or LOD.

J Value is estimated

X Consult Case Narrative, Data Summary package, or Project Manager concerning this qualifier

H Analytical holding time was exceeded

< Result is less than value reported

Page 12 of 18 SDG: 628441

Page 1 of 2

2040 Savage Road Charleston, SC 29407 - (843) 556-8171 - www.gel.com

QC Summary

Workorder: 628441

Parmname NOM Sample Qual QC Units RPD% REC% Range Anlst Date Time

Parmname Parmname	NOM	Sample (Qual	QC	Units	RPD%	REC%	Range	Anlst	Date	Time

- > Result is greater than value reported
- UI Gamma Spectroscopy--Uncertain identification
- BD Results are either below the MDC or tracer recovery is low
- h Preparation or preservation holding time was exceeded
- R Sample results are rejected
- ^ RPD of sample and duplicate evaluated using +/-RL. Concentrations are <5X the RL. Qualifier Not Applicable for Radiochemistry.
- N/A RPD or %Recovery limits do not apply.
- ND Analyte concentration is not detected above the detection limit
- M M if above MDC and less than LLD
- NJ Consult Case Narrative, Data Summary package, or Project Manager concerning this qualifier
- FA Failed analysis.
- UJ Gamma Spectroscopy--Uncertain identification
- Q One or more quality control criteria have not been met. Refer to the applicable narrative or DER.
- K Analyte present. Reported value may be biased high. Actual value is expected to be lower.
- UL Not considered detected. The associated number is the reported concentration, which may be inaccurate due to a low bias.
- L Analyte present. Reported value may be biased low. Actual value is expected to be higher.
- N1 See case narrative
- Y Other specific qualifiers were required to properly define the results. Consult case narrative.
- ** Analyte is a Tracer compound
- M REMP Result > MDC/CL and < RDL
- J See case narrative for an explanation

N/A indicates that spike recovery limits do not apply when sample concentration exceeds spike conc. by a factor of 4 or more or %RPD not applicable.

- ^ The Relative Percent Difference (RPD) obtained from the sample duplicate (DUP) is evaluated against the acceptance criteria when the sample is greater than five times (5X) the contract required detection limit (RL). In cases where either the sample or duplicate value is less than 5X the RL, a control limit of +/- the RL is used to evaluate the DUP result.
- * Indicates that a Quality Control parameter was not within specifications.

For PS, PSD, and SDILT results, the values listed are the measured amounts, not final concentrations.

Where the analytical method has been performed under NELAP certification, the analysis has met all of the requirements of the NELAC standard unless qualified on the QC Summary.

Page 13 of 18 SDG: 628441

Radiochemistry Technical Case Narrative Santee Cooper SDG #: 628441

Product: GFPC, Ra228, Liquid

Analytical Method: EPA 904.0/SW846 9320 Modified **Analytical Procedure:** GL-RAD-A-063 REV# 5

Analytical Batch: 2455718

The following samples were analyzed using the above methods and analytical procedure(s).

GEL Sample ID#	Client Sample Identification
628441001	AF68739
628441002	AF68735
628441003	AF68756
628441004	AF68758
628441005	AF68759
628441006	AF68736
628441007	AF68753
628441008	AF68754
628441009	AF68752
1205453174	Method Blank (MB)
1205453175	628441001(AF68739) Sample Duplicate (DUP)
1205453176	Laboratory Control Sample (LCS)

The samples in this SDG were analyzed on an "as received" basis.

Data Summary:

All sample data provided in this report met the acceptance criteria specified in the analytical methods and procedures for initial calibration, continuing calibration, instrument controls and process controls where applicable, with the following exceptions.

Technical Information

Recounts

Sample 1205453174 (MB) was recounted due to a suspected blank false positive. The recount is reported.

<u>Product:</u> Lucas Cell, Ra226, Liquid <u>Analytical Method:</u> EPA 903.1 Modified

Analytical Procedure: GL-RAD-A-008 REV# 15

Analytical Batch: 2455712

The following samples were analyzed using the above methods and analytical procedure(s).

GEL Sample ID#	Client Sample Identification
628441001	AF68739
628441002	AF68735

Page 14 of 18 SDG: 628441

628441003	AF68756
628441004	AF68758
628441005	AF68759
628441006	AF68736
628441007	AF68753
628441008	AF68754
628441009	AF68752
1205453160	Method Blank (MB)
1205453161	628343001(NonSDG) Sample Duplicate (DUP)
1205453162	628343001(NonSDG) Matrix Spike (MS)
1205453163	Laboratory Control Sample (LCS)

The samples in this SDG were analyzed on an "as received" basis.

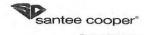
Data Summary:

All sample data provided in this report met the acceptance criteria specified in the analytical methods and procedures for initial calibration, continuing calibration, instrument controls and process controls where applicable, with the following exceptions.

Miscellaneous Information

Additional Comments

The matrix spike, 1205453162 (Non SDG 628343001MS), aliquot was reduced to conserve sample volume.


Certification Statement

Where the analytical method has been performed under NELAP certification, the analysis has met all of the requirements of the NELAC standard unless otherwise noted in the analytical case narrative.

Page 15 of 18 SDG: 628441

Chain of Custody

028441

Santee Cooper One Riverwood Drive Moneks Comer, SC 29461 Phone: (843)761-8000 Ext. 5148 Fax: (843)761-4175

Custome	r Email	/Rep	ort Recipie	nt:	Da	te Re	esults Ne	eded b	y:					Unit #:		Rerun request		y flag	gged QC
LCWIL	LIA		_@santeeco	ooper.com	-			-		125	715	1_11	402.	09.601.1	7 3620	oc (Yes	No		
																	<u>A</u>	nalysis	s Group
Labworks (Internal only)	1026 13	17 A 30 SEC	nple Location scription	n/	Collection Date		Collection Time	Sample Collector	Total # of containers	Bottle type: (Glass-G/Plastic-P)	Grab (G) or	Matrix(see below)	Preservative (see	Me Rep Mis Any	thod # porting limi sc. sample i y other note	info	RAD 226/228	TOTAL RAD CALC	
AF68	739	W	AP-22		7/5	/23	1044	WIK	2	P	G	GW	2				*	×	
AF68	135	W	AP-18				0935		1	1		1					1		
AF68	756	W	LF-A2-1		1		[139	1	1	1	7	1	7				1		
AF 687	58	WL	F-A2-6		7/6/	23	0947		1	1	1	1	+				4		
AF687	159	WL	F-A2-6	DUP			0952	1				4	\mathbb{H}				+		
AF 687	36	WA	HP-19		1		1121		H			+	+				+	+	
AF687	53	W	F-A-4		7/6	/23	1368		4	+	+	+					+		
AF687	54	WL	F-A1-41	DUP	H		1313		+	+	\vdash	+	+		-		+	\vdash	
AF687	52	W	LF-AI-3		1		1469	1_	1	1	1	1	1				1	1	
															Sample	e Receiving (Interna	l Use Oi	n/v)	
Relinqu	ished by	0/5/	Employee#	Date	Time	e	Recei	ved by:		Employe	e#	Da	te	Time		P (°C):			
Sgrow	in		35594	7/7/23	1019		MI	1		GEL	_	1/7/2		1019	Corre	ct pH: Yes N	0		
Relinqu	ished by		Employee#	Date	Time	е	Recei	ved by:		Employe		Da		Time		rvative Lot#:			
DI	1		151	77.27	11.	7	SIL	V	6	EL	.	7/7/	23	18/0	Fresei	rvative Lot#:			
Kelingu	ished by		Employee#	Date	Time	e	Recei	ved by:		Employe	e#	Da	te	Time	Date/	Time/Init for preser	vative:		
T-75-4	ПМ	PT.	ALS (all)		0.00	100			ERIB				4	C				200	
□Ag		122701		A STATE OF THE PARTY OF THE PAR	rient	5	ES. 10.000000	SC.		Walli	vpsu	m		Coa Ultimate	-	Flyash Ammonia	CONT	0	H Oual.
□ A1	□F	e	□ Se				□ BTEX □ Naphth	alene			psum(all		☐ % Moi	sture	□ LOI	T.	%Moi	Control of the Contro
□ As	□K		□ Sn	□ TP	TPO4		□ THM/H □ VOC	AA			ow)			□ Ash		☐ % Carbon		Color Acidity	
□В	□L	i	□ Sr	□ NI	13-N	%	□ Oil & C	irease		OT	AIM OC			☐ Sulfur ☐ BTUs		☐ Mineral Analysis	BI	Dielean	ic Strength
□ Ba		1g	□ Ti	□ F □ Cl		-	☐ E. Coli ☐ Total C	oliform		DT	otal me		188	□ Volati	le Matter	☐ Sieve		IFT Dissol	ved Gases
□Ве	□N	1n	□ T1	□ NC			□pH		0			aSO4)	100	□ CHN		□ % Moisture	E U	sed O	il
□ Ca	□N	10	□V	□ Br			☐ Dissolv		1		Moist ulfites	ure	ORDER TO SERVICE	Other Tests XRF Scan		NBDEC		Flashp Metals	
□ Cd	□N	la	□ Zn	□ SC			☐ Rad 22	5		Ор	H		- 3/1	□ HGI		NPDES □ Oil & Grease	3/2	(As,C4	d.Cr.NLPb
□Со	ΠN		□ Hg			-	□ Rad 22	3			hloride article			☐ Fineness ☐ Particulate	Matter	□ As		Hg) TX	46 915
□ Cr			□ CrVI							□ Sulfu			410			□ TSS	0 6	OFER	

E 5	目	Laboratories LLC		SA	MPLE RECEIPT & REVIEW FORM
- Boston		200		SDG/AF	MPLE RECEIT TO 28441
ient:	5	001		Date R	eceived: Circle Applicable: Other
ceive	By:	SNS		Date	FedEx Express FedEx Ground UPS Field Services Country Other
		and Tracking Number		C	00/cr 1-3c C00/cr 2-12c t Counts > 100cpm on samples not marked "radioactive", contact the Radiation Safety Group for further investigation.
_		. r. c. — otion	Yes	2 *If Ne	t Counts > 100cpm on samples not marked Tadlouse
uspect	ed H	azard Information			UN#: Class Shipped: UN#: No No
				Y Hazar	I Class Shipped: If UN2910, Is the Radioactive Shipment Survey Compliant? YesNo
Shin	ned as	s a DOT Hazardous?	-	4	notation or radioactive stickers on containers equal client designation.
узшр	pou -	the samples are to be		Vcoc	notation or radioactive stickers on contament of
3) Did	the c	lient designate the samples are to be radioactive?	-		Observed Counts - Area Background Counts.
				Maxi	Classified as: Rad 1 Rad 2 Rad 3
C) Die	the I	RSO classify the samples as	-	1-	
radioa					notation or hazard labels on containers equal client designation.
DID	d the	client designate samples are hazardous	?	A If D	or E is yes, select Hazards below. Other: RCRA Asbestos Beryllium Other:
				X	nCD's Hammanic 10000
E) D	id the	RSO identify possible hazards?	1 50	140	Comments/Qualifiers (Required for Non-Conforming Items) Other (describe)
		Sample Receipt Criteria	Y P.S.	NA S	Circle Applicable: Seals broken Damaged container Leaking container Other (describe)
	Chin	oping containers received intact and	X		
1	ceal	ed?	-	7	Circle Applicable: Client contacted and provided
3	Sar wit	in of custody documents included h shipment? supples requiring cold preservation thin (0 ≤ 6 deg. C)?* ily check performed and passed on	1	X	Preservation Method: Wet Je Ice Packs Dry ice None Other: *all temperatures are recorded in Celsius Temperature Device Serial #: IR1-23 Secondary Temperature Device Serial # (If Applicable): Circle Applicable: Seals broken Damaged container Leaking container Other (describe)
-		inperature gun? Imple containers intact and sealed?			
1 5				1	Sample ID's and Containers Affected:
	S	amples requiring chemical preserva	поп		If Preservation added, Lot#: No NA (If yes, take to VOA Freezer)
	6 at	proper pH?			If Preservation added, Loif: If Yes, are Encores or Soil Kits present for solids? Yes No NA (If yes, take to Vort teess, If Yes, are Encores or Soil Kits preservation? Yes No NA (If unknown, select No) Do liquid VOA vials contain acid preservation? Yes No NA
		Volatile			V Landiguid VOA vials fiee of headpear
	7	Do any samples require Volatile Analysis?			Sample ID's and containers affected:
	-	Villa lare.			ID's and tests affected:
- 1			-0	1	ID's and tests affection
1		Samples received within holding ti	ne!	V	ID's and containers affected:
-	8			1	10's and community Other (describe)
				V	thinger (I & missing not
		Sample ID's on COC match ID's or		X	Circle Applicable: No dates on containers No times on containers
	9	Sample ID's on COC match ID's or bottles?		11	Circle Applicable: No dates on contame
	9	Sample ID's on COC match ID's or bottles? Date & time on COC match date &		11	Circle Applicable: No dates on contame
	9	Sample ID's on COC match ID's or bottles? Date & time on COC match date & on bottles?	e time	11	Circle Applicable: No dates on containers No times on containers Coo new Coordinates Coord
	9	Sample ID's on COC match ID's or bottles? Date & time on COC match date & on bottles? Number of containers received match the indicated on COC?	time	11	Circle Applicable: No dates on contame
	9	Sample ID's on COC match ID's or bottles? Date & time on COC match date & on bottles? Number of containers received manumber indicated on COC?	tch	X	Circle Applicable: No container count on COC Other (describe) Circle Applicable: No container count on COC Other (describe)
	9	Sample ID's on COC match ID's or bottles? Date & time on COC match date & on bottles? Number of containers received mumber indicated on COC? Are sample containers identifiable of COC?	tch	11	Circle Applicable: No container count on COC Other (describe) Circle Applicable: No container count on COC Other (describe)
	9 10 11	Sample ID's on COC match ID's or bottles? Date & time on COC match date & on bottles? Number of containers received manumber indicated on COC? Are sample containers identifiable GEL provided by use of GEL lab COC form is properly signed in	tch	X	Circle Applicable: No container count on COC Other (describe) Circle Applicable: No container count on COC Other (describe)

Page 17 of 18 SDG: 628441

0

Date 1/10/23 Page

List of current GEL Certifications as of 03 August 2023

State	Certification					
Alabama	42200					
Alaska	17-018					
Alaska Drinking Water	SC00012					
Arkansas	88-0651					
CLIA	42D0904046					
California	2940					
Colorado	SC00012					
Connecticut	PH-0169					
DoD ELAP/ ISO17025 A2LA	2567.01					
Florida NELAP	E87156					
Foreign Soils Permit	P330-15-00283, P330-15-00253					
Georgia	SC00012					
Georgia SDWA	967					
Hawaii	SC00012					
Idaho	SC00012					
Illinois NELAP	200029					
Indiana	C-SC-01					
Kansas NELAP	E-10332					
Kentucky SDWA	90129					
Kentucky Wastewater	90129					
Louisiana Drinking Water	LA024					
Louisiana NELAP	03046 (AI33904)					
Maine	2019020					
Maryland	270					
Massachusetts	M-SC012					
Massachusetts PFAS Approv	Letter					
Michigan	9976					
Mississippi	SC00012					
Nebraska	NE-OS-26-13					
Nevada	SC000122023-4					
New Hampshire NELAP	2054					
New Jersey NELAP	SC002					
New Mexico	SC002 SC00012					
New York NELAP	11501					
North Carolina	233					
North Carolina SDWA	45709					
North Dakota	R-158					
Oklahoma	2022-160					
Pennsylvania NELAP	68-00485					
Pennsylvania NELAP Puerto Rico	SC00012					
S. Carolina Radiochem	10120002					
Sanitation Districts of L	9255651					
South Carolina Chemistry	10120001					
Tennessee Teves NEL A P	TN 02934					
Texas NELAP	T104704235-22-20					
Utah NELAP	SC000122022-37					
Vermont	VT87156					
Virginia NELAP	460202					
Washington	C780					

2040 Savage Road | Charleston, SC 29407 843 556 8171

gel.com

October 26, 2023

Ms. Jeanette Gilmetti Santee Cooper P.O. Box 2946101 OCO3 Moncks Corner, South Carolina 29461

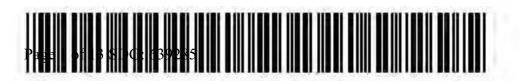
Re: ABS Lab Analytical Work Order: 639285

Dear Ms. Gilmetti:

GEL Laboratories, LLC (GEL) appreciates the opportunity to provide the enclosed analytical results for the sample(s) we received on September 29, 2023. This original data report has been prepared and reviewed in accordance with GEL's standard operating procedures.

The samples were delivered with proper chain of custody documentation and signatures. All sample containers arrived without any visible signs of tampering or breakage. There are no additional comments concerning sample receipt.

Test results for NELAP or ISO 17025 accredited tests are verified to meet the requirements of those standards, with any exceptions noted. The results reported relate only to the items tested and to the sample as received by the laboratory. These results may not be reproduced except as full reports without approval by the laboratory. Copies of GEL's accreditations and certifications can be found on our website at www.gel.com.


Our policy is to provide high quality, personalized analytical services to enable you to meet your analytical needs on time every time. We trust that you will find everything in order and to your satisfaction. If you have any questions, please do not hesitate to call me at (843) 556-8171, ext. 4289.

Sincerely,

Jordan Melton for Julie Robinson Project Manager

Purchase Order: 398684

Enclosures

2040 Savage Road Charleston SC 29407 - (843) 556-8171 - www.gel.com

Certificate of Analysis Report for

SOOP001 Santee Cooper

Client SDG: 639285 GEL Work Order: 639285

The Qualifiers in this report are defined as follows:

- * A quality control analyte recovery is outside of specified acceptance criteria
- ** Analyte is a Tracer compound
- ** Analyte is a surrogate compound
- U Analyte was analyzed for, but not detected above the MDL, MDA, MDC or LOD.

Where the analytical method has been performed under NELAP certification, the analysis has met all of the requirements of the NELAC standard unless qualified on the Certificate of Analysis.

The designation ND, if present, appears in the result column when the analyte concentration is not detected above the limit as defined in the 'U' qualifier above.

This data report has been prepared and reviewed in accordance with GEL Laboratories LLC standard operating procedures. Please direct any questions to your Project Manager, Julie Robinson.

Reviewed by Dordon Melton

Page 2 of 13 SDG: 639285

2040 Savage Road Charleston SC 29407 - (843) 556-8171 - www.gel.com

Certificate of Analysis

Report Date: October 26, 2023

1

2

3

SOOP00119

SOOP001

Company: Santee Cooper Address: P.O. Box 2946101

OCO3

Moncks Corner, South Carolina 29461

Contact: Ms. Jeanette Gilmetti Project: ABS Lab Analytical

Client Sample ID: AF79064 Sample ID: 639285001

Matrix: GW

Collect Date: 26-SEP-23 12:13
Receive Date: 29-SEP-23
Collector: Client

Parameter Qualifier Result Uncertainty MDC RL Units PF DF Analyst Date Time Batch Method Rad Gas Flow Proportional Counting

Project:

Client ID:

Analyst Comments

GFPC, Ra228, Liquid "As Received"

Radium-228 U 0.698 +/-0.999 1.71 3.00 pCi/L JE1 10/10/23 1123 2502094

Radium-226+Radium-228 Calculation "See Parent Products"

Radium-226+228 Sum 1.46 +/-1.08 pCi/L NXL1 10/26/23 1206 2511601

Radium-226+228 Sum 1.46 +/-1.08 Rad Radium-226

Lucas Cell, Ra226, Liquid "As Received"

Radium-226 0.763 +/-0.411 0.390 1.00 pCi/L LXP1 10/26/23 0846 2502095

The following Analytical Methods were performed:

Method Description

1 EPA 904.0/SW846 9320 Modified
2 Calculation
3 EPA 903.1 Modified

Surrogate/Tracer Recovery Test Result Nominal Recovery% Acceptable Limits

Barium-133 Tracer GFPC, Ra228, Liquid "As Received" 88.3 (15%-125%)

Notes:

Counting Uncertainty is calculated at the 95% confidence level (1.96-sigma).

Column headers are defined as follows:

DF: Dilution Factor Lc/LC: Critical Level
DL: Detection Limit PF: Prep Factor
MDA: Minimum Detectable Activity RL: Reporting Limit

MDC: Minimum Detectable Concentration SQL: Sample Quantitation Limit

Page 3 of 13 SDG: 639285

2040 Savage Road Charleston SC 29407 - (843) 556-8171 - www.gel.com

Certificate of Analysis

Report Date: October 26, 2023

SOOP00119

SOOP001

Company: Santee Cooper Address: P.O. Box 2946101

OCO3

Moncks Corner, South Carolina 29461

Ms. Jeanette Gilmetti Contact: Project: ABS Lab Analytical

Client Sample ID: AF79065 Sample ID: 639285002

Matrix: GW

Collect Date: 27-SEP-23 10:49 Receive Date: 29-SEP-23

Collector: Client

Project:

Client ID:

Parameter	Qualifier	Result	Uncertainty	MDC	RL	Units	PF	DF Analy	st Date	Time Batch	Method
Rad Gas Flow Proportio	nal Counting										
GFPC, Ra228, Liquid "A	As Received"										
Radium-228	U	0.944	+/-1.32	2.25	3.00	pCi/L		JE1	10/10/23	1123 2502094	1
Radium-226+Radium-22	28 Calculation	n "See Pa	arent Products"								
Radium-226+228 Sum		4.29	+/-1.62			pCi/L		NXL1	10/26/23	1206 2511601	2
Rad Radium-226											
Lucas Cell, Ra226, Liqu	id "As Recei	ved"									
Radium-226		3.34	+/-0.934	0.605	1.00	pCi/L		LXP1	10/26/23	0846 2502095	3
The following Analytic	al Methods w	ere perfo	rmed:								

Method Description **Analyst Comments** EPA 904.0/SW846 9320 Modified Calculation EPA 903.1 Modified

Nominal Acceptable Limits Surrogate/Tracer Recovery Test Result Recovery% Barium-133 Tracer (15%-125%) GFPC, Ra228, Liquid "As Received" 84.6

Notes:

Counting Uncertainty is calculated at the 95% confidence level (1.96-sigma).

Column headers are defined as follows:

DF: Dilution Factor Lc/LC: Critical Level DL: Detection Limit PF: Prep Factor MDA: Minimum Detectable Activity **RL**: Reporting Limit

MDC: Minimum Detectable Concentration SQL: Sample Quantitation Limit

Page 4 of 13 SDG: 639285

2040 Savage Road Charleston SC 29407 - (843) 556-8171 - www.gel.com

Certificate of Analysis

Project:

Client ID:

Report Date: October 26, 2023

LXP1 10/26/23 0846 2502095

3

SOOP00119

SOOP001

Company: Santee Cooper P.O. Box 2946101 Address:

OCO₃

Moncks Corner, South Carolina 29461

Contact: Ms. Jeanette Gilmetti Project: ABS Lab Analytical

Client Sample ID: AF79066 Sample ID: 639285003

Matrix: GW

Collect Date: 27-SEP-23 10:54 Receive Date: 29-SEP-23 Collector: Client

MDC RL Parameter Qualifier Result Uncertainty Units PF DF Analyst Date Time Batch Method Rad Gas Flow Proportional Counting GFPC, Ra228, Liquid "As Received" Radium-228 1.02 +/-0.7101.06 3.00 pCi/L JE1 10/10/23 1123 2502094 1 Radium-226+Radium-228 Calculation "See Parent Products" Radium-226+228 Sum 2.44 +/-0.887 pCi/L NXL1 10/26/23 1206 2511601 2 Rad Radium-226 Lucas Cell, Ra226, Liquid "As Received"

1.00

pCi/L

Radium-226 +/-0.531 The following Analytical Methods were performed:

Method Description **Analyst Comments** EPA 904.0/SW846 9320 Modified

1.42

2 Calculation EPA 903.1 Modified

Surrogate/Tracer Recovery Test Result Nominal Recovery% Acceptable Limits Barium-133 Tracer GFPC, Ra228, Liquid "As Received" 89.6 (15%-125%)

0.515

Notes:

Counting Uncertainty is calculated at the 95% confidence level (1.96-sigma).

Column headers are defined as follows:

DF: Dilution Factor Lc/LC: Critical Level DL: Detection Limit PF: Prep Factor MDA: Minimum Detectable Activity **RL**: Reporting Limit

MDC: Minimum Detectable Concentration **SQL**: Sample Quantitation Limit

Page 5 of 13 SDG: 639285

2040 Savage Road Charleston SC 29407 - (843) 556-8171 - www.gel.com

Certificate of Analysis

Report Date: October 26, 2023

Company: Santee Cooper Address: P.O. Box 2946101

OCO3

Moncks Corner, South Carolina 29461

Contact: Ms. Jeanette Gilmetti Project: ABS Lab Analytical

Client Sample ID: AF79067 Sample ID: 639285004

Matrix: GW

Collect Date: 27-SEP-23 13:19
Receive Date: 29-SEP-23
Collector: Client

Description

Project: SOOP00119 Client ID: SOOP001

Analyst Comments

Parameter	Qualifier	Result	Uncertainty	MDC	RL	Units	PF	DF Analy	st Date	Time Batch	Method
Rad Gas Flow Proportion	onal Counting										
GFPC, Ra228, Liquid ".	As Received"										
Radium-228		1.70	+/-0.886	1.25	3.00	pCi/L		JE1	10/10/23	1123 2502094	1
Radium-226+Radium-2	28 Calculatio	n "See Pa	arent Products"								
Radium-226+228 Sum		3.33	+/-1.03			pCi/L		NXL1	10/26/23	1206 2511601	2
Rad Radium-226											
Lucas Cell, Ra226, Liqu	uid "As Recei	ved"									
Radium-226		1.63	+/-0.519	0.313	1.00	pCi/L		LXP1	10/26/23	0846 2502095	3
The following Analytic	al Methods w	ere perfo	ormed:								

1	EPA 904.0/SW846 9320 Modified				
2	Calculation				
3	EPA 903.1 Modified				
Surrogate/Tracer Recov	ery Test	Result	Nominal	Recovery%	Acceptable Limits

Barium-133 Tracer GFPC, Ra228, Liquid "As Received"

Result Nominal Recovery% Acceptable Limit Recover

Notes:

Method

Counting Uncertainty is calculated at the 95% confidence level (1.96-sigma).

Column headers are defined as follows:

DF: Dilution Factor Lc/LC: Critical Level
DL: Detection Limit PF: Prep Factor
MDA: Minimum Detectable Activity RL: Reporting Limit

MDC: Minimum Detectable Concentration SQL: Sample Quantitation Limit

Page 6 of 13 SDG: 639285

2040 Savage Road Charleston, SC 29407 - (843) 556-8171 - www.gel.com

QC Summary

Report Date: October 26, 2023

Page 1 of 2

Santee Cooper P.O. Box 2946101

OCO3

Moncks Corner, South Carolina

Contact: Ms. Jeanette Gilmetti

Workorder: 639285

Parmname	NOM	Sample Qua	al QC	Units	RPD%	REC%	Range Anlst	Date Time
Rad Gas Flow Batch 2502094								
QC1205534749 639285001 DUP Radium-228	U	0.698 U	0.820	C:/I	NT/A		NI/A IE1	10/10/22 11:22
Radium-228			0.830 +/-0.775	pCi/L	N/A		N/A JE1	10/10/23 11:22
	Uncertainty	+/-0.999	+/-0.773					
QC1205534750 LCS								
Radium-228	77.3		77.2	pCi/L		99.8	(75%-125%)	10/10/23 11:23
	Uncertainty		+/-4.08					
QC1205534748 MB								
Radium-228		U	0.205	pCi/L				10/10/23 11:22
	Uncertainty		+/-0.562	F				
Rad Ra-226 Batch 2502095 ———								
QC1205534752 639285001 DUP		0.762	0.770	C'./I	0.026		(00/ 1000/) LVD1	10/06/03 00 46
Radium-226	TT 4 * 4	0.763	0.770	pCi/L	0.836		(0% - 100%) LXP1	10/26/23 08:46
	Uncertainty	+/-0.411	+/-0.440					
QC1205534754 LCS								
Radium-226	27.1		32.7	pCi/L		121	(75%-125%)	10/26/23 09:18
	Uncertainty		+/-2.41					
OC1205534751 MB								
QC1205534751 MB Radium-226		U	0.390	pCi/L				10/26/23 08:46
Rudium 220	Uncertainty		+/-0.449	penz				10/20/23 00.10
	•							
QC1205534753 639285001 MS								
Radium-226	109	0.763	110	pCi/L		99.6	(75%-125%)	10/26/23 09:18
	Uncertainty	+/-0.411	+/-8.53					

Notes:

Counting Uncertainty is calculated at the 95% confidence level (1.96-sigma).

The Qualifiers in this report are defined as follows:

U Analyte was analyzed for, but not detected above the MDL, MDA, MDC or LOD.

J Value is estimated

X Consult Case Narrative, Data Summary package, or Project Manager concerning this qualifier

H Analytical holding time was exceeded

< Result is less than value reported

Page 7 of 13 SDG: 639285

2040 Savage Road Charleston, SC 29407 - (843) 556-8171 - www.gel.com

QC Summary

Workorder: 639285

Page 2 of 2

Parmname	NOM	Sample Qu	ual	QC	Units	RPD%	REC%	Range	Anlst	Date	Time

- > Result is greater than value reported
- UI Gamma Spectroscopy--Uncertain identification
- BD Results are either below the MDC or tracer recovery is low
- h Preparation or preservation holding time was exceeded
- R Sample results are rejected
- ^ RPD of sample and duplicate evaluated using +/-RL. Concentrations are <5X the RL. Qualifier Not Applicable for Radiochemistry.
- N/A RPD or %Recovery limits do not apply.
- ND Analyte concentration is not detected above the detection limit
- M M if above MDC and less than LLD
- NJ Consult Case Narrative, Data Summary package, or Project Manager concerning this qualifier
- FA Failed analysis.
- UJ Gamma Spectroscopy--Uncertain identification
- Q One or more quality control criteria have not been met. Refer to the applicable narrative or DER.
- K Analyte present. Reported value may be biased high. Actual value is expected to be lower.
- UL Not considered detected. The associated number is the reported concentration, which may be inaccurate due to a low bias.
- L Analyte present. Reported value may be biased low. Actual value is expected to be higher.
- N1 See case narrative
- Y Other specific qualifiers were required to properly define the results. Consult case narrative.
- ** Analyte is a Tracer compound
- M REMP Result > MDC/CL and < RDL
- J See case narrative for an explanation

N/A indicates that spike recovery limits do not apply when sample concentration exceeds spike conc. by a factor of 4 or more or %RPD not applicable.

- ^ The Relative Percent Difference (RPD) obtained from the sample duplicate (DUP) is evaluated against the acceptance criteria when the sample is greater than five times (5X) the contract required detection limit (RL). In cases where either the sample or duplicate value is less than 5X the RL, a control limit of +/- the RL is used to evaluate the DUP result.
- * Indicates that a Quality Control parameter was not within specifications.

For PS, PSD, and SDILT results, the values listed are the measured amounts, not final concentrations.

Where the analytical method has been performed under NELAP certification, the analysis has met all of the requirements of the NELAC standard unless qualified on the QC Summary.

Page 8 of 13 SDG: 639285

Radiochemistry Technical Case Narrative Santee Cooper SDG #: 639285

Product: GFPC, Ra228, Liquid

Analytical Method: EPA 904.0/SW846 9320 Modified **Analytical Procedure:** GL-RAD-A-063 REV# 5

Analytical Batch: 2502094

The following samples were analyzed using the above methods and analytical procedure(s).

GEL Sample ID#	Client Sample Identification
639285001	AF79064
639285002	AF79065
639285003	AF79066
639285004	AF79067
1205534748	Method Blank (MB)
1205534749	639285001(AF79064) Sample Duplicate (DUP)
1205534750	Laboratory Control Sample (LCS)

The samples in this SDG were analyzed on an "as received" basis.

Data Summary:

There are no exceptions, anomalies or deviations from the specified methods. All sample data provided in this report met the acceptance criteria specified in the analytical methods and procedures for initial calibration, continuing calibration, instrument controls and process controls where applicable.

<u>Product:</u> Lucas Cell, Ra226, Liquid <u>Analytical Method:</u> EPA 903.1 Modified

Analytical Procedure: GL-RAD-A-008 REV# 15

Analytical Batch: 2502095

The following samples were analyzed using the above methods and analytical procedure(s).

GEL Sample ID#	Client Sample Identification
639285001	AF79064
639285002	AF79065
639285003	AF79066
639285004	AF79067
1205534751	Method Blank (MB)
1205534752	639285001(AF79064) Sample Duplicate (DUP)
1205534753	639285001(AF79064) Matrix Spike (MS)
1205534754	Laboratory Control Sample (LCS)

The samples in this SDG were analyzed on an "as received" basis.

Page 9 of 13 SDG: 639285

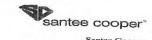
Data Summary:

All sample data provided in this report met the acceptance criteria specified in the analytical methods and procedures for initial calibration, continuing calibration, instrument controls and process controls where applicable, with the following exceptions.

Miscellaneous Information

Additional Comments

The matrix spike, 1205534753 (AF79064MS), aliquot was reduced to conserve sample volume.


Certification Statement

Where the analytical method has been performed under NELAP certification, the analysis has met all of the requirements of the NELAC standard unless otherwise noted in the analytical case narrative.

Page 10 of 13 SDG: 639285

Chain of Custody

439,284

Santee Cooper One Riverwood Drive Moncks Corner, SC 29461 Phone: (843)761-8000 Ext. 5148

	ILLIA	@sante	ecooper.com	Date	Results N	eeded 1	oy: -	125°			/Task/I		1.1 / 36		equest t	No		
Labwo (Intern only)	rks ID # al use	Sample Locat Description		Collection Date	Collection Time	Sample Collector	Total # of containers	Bottle type: (Glass-G/Plastic-P)	Grab (G) or Composite (C)	Matrix(see below)	Preservative (see below)		Co Method # Reporting li Misc. sampl Any other n	e info		RAD 226/228	TOTAL RAD CALC	s Group + C(, SO+
A=7	7064	WAP-27		9/26/23	3 1213	ZDM B58	3	P	G	GW	2/					2	×	1
)	65	WAP -28		9/27/23	8 1.110		1	ı	1	1	1					1	,	1
				1/21/2					+		\vdash	-				+	+	+
-	66	WAP - 28	DUP		1054													
	67	WAP-29		1	1319	<u></u>		1	<u> </u>									_
Relinq	uished by: uished by:	Employee# 3 G S S S Employee# Employee#	Date 9/21/23 Date Date	Time Time	Receive Receive	ed by:	Em	pployee #	9/	Date 29/2 Date Date		Time	Corre	le Receiving (In: P (°C): ect pH: Yes rvative Lot#:		e Only		
772 7 20		TALS (all)	2.5.0					14 -1 -1					Date/	Time/Init for p	reservati	ve:		
□ Ag	□ Cu	□ Sb	Nutri	March Company	MIS BTEX	<u>C.</u>	D.	Gyp Wallboa	sum			Co		Flyash			Oil	
□ Al	□ Fe	☐ Se	□ DOC		□ Naphthale			Gypsi	ım(all			Itimate 3 % Mo		☐ Ammonia ☐ LOI	200		s. Oil Moist	Qual.
□ B	□Li	□ Sr	☐ TP/T ☐ NH3-	N	□ THM/HA □ VOC			below,				Ash		☐ % Carbon		Col	lor	
□ Ba		SCHOOL SECTION	□F		□ Oil & Gre □ E. Coli	ase		DTOC				☐ Sulfur☐ BTUs		☐ Mineral		U Diel	ectric S	Strength
	□Mg				☐ Total Coli	form	1		metals ole Meta		1 004 2000 000		le Matter	Analys ☐ Sieve	18	□ IFT		l Gases
□ Be	□ Mn		□ NO2 □ Br		□ pH □ Dissolved	As		D Purit	y (CaSC			CHN	A 42 1	□ % Moistur	e	Used	Oil	
□ Ca	□ Mo	3 1 5 6 7 7	□ NO3		Dissolved Dissolved			□ % Mo			TEAN 2005-0554	er Test	S:	41555		□ Fla:	shpoin	
□ Cd	□ Na	□ Zn	□ SO4		Rad 226 Rad 228		1/2 -	□рH			□ HO	31		NPDES	_	(As	,Cd,C	r.Ni.Pb
□ Co	□ Ni	□ Hg			PCB		N HOLD	□ Chlor □ Partic			0.0000000000000000000000000000000000000	neness rticulate	Matter	☐ Oil & Grease		Hg		
□ Cr	□ Pb	☐ CrVI					0.	Sulfur				THE MARKS		□ TSS	100	GOF		

			SDG/AR/COC/Work Order: 124794 1.0020
Received By: QG			Date Received: 9/29/23
Carrier and Tracking Number			FedEx Express FedEx Ground UPS Field Services Courier Other
uspected Hazard Information	Yes	No	N(A
	7	Z	*If Net Counts > 100cpm on samples not marked "radioactive", contact the Radiation Safety Group for further investigation
Shipped as a DOT Hazardous?		1	Hazard Class Shipped: UN#: If UN2910, Is the Radioactive Shipment Survey Compliant? YesNo
Did the client designate the samples are to be reived as radioactive?		1	COC notation or radioactive stickers on containers equal client designation.
Did the RSO classify the samples as floactive?		~	Maximum Net Counts Observed* (Observed Counts - Area Background Counts): CPwH/mR/Hr Classified as: Rad 1 Rad 2 Rad 3
Did the client designate samples are hazardous	,	-	COC notation or hazard labels on containers equal client designation.
Did the RSO identify possible hazards?		1	f D or E is yes, select Hazards below. PCB's Flammable Fronting Stift Provided Hazards below.
Sample Receipt Criteria	Yes	AN N	CRA Asbestos Beryllium Other:
Shipping containers received intact and sealed?	7	Z	Circle Applicable: Seals broken Damaged container Leaking container Other (describe)
Chain of custody documents included with shipment?			Circle Applicable: Client contacted and provided COC COC created upon receipt
Samples requiring cold preservation within (0 ≤ 6 deg. C)?*	1		Preservation Method: Wet Jee Toe Packs Dry ice None Other:
Daily check performed and passed on IR temperature gun?	1		Temperature Device Serial #: IR1-23 Secondary Temperature Device Serial # (If Applicable):
Sample containers intact and sealed?	1		Circle Applicable: Seals broken Damaged container Leaking container Other (describe)
Samples requiring chemical preservation at proper pH?	1		Sample ID's and Contamers Affected:
Do any samples require Volatile Analysis?	Age of the		If Preservation added, Lot#: If Yes, are Encores or Soil Kits present for solids? Yes No NA (If yes, take to VOA Freezer) Defiquid VOA vials contain acid preservation? Yes No NA (If unknown, select No) Are liquid VOA vials free of headspace? Yes No NA Sample ID's and containers affected:
Samples received within holding time?		1	ID's and tests affected:
Sample ID's on COC match ID's on oottles?		1	ID's and containers affected:
Date & time on COC match date & time n bottles?	1		Circle Applicable: No dates on containers No times on containers COC missing info Other (describe)
fumber of containers received match umber indicated on COC?	1		Circle Applicable: No container count on COC Other (describe)
re sample containers identifiable as EL provided by use of GEL labels?		1	
OC form is properly signed in linquished/received sections?		1	Circle Applicable: Not relinquished Other (describe)
ents (Use Continuation Form if needed):			, and the second

GL-CHL-SR-001 Rev 7

JR

List of current GEL Certifications as of 26 October 2023

State	Certification
Alabama	42200
Alaska	17-018
Alaska Drinking Water	SC00012
Arkansas	88-00651
CLIA	42D0904046
California	2940
Colorado	SC00012
Connecticut	PH-0169
DoD ELAP/ ISO17025 A2LA	2567.01
Florida NELAP	E87156
Foreign Soils Permit	P330-15-00283, P330-15-00253
Georgia	SC00012
Georgia SDWA	967
Hawaii	SC00012
Idaho	SC00012
Illinois NELAP	200029
Indiana	C-SC-01
Kansas NELAP	E-10332
Kentucky SDWA	KY90129
Kentucky Wastewater	KY90129
Louisiana Drinking Water	LA024
Louisiana NELAP	03046 (AI33904)
Maine	2023019
Maryland	270
Massachusetts	M-SC012
Massachusetts PFAS Approv	Letter
Michigan	9976
Mississippi	SC00012
Nebraska	NE-OS-26-13
Nevada	SC000122024-04
New Hampshire NELAP	2054
New Jersey NELAP	SC002
New Mexico	SC002 SC00012
New York NELAP	11501
North Carolina	233
North Carolina SDWA	45709
North Dakota	R-158
Oklahoma	2023-152
Pennsylvania NELAP	68-00485
Puerto Rico	SC00012
S. Carolina Radiochem	10120002
Sanitation Districts of L	9255651
South Carolina Chemistry	10120001
Tennessee	TN 02934
Texas NELAP	T104704235-23-21
Utah NELAP	SC000122022-37
Vermont	VT87156
Vermont Virginia NELAP	460202
	C780
Washington	C/80

ANALYTICAL REPORT

PREPARED FOR

Attn: Linda Williams
South Carolina Public Service Authority
Santee Cooper
PO BOX 2946101
Moncks Corner, South Carolina 29461-2901

Generated 7/14/2023 2:17:57 PM

JOB DESCRIPTION

125915/JM02.08.G01.1/36500

JOB NUMBER

680-237587-1

Eurofins Savannah 5102 LaRoche Avenue Savannah GA 31404

Eurofins Savannah

Job Notes

This report may not be reproduced except in full, and with written approval from the laboratory. The results relate only to the samples tested. For questions please contact the Project Manager at the e-mail address or telephone number listed on this page.

The test results in this report relate only to the samples as received by the laboratory and will meet all requirements of the methodology, with any exceptions noted. This report shall not be reproduced except in full, without the express written approval of the laboratory. All questions should be directed to the Eurofins Environment Testing Southeast, LLC Project Manager.

Authorization

Generated 7/14/2023 2:17:57 PM

Authorized for release by Jerry Lanier, Project Manager I Jerry.Lanier@et.eurofinsus.com (912)250-0281

Table of Contents

Cover Page	1
Table of Contents	3
Case Narrative	4
Sample Summary	5
Method Summary	
Definitions	7
Detection Summary	8
Client Sample Results	9
QC Sample Results	18
QC Association	19
Chronicle	20
Chain of Custody	22
Receipt Checklists	23
Cartification Summary	24

3

4

6

8

9

11

12

Case Narrative

Client: South Carolina Public Service Authority Project/Site: 125915/JM02.08.G01.1/36500

Job ID: 680-237587-1

Job ID: 680-237587-1

Laboratory: Eurofins Savannah

Narrative

Job Narrative 680-237587-1

Receipt

The samples were received on 7/12/2023 10:03 AM. Unless otherwise noted below, the samples arrived in good condition, and, where required, properly preserved and on ice. The temperature of the cooler at receipt time was 24.4°C

Metals

No additional analytical or quality issues were noted, other than those described above or in the Definitions/ Glossary page.

4

3

4

-

_

8

9

10

12

13

Sample Summary

Client: South Carolina Public Service Authority Project/Site: 125915/JM02.08.G01.1/36500

Job ID: 680-237587-1

Lab Sample ID	Client Sample ID	Matrix	Collected	Received
680-237587-1	AF68758	GW	07/06/23 09:47	07/12/23 10:03
680-237587-2	AF68759	GW	07/06/23 09:52	07/12/23 10:03
680-237587-3	AF68736	GW	07/06/23 11:21	07/12/23 10:03
680-237587-4	AF68753	GW	07/06/23 13:08	07/12/23 10:03
680-237587-5	AF68754	GW	07/06/23 13:13	07/12/23 10:03
680-237587-6	AF68752	GW	07/06/23 14:09	07/12/23 10:03
680-237587-7	AF68739	GW	07/05/23 10:44	07/12/23 10:03
680-237587-8	AF68755	GW	07/05/23 09:35	07/12/23 10:03
680-237587-9	AF68756	GW	07/05/23 11:39	07/12/23 10:03

4

6

0

10

11

13

Method Summary

Client: South Carolina Public Service Authority Project/Site: 125915/JM02.08.G01.1/36500

Job ID: 680-237587-1

Method	Method Description	Protocol	Laboratory
7470A	Mercury (CVAA)	SW846	EET SAV
7470A	Preparation, Mercury	SW846	EET SAV

Protocol References:

SW846 = "Test Methods For Evaluating Solid Waste, Physical/Chemical Methods", Third Edition, November 1986 And Its Updates.

Laboratory References:

EET SAV = Eurofins Savannah, 5102 LaRoche Avenue, Savannah, GA 31404, TEL (912)354-7858

Definitions/Glossary

Client: South Carolina Public Service Authority
Project/Site: 125915/JM02.08.G01.1/36500

Job ID: 680-237587-1

Qualifiers

Metals

U Indicates the analyte was analyzed for but not detected.

Method Quantitation Limit

Practical Quantitation Limit

Relative Error Ratio (Radiochemistry)

Toxicity Equivalent Factor (Dioxin)

Too Numerous To Count

Toxicity Equivalent Quotient (Dioxin)

Reporting Limit or Requested Limit (Radiochemistry)

Relative Percent Difference, a measure of the relative difference between two points

Not Detected at the reporting limit (or MDL or EDL if shown)

Not Calculated

Negative / Absent

Positive / Present

Presumptive

Quality Control

Glossary

MQL

NC

ND

NEG

POS

PQL

PRES

QC

RL RPD

TEF

TEQ

TNTC

RER

These commonly used abbreviations may or may not be present in this report.
Listed under the "D" column to designate that the result is reported on a dry weight basis
Percent Recovery
Contains Free Liquid
Colony Forming Unit
Contains No Free Liquid
Duplicate Error Ratio (normalized absolute difference)
Dilution Factor
Detection Limit (DoD/DOE)
Indicates a Dilution, Re-analysis, Re-extraction, or additional Initial metals/anion analysis of the sample
Decision Level Concentration (Radiochemistry)
Estimated Detection Limit (Dioxin)
Limit of Detection (DoD/DOE)
Limit of Quantitation (DoD/DOE)
EPA recommended "Maximum Contaminant Level"
Minimum Detectable Activity (Radiochemistry)
Minimum Detectable Concentration (Radiochemistry)
Method Detection Limit
Minimum Level (Dioxin)
Most Probable Number

Eurofins Savannah

Detection Summary

Project/Site: 125915/JM02.08.G01.1/36500 Client Sample ID: AF68758 Lab Sample ID: 680-237587-1 No Detections. Client Sample ID: AF68759 Lab Sample ID: 680-237587-2 No Detections. Lab Sample ID: 680-237587-3 Client Sample ID: AF68736 No Detections. Client Sample ID: AF68753 Lab Sample ID: 680-237587-4 No Detections. Client Sample ID: AF68754 Lab Sample ID: 680-237587-5 No Detections. Client Sample ID: AF68752 Lab Sample ID: 680-237587-6 No Detections. Client Sample ID: AF68739 Lab Sample ID: 680-237587-7 No Detections. Client Sample ID: AF68755 Lab Sample ID: 680-237587-8 No Detections. Client Sample ID: AF68756 Lab Sample ID: 680-237587-9

Client: South Carolina Public Service Authority

No Detections.

Job ID: 680-237587-1

Client: South Carolina Public Service Authority Project/Site: 125915/JM02.08.G01.1/36500

Job ID: 680-237587-1

Client Sample ID: AF68758 Lab Sample ID: 680-237587-1 Date Collected: 07/06/23 09:47

Matrix: GW

Date Received: 07/12/23 10:03

Method: SW846 7470A - Mercury (CVAA)								
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Mercury	0.200	U	0.200		ug/L		07/14/23 08:42	07/14/23 14:32	1

Client: South Carolina Public Service Authority

Project/Site: 125915/JM02.08.G01.1/36500

Lab Sample ID: 680-237587-2

Job ID: 680-237587-1

Matrix: GW

Date Collected: 07/06/23 09:52 Date Received: 07/12/23 10:03

Client Sample ID: AF68759

Method: SW846 7470A - Mercury (C	CVAA)								
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Mercury	0.200	U	0.200		ug/L		07/14/23 08:42	07/14/23 14:37	1

Client: South Carolina Public Service Authority

Project/Site: 125915/JM02.08.G01.1/36500

Lab Sample ID: 680-237587-3

Prepared

Analyzed

Matrix: GW

Dil Fac

Job ID: 680-237587-1

Client Sample ID: AF68736 Date Collected: 07/06/23 11:21

Date Received: 07/12/23 10:03

Method: SW846 7470A - Mercury (CVAA) RL MDL Unit Result Qualifier

Mercury 0.200 U 0.200 ug/L 07/14/23 08:42 07/14/23 14:38

Client: South Carolina Public Service Authority

Job ID: 680-237587-1

Project/Site: 125915/JM02.08.G01.1/36500

Client Sample ID: AF68753 Lab Sample ID: 680-237587-4

Matrix: GW

Date Collected: 07/06/23 13:08 Date Received: 07/12/23 10:03

Method: SW846 7470A - Mercury (CVAA) RL MDL Unit Dil Fac Result Qualifier Prepared Analyzed Mercury 0.200 U 0.200 ug/L 07/14/23 08:42 07/14/23 14:40

Client: South Carolina Public Service Authority

Project/Site: 125915/JM02.08.G01.1/36500

Lab Sample ID: 680-237587-5

Analyzed

07/14/23 14:41

Job ID: 680-237587-1

Matrix: GW

Dil Fac

Client Sample ID: AF68754 Date Collected: 07/06/23 13:13

Date Received: 07/12/23 10:03

Method: SW846 7470A - Mercury (CVAA) RL MDL Unit Result Qualifier Prepared Mercury 0.200 U 0.200 ug/L 07/14/23 08:42

Eurofins Savannah

Client: South Carolina Public Service Authority Project/Site: 125915/JM02.08.G01.1/36500

Job ID: 680-237587-1

Client Sample ID: AF68752

Lab Sample ID: 680-237587-6

Matrix: GW

Date Collected: 07/06/23 14:09 Date Received: 07/12/23 10:03

Method: SW846 7470A - Mercury (CVAA)

Analyte	Result Qualifie	r RL	MDL Unit	D	Prepared	Analyzed	Dil Fac
Mercury	0.200 U	0.200	ug/L		07/14/23 08:42	07/14/23 14:43	1

7

8

10

12

13

Client: South Carolina Public Service Authority

Project/Site: 125915/JM02.08.G01.1/36500

Lab Sample ID: 680-237587-7

Matrix: GW

Job ID: 680-237587-1

Client Sample ID: AF68739 Date Collected: 07/05/23 10:44

Date Received: 07/12/23 10:03

Method: SW846 7470A - Mercury (C	JVAA)									
Analyte	Result	Qualifier	RL	MDL	Unit	D)	Prepared	Analyzed	Dil Fac
Mercury	0.200	U	0.200		ug/L			07/14/23 08:42	07/14/23 14:48	1

Client: South Carolina Public Service Authority

Project/Site: 125915/JM02.08.G01.1/36500

Client Sample ID: AF68755

Lab Sample ID: 680-237587-8

Matrix: GW

Job ID: 680-237587-1

Date Collected: 07/05/23 09:35 Date Received: 07/12/23 10:03

Method: SW846 7470A - Mercury (CVAA)							
Analyte	Result	Qualifier	RL	MDL Uni	t [Prepared	Analyzed	Dil Fac
Mercury	0.200	U	0.200	ug/l		07/14/23 08:42	07/14/23 14:49	1

Client: South Carolina Public Service Authority

Project/Site: 125915/JM02.08.G01.1/36500

Lab Sample ID: 680-237587-9

Job ID: 680-237587-1

Matrix: GW

Client Sample ID: AF68756 Date Collected: 07/05/23 11:39

Date Received: 07/12/23 10:03

Method: SW846 7470A - Mercury (C	CVAA)								
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Mercury	0.200	U	0.200		ug/L		07/14/23 08:42	07/14/23 14:51	1

QC Sample Results

Client: South Carolina Public Service Authority Project/Site: 125915/JM02.08.G01.1/36500

Job ID: 680-237587-1

Client Sample ID: Method Blank

RPD

Limit

20

Method: 7470A - Mercury (CVAA)

Lab Sample ID: MB 680-788246/1-A

Matrix: Water

Analyte

Mercury

Analysis Batch: 788395

мв мв

Result Qualifier

Sample Sample

Result Qualifier

0.200 U

0.200 U

Spike

Added

2.50

Spike

Added

1.00

RL MDL Unit 0.200

LCS LCS

MS MS

Qualifier

2.658

Result

1.036

Result Qualifier

D ug/L

Unit

ug/L

Unit

ug/L

Prepared 07/14/23 08:42

%Rec

%Rec

104

106

D

Analyzed 07/14/23 14:29

%Rec

Limits

80 - 120

%Rec

Limits

80 - 120

%Rec

Client Sample ID: Lab Control Sample

Prep Type: Total/NA

Prep Batch: 788246

Prep Type: Total/NA

Prep Batch: 788246

Prep Type: Total/NA

Prep Batch: 788246

Client Sample ID: AF68758

Prep Type: Total/NA

Prep Batch: 788246

Dil Fac

Lab Sample ID: LCS 680-788246/2-A Matrix: Water

Analysis Batch: 788395

Analyte Mercury

Lab Sample ID: 680-237587-1 MS

Matrix: GW Analysis Batch: 788395

Analyte

Mercury

Lab Sample ID: 680-237587-1 MSD Matrix: GW

Analysis Batch: 788395

Mercury

Analyte

Sample Sample Result Qualifier 0.200 U

Spike Added

1.00 1.022

MSD MSD Result Qualifier

Unit ug/L

%Rec Limits 102

RPD 80 - 120

Client Sample ID: AF68758

QC Association Summary

Client: South Carolina Public Service Authority Project/Site: 125915/JM02.08.G01.1/36500

Job ID: 680-237587-1

Metals

Prep Batch: 788246

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
680-237587-1	AF68758	Total/NA	GW	7470A	
680-237587-2	AF68759	Total/NA	GW	7470A	
680-237587-3	AF68736	Total/NA	GW	7470A	
680-237587-4	AF68753	Total/NA	GW	7470A	
680-237587-5	AF68754	Total/NA	GW	7470A	
680-237587-6	AF68752	Total/NA	GW	7470A	
680-237587-7	AF68739	Total/NA	GW	7470A	
680-237587-8	AF68755	Total/NA	GW	7470A	
680-237587-9	AF68756	Total/NA	GW	7470A	
MB 680-788246/1-A	Method Blank	Total/NA	Water	7470A	
LCS 680-788246/2-A	Lab Control Sample	Total/NA	Water	7470A	
680-237587-1 MS	AF68758	Total/NA	GW	7470A	
680-237587-1 MSD	AF68758	Total/NA	GW	7470A	

Analysis Batch: 788395

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
680-237587-1	AF68758	Total/NA	GW	7470A	788246
680-237587-2	AF68759	Total/NA	GW	7470A	788246
680-237587-3	AF68736	Total/NA	GW	7470A	788246
680-237587-4	AF68753	Total/NA	GW	7470A	788246
680-237587-5	AF68754	Total/NA	GW	7470A	788246
680-237587-6	AF68752	Total/NA	GW	7470A	788246
680-237587-7	AF68739	Total/NA	GW	7470A	788246
680-237587-8	AF68755	Total/NA	GW	7470A	788246
680-237587-9	AF68756	Total/NA	GW	7470A	788246
MB 680-788246/1-A	Method Blank	Total/NA	Water	7470A	788246
LCS 680-788246/2-A	Lab Control Sample	Total/NA	Water	7470A	788246
680-237587-1 MS	AF68758	Total/NA	GW	7470A	788246
680-237587-1 MSD	AF68758	Total/NA	GW	7470A	788246

Eurofins Savannah

7/14/2023

2

5

7

q

10

11

14

1 /

Job ID: 680-237587-1

Client: South Carolina Public Service Authority Project/Site: 125915/JM02.08.G01.1/36500

Client Sample ID: AF68758

Lab Sample ID: 680-237587-1 Date Collected: 07/06/23 09:47

Matrix: GW

Date Received: 07/12/23 10:03

	Batch	Batch		Dilution	Batch			Prepared
Prep Type	Туре	Method	Run	Factor	Number	Analyst	Lab	or Analyzed
Total/NA	Prep	7470A			788246	DW	EET SAV	07/14/23 08:42
Total/NA	Analysis	7470A		1	788395	ВСВ	EET SAV	07/14/23 14:32

Client Sample ID: AF68759 Lab Sample ID: 680-237587-2

Matrix: GW

Date Collected: 07/06/23 09:52 Date Received: 07/12/23 10:03

	Batch	Batch		Dilution	Batch			Prepared
Prep Type	Type	Method	Run	Factor	Number	Analyst	Lab	or Analyzed
Total/NA	Prep	7470A			788246	DW	EET SAV	07/14/23 08:42
Total/NA	Analysis	7470A		1	788395	BCB	EET SAV	07/14/23 14:37

Client Sample ID: AF68736 Lab Sample ID: 680-237587-3

Date Collected: 07/06/23 11:21 Matrix: GW

Date Received: 07/12/23 10:03

Batch Batch Dilution Batch Prepared Method or Analyzed **Prep Type** Type Run Factor Number Analyst Lab Total/NA 7470A 788246 DW **EET SAV** 07/14/23 08:42 Prep Total/NA 07/14/23 14:38 Analysis 7470A 788395 BCB **EET SAV** 1

Client Sample ID: AF68753 Lab Sample ID: 680-237587-4

Date Collected: 07/06/23 13:08 Matrix: GW

Date Received: 07/12/23 10:03

	Batch	Batch		Dilution	Batch			Prepared
Prep Type	Туре	Method	Run	Factor	Number	Analyst	Lab	or Analyzed
Total/NA	Prep	7470A			788246	DW	EET SAV	07/14/23 08:42
Total/NA	Analysis	7470A		1	788395	BCB	EET SAV	07/14/23 14:40

Client Sample ID: AF68754 Lab Sample ID: 680-237587-5

Date Collected: 07/06/23 13:13 Matrix: GW

Date Received: 07/12/23 10:03

	Batch	Batch		Dilution	Batch			Prepared
Prep Type	Type	Method	Run	Factor	Number	Analyst	Lab	or Analyzed
Total/NA	Prep	7470A			788246	DW	EET SAV	07/14/23 08:42
Total/NA	Analysis	7470A		1	788395	BCB	EET SAV	07/14/23 14:41

Client Sample ID: AF68752 Lab Sample ID: 680-237587-6

Date Collected: 07/06/23 14:09 Matrix: GW

Date Received: 07/12/23 10:03

	Batch	Batch		Dilution	Batch			Prepared
Prep Type	Туре	Method	Run	Factor	Number	Analyst	Lab	or Analyzed
Total/NA	Prep	7470A			788246	DW	EET SAV	07/14/23 08:42
Total/NA	Analysis	7470A		1	788395	ВСВ	EET SAV	07/14/23 14:43

Eurofins Savannah

Lab Chronicle

Client: South Carolina Public Service Authority Project/Site: 125915/JM02.08.G01.1/36500

Job ID: 680-237587-1

Lab Sample ID: 680-237587-7

Matrix: GW

Client Sample ID: AF68739 Date Collected: 07/05/23 10:44

Date Received: 07/12/23 10:03

	Batch	Batch		Dilution	Batch			Prepared
Prep Type	Туре	Method	Run	Factor	Number	Analyst	Lab	or Analyzed
Total/NA	Prep	7470A			788246	DW	EET SAV	07/14/23 08:42
Total/NA	Analysis	7470A		1	788395	BCB	EET SAV	07/14/23 14:48

Client Sample ID: AF68755 Lab Sample ID: 680-237587-8

Date Collected: 07/05/23 09:35 Matrix: GW Date Received: 07/12/23 10:03

Batch Batch Dilution Batch Prepared Method **Prep Type** Type Run Factor Number Analyst Lab or Analyzed Prep Total/NA 7470A 788246 DW EET SAV 07/14/23 08:42 07/14/23 14:49 Total/NA 7470A 788395 BCB Analysis **EET SAV**

Client Sample ID: AF68756 Lab Sample ID: 680-237587-9

Date Collected: 07/05/23 11:39 Matrix: GW Date Received: 07/12/23 10:03

Batch Batch Dilution Batch Prepared or Analyzed Method **Prep Type** Type Run Factor Number Analyst Lab Total/NA Prep 7470A 788246 **EET SAV** 07/14/23 08:42 **EET SAV** 07/14/23 14:51 Total/NA Analysis 7470A 788395 BCB 1

Laboratory References:

EET SAV = Eurofins Savannah, 5102 LaRoche Avenue, Savannah, GA 31404, TEL (912)354-7858

Annice Cooper One Riverwood Drive Moncks Comer, SC 29461 Phone: (843)761-8000 Ext. 5148 2719-17(-849)761-4148
santee cooper.

Anaisna	IO	HIPHA	

	gsir yns 16 OV <u>sisylenA</u>		Rerun reque	اnit #: ا. هه۱. ا				الحجا	- :,	 eqeq p	sults Ne	Date Re		oort Recipien 		Customer I
	#		Comments bod # ining limit sample info other notes	osiM •	Preservative (see below)	Matrix(see below)	Grab (G) or Composite (C)	Bottle type: (Glass- G/Plastic-P)	Total # of containers	Sample Collector	Collection Time	Collection Date		mple Location, scription		labworks II (Internal usi only)
	X		9772	٥	г	сm	Ð	4	1	XIM	LHPO	E7/9/L		9-7∀-=17	M 85	3L89 J∀
											sepo		PuP	9-7 V -±7		
					_ <u>Ī</u>	Ī		LĪ	Ī	Ī	1211	Ī		b1-d¥	M 98	<u> </u>
					1				1		४०६।			#-M-7		SL89±
		_					\sqcup				દાદી			·		
		1		_		+	\Box	-						1 +-14-5		
	+++	+			<u>'</u>	<u> </u>	 ' -	- -	T	-	Fo⊬1	-		E-W-3	1M 75	T
	+++	+			+	+	+	H			lo del	EZ/5/L		77-db	m ba	EL89-JV
		1			\top	\prod					72570			81-d7	m s	EL89±
	-		11. 1.0 2.1	rujne	<u></u>	Ī	Ī	Ī	Ī	Ī	FEII	Ī		12∀-=□	W 9	s T
	(vino e	וטן ו זכ	h. hs 6.4	2 40										<u></u>		
	itial:		Zemple Receiving (Intern	51:04	42	916Q	<u>-9</u>	: əəλοιdι	ug	eq pk:	Receiv	9miT	əteO	Employee#		dziupnilaA
		οN	Correct pH: Yes	Time	1,	Date		aayolqr	<u> </u>	eq pX:	Neceiv		25/11/73 ased	Employee#		moselles uroselles
			Preservative Lot#:		- Inches			e nego managaga tira managa		See See See See See See See See See See		L goodle				
	·			9wiT		əted	4	əəAojdu	ua Eu	eq pk:	Vieseñ	əwiT	effed	Employee#	eq pλ:	dziupnilaЯ
	IVE:	tevie	Date/Time/Init for pres													
į	10		<u>rlyash</u>	Coal		ī	unsd	75		?C'	SIM .	sansi	Mutr	(au)	A STATE OF THE RESIDENCE OF THE PARTY OF THE	DUDGE STREET, AND THE STREET,
	FO ,amesT :	1	D Ammonia	91mmilU deioM % 🗆	ا ت			odlisW	ا ت	- 15	□ BLEX □ Naphthal	2	OT []	9\$ □ 98 □	□ Cn	gA □ IA □
	Tolo?		nodas 2 % Carbon	dsA □		100	(4	iolad N			□ AOC □ LHW\H\	pO41	AT DOOR	us 🗆	םצ	s y []
	U.B.L. U.Diejseuse		Mineral Area Sisylers	□ Sulfur		S		01 0		esse	□ E Coli □ Oil & Gi	NI-C	OE DOM	12□ iT□	л□	8 .0
l sassy po	nossia :	3	Matter Sieve	☐ CHN ☐ Aolstije		Spec	uble Mt ity (Cas	168 C		arrolií	🗆 Total Co		D MOX	ЩП	aM □ mM □	□ Bs
lio m	oqdesiT () i elsdeM ()		NDDES	ther Tests: XRF Scan	200000000000000000000000000000000000000		auteioħ				Dissolve □ Dissolve		ON D B4	۸۵	oM □	to □
CYNTSP	(gH :			IDH	ō L			HQ □ □ pH			 □ Rad 226 □ Rad 226 		os 🗆 📗	uz 🗆	ъИ 🗆	□ Cq
	COLEG							ned () milius (1		□ bCB	F	4	□ Hg	D'Ni □ Pb	□ Ct □ Ct
		Secretar Man														
				11												

680-237587 Chain of Custody

Login Sample Receipt Checklist

Client: South Carolina Public Service Authority

Job Number: 680-237587-1

Login Number: 237587 List Source: Eurofins Savannah

List Number: 1

Creator: Padayao, Abigail

Creator: Padayao, Abigaii	_	
Question	Answer	Comment
Radioactivity wasn't checked or is = background as measured by a survey meter.</td <td>N/A</td> <td></td>	N/A	
The cooler's custody seal, if present, is intact.	True	
Sample custody seals, if present, are intact.	True	
The cooler or samples do not appear to have been compromised or tampered with.	True	
Samples were received on ice.	False	Thermal preservation not required.
Cooler Temperature is acceptable.	True	
Cooler Temperature is recorded.	True	
COC is present.	True	
COC is filled out in ink and legible.	True	
COC is filled out with all pertinent information.	True	
Is the Field Sampler's name present on COC?	True	
There are no discrepancies between the containers received and the COC.	True	
Samples are received within Holding Time (excluding tests with immediate HTs)	True	
Sample containers have legible labels.	True	
Containers are not broken or leaking.	True	
Sample collection date/times are provided.	True	
Appropriate sample containers are used.	True	
Sample bottles are completely filled.	True	
Sample Preservation Verified.	True	
There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs	True	
Containers requiring zero headspace have no headspace or bubble is <6mm (1/4").	True	
Multiphasic samples are not present.	True	
Samples do not require splitting or compositing.	True	
Residual Chlorine Checked.	N/A	

3

4

9

44

12

Accreditation/Certification Summary

Client: South Carolina Public Service Authority Project/Site: 125915/JM02.08.G01.1/36500

Job ID: 680-237587-1

Laboratory: Eurofins Savannah

The accreditations/certifications listed below are applicable to this report.

Authority	Program	Identification Number	Expiration Date		
South Carolina	State	98001	06-30-23 *		

10

13

 $^{^{\}star} \ \text{Accreditation/Certification renewal pending - accreditation/certification considered valid}.$

ANALYTICAL REPORT

PREPARED FOR

Attn: Linda Williams
South Carolina Public Service Authority
Santee Cooper
PO BOX 2946101
Moncks Corner, South Carolina 29461-2901

Generated 10/6/2023 1:08:33 PM

JOB DESCRIPTION

125915/JM02.09.G01.1/36500

JOB NUMBER

680-241003-1

Eurofins Savannah 5102 LaRoche Avenue Savannah GA 31404

Eurofins Savannah

Job Notes

This report may not be reproduced except in full, and with written approval from the laboratory. The results relate only to the samples tested. For questions please contact the Project Manager at the e-mail address or telephone number listed on this page.

The test results in this report relate only to the samples as received by the laboratory and will meet all requirements of the methodology, with any exceptions noted. This report shall not be reproduced except in full, without the express written approval of the laboratory. All questions should be directed to the Eurofins Environment Testing Southeast, LLC Project Manager.

Authorization

Generated 10/6/2023 1:08:33 PM

Authorized for release by Jerry Lanier, Project Manager I <u>Jerry.Lanier@et.eurofinsus.com</u> (912)250-0281

Table of Contents

Cover Page	1
Table of Contents	3
Case Narrative	4
Sample Summary	5
Method Summary	6
Definitions	7
Detection Summary	8
Client Sample Results	9
QC Sample Results	13
QC Association	14
Chronicle	15
Chain of Custody	16
Receipt Checklists	17
Cartification Summary	18

3

4

O

0

9

10

12

Case Narrative

Client: South Carolina Public Service Authority Project/Site: 125915/JM02.09.G01.1/36500

Job ID: 680-241003-1

Job ID: 680-241003-1

Laboratory: Eurofins Savannah

Narrative

Job Narrative 680-241003-1

Analytical test results meet all requirements of the associated regulatory program listed on the Accreditation/Certification Summary Page unless otherwise noted under the individual analysis. Data qualifiers are applied to indicate exceptions. Noncompliant quality control (QC) is further explained in narrative comments.

Matrix QC may not be reported if insufficient sample or site-specific QC samples were not submitted. In these situations, to demonstrate precision and accuracy at a batch level, a LCS/LCSD may be performed, unless otherwise specified in the method. Surrogate and/or isotope dilution analyte recoveries (if applicable) which are outside of the QC window are confirmed unless attributed to a dilution or otherwise noted in the narrative.

Regulated compliance samples (e.g. SDWA, NPDES) must comply with the associated agency requirements/permits.

Receipt

The samples were received on 9/29/2023 10:22 AM. Unless otherwise noted below, the samples arrived in good condition, and, where required, properly preserved and on ice. The temperature of the cooler at receipt time was 21.3°C

Metals

No additional analytical or quality issues were noted, other than those described above or in the Definitions/ Glossary page.

3

_

10

11

12

13

Sample Summary

Client: South Carolina Public Service Authority Project/Site: 125915/JM02.09.G01.1/36500

Job ID: 680-241003-1

Lab Sample ID	Client Sample ID	Matrix	Collected	Received		
680-241003-1	AF79064	GW	09/26/23 12:13	09/29/23 10:22		
680-241003-2	AF79065	GW	09/27/23 10:49	09/29/23 10:22		
680-241003-3	AF79066	GW	09/27/23 10:54	09/29/23 10:22		
680-241003-4	AF79067	GW	09/27/23 13:19	09/29/23 10:22		

Method Summary

Client: South Carolina Public Service Authority Project/Site: 125915/JM02.09.G01.1/36500

Job ID: 680-241003-1

Method	Method Description	Protocol	Laboratory
7470A	Mercury (CVAA)	SW846	EET SAV
7470A	Preparation, Mercury	SW846	EET SAV

Protocol References:

SW846 = "Test Methods For Evaluating Solid Waste, Physical/Chemical Methods", Third Edition, November 1986 And Its Updates.

Laboratory References:

EET SAV = Eurofins Savannah, 5102 LaRoche Avenue, Savannah, GA 31404, TEL (912)354-7858

4

5

8

10

11

13

Definitions/Glossary

Client: South Carolina Public Service Authority Project/Site: 125915/JM02.09.G01.1/36500

Not Detected at the reporting limit (or MDL or EDL if shown)

Negative / Absent

Positive / Present

Presumptive

Quality Control

Practical Quantitation Limit

Relative Error Ratio (Radiochemistry)

Toxicity Equivalent Factor (Dioxin)

Too Numerous To Count

Toxicity Equivalent Quotient (Dioxin)

Reporting Limit or Requested Limit (Radiochemistry)

Relative Percent Difference, a measure of the relative difference between two points

Job ID: 680-241003-1

Qualifiers

Metal	s
-------	---

Qualifier **Qualifier Description**

Indicates the analyte was analyzed for but not detected.

ND

NEG

POS

PQL

PRES

QC

RLRPD

TEF

TEQ

TNTC

RER

Glossary	
Abbreviation	These commonly used abbreviations may or may not be present in this report.
¤	Listed under the "D" column to designate that the result is reported on a dry weight basis
%R	Percent Recovery
CFL	Contains Free Liquid
CFU	Colony Forming Unit
CNF	Contains No Free Liquid
DER	Duplicate Error Ratio (normalized absolute difference)
Dil Fac	Dilution Factor
DL	Detection Limit (DoD/DOE)
DL, RA, RE, IN	Indicates a Dilution, Re-analysis, Re-extraction, or additional Initial metals/anion analysis of the sample
DLC	Decision Level Concentration (Radiochemistry)
EDL	Estimated Detection Limit (Dioxin)
LOD	Limit of Detection (DoD/DOE)
LOQ	Limit of Quantitation (DoD/DOE)
MCL	EPA recommended "Maximum Contaminant Level"
MDA	Minimum Detectable Activity (Radiochemistry)
MDC	Minimum Detectable Concentration (Radiochemistry)
MDL	Method Detection Limit
ML	Minimum Level (Dioxin)
MPN	Most Probable Number
MQL	Method Quantitation Limit
NC	Not Calculated

Eurofins Savannah

Detection Summary

Lab Sample ID: 680-241003-1
Lab Sample ID: 680-241003-2
Lab Sample ID: 680-241003-3
Lab Sample ID: 680-241003-4

Job ID: 680-241003-1

3

11

12 13

12

Client: South Carolina Public Service Authority

No Detections.

Client: South Carolina Public Service Authority

Project/Site: 125915/JM02.09.G01.1/36500

Lab Sample ID: 680-241003-1

Job ID: 680-241003-1

Matrix: GW

Client Sample ID: AF79064 Date Collected: 09/26/23 12:13

Date Received: 09/29/23 10:22

Method: SW846 7470A - Mercury (CVAA)								
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
Mercury	0.200	U	0.200		ua/l		10/03/23 12:11	10/03/23 16:36	

Client: South Carolina Public Service Authority

Project/Site: 125915/JM02.09.G01.1/36500

Lab Sample ID: 680-241003-2

Matrix: GW

Job ID: 680-241003-1

Client Sample ID: AF79065 Date Collected: 09/27/23 10:49 Date Received: 09/29/23 10:22

Method: SW846 7470A - Mercury (CVAA)

RL MDL Unit Dil Fac Result Qualifier Prepared Analyzed Mercury 0.200 U 0.200 ug/L 10/03/23 12:11 10/03/23 16:38

Client: South Carolina Public Service Authority

Project/Site: 125915/JM02.09.G01.1/36500

Lab Sample ID: 680-241003-3

Matrix: GW

Job ID: 680-241003-1

Client Sample ID: AF79066 Date Collected: 09/27/23 10:54

Date Received: 09/29/23 10:22

Method: SW846 7470A - Mercury (CVAA)									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Mercury	0.200	U	0.200		ug/L		10/03/23 12:11	10/03/23 16:40	1

Client: South Carolina Public Service Authority

Project/Site: 125915/JM02.09.G01.1/36500

Client Sample ID: AF79067

Date Collected: 09/27/23 13:19

Date Received: 09/29/23 10:22

Lab Sample ID: 680-241003-4

Matrix: GW

10/03/23 16:43

Method: SW846 7470A - Mercury (CVAA) RL MDL Unit Result Qualifier Prepared Mercury 0.200 U 0.200 ug/L 10/03/23 12:11

Dil Fac Analyzed

Job ID: 680-241003-1

QC Sample Results

Client: South Carolina Public Service Authority Project/Site: 125915/JM02.09.G01.1/36500

Job ID: 680-241003-1

Method: 7470A - Mercury (CVAA)

Lab Sample ID: MB 680-800807/1-A Client Sample ID: Method Blank

Matrix: Water Prep Type: Total/NA

Analysis Batch: 800852 Prep Batch: 800807 MB MB

Result Qualifier MDL Unit Dil Fac Analyte RLD Prepared Analyzed 10/03/23 12:11 Mercury 0.200 U 0.200 ug/L 10/03/23 16:32

Lab Sample ID: LCS 680-800807/2-A Client Sample ID: Lab Control Sample

Matrix: Water Prep Type: Total/NA

Analysis Batch: 800852 **Prep Batch: 800807**

Spike LCS LCS %Rec

Analyte Added Result Qualifier Unit D %Rec Limits Mercury 2.50 2.613 ug/L 105 80 - 120

QC Association Summary

Client: South Carolina Public Service Authority Project/Site: 125915/JM02.09.G01.1/36500

Job ID: 680-241003-1

Metals

Prep Batch: 800807

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
680-241003-1	AF79064	Total/NA	GW	7470A	
680-241003-2	AF79065	Total/NA	GW	7470A	
680-241003-3	AF79066	Total/NA	GW	7470A	
680-241003-4	AF79067	Total/NA	GW	7470A	
MB 680-800807/1-A	Method Blank	Total/NA	Water	7470A	
LCS 680-800807/2-A	Lab Control Sample	Total/NA	Water	7470A	

Analysis Batch: 800852

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
680-241003-1	AF79064	Total/NA	GW	7470A	800807
680-241003-2	AF79065	Total/NA	GW	7470A	800807
680-241003-3	AF79066	Total/NA	GW	7470A	800807
680-241003-4	AF79067	Total/NA	GW	7470A	800807
MB 680-800807/1-A	Method Blank	Total/NA	Water	7470A	800807
LCS 680-800807/2-A	Lab Control Sample	Total/NA	Water	7470A	800807

Lab Chronicle

Client: South Carolina Public Service Authority Project/Site: 125915/JM02.09.G01.1/36500

Job ID: 680-241003-1

Client Sample ID: AF79064 Lab Sample ID: 680-241003-1 Date Collected: 09/26/23 12:13

Matrix: GW

Date Received: 09/29/23 10:22

	Batch	Batch		Dilution	Batch			Prepared
Prep Type	Туре	Method	Run	Factor	Number	Analyst	Lab	or Analyzed
Total/NA	Prep	7470A			800807	DW	EET SAV	10/03/23 12:11
Total/NA	Analysis	7470A		1	800852	DW	EET SAV	10/03/23 16:36

Client Sample ID: AF79065 Lab Sample ID: 680-241003-2

Date Collected: 09/27/23 10:49 Matrix: GW

Date Received: 09/29/23 10:22

	Batch	Batch		Dilution	Batch			Prepared
Prep Type	Type	Method	Run	Factor	Number	Analyst	Lab	or Analyzed
Total/NA	Prep	7470A			800807	DW	EET SAV	10/03/23 12:11
Total/NA	Analysis	7470A		1	800852	DW	EET SAV	10/03/23 16:38

Client Sample ID: AF79066 Lab Sample ID: 680-241003-3

Date Collected: 09/27/23 10:54 Matrix: GW

Date Received: 09/29/23 10:22

	Batch	Batch		Dilution	Batch			Prepared
Prep Type	Туре	Method	Run	Factor	Number	Analyst	Lab	or Analyzed
Total/NA	Prep	7470A	·		800807	DW	EET SAV	10/03/23 12:11
Total/NA	Analysis	7470A		1	800852	DW	EET SAV	10/03/23 16:40

Client Sample ID: AF79067 Lab Sample ID: 680-241003-4

Date Collected: 09/27/23 13:19

Date Received: 09/29/23 10:22

	Batch	Batch		Dilution	Batch			Prepared
Prep Type	Type	Method	Run	Factor	Number	Analyst	Lab	or Analyzed
Total/NA	Prep	7470A			800807	DW	EET SAV	10/03/23 12:11
Total/NA	Analysis	7470A		1	800852	DW	EET SAV	10/03/23 16:43

Laboratory References:

EET SAV = Eurofins Savannah, 5102 LaRoche Avenue, Savannah, GA 31404, TEL (912)354-7858

Eurofins Savannah

Matrix: GW

Chain of Custody

Santee Coope One Riverwood Driv Moncks Corner, SC 2946 Phone: (843)761-8000 Ext. 514 Fav: (843)761-417

Labworks ID# (Internal use only)	De	@santeed	ooper.com n/	Collection Date	n Time		9	125	715	<u>J</u> JM	02.0	7.601.1	<u> 3620</u>	Yes	No <u>A</u>	nalysis Group	
(Internal use only)	De	escription	n/	llection Date	n Time	, io	1 .								A	nalysis Group	
(Internal use only)	De	escription	n/	llection Date	n Time	Į,											
AF79064	V	NAP-27		8	Collection Time	Sample Collector	Total # of containers	Bottle type: (Glass-G/Plastic-P)	Grab (G) or Composite (C)	Matrix(see below)	Preservative (see below)	Rej Mi	Commented # porting limit so. sample in y other note:	nfo	Hg		
		7.1		9/26/23	1213	SDW SDW	1	þ	G	GW	2	7470	RL< 0.	2 ug/L	×		
AF79065	h	JAP-28		7/27/23	1049		1	11						1	×		
AF79066	W	AP-28 DI	117	1	1054	-									Х		
AF79067	W	AP-29			1319	1	L	1		1	1				×		
										l				-			
									_680	0-2410	03 Cha	in of Custo	ody				
Relinquished b	y:	Employee#	Date	Time	Receiv	ed by:	E	mployee	#	Date	e	Time		Receiving (Internation)			
Moun		35594	9/28/23	1200													
Relinquished b	y:	Employee#	Date	Time	Receiv	ed by:	E	mployee	#	Date	2	Time	63-4	t pH: Yes No rative Lot#:	0		
Relinquished b	y:	Employee#	Date	Time	Receiv	ed by:	E	mployee	#	Date	e /	Time		.8/21.3			
					/1/r	X			C	1/29	1/23	1022		me/Init for preser			
		ALS (all)	Nuis	ments C	M	sc.	- 100	Gy	psur	n	3	Coa		Frasi	1000	Oil	
	Cu	☐ Sb	ОТО		BTEX			Wallbo			0	Ultimate				ns, Oil Qual.	
	Fe		DO:	The second secon	□ Naphtha□ THM/H.				sum(a	II	34 3	☐ % Mois	ture	□ LOI		Moisture olor	
□ As □		□ Sn		3-N	□ VOC		- 8	belon I AI			Se VIES	☐ Ash☐ Sulfur		☐ % Carbon ☐ Mineral	SIA	eidity	
0 B 0	1	□ Sr	OF.	6958GH-	□ Oil & Gi ■ E. Coli	rease		OTO			99	□ BTUs		Analysis	DIF	electric Strength	
	Mg	□ Ti		55000	□ Total Co	liform			al meta uble M			□ Volatile	Matter	☐ Sieve	965		
	Mn	o m	□ NO:		□ pH □ Dissolve	d Ac	1	□ Pur	ity (Ca	SO4)	0	☐ CHN ther Tests:	F435	□ % Moisture		d Oil ashpoint	
□ Ca □	Мо	UV	□ NO:		☐ Dissolve		-		Moistur fites	e		KRF Scan		NPDES	Li M	etals in oil	1
□ Cd □	Na	□ Zn	□ SO4	000000	☐ Rad 226 ☐ Rad 228			□pH				HGI Fineness		□ Oil & Grease		(s.Cd,Cr,Ni,Pl	
	Ni	☐ Hg		_	□ Rad 228		9		orides ticle Siz	ze		articulate M	latter	□ As	CI	X	
□ Cr □	Pb	□ CrVI	333					□ Sulfur		331		Maria Const	Market S	□ TSS	I GO	ER	1-

Login Sample Receipt Checklist

Client: South Carolina Public Service Authority

Job Number: 680-241003-1

Login Number: 241003 List Source: Eurofins Savannah

List Number: 1

Creator: Johnson, Corey M

Creator. Johnson, Corey W		
Question	Answer	Comment
Radioactivity wasn't checked or is = background as measured by a survey meter.</td <td>N/A</td> <td></td>	N/A	
The cooler's custody seal, if present, is intact.	True	
Sample custody seals, if present, are intact.	True	
The cooler or samples do not appear to have been compromised or tampered with.	True	
Samples were received on ice.	False	Thermal preservation not required.
Cooler Temperature is acceptable.	True	
Cooler Temperature is recorded.	True	
COC is present.	True	
COC is filled out in ink and legible.	True	
COC is filled out with all pertinent information.	True	
Is the Field Sampler's name present on COC?	True	
There are no discrepancies between the containers received and the COC.	True	
Samples are received within Holding Time (excluding tests with immediate HTs)	True	
Sample containers have legible labels.	True	
Containers are not broken or leaking.	True	
Sample collection date/times are provided.	True	
Appropriate sample containers are used.	True	
Sample bottles are completely filled.	True	
Sample Preservation Verified.	N/A	
There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs	True	
Containers requiring zero headspace have no headspace or bubble is <6mm (1/4").	N/A	
Multiphasic samples are not present.	True	
Samples do not require splitting or compositing.	True	
Residual Chlorine Checked.	N/A	

4

5

7

ŏ

10

42

13

14

Accreditation/Certification Summary

Client: South Carolina Public Service Authority Project/Site: 125915/JM02.09.G01.1/36500

Job ID: 680-241003-1

Laboratory: Eurofins Savannah

The accreditations/certifications listed below are applicable to this report.

Authority	Program	Identification Number	Expiration Date
South Carolina	State	98001	06-30-23 *

000 211000 1

13

4

6

8

4.6

11

12

1/

 $^{^{\}star} \ \text{Accreditation/Certification renewal pending - accreditation/certification considered valid}.$

gel.com

July 27, 2023

Ms. Jeanette Gilmetti Santee Cooper P.O. Box 2946101 OCO3 Moncks Corner, South Carolina 29461

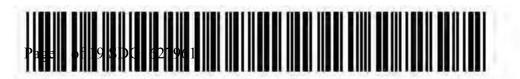
Re: ABS Lab Analytical Work Order: 627961

Dear Ms. Gilmetti:

GEL Laboratories, LLC (GEL) appreciates the opportunity to provide the enclosed analytical results for the sample(s) we received on June 30, 2023. This original data report has been prepared and reviewed in accordance with GEL's standard operating procedures.

Sample containers were not received, client contacted, client stated these were added to COC in error. 627961005(AF68715), 627961006(AF68722). All sample containers arrived without any visible signs of tampering or breakage. There are no additional comments concerning sample receipt.

Test results for NELAP or ISO 17025 accredited tests are verified to meet the requirements of those standards, with any exceptions noted. The results reported relate only to the items tested and to the sample as received by the laboratory. These results may not be reproduced except as full reports without approval by the laboratory. Copies of GEL's accreditations and certifications can be found on our website at www.gel.com.


Our policy is to provide high quality, personalized analytical services to enable you to meet your analytical needs on time every time. We trust that you will find everything in order and to your satisfaction. If you have any questions, please do not hesitate to call me at (843) 556-8171, ext. 4289.

Sincerely,

Julie Robinson Project Manager

Purchase Order: 398684

Enclosures

2040 Savage Road Charleston SC 29407 - (843) 556-8171 - www.gel.com

Certificate of Analysis Report for

SOOP001 Santee Cooper

Client SDG: 627961 GEL Work Order: 627961

The Qualifiers in this report are defined as follows:

- * A quality control analyte recovery is outside of specified acceptance criteria
- ** Analyte is a Tracer compound
- ** Analyte is a surrogate compound
- U Analyte was analyzed for, but not detected above the MDL, MDA, MDC or LOD.

Where the analytical method has been performed under NELAP certification, the analysis has met all of the requirements of the NELAC standard unless qualified on the Certificate of Analysis.

The designation ND, if present, appears in the result column when the analyte concentration is not detected above the limit as defined in the 'U' qualifier above.

This data report has been prepared and reviewed in accordance with GEL Laboratories LLC standard operating procedures. Please direct any questions to your Project Manager, Julie Robinson.

	Julia	Knie
Reviewed by	<u> </u>	

Page 2 of 19 SDG: 627961

2040 Savage Road Charleston SC 29407 - (843) 556-8171 - www.gel.com

Certificate of Analysis

Report Date: July 27, 2023

Company: Santee Cooper Address: P.O. Box 2946101

OCO3

Moncks Corner, South Carolina 29461

Contact: Ms. Jeanette Gilmetti Project: ABS Lab Analytical

Client Sample ID: AF68719 Sample ID: 627961001

Matrix: GW

Collect Date: 29-JUN-23 10:48 Receive Date: 30-JUN-23 Collector: Client Project: SOOP00119 Client ID: SOOP001

Parameter	Qualifier	Result	Uncertainty	MDC	RL	Units	PF	DF Analyst Date	Time Batch	Method
Rad Gas Flow Proportion	onal Counting									
GFPC, Ra228, Liquid "	As Received"									
Radium-228		3.47	+/-1.34	1.77	3.00	pCi/L		JE1 07/17/23	1510 2454081	1
Radium-226+Radium-2	28 Calculatio	n "See Pa	arent Products"							
Radium-226+228 Sum		5.06	+/-1.49			pCi/L		NXL1 07/24/23	1519 2462863	2
Rad Radium-226										
Lucas Cell, Ra226, Liqu	uid "As Recei	ved"								
Radium-226		1.59	+/-0.659	0.553	1.00	pCi/L		LXP1 07/24/23	0755 2454082	3
The following Analytic	cal Methods w	ere perfo	ormed:							
Method	Description					I	Analys	st Comments		

1	EPA 904.0/SW846 9320 Modified				
2	Calculation				
3	EPA 903.1 Modified				
Surrogate/Tracer Recov	ery Test	Result	Nominal	Recovery%	Acceptable Limits

Barium-133 Tracer GFPC, Ra228, Liquid "As Received" 72.3 (15%-125%)

Notes:

Counting Uncertainty is calculated at the 95% confidence level (1.96-sigma).

Column headers are defined as follows:

DF: Dilution Factor Lc/LC: Critical Level
DL: Detection Limit PF: Prep Factor
MDA: Minimum Detectable Activity RL: Reporting Limit

MDC: Minimum Detectable Concentration SQL: Sample Quantitation Limit

Page 3 of 19 SDG: 627961

2040 Savage Road Charleston SC 29407 - (843) 556-8171 - www.gel.com

Certificate of Analysis

Project:

Client ID:

Analyst Comments

Report Date: July 27, 2023

SOOP00119

SOOP001

Company: Santee Cooper Address: P.O. Box 2946101

OCO3

Moncks Corner, South Carolina 29461

Contact: Ms. Jeanette Gilmetti Project: ABS Lab Analytical

Client Sample ID: AF68720 Sample ID: 627961002

Matrix: GW

Collect Date: 29-JUN-23 11:40 Receive Date: 30-JUN-23 Collector: Client

Parameter	Qualifier	Result	Uncertainty	MDC	RL	Units	PF	DF Analy	st Date	Time Batch	Method
Rad Gas Flow Proporti	onal Counting										
GFPC, Ra228, Liquid '	'As Received"										
Radium-228		2.79	+/-1.53	2.25	3.00	pCi/L		JE1	07/19/23	1027 2454081	1
Radium-226+Radium-2	228 Calculatio	n "See Pa	rent Products"								
Radium-226+228 Sum		5.75	+/-1.77			pCi/L		NXL1	07/24/23	1519 2462863	2
Rad Radium-226											
Lucas Cell, Ra226, Liq	uid "As Recei	ved"									
Radium-226		2.96	+/-0.886	0.398	1.00	pCi/L		LXP1	07/24/23	0755 2454082	3

The following Analytical Methods were performed:

Description

1	EPA 904.0/SW846 9320 Modified				
2	Calculation				
3	EPA 903.1 Modified				
Surrogate/Tracer Recov	ery Test	Result	Nominal	Recovery%	Acceptable Limits

Barium-133 Tracer GFPC, Ra228, Liquid "As Received" 69.2 (15%-125%)

Notes:

Method

Counting Uncertainty is calculated at the 95% confidence level (1.96-sigma).

Column headers are defined as follows:

DF: Dilution Factor Lc/LC: Critical Level
DL: Detection Limit PF: Prep Factor
MDA: Minimum Detectable Activity RL: Reporting Limit

MDC: Minimum Detectable Concentration SQL: Sample Quantitation Limit

Page 4 of 19 SDG: 627961

2040 Savage Road Charleston SC 29407 - (843) 556-8171 - www.gel.com

Certificate of Analysis

Report Date: July 27, 2023

Company: Santee Cooper Address: P.O. Box 2946101

OCO3

Moncks Corner, South Carolina 29461

Contact: Ms. Jeanette Gilmetti Project: ABS Lab Analytical

Client Sample ID: AF68721 Sample ID: 627961003

Matrix: GW

Collect Date: 29-JUN-23 11:45
Receive Date: 30-JUN-23
Collector: Client

Description

Project: SOOP00119 Client ID: SOOP001

Analyst Comments

Parameter	Qualifier	Result	Uncertainty	MDC	RL	Units	PF	DF Analy	st Date	Time Batch	Method
Rad Gas Flow Proportion	onal Counting										
GFPC, Ra228, Liquid ".	As Received"										
Radium-228		2.71	+/-1.47	2.21	3.00	pCi/L		JE1	07/17/23	1511 2454081	1
Radium-226+Radium-2	28 Calculatio	n "See Pa	arent Products"								
Radium-226+228 Sum		8.64	+/-1.94			pCi/L		NXL1	07/24/23	1519 2463279	2
Rad Radium-226											
Lucas Cell, Ra226, Liqu	uid "As Recei	ved"									
Radium-226		5.93	+/-1.26	0.485	1.00	pCi/L		LXP1	07/24/23	0844 2454082	3
The following Analytic	al Methods w	ere perfo	ormed:								

1	EPA 904.0/SW846 9320 Modified				
2	Calculation				
3	EPA 903.1 Modified				
Surrogate/Tracer Recov	ery Test	Result	Nominal	Recovery%	Acceptable Limits

Barium-133 Tracer GFPC, Ra228, Liquid "As Received"

Result Norminal Recovery Acceptable Limit Recovery 71.3 (15%-125%)

Notes:

Method

Counting Uncertainty is calculated at the 95% confidence level (1.96-sigma).

Column headers are defined as follows:

DF: Dilution Factor Lc/LC: Critical Level
DL: Detection Limit PF: Prep Factor
MDA: Minimum Detectable Activity RL: Reporting Limit

MDC: Minimum Detectable Concentration SQL: Sample Quantitation Limit

Page 5 of 19 SDG: 627961

2040 Savage Road Charleston SC 29407 - (843) 556-8171 - www.gel.com

Certificate of Analysis

Report Date: July 27, 2023

SOOP00119

Company: Santee Cooper Address: P.O. Box 2946101

OCO3

Moncks Corner, South Carolina 29461

Contact: Ms. Jeanette Gilmetti Project: ABS Lab Analytical

Client Sample ID: AF68713 Sample ID: 627961004

Matrix: GW

Collect Date: 29-JUN-23 13:51
Receive Date: 30-JUN-23
Collector: Client

627961004 Client ID: SOOP001 GW

Project:

Parameter	Qualifier	Result	Uncertainty	MDC	RL	Units	PF	DF Analyst Date Time Bate	n Method
Rad Gas Flow Proporti	ional Counting								
GFPC, Ra228, Liquid	"As Received"								
Radium-228		3.09	+/-1.46	2.09	3.00	pCi/L		JE1 07/17/23 1511 24540	31 1
Radium-226+Radium-	228 Calculation	n "See Pa	arent Products"						
Radium-226+228 Sum		4.34	+/-1.58			pCi/L		NXL1 07/24/23 1519 24632	79 2
Rad Radium-226									
Lucas Cell, Ra226, Lic	quid "As Receiv	ved"							
Radium-226	_	1.25	+/-0.604	0.599	1.00	pCi/L		LXP1 07/24/23 0844 24540	32
The following Analyti	ical Methods w	ere perfo	ormed:						
Method	Description		Analyst Comments						

1	EPA 904.0/SW846 9320 Modified				
2	Calculation				
3	EPA 903.1 Modified				
Surrogate/Tracer Recov	ery Test	Result	Nominal	Recovery%	Acceptable Limits

Barium-133 Tracer GFPC, Ra228, Liquid "As Received" 68.9 (15%-125%)

Notes:

Counting Uncertainty is calculated at the 95% confidence level (1.96-sigma).

Column headers are defined as follows:

DF: Dilution Factor Lc/LC: Critical Level
DL: Detection Limit PF: Prep Factor
MDA: Minimum Detectable Activity RL: Reporting Limit

MDC: Minimum Detectable Concentration SQL: Sample Quantitation Limit

Page 6 of 19 SDG: 627961

2040 Savage Road Charleston SC 29407 - (843) 556-8171 - www.gel.com

Certificate of Analysis

Project:

Client ID:

Analyst Comments

Report Date: July 27, 2023

SOOP00119

SOOP001

Company: Santee Cooper Address: P.O. Box 2946101

OCO3

Moncks Corner, South Carolina 29461

Contact: Ms. Jeanette Gilmetti Project: ABS Lab Analytical

Client Sample ID: AF68714 Sample ID: 627961007

Matrix: GW

Collect Date: 28-JUN-23 14:09
Receive Date: 30-JUN-23
Collector: Client

Parameter	Qualifier	Result	Uncertainty	MDC	RL	Units	PF	DF Analy	yst Date	Time Batch	Method
Rad Gas Flow Proport	ional Counting										
GFPC, Ra228, Liquid	"As Received"										
Radium-228	U	1.04	+/-1.00	1.64	3.00	pCi/L		JE1	07/17/23	1511 2454081	1
Radium-226+Radium-	228 Calculatio	n "See Pa	rent Products"								
Radium-226+228 Sum		2.57	+/-1.22			pCi/L		NXL1	07/24/23	1519 2463279	2
Rad Radium-226											
Lucas Cell, Ra226, Lic	quid "As Recei	ved"									
Radium-226		1.53	+/-0.701	0.635	1.00	pCi/L		LXP1	07/24/23	0844 2454082	3
The following Analyst	ical Mathada x	zara narfa	rmad:								

The following Analytical Methods were performed:

Description

1	EPA 904.0/SW846 9320 Modified		-		
2	Calculation				
3	EPA 903.1 Modified				
Surrogate/Tracer Recove	ery Test	Result	Nominal	Recovery%	Acceptable Limits

Barium-133 Tracer GFPC, Ra228, Liquid "As Received"

71.1 (15%-125%)

Notes:

Method

Counting Uncertainty is calculated at the 95% confidence level (1.96-sigma).

Column headers are defined as follows:

DF: Dilution Factor Lc/LC: Critical Level
DL: Detection Limit PF: Prep Factor
MDA: Minimum Detectable Activity RL: Reporting Limit

MDC: Minimum Detectable Concentration SQL: Sample Quantitation Limit

Page 7 of 19 SDG: 627961

2040 Savage Road Charleston SC 29407 - (843) 556-8171 - www.gel.com

Certificate of Analysis

Report Date: July 27, 2023

SOOP00119

Company: Santee Cooper Address: P.O. Box 2946101

OCO3

Moncks Corner, South Carolina 29461

Contact: Ms. Jeanette Gilmetti Project: ABS Lab Analytical

Client Sample ID: AF68712 Sample ID: 627961008

Matrix: GW

Collect Date: 28-JUN-23 15:20
Receive Date: 30-JUN-23
Collector: Client

Description

7961008 Client ID: SOOP001

Project:

Analyst Comments

Parameter	Qualifier	Result	Uncertainty	MDC	RL	Units	PF	DF Analy	st Date	Time Batcl	n Method
Rad Gas Flow Proportion	onal Counting										
GFPC, Ra228, Liquid "A	As Received"										
Radium-228	U	1.17	+/-1.12	1.85	3.00	pCi/L		JE1	07/17/23	1511 245408	1 1
Radium-226+Radium-228 Calculation "See Parent Products"											
Radium-226+228 Sum		3.01	+/-1.31			pCi/L		NXL1	07/24/23	1519 246286	3 2
Rad Radium-226											
Lucas Cell, Ra226, Liqu	uid "As Recei	ved"									
Radium-226		1.83	+/-0.674	0.477	1.00	pCi/L		LXP1	07/24/23	0844 245408	2 3
The following Analytical Methods were performed:											

1	EPA 904.0/SW846 9320 Modified				
2	Calculation				
3	EPA 903.1 Modified				
Surrogate/Tracer Recove	ery Test	Result	Nominal	Recovery%	Acceptable Limits

Barium-133 Tracer GFPC, Ra228, Liquid "As Received" 70.5 (15%-125%)

Notes:

Method

Counting Uncertainty is calculated at the 95% confidence level (1.96-sigma).

Column headers are defined as follows:

DF: Dilution Factor Lc/LC: Critical Level
DL: Detection Limit PF: Prep Factor
MDA: Minimum Detectable Activity RL: Reporting Limit

MDC: Minimum Detectable Concentration SQL: Sample Quantitation Limit

Page 8 of 19 SDG: 627961

2040 Savage Road Charleston SC 29407 - (843) 556-8171 - www.gel.com

Certificate of Analysis

Project:

Client ID:

Analyst Comments

Report Date: July 27, 2023

SOOP00119

SOOP001

Company: Santee Cooper Address: P.O. Box 2946101

OCO3

Moncks Corner, South Carolina 29461

Contact: Ms. Jeanette Gilmetti Project: ABS Lab Analytical

Client Sample ID: AF68748 Sample ID: 627961009

Matrix: GW

Collect Date: 27-JUN-23 10:15 Receive Date: 30-JUN-23 Client Collector:

Parameter	Qualifier	Result	Uncertainty	MDC	RL	Units	PF	DF Analy	yst Date	Time Batch	Method
Rad Gas Flow Proport	tional Counting	5									
GFPC, Ra228, Liquid	"As Received"	1									
Radium-228		3.93	+/-1.52	1.92	3.00	pCi/L		JE1	07/19/23	1027 2454081	1
Radium-226+Radium-228 Calculation "See Parent Products"											
Radium-226+228 Sum		4.32	+/-1.56			pCi/L		NXL1	07/24/23	1519 2462863	2
Rad Radium-226											
Lucas Cell, Ra226, Liquid "As Received"											
Radium-226	U	0.388	+/-0.369	0.553	1.00	pCi/L		LXP1	07/24/23	0844 2454082	3
The following Analytical Methods were performed:											

Description

2 Calc	culation				
3 EPA	A 903.1 Modified				
Surrogate/Tracer Recovery	Test	Result	Nominal	Recovery%	Acceptable Limits
D : 122 F	CEDC D 220 I. THA D . III			70.3	(150/ 1050/)

Barium-133 Tracer GFPC, Ra228, Liquid "As Received" 70.2 (15%-125%)

Method

Counting Uncertainty is calculated at the 95% confidence level (1.96-sigma).

EPA 904.0/SW846 9320 Modified

Column headers are defined as follows:

DF: Dilution Factor Lc/LC: Critical Level DL: Detection Limit PF: Prep Factor MDA: Minimum Detectable Activity **RL**: Reporting Limit

MDC: Minimum Detectable Concentration SQL: Sample Quantitation Limit

Page 9 of 19 SDG: 627961

2040 Savage Road Charleston SC 29407 - (843) 556-8171 - www.gel.com

Certificate of Analysis

Report Date: July 27, 2023

Company: Santee Cooper Address: P.O. Box 2946101

OCO3

Moncks Corner, South Carolina 29461

Contact: Ms. Jeanette Gilmetti Project: ABS Lab Analytical

Client Sample ID: AF68711 Sample ID: 627961010

Matrix: GW

Collect Date: 27-JUN-23 11:26 Receive Date: 30-JUN-23 Collector: Client Project: SOOP00119
Client ID: SOOP001

Parameter	Qualifier	Result	Uncertainty	MDC	RL	Units	PF	DF Analy	st Date	Time Batch	Method
Rad Gas Flow Proportion	nal Counting										
GFPC, Ra228, Liquid "A	As Received"										
Radium-228	U	-0.145	+/-1.35	2.52	3.00	pCi/L		JE1	07/17/23	1511 2454081	1
Radium-226+Radium-2	28 Calculatio	n "See Pa	arent Products"								
Radium-226+228 Sum		1.85	+/-1.54			pCi/L		NXL1	07/24/23	1519 2462863	2
Rad Radium-226											
Lucas Cell, Ra226, Liqu	iid "As Recei	ved"									
Radium-226		1.85	+/-0.737	0.659	1.00	pCi/L		LXP1	07/24/23	0844 2454082	3
The following Analytic	al Methods w	ere perfo	ormed:								
Method	Description					F	Analys	st Comment	S		

1	EPA 904.0/SW846 9320 Modified				
2	Calculation				
3	EPA 903.1 Modified				
Surrogate/Tracer Recov	ery Test	Result	Nominal	Recovery%	Acceptable Limits

Barium-133 Tracer GFPC, Ra228, Liquid "As Received"

Result Nominal Recovery Acceptable Lim
72.3 (15%-125%)

Notes:

Counting Uncertainty is calculated at the 95% confidence level (1.96-sigma).

Column headers are defined as follows:

DF: Dilution Factor Lc/LC: Critical Level
DL: Detection Limit PF: Prep Factor
MDA: Minimum Detectable Activity RL: Reporting Limit

MDC: Minimum Detectable Concentration SQL: Sample Quantitation Limit

Page 10 of 19 SDG: 627961

2040 Savage Road Charleston SC 29407 - (843) 556-8171 - www.gel.com

Certificate of Analysis

Project:

Client ID:

Analyst Comments

Report Date: July 27, 2023

SOOP00119

SOOP001

Company: Santee Cooper Address: P.O. Box 2946101

OCO3

Moncks Corner, South Carolina 29461

Contact: Ms. Jeanette Gilmetti Project: ABS Lab Analytical

Client Sample ID: AF68717 Sample ID: 627961011

Matrix: GW

Collect Date: 27-JUN-23 13:57
Receive Date: 30-JUN-23
Collector: Client

Parameter	Qualifier	Result	Uncertainty	MDC	RL	Units	PF	DF Analy	st Date	Time Batch	Method
Rad Gas Flow Proport	tional Counting	5									
GFPC, Ra228, Liquid	"As Received"	1									
Radium-228	U	2.51	+/-1.64	2.55	3.00	pCi/L		JE1	07/17/23	1511 2454081	1
Radium-226+Radium-	-228 Calculatio	n "See Pa	arent Products"								
Radium-226+228 Sum		2.96	+/-1.69			pCi/L		NXL1	07/24/23	1519 2462863	2
Rad Radium-226											
Lucas Cell, Ra226, Li	quid "As Recei	ved"									
Radium-226	U	0.446	+/-0.395	0.554	1.00	pCi/L		LXP1	07/24/23	0844 2454082	3
			_								

The following Analytical Methods were performed:

Description

1	EPA 904.0/SW846 9320 Modified				
2	Calculation				
3	EPA 903.1 Modified				
Surrogate/Tracer Recov	ery Test	Result	Nominal	Recovery%	Acceptable Limits

Barium-133 Tracer GFPC, Ra228, Liquid "As Received" 63.3 (15%-125%)

Notes:

Method

Counting Uncertainty is calculated at the 95% confidence level (1.96-sigma).

Column headers are defined as follows:

DF: Dilution Factor Lc/LC: Critical Level
DL: Detection Limit PF: Prep Factor
MDA: Minimum Detectable Activity RL: Reporting Limit

MDC: Minimum Detectable Concentration SQL: Sample Quantitation Limit

Page 11 of 19 SDG: 627961

2040 Savage Road Charleston, SC 29407 - (843) 556-8171 - www.gel.com

QC Summary

Report Date: July 27, 2023

Santee Cooper P.O. Box 2946101

OCO3

Moncks Corner, South Carolina

Contact: Ms. Jeanette Gilmetti

Workorder: 627961

Parmname	NOM	Sample	Qual	QC	Units	RPD%	REC%	Range Anlst	Date Time
Rad Gas Flow Batch 2454081 ——									
QC1205450523 627961001 DUP Radium-228	Uncertainty	3.47 +/-1.34	U	1.53 +/-1.36	pCi/L	77.9		(0% - 100%) JE1	07/17/23 15:10
QC1205450524 LCS Radium-228	78.2 Uncertainty			67.7 +/-4.40	pCi/L		86.6	(75%-125%)	07/17/23 15:10
QC1205450522 MB Radium-228	Uncertainty		U	1.44 +/-1.05	pCi/L				07/17/23 15:10
Rad Ra-226 Batch 2454082 ———									
QC1205450526 627961001 DUP Radium-226	Uncertainty	1.59 +/-0.659		1.22 +/-0.539	pCi/L	26.5		(0% - 100%) LXP1	07/24/23 10:06
QC1205450528 LCS Radium-226	52.9 Uncertainty			55.4 +/-3.58	pCi/L		105	(75%-125%)	07/24/23 10:06
QC1205450525 MB Radium-226	Uncertainty		U	0.282 +/-0.403	pCi/L				07/24/23 09:22
QC1205450527 627961001 MS Radium-226	132 Uncertainty	1.59 +/-0.659		136 +/-13.5	pCi/L		101	(75%-125%)	07/24/23 10:06

Notes:

Counting Uncertainty is calculated at the 95% confidence level (1.96-sigma).

The Qualifiers in this report are defined as follows:

U Analyte was analyzed for, but not detected above the MDL, MDA, MDC or LOD.

J Value is estimated

X Consult Case Narrative, Data Summary package, or Project Manager concerning this qualifier

H Analytical holding time was exceeded

< Result is less than value reported

Page 12 of 19 SDG: 627961

Page 1 of 2

2040 Savage Road Charleston, SC 29407 - (843) 556-8171 - www.gel.com

QC Summary

Workorder: 627961

Page 2 of 2

Parmname	NOM	Sample Qu	ual	QC	Units	RPD%	REC%	Range	Anlst	Date	Time

- > Result is greater than value reported
- UI Gamma Spectroscopy--Uncertain identification
- BD Results are either below the MDC or tracer recovery is low
- h Preparation or preservation holding time was exceeded
- R Sample results are rejected
- ^ RPD of sample and duplicate evaluated using +/-RL. Concentrations are <5X the RL. Qualifier Not Applicable for Radiochemistry.
- N/A RPD or %Recovery limits do not apply.
- ND Analyte concentration is not detected above the detection limit
- M M if above MDC and less than LLD
- NJ Consult Case Narrative, Data Summary package, or Project Manager concerning this qualifier
- FA Failed analysis.
- UJ Gamma Spectroscopy--Uncertain identification
- Q One or more quality control criteria have not been met. Refer to the applicable narrative or DER.
- K Analyte present. Reported value may be biased high. Actual value is expected to be lower.
- UL Not considered detected. The associated number is the reported concentration, which may be inaccurate due to a low bias.
- L Analyte present. Reported value may be biased low. Actual value is expected to be higher.
- N1 See case narrative
- Y Other specific qualifiers were required to properly define the results. Consult case narrative.
- ** Analyte is a Tracer compound
- M REMP Result > MDC/CL and < RDL
- J See case narrative for an explanation

N/A indicates that spike recovery limits do not apply when sample concentration exceeds spike conc. by a factor of 4 or more or %RPD not applicable.

- ^ The Relative Percent Difference (RPD) obtained from the sample duplicate (DUP) is evaluated against the acceptance criteria when the sample is greater than five times (5X) the contract required detection limit (RL). In cases where either the sample or duplicate value is less than 5X the RL, a control limit of +/- the RL is used to evaluate the DUP result.
- * Indicates that a Quality Control parameter was not within specifications.

For PS, PSD, and SDILT results, the values listed are the measured amounts, not final concentrations.

Where the analytical method has been performed under NELAP certification, the analysis has met all of the requirements of the NELAC standard unless qualified on the QC Summary.

Page 13 of 19 SDG: 627961

Radiochemistry Technical Case Narrative Santee Cooper SDG #: 627961

Product: GFPC, Ra228, Liquid

Analytical Method: EPA 904.0/SW846 9320 Modified **Analytical Procedure:** GL-RAD-A-063 REV# 5

Analytical Batch: 2454081

The following samples were analyzed using the above methods and analytical procedure(s).

GEL Sample ID#	Client Sample Identification
627961001	AF68719
627961002	AF68720
627961003	AF68721
627961004	AF68713
627961007	AF68714
627961008	AF68712
627961009	AF68748
627961010	AF68711
627961011	AF68717
1205450522	Method Blank (MB)
1205450523	627961001(AF68719) Sample Duplicate (DUP)
1205450524	Laboratory Control Sample (LCS)

The samples in this SDG were analyzed on an "as received" basis.

Data Summary:

All sample data provided in this report met the acceptance criteria specified in the analytical methods and procedures for initial calibration, continuing calibration, instrument controls and process controls where applicable, with the following exceptions.

Technical Information

Recounts

Samples 627961002 (AF68720) and 627961009 (AF68748) were re-eluted and recounted to verify sample results. The recounts are reported.

<u>Product:</u> Lucas Cell, Ra226, Liquid <u>Analytical Method:</u> EPA 903.1 Modified

Analytical Procedure: GL-RAD-A-008 REV# 15

Analytical Batch: 2454082

The following samples were analyzed using the above methods and analytical procedure(s).

GEL Sample ID# Client Sample Identification

627961001 AF68719

Page 14 of 19 SDG: 627961

627961002	AF68720
627961003	AF68721
627961004	AF68713
627961007	AF68714
627961008	AF68712
627961009	AF68748
627961010	AF68711
627961011	AF68717
1205450525	Method Blank (MB)
1205450526	627961001(AF68719) Sample Duplicate (DUP)
1205450527	627961001(AF68719) Matrix Spike (MS)
1205450528	Laboratory Control Sample (LCS)

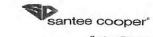
The samples in this SDG were analyzed on an "as received" basis.

Data Summary:

All sample data provided in this report met the acceptance criteria specified in the analytical methods and procedures for initial calibration, continuing calibration, instrument controls and process controls where applicable, with the following exceptions.

Preparation Information

Aliquot Reduced


1205450527 (AF68719MS) Aliquot was reduced due to limited sample volume.

Certification Statement

Where the analytical method has been performed under NELAP certification, the analysis has met all of the requirements of the NELAC standard unless otherwise noted in the analytical case narrative.

Page 15 of 19 SDG: 627961

Chain of Custody

Santee Coope One Riverwood Drive Moncks Corner, SC 2946 Phone: (843)761-8000 Ext. 5148 Phone: (843)761-81761-8176

Customer	Email/	Report Reci	pient:	Date R	esults No	eeded b	y:		Pr	oject/	Task/	Unit #:	Rerun	request f	or an	y fla	gged O	(C
LCWILL	JA.	@sante	ecooper.com					1250	715	JJM	02.0	8.6Ø1.3	136500	Yes	No			
															<u>A</u>	nalysi	Group	
Labworks (Internal u only)	30.7.0	Sample Loca Description	tion/	Collection Date	Collection Time	Sample Collector	Total # of containers	Bottle type: (Glass-G/Plastic-P)	Grab (G) or Composite (C)	Matrix(see below)	Preservative (see	Re Mi	Comments thod # porting limit sc. sample info y other notes		RAD 226	RAD 228	TOTAL RAD CALC	
AF6871	19	WAP-9		6/29/23	1048	WIK	2	P	6	GW	2				1	1	x	
A+6872	20	WAP - 10			(140		1		1									
AF-6877	21	WAP-10	DUP		1145													
AF-68.71	3	WAP-3			1351													
AF6871	5	WAP-5			0947													
A#6872	12	WAP-II		1	1453	1	1	1	-	1	1					1	1	
													-					
Relinquis Relinquis	h	35594	6/30/23	Time	mil	ved by:		Employee	6	Date 30/2	3	Time (035)	Sample Receiving TEMP (°C): Correct pH:		Ise Or Initia			
M. A. Relinquis	^_ shed by:	GEL Employee		\Z35 Time	L C Recei	ved by:		6 EL		J3G Date		(285 Time	Preservative Lot Date/Time/Init f		ativo.			
	пми	TAIS (all				20.10				20.30					ative.			977
□ Ag □ C □ C □ Al □ F C □ Ba □ Li □ Ba □ M □ Be □ M □ C □ C □ N □ C □ C □ P P C □ C □ P C □ C □ P C □ C □		B □ Se □ Sn □ Sn □ Sr g □ Ti n □ Tl O □ V a □ Zn i □ Hg	D TO D DO D TP D NH D F D C1 D NO D Br D NO	OC /TPO4 13-N 02	MI BTEX Naphth THM/I VOC Gil & C E Coli Total C DH Dissolv Rad 22 Rad 22 PCB	Grease Coliform red As red Fe		Wallburger	osum(ow) IM OC otal metaluble Nority (C Moistalifiles Inlorides	all als detals aSO4) me	(0 0	Coa Ultimate Moi Ash Sulfur BTUs Volati CHN Other Tests XRF Scan HGI Fineness Particulate	☐ Ammo ☐ LOI ☐ % Can ☐ Miner Ar Ar ☐ Mother ☐ Sieve ☐ % Mo ☐ MPE	oma rbon ral nalysis sisture	D C C C C C C C C C C C C C C C C C C C	Volta Color Accidity Selectric Color Accidity Selectric Color Accidity Selectric Color Accidity	il Qual. sture e Strength ed Gase il out in oil LC1,Ni,P	

Chain of Custody

Santes Cooper One Riverwood Drive Moneks Corner, SC 29461 Phone: (843)761-8000 Ext., 5148 Fax: (843)761-4175

Customer Emai	il/Report Recipie	ent:	Date	Results N	eeded b	γ:		Pr	roject/	Task/	'Unit #:		Rerun request	for a	ny fla	gged Q	įC
LINDA - WILLIA	™S @santeec	ooper.com					125	915	<u>/ m</u>	02.6	8.Gø 1.3	3€≥∞	Yes	No			
														E	nalys	s Group	
Labworks ID # (Internal use only)	Sample Location Description	p/	Collection Date	Collection Time	Sample Collector	Total # of containers	Bottle type: (Glass- G/Plastic-P)	Grab (G) or Composite (C)	Matrix(see below)	Preservative (see	Re Mi	Comme withod # porting limit sc. sample info y other notes		RAD 226	KAD 728	TOTAL RAD CALC.	
AF68714	WAP-4		6/28/2	३ ।५०न	MJK MT	2	P	G	ew	2				Ţ.	l	X	_
AF68712	WAR- 2		1	1520				-	1	1						1	_
AF68748	wsw-1		6/27/2	3 015													_
AF68711	WAP-1			1126													_
AF68717	WAR-7			1857		_	1	1		1							_
		··············															_
						,						_					_
<u> </u>									,								
Relinguished by:	Employee#	Date	Time	Recei	ed hu		mployee	432 37	l	i Geografi	i Time	Sample Re	eceiving (Internal	Use On	ly)	. <u> </u>	-
29 Brown	35594	6/30/23	1636	A	<u>~</u>		GEL		/30/z		lo34	TEMP (%	 	Initial	:		
Relinguished by:	¿Employee#	Date	Time	Recei	ed by:	236 32267	nployee	5962 RV	Date		. Time	Correct p					
Relinquished by:	しEL Employee#	6.30.23	1235 Time	Dara.	ed by:		nployee		(3C		(235 Time	rreservat	146 TOI#:				
		1640,254,3564			ANNE HELE		ithioyee		e i k		i inie	Date/Time	e/Init for preserv	ative:			
□ Ag □ G G G G G G G G G G G G G G G G G G	E DISC DISC DISC E DITI DITI O DIV A DIZA	MEST STATE OF THE	III () () () () () () () () () () () () ()	MI: □ BTEX □ Naphtha □ THM/H. □ VOC □ Off & G □ E Colf □ Total Co □ pH □ Dissolve □ Rad 226 □ Rad 228	lene ÅÅ ease liform d As d Fe		MEHIM (C) (I) (I) (I) (I) (I) (I) (I) (I) (I) (I)	id inee idele oo idele oo ide (6 35 oorstii ficae	ll Aile 3021		GOA OHITMATE 1.1/0 VOICE 1.3/1 VOICE 1.5/1 IUC List List Wall	Tabuyani LOL We Carbon Francial Anelysis Saste Sastes Sastes Sastes UF DLS oil or Greek As	医乳球 医动物 医动物 医二甲基甲基甲基甲基甲基甲基甲基甲基甲基甲基甲基甲基甲基甲基甲基甲基甲基甲基甲基	最级的 1960年 1970年 1970年 1970年 1970年 1970年 1970年			

Cli	ent: SCOP			SAMPLE RECEIPT & REVIEW FORM SDG/AR/COC/Work Order: U 277 (2)
Re	ceived By: QG			Date Received: 6(30 /23
	Carrier and Tracking Number			FedEx Express FedEx Ground UPS Field Services Courier Other
Sus	spected Hazard Information	Yes	No	*If Ney Counts > 100cpm on samples not marked "radioactive", contact the Radiation Safety Group for further investigation.
A)5	Shipped as a DOT Hazardous?		c	Hazard Class Shipped: UN#: If UN2910, Is the Radioactive Shipment Survey Compliant? Yes No
B)	Did the client designate the samples are to be		V	COC notation or radioactive stickers on containers equal client designation.
C)	Did the RSO classify the samples as coactive?		V	Maximum Net Counts Observed* (Observed Counts - Area Background Counts): CPM mR/Hr Classified as: Rad 1 Rad 2 Rad 3
D)	Did the client designate samples are hazardous?		1	COC notation or hazard labels on containers equal client designation.
E)	Did the RSO identify possible hazards?			If D or E is yes, select Hazards below. PCB's Flammable Foreign Soil RCRA Asbestos Beryllium Other:
	Sample Receipt Criteria	Yes	Z/	Comments/Qualifiers (Required for Non-Conforming Items)
1	Shipping containers received intact and sealed?	v		Circle Applicable: Seals broken Damaged container Leaking container Other (describe)
2	Chain of custody documents included with shipment?	V		Cipele Applicable: Client contacted and provided COC COC created upon receipt
3	Samples requiring cold preservation within $(0 \le 6 \text{ deg. C})$?*	V	4	Preservation Method: Wet Ico Ice Packs Dry ice None Other: *all temperatures asserverorded in Celsius TEMP:
4	Daily check performed and passed on IR temperature gun?	1		Temperature Device Serial #: IR4-23 Secondary Temperature Device Serial # (If Applicable):
5	Sample containers intact and sealed?	1		Circle Applicable: Seals broken Damaged container Leaking container Other (describe)
6	Samples requiring chemical preservation at proper pH?	1		Sample ID's and Containers Affected: If Preservation added, Lot#:
7	Do any samples require Volatile Analysis?			Do liquid VOA vials contain acid preservation? YesNoNA(If unknown, select No) Are liquid VOA vials free of headspace? YesNoNA Sample ID's and containers affected:
8	Samples received within holding time?	V		ID's and tests affected:
9	Sample ID's on COC match ID's on bottles?	-		ID's and containers affected:
10	Date & time on COC match date & time on bottles?	V		Circle Applicable: No dates on containers No times on containers COC missing info Other (describe)
11	Number of containers received match number indicated on COC?		•	Mussing AF68 715 and AF68722
12	Are sample containers identifiable as GEL provided by use of GEL labels?			
13	COC form is properly signed in relinquished/received sections?	/		Circle Applicable: Not relinquished Other (describe)
Cor	nments (Use Continuation Form if needed):			

GL-CHL-SR-001 Rev 7

List of current GEL Certifications as of 27 July 2023

State	Certification
Alabama	42200
Alaska	17-018
Alaska Drinking Water	SC00012
Arkansas	88-0651
CLIA	42D0904046
California	2940
Colorado	SC00012
Connecticut	PH-0169
DoD ELAP/ ISO17025 A2LA	2567.01
Florida NELAP	E87156
Foreign Soils Permit	P330-15-00283, P330-15-00253
Georgia	SC00012
Georgia SDWA	967
Hawaii	SC00012
Idaho	SC00012
Illinois NELAP	200029
Indiana	C-SC-01
Kansas NELAP	E-10332
Kentucky SDWA	90129
Kentucky Wastewater	90129
Louisiana Drinking Water	LA024
Louisiana NELAP	03046 (AI33904)
Maine	2019020
Maryland	270
Massachusetts	M-SC012
Massachusetts PFAS Approv	Letter
Michigan	9976
Mississippi	SC00012
Nebraska	NE-OS-26-13
Nevada	SC000122023-4
New Hampshire NELAP	2054
New Jersey NELAP	SC002
New Mexico	SC002 SC00012
New York NELAP	11501
North Carolina	233
North Carolina SDWA	45709
North Dakota	R-158
Oklahoma	2022-160
Pennsylvania NELAP	68-00485
Puerto Rico	SC00012
S. Carolina Radiochem	10120002
Sanitation Districts of L	9255651
South Carolina Chemistry	10120001
Tennessee	TN 02934
Texas NELAP	T104704235-22-20
Utah NELAP	SC000122022-37
Vermont	VT87156
Virginia NELAP	460202
Washington	C780

2040 Savage Road | Charleston, SC 29407 843 556 8171

gel.com

October 11, 2023

Ms. Jeanette Gilmetti Santee Cooper P.O. Box 2946101 OCO3 Moncks Corner, South Carolina 29461

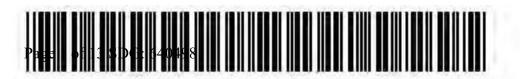
Re: ABS Lab Analytical Work Order: 640498

Dear Ms. Gilmetti:

GEL Laboratories, LLC (GEL) appreciates the opportunity to provide the enclosed analytical results for the sample(s) we received on September 29, 2023. This original data report has been prepared and reviewed in accordance with GEL's standard operating procedures.

The samples were delivered with proper chain of custody documentation and signatures. All sample containers arrived without any visible signs of tampering or breakage. There are no additional comments concerning sample receipt.

Test results for NELAP or ISO 17025 accredited tests are verified to meet the requirements of those standards, with any exceptions noted. The results reported relate only to the items tested and to the sample as received by the laboratory. These results may not be reproduced except as full reports without approval by the laboratory. Copies of GEL's accreditations and certifications can be found on our website at www.gel.com.


Our policy is to provide high quality, personalized analytical services to enable you to meet your analytical needs on time every time. We trust that you will find everything in order and to your satisfaction. If you have any questions, please do not hesitate to call me at (843) 556-8171, ext. 4289.

Sincerely,

Jordan Melton for Julie Robinson Project Manager

Purchase Order: 398684

Enclosures

2040 Savage Road Charleston SC 29407 - (843) 556-8171 - www.gel.com

Certificate of Analysis Report for

SOOP001 Santee Cooper

Client SDG: 640498 GEL Work Order: 640498

The Qualifiers in this report are defined as follows:

- * A quality control analyte recovery is outside of specified acceptance criteria
- ** Analyte is a Tracer compound
- ** Analyte is a surrogate compound
- J Value is estimated
- U Analyte was analyzed for, but not detected above the MDL, MDA, MDC or LOD.

Where the analytical method has been performed under NELAP certification, the analysis has met all of the requirements of the NELAC standard unless qualified on the Certificate of Analysis.

The designation ND, if present, appears in the result column when the analyte concentration is not detected above the limit as defined in the 'U' qualifier above.

This data report has been prepared and reviewed in accordance with GEL Laboratories LLC standard operating procedures. Please direct any questions to your Project Manager, Julie Robinson.

Reviewed by Dordon Melton

Page 2 of 13 SDG: 640498

2040 Savage Road Charleston SC 29407 - (843) 556-8171 - www.gel.com

Certificate of Analysis

Report Date: October 11, 2023

Company: Santee Cooper Address: P.O. Box 2946101

OCO3

Moncks Corner, South Carolina 29461

Contact: Ms. Jeanette Gilmetti Project: ABS Lab Analytical

Client Sample ID: AF79064 Sample ID: 640498001

Matrix: GW

Collect Date: 26-SEP-23 12:13
Receive Date: 29-SEP-23
Collector: Client

 Project:
 SOOP00119

 Client ID:
 SOOP001

Parameter	Qualifier	Result	DL	RL	Units	PF	DF Analyst Date	Time Batch	Method
Ion Chromatograph	ıy								
EPA 300.0 Chlorid	e, Liquid "As Rec	eived"							
Chloride		211	3.35	10.0	mg/L		50 LXA2 10/10/23	0438 2505683	1
Sulfate		36.0	6.65	20.0	mg/L		50		
The following Ana	alytical Methods w	vere performed:							
Method	Description				F	Analys	st Comments		
1	EPA 300.0								

Notes:

Column headers are defined as follows:

DF: Dilution Factor Lc/LC: Critical Level
DL: Detection Limit PF: Prep Factor
MDA: Minimum Detectable Activity RL: Reporting Limit

MDC: Minimum Detectable Concentration SQL: Sample Quantitation Limit

Page 3 of 13 SDG: 640498

2040 Savage Road Charleston SC 29407 - (843) 556-8171 - www.gel.com

Certificate of Analysis

Project:

Client ID:

Report Date: October 11, 2023

SOOP00119

SOOP001

Company: Santee Cooper Address: P.O. Box 2946101

OCO3

Moncks Corner, South Carolina 29461

Contact: Ms. Jeanette Gilmetti Project: ABS Lab Analytical

Client Sample ID: AF79065 Sample ID: 640498002

Matrix: GW

Collect Date: 27-SEP-23 10:49
Receive Date: 29-SEP-23
Collector: Client

DLRLUnits PF Parameter Qualifier Result DF Analyst Date Time Batch Method Ion Chromatography EPA 300.0 Chloride, Liquid "As Received" Chloride 342 6.70 20.0 mg/L 100 LXA2 10/10/23 0610 2505683 mg/L Sulfate 13.3 40.0 The following Analytical Methods were performed: Method Description **Analyst Comments**

1 EPA 300.0

Notes:

Column headers are defined as follows:

DF: Dilution Factor Lc/LC: Critical Level
DL: Detection Limit PF: Prep Factor
MDA: Minimum Detectable Activity RL: Reporting Limit

MDC: Minimum Detectable Concentration SQL: Sample Quantitation Limit

Page 4 of 13 SDG: 640498

2040 Savage Road Charleston SC 29407 - (843) 556-8171 - www.gel.com

Certificate of Analysis

Report Date: October 11, 2023

Company: Santee Cooper Address: P.O. Box 2946101

OCO3

Moncks Corner, South Carolina 29461

Contact: Ms. Jeanette Gilmetti Project: ABS Lab Analytical

Client Sample ID: AF79066 Sample ID: 640498003

Matrix: GW

Collect Date: 27-SEP-23 10:54
Receive Date: 29-SEP-23
Collector: Client

Project: SOOP00119 Client ID: SOOP001

Parameter	Qualifier	Result	DL	RL	Units	PF	DF Analyst Date	Time Batch	Method
Ion Chromatograph	y								
EPA 300.0 Chloride	e, Liquid "As Rec	ceived"							
Chloride		345	6.70	20.0	mg/L		100 LXA2 10/10/23	0641 2505683	1
Sulfate		96.4	13.3	40.0	mg/L		100		
The following Ana	lytical Methods v	vere performed:							
Method	Description	Į.			F	Analys	st Comments		
1	EPA 300.0								

Notes:

Column headers are defined as follows:

DF: Dilution Factor Lc/LC: Critical Level
DL: Detection Limit PF: Prep Factor
MDA: Minimum Detectable Activity RL: Reporting Limit

MDC: Minimum Detectable Concentration SQL: Sample Quantitation Limit

Page 5 of 13 SDG: 640498

2040 Savage Road Charleston SC 29407 - (843) 556-8171 - www.gel.com

Certificate of Analysis

Project:

Client ID:

Report Date: October 11, 2023

SOOP00119

SOOP001

Company: Santee Cooper Address: P.O. Box 2946101

OCO3

Moncks Corner, South Carolina 29461

Contact: Ms. Jeanette Gilmetti Project: ABS Lab Analytical

Client Sample ID: AF79067 Sample ID: 640498004

Matrix: GW

Collect Date: 27-SEP-23 13:19
Receive Date: 29-SEP-23
Collector: Client

Parameter	Qualifier	Result	DL	RL	Units	PF	DF Analyst Date	Time Batch	Method
Ion Chromatograp	ohy								
EPA 300.0 Chlori	de, Liquid "As Rec	eived"							
Chloride		939	13.4	40.0	mg/L		200 LXA2 10/10/23	0712 2505683	1
Sulfate		699	26.6	80.0	mg/L		200		
The following Ar	nalytical Methods v	vere performed:							
Method	Description				1	Analy	st Comments		
1	EPA 300.0								

Notes:

Column headers are defined as follows:

DF: Dilution Factor Lc/LC: Critical Level
DL: Detection Limit PF: Prep Factor
MDA: Minimum Detectable Activity RL: Reporting Limit

MDC: Minimum Detectable Concentration SQL: Sample Quantitation Limit

Page 6 of 13 SDG: 640498

2040 Savage Road Charleston, SC 29407 - (843) 556-8171 - www.gel.com

QC Summary

Report Date: October 11, 2023

Santee Cooper P.O. Box 2946101

OCO3

Moncks Corner, South Carolina

Contact: Ms. Jeanette Gilmetti

Workorder: 640498

Parmname	NOM	Sample Qual	QC	Units	RPD%	REC%	Range Anlst	Date Time
Ion Chromatography Batch 2505683								
QC1205541104 640498001 DUP Chloride		211	212	mg/L	0.534		(0%-20%) LXA2	10/10/23 05:09
Sulfate		36.0	38.8	mg/L	7.48 ^		(+/-20.0)	
QC1205541102 LCS Chloride	5.00		4.59	mg/L		91.9	(90%-110%)	10/09/23 16:48
Sulfate	10.0		9.45	mg/L		94.5	(90%-110%)	
QC1205541101 MB Chloride		U	ND	mg/L				10/09/23 16:17
Sulfate		J	0.183	mg/L				
QC1205541106 640498001 PS Chloride	5.00	4.22	9.76	mg/L		111*	(90%-110%)	10/10/23 05:40
Sulfate	10.0	0.721	10.4	mg/L		97.1	(90%-110%)	

Notes:

The Qualifiers in this report are defined as follows:

- U Analyte was analyzed for, but not detected above the MDL, MDA, MDC or LOD.
- J Value is estimated
- X Consult Case Narrative, Data Summary package, or Project Manager concerning this qualifier
- H Analytical holding time was exceeded
- < Result is less than value reported
- > Result is greater than value reported
- h Preparation or preservation holding time was exceeded
- R Sample results are rejected

Page 7 of 13 SDG: 640498

Page 1 of 2

2040 Savage Road Charleston, SC 29407 - (843) 556-8171 - www.gel.com

QC Summary

Workorder: 640498

Parmname

NOM Sample Qual QC Units RPD% REC% Range Anlst Date Time

- Z Paint Filter Test--Particulates passed through the filter, however no free liquids were observed.
- d 5-day BOD--The 2:1 depletion requirement was not met for this sample
- ^ RPD of sample and duplicate evaluated using +/-RL. Concentrations are <5X the RL. Qualifier Not Applicable for Radiochemistry.
- N/A RPD or %Recovery limits do not apply.
- ND Analyte concentration is not detected above the detection limit
- NJ Consult Case Narrative, Data Summary package, or Project Manager concerning this qualifier
- E General Chemistry--Concentration of the target analyte exceeds the instrument calibration range
- Q One or more quality control criteria have not been met. Refer to the applicable narrative or DER.
- N1 See case narrative
- R Per section 9.3.4.1 of Method 1664 Revision B, due to matrix spike recovery issues, this result may not be reported or used for regulatory compliance purposes.
- B The target analyte was detected in the associated blank.
- e 5-day BOD--Test replicates show more than 30% difference between high and low values. The data is qualified per the method and can be used for reporting purposes
- J See case narrative for an explanation

N/A indicates that spike recovery limits do not apply when sample concentration exceeds spike conc. by a factor of 4 or more or %RPD not applicable.

- ^ The Relative Percent Difference (RPD) obtained from the sample duplicate (DUP) is evaluated against the acceptance criteria when the sample is greater than five times (5X) the contract required detection limit (RL). In cases where either the sample or duplicate value is less than 5X the RL, a control limit of +/- the RL is used to evaluate the DUP result.
- * Indicates that a Quality Control parameter was not within specifications.

For PS, PSD, and SDILT results, the values listed are the measured amounts, not final concentrations.

Where the analytical method has been performed under NELAP certification, the analysis has met all of the requirements of the NELAC standard unless qualified on the QC Summary.

Page 8 of 13 SDG: 640498

General Chemistry Technical Case Narrative Santee Cooper SDG #: 640498

Product: Ion Chromatography Analytical Method: EPA 300.0

Analytical Procedure: GL-GC-E-086 REV# 33

Analytical Batch: 2505683

The following samples were analyzed using the above methods and analytical procedure(s).

GEL Sample ID#	Client Sample Identification
640498001	AF79064
640498002	AF79065
640498003	AF79066
640498004	AF79067
1205541101	Method Blank (MB)
1205541102	Laboratory Control Sample (LCS)
1205541104	640498001(AF79064) Sample Duplicate (DUP)
1205541106	640498001(AF79064) Post Spike (PS)

The samples in this SDG were analyzed on an "as received" basis.

Data Summary:

All sample data provided in this report met the acceptance criteria specified in the analytical methods and procedures for initial calibration, continuing calibration, instrument controls and process controls where applicable, with the following exceptions.

Quality Control (QC) Information

Matrix Spike (MS)/Post Spike (PS) Recovery Statement

The percent recoveries (%R) obtained from the spike analyses are evaluated when the sample concentration is less than four times (4X) the spike concentration added. The matrix spike recovered outside of the established acceptance limits due to matrix interference and/or non-homogeneity.

Analyte	Sample	Value
Chloride	1205541106 (AF79064PS)	111* (90%-110%)

Technical Information

Sample Dilutions

The following samples 1205541104 (AF79064DUP), 1205541106 (AF79064PS), 640498001 (AF79064), 640498002 (AF79065), 640498003 (AF79066) and 640498004 (AF79067) were diluted because target analyte concentrations exceeded the calibration range. Samples 1205541104 (AF79064DUP), 1205541106 (AF79064PS), 640498001 (AF79064), 640498002 (AF79065), 640498003 (AF79066) and 640498004 (AF79067) were diluted based on historical data. Dilutions may be required for many reasons, including to minimize matrix interferences or to bring over range target analyte concentrations into the linear calibration range.

Page 9 of 13 SDG: 640498

A 14 -		640)498	
Analyte	001	002	003	004
Chloride	50X	100X	100X	200X
Sulfate	50X	100X	100X	200X

Certification Statement

Where the analytical method has been performed under NELAP certification, the analysis has met all of the requirements of the NELAC standard unless otherwise noted in the analytical case narrative.

Page 10 of 13 SDG: 640498

Chain of Custody

Santee Cooper One Riverwood Drive Moneks Comer, SC 29461 Phone: (843)761-8000 Ext. 5148 Fax: (843)761-4175

	VILIA	@santee	ecooper.com		J	/	y .	125°	f15			Unit #: 9.	J 36	Rerun requ	No		agged Qo
The Control of the Co	orks ID # nal use	Sample Locati Description	ion/	Collection Date	Collection Time	Sample Collector	Total # of containers	Bottle type: (Glass-G/Plastic-P)	Grab (G) or Composite (C)	Matrix(see below)	Preservative (see below)	Re Mi	Cor ethod # porting linesc. sample y other no	e info	RAD 226/228	Ty	
A=7	9064	WAP-27		9/26/2	3 1213	20M 858	3	P	G	GW	2/	100000000000000000000000000000000000000	100	tim voje so se zo zajek kiegy	2	X	1
1	65	WAP -28				830	1	1	-	1	1					1,	,
	62	WPH 28		9/27/2	3 1049		-		+	+	-				-	1	
	66	WAP-28	DUP		1054												
	67	WAP-29		1	1319	1		1	1	1	1				1	1	-
Relin	quished by:	Employee# 36751 Employee# Employee#	Date 9/24/23 Date 9-24-3	Time Time	Receiv Receiv Receiv	ed by:	En	nployee #	9/	Date 29 23 Date		Time Time Time	TEM Corre Prese	le Receiving (Interr P (°C): ect pH: Yes rvative Lot#:	_ Initia	nly)	
☐ Ag ☐ Al ☐ As ☐ Ba ☐ Be ☐ Ca ☐ Cd ☐ Co	Cu		Nutrol Too Doo Doo Te/ Doo Te/ Doo Te/ Doo Doo Te/ Doo D	C FPO4 3-N	MIS BTEX Naphthal THM/HA VOC Oil & Gr E. Coli Total Col pH Dissolved Rad 226 Rad 228 PCB	ene AA ease iform		Wallboa Gypsi below AlM TOC Tota Solui	um(all) I metals ble Met y (CaSt oisture tes	als O4)	Oti	Coal Ultimate % Moist Ash Sulfur BTUs Volatile CHN her Tests: IRF Scan IGI ineness articulate Ma	ure Matter	Flyash Ammonia LOI McCarbon Mineral Analysis Sieve Moisture NPDES Oil & Grease As TSS	D Use	Moist color cidity interestrict This solve de Oil lashpoi letals in As.Cd. (Ig)	Qual. ture Strength ed Gases

			SAMPLE RECEIPT & REVIEW FORM SDG/AR/COC/Work Order:
Received By: QG			Date Received: 9/29/23
Carrier and Tracking Number			FedEx Express FedEx Ground UPS Field Services Courier Other
uspected Hazard Information	Yes	eN.	*If Net Counts > 100 years of years
	+	-	*If Net Counts > 100cpm on samples not marked "radioactive", contact the Radiation Safety Group for further investigation
Shipped as a DOT Hazardous?		1	If UN2910, Is the Radioactive Shipment Survey Compliant? YesNo
Did the client designate the samples are to be served as radioactive?		1	COC notation or radioactive stickers on containers equal client designation.
Did the RSO classify the samples as lioactive?			Maximum Net Counts Observed* (Observed Counts - Area Background Counts): Classified as: Rad 1 Rad 2 Rad 3 CPN+/mR/Hr
Did the client designate samples are hazardous?			Rau 3
		/1	COC ficiation or hazard labels on containers equal client designation. If D or E is yes, select Hazards below.
Did the RSO identify possible hazards?		1	PCB's Flammable Foreign Soil RCRA Asbestos Beryllium Other:
Sample Receipt Criteria Shipping containers received intact and	Yes	NA	Z Comments/Qualifiers (Required for Non-Conforming It
sealed?	1	1	Circle Applicable: Seals broken Durnaged container Leaking container Other (describe)
Chain of custody documents included with shipment?			Circle Applicable: Client contacted and provided COC COC created upon receipt
Samples requiring cold preservation within (0 ≤ 6 deg. C)?*	1		Preservation Method: Wet Lee Ice Packs Dry ice None Other:
Daily check performed and passed on IR temperature gun?	/		Temperature Device Serial #: IR1-23 Secondary Temperature Device Serial # (If Applicable):
Sample containers intact and sealed?	1		Circle Applicable: Seals broken Damaged container Leaking container Other (describe)
Samples requiring chemical preservation at proper pH?	1		Sample ID's and Containers Affected:
			If Preservation added, Lot#: If Yes are Encores or Soil Kits present for solids? Yes No NA (If yes take to VOA Feet
Do any samples require Volatile	1		Dy riquid VOA vials contain acid programmi in the
Analysis?	17	/	Are liquid VOA vials free of headspace? YesNoNA(II'unknown, select No) Sample ID's and containers affected:
Samples received with the re-		1	ID's and tests affected:
Samples received within holding time?		1	
Sample ID's on COC match ID's on pottles?		/	ID's and containers affected:
Date & time on COC match date & time	1	1	Circle Applicable: No dates on contained to
n bottles?	1	1	Circle Applicable: No dates on containers No times on containers COC missing info Other (describe)
lumber of containers received match umber indicated on COC?	P		Circle Applicable: No container count on COC Other (describe)
re sample containers identifiable as EL provided by use of GEL labels?		1	
OC form is properly signed in			Circle Applicable: Not relinquished Other (days)
linquished/received sections?	1		Circle Applicable: Not relinquished Other (describe)

GL-CHL-SR-001 Rev 7

List of current GEL Certifications as of 11 October 2023

State	Certification
Alabama	42200
Alaska	17-018
Alaska Drinking Water	SC00012
Arkansas	88-00651
CLIA	42D0904046
California	2940
Colorado	SC00012
Connecticut	PH-0169
DoD ELAP/ ISO17025 A2LA	2567.01
Florida NELAP	E87156
Foreign Soils Permit	P330-15-00283, P330-15-00253
Georgia	SC00012
Georgia SDWA	967
Hawaii	SC00012
Idaho	SC00012
Illinois NELAP	200029
Indiana	C-SC-01
Kansas NELAP	E-10332
Kentucky SDWA	KY90129
Kentucky Wastewater	KY90129
Louisiana Drinking Water	LA024
Louisiana NELAP	03046 (AI33904)
Maine	2023019
Maryland	270
Massachusetts	M-SC012
Massachusetts PFAS Approv	Letter
Michigan	9976
Mississippi	SC00012
Nebraska	NE-OS-26-13
Nevada	SC000122024-04
New Hampshire NELAP	2054
New Jersey NELAP	SC002
New Mexico	SC00012
New York NELAP	11501
North Carolina	233
North Carolina SDWA	45709
North Dakota	R-158
Oklahoma	2022-160
Pennsylvania NELAP	68-00485
Puerto Rico	SC00012
S. Carolina Radiochem	10120002
Sanitation Districts of L	9255651
South Carolina Chemistry	10120001
Tennessee	TN 02934
Texas NELAP	T104704235-23-21
Utah NELAP	SC000122022-37
Vermont	VT87156
Virginia NELAP	460202
Washington	C780
** asimigron	2700

ANALYTICAL REPORT

PREPARED FOR

Attn: Linda Williams
South Carolina Public Service Authority
Santee Cooper
PO BOX 2946101
Moncks Corner, South Carolina 29461-2901

Generated 7/14/2023 8:56:55 AM Revision 1

JOB DESCRIPTION

Santee Cooper / 125915

JOB NUMBER

680-237317-1

Eurofins Savannah 5102 LaRoche Avenue Savannah GA 31404

Eurofins Savannah

Job Notes

This report may not be reproduced except in full, and with written approval from the laboratory. The results relate only to the samples tested. For questions please contact the Project Manager at the e-mail address or telephone number listed on this page.

The test results in this report relate only to the samples as received by the laboratory and will meet all requirements of the methodology, with any exceptions noted. This report shall not be reproduced except in full, without the express written approval of the laboratory. All questions should be directed to the Eurofins Environment Testing Southeast, LLC Project Manager.

Authorization

Generated 7/14/2023 8:56:55 AM Revision 1

Authorized for release by Heather Trotter, Project Manager Heather.Trotter@et.eurofinsus.com Designee for Jerry Lanier, Project Manager I Jerry.Lanier@et.eurofinsus.com (912)250-0281

Eurofins Savannah is a laboratory within Eurofins Environment Testing Southeast, LLC, a company within Eurofins Environment Testing Group of Companies
Page 2 of 24
7/14/2023 (Rev. 1)

1

3

4

5

_

8

9

10

12

Table of Contents

Cover Page	1
Table of Contents	3
Case Narrative	4
Sample Summary	5
Method Summary	6
Definitions	7
Detection Summary	8
Client Sample Results	9
QC Sample Results	18
QC Association	19
Chronicle	20
Chain of Custody	22
Receipt Checklists	23
Certification Summary	24

4

5

7

0

10

12

Case Narrative

Client: South Carolina Public Service Authority

Project/Site: Santee Cooper / 125915

Job ID: 680-237317-1

Job ID: 680-237317-1

Laboratory: Eurofins Savannah

Narrative

Job Narrative 680-237317-1

Comments

No additional comments.

Revision

The report being provided is a revision of the original report sent on 7/11/2023. The report (revision 1) is being revised due to: Client needs the Mercury associated with failed QC to be ran again for verification..

Receipt

The samples were received on 7/6/2023 9:40 AM. Unless otherwise noted below, the samples arrived in good condition, and where required, properly preserved and on ice. The temperature of the cooler at receipt was 21.2° C.

Metals

No analytical or quality issues were noted, other than those described in the Definitions/Glossary page.

3

А

5

6

7

8

9

10

12

Sample Summary

Client: South Carolina Public Service Authority

Project/Site: Santee Cooper / 125915

Lab Sample ID	Client Sample ID	Matrix	Collected	Received
680-237317-1	AF68719	Water	06/29/23 10:48	07/06/23 09:40
680-237317-2	AF68720	Water	06/29/23 11:40	07/06/23 09:40
680-237317-3	AF68721	Water	06/29/23 11:45	07/06/23 09:40
680-237317-4	AF68713	Water	06/29/23 13:51	07/06/23 09:40
680-237317-5	AF68714	Water	06/28/23 14:09	07/06/23 09:40
680-237317-6	AF68712	Water	06/28/23 15:20	07/06/23 09:40
680-237317-7	AF68748	Water	06/27/23 10:15	07/06/23 09:40
680-237317-8	AF68711	Water	06/27/23 11:26	07/06/23 09:40
680-237317-9	AF68717	Water	06/27/23 13:57	07/06/23 09:40

Job ID: 680-237317-1

Method Summary

Client: South Carolina Public Service Authority

Project/Site: Santee Cooper / 125915

 Method
 Method Description
 Protocol
 Laboratory

 7470A
 Mercury (CVAA)
 SW846
 EET SAV

 7470A
 Preparation, Mercury
 SW846
 EET SAV

Protocol References:

SW846 = "Test Methods For Evaluating Solid Waste, Physical/Chemical Methods", Third Edition, November 1986 And Its Updates.

Laboratory References:

EET SAV = Eurofins Savannah, 5102 LaRoche Avenue, Savannah, GA 31404, TEL (912)354-7858

Job ID: 680-237317-1

3

4

5

6

8

9

11

12

Definitions/Glossary

Client: South Carolina Public Service Authority

Project/Site: Santee Cooper / 125915

Not Calculated

Negative / Absent

Positive / Present

Presumptive

Quality Control

Practical Quantitation Limit

Relative Error Ratio (Radiochemistry)

Toxicity Equivalent Factor (Dioxin)

Too Numerous To Count

Toxicity Equivalent Quotient (Dioxin)

Reporting Limit or Requested Limit (Radiochemistry)

Relative Percent Difference, a measure of the relative difference between two points

Not Detected at the reporting limit (or MDL or EDL if shown)

Job ID: 680-237317-1

Qualifiers

NC

ND

NEG

POS

PQL

QC

RL

RER

RPD

TEF TEQ

TNTC

PRES

Metals	
Qualifier	Qualifier Description
F1	MS and/or MSD recovery exceeds control limits.
F2	MS/MSD RPD exceeds control limits
U	Indicates the analyte was analyzed for but not detected.

Glossary	
Abbreviation	These commonly used abbreviations may or may not be present in this report.
¤	Listed under the "D" column to designate that the result is reported on a dry weight basis
%R	Percent Recovery
CFL	Contains Free Liquid
CFU	Colony Forming Unit
CNF	Contains No Free Liquid
DER	Duplicate Error Ratio (normalized absolute difference)
Dil Fac	Dilution Factor
DL	Detection Limit (DoD/DOE)
DL, RA, RE, IN	Indicates a Dilution, Re-analysis, Re-extraction, or additional Initial metals/anion analysis of the sample
DLC	Decision Level Concentration (Radiochemistry)
EDL	Estimated Detection Limit (Dioxin)
LOD	Limit of Detection (DoD/DOE)
LOQ	Limit of Quantitation (DoD/DOE)
MCL	EPA recommended "Maximum Contaminant Level"
MDA	Minimum Detectable Activity (Radiochemistry)
MDC	Minimum Detectable Concentration (Radiochemistry)
MDL	Method Detection Limit
ML	Minimum Level (Dioxin)
MPN	Most Probable Number
MQL	Method Quantitation Limit

Detection Summary

Project/Site: Santee Cooper / 125915	332 .3. 000 201011				
Client Sample ID: AF68719	Lab Sample ID: 680-237317-1				
No Detections.					
Client Sample ID: AF68720	Lab Sample ID: 680-237317-2				
No Detections.					
Client Sample ID: AF68721	Lab Sample ID: 680-237317-3				
No Detections.					
Client Sample ID: AF68713	Lab Sample ID: 680-237317-4				
No Detections.					
Client Sample ID: AF68714	Lab Sample ID: 680-237317-5				
No Detections.					
Client Sample ID: AF68712	Lab Sample ID: 680-237317-6				
No Detections.					
Client Sample ID: AF68748	Lab Sample ID: 680-237317-7				
No Detections.					
Client Sample ID: AF68711	Lab Sample ID: 680-237317-8				
No Detections.					
Client Sample ID: AF68717	Lab Sample ID: 680-237317-9				

No Detections.

Client: South Carolina Public Service Authority

This Detection Summary does not include radiochemical test results.

Job ID: 680-237317-1

Client: South Carolina Public Service Authority

Job ID: 680-237317-1

Project/Site: Santee Cooper / 125915

Client Sample ID: AF68719 Lab Sample ID: 680-237317-1

Date Collected: 06/29/23 10:48
Date Received: 07/06/23 09:40

Matrix: Water

Method: SW846 7470A - Mercury (CVAA)

Analyte Result Qualifier RL MDL Unit D Prepared Analyzed Dil Fac

Mercury 0.200 U 0.200 ug/L 07/10/23 12:38 07/11/23 14:29 1

_

6

8

10

4.6

13

Client: South Carolina Public Service Authority

Project/Site: Santee Cooper / 125915

Client Sample ID: AF68720 Lab Sample ID: 680-237317-2 Date Collected: 06/29/23 11:40

Matrix: Water

Job ID: 680-237317-1

Date Received: 07/06/23 09:40

Method: SW846 7470A - Mercu	ıry (CVAA)								
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Mercury	0.200	U F1 F2	0.200		ug/L		07/10/23 12:38	07/11/23 14:30	1
Mercury	0.200	U	0.200		ug/L		07/13/23 09:39	07/13/23 13:38	1

Client: South Carolina Public Service Authority Job ID: 680-237317-1

Project/Site: Santee Cooper / 125915

Lab Sample ID: 680-237317-3 Client Sample ID: AF68721

Date Collected: 06/29/23 11:45

Matrix: Water Date Received: 07/06/23 09:40

Method: SW846 7470A - Mercury (CVAA)

Analyte Result Qualifier RL MDL Unit Prepared Analyzed Dil Fac 0.200 U 07/10/23 12:38 07/11/23 14:35 Mercury 0.200

ug/L

Client: South Carolina Public Service Authority

Job ID: 680-237317-1

Project/Site: Santee Cooper / 125915

Client Sample ID: AF68713 Lab Sample ID: 680-237317-4

Date Collected: 06/29/23 13:51

Matrix: Water

Date Received: 07/06/23 09:40

Method: SW846 7470A - Mercury (CVAA)

Analyte Result Qualifier RL MDL Unit D Prepared Analyzed Dil Fac

Mercury 0.200 U 0.200 ug/L 07/10/23 12:38 07/11/23 14:36

4

6

0

10

12

13

Client: South Carolina Public Service Authority Job ID: 680-237317-1

Project/Site: Santee Cooper / 125915

Lab Sample ID: 680-237317-5 **Client Sample ID: AF68714**

Date Collected: 06/28/23 14:09 Matrix: Water

Date Received: 07/06/23 09:40

Method: SW846 7470A - Mercury (CVAA)

Analyte Result Qualifier RL MDL Unit Prepared Analyzed Dil Fac Mercury 0.200 U 0.200

ug/L

Client: South Carolina Public Service Authority Job ID: 680-237317-1

Project/Site: Santee Cooper / 125915

Lab Sample ID: 680-237317-6 **Client Sample ID: AF68712**

Date Collected: 06/28/23 15:20 Matrix: Water

Date Received: 07/06/23 09:40

Method: SW846 7470A - Mercury (CVAA)

Analyte Result Qualifier RL MDL Unit Prepared Analyzed Dil Fac 07/10/23 12:38 07/11/23 14:39 Mercury

0.200 U 0.200 ug/L

Client: South Carolina Public Service Authority

Project/Site: Santee Cooper / 125915

Client Sample ID: AF68748 Lab Sample ID: 680-237317-7

Matrix: Water

Job ID: 680-237317-1

Date Collected: 06/27/23 10:15 Date Received: 07/06/23 09:40

Method: SW846 7470A - Mercury (CVAA)

Analyte Result Qualifier RL MDL Unit D Prepared Analyzed Dil Fac

Mercury 0.200 U 0.200 ug/L 07/10/23 12:38 07/11/23 13:19

Eurofins Savannah

2

4

8

9

11

Client: South Carolina Public Service Authority Job ID: 680-237317-1

Project/Site: Santee Cooper / 125915

Lab Sample ID: 680-237317-8 **Client Sample ID: AF68711**

Date Collected: 06/27/23 11:26 Matrix: Water

Date Received: 07/06/23 09:40

Method: SW846 7470A - Mercury (CVAA)

Analyte Result Qualifier RL MDL Unit Prepared Analyzed Dil Fac 07/10/23 12:38 07/11/23 13:20 Mercury 0.200 U 0.200

ug/L

Eurofins Savannah

Client: South Carolina Public Service Authority

Job ID: 680-237317-1

Project/Site: Santee Cooper / 125915

Client Sample ID: AF68717 Lab Sample ID: 680-237317-9

Date Collected: 06/27/23 13:57

Matrix: Water

Date Received: 07/06/23 09:40

Method: SW846 7470A - Mercury (CVAA)

Analyte Result Qualifier RL MDL Unit D Prepared Analyzed Dil Fac

Mercury 0.200 U 0.200 ug/L 07/10/23 12:38 07/11/23 13:22 1

4

5

4

5

6

9

10

12

4 4

Client: South Carolina Public Service Authority

Project/Site: Santee Cooper / 125915

Job ID: 680-237317-1

Method: 7470A - Mercury (CVAA)

Lab Sample ID: MB 680-787520/1-A Client Sample ID: Method Blank

Matrix: Water

Analysis Batch: 787762

Prep Type: Total/NA

Prep Batch: 787520

MB MB

MR MR

Result Qualifier RL **MDL** Unit Analyzed Dil Fac Analyte **Prepared** Mercury 0.200 07/10/23 12:38 07/11/23 14:26 0.200 U ug/L

Lab Sample ID: LCS 680-787520/2-A Client Sample ID: Lab Control Sample

Matrix: Water

Analysis Batch: 787762

Prep Type: Total/NA

Prep Batch: 787520

Spike LCS LCS %Rec Added Result Qualifier Unit D %Rec

Limits **Analyte** 2.50 80 - 120 Mercury 2.357 ug/L 94

Lab Sample ID: 680-237317-2 MS Client Sample ID: AF68720 Prep Type: Total/NA

Matrix: Water

Analysis Batch: 787762

Prep Batch: 787520 Sample Sample Spike MS MS %Rec

ug/L

Result Qualifier Added Result Qualifier Limits Analyte Unit %Rec Mercury 0.200 U F1 F2 1.00 0.2587 F1 26 80 - 120

Lab Sample ID: 680-237317-2 MSD Client Sample ID: AF68720

Matrix: Water

Prep Type: Total/NA Analysis Batch: 787762 Prep Batch: 787520

%Rec **RPD**

MSD MSD Spike Sample Sample Added **Analyte** Result Qualifier Result Qualifier Unit %Rec Limits **RPD** Limit 0.200 U F1 F2 Mercury 1.00 0.200 U F1 F2 80 - 120 40 ug/L

Lab Sample ID: MB 680-788105/1-A

Matrix: Water

Analysis Batch: 788196

Client Sample ID: Method Blank

Prep Type: Total/NA

Prep Batch: 788105

RL Analyte Result Qualifier **MDL** Unit **Prepared** Analyzed Dil Fac

0.200 U 0.200 07/13/23 09:39 07/13/23 13:24 Mercury ug/L

Lab Sample ID: LCS 680-788105/2-A

Matrix: Water

Analysis Batch: 788196

Client Sample ID: Lab Control Sample

Prep Type: Total/NA **Prep Batch: 788105**

%Rec

Spike LCS LCS Added Result Qualifier Limits Analyte Unit D %Rec 2.50 80 - 120 Mercury 2.716 ug/L 109

Eurofins Savannah

QC Association Summary

Client: South Carolina Public Service Authority

Project/Site: Santee Cooper / 125915

Job ID: 680-237317-1

Metals

Prep Batch: 787520

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
680-237317-1	AF68719	Total/NA	Water	7470A	
680-237317-2	AF68720	Total/NA	Water	7470A	
680-237317-3	AF68721	Total/NA	Water	7470A	
680-237317-4	AF68713	Total/NA	Water	7470A	
680-237317-5	AF68714	Total/NA	Water	7470A	
680-237317-6	AF68712	Total/NA	Water	7470A	
680-237317-7	AF68748	Total/NA	Water	7470A	
680-237317-8	AF68711	Total/NA	Water	7470A	
680-237317-9	AF68717	Total/NA	Water	7470A	
MB 680-787520/1-A	Method Blank	Total/NA	Water	7470A	
LCS 680-787520/2-A	Lab Control Sample	Total/NA	Water	7470A	
680-237317-2 MS	AF68720	Total/NA	Water	7470A	
680-237317-2 MSD	AF68720	Total/NA	Water	7470A	

Analysis Batch: 787762

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
680-237317-1	AF68719	Total/NA	Water	7470A	787520
680-237317-2	AF68720	Total/NA	Water	7470A	787520
680-237317-3	AF68721	Total/NA	Water	7470A	787520
680-237317-4	AF68713	Total/NA	Water	7470A	787520
680-237317-5	AF68714	Total/NA	Water	7470A	787520
680-237317-6	AF68712	Total/NA	Water	7470A	787520
680-237317-7	AF68748	Total/NA	Water	7470A	787520
680-237317-8	AF68711	Total/NA	Water	7470A	787520
680-237317-9	AF68717	Total/NA	Water	7470A	787520
MB 680-787520/1-A	Method Blank	Total/NA	Water	7470A	787520
LCS 680-787520/2-A	Lab Control Sample	Total/NA	Water	7470A	787520
680-237317-2 MS	AF68720	Total/NA	Water	7470A	787520
680-237317-2 MSD	AF68720	Total/NA	Water	7470A	787520

Prep Batch: 788105

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
680-237317-2	AF68720	Total/NA	Water	7470A	
MB 680-788105/1-A	Method Blank	Total/NA	Water	7470A	
LCS 680-788105/2-A	Lab Control Sample	Total/NA	Water	7470A	

Analysis Batch: 788196

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
680-237317-2	AF68720	Total/NA	Water	7470A	788105
MB 680-788105/1-A	Method Blank	Total/NA	Water	7470A	788105
LCS 680-788105/2-A	Lab Control Sample	Total/NA	Water	7470A	788105

Eurofins Savannah

2

0

8

10

11

13

Job ID: 680-237317-1

Client: South Carolina Public Service Authority

Project/Site: Santee Cooper / 125915

Client Sample ID: AF68719

Date Collected: 06/29/23 10:48 Date Received: 07/06/23 09:40

Lab Sample ID: 680-237317-1

Matrix: Water

	Batch	Batch		Dilution	Batch			Prepared
Prep Type	Type	Method	Run	Factor	Number	Analyst	Lab	or Analyzed
Total/NA	Prep	7470A			787520	DW	EET SAV	07/10/23 12:38
Total/NA	Analysis	7470A		1	787762	BJB	EET SAV	07/11/23 14:29

Lab Sample ID: 680-237317-2 Client Sample ID: AF68720

Matrix: Water

Date Collected: 06/29/23 11:40 Date Received: 07/06/23 09:40

	Batch	Batch		Dilution	Batch			Prepared
Prep Type	Туре	Method	Run	Factor	Number	Analyst	Lab	or Analyzed
Total/NA	Prep	7470A			787520	DW	EET SAV	07/10/23 12:38
Total/NA	Analysis	7470A		1	787762	BJB	EET SAV	07/11/23 14:30
Total/NA	Prep	7470A			788105	DW	EET SAV	07/13/23 09:39
Total/NA	Analysis	7470A		1	788196	BCB	EET SAV	07/13/23 13:38

Client Sample ID: AF68721 Lab Sample ID: 680-237317-3

Matrix: Water

Date Collected: 06/29/23 11:45 Date Received: 07/06/23 09:40

Batch Dilution Batch Prepared Method **Prep Type** Type Run Factor Number Analyst or Analyzed Lab Total/NA Prep 7470A 787520 DW **EET SAV** 07/10/23 12:38 Total/NA Analysis 7470A 787762 BJB **EET SAV** 07/11/23 14:35 1

Client Sample ID: AF68713 Lab Sample ID: 680-237317-4

Date Collected: 06/29/23 13:51 Matrix: Water

Date Received: 07/06/23 09:40

	Batch	Batch		Dilution	Batch			Prepared
Prep Type	Туре	Method	Run	Factor	Number	Analyst	Lab	or Analyzed
Total/NA	Prep	7470A			787520	DW	EET SAV	07/10/23 12:38
Total/NA	Analysis	7470A		1	787762	BJB	EET SAV	07/11/23 14:36

Client Sample ID: AF68714 Lab Sample ID: 680-237317-5

Date Collected: 06/28/23 14:09 Matrix: Water Date Received: 07/06/23 09:40

Batch **Batch Dilution Batch Prepared** Number Analyst **Prep Type** Method Factor or Analyzed Type Run Lab 07/10/23 12:38 Total/NA Prep 7470A 787520 DW **EET SAV** Total/NA 7470A 787762 BJB **EET SAV** 07/11/23 14:38 Analysis 1

Client Sample ID: AF68712 Lab Sample ID: 680-237317-6

Date Collected: 06/28/23 15:20 Matrix: Water

Date Received: 07/06/23 09:40

		Batch	Batch		Dilution	Batch			Prepared
Pre	р Туре	Type	Method	Run	Factor	Number	Analyst	Lab	or Analyzed
Tota	al/NA	Prep	7470A			787520	DW	EET SAV	07/10/23 12:38
Tota	al/NA	Analysis	7470A		1	787762	BJB	EET SAV	07/11/23 14:39

Eurofins Savannah

Lab Chronicle

Client: South Carolina Public Service Authority

Project/Site: Santee Cooper / 125915

Client Sample ID: AF68748 Lab Sample ID: 680-237317-7

Date Collected: 06/27/23 10:15 Matrix: Water

Date Received: 07/06/23 09:40

	Batch	Batch		Dilution	Batch			Prepared
Prep Type	Type	Method	Run	Factor	Number	Analyst	Lab	or Analyzed
Total/NA	Prep	7470A			787520	DW	EET SAV	07/10/23 12:38
Total/NA	Analysis	7470A		1	787762	BJB	EET SAV	07/11/23 13:19

Lab Sample ID: 680-237317-8 **Client Sample ID: AF68711** Matrix: Water

Date Collected: 06/27/23 11:26

Date Received: 07/06/23 09:40

	Batch	Batch		Dilution	Batch			Prepared
Prep Type	Type	Method	Run	Factor	Number	Analyst	Lab	or Analyzed
Total/NA	Prep	7470A			787520	DW	EET SAV	07/10/23 12:38
Total/NA	Analysis	7470A		1	787762	BJB	EET SAV	07/11/23 13:20

Client Sample ID: AF68717 Lab Sample ID: 680-237317-9

Date Collected: 06/27/23 13:57 Matrix: Water

Date Received: 07/06/23 09:40

	Batch	Batch		Dilution	Batch			Prepared
Prep Type	Type	Method	Run	Factor	Number	Analyst	Lab	or Analyzed
Total/NA	Prep	7470A			787520	DW	EET SAV	07/10/23 12:38
Total/NA	Analysis	7470A		1	787762	BJB	EET SAV	07/11/23 13:22

Laboratory References:

EET SAV = Eurofins Savannah, 5102 LaRoche Avenue, Savannah, GA 31404, TEL (912)354-7858

Eurofins Savannah

Job ID: 680-237317-1

Chain of Custody

Santee Cooper One Riverwood Drive Moneks Comer, SC 29461 Phone (843)761-8000 Ext. 5148 Fax. (843)761-4175

12

Customer Email/Report Recipient: Date Results Needed by: Project/Task/Unit #: Rerun request for any flagged QC LCWILLIA JM02.08. GØ1.3 / 36500 Yes 125915 No @santeecooper.com **Analysis Group** Labworks ID# Comments Sample Location/ Preservative (see below) **Collection Date** Collection Time Matrix(see below Description (Internal use Method# Sample Collector Bottle type: (Glas G/Plastic-P) fotal # of contail only) Reporting limit 9 Grab (G) or Composite (Misc. sample info Any other notes 五 WJK ١ 2 P Х Ğ GW 6/29/23 WAP-9 1048 7470 RL= 0.2 4g/L AF68719 ML AF68720 WAP-10 1140 AF68721 1145 WAP-10 DUP 1351 AF68713 WAP-3 6/28/23 WAP-4 1409 AF68714 WAP-2 AF68712 1520 6/27/23 AF 68748 WBW-I 1015 WAP-1 AF-68711 1126 WAP-7 1357 AF68717 Sample Receiving (Internal Use Only) Relinquished by: Date Time Received by: Employee # Date Time Employee# TEMP (°C): ____ Initial: Mho 122 0940 Mowan 7 35594 7/5/23 1400 Correct pH: Yes Relinguished by: Employee# Date Time Received by: Employee # Date Time Preservative Lot#: Relinquished by: Employee# Date Received by: Employee# Date Time Time Date/Time/Init for preservative: ☐ METALS (all) MISC. **Nutrients** Gypsum Coal Flyash □ Ag □ Cu □ Sb □ TOC □ BTEX Wallboard ☐ Ultimate Frans. Cil Qual. □ Ammonia □ Fe □ Se Maistare Color □ Naphthalene D DOC Gypsum(all □ % Moisture below) AIM ☐ As $\square K$ ☐ Sn ☐ THM/HAA □ TP/TPO4 □ Ash □ % Carbon □ VOC □ NH3-N □ Sulfur ☐ Mineral □В 🛛 Li □ Sr ☐ Oil & Grease O TOC Analysis $\Box \mathbf{F}$ ☐ BTUs □ E. Coli □ Ba 🛮 Ti □ Total metals □ Cl ☐ Volatile Matter ☐ Sieve □ Total Coliform □ Soluble Metals □Ве □ Mn □ NO2 □ CHN ☐ % Moisture Used Oil ☐ Purity (CaSO4) ☐ % Moisture □pH Flashpoint
Metals in oil
(As Cd.Cr.Ni,Pb □ Br ☐ Dissolved As Other Tests: □ Ca □ Мо DV. ☐ Dissolved Fe ☐ XRF Scan - () Sulfites FI NO3 NEDES □ Cd □ Na □ Rad 226 O HGI □ SO4 □ pH □ Oil & Grease ☐ Rad 228 ☐ Chlorides ☐ Fineness □ Ni □Со ☐ Hg □ PCB ☐ Particle Size ☐ Particulate Matter ☐ TSS COFER □ CrVI □ Cr □ Pb

Login Sample Receipt Checklist

Client: South Carolina Public Service Authority

Job Number: 680-237317-1

Login Number: 237317 List Source: Eurofins Savannah

List Number: 1

Creator: Munro, Caroline

oreator. Mullio, Garonne		
Question	Answer	Comment
Radioactivity wasn't checked or is = background as measured by a survey meter.</td <td>N/A</td> <td></td>	N/A	
The cooler's custody seal, if present, is intact.	True	
Sample custody seals, if present, are intact.	True	
The cooler or samples do not appear to have been compromised or tampered with.	True	
Samples were received on ice.	True	
Cooler Temperature is acceptable.	True	
Cooler Temperature is recorded.	True	
COC is present.	True	
COC is filled out in ink and legible.	True	
COC is filled out with all pertinent information.	True	
Is the Field Sampler's name present on COC?	True	
There are no discrepancies between the containers received and the COC.	True	
Samples are received within Holding Time (excluding tests with immediate HTs)	True	
Sample containers have legible labels.	True	
Containers are not broken or leaking.	True	
Sample collection date/times are provided.	True	
Appropriate sample containers are used.	True	
Sample bottles are completely filled.	True	
Sample Preservation Verified.	N/A	
There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs	True	
Containers requiring zero headspace have no headspace or bubble is <6mm (1/4").	N/A	
Multiphasic samples are not present.	True	
Samples do not require splitting or compositing.	True	
Residual Chlorine Checked.	N/A	

Eurofins Savannah

4

5

7

8

40

11

12

Accreditation/Certification Summary

Client: South Carolina Public Service Authority

Project/Site: Santee Cooper / 125915

Job ID: 680-237317-1

Laboratory: Eurofins Savannah

The accreditations/certifications listed below are applicable to this report.

Authority	Program	Identification Number	Expiration Date
South Carolina	State	98001	06-30-23 *

 $^{^{\}star} \ \text{Accreditation/Certification renewal pending - accreditation/certification considered valid}.$

ANALYTICAL REPORT

PREPARED FOR

Attn: Linda Williams
South Carolina Public Service Authority
Santee Cooper
PO BOX 2946101
Moncks Corner, South Carolina 29461-2901

Generated 8/9/2023 8:32:53 AM

JOB DESCRIPTION

125915/JM02.08.G01.3/36500

JOB NUMBER

680-238532-1

Eurofins Savannah 5102 LaRoche Avenue Savannah GA 31404

Eurofins Savannah

Job Notes

This report may not be reproduced except in full, and with written approval from the laboratory. The results relate only to the samples tested. For questions please contact the Project Manager at the e-mail address or telephone number listed on this page.

The test results in this report relate only to the samples as received by the laboratory and will meet all requirements of the methodology, with any exceptions noted. This report shall not be reproduced except in full, without the express written approval of the laboratory. All questions should be directed to the Eurofins Environment Testing Southeast, LLC Project Manager.

Authorization

Generated 8/9/2023 8:32:53 AM

Authorized for release by Jerry Lanier, Project Manager I <u>Jerry.Lanier@et.eurofinsus.com</u> (912)250-0281

Table of Contents

Cover Page	1
Table of Contents	3
Case Narrative	4
Sample Summary	5
Method Summary	6
Definitions	7
Detection Summary	8
Client Sample Results	10
QC Sample Results	16
QC Association	19
Chronicle	21
Chain of Custody	23
Receipt Checklists	24
Certification Summary	25

3

4

O -

7

0

10

12

Case Narrative

Client: South Carolina Public Service Authority Project/Site: 125915/JM02.08.G01.3/36500

Job ID: 680-238532-1

Job ID: 680-238532-1

Laboratory: Eurofins Savannah

Narrative

Job Narrative 680-238532-1

Receipt

The samples were received on 8/2/2023 10:45 AM. Unless otherwise noted below, the samples arrived in good condition, and, where required, properly preserved and on ice. The temperature of the cooler at receipt time was 4.3°C

Metals

No additional analytical or quality issues were noted, other than those described above or in the Definitions/ Glossary page.

4

5

6

10

11

12

11/

Sample Summary

Client: South Carolina Public Service Authority Project/Site: 125915/JM02.08.G01.3/36500

Job ID: 680-238532-1

Lab Sample ID	Client Sample ID	Matrix	Collected	Received
680-238532-1	AF68719	Water	06/29/23 10:48	08/02/23 10:45
680-238532-2	AF68720	Water	06/29/23 11:40	08/02/23 10:45
680-238532-3	AF68721	Water	06/29/23 11:45	08/02/23 10:45
680-238532-4	AF68713	Water	06/29/23 13:51	08/02/23 10:45
680-238532-5	AF68714	Water	06/28/23 14:09	08/02/23 10:45
680-238532-6	AF68712	Water	06/28/23 15:20	08/02/23 10:45

/

-

_

9

10

11

13

Method Summary

Client: South Carolina Public Service Authority Project/Site: 125915/JM02.08.G01.3/36500

Job ID: 680-238532-1

Method	Method Description	Protocol	Laboratory
6010D	Metals (ICP)	SW846	EET SAV
6020B	Metals (ICP/MS)	SW846	EET SAV
3005A	Preparation, Total Recoverable or Dissolved Metals	SW846	EET SAV

Protocol References:

SW846 = "Test Methods For Evaluating Solid Waste, Physical/Chemical Methods", Third Edition, November 1986 And Its Updates.

Laboratory References:

EET SAV = Eurofins Savannah, 5102 LaRoche Avenue, Savannah, GA 31404, TEL (912)354-7858

2

<u>۾</u>

7

0

10

11

13

Definitions/Glossary

Client: South Carolina Public Service Authority Project/Site: 125915/JM02.08.G01.3/36500

Job ID: 680-238532-1

Qualifiers

Metals

Qualifier **Qualifier Description**

Indicates the analyte was analyzed for but not detected.

NEG

POS

PQL

PRES

QC

RLRPD

TEF

TEQ

TNTC

RER

Negative / Absent

Positive / Present

Presumptive

Quality Control

Practical Quantitation Limit

Relative Error Ratio (Radiochemistry)

Toxicity Equivalent Factor (Dioxin)

Too Numerous To Count

Toxicity Equivalent Quotient (Dioxin)

Reporting Limit or Requested Limit (Radiochemistry)

Relative Percent Difference, a measure of the relative difference between two points

Glossary	
Abbreviation	These commonly used abbreviations may or may not be present in this report.
¤	Listed under the "D" column to designate that the result is reported on a dry weight basis
%R	Percent Recovery
CFL	Contains Free Liquid
CFU	Colony Forming Unit
CNF	Contains No Free Liquid
DER	Duplicate Error Ratio (normalized absolute difference)
Dil Fac	Dilution Factor
DL	Detection Limit (DoD/DOE)
DL, RA, RE, IN	Indicates a Dilution, Re-analysis, Re-extraction, or additional Initial metals/anion analysis of the sample
DLC	Decision Level Concentration (Radiochemistry)
EDL	Estimated Detection Limit (Dioxin)
LOD	Limit of Detection (DoD/DOE)
LOQ	Limit of Quantitation (DoD/DOE)
MCL	EPA recommended "Maximum Contaminant Level"
MDA	Minimum Detectable Activity (Radiochemistry)
MDC	Minimum Detectable Concentration (Radiochemistry)
MDL	Method Detection Limit
ML	Minimum Level (Dioxin)
MPN	Most Probable Number
MQL	Method Quantitation Limit
NC	Not Calculated
ND	Not Detected at the reporting limit (or MDL or EDL if shown)

Eurofins Savannah

Page 7 of 25

Client: South Carolina Public Service Authority Project/Site: 125915/JM02.08.G01.3/36500

Client Sample ID: AF68719

Job ID: 680-238532-1

Lab Sample ID: 680-238532-1

Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type
Calcium	232000		500		ug/L	1	_	6010D	Total
									Recoverable
Aluminum	547		100		ug/L	1		6020B	Total
									Recoverable
Arsenic	38.1	;	3.00		ug/L	1		6020B	Total
									Recoverable
Barium	99.1	!	5.00		ug/L	1		6020B	Total
									Recoverable
Cobalt	0.660	0.	.500		ug/L	1		6020B	Total
									Recoverable
Iron	28500		100		ug/L	1		6020B	Total
									Recoverable
Magnesium	30200		250		ug/L	1		6020B	Total
_									Recoverable
Client Sample ID: AF68720						Lak	S	ample ID:	680-238532-
- Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type

Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type
Calcium	613000		500		ug/L	1	_	6010D	Total
									Recoverable
Barium	270		5.00		ug/L	1		6020B	Total
									Recoverable
Iron	23800		100		ug/L	1		6020B	Total
									Recoverable
Magnesium	82200		250		ug/L	1		6020B	Total
									Recoverable

Client Sample ID: AF68721	Lab Sample ID: 680-238532-3

Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type
Calcium	642000		500		ug/L	1	_	6010D	Total
									Recoverable
Barium	304		5.00		ug/L	1		6020B	Total
									Recoverable
Iron	25200		100		ug/L	1		6020B	Total
									Recoverable
Magnesium	97700		250		ug/L	1		6020B	Total
									Recoverable

Client Sample ID: AF68713 Lab Sample ID: 680-238532-4

Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type
Calcium	266000		500		ug/L	1	_	6010D	Total
									Recoverable
Barium	200		5.00		ug/L	1		6020B	Total
									Recoverable
Iron	18600		100		ug/L	1		6020B	Total
									Recoverable
Magnesium	13800		250		ug/L	1		6020B	Total
									Recoverable

Client Sample ID: AF68714 Lab Sample ID: 680-238532-5

Analyte	Result	Qualifier RL	MDL	Unit	Dil Fac	D	Method	Prep Type
Calcium	50800	500		ug/L	1		6010D	 Total
								Recoverable
Barium	36.5	5.00		ug/L	1		6020B	Total
								Recoverable

This Detection Summary does not include radiochemical test results.

Eurofins Savannah

Page 8 of 25

8/9/2023

Detection Summary

Client: South Carolina Public Service Authority Project/Site: 125915/JM02.08.G01.3/36500

Job ID: 680-238532-1

Client Sample ID: AF68714 (Continued)	Lab Sample ID: 680-238532-5

Analyte	Result	Qualifier RL	MDL Unit	Dil Fac	D	Method	Prep Type
Iron	1200	100	ug/L	1	_	6020B	Total
							Recoverable
Magnesium	4000	250	ug/L	1		6020B	Total
							Recoverable
Magnesium	4000	250	ug/L	1		6020B	Total

Client Sample ID: AF68712 Lab Sample ID: 680-238532-6

Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type
Calcium	212000		500		ug/L	1	_	6010D	Total
									Recoverable
Aluminum	103		100		ug/L	1		6020B	Total
									Recoverable
Arsenic	45.7		3.00		ug/L	1		6020B	Total
									Recoverable
Barium	179		5.00		ug/L	1		6020B	Total
									Recoverable
Beryllium	0.570		0.500		ug/L	1		6020B	Total
									Recoverable
Cobalt	4.70		0.500		ug/L	1		6020B	Total
									Recoverable
Iron	17800		100		ug/L	1		6020B	Total
									Recoverable
Magnesium	26900		250		ug/L	1		6020B	Total
									Recoverable

8/9/2023

Client: South Carolina Public Service Authority Project/Site: 125915/JM02.08.G01.3/36500

Lab Sample ID: 680-238532-1

Matrix: Water

Job ID: 680-238532-1

Client Sample ID: AF68719 Date Collected: 06/29/23 10:48

Date Received: 08/02/23 10:45

Method: SW846 6010D	- Metals (ICP) - Total Red	coverable							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Calcium	232000		500		ug/L		08/03/23 06:38	08/04/23 17:50	1
Selenium	20.0	U	20.0		ug/L		08/03/23 06:38	08/04/23 17:50	1

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Aluminum	547		100		ug/L		08/03/23 06:38	08/08/23 15:58	1
Antimony	5.00	U	5.00		ug/L		08/03/23 06:38	08/08/23 15:58	1
Arsenic	38.1		3.00		ug/L		08/03/23 06:38	08/08/23 15:58	1
Barium	99.1		5.00		ug/L		08/03/23 06:38	08/08/23 15:58	1
Beryllium	0.500	U	0.500		ug/L		08/03/23 06:38	08/08/23 15:58	1
Cadmium	0.500	U	0.500		ug/L		08/03/23 06:38	08/08/23 15:58	1
Chromium	5.00	U	5.00		ug/L		08/03/23 06:38	08/08/23 15:58	1
Cobalt	0.660		0.500		ug/L		08/03/23 06:38	08/08/23 15:58	1
Copper	5.00	U	5.00		ug/L		08/03/23 06:38	08/08/23 15:58	1
Iron	28500		100		ug/L		08/03/23 06:38	08/08/23 15:58	1
Lead	2.50	U	2.50		ug/L		08/03/23 06:38	08/08/23 15:58	1
Magnesium	30200		250		ug/L		08/03/23 06:38	08/08/23 15:58	1
Thallium	1.00	U	1.00		ug/L		08/03/23 06:38	08/08/23 15:58	1
Zinc	20.0	U	20.0		ug/L		08/03/23 06:38	08/08/23 15:58	1

Client: South Carolina Public Service Authority Project/Site: 125915/JM02.08.G01.3/36500

Client Sample ID: AF68720 Lab Sample ID: 680-238532-2

Matrix: Water

Job ID: 680-238532-1

Date Collected: 06/29/23 11:40 Date Received: 08/02/23 10:45

Method: SW846 6010D	- Metals (ICP) - Total Re	coverable							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Calcium	613000		500		ug/L		08/03/23 06:38	08/04/23 17:23	1
Selenium	20.0	U	20.0		ug/L		08/03/23 06:38	08/04/23 17:23	1
_ Method: SW846 6020B	- Metals (ICP/MS) - Total	Recoverable)						
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Aluminum	100	U	100		ua/L		08/03/23 06:38	08/08/23 15:17	1

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Aluminum	100	U	100		ug/L		08/03/23 06:38	08/08/23 15:17	1
Antimony	5.00	U	5.00		ug/L		08/03/23 06:38	08/08/23 15:17	1
Arsenic	3.00	U	3.00		ug/L		08/03/23 06:38	08/08/23 15:17	1
Barium	270		5.00		ug/L		08/03/23 06:38	08/08/23 15:17	1
Beryllium	0.500	U	0.500		ug/L		08/03/23 06:38	08/08/23 15:17	1
Cadmium	0.500	U	0.500		ug/L		08/03/23 06:38	08/08/23 15:17	1
Chromium	5.00	U	5.00		ug/L		08/03/23 06:38	08/08/23 15:17	1
Cobalt	0.500	U	0.500		ug/L		08/03/23 06:38	08/08/23 15:17	1
Copper	5.00	U	5.00		ug/L		08/03/23 06:38	08/08/23 15:17	1
Iron	23800		100		ug/L		08/03/23 06:38	08/08/23 15:17	1
Lead	2.50	U	2.50		ug/L		08/03/23 06:38	08/08/23 15:17	1
Magnesium	82200		250		ug/L		08/03/23 06:38	08/08/23 15:17	1
Thallium	1.00	U	1.00		ug/L		08/03/23 06:38	08/08/23 15:17	1
Zinc	20.0	U	20.0		ug/L		08/03/23 06:38	08/08/23 15:17	1

Client: South Carolina Public Service Authority Project/Site: 125915/JM02.08.G01.3/36500

Lab Sample ID: 680-238532-3

Matrix: Water

Job ID: 680-238532-1

Client Sample ID: AF68721

Date Collected: 06/29/23 11:45 Date Received: 08/02/23 10:45

M	ethod: SW846 6010D - Metals (ICP) - To	otal Re	coverable							
A	nalyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
C	alcium	642000		500		ug/L		08/03/23 05:51	08/03/23 15:15	1
S	elenium	20.0	U	20.0		ug/L		08/03/23 05:51	08/03/23 15:15	1

	20.0	O	20.0		ug/L		00/00/20 00.01	00/00/20 10.10	
_ Method: SW846 6020B -	Metals (ICP/MS) - Total	Recoverable	е						
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Aluminum	100	U	100		ug/L		08/03/23 05:51	08/07/23 16:30	1
Antimony	5.00	U	5.00		ug/L		08/03/23 05:51	08/07/23 16:30	1
Arsenic	3.00	U	3.00		ug/L		08/03/23 05:51	08/07/23 16:30	1
Barium	304		5.00		ug/L		08/03/23 05:51	08/07/23 16:30	1
Beryllium	0.500	U	0.500		ug/L		08/03/23 05:51	08/07/23 16:30	1
Cadmium	0.500	U	0.500		ug/L		08/03/23 05:51	08/07/23 16:30	1
Chromium	5.00	U	5.00		ug/L		08/03/23 05:51	08/07/23 16:30	1
Cobalt	0.500	U	0.500		ug/L		08/03/23 05:51	08/07/23 16:30	1
Copper	5.00	U	5.00		ug/L		08/03/23 05:51	08/07/23 16:30	1
Iron	25200		100		ug/L		08/03/23 05:51	08/07/23 16:30	1
Lead	2.50	U	2.50		ug/L		08/03/23 05:51	08/07/23 16:30	1
Magnesium	97700		250		ug/L		08/03/23 05:51	08/07/23 16:30	1
Thallium	1.00	U	1.00		ug/L		08/03/23 05:51	08/07/23 16:30	1
Zinc	20.0	U	20.0		ug/L		08/03/23 05:51	08/07/23 16:30	1
_									

Client: South Carolina Public Service Authority Project/Site: 125915/JM02.08.G01.3/36500

Job ID: 680-238532-1

Client Sample ID: AF68713 Lab Sample ID: 680-238532-4

Date Collected: 06/29/23 13:51 Matrix: Water

Date Received: 08/02/23 10:45

Method: SW846 6010D - Metals (ICI	P) - Total Re	coverable							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Calcium	266000		500		ug/L		08/03/23 05:51	08/03/23 15:13	1
Selenium	20.0	U	20.0		ug/L		08/03/23 05:51	08/03/23 15:13	1
Method: SW846 6020B - Metals (ICF	P/MS) - Tota	Recoverable							

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Aluminum	100	U	100		ug/L		08/03/23 05:51	08/07/23 16:26	1
Antimony	5.00	U	5.00		ug/L		08/03/23 05:51	08/07/23 16:26	1
Arsenic	3.00	U	3.00		ug/L		08/03/23 05:51	08/07/23 16:26	1
Barium	200		5.00		ug/L		08/03/23 05:51	08/07/23 16:26	1
Beryllium	0.500	U	0.500		ug/L		08/03/23 05:51	08/07/23 16:26	1
Cadmium	0.500	U	0.500		ug/L		08/03/23 05:51	08/07/23 16:26	1
Chromium	5.00	U	5.00		ug/L		08/03/23 05:51	08/07/23 16:26	1
Cobalt	0.500	U	0.500		ug/L		08/03/23 05:51	08/07/23 16:26	1
Copper	5.00	U	5.00		ug/L		08/03/23 05:51	08/07/23 16:26	1
Iron	18600		100		ug/L		08/03/23 05:51	08/07/23 16:26	1
Lead	2.50	U	2.50		ug/L		08/03/23 05:51	08/07/23 16:26	1
Magnesium	13800		250		ug/L		08/03/23 05:51	08/07/23 16:26	1
Thallium	1.00	U	1.00		ug/L		08/03/23 05:51	08/07/23 16:26	1
Zinc	20.0	U	20.0		ug/L		08/03/23 05:51	08/07/23 16:26	1

Client: South Carolina Public Service Authority Project/Site: 125915/JM02.08.G01.3/36500

Lab Sample ID: 680-238532-5

Matrix: Water

Job ID: 680-238532-1

Client Sample ID: AF68714

Date Collected: 06/28/23 14:09 Date Received: 08/02/23 10:45

Method: SW846 6010D - Metals (ICF	P) - Total Re	coverable							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Calcium	50800		500		ug/L		08/03/23 05:51	08/03/23 15:11	1
Selenium _	20.0	U	20.0		ug/L		08/03/23 05:51	08/03/23 15:11	1

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Aluminum	100	U	100		ug/L		08/03/23 05:51	08/07/23 16:22	1
Antimony	5.00	U	5.00		ug/L		08/03/23 05:51	08/07/23 16:22	1
Arsenic	3.00	U	3.00		ug/L		08/03/23 05:51	08/07/23 16:22	1
Barium	36.5		5.00		ug/L		08/03/23 05:51	08/07/23 16:22	1
Beryllium	0.500	U	0.500		ug/L		08/03/23 05:51	08/07/23 16:22	1
Cadmium	0.500	U	0.500		ug/L		08/03/23 05:51	08/07/23 16:22	1
Chromium	5.00	U	5.00		ug/L		08/03/23 05:51	08/07/23 16:22	1
Cobalt	0.500	U	0.500		ug/L		08/03/23 05:51	08/07/23 16:22	1
Copper	5.00	U	5.00		ug/L		08/03/23 05:51	08/07/23 16:22	1
Iron	1200		100		ug/L		08/03/23 05:51	08/07/23 16:22	1
Lead	2.50	U	2.50		ug/L		08/03/23 05:51	08/07/23 16:22	1
Magnesium	4000		250		ug/L		08/03/23 05:51	08/07/23 16:22	1
Thallium	1.00	U	1.00		ug/L		08/03/23 05:51	08/07/23 16:22	1
Zinc	20.0	U	20.0		ua/l		08/03/23 05:51	08/07/23 16:22	1

Client: South Carolina Public Service Authority Project/Site: 125915/JM02.08.G01.3/36500

Job ID: 680-238532-1

Lab Sample ID: 680-238532-6

Matrix: Water

Client Sample ID: AF68712

Date Collected: 06/28/23 15:20 Date Received: 08/02/23 10:45

Method: SW846 6010D - Metals (ICP) - Total Re	coverable							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Calcium	212000		500		ug/L		08/03/23 06:38	08/04/23 17:20	1
Selenium	20.0	U	20.0		ug/L		08/03/23 06:38	08/04/23 17:20	1

_	20.0	ŭ	20.0		ug/ <u>_</u>		00/00/20 00:00	00/01/20 11:20	•
 Method: SW846 6020B -	Metals (ICP/MS) - Total	Recoverable	e						
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Aluminum	103		100		ug/L		08/03/23 06:38	08/08/23 15:13	1
Antimony	5.00	U	5.00		ug/L		08/03/23 06:38	08/08/23 15:13	1
Arsenic	45.7		3.00		ug/L		08/03/23 06:38	08/08/23 15:13	1
Barium	179		5.00		ug/L		08/03/23 06:38	08/08/23 15:13	1
Beryllium	0.570		0.500		ug/L		08/03/23 06:38	08/08/23 15:13	1
Cadmium	0.500	U	0.500		ug/L		08/03/23 06:38	08/08/23 15:13	1
Chromium	5.00	U	5.00		ug/L		08/03/23 06:38	08/08/23 15:13	1
Cobalt	4.70		0.500		ug/L		08/03/23 06:38	08/08/23 15:13	1
Copper	5.00	U	5.00		ug/L		08/03/23 06:38	08/08/23 15:13	1
Iron	17800		100		ug/L		08/03/23 06:38	08/08/23 15:13	1
Lead	2.50	U	2.50		ug/L		08/03/23 06:38	08/08/23 15:13	1
Magnesium	26900		250		ug/L		08/03/23 06:38	08/08/23 15:13	1
Thallium	1.00	U	1.00		ug/L		08/03/23 06:38	08/08/23 15:13	1
Zinc	20.0	U	20.0		ug/L		08/03/23 06:38	08/08/23 15:13	1

2

5

7

8

10

11

Job ID: 680-238532-1

Client: South Carolina Public Service Authority Project/Site: 125915/JM02.08.G01.3/36500

Method: 6010D - Metals (ICP)

Lab Sample ID: MB 680-791516/1-A

Matrix: Water

Analysis Batch: 791719

Client Sample ID: Method Blank Prep Type: Total Recoverable

Prep Batch: 791516

	MB	MB							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Calcium	500	U	500		ug/L		08/03/23 05:51	08/03/23 14:52	1
Selenium	20.0	U	20.0		ug/L		08/03/23 05:51	08/03/23 14:52	1

Lab Sample ID: LCS 680-791516/2-A

Matrix: Water

Analysis Batch: 791719

Client Sample ID: Lab Control Sample **Prep Type: Total Recoverable**

Prep Batch: 791516

	Spike	LCS	LCS			%Rec	
Analyte	Added	Result	Qualifier Unit	D	%Rec	Limits	
Calcium	5000	4950	ug/L		99	80 - 120	
Selenium	100	94.39	ug/L		94	80 - 120	

Lab Sample ID: MB 680-791519/1-A

Matrix: Water

Analysis Batch: 791897

Client Sample ID: Method Blank **Prep Type: Total Recoverable**

Prep Batch: 791519

	MB	MB							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Calcium	500	U	500		ug/L		08/03/23 06:38	08/04/23 16:50	1
Selenium	20.0	U	20.0		ug/L		08/03/23 06:38	08/04/23 16:50	1

Lab Sample ID: LCS 680-791519/2-A

Matrix: Water

Analysis Batch: 791897

Client Sample ID: Lab Control Sample **Prep Type: Total Recoverable**

Prep Batch: 791519

	Spike	LCS LCS				%Rec	
Analyte	Added	Result Qualifie	er Unit	D	%Rec	Limits	
Calcium	5000	4801	ug/L		96	80 - 120	
Selenium	100	99.73	ug/L		100	80 - 120	

Method: 6020B - Metals (ICP/MS)

Lab Sample ID: MB 680-791513/1-A

Matrix: Water

Analysis Batch: 792230

Client Sample ID: Method Blank **Prep Type: Total Recoverable**

Prep Batch: 791513

мв мв Analyte Result Qualifier RL **MDL** Unit D Prepared Analyzed Dil Fac Aluminum 100 U 100 ug/L 08/03/23 05:51 08/07/23 15:57 08/03/23 05:51 Antimony 5.00 U 5.00 ug/L 08/07/23 15:57 Arsenic 3.00 U 3.00 ug/L 08/03/23 05:51 08/07/23 15:57 Barium 5.00 U 5.00 08/03/23 05:51 08/07/23 15:57 ug/L Beryllium 0.500 U 08/03/23 05:51 08/07/23 15:57 0.500 ug/L Cadmium 0.500 U 0.500 ug/L 08/03/23 05:51 08/07/23 15:57 Chromium 5.00 U 5.00 ug/L 08/03/23 05:51 08/07/23 15:57 Cobalt 0.500 U 0.500 08/07/23 15:57 ug/L 08/03/23 05:51 Copper 5.00 U 5.00 ug/L 08/03/23 05:51 08/07/23 15:57 Iron 100 U 100 ug/L 08/03/23 05:51 08/07/23 15:57 Lead 2.50 U 2.50 ug/L 08/03/23 05:51 08/07/23 15:57 250 U 250 ug/L 08/03/23 05:51 08/07/23 15:57 Magnesium Thallium 1.00 U 1.00 ug/L 08/03/23 05:51 08/07/23 15:57 Zinc 20.0 U 20.0 ug/L 08/03/23 05:51 08/07/23 15:57

Client: South Carolina Public Service Authority Project/Site: 125915/JM02.08.G01.3/36500

Job ID: 680-238532-1

Method: 6020B - Metals (ICP/MS) (Continued)

Lab Sample ID: LCS 680-791513/2-A

Matrix: Water

Analysis Batch: 792230

Client Sample ID: Lab Control Sample
Prep Type: Total Recoverable
Pren Batch: 791513

	Spike	LCS	LCS				%Rec	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Aluminum	5050	5120		ug/L		101	80 - 120	
Antimony	50.0	50.97		ug/L		102	80 - 120	
Arsenic	100	106.4		ug/L		106	80 - 120	
Barium	100	102.9		ug/L		103	80 - 120	
Beryllium	50.0	49.97		ug/L		100	80 - 120	
Cadmium	50.0	50.92		ug/L		102	80 - 120	
Chromium	100	109.3		ug/L		109	80 - 120	
Cobalt	50.0	55.15		ug/L		110	80 - 120	
Copper	100	113.2		ug/L		113	80 - 120	
Iron	4990	5167		ug/L		104	80 - 120	
Lead	500	530.5		ug/L		106	80 - 120	
Magnesium	5000	4977		ug/L		100	80 - 120	
Thallium	50.0	50.20		ug/L		100	80 - 120	
Zinc	100	110.4		ug/L		110	80 - 120	

Lab Sample ID: MB 680-791518/1-A

Matrix: Water

Analysis Batch: 792490

Client Sample ID: Method Blank Prep Type: Total Recoverable

Prep Batch: 791518

	МВ	МВ								
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac	
Aluminum	100	U	100		ug/L		08/03/23 06:38	08/08/23 14:41	1	
Antimony	5.00	U	5.00		ug/L		08/03/23 06:38	08/08/23 14:41	1	
Arsenic	3.00	U	3.00		ug/L		08/03/23 06:38	08/08/23 14:41	1	
Barium	5.00	U	5.00		ug/L		08/03/23 06:38	08/08/23 14:41	1	
Beryllium	0.500	U	0.500		ug/L		08/03/23 06:38	08/08/23 14:41	1	
Cadmium	0.500	U	0.500		ug/L		08/03/23 06:38	08/08/23 14:41	1	
Chromium	5.00	U	5.00		ug/L		08/03/23 06:38	08/08/23 14:41	1	
Cobalt	0.500	U	0.500		ug/L		08/03/23 06:38	08/08/23 14:41	1	
Copper	5.00	U	5.00		ug/L		08/03/23 06:38	08/08/23 14:41	1	
Iron	100	U	100		ug/L		08/03/23 06:38	08/08/23 14:41	1	
Lead	2.50	U	2.50		ug/L		08/03/23 06:38	08/08/23 14:41	1	
Magnesium	250	U	250		ug/L		08/03/23 06:38	08/08/23 14:41	1	
Thallium	1.00	U	1.00		ug/L		08/03/23 06:38	08/08/23 14:41	1	
Zinc	20.0	U	20.0		ug/L		08/03/23 06:38	08/08/23 14:41	1	
_										

Lab Sample ID: LCS 680-791518/2-A

Matrix: Water

Analysis Batch: 792490

Client Sample ID: Lab Control Sample
Prep Type: Total Recoverable

Prep Batch: 791518

	Spike	LCS	LCS			%Rec	
Analyte	Added	Result	Qualifier U	nit D	%Rec	Limits	
Aluminum	5050	4652	uç	ı/L	92	80 - 120	
Antimony	50.0	46.52	uç	ı/L	93	80 - 120	
Arsenic	100	97.80	uç	ı/L	98	80 - 120	
Barium	100	95.86	uç	ı/L	96	80 - 120	
Beryllium	50.0	48.56	uç	ı/L	97	80 - 120	
Cadmium	50.0	46.20	uç	ı/L	92	80 - 120	
Chromium	100	100.4	uç	ı/L	100	80 - 120	
Cobalt	50.0	47.54	uç	ı/L	95	80 - 120	
Copper	100	102.8	ug	ı/L	103	80 - 120	

Eurofins Savannah

Page 17 of 25

QC Sample Results

Client: South Carolina Public Service Authority Project/Site: 125915/JM02.08.G01.3/36500

Lead

Zinc

Magnesium

Thallium

Job ID: 680-238532-1

Method: 6020B - Metals (ICP/MS) (Continued)

Lab Sample ID: LCS 680-791518/2-A					Client	Sample	ID: Lab C	ontrol Sample
Matrix: Water	Prep Type: Total Recoverab						al Recoverable	
Analysis Batch: 792490							Prep	Batch: 791518
	Spike	LCS	LCS				%Rec	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Iron	4990	5052		ug/L		101	80 - 120	

485.1

4591

46.82

101.9

ug/L

ug/L

ug/L

ug/L

97

92

94

102

80 - 120

80 - 120

80 - 120

80 - 120

500

5000

50.0

100

8

9

11

13

QC Association Summary

Client: South Carolina Public Service Authority Project/Site: 125915/JM02.08.G01.3/36500

Job ID: 680-238532-1

Metals

Prep	Batch:	791513
------	--------	--------

Lab Sample ID 680-238532-3	Client Sample ID AF68721	Prep Type Total Recoverable	_ Matrix Water	Method 3005A	Prep Batch
680-238532-4	AF68713	Total Recoverable	Water	3005A	
680-238532-5	AF68714	Total Recoverable	Water	3005A	
MB 680-791513/1-A	Method Blank	Total Recoverable	Water	3005A	
LCS 680-791513/2-A	Lab Control Sample	Total Recoverable	Water	3005A	

Prep Batch: 791516

Lab Samula ID	Client Semale ID	Dran Trina	Matrix	Method	Dran Batab
Lab Sample ID 680-238532-3	Client Sample ID AF68721	Prep Type Total Recoverable	Water	3005A	Prep Batch
000-230532-3	AF00721	Total Recoverable	vvater	3005A	
680-238532-4	AF68713	Total Recoverable	Water	3005A	
680-238532-5	AF68714	Total Recoverable	Water	3005A	
MB 680-791516/1-A	Method Blank	Total Recoverable	Water	3005A	
LCS 680-791516/2-A	Lab Control Sample	Total Recoverable	Water	3005A	

Prep Batch: 791518

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
680-238532-1	AF68719	Total Recoverable	Water	3005A	
680-238532-2	AF68720	Total Recoverable	Water	3005A	
680-238532-6	AF68712	Total Recoverable	Water	3005A	
MB 680-791518/1-A	Method Blank	Total Recoverable	Water	3005A	
LCS 680-791518/2-A	Lab Control Sample	Total Recoverable	Water	3005A	

Prep Batch: 791519

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
680-238532-1	AF68719	Total Recoverable	Water	3005A	
680-238532-2	AF68720	Total Recoverable	Water	3005A	
680-238532-6	AF68712	Total Recoverable	Water	3005A	
MB 680-791519/1-A	Method Blank	Total Recoverable	Water	3005A	
LCS 680-791519/2-A	Lab Control Sample	Total Recoverable	Water	3005A	

Analysis Batch: 791719

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
680-238532-3	AF68721	Total Recoverable	Water	6010D	791516
680-238532-4	AF68713	Total Recoverable	Water	6010D	791516
680-238532-5	AF68714	Total Recoverable	Water	6010D	791516
MB 680-791516/1-A	Method Blank	Total Recoverable	Water	6010D	791516
LCS 680-791516/2-A	Lab Control Sample	Total Recoverable	Water	6010D	791516

Analysis Batch: 791897

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
680-238532-1	AF68719	Total Recoverable	Water	6010D	791519
680-238532-2	AF68720	Total Recoverable	Water	6010D	791519
680-238532-6	AF68712	Total Recoverable	Water	6010D	791519
MB 680-791519/1-A	Method Blank	Total Recoverable	Water	6010D	791519
LCS 680-791519/2-A	Lab Control Sample	Total Recoverable	Water	6010D	791519

Analysis Batch: 792230

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
680-238532-3	AF68721	Total Recoverable	Water	6020B	791513
680-238532-4	AF68713	Total Recoverable	Water	6020B	791513
680-238532-5	AF68714	Total Recoverable	Water	6020B	791513

Eurofins Savannah

Page 19 of 25

QC Association Summary

Client: South Carolina Public Service Authority Project/Site: 125915/JM02.08.G01.3/36500

Job ID: 680-238532-1

Metals (Continued)

Analysis Batch: 792230 (Continued)

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
MB 680-791513/1-A	Method Blank	Total Recoverable	Water	6020B	791513
LCS 680-791513/2-A	Lab Control Sample	Total Recoverable	Water	6020B	791513

Analysis Batch: 792490

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
680-238532-1	AF68719	Total Recoverable	Water	6020B	791518
680-238532-2	AF68720	Total Recoverable	Water	6020B	791518
680-238532-6	AF68712	Total Recoverable	Water	6020B	791518
MB 680-791518/1-A	Method Blank	Total Recoverable	Water	6020B	791518
LCS 680-791518/2-	A Lab Control Sample	Total Recoverable	Water	6020B	791518

6

3

4

7

8

4.0

10

12

Job ID: 680-238532-1

Client: South Carolina Public Service Authority Project/Site: 125915/JM02.08.G01.3/36500

Analysis

Client Sample ID: AF68719

Date Received: 08/02/23 10:45

Lab Sample ID: 680-238532-1 Date Collected: 06/29/23 10:48

1

Matrix: Water

Batch Batch Dilution Batch Prepared Prep Type Туре Method Run Factor Number Analyst Lab or Analyzed 3005A 08/03/23 06:38 Total Recoverable Prep 791519 RR EET SAV Total Recoverable Analysis 6010D 791897 BJB **EET SAV** 08/04/23 17:50 Total Recoverable Prep 3005A 791518 RR **EET SAV** 08/03/23 06:38 6020B 792490 BWR **EET SAV** 08/08/23 15:58

Client Sample ID: AF68720

Lab Sample ID: 680-238532-2

Matrix: Water

Date Collected: 06/29/23 11:40 Date Received: 08/02/23 10:45

Total Recoverable

	Batch	Batch		Dilution	Batch			Prepared
Prep Type	Туре	Method	Run	Factor	Number	Analyst	Lab	or Analyzed
Total Recoverable	Prep	3005A			791519	RR	EET SAV	08/03/23 06:38
Total Recoverable	Analysis	6010D		1	791897	BJB	EET SAV	08/04/23 17:23
Total Recoverable	Prep	3005A			791518	RR	EET SAV	08/03/23 06:38
Total Recoverable	Analysis	6020B		1	792490	BWR	EET SAV	08/08/23 15:17

Client Sample ID: AF68721

Lab Sample ID: 680-238532-3

Matrix: Water

Date Collected: 06/29/23 11:45 Date Received: 08/02/23 10:45

	Batch	Batch		Dilution	Batch			Prepared
Prep Type	Type	Method	Run	Factor	Number	Analyst	Lab	or Analyzed
Total Recoverable	Prep	3005A			791516	RR	EET SAV	08/03/23 05:51
Total Recoverable	Analysis	6010D		1	791719	BJB	EET SAV	08/03/23 15:15
Total Recoverable	Prep	3005A			791513	RR	EET SAV	08/03/23 05:51
Total Recoverable	Analysis	6020B		1	792230	BWR	EET SAV	08/07/23 16:30

Client Sample ID: AF68713

Lab Sample ID: 680-238532-4 Date Collected: 06/29/23 13:51

Matrix: Water

Date Received: 08/02/23 10:45

	Batch	Batch		Dilution	Batch			Prepared
Prep Type	Туре	Method	Run	Factor	Number	Analyst	Lab	or Analyzed
Total Recoverable	Prep	3005A			791516	RR	EET SAV	08/03/23 05:51
Total Recoverable	Analysis	6010D		1	791719	BJB	EET SAV	08/03/23 15:13
Total Recoverable	Prep	3005A			791513	RR	EET SAV	08/03/23 05:51
Total Recoverable	Analysis	6020B		1	792230	BWR	EET SAV	08/07/23 16:26

Lab Sample ID: 680-238532-5 Client Sample ID: AF68714

Date Collected: 06/28/23 14:09 Matrix: Water

Date Received: 08/02/23 10:45

	Batch	Batch		Dilution	Batch			Prepared
Prep Type	Туре	Method	Run	Factor	Number	Analyst	Lab	or Analyzed
Total Recoverable	Prep	3005A			791516	RR	EET SAV	08/03/23 05:51
Total Recoverable	Analysis	6010D		1	791719	BJB	EET SAV	08/03/23 15:11
Total Recoverable	Prep	3005A			791513	RR	EET SAV	08/03/23 05:51
Total Recoverable	Analysis	6020B		1	792230	BWR	EET SAV	08/07/23 16:22

Lab Chronicle

Client: South Carolina Public Service Authority

Job ID: 680-238532-1

Project/Site: 125915/JM02.08.G01.3/36500

Client Sample ID: AF68712 Lab Sample ID: 680-238532-6

Matrix: Water

Date Collected: 06/28/23 15:20 Date Received: 08/02/23 10:45

	Batch	Batch		Dilution	Batch			Prepared
Prep Type	Туре	Method	Run	Factor	Number	Analyst	Lab	or Analyzed
Total Recoverable	Prep	3005A			791519	RR	EET SAV	08/03/23 06:38
Total Recoverable	Analysis	6010D		1	791897	BJB	EET SAV	08/04/23 17:20
Total Recoverable	Prep	3005A			791518	RR	EET SAV	08/03/23 06:38
Total Recoverable	Analysis	6020B		1	792490	BWR	EET SAV	08/08/23 15:13

Laboratory References:

EET SAV = Eurofins Savannah, 5102 LaRoche Avenue, Savannah, GA 31404, TEL (912)354-7858

2

3

4

6

Ω

9

11

12

Chain of Custody

santee cooper

Santee Cooper One Riverwood Drive Moneks Corner, SC 29461 Phone (843)761-8000 Ext 5148 Fax. (843)761-4175

Customer Ema	il/Report F	Recipie	ent:	Da	te R	esults Ne	eded b	y:		Pr	oject/	Task/	Unit #:	Rer	un request	for any fl	agged QC
LCWILLIA	@sa	inteec	ooper.com		/	'			125°	115	JMC	2.68	3. GØ1.3	7 36200	Yes	No	
																Analy	sis Group
Labworks ID # (Internal use only)	Sample I Descripti		n/	Collection Date		Collection Time	Sample Collector	Total # of containers	Bottle type: (Glass- G/Plastic-P)	Grab (G) or Composite (C)	Matrix(see below)	Preservative (see	Rej Mis	Comments thod # porting limit se sample info y other notes		TOTAL METALS -SEE BELSW	
AF-68719	WA-P-	9		6/29	/23	1048	WKL	1	P	G	GW	2	6020			×	
AF68720	WA-P-	10				1140				1		1	- SEE	SHEEL FOR	₹(\$.	1	
AF68721	WAP-	ID DU	IP			1145											
AF68713	WAP-	3				1351							*PLEA	SE RETURN S	SAMPLES		
AF68714	WAP-	4		6/28	/23	1467							upon a	EMPLETTON.			
AF68712	WAP-	2		1		1520	1	1			1						
41.44													680-2	238532 Chain of C	ustody		
Relinquished by	: Emplo	oyee#	Date	Time		Receiv	ed by:	E	mployee	#	Date		Time	Sample Receiving TEMP (°C): 4			
Sproan	355	94	8/2/23	0756		9HOD	CQ	-	OURIE	R 8	/2/23		0756	[]	1,10		
Relinquished by	: Emplo	yee#	Date	Time		Receiv	ed by:	E	mployee	#	Date		Time	Correct pH:	Yes No		
ettorica	, cour	ves	8/2/23	L04L		7/1		15	M	8	.2-23	3	1245	Preservative L	ot#:		
Relinquished by	: Emplo	yee#	Date	Time		Receiv	ed by:	E	mployee	#	Date		Time				
														Date/Time/Init	for preserva	tive:	
	ETALS (Nut	rients		MIS	c.		Gv	psun	n .		Coal	Fly	<u>rash</u>	0	a
□Ag ⊅C		Sb Se	<u></u>		F.A	□ BTEX	-0.000	D	Wallbo			1 0	Ultimate	□ Amı		Trans. O	
ØAI ØF			DC			☐ Naphthal☐ THM/HA				sum(a)	U .	1	☐ % Mois			%Moi	sture
Z'As OK		Sn	□ TP. □ NH	TPO4 3-N	G .	□ VOC			beloi				□ Ash □ Sulfur	□ % C □ Min		Color Acidity	
			DF			□ Oil & Gr	ease		□то				□ BTUs		nalysis	Dielectr	e Strength
ØBa ØN			© C1			☐ Total Col	iform			al metal uble Me			□ Volatile	Matter ☐ Siev	e	Dissob	red Gases
ØBe □ M	/		□ NO □ Br	2		□ pH □ Dissolved	l As			ity (CaS Moisture			□ CHN ther Tests:		oisture	Used O Flashp	
D∕Ca □ M			DN0			□ Dissolved			- (1 Su)	fites			XRF Scan	Andrew Company of the	DES	Metals	in oil
D'Cq DN		Zn	□ SO	4		☐ Rad 226 ☐ Rad 228			□ pH □ chi	orides		01	HGI Fineness		Grease	• (As.Co Hg)	LCr.NLPb
ZCO ON		Hg		2.		□ PCB				onaes ticle Siz	e		rmeness Particulate M	atter	7. 2. 2. 2.	⊕TX :	
ZCr ZP	b □-	CrVI		1-17	2				Sulfur				- gran	□ TSS		GOFER	

Login Sample Receipt Checklist

Client: South Carolina Public Service Authority

Job Number: 680-238532-1

Login Number: 238532 List Source: Eurofins Savannah

List Number: 1

Creator: Sims, Robert D

ordator. Offins, Robert B	
Question	Answer Comment
Radioactivity wasn't checked or is = background as measured by a survey meter.</td <td>N/A</td>	N/A
The cooler's custody seal, if present, is intact.	True
Sample custody seals, if present, are intact.	True
The cooler or samples do not appear to have been compromised or tampered with.	True
Samples were received on ice.	True
Cooler Temperature is acceptable.	True
Cooler Temperature is recorded.	True
COC is present.	True
COC is filled out in ink and legible.	True
COC is filled out with all pertinent information.	True
Is the Field Sampler's name present on COC?	True
There are no discrepancies between the containers received and the COC.	True
Samples are received within Holding Time (excluding tests with immediate HTs)	True
Sample containers have legible labels.	True
Containers are not broken or leaking.	True
Sample collection date/times are provided.	True
Appropriate sample containers are used.	True
Sample bottles are completely filled.	True
Sample Preservation Verified.	N/A
There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs	True
Containers requiring zero headspace have no headspace or bubble is <6mm (1/4").	N/A
Multiphasic samples are not present.	True
Samples do not require splitting or compositing.	True
Residual Chlorine Checked.	N/A

J

4

6

7

9

10

12

13

Accreditation/Certification Summary

Client: South Carolina Public Service Authority Project/Site: 125915/JM02.08.G01.3/36500

Laboratory: Eurofins Savannah

The accreditations/certifications listed below are applicable to this report.

Authority	Program	Identification Number	Expiration Date
South Carolina	State	98001	06-30-23 *

Job ID: 680-238532-1

 $^{^{\}star} \ \text{Accreditation/Certification renewal pending - accreditation/certification considered valid}.$

ANALYTICAL REPORT

PREPARED FOR

Attn: Linda Williams
South Carolina Public Service Authority
Santee Cooper
PO BOX 2946101
Moncks Corner, South Carolina 29461-2901

Generated 8/3/2023 6:06:42 PM Revision 1

JOB DESCRIPTION

125915/JM02-08-G01.1/36500

JOB NUMBER

680-237959-1

Eurofins Savannah 5102 LaRoche Avenue Savannah GA 31404

Eurofins Savannah

Job Notes

This report may not be reproduced except in full, and with written approval from the laboratory. The results relate only to the samples tested. For questions please contact the Project Manager at the e-mail address or telephone number listed on this page.

The test results in this report relate only to the samples as received by the laboratory and will meet all requirements of the methodology, with any exceptions noted. This report shall not be reproduced except in full, without the express written approval of the laboratory. All questions should be directed to the Eurofins Environment Testing Southeast, LLC Project Manager.

Authorization

Generated 8/3/2023 6:06:42 PM Revision 1

Authorized for release by Jerry Lanier, Project Manager I <u>Jerry.Lanier@et.eurofinsus.com</u> (912)250-0281 Client: South Carolina Public Service Authority Project/Site: 125915/JM02-08-G01.1/36500

Laboratory Job ID: 680-237959-1

Table of Contents

Cover Page	1
Table of Contents	3
Case Narrative	4
Sample Summary	5
Method Summary	6
Definitions	7
Detection Summary	8
Client Sample Results	10
QC Sample Results	36
QC Association	38
Chronicle	40
Chain of Custody	45
Receipt Checklists	48
Certification Summary	49

2

Δ

5

7

10

11

13

Case Narrative

Client: South Carolina Public Service Authority Project/Site: 125915/JM02-08-G01.1/36500

Job ID: 680-237959-1

Job ID: 680-237959-1

Laboratory: Eurofins Savannah

Narrative

Job Narrative 680-237959-1

Receipt

The samples were received on 7/20/2023 9:45 AM. Unless otherwise noted below, the samples arrived in good condition, and, where required, properly preserved and on ice. The temperature of the cooler at receipt time was 21.7°C

Revision

The final report was revised to include the re-prepped data for samples which failed MS/MSD. Both sets of data have been reported.

Metals

No additional analytical or quality issues were noted, other than those described above or in the Definitions/ Glossary page.

3

4

7

Q

a

10

12

13

Sample Summary

Client: South Carolina Public Service Authority Project/Site: 125915/JM02-08-G01.1/36500

Job ID: 680-237959-1

Lab Sample ID	Client Sample ID	Matrix	Collected	Received
680-237959-1	AF68738	Water	07/12/23 12:28	07/20/23 09:45
680-237959-2	AF68732	Water	07/12/23 14:32	07/20/23 09:45
680-237959-3	AF68740	Water	07/12/23 11:01	07/20/23 09:45
680-237959-4	AF68743	Water	07/12/23 13:23	07/20/23 09:45
680-237959-5	AF68744	Water	07/12/23 13:28	07/20/23 09:45
680-237959-6	AF68745	Water	07/11/23 15:21	07/20/23 09:45
680-237959-7	AF68741	Water	07/11/23 12:51	07/20/23 09:45
680-237959-8	AF68725	Water	07/18/23 11:49	07/20/23 09:45
680-237959-9	AF68742	Water	07/18/23 14:53	07/20/23 09:45
680-237959-10	AF68747	Water	07/17/23 10:08	07/20/23 09:45
680-237959-11	AF68731	Water	07/17/23 11:15	07/20/23 09:45
680-237959-12	AF68723	Water	07/17/23 13:00	07/20/23 09:45
680-237959-13	AF68724	Water	07/17/23 13:05	07/20/23 09:45
680-237959-14	AF68746	Water	07/17/23 14:24	07/20/23 09:45
680-237959-15	AF68726	Water	07/13/23 14:16	07/20/23 09:45
680-237959-16	AF68725	Water	07/13/23 14:21	07/20/23 09:45
680-237959-17	AF68730	Water	07/13/23 10:01	07/20/23 09:45
680-237959-18	AF68729	Water	07/13/23 11:24	07/20/23 09:45
680-237959-19	AF68728	Water	07/13/23 13:32	07/20/23 09:45
680-237959-20	AF68751	Water	07/10/23 10:00	07/20/23 09:45
680-237959-21	AF68750	Water	07/10/23 11:18	07/20/23 09:45
680-237959-22	AF68755	Water	07/10/23 12:59	07/20/23 09:45
680-237959-23	AF68733	Water	07/10/23 14:10	07/20/23 09:45
680-237959-24	AF68734	Water	07/10/23 14:15	07/20/23 09:45
680-237959-25	AF68757	Water	07/11/23 09:51	07/20/23 09:45
680-237959-26	AF68749	Water	07/11/23 10:52	07/20/23 09:45

3

4

5

7

ŏ

9

10

12

13

Method Summary

Client: South Carolina Public Service Authority Project/Site: 125915/JM02-08-G01.1/36500

Job ID: 680-237959-1

Method	Method Description	Protocol	Laboratory
7470A	Mercury (CVAA)	SW846	EET SAV
7470A	Preparation, Mercury	SW846	EET SAV

Protocol References:

SW846 = "Test Methods For Evaluating Solid Waste, Physical/Chemical Methods", Third Edition, November 1986 And Its Updates.

Laboratory References:

EET SAV = Eurofins Savannah, 5102 LaRoche Avenue, Savannah, GA 31404, TEL (912)354-7858

6

Q

9

11

13

Definitions/Glossary

Client: South Carolina Public Service Authority Job ID: 680-237959-1 Project/Site: 125915/JM02-08-G01.1/36500

Qualifiers

Metals	
Qualifier	Qualifier Description
F1	MS and/or MSD recovery exceeds control limits.
F2	MS/MSD RPD exceeds control limits
U	Indicates the analyte was analyzed for but not detected.

MQL

NC

ND

NEG

POS

PQL

QC

RER

RPD

TEF TEQ

TNTC

RL

PRES

Method Quantitation Limit

Practical Quantitation Limit

Relative Error Ratio (Radiochemistry)

Toxicity Equivalent Factor (Dioxin)

Too Numerous To Count

Toxicity Equivalent Quotient (Dioxin)

Reporting Limit or Requested Limit (Radiochemistry)

Relative Percent Difference, a measure of the relative difference between two points

Not Detected at the reporting limit (or MDL or EDL if shown)

Not Calculated

Negative / Absent

Positive / Present

Presumptive

Quality Control

These commonly used abbreviations may or may not be present in this report.	
Listed under the "D" column to designate that the result is reported on a dry weight basis	
Percent Recovery	
Contains Free Liquid	
Colony Forming Unit	
Contains No Free Liquid	
Duplicate Error Ratio (normalized absolute difference)	
Dilution Factor	
Detection Limit (DoD/DOE)	
Indicates a Dilution, Re-analysis, Re-extraction, or additional Initial metals/anion analysis of the sample	
Decision Level Concentration (Radiochemistry)	
Estimated Detection Limit (Dioxin)	
Limit of Detection (DoD/DOE)	
Limit of Quantitation (DoD/DOE)	
EPA recommended "Maximum Contaminant Level"	
Minimum Detectable Activity (Radiochemistry)	
Minimum Detectable Concentration (Radiochemistry)	
Method Detection Limit	
Minimum Level (Dioxin)	
Most Probable Number	

2010011011 041111141	
Client: South Carolina Public Service Authority	Job ID: 680-237959-1
Project/Site: 125915/JM02-08-G01.1/36500	

Project/Site: 125915/JM02-08-G01.1/36500	
Client Sample ID: AF68738	Lab Sample ID: 680-237959-1
No Detections.	
Client Sample ID: AF68732	Lab Sample ID: 680-237959-2
No Detections.	
Client Sample ID: AF68740	Lab Sample ID: 680-237959-3
No Detections.	
Client Sample ID: AF68743	Lab Sample ID: 680-237959-4
No Detections.	
Client Sample ID: AF68744	Lab Sample ID: 680-237959-5
No Detections.	
Client Sample ID: AF68745	Lab Sample ID: 680-237959-6
No Detections.	
Client Sample ID: AF68741	Lab Sample ID: 680-237959-7
No Detections.	
Client Sample ID: AF68725	Lab Sample ID: 680-237959-8
No Detections.	
Client Sample ID: AF68742	Lab Sample ID: 680-237959-9
No Detections.	
Client Sample ID: AF68747	Lab Sample ID: 680-237959-10
No Detections.	
Client Sample ID: AF68731	Lab Sample ID: 680-237959-11
No Detections.	
Client Sample ID: AF68723	Lab Sample ID: 680-237959-12
No Detections.	
Client Sample ID: AF68724	Lab Sample ID: 680-237959-13
No Detections.	
Client Sample ID: AF68746	Lab Sample ID: 680-237959-14
No Detections.	
Client Sample ID: AF68726	Lab Sample ID: 680-237959-15
No Detections.	
Client Sample ID: AF68725	Lab Sample ID: 680-237959-16

This Detection Summary does not include radiochemical test results.

No Detections.

Detection Summary

Project/Site: 125915/JM02-08-G01.1/36500	
Client Sample ID: AF68730	Lab Sample ID: 680-237959-17
No Detections.	
Client Sample ID: AF68729	Lab Sample ID: 680-237959-18
No Detections.	
Client Sample ID: AF68728	Lab Sample ID: 680-237959-19
No Detections.	
Client Sample ID: AF68751	Lab Sample ID: 680-237959-20
No Detections.	
Client Sample ID: AF68750	Lab Sample ID: 680-237959-21
No Detections.	
Client Sample ID: AF68755	Lab Sample ID: 680-237959-22
No Detections.	
Client Sample ID: AF68733	Lab Sample ID: 680-237959-23
No Detections.	
Client Sample ID: AF68734	Lab Sample ID: 680-237959-24
No Detections.	
Client Sample ID: AF68757	Lab Sample ID: 680-237959-25
No Detections.	
Client Sample ID: AF68749	Lab Sample ID: 680-237959-26

This Detection Summary does not include radiochemical test results.

No Detections.

Client: South Carolina Public Service Authority

Job ID: 680-237959-1

Client: South Carolina Public Service Authority Project/Site: 125915/JM02-08-G01.1/36500

Lab Sample ID: 680-237959-1 **Client Sample ID: AF68738** Date Collected: 07/12/23 12:28

Matrix: Water

Job ID: 680-237959-1

Date Received: 07/20/23 09:45

Method: SW846 7470A - Mercury (CVAA) Analyte Result Qualifier RL MDL Unit Prepared

Analyzed Dil Fac Mercury 0.200 U 0.200 ug/L 07/21/23 10:52 07/21/23 16:36

Client: South Carolina Public Service Authority Project/Site: 125915/JM02-08-G01.1/36500

Job ID: 680-237959-1

Lab Sample ID: 680-237959-2 **Client Sample ID: AF68732** Date Collected: 07/12/23 14:32

Matrix: Water

Date Received: 07/20/23 09:45

Method: SW846 7470A - Mercury (CVAA)

Analyte Result Qualifier RL MDL Unit Prepared Analyzed Dil Fac

Mercury 0.200 U 0.200 ug/L 07/21/23 10:52 07/21/23 16:40

Client: South Carolina Public Service Authority Project/Site: 125915/JM02-08-G01.1/36500

Job ID: 680-237959-1

Client Sample ID: AF68740 Lab Sample ID: 680-237959-3

Matrix: Water

Date Collected: 07/12/23 11:01 Date Received: 07/20/23 09:45

Method: SW846 7470A - Mercury (CVAA)

Analyte Result Qualifier RL MDL Unit D Prepared Analyzed Dil Fac

Mercury 0.200 U 0.200 ug/L 07/21/23 10:52 07/21/23 16:42

Eurofins Savannah

2

3

4

__

6

8

9

10

12

13

Client: South Carolina Public Service Authority Project/Site: 125915/JM02-08-G01.1/36500

Lab Sample ID: 680-237959-4

Client Sample ID: AF68743 Date Collected: 07/12/23 13:23

Matrix: Water

Job ID: 680-237959-1

Method: SW846 7470A - Mercury (CVAA)

Date Received: 07/20/23 09:45

Analyte Result Qualifier RL MDL Unit Prepared Analyzed Dil Fac Mercury

0.200 U 0.200 ug/L 07/21/23 10:52 07/21/23 16:43

Client: South Carolina Public Service Authority Project/Site: 125915/JM02-08-G01.1/36500

Job ID: 680-237959-1

Client Sample ID: AF68744 Date Collected: 07/12/23 13:28

Lab Sample ID: 680-237959-5

Date Received: 07/20/23 09:45

Matrix: Water

Method: SW846 7470A - Mercury (CVAA)

Analyte Result Qualifier RL MDL Unit Prepared Analyzed Dil Fac

Mercury 0.200 U 0.200 ug/L 07/21/23 10:52 07/21/23 16:45

Client: South Carolina Public Service Authority Project/Site: 125915/JM02-08-G01.1/36500

Lab Sample ID: 680-237959-6 **Client Sample ID: AF68745** Date Collected: 07/11/23 15:21

Matrix: Water

Job ID: 680-237959-1

Method: SW846 7470A - Mercury (CVAA)

Date Received: 07/20/23 09:45

Analyte Result Qualifier RL MDL Unit Prepared Analyzed Dil Fac Mercury

0.200 U 0.200 ug/L 07/21/23 10:52 07/21/23 16:46

Client: South Carolina Public Service Authority Project/Site: 125915/JM02-08-G01.1/36500

Lab Sample ID: 680-237959-7

Matrix: Water

Job ID: 680-237959-1

Client Sample ID: AF68741 Date Collected: 07/11/23 12:51

Date Received: 07/20/23 09:45

Method: SW846 7470A - Mercury (CVAA)

Analyte Result Qualifier RL MDL Unit D Prepared Analyzed Dil Fac

Mercury 0.200 U 0.200 ug/L 07/21/23 10:52 07/21/23 16:51

Eurofins Savannah

2

3

4

5

6

8

9

11

Client: South Carolina Public Service Authority

Job ID: 680-237959-1

Project/Site: 125915/JM02-08-G01.1/36500

Lab Sample ID: 680-237959-8 **Client Sample ID: AF68725** Date Collected: 07/18/23 11:49

Matrix: Water

Date Received: 07/20/23 09:45

Method: SW846 7470A - Mercury (CVAA)

Analyte Result Qualifier RL MDL Unit Prepared Analyzed Dil Fac

Mercury 0.200 U 0.200 ug/L 07/21/23 10:52 07/21/23 16:53

Client: South Carolina Public Service Authority Project/Site: 125915/JM02-08-G01.1/36500

Lab Sample ID: 680-237959-9 **Client Sample ID: AF68742** Date Collected: 07/18/23 14:53

Matrix: Water

Job ID: 680-237959-1

Date Received: 07/20/23 09:45

Method: SW846 7470A - Mercury (CVAA)

Analyte Result Qualifier RL MDL Unit Prepared Analyzed Dil Fac

Mercury 0.200 U 0.200 ug/L 07/21/23 10:52 07/21/23 16:54

Client: South Carolina Public Service Authority Project/Site: 125915/JM02-08-G01.1/36500

Client Sample ID: AF68747
Date Collected: 07/17/23 10:08

Lab Sample ID: 680-237959-10

Matrix: Water

Job ID: 680-237959-1

Date Received: 07/20/23 09:45

Method: SW846 7470A - Mercury (CVAA)

Analyte Result Qualifier RL MDL Unit D Prepared Analyzed Dil Fac

Mercury 0.200 U 0.200 ug/L 07/21/23 10:52 07/21/23 16:56 1

Eurofins Savannah

2

3

4

5

6

8

9

11

40

Client: South Carolina Public Service Authority

Job ID: 680-237959-1

Project/Site: 125915/JM02-08-G01.1/36500

Lab Sample ID: 680-237959-11 Client Sample ID: AF68731 Date Collected: 07/17/23 11:15

Matrix: Water

Date Received: 07/20/23 09:45

Method: SW846 7470A - Mercury (CVAA)

Analyte Result Qualifier RL MDL Unit Prepared Analyzed Dil Fac

Mercury 0.200 U 0.200 ug/L 07/21/23 10:52 07/21/23 16:57

Client: South Carolina Public Service Authority Project/Site: 125915/JM02-08-G01.1/36500

Job ID: 680-237959-1

Lab Sample ID: 680-237959-12 **Client Sample ID: AF68723** Date Collected: 07/17/23 13:00

Matrix: Water

Date Received: 07/20/23 09:45

Method: SW846 7470A - Mercury (CVAA)

Analyte Result Qualifier RL MDL Unit Prepared Analyzed Dil Fac

Mercury 0.200 U 0.200 ug/L 07/21/23 10:52 07/21/23 16:59

Client: South Carolina Public Service Authority Project/Site: 125915/JM02-08-G01.1/36500

Lab Sample ID: 680-237959-13

Matrix: Water

Job ID: 680-237959-1

Client Sample ID: AF68724
Date Collected: 07/17/23 13:05
Date Received: 07/20/23 09:45

Method: SW846 7470A - Mercury (CVAA)

Analyte Result Qualifier RL MDL Unit D Prepared Analyzed Dil Fac

Mercury 0.200 U 0.200 ug/L 07/21/23 10:52 07/21/23 17:00 1

14

Eurofins Savannah

2

3

4

5

6

8

10

11

Client: South Carolina Public Service Authority

Job ID: 680-237959-1

Project/Site: 125915/JM02-08-G01.1/36500

Client Sample ID: AF68746 Lab Sample ID: 680-237959-14

Matrix: Water

Date Collected: 07/17/23 14:24 Date Received: 07/20/23 09:45

Method: SW846 7470A - Mercury (CVAA)										
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac	
Mercury	0.200	U F1 F2	0.200		ug/L		07/25/23 12:25	07/26/23 10:29	1	
Mercury	0.200	U	0.200		ug/L		08/02/23 10:19	08/03/23 10:19	1	

Eurofins Savannah

2

3

4

_

7

0

10

12

13

Client: South Carolina Public Service Authority

Job ID: 680-237959-1

Project/Site: 125915/JM02-08-G01.1/36500

Date Collected: 07/13/23 14:16 Matrix: Water

Date Received: 07/20/23 09:45

Method: SW846 7470A - Mercury (CVAA)										
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac	
Mercury	0.200	U F1	0.200		ug/L		07/25/23 12:39	07/26/23 10:37	1	
Mercury	0.200	U	0.200		ug/L		08/02/23 10:19	08/03/23 10:20	1	

4

5

7

8

10

12

13

1/

Client: South Carolina Public Service Authority Project/Site: 125915/JM02-08-G01.1/36500

Lab Sample ID: 680-237959-16 **Client Sample ID: AF68725** Date Collected: 07/13/23 14:21

Matrix: Water

Job ID: 680-237959-1

Date Received: 07/20/23 09:45

Method: SW846 7470A - Mercury (CVAA)

Analyte Result Qualifier RL MDL Unit Prepared Analyzed Dil Fac

Mercury 0.200 U 0.200 ug/L 07/25/23 12:39 07/26/23 10:45

Client: South Carolina Public Service Authority Project/Site: 125915/JM02-08-G01.1/36500

Job ID: 680-237959-1

Client Sample ID: AF68730 Lab Sample ID: 680-237959-17

Matrix: Water

Date Collected: 07/13/23 10:01 Date Received: 07/20/23 09:45

Method: SW846 7470A - Mercury (CVAA)									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Mercury	0.200	П	0.200		ua/I		07/25/23 12:39	07/26/23 10:46	1

_4

0

9

14

12

4 /

Client: South Carolina Public Service Authority Project/Site: 125915/JM02-08-G01.1/36500

Client Sample ID: AF68729

Lab Sample ID: 680-237959-18

Matrix: Water

Job ID: 680-237959-1

Date Collected: 07/13/23 11:24 Date Received: 07/20/23 09:45

Method: SW846 7470A - Mercury (CVAA)

Analyte Result Qualifier RL MDL Unit D Prepared Analyzed Dil Fac

Mercury 0.200 U 0.200 ug/L 07/25/23 12:39 07/26/23 10:48

Eurofins Savannah

2

3

4

5

6

8

46

11

13

Client: South Carolina Public Service Authority Project/Site: 125915/JM02-08-G01.1/36500

Job ID: 680-237959-1

Client Sample ID: AF68728 Lab Sample ID: 680-237959-19

Matrix: Water

Date Collected: 07/13/23 13:32 Date Received: 07/20/23 09:45

Method: SW846 7470A - Mercury (CVAA)

Analyte Result Qualifier RL MDL Unit D Prepared Analyzed Dil Fac

Mercury 0.200 U 0.200 ug/L 07/25/23 12:39 07/26/23 10:49 1

Client: South Carolina Public Service Authority Project/Site: 125915/JM02-08-G01.1/36500

Job ID: 680-237959-1

Client Sample ID: AF68751

Lab Sample ID: 680-237959-20

Matrix: Water

Date Collected: 07/10/23 10:00 Date Received: 07/20/23 09:45

Method: SW846 7470A - Mercury (CVAA)

Analyte Result Qualifier RL MDL Unit D Prepared Analyzed Dil Fac

Mercury 0.200 U 0.200 ug/L 07/25/23 12:39 07/26/23 10:51 1

Eurofins Savannah

2

4

5

6

8

9

11

12

Client: South Carolina Public Service Authority Project/Site: 125915/JM02-08-G01.1/36500

Job ID: 680-237959-1

Client Sample ID: AF68750 Lab Sample ID: 680-237959-21

Matrix: Water

Date Collected: 07/10/23 11:18 Date Received: 07/20/23 09:45

Method: SW846 7470A - Mercury (CVAA)											
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac		
Mercury	0.200	U	0.200		ug/L		07/25/23 12:39	07/26/23 10:52	1		

<u>ی</u>

7

8

40

11

13

Client: South Carolina Public Service Authority Project/Site: 125915/JM02-08-G01.1/36500

Lab Sample ID: 680-237959-22

Matrix: Water

Job ID: 680-237959-1

Client Sample ID: AF68755 Date Collected: 07/10/23 12:59 Date Received: 07/20/23 09:45

Method: SW846 7470A - Mercury (CVAA)

Analyte Result Qualifier RL MDL Unit Prepared Analyzed Dil Fac

Mercury 0.200 U 0.200 ug/L 07/25/23 12:39 07/26/23 10:54

Client: South Carolina Public Service Authority Project/Site: 125915/JM02-08-G01.1/36500

Job ID: 680-237959-1

Lab Sample ID: 680-237959-23 **Client Sample ID: AF68733** Date Collected: 07/10/23 14:10

Matrix: Water

Date Received: 07/20/23 09:45

Method: SW846 7470A - Mercury (CVAA)

Analyte Result Qualifier RL MDL Unit Prepared Analyzed Dil Fac

Mercury 0.200 U 0.200 ug/L 07/25/23 12:39 07/26/23 10:55

Client: South Carolina Public Service Authority Project/Site: 125915/JM02-08-G01.1/36500

Lab Sample ID: 680-237959-24 **Client Sample ID: AF68734** Date Collected: 07/10/23 14:15

Matrix: Water

Job ID: 680-237959-1

Method: SW846 7470A - Mercury (CVAA)

Date Received: 07/20/23 09:45

Analyte Result Qualifier RL MDL Unit Prepared Analyzed Dil Fac Mercury

0.200 U 0.200 ug/L 07/25/23 12:39 07/26/23 10:57

Client: South Carolina Public Service Authority Project/Site: 125915/JM02-08-G01.1/36500

Lab Sample ID: 680-237959-25 **Client Sample ID: AF68757** Date Collected: 07/11/23 09:51

Matrix: Water

Job ID: 680-237959-1

Date Received: 07/20/23 09:45

Method: SW846 7470A - Mercury (CVAA) Analyte Result Qualifier RL MDL Unit

Prepared Analyzed Dil Fac Mercury 0.200 U 0.200 ug/L 07/25/23 12:39 07/26/23 11:02

Client: South Carolina Public Service Authority Project/Site: 125915/JM02-08-G01.1/36500

Client Sample ID: AF68749 Date Collected: 07/11/23 10:52 Lab Sample ID: 680-237959-26

Matrix: Water

Job ID: 680-237959-1

Date Received: 07/20/23 09:45

Method: SW846 7470A - Mercury (CVAA)

Analyte Result Qualifier RL MDL Unit D Prepared Analyzed Dil Fac

Mercury 0.200 U 0.200 ug/L 07/25/23 12:39 07/26/23 11:03 1

11

12

14

Client: South Carolina Public Service Authority Project/Site: 125915/JM02-08-G01.1/36500

Job ID: 680-237959-1

Prep Type: Total/NA

Prep Batch: 789400

Prep Batch: 789400

Prep Type: Total/NA

Prep Batch: 789957

Prep Type: Total/NA

Prep Batch: 789957

Prep Type: Total/NA

Prep Batch: 789957

Prep Type: Total/NA

Client Sample ID: AF68746

Client Sample ID: AF68746

%Rec

Client Sample ID: Method Blank

Client Sample ID: Lab Control Sample

Method: 7470A - Mercury (CVAA)

Lab Sample ID: MB 680-789400/1-A Client Sample ID: Method Blank

Matrix: Water

Analysis Batch: 789621

MB MB

Result Qualifier RL **MDL** Unit Dil Fac Analyte Prepared Analyzed 0.200 07/21/23 10:52 07/21/23 16:32 Mercury 0.200 U ug/L

Lab Sample ID: LCS 680-789400/2-A Client Sample ID: Lab Control Sample Matrix: Water Prep Type: Total/NA **Prep Batch: 789400**

Analysis Batch: 789621

Spike LCS LCS

Added Result Qualifier Limits Analyte Unit D %Rec 2.50 80 - 120 Mercury 2.592 ug/L 104

Lab Sample ID: 680-237959-1 MS Client Sample ID: AF68738 Prep Type: Total/NA

Matrix: Water

Analysis Batch: 789621

Sample Sample Spike MS MS %Rec Result Qualifier Result Qualifier Limits Analyte Added Unit %Rec 0.200 U 1.00 1.059 97 80 - 120 Mercury ug/L

Lab Sample ID: 680-237959-1 MSD Client Sample ID: AF68738 Prep Type: Total/NA

Matrix: Water

Analysis Batch: 789621

Prep Batch: 789400 MSD MSD %Rec Spike **RPD** Sample Sample **Analyte** Result Qualifier Added Result Qualifier Unit %Rec Limits **RPD** Limit ug/L Mercury 0.200 U 1.00 1.032 80 - 120

Lab Sample ID: MB 680-789957/12-A

Matrix: Water

Analysis Batch: 790193

MR MR

RL Analyte Result Qualifier **MDL** Unit **Prepared** Analyzed Dil Fac 0.200 U 0.200 07/25/23 12:25 07/26/23 10:26 Mercury ug/L

Lab Sample ID: LCS 680-789957/13-A

Matrix: Water

Analysis Batch: 790193

Spike LCS LCS %Rec Added Result Qualifier Limits Analyte Unit D %Rec 2.50 80 - 120 Mercury 2.644 ug/L 106

Lab Sample ID: 680-237959-14 MS

Matrix: Water

Analysis Batch: 790193

Sample Sample Spike MS MS %Rec Result Qualifier Added Result Qualifier Limits Analyte Unit D %Rec 0.200 U F1 F2 1.00 Mercury 0.2046 F1 ug/L 20 80 - 120

Lab Sample ID: 680-237959-14 MSD

Matrix: Water

Analysis Batch: 790193 **Prep Batch: 789957** Spike MSD MSD %Rec **RPD** Sample Sample Added Limits **RPD** Analyte Result Qualifier Result Qualifier Unit %Rec Limit 0.200 U F1 F2 1.00 27 Mercury 0.200 UF1F2 ug/L 16 80 - 120

Method: 7470A - Mercury (CVAA)

Lab Sample ID: MB 680-789960/1-A Client Sample ID: Method Blank

Matrix: Water

Analysis Batch: 790193

Prep Type: Total/NA

Prep Batch: 789960

Prep Batch: 789960

MB MB

Result Qualifier RL **MDL** Unit Analyzed Dil Fac Analyte **Prepared** Mercury 0.200 07/25/23 12:39 07/26/23 10:34 0.200 U ug/L

Lab Sample ID: LCS 680-789960/2-A Client Sample ID: Lab Control Sample Matrix: Water Prep Type: Total/NA **Prep Batch: 789960**

Analysis Batch: 790193

Spike LCS LCS

%Rec

Added Result Qualifier Limits **Analyte** Unit D %Rec 2.50 80 - 120 Mercury 2.631 ug/L 105

Lab Sample ID: 680-237959-15 MS Client Sample ID: AF68726 Prep Type: Total/NA

Matrix: Water

Analysis Batch: 790193

Sample Sample Spike MS MS %Rec Result Qualifier Added Result Qualifier Limits **Analyte** Unit %Rec

Mercury 0.200 UF1 1.00 0.2226 F1 22 80 - 120 ug/L

Lab Sample ID: 680-237959-15 MSD Client Sample ID: AF68726 Prep Type: Total/NA

Matrix: Water

Analysis Batch: 790193 **Prep Batch: 789960** MSD MSD %Rec Spike **RPD** Sample Sample

Analyte Result Qualifier Added Result Qualifier Unit %Rec Limits **RPD** Limit 0.200 U F1 Mercury 1.00 0.2316 F1 ug/L 80 - 120

Lab Sample ID: MB 680-791340/12-A

Matrix: Water

Analysis Batch: 791612

Prep Type: Total/NA

Prep Batch: 791340

Client Sample ID: Method Blank

MR MR

Analyte Result Qualifier

RL**MDL** Unit **Prepared** Analyzed Dil Fac 0.200 U 0.200 08/02/23 10:17 08/03/23 10:11 Mercury ug/L

Lab Sample ID: LCS 680-791340/13-A

Matrix: Water

Analysis Batch: 791612

Client Sample ID: Lab Control Sample Prep Type: Total/NA

Prep Batch: 791340

Spike LCS LCS %Rec

Result Qualifier Limits Unit D %Rec

Added Analyte 2.50 2.769 80 - 120 Mercury ug/L 111

QC Association Summary

Client: South Carolina Public Service Authority Project/Site: 125915/JM02-08-G01.1/36500

Job ID: 680-237959-1

Metals

Prep Batch: 789400

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
680-237959-1	AF68738	Total/NA	Water	7470A	_
680-237959-2	AF68732	Total/NA	Water	7470A	
680-237959-3	AF68740	Total/NA	Water	7470A	
680-237959-4	AF68743	Total/NA	Water	7470A	
680-237959-5	AF68744	Total/NA	Water	7470A	
680-237959-6	AF68745	Total/NA	Water	7470A	
680-237959-7	AF68741	Total/NA	Water	7470A	
680-237959-8	AF68725	Total/NA	Water	7470A	
680-237959-9	AF68742	Total/NA	Water	7470A	
680-237959-10	AF68747	Total/NA	Water	7470A	
680-237959-11	AF68731	Total/NA	Water	7470A	
680-237959-12	AF68723	Total/NA	Water	7470A	
680-237959-13	AF68724	Total/NA	Water	7470A	
MB 680-789400/1-A	Method Blank	Total/NA	Water	7470A	
LCS 680-789400/2-A	Lab Control Sample	Total/NA	Water	7470A	
680-237959-1 MS	AF68738	Total/NA	Water	7470A	
680-237959-1 MSD	AF68738	Total/NA	Water	7470A	

Analysis Batch: 789621

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
680-237959-1	AF68738	Total/NA	Water	7470A	789400
680-237959-2	AF68732	Total/NA	Water	7470A	789400
680-237959-3	AF68740	Total/NA	Water	7470A	789400
680-237959-4	AF68743	Total/NA	Water	7470A	789400
680-237959-5	AF68744	Total/NA	Water	7470A	789400
680-237959-6	AF68745	Total/NA	Water	7470A	789400
680-237959-7	AF68741	Total/NA	Water	7470A	789400
680-237959-8	AF68725	Total/NA	Water	7470A	789400
680-237959-9	AF68742	Total/NA	Water	7470A	789400
680-237959-10	AF68747	Total/NA	Water	7470A	789400
680-237959-11	AF68731	Total/NA	Water	7470A	789400
680-237959-12	AF68723	Total/NA	Water	7470A	789400
680-237959-13	AF68724	Total/NA	Water	7470A	789400
MB 680-789400/1-A	Method Blank	Total/NA	Water	7470A	789400
LCS 680-789400/2-A	Lab Control Sample	Total/NA	Water	7470A	789400
680-237959-1 MS	AF68738	Total/NA	Water	7470A	789400
680-237959-1 MSD	AF68738	Total/NA	Water	7470A	789400

Prep Batch: 789957

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
680-237959-14	AF68746	Total/NA	Water	7470A	<u> </u>
MB 680-789957/12-A	Method Blank	Total/NA	Water	7470A	
LCS 680-789957/13-A	Lab Control Sample	Total/NA	Water	7470A	
680-237959-14 MS	AF68746	Total/NA	Water	7470A	
680-237959-14 MSD	AF68746	Total/NA	Water	7470A	

Prep Batch: 789960

Lab Sample ID 680-237959-15	Client Sample ID AF68726	Prep Type Total/NA	Matrix Water	Method 7470A	Prep Batch
680-237959-16	AF68725	Total/NA	Water	7470A	
680-237959-17	AF68730	Total/NA	Water	7470A	

Eurofins Savannah

2

_

5

0

8

40

10

12

QC Association Summary

Client: South Carolina Public Service Authority Project/Site: 125915/JM02-08-G01.1/36500

Job ID: 680-237959-1

Metals (Continued)

Prep Batch: 789960 (Continued)

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
680-237959-18	AF68729	Total/NA	Water	7470A	
680-237959-19	AF68728	Total/NA	Water	7470A	
680-237959-20	AF68751	Total/NA	Water	7470A	
680-237959-21	AF68750	Total/NA	Water	7470A	
680-237959-22	AF68755	Total/NA	Water	7470A	
680-237959-23	AF68733	Total/NA	Water	7470A	
680-237959-24	AF68734	Total/NA	Water	7470A	
680-237959-25	AF68757	Total/NA	Water	7470A	
680-237959-26	AF68749	Total/NA	Water	7470A	
MB 680-789960/1-A	Method Blank	Total/NA	Water	7470A	
LCS 680-789960/2-A	Lab Control Sample	Total/NA	Water	7470A	
680-237959-15 MS	AF68726	Total/NA	Water	7470A	
680-237959-15 MSD	AF68726	Total/NA	Water	7470A	

Analysis Batch: 790193

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
680-237959-14	AF68746	Total/NA	Water	7470A	789957
680-237959-15	AF68726	Total/NA	Water	7470A	789960
680-237959-16	AF68725	Total/NA	Water	7470A	789960
680-237959-17	AF68730	Total/NA	Water	7470A	789960
680-237959-18	AF68729	Total/NA	Water	7470A	789960
680-237959-19	AF68728	Total/NA	Water	7470A	789960
680-237959-20	AF68751	Total/NA	Water	7470A	789960
680-237959-21	AF68750	Total/NA	Water	7470A	789960
680-237959-22	AF68755	Total/NA	Water	7470A	789960
680-237959-23	AF68733	Total/NA	Water	7470A	789960
680-237959-24	AF68734	Total/NA	Water	7470A	789960
680-237959-25	AF68757	Total/NA	Water	7470A	789960
680-237959-26	AF68749	Total/NA	Water	7470A	789960
MB 680-789957/12-A	Method Blank	Total/NA	Water	7470A	789957
MB 680-789960/1-A	Method Blank	Total/NA	Water	7470A	789960
LCS 680-789957/13-A	Lab Control Sample	Total/NA	Water	7470A	789957
LCS 680-789960/2-A	Lab Control Sample	Total/NA	Water	7470A	789960
680-237959-14 MS	AF68746	Total/NA	Water	7470A	789957
680-237959-14 MSD	AF68746	Total/NA	Water	7470A	789957
680-237959-15 MS	AF68726	Total/NA	Water	7470A	789960
680-237959-15 MSD	AF68726	Total/NA	Water	7470A	789960

Prep Batch: 791340

Lab Sample ID 680-237959-14	Client Sample ID AF68746	Prep Type Total/NA	Matrix Water	Method 7470A	Prep Batch
680-237959-15	AF68726	Total/NA	Water	7470A	
MB 680-791340/12-A	Method Blank	Total/NA	Water	7470A	
LCS 680-791340/13-A	Lab Control Sample	Total/NA	Water	7470A	

Analysis Batch: 791612

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
680-237959-14	AF68746	Total/NA	Water	7470A	791340
680-237959-15	AF68726	Total/NA	Water	7470A	791340
MB 680-791340/12-A	Method Blank	Total/NA	Water	7470A	791340
LCS 680-791340/13-A	Lab Control Sample	Total/NA	Water	7470A	791340

Eurofins Savannah

Page 39 of 49

Client: South Carolina Public Service Authority Project/Site: 125915/JM02-08-G01.1/36500

Client Sample ID: AF68738

Date Collected: 07/12/23 12:28 Date Received: 07/20/23 09:45 Lab Sample ID: 680-237959-1

Matrix: Water

	Batch	Batch		Dilution	Batch			Prepared
Prep Type	Туре	Method	Run	Factor	Number	Analyst	Lab	or Analyzed
Total/NA	Prep	7470A			789400	DW	EET SAV	07/21/23 10:52
Total/NA	Analysis	7470A		1	789621	BJB	EET SAV	07/21/23 16:36

Client Sample ID: AF68732

Lab Sample ID: 680-237959-2

Date Collected: 07/12/23 14:32 Matrix: Water Date Received: 07/20/23 09:45

	Batch	Batch		Dilution	Batch			Prepared
Prep Type	Type	Method	Run	Factor	Number	Analyst	Lab	or Analyzed
Total/NA	Prep	7470A			789400	DW	EET SAV	07/21/23 10:52
Total/NA	Analysis	7470A		1	789621	BJB	EET SAV	07/21/23 16:40

Client Sample ID: AF68740 Lab Sample ID: 680-237959-3

Matrix: Water

Date Collected: 07/12/23 11:01 Date Received: 07/20/23 09:45

	Batch	Batch		Dilution	Batch			Prepared
Prep Type	Туре	Method	Run	Factor	Number	Analyst	Lab	or Analyzed
Total/NA	Prep	7470A			789400	DW	EET SAV	07/21/23 10:52
Total/NA	Analysis	7470A		1	789621	BJB	EET SAV	07/21/23 16:42

Client Sample ID: AF68743 Lab Sample ID: 680-237959-4

Date Collected: 07/12/23 13:23 **Matrix: Water** Date Received: 07/20/23 09:45

Batch **Batch** Dilution Batch **Prepared** Method or Analyzed **Prep Type** Type Run Factor Number Analyst Lab 07/21/23 10:52 Total/NA 7470A 789400 DW EET SAV Prep Total/NA 07/21/23 16:43 Analysis 7470A 1 789621 BJB **EET SAV**

Client Sample ID: AF68744 Lab Sample ID: 680-237959-5

Date Collected: 07/12/23 13:28 Matrix: Water

Date Received: 07/20/23 09:45

	Batch	Batch		Dilution	Batch			Prepared
Prep Type	Type	Method	Run	Factor	Number	Analyst	Lab	or Analyzed
Total/NA	Prep	7470A			789400	DW	EET SAV	07/21/23 10:52
Total/NA	Analysis	7470A		1	789621	BJB	EET SAV	07/21/23 16:45

Client Sample ID: AF68745 Lab Sample ID: 680-237959-6

Date Collected: 07/11/23 15:21 Matrix: Water

Date Received: 07/20/23 09:45

	Batch	Batch		Dilution	Batch			Prepared
Prep Type	Type	Method	Run	Factor	Number	Analyst	Lab	or Analyzed
Total/NA	Prep	7470A			789400	DW	EET SAV	07/21/23 10:52
Total/NA	Analysis	7470A		1	789621	BJB	EET SAV	07/21/23 16:46

Client: South Carolina Public Service Authority Project/Site: 125915/JM02-08-G01.1/36500

Client Sample ID: AF68741

Date Collected: 07/11/23 12:51 Date Received: 07/20/23 09:45 Lab Sample ID: 680-237959-7

Matrix: Water

	Batch	Batch		Dilution	Batch			Prepared
Prep Type	Type	Method	Run	Factor	Number	Analyst	Lab	or Analyzed
Total/NA	Prep	7470A			789400	DW	EET SAV	07/21/23 10:52
Total/NA	Analysis	7470A		1	789621	BJB	EET SAV	07/21/23 16:51

Client Sample ID: AF68725

Date Collected: 07/18/23 11:49 Date Received: 07/20/23 09:45 Lab Sample ID: 680-237959-8

Matrix: Water

	Batch	Batch		Dilution	Batch			Prepared
Prep Type	Type	Method	Run	Factor	Number	Analyst	Lab	or Analyzed
Total/NA	Prep	7470A			789400	DW	EET SAV	07/21/23 10:52
Total/NA	Analysis	7470A		1	789621	BJB	EET SAV	07/21/23 16:53

Client Sample ID: AF68742

Date Collected: 07/18/23 14:53

Date Received: 07/20/23 09:45

Lab Sample ID: 680-237959-9

Matrix: Water

	Batch	Batch		Dilution	Batch			Prepared
Prep Type	Type	Method	Run	Factor	Number	Analyst	Lab	or Analyzed
Total/NA	Prep	7470A			789400	DW	EET SAV	07/21/23 10:52
Total/NA	Analysis	7470A		1	789621	BJB	EET SAV	07/21/23 16:54

Client Sample ID: AF68747

Date Collected: 07/17/23 10:08

Date Received: 07/20/23 09:45

Lab Sample ID: 680-237959-10

Matrix: Water

	Batch	Batch		Dilution	Batch			Prepared
Prep Type	Туре	Method	Run	Factor	Number	Analyst	Lab	or Analyzed
Total/NA	Prep	7470A			789400	DW	EET SAV	07/21/23 10:52
Total/NA	Analysis	7470A		1	789621	BJB	EET SAV	07/21/23 16:56

Client Sample ID: AF68731

Date Collected: 07/17/23 11:15

Date Received: 07/20/23 09:45

Batch

Batch

Lab	Sample	ID:	680	-2	3	7	959-1	11
						_		

Prepared or Analyzed Lab 07/21/23 10:52 **EET SAV**

Factor Number Analyst Method **Prep Type** Type Run Total/NA 7470A Prep 789400 DW Total/NA Analysis 7470A 789621 BJB **EET SAV** 07/21/23 16:57 1

Dilution

Batch

Client Sample ID: AF68723

Date Collected: 07/17/23 13:00

Date Received: 07/20/23 09:45

Lab	Sample	IU:	000-23/939-12
			Matrix: Water

	Batch	Batch		Dilution	Batch			Prepared
Prep Type	Туре	Method	Run	Factor	Number	Analyst	Lab	or Analyzed
Total/NA	Prep	7470A			789400	DW	EET SAV	07/21/23 10:52
Total/NA	Analysis	7470A		1	789621	BJB	EET SAV	07/21/23 16:59

Eurofins Savannah

Matrix: Water

Lab Sample ID: 690 227050 12

Client: South Carolina Public Service Authority Project/Site: 125915/JM02-08-G01.1/36500

Client Sample ID: AF68724

Date Collected: 07/17/23 13:05 Date Received: 07/20/23 09:45

Date Collected: 07/17/23 14:24

Lab Sample ID: 680-237959-13

Matrix: Water

	Batch	Batch		Dilution	Batch			Prepared
Prep Type	Type	Method	Run	Factor	Number	Analyst	Lab	or Analyzed
Total/NA	Prep	7470A			789400	DW	EET SAV	07/21/23 10:52
Total/NA	Analysis	7470A		1	789621	BJB	EET SAV	07/21/23 17:00

Client Sample ID: AF68746 Lab Sample ID: 680-237959-14

Matrix: Water

08/02/23 10:19

08/03/23 10:19

Date Received: 07/20/23 09:45 Batch Batch Dilution **Batch** Prepared Method **Prep Type Number Analyst** or Analyzed Type Run **Factor** Lab Total/NA 7470A 789957 DW **EET SAV** 07/25/23 12:25 Prep Total/NA 7470A 790193 BJB 07/26/23 10:29 Analysis **EET SAV** 1

Client Sample ID: AF68726 Lab Sample ID: 680-237959-15 Date Collected: 07/13/23 14:16 Matrix: Water

1

791340 DW

791612 BJB

EET SAV

EET SAV

Date Received: 07/20/23 09:45

Prep

Analysis

7470A

7470A

Total/NA

Total/NA

Batch Batch Dilution Batch Prepared **Prep Type** Type Method Run Factor **Number Analyst** or Analyzed Lab Total/NA Prep 7470A 789960 DW **EET SAV** 07/25/23 12:39 Total/NA 790193 BJB 07/26/23 10:37 Analysis 7470A **EET SAV** 1

Total/NA Prep 7470A 791340 DW **EET SAV** 08/02/23 10:19 Total/NA 7470A **EET SAV** 08/03/23 10:20 Analysis 791612 BJB 1

Client Sample ID: AF68725 Lab Sample ID: 680-237959-16 Date Collected: 07/13/23 14:21 Matrix: Water

Date Received: 07/20/23 09:45

	Batch	Batch		Dilution	Batch			Prepared
Prep Type	Type	Method	Run	Factor	Number	Analyst	Lab	or Analyzed
Total/NA	Prep	7470A			789960	DW	EET SAV	07/25/23 12:39
Total/NA	Analysis	7470A		1	790193	BJB	EET SAV	07/26/23 10:45

Client Sample ID: AF68730 Lab Sample ID: 680-237959-17

Date Collected: 07/13/23 10:01 Date Received: 07/20/23 09:45

Batch Batch Dilution Batch **Prepared** Method or Analyzed **Prep Type** Type Run Factor Number Analyst Lab 07/25/23 12:39 Total/NA DW **EET SAV** Prep 7470A 789960 Total/NA **EET SAV** 07/26/23 10:46 **Analysis** 7470A 790193 BJB 1

Client Sample ID: AF68729 Lab Sample ID: 680-237959-18

Date Collected: 07/13/23 11:24 Date Received: 07/20/23 09:45

Batch Batch **Dilution Batch Prepared Prep Type** Method Run Factor **Number Analyst** or Analyzed Type Lab

7470A DW **EET SAV** 07/25/23 12:39 Total/NA Prep 789960 Total/NA Analysis 7470A **EET SAV** 07/26/23 10:48 1 790193 BJB

Eurofins Savannah

Matrix: Water

Matrix: Water

Client: South Carolina Public Service Authority Project/Site: 125915/JM02-08-G01.1/36500

Client Sample ID: AF68728

Lab Sample ID: 680-237959-19

Matrix: Water

Date Collected: 07/13/23 13:32 Date Received: 07/20/23 09:45

	Batch	Batch		Dilution	Batch			Prepared
Prep Type	Type	Method	Run	Factor	Number	Analyst	Lab	or Analyzed
Total/NA	Prep	7470A			789960	DW	EET SAV	07/25/23 12:39
Total/NA	Analysis	7470A		1	790193	BJB	EET SAV	07/26/23 10:49

Client Sample ID: AF68751

Lab Sample ID: 680-237959-20

Matrix: Water

Date Collected: 07/10/23 10:00 Date Received: 07/20/23 09:45

	Batch	Batch		Dilution	Batch			Prepared
Prep Type	Туре	Method	Run	Factor	Number	Analyst	Lab	or Analyzed
Total/NA	Prep	7470A			789960	DW	EET SAV	07/25/23 12:39
Total/NA	Analysis	7470A		1	790193	BJB	EET SAV	07/26/23 10:51

Client Sample ID: AF68750

Lab Sample ID: 680-237959-21

Matrix: Water

Date Collected: 07/10/23 11:18 Date Received: 07/20/23 09:45

	Batch	Batch		Dilution	Batch			Prepared
Prep Type	Type	Method	Run	Factor	Number	Analyst	Lab	or Analyzed
Total/NA	Prep	7470A			789960	DW	EET SAV	07/25/23 12:39
Total/NA	Analysis	7470A		1	790193	BJB	EET SAV	07/26/23 10:52

Client Sample ID: AF68755

Lab Sample ID: 680-237959-22 Date Collected: 07/10/23 12:59 **Matrix: Water**

Date Received: 07/20/23 09:45

	Batch	Batch		Dilution	Batch			Prepared
Prep Type	Type	Method	Run	Factor	Number	Analyst	Lab	or Analyzed
Total/NA	Prep	7470A		·	789960	DW	EET SAV	07/25/23 12:39
Total/NA	Analysis	7470A		1	790193	BJB	EET SAV	07/26/23 10:54

Client Sample ID: AF68733

Lab Sample ID: 680-237959-23 Date Collected: 07/10/23 14:10 **Matrix: Water**

Date Received: 07/20/23 09:45

	Batch	Batch		Dilution	Batch			Prepared
Prep Type	Type	Method	Run	Factor	Number	Analyst	Lab	or Analyzed
Total/NA	Prep	7470A			789960	DW	EET SAV	07/25/23 12:39
Total/NA	Analysis	7470A		1	790193	BJB	EET SAV	07/26/23 10:55

Client Sample ID: AF68734

Lab Sample ID: 680-237959-24 Date Collected: 07/10/23 14:15 Matrix: Water

Date Received: 07/20/23 09:45

	Batch	Batch		Dilution	Batch			Prepared
Prep Type	Type	Method	Run	Factor	Number	Analyst	Lab	or Analyzed
Total/NA	Prep	7470A			789960	DW	EET SAV	07/25/23 12:39
Total/NA	Analysis	7470A		1	790193	BJB	EET SAV	07/26/23 10:57

Lab Chronicle

Client: South Carolina Public Service Authority Project/Site: 125915/JM02-08-G01.1/36500

Job ID: 680-237959-1

Lab Sample ID: 680-237959-25

Matrix: Water

Date Collected: 07/11/23 09:51 Date Received: 07/20/23 09:45

Client Sample ID: AF68757

	Batch	Batch		Dilution	Batch			Prepared
Prep Type	Type	Method	Run	Factor	Number	Analyst	Lab	or Analyzed
Total/NA	Prep	7470A			789960	DW	EET SAV	07/25/23 12:39
Total/NA	Analysis	7470A		1	790193	BJB	EET SAV	07/26/23 11:02

Lab Sample ID: 680-237959-26 **Client Sample ID: AF68749**

Date Collected: 07/11/23 10:52 Matrix: Water

Date Received: 07/20/23 09:45

	Batch	Batch		Dilution	Batch			Prepared
Prep Type	Type	Method	Run	Factor	Number	Analyst	Lab	or Analyzed
Total/NA	Prep	7470A			789960	DW	EET SAV	07/25/23 12:39
Total/NA	Analysis	7470A		1	790193	BJB	EET SAV	07/26/23 11:03

Laboratory References:

EET SAV = Eurofins Savannah, 5102 LaRoche Avenue, Savannah, GA 31404, TEL (912)354-7858

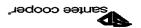
 $\mathbf{SSL} \ \Box$

santee cooper

Chain of Custody

Santee Cooper
One Riverwood Drive
Moneds Comer, SC 29461
Phone: (843)761-8000 Ext. 5148
Fax: (843)761-4175

COLER XL axi& ətərine¶ [] ОСО Derticulate Matter gH □ IN 🗆 SVII Chlorides □ Fineness ☐ Rad 228 Oil & Grease tos 🗆 □ Cq Hđ (uz 🗆 \mathbf{EN} □ Kad 226 DHC Denity (CaSO4) Purity (CaSO4) Pullings NPDES SON O ☐ Dissolved Fe D XKL 2000 oM 🗆 □ C³ $\Lambda \square$ ☐ Dissolved As Other Tests: O BL Hq□ шo aM 🗆 □ Be əmisioM % □ □ CHM ZON [] mrolifoD latoT 🗆 Sieve DΩ ☐ Volatile Matter 8M □ iΤロ □ Ba DE. COL D BLINS a D .)OI [] D Oil & Grease IS 🗆 IJΠ \Box **B** Lensmith [] N-EHN D while [] WIV G □ AOC POTT/9T sA □ 🗆 ‰ Сэгрон USA D $u_S \square$ $\square \mathbf{K}$ AAH\MHT 🗆 Wallboard Cypsuai(of DDOC DFOL ⇒misioM % □ ☐ Naphthalene as 🗆 o Fe IA 🗆 ешонику 🛚 □ BLEX olemiti() OOL LI aA □ 9S 🗆 □C⊓ **WISC** Nutrients HSEAH Coal CINSANS) 🗆 METALS (all) Date/Time/Init for preservative: əted Employee# Relinquished by: Employee # Received by: Date əwiT Preservative Lot#: Received by: 9cniT Employee# Relinquished by: Date Employee # əmiT Date Correct pH: unorallo EZ/61/L Shop હાળ Initial: LEWB (°C): Employee# Relinquished by: Employee # amil Date amiT Sample Receiving (Internal Use Only) တ SZ-JAM **ひと おり** 27/21/2 E571 680-237959 2 EZ/81/L 나비 STL80 =>> H1 L 80 = -> 42-9AW Chain 1521 S+L 89 +V LZ-4YM 22/11/1 으 IZSI Custod) 44F897A 1328 4nd 92-44M 27F68743 9Z - JAM 2Z21 OHL89-17 62-9-AW 1011 ZEL89=14 91-9AW T 78h1 85L89-17 W M M M 27/21/1 IS-9AW 7/6m 2.0 -78 OLTIL 1558 × 7 4P 2 4 Bottle type: | G/Plastic-P) Grab (G) or Composite (Matrix(see below **Collection Time** £ Preservative Sample Collector Collection Date Total # of containers Any other notes Misc. sample into Reporting limit (λ]υο (Glass-(see Description (Juternal use Method # Sample Location/ Labworks ID# **Strammo Analysis Group** (SeY @santeecooper.com ON ALLIMOI JMO2.89.681.1 36500 SILSTI Customer Email/Report Recipient: Project/Task/Unit #: Date Results Needed by: Serun request for any flagged QC


D Cr

0 **b**P

□ bcb

Contract Lab Info. TA -SAV

LCWILLIA

Chain of Custody

Santec Cooper
One Riverwood Drive
Moneles Comer, SC 29461
Phone: (843)761-8000 Ext. 5148
Fax: (843)761-4175

Project/Task/Unit #:

Date Results Needed by:

Customer Email/Report Recipient:

Quo12 sisylenA 125915 JM02.09.601.1 36500 @santeecooper.com **(Yes)** Rerun request for any flagged QC

		MAA	000		SSLU						ngins (. (40 - 100		-	ादन्या	9 4 [
		Х	1		2A () 1sh	ineness articulate Mai	\$5500000000000000000000000000000000000		ziS ək uqea					☐ bCB ☐ b Sq 558			2H□	!N [1 º20
u.	'NA)	. (4) 		Greese		191	8 8 8 8 8 8 8 9 9 1 2 3			ŀ	lq 🗓			D Rad 226	AND DESCRIPTION OF THE PARTY OF	os 🗆	uz 🗆	sV [□ Cq □
	les es	योग उस्त हासाना	N D	SEG	dN	her Tests: GRF Scan			es Seguine		15 () % ()			Dissolved ☐ Dissolved	t	D PR	ΔO	oM [
				ourisio	W%[]	D CHIN	~	(10	SRJ) A) I	M 🛭			Hq□	Z	ONE	ПП	aM [] Be
93	(43) po	9-11/8/2003			26.000(0.000)	Volatile			datem SIM SIG				moli	□ E. Colı □ E. Colı		DD	ir o	3M	□ Ba
粤	gaeni2 a		g a	iens eieyleni	MM D	□ Sulfur	- 1				11.0		əsrə	no as lio 🗆	N-£	DE DE	12 🗆	ŢŢ	18 □
		role enthe			5%П	dsA □				(36. Ne 4	v 1. 1929		A	□ LHW\H∀ □ LHW\H∀	TPO4		¤S 🗆	1.K] sv □
		11749		600000000000000000000000000000000000000		msioM % 🗆			70)w	100		- 1	ene	□ Naphthal □ BTEX		OG U	es □	J Fe	IA 🗆
				100	HILY []	otemiti()	LU						131	SIM MIS	<u>sinai</u>	OT 2	qs□	no [Anna Carrier Control of the Control
		0		' Yse	43	Iso2			uns		שו			PINA	2faei:	******	(11s) ST	MET.	
			:9vi	for preserva	finl\əmiT\ətsQ														
			4	-12/	9-12	эш <u>п</u>		ətsQ		#9	nploye	в	:Ag pa	Receive	əwrı	adeO	#99Voldm3	:Ag	badziupnilaA
			Service .	' /	Preservative L									A					
					Correct pH:	əmiT		Date		#9	nployee	13	:Aq pa	Receive	əmī	Sted	Employee#	;Ag	bədziupniləA
				Ves No	Correct nHr.	Show	160	2/02/	£				1	1/1	∞€1	EZ/61/	L HUSSE		neonally
-			no sa Istin		LEWB (°C):	amiT		Date		# 8	ubjoke	13	;Aq p	evisola,	əmiT	Date	Employee#	pA:	bədziupniləA
	,	(//	u() es	I ingretai) pr	iniosog ojumbs			1	1	т				Tagai	г т		A41 - 4	/ M	87L89 1 V
			T				Ī	Lī	Ī		Ī	1	Ī	ZE E	Ī			/ · · · ·	20 0
				_										17211			요~! - 4	m	PST 8 9 4 PST 8 9 4 0
					-		\Box		\prod	1				1001			24-44C	M	9 08139-14 08139-14
-			$\vdash \uparrow$	<u> </u>			TT		T	1	\top			1451			and til- g	M	SZL8017
							╁┼	+	\dagger	_				91+1	EZ/EI/L		11-dy	m ·	77L89 =>
							++	+				+		ti2+1	T		82-4	M.	9hL89±V
-			\vdash				$\vdash \vdash$	+	1-1	_			\vdash	508]			and si-d+	M	+2L89±∀
														300)					
														∞e1			71-4	M	82L89 1 7
								11		1				SIII			sı - 4 \	M	18L89 1V
			*	7	/6m 2-0=72	4 OLTL	7	WE	,	>	d	1	MIK	8001	E7/L1/L		62-49	m	L+1129-17
			Ē		Comments ad # sample info striper notes	 Misc. 	Preservative (see below)	Matrix(see below)	Grab (G) or Composite (C)		Bottle type: (Glass- G/Plastic-P)	Total # of containers	Sample Collector	Collection Time	Collection Date		mple Location/ scription		Labworks ID # (Internal use only)

Analysis Group

ALUMOL

18/

Customer Email/Report Recipient:

172d12 \ 1W05.08.641.1 3650 ON SAY _@santeecooper.com Rerun request for any flagged QC Project/Task/Unit #: Date Results Needed by: Santee Cooper
One Riverwood Drive
Moneda Comer, SC 29461
Phone: (843)761-8000 Ext. 5148
Fax. (843)761-4175 Chain of Custody santee cooper*

1		п	ElVash B Annoques B Annoques ElVash	Coal Ultimate Residual Residual Residual Residual	ı O		(e)urns (e	edll£W	1	ອນອ	MIS BY REX BY REPHANCE THIN HA	C TPO4	O1 0	(11s) 2.1A 92 (1 92 (1 93 (1)	0 V2 0 K 0 V6 0 C7
	:ə <i>/</i>	ritevati	Date/Time/Init for prese												
		t	12/9/18	June.		Date	#	ployee	43	eq pX:	Receiv	amiT	aseg	Employee#	Relinquished by:
			Preservative Lot#:	əwil		Date		ployee	ца	ελα ρλ	Wecesi	əmiT	ated	Employee#	:yd bədziupniləA
		oN	Correct pH: Yes I	She	4000 C Alt (60) A.	यान्य	AND THE PERSON NAMED IN			1		- ∞El	EZ/61/L	TLSSE	mortells
	: Only) itial:		LEMb (c): Zawbje yeceining (jutetn	9miī	(Jan	eted)		ployee	03	ж ү ра	vidqaa	amiT	ated	Employee#	Relinquished by:
		Ī	A COMMITTED TO THE PARTY OF THE												19
															™ 199 47 of 49
															age 4
	-	ī			Ī	Ī	Ī	Ī	Ī	Ī	7.50I	T		1-1 4 -M8	m 67. L802-17
											1569	E7/11/L		Z-ZY-=17	M LSL89±>
											ટામા	T	4	Ind LI-44	M +EL89+
											01+1			LI-d	M EEL89 +V
					Ī	ī	ĪĒ	T	Ī	Ī	LSZI	Ī		S-14-7	M 551894
											८॥			2-14-=1	M 05189=
	\ \ \ \		1/bn 2.0 =	JAJ OLHL	7	m-9	9	ه	J	MIK	0001	EZ/01/L		Z-14-37	M 15L89±V
			Comments d# ing limit sample info ther notes	Metho Metho Misc. Misc.	Preservative (see below)	Matrix(see below)	Grab (G) or Composite (C)	Bottle type: (Glass- G/Plastic-P)	Total # of containers	Sample Collector	Collection Time	Collection Date		mple Location escription	

94 □

İΝ□

 \square Na

oM 🗆

uM □

BM 🗆

910

tos 🗆

EON []

D NO

N-EHN \square

🗆 Bt

D CI

40

8H □

nZ 🗆

 $\boldsymbol{\Lambda}\,\square$

 Π

IL D

JS 🗆

8/3/2023 (Rev. 1)

ı) 🗆

<u>∞</u> □

□ Ca

🛮 Ba

□ bCB

 $Hq \square$

□ E' COŖ

□ ΛOC

☐ Kad 228

☐ Kad 226

□ Dissolved Fe

A Dissolved As □

□ Total Coliform

Oil & Grease

SSLU

□ Oil & Gresse

SEGAN

🗋 % Moisture

Amalysis

Sieve

SV O

D Particulate Matter

□ Emeness

IIIXKF Scan

Other Tests:

CHIN

SUTB D

willus 🗆

☐ Volatile Matter

axis alonned ()

Damp (Cason)

Hq U Estimologi Estimologi

saigins 🗆

Login Sample Receipt Checklist

Client: South Carolina Public Service Authority

Job Number: 680-237959-1

Login Number: 237959 List Source: Eurofins Savannah

List Number: 1

Creator: Johnson, Corey M

Creator. Johnson, Corey W		
Question	Answer	Comment
Radioactivity wasn't checked or is = background as measured by a survey meter.</td <td>N/A</td> <td></td>	N/A	
The cooler's custody seal, if present, is intact.	True	
Sample custody seals, if present, are intact.	True	
The cooler or samples do not appear to have been compromised or tampered with.	True	
Samples were received on ice.	True	
Cooler Temperature is acceptable.	True	
Cooler Temperature is recorded.	True	
COC is present.	True	
COC is filled out in ink and legible.	True	
COC is filled out with all pertinent information.	True	
Is the Field Sampler's name present on COC?	True	
There are no discrepancies between the containers received and the COC.	True	
Samples are received within Holding Time (excluding tests with immediate HTs)	True	
Sample containers have legible labels.	True	
Containers are not broken or leaking.	True	
Sample collection date/times are provided.	True	
Appropriate sample containers are used.	True	
Sample bottles are completely filled.	True	
Sample Preservation Verified.	N/A	
There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs	True	
Containers requiring zero headspace have no headspace or bubble is <6mm (1/4").	N/A	
Multiphasic samples are not present.	True	
Samples do not require splitting or compositing.	True	
Residual Chlorine Checked.	N/A	

9

5

4

5

7

0

10

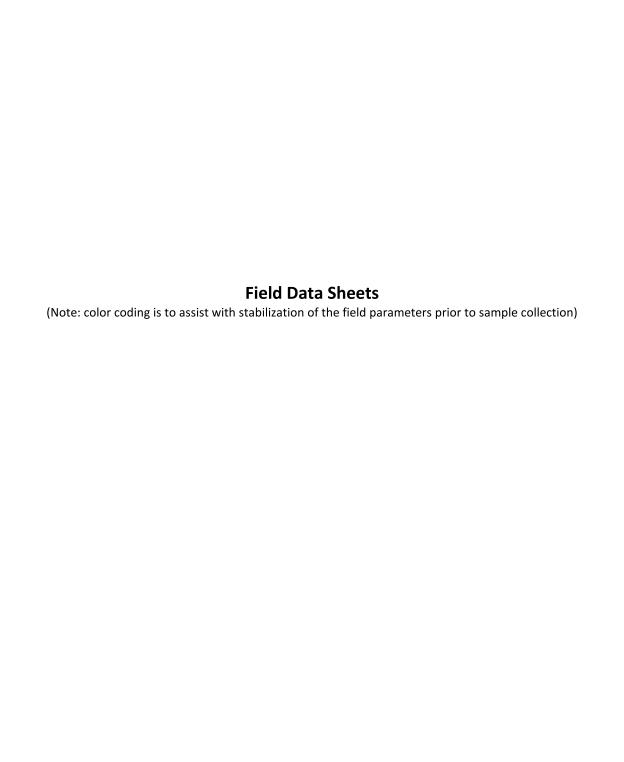
12

13

Accreditation/Certification Summary

Client: South Carolina Public Service Authority Project/Site: 125915/JM02-08-G01.1/36500

Job ID: 680-237959-1


Laboratory: Eurofins Savannah

The accreditations/certifications listed below are applicable to this report.

Authority	Program	Identification Number	Expiration Date
South Carolina	State	98001	06-30-23 *

 $^{\star} \ \text{Accreditation/Certification renewal pending - accreditation/certification considered valid}.$

Eurofins Savannah

Winyah Generating Station **Area 2 Class 3 Landfill Groundwater Monitoring Wells**

Well ID	TOC	GW	Screen	Sample	Sample	Total
	Elevation	Depth	Intervals	Date	Time	Well
	(feet)	(feet)	(ft, bgs)			Depth
WLF-A2-1	30.04	9.72	8.5-18.5	12/7/2022	1007	21.87

Drawdown: 9.84 depth to GW (ft)

Time	Temp	рН	Eh	Spec Cond	Turbidity	Dissolved
	round 1	round 1	ORP	round 1		Oxygen
	(celcius)	(units)	(mV)	(uS/cm)	(NTU)	(ppm)
930	20.06	4.89	223	1000	6.7	2.99
935	20.75	4.95	154	966	6.3	0.95
940	21.05	5.02	86	928	4.6	1.01
945	21.24	5.06	56	901	4	0.84
950	21.43	5.08	40	881	4	0.71
955	21.53	5.09	33	875	2.4	0.61
958	21.51	5.11	27	868	1.1	0.56
1001	21.63	5.11	25	863	0	0.5
1004	21.69	5.13	20	859	0	0.5
1007	21.75	5.13	17	852	0	0.49

CCR Only: As, Ba, Be, B, Ca, Cd, Co, Cr, Fe, Hg, Li, Mo, Pb, Se, Tl, Zn, dissolved As

Ra 226/228

Cl, F, SO4, TDS

Comments/Conditions:

DUP @ 1012

Samples were collected by Justin Kirk and

Winyah Generating Station **Area 2 Class 3 Landfill Groundwater Monitoring Wells**

Well ID	TOC	GW	Screen	Sample	Sample	Total
	Elevation	Depth	Intervals	Date	Time	Well
	(feet)	(feet)	(ft, bgs)			Depth
WLF-A2-2	27.56	7.32	8.5-18.5	12/6/2022	1434	22.31

Drawdown: 7.48 depth to GW (ft)

Time	Temp	рН	Eh	Spec Cond	Turbidity	Dissolved
	round 1	round 1	ORP	round 1		Oxygen
	(celcius)	(units)	(mV)	(uS/cm)	(NTU)	(ppm)
1409	22.9	6.08	-7	1140	6.9	1.19
1414	22	5.99	-8	1160	4.1	0.41
1419	21.76	5.96	-11	1160	5.5	0.34
1424	21.86	5.94	-14	1160	4.5	0.29
1429	21.83	5.92	-17	1160	4.9	0.28
1434	21.72	5.92	-20	1150	4.9	0.27

CCR Only: As, Ba, Be, B, Ca, Cd, Co, Cr, Fe, Hg, Li, Mo, Pb, Se, Tl, Zn, dissolved As

Ra 226/228

Cl, F, SO4, TDS

Comments/Conditions:

Samples were collected by Justin Kirk and

Well ID	TOC	GW	Screen	Sample	Sample	Total
	Elevation	Depth	Intervals	Date	Time	Well
	(feet)	(feet)	(ft, bgs)			Depth
WAP - 1	29.44	6.36	4- 24	2/14/2023	1233	25.17

Drawdown: 6.44 depth to GW (ft)

 $\begin{array}{cccc} Ferric \ Iron: & 2.83 & mg/L \\ Ferrous \ Iron: & 2.71 \ mg/L \end{array}$

Time	Temp	pН	Eh	Spec Cond	Turbidity	Dissolved
	round 1	round 1	ORP	round 1		Oxygen
	(celcius)	(units)	(mV)	(uS/cm)	(NTU)	(ppm)
1159	24.37	4.31	114	173	0	3.36
1204	20.78	4.08	108	153	0	1.2
1209	20.97	4.17	94	146	0	1.08
1214	20.99	4.23	84	143	0	0.88
1219	21.08	4.23	79	141	0	0.83
1224	21.14	4.31	71	139	0	0.81
1227	21.06	4.41	64	138	0	0.78
1230	20.95	4.38	64	137	0	0.75
1233	21.01	4.43	60	136	0	0.72

Comments/Conditions:

Well ID	TOC	GW	Screen	Sample	Sample	Total
	Elevation	Depth	Intervals	Date	Time	Well
	(feet)	(feet)	(ft, bgs)			Depth
WBW - 1	31.97	9.04	7- 17	2/14/2023	1351	19.81

Drawdown: 9.09 depth to GW (ft)

Ferric Iron: 0.63 mg/L Ferrous Iron: 0.09 mg/L

Ferrous fron:	0.09	mg/L				
Time	Temp	pН	Eh	Spec Cond	Turbidity	Dissolved
	round 1	round 1	ORP	round 1		Oxygen
	(celcius)	(units)	(mV)	(uS/cm)	(NTU)	(ppm)
1314	22	4.46	111	56	37.2	4.97
1319	20.8	4.08	138	57	26.6	3.91
1324	20.45	3.96	151	57	28.3	3.78
1329	20.45	3.96	155	57	32.1	3.61
1334	20.35	3.97	161	56	25.2	3.39
1339	20.31	3.95	167	57	13.6	3.4
1342	20.26	3.96	170	57	15.8	3.4
1345	20.23	3.95	173	56	13.1	3.46
1348	20.16	3.96	176	56	14.2	3.42
1351	20.07	3.92	181	56	16.5	3.48

Comments/Conditions:

Well ID	TOC	GW	Screen	Sample	Sample	Total
	Elevation	Depth	Intervals	Date	Time	Well
	(feet)	(feet)	(ft, bgs)			Depth
WAP - 9	28.04	9.95	9- 19	2/27/2023	1247	22.24

Drawdown: 9.99 depth to GW (ft)

Time	Tomn	nig/L	Eh	Spec Cond	Turbidity	Dissolved
1 11116	Temp	pН		_	Turbianty	
	round 1	round 1	ORP	round 1		Oxygen
	(celcius)	(units)	(mV)	(uS/cm)	(NTU)	(ppm)
1222	22.26	6.47	-5	1330	19.2	1.61
1227	22.24	6.33	-4	1320	16.7	1.15
1232	22.37	6.34	-11	1310	13.4	0.96
1237	22.57	6.33	-18	1310	10.4	0.9
1242	22.83	6.3	-20	1310	9.5	0.84
1247	23.08	6.34	-27	1310	9.7	0.78

Comments/Conditions:

Well ID	TOC	GW	Screen	Sample	Sample	Total
	Elevation	Depth	Intervals	Date	Time	Well
	(feet)	(feet)	(ft, bgs)			Depth
WAP - 17	26.88	6.88	9- 19	3/8/2023	1009	21.86

Drawdown: 6.93 depth to GW (ft)

Ferric Iron: 1.53 mg/L Ferrous Iron: 1.49 mg/L

Time	Temp	pH	Eh	Spec Cond	Turbidity	Dissolved
	round 1 (celcius)	round 1 (units)	ORP (mV)	round 1 (uS/cm)	(NTU)	Oxygen (ppm)
938	20.85	6.13	4	1790	27.1	1.81
943	20.83	6.25	-55	1800	26.6	1.09
948	20.9	6.27	-63	1790	24	0.89
953	20.94	6.33	-71	1790	16.1	0.83
958	21.06	6.33	-74	1790	18.6	0.8
1003	21.2	6.34	-78	1790	16.5	0.75
1006	21.32	6.34	-80	1790	7.7	0.75
1009	21.45	6.34	-80	1790	6.7	0.78

Comments/Conditions:

DUP @ 1014

Well ID	TOC	GW	Screen	Sample	Sample	Total
	Elevation	Depth	Intervals	Date	Time	Well
	(feet)	(feet)	(ft, bgs)			Depth
WAP - 18	31.04	10.72	7.5-17.5	3/9/2023	1207	21.25
Drawdown:	10.95	depth to GW (ft)				

Ferric Iron: 0.79 mg/L Ferrous Iron: 0.53 mg/L

Ferrous Iron:	0.53	mg/L				
Time	Temp	pН	Eh	Spec Cond	Turbidity	Dissolved
	round 1	round 1	ORP	round 1		Oxygen
	(celcius)	(units)	(mV)	(uS/cm)	(NTU)	(ppm)
1147	23.19	5.48	182	646	65.1	1.63
1152	22.37	5.45	186	650	22.5	1.27
1157	22.31	5.46	178	640	29.5	1.2
1202	22.74	5.47	175	636	15.5	1.09
1207	22.79	5.47	172	637	1.8	1.02
					·	

Comments/Conditions:

Well ID	TOC	GW	Screen	Sample	Sample	Total
	Elevation	Depth	Intervals	Date	Time	Well
	(feet)	(feet)	(ft, bgs)			Depth
WAP - 19	43.39	23.7	14-24	3/7/2023	1451	26.9

Drawdown: 24.06 depth to GW (ft)

Ferric Iron: +++ mg/L Ferrous Iron: +++ mg/L

Time	Temp round 1	pH round 1	Eh ORP	Spec Cond round 1	Turbidity	Dissolved Oxygen
	(celcius)	(units)	(mV)	(uS/cm)	(NTU)	(ppm)
1411	30.96	6.25	13	1740	0	1.44
1416	29.65	6.25	-15	1850	800	0.88
1421	29.27	6.26	-18	1860	800	0.83
1426	28.79	6.25	-15	2200	559	0.9
1431	28.65	6.27	-25	2250	505	0.85
1436	28.67	6.33	-33	2260	461	0.74
1439	28.7	6.38	-39	2260	409	0.77
1442	28.7	6.44	-43	2270	405	0.78
1445	28.71	6.48	-50	2270	391	0.73
1448	28.72	6.49	-54	2270	374	0.7
1451	28.73	6.49	-54	2270	358	0.72

Comments/Conditions:

Well ID	TOC	GW	Screen	Sample	Sample	Total
	Elevation	Depth	Intervals	Date	Time	Well
	(feet)	(feet)	(ft, bgs)			Depth
WLF-A2-1	30.04	9.57	8.5-18.5	3/1/2023	1022	21.87

Drawdown: 9.64 depth to GW (ft)

Ferric Iron: +++ mg/L Ferrous Iron: +++ mg/L

Terrous from.	T	IIIg/L	E1	C C 1	TD 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	D' 1 1
Time	Temp	pН	Eh	Spec Cond	Turbidity	Dissolved
	round 1	round 1	ORP	round 1		Oxygen
	(celcius)	(units)	(mV)	(uS/cm)	(NTU)	(ppm)
948	21.15	4.61	189	1050	180	1.62
953	21.7	4.59	202	1040	71.9	1.19
958	21.98	4.61	199	1040	28.3	1.04
1003	22.11	4.67	187	1020	14.3	0.98
1008	22.24	4.68	178	1020	14.9	0.96
1013	22.29	4.75	165	1010	11	1.27
1016	22.45	4.75	159	1000	10.6	0.9
1019	22.62	4.76	157	999	9.7	0.84
1022	22.73	4.77	154	995	9.5	0.85

CCR Only: As, Ba, Be, B, Ca, Cd, Co, Cr, Fe, Hg, Li, Mo, Pb, Se, Tl, Zn, dissolved As

Ra 226/228 C1, F, SO4, TDS

Comments/Conditions:

DUP @ No DUP for full site

Samples were collected by Zach McHenry and Marvin Lewis

Well ID	TOC	GW	Screen	Sample	Sample	Total
	Elevation	Depth	Intervals	Date	Time	Well
	(feet)	(feet)	(ft, bgs)			Depth
WLF-A2-2	27.56	7.28	8.5-18.5	3/1/2023	1145	22.33

Drawdown: 7.39 depth to GW (ft)

Ferric Iron: +++ mg/L Ferrous Iron: +++ mg/L

T.		771	a a 1	7D 1 1 1 1 1	F: 1
_	-		-	Turbidity	Dissolved
round 1	round 1	ORP	round 1		Oxygen
(celcius)	(units)	(mV)	(uS/cm)	(NTU)	(ppm)
22.6	5.96	76	1030	11.2	1.3
22.91	5.87	49	1040	6.4	1.09
22.84	5.92	36	1040	7.2	0.88
23.04	5.96	27	1040	7.1	0.83
23.3	5.98	21	1030	6.8	0.74
23.54	6.03	17	1070	7.5	0.71
23.7	6.02	14	1070	7.7	0.7
23.95	6.01	12	1070	7.7	0.69
	22.6 22.91 22.84 23.04 23.3 23.54 23.7	round 1 (celcius) (units) 22.6 5.96 22.91 5.87 22.84 5.92 23.04 5.96 23.3 5.98 23.54 6.03 23.7 6.02	round 1 round 1 ORP (celcius) (units) (mV) 22.6 5.96 76 22.91 5.87 49 22.84 5.92 36 23.04 5.96 27 23.3 5.98 21 23.54 6.03 17 23.7 6.02 14	round 1 round 1 ORP (uS/cm) 22.6 5.96 76 1030 22.91 5.87 49 1040 22.84 5.92 36 1040 23.04 5.96 27 1040 23.3 5.98 21 1030 23.54 6.03 17 1070 23.7 6.02 14 1070	round 1 (celcius) round 1 (units) ORP (mV) round 1 (uS/cm) (NTU) 22.6 5.96 76 1030 11.2 22.91 5.87 49 1040 6.4 22.84 5.92 36 1040 7.2 23.04 5.96 27 1040 7.1 23.3 5.98 21 1030 6.8 23.54 6.03 17 1070 7.5 23.7 6.02 14 1070 7.7

CCR Only: As, Ba, Be, B, Ca, Cd, Co, Cr, Fe, Hg, Li, Mo, Pb, Se, Tl, Zn, dissolved As
Ra 226/228 Cl, F, SO4, TDS

Comments/Conditions:

Samples were collected by Zach McHenry and Marvin Lewis

Well ID	TOC	GW	Screen	Sample	Sample	Total
	Elevation	Depth	Intervals	Date	Time	Well
	(feet)	(feet)	(ft, bgs)			Depth
WLF-A2-6	35.14	14.37	14-24	2/16/2023	1407	27.42

Drawdown: 14.39 depth to GW (ft)

 $\begin{array}{lll} \text{Ferric Iron:} & 0.28 & \text{mg/L} \\ \text{Ferrous Iron:} & 0.24 & \text{mg/L} \end{array}$

Temp	рН	Eh	Spec Cond	Turbidity	Dissolved
round 1	round 1	ORP	round 1		Oxygen
(celcius)	(units)	(mV)	(uS/cm)	(NTU)	(ppm)
22.68	6.57	46	852	0	1.83
23.12	6.39	35	841	0	1.07
23.03	6.29	30	836	0	0.85
23.74	5.98	41	831	0	0.78
23.48	5.98	34	833	0	0.73
23.35	5.98	27	826	0	0.66
23.56	5.99	24	821	0	0.63
	round 1 (celcius) 22.68 23.12 23.03 23.74 23.48 23.35	round 1 (celcius) (units) 22.68 6.57 23.12 6.39 23.03 6.29 23.74 5.98 23.48 5.98 23.35 5.98	round 1 round 1 ORP (celcius) (units) (mV) 22.68 6.57 46 23.12 6.39 35 23.03 6.29 30 23.74 5.98 41 23.48 5.98 34 23.35 5.98 27	round 1 (celcius) round 1 (units) ORP (mV) round 1 (uS/cm) 22.68 6.57 46 852 23.12 6.39 35 841 23.03 6.29 30 836 23.74 5.98 41 831 23.48 5.98 34 833 23.35 5.98 27 826	round 1 (celcius) round 1 (units) ORP (mV) round 1 (uS/cm) (NTU) 22.68 6.57 46 852 0 23.12 6.39 35 841 0 23.03 6.29 30 836 0 23.74 5.98 41 831 0 23.48 5.98 34 833 0 23.35 5.98 27 826 0

CCR Only: As, Ba, Be, B, Ca, Cd, Co, Cr, Fe, Hg, Li, Mo, Pb, Se, Tl, Zn, dissolved As Cl, F, SO4, TDS

Ra 226/228

Comments/Conditions:

DUP @ 1412

Samples were collected by Melanie Goings and Zach McHenry

Well ID	TOC	GW	Screen	Sample	Sample	Total
	Elevation	Depth	Intervals	Date	Time	Well
	(feet)	(feet)	(ft, bgs)			Depth
WAP - 1	29.44	6.93	4- 24	6/27/2023	1126	25.12

Drawdown: 7.03 depth to GW (ft)

Ferric Iron: 2.05 mg/L Ferrous Iron: 2.05 mg/L

Time	Temp	pН	Eh	Spec Cond	Turbidity	Dissolved
	round 1	round 1	ORP	round 1		Oxygen
	(celcius)	(units)	(mV)	(uS/cm)	(NTU)	(ppm)
1053	30.75	4.35	185	103	4.3	1.62
1058	30.14	4.34	118	106	0	0.97
1103	29.81	4.41	93	104	0	0.87
1108	29.84	4.43	81	105	0	0.82
1113	29.98	4.45	71	104	0	0.78
1118	30.07	4.47	65	104	0	0.74
1123	30.26	4.5	59	104	0	0.72
1126	30.4	4.51	56	103	0.1	0.7

Comments/Conditions:

Well ID	TOC	GW	Screen	Sample	Sample	Total
	Elevation	Depth	Intervals	Date	Time	Well
	(feet)	(feet)	(ft, bgs)			Depth
WBW - 1	31.97	9.13	7- 17	6/27/2023	1015	19.8

Drawdown: 9.25 depth to GW (ft)

Ferric Iron: 0.1 mg/L Ferrous Iron: 0.06 mg/L

Ferrous Iron:	0.06	mg/L				
Time	Temp	pН	Eh	Spec Cond	Turbidity	Dissolved
	round 1	round 1	ORP	round 1		Oxygen
	(celcius)	(units)	(mV)	(uS/cm)	(NTU)	(ppm)
939	22.69	4.05	231	73	19.1	6.24
944	23.27	3.98	273	74	17.3	5.36
949	23.85	3.96	289	76	3.2	4.84
954	24.45	3.96	301	76	0	4.51
959	24.95	3.96	308	75	0	4.3
1004	25.49	3.96	315	75	0	4.13
1009	25.99	3.93	324	73	0	3.89
1012	26.26	3.93	328	74	0	3.78
1015	26.51	3.94	331	73	0	3.76

Comments/Conditions:

Well ID	TOC	GW	Screen	Sample	Sample	Total		
	Elevation	Depth	Intervals	Date	Time	Well		
	(feet)	(feet)	(ft, bgs)			Depth		
WAP - 9	28.04	10.5	9- 19	6/29/2023	1048	22.24		

Drawdown: 10.54 depth to GW (ft)

Ferric Iron: +++ mg/L Ferrous Iron: +++ mg/L

Тотого					
Temp	pН	Eh	Spec Cond	Turbidity	Dissolved
round 1	round 1	ORP	round 1		Oxygen
(celcius)	(units)	(mV)	(uS/cm)	(NTU)	(ppm)
25.21	6.02	-71	1540	31.1	1.27
25.09	6.05	-98	1550	12.9	0.93
25.47	6.08	-118	1560	4.3	0.81
25.87	6.08	-125	1560	0.9	0.78
26.47	6.1	-131	1560	2.4	0.75
26.52	6.11	-122	1590	3.8	0.74
	round 1 (celcius) 25.21 25.09 25.47 25.87 26.47	round 1 round 1 (celcius) (units) 25.21 6.02 25.09 6.05 25.47 6.08 25.87 6.08 26.47 6.1	round 1 round 1 ORP (celcius) (units) (mV) 25.21 6.02 -71 25.09 6.05 -98 25.47 6.08 -118 25.87 6.08 -125 26.47 6.1 -131	round 1 round 1 ORP round 1 (celcius) (units) (mV) (uS/cm) 25.21 6.02 -71 1540 25.09 6.05 -98 1550 25.47 6.08 -118 1560 25.87 6.08 -125 1560 26.47 6.1 -131 1560	round 1 (celcius) round 1 (units) ORP (mV) round 1 (uS/cm) (NTU) 25.21 6.02 -71 1540 31.1 25.09 6.05 -98 1550 12.9 25.47 6.08 -118 1560 4.3 25.87 6.08 -125 1560 0.9 26.47 6.1 -131 1560 2.4

Comments/Conditions:

Well ID	TOC	GW	Screen	Sample	Sample	Total
	Elevation	Depth	Intervals	Date	Time	Well
	(feet)	(feet)	(ft, bgs)			Depth
WAP - 17	26.88	6.91	9- 19	7/10/2023	1410	21.85

Drawdown: 6.94 depth to GW (ft)

Ferric Iron: 1.36 mg/L Ferrous Iron: mg/L

Terrous from.		mg/ L				
Time	Temp	pН	Eh	Spec Cond	Turbidity	Dissolved
	round 1	round 1	ORP	round 1		Oxygen
	(celcius)	(units)	(mV)	(uS/cm)	(NTU)	(ppm)
1337	27.18	6.36	-45	1510	0.2	1.2
1342	26.45	6.42	-72	1630	0	0.79
1347	26.01	6.39	-77	1650	2.5	0.79
1352	25.79	6.38	-87	1650	4.9	0.69
1357	25.57	6.38	-94	1650	5.4	0.67
1402	25.45	6.36	-100	1660	5.4	0.65
1407	25.41	6.34	-105	1660	5.7	0.65
1410	25.36	6.33	-108	1660	6.2	0.65

Comments/Conditions:

DUP @ 1415

Well ID	TOC	GW	Screen	Sample	Sample	Total
	Elevation	Depth	Intervals	Date	Time	Well
	(feet)	(feet)	(ft, bgs)			Depth
WAP - 18	31.04	11.26	7.5-17.5	7/5/2023	935	21.23

Drawdown: 11.53 depth to GW (ft)

Ferric Iron: 0.91 mg/L Ferrous Iron: 0.84 mg/L

Terrous from.	0.04	mg/L				
Time	Temp	pН	Eh	Spec Cond	Turbidity	Dissolved
	round 1	round 1	ORP	round 1		Oxygen
	(celcius)	(units)	(mV)	(uS/cm)	(NTU)	(ppm)
920	21.36	5.14	157	713	17.3	3.16
925	22.06	5.21	158	682	20.5	1.49
930	22.61	5.26	155	674	8.4	1.57
935	23.04	5.28	151	685	2.6	1.46
940						
945						
950						

Comments/Conditions:

Well ID	TOC	GW	Screen	Sample	Sample	Total
	Elevation	Depth	Intervals	Date	Time	Well
	(feet)	(feet)	(ft, bgs)			Depth
WAP - 19	43.39	23.31	14-24	7/6/2023	1121	26.87

Drawdown: 23.86 depth to GW (ft)

Ferric Iron: 2.46 mg/L Ferrous Iron: 2.43 mg/L

remous non.	2.43	mg/L				
Time	Temp	pН	Eh	Spec Cond	Turbidity	Dissolved
	round 1	round 1	ORP	round 1		Oxygen
	(celcius)	(units)	(mV)	(uS/cm)	(NTU)	(ppm)
1045	25.41	6.26	-9	2630	39.4	1.13
1050	25.89	6.38	-73	2900	17.9	0.95
1055	26.51	6.41	-97	3010	13.3	0.84
1100	27.25	6.43	-110	2990	7.2	0.76
1105	27.83	6.44	-119	2990	4.8	0.73
1110	28.22	6.46	-131	2950	5.1	0.68
1115	28.49	6.47	-140	2940	4.9	0.66
1118	28.55	6.47	-144	2940	4	0.65
1121	28.84	6.48	-147	2940	4.3	0.64

Comments/Conditions:

Well ID	TOC	GW	Screen	Sample	Sample	Total
	Elevation	Depth	Intervals	Date	Time	Well
	(feet)	(feet)	(ft, bgs)			Depth
WLF-A2-1	30.04	10.33	8.5-18.5	7/5/2023	1139	21.88

Drawdown: 10.37 depth to GW (ft)

 $\begin{array}{cccc} Ferric \ Iron: & 1.58 & mg/L \\ Ferrous \ Iron: & 1.47 & mg/L \end{array}$

Time		mg/L	El.	Casa Can 1	T1-1-114	Dissaland
Time	Temp	pН	Eh	Spec Cond	Turbidity	Dissolved
	round 1	round 1	ORP	round 1		Oxygen
	(celcius)	(units)	(mV)	(uS/cm)	(NTU)	(ppm)
1114	26.12	5.62	-13	377	0	1.19
1119	26.64	5.51	-39	375	0	0.86
1124	26	5.51	-50	377	0	0.77
1129	25.63	5.51	-56	380	0	0.74
1134	26.02	5.51	-61	379	1	0.71
1139	26.31	5.52	-64	375	2.1	0.68
-						

CCR Only: As, Ba, Be, B, Ca, Cd, Co, Cr, Fe, Hg, Li, Mo, Pb, Se, Tl, Zn, dissolved As

Ra 226/228 C1, F, SO4, TDS

Comments/Conditions:

DUP (a) No DUP for full site

Well ID	TOC	GW	Screen	Sample	Sample	Total
	Elevation	Depth	Intervals	Date	Time	Well
	(feet)	(feet)	(ft, bgs)			Depth
WLF-A2-2	27.56	7.72	8.5-18.5	7/12/2023	951	22.31

Drawdown: 7.93 depth to GW (ft)

Ferric Iron: +++ mg/L Ferrous Iron: mg/L

renous non.		mg/L				
Time	Temp	рН	Eh	Spec Cond	Turbidity	Dissolved
	round 1	round 1	ORP	round 1		Oxygen
	(celcius)	(units)	(mV)	(uS/cm)	(NTU)	(ppm)
918	22.83	5.48	50	1100	18.2	1.69
923	23.15	5.63	13	1190	10.5	0.98
928	23.17	5.67	-12	1200	7.1	0.86
933	23.23	5.68	-31	1190	6.1	0.81
938	23.28	5.68	-43	1190	5.8	0.78
943	23.32	5.67	-52	1190	5.3	0.75
948	23.4	5.68	-59	1190	5.2	0.73
951	23.43	5.68	-62	1190	5	0.72

CCR Only: As, Ba, Be, B, Ca, Cd, Co, Cr, Fe, Hg, Li, Mo, Pb, Se, Tl, Zn, dissolved As

Ra 226/228 Cl, F, SO4, TDS

Comments/Conditions:

Well ID	TOC	GW	Screen	Sample	Sample	Total
	Elevation	Depth	Intervals	Date	Time	Well
	(feet)	(feet)	(ft, bgs)			Depth
WLF-A2-6	35.14	15.12	14-24	7/6/2023	947	27.41

Drawdown: 15.16 depth to GW (ft)

 $\begin{array}{cccc} Ferric \ Iron: & 0.44 & mg/L \\ Ferrous \ Iron: & 0.4 \ mg/L \end{array}$

Terrous from.		mg/L				
Time	Temp	рН	Eh	Spec Cond	Turbidity	Dissolved
	round 1	round 1	ORP	round 1		Oxygen
	(celcius)	(units)	(mV)	(uS/cm)	(NTU)	(ppm)
922	22.18	6.13	-43	1130	9.8	1.38
927	22.6	6.18	-77	1100	8.3	1.06
932	27.89	6.2	-87	1070	5	0.97
937	23.16	6.21	-92	1070	4.9	0.91
942	23.4	6.21	-97	1050	4.9	0.85
947	23.68	6.21	-100	1040	4.6	0.84

CCR Only: As, Ba, Be, B, Ca, Cd, Co, Cr, Fe, Hg, Li, Mo, Pb, Se, Tl, Zn, dissolved As Cl, F, SO4, TDS

Ra 226/228

Comments/Conditions:

DUP @ 952

REPORT ON ALTERNATE SOURCE DEMONSTRATION WINYAH GENERATING STATION CLASS 3 LANDFILL AREA 2 GEORGETOWN, SOUTH CAROLINA

by Haley & Aldrich, Inc. Greenville, South Carolina

for South Carolina Public Service Authority (Santee Cooper) Moncks Corner, South Carolina

File No 0132892-100-006 March 2023

Certification Page

SANTEE COOPER WINYAH GENERATING STATION CLASS 3 LANDFILL AREA 2 APPENDIX III SSI ALTERNATE SOURCE DEMONSTRATION

Pursuant to 40 CFR §257.94(e)(2), Haley & Aldrich, Inc., on behalf of Santee Cooper, conducted an alternate source demonstration to substantiate that a source other than the Class 3 Landfill Area 2 caused the statistically significant increase (SSI) over background identified during detection monitoring. I certify that this report and all attachments were prepared by me or under my direct supervision. I am a professional engineer who is registered in the State of South Carolina.

This certification and the underlying data support the conclusion that a source other than the Class 3 Landfill Area 2 is the cause of the SSI over background levels for Appendix III constituents identified during detection monitoring of this unit.

The information contained in this evaluation is, to the best of my knowledge, true, accurate, and complete.

HALEY & ALDRICH, INC.

MO 25 4 W JACK

Susan Jackson, P.E.
South Carolina Professional Engineer
Registration Number 25476

March 30, 2023

Table of Contents			Page		
List	of Tab	les	iii		
List	of Figu	ires	iii		
List	of App	endices	iv		
1.	Intro	oduction	1		
	1.1 1.2 1.3	SCOPE AND OBJECTIVE CCR RULE AND ASD REQUIREMENTS MONITORING WELL NETWORK FOR THE WGS	1 2 S LANDFILL AREA 2 3		
2.	Alte	Alternative Source Demonstration 4			
	2.1 2.2 2.3 2.4	SITE HISTORY FOR THE WGS ASH PONDS A AN WGS ASH POND CONTENTS WGS CLASS 3 LANDFILL AREA 2 CONTENTS WGS CLASS 3 LANDFILL AREA 2 CONSTRUCTION 2.4.1 Waste Separation from Groundwater 2.4.2 Composite Liner and Leachate Collect 2.4.3 Contact Stormwater Management 2.4.4 Operations and Inspections GROUNDWATER QUALITY – APPENDIX III AND	50N AND OPERATIONS 7 8 tion and Removal System 8 9		
	2.6	STATISTICAL EVALUATION 2.6.1 Appendix III Constituents Prior to Init	10 10		
3.	Find	ings and Conclusions	14		
4.	Refe	erences	16		

List of Tables

Table No.	Title
1	Summary of Detection Monitoring Statistical Evaluation, February 2022 Monitoring Event, Class 3 Landfill Area 2 (Prior to First Receipt of CCR)
2	Summary of Detection Monitoring Statistical Evaluation, July 2022 Monitoring Event, Class 3 Landfill Area 2 (Post-First Receipt of CCR)
3	Summary of Assessment Monitoring Statistical Evaluation, February 2022 Monitoring Event, Winyah Ash Pond A (Prior to First Receipt of CCR at Class 3 Landfill Area 2)
4	Summary of Assessment Monitoring Statistical Evaluation, February 2022 Monitoring Event, Winyah Ash Pond B (Prior to First Receipt of CCR at Class 3 Landfill Area 2)
5	Summary of Assessment Monitoring Statistical Evaluation, July 2022 Monitoring Event, Winyah Ash Pond A (Post-First Receipt of CCR at Class 3 Landfill Area 2)
6	Summary of Assessment Monitoring Statistical Evaluation, July 2022 Monitoring Event, Winyah Ash Pond B (Post-First Receipt of CCR at Class 3 Landfill Area 2)

List of Figures

Figure No.	Title
1	Site Location Map
2	Site Layout and Groundwater Monitoring Networks for CCR Compliance
3A	Potentiometric Map, Ash Ponds A & B, February-March 2021
3B	Potentiometric Map, Ash Ponds A & B, July-August 2021
3C	Potentiometric Map, Ash Ponds A & B, February 15-16, 2022
3D	Potentiometric Map, Ash Ponds A & B, July 5-6, 2022
3E	Potentiometric Map, Class 3 Landfill Area 2, February-March 2021
3F	Potentiometric Map, Class 3 Landfill Area 2, July-August 2021
3G	Potentiometric Map, Class 3 Landfill Area 2, February 15-16, 2022

3H	Potentiometric Map, Class 3 Landfill Area 2 July 5-6, 2022
4A	Isoconcentration Map, Appendix III Constituents, February-March 2021
4B	Isoconcentration Map, Appendix III Constituents, July-August 2021
4C	Isoconcentration Map, Appendix III Constituents, February 2022
4D	Isoconcentration Map, Appendix III Constituents, July 2022
5A	Isoconcentration Map, Arsenic, Lithium and Molybdenum, February-March 2021
5B	Isoconcentration Map, Arsenic, Lithium and Molybdenum, July-August 2021
5C	Isoconcentration Map, Arsenic, Lithium and Molybdenum, February 2022
5D	Isoconcentration Map, Arsenic, Lithium and Molybdenum, July 2022

List of Appendices

Appendix	Title
Α	Landfill Area 2 Construction Drawing
В	WGS Ash Pond A and B Subsurface Soil Analytical Results, Santee Cooper
С	Hydrographs
D	Time-Series Plots for Appendix III Constituents, Landfill Area 2, Ash Ponds A and B Monitoring Wells
Е	Time-Series Plots for Appendix IV Constituents – Arsenic, Lithium, and Molybdenum, Ash Ponds A and B

1. Introduction

Santee Cooper is the owner and operator of Winyah Generating Station (WGS, or Site), which consists of four coal-fired generating units and associated ancillary equipment, including coal combustion residual (CCR) impoundments and landfills. WGS is located approximately 10 miles from the Atlantic Ocean, between Pennyroyal Creek and Turkey Creek in Georgetown, South Carolina (Figure 1). WGS is located within the Lower Coastal Plain of the Atlantic Coastal Plain physiographic province in South Carolina, and the Site and surrounding area are relatively flat, with natural ground surface elevations between approximately 15 and 30 feet above mean sea level (MSL).

The WGS Class 3 Landfill Area 2 (Landfill Area 2, or Landfill) was constructed within portions of the footprint of former Ash Pond A, which was closed by removal in accordance with state requirements (Figure 2). Nine independent samples for determination of background and downgradient levels were collected and analyzed prior to placing waste in the new Class 3 Landfill Area 2. First receipt of waste into Landfill Area 2 was on March 28, 2022. The initial detection monitoring sampling event was conducted in July 2022, with the associated analytical data validated on October 5, 2022. The statistical analysis was completed by Haley & Aldrich, Inc. (Haley & Aldrich) on December 30, 2022, pursuant to Title 40 Code of Federal Regulations (40 CFR) §257.93 and §257.94.

The statistical evaluation of Appendix III constituents detected in groundwater downgradient of the Class 3 Landfill resulted in statistically significant increases (SSIs) of Appendix III constituents, including boron, calcium, chloride, sulfate, and total dissolved solids (TDS) in monitoring wells WAP-9, WAP-17, WAP-18, WAP-19, and WLF-A2-6, and fluoride in monitoring wells WAP-19 and WLF-A2-6. This result was not unexpected because of the co-location of Landfill Area 2 and the former WGS Ash Pond A (Figure 2) and the adjacency to WGS Ash Pond B, both of which are undergoing implementation of the corrective action program in accordance with §257.98(a)(2).

This Alternate Source Demonstration (ASD) demonstrates that WGS Ash Ponds A and B are the sources of the SSIs of Appendix III constituents and that the new Landfill Area 2 is not the source. Elevated levels of detected Appendix III and IV CCR groundwater constituents were identified downgradient of Landfill Area 2 prior to the placement of CCR in the Landfill. This ASD considers the construction and operations of Landfill Area 2, and the Site's hydrogeology, groundwater, and soil analytical data prior to the first receipt of waste.

Haley & Aldrich was retained by Santee Cooper to conduct an ASD to determine if a source other than the Landfill Area 2 caused the SSIs. As presented in the sections that follow, findings of this ASD support the conclusion that the SSIs resulting from the statistical analysis of the July 2022 monitoring event were the result of a physical alternative source, specifically the WGS Ash Ponds A and B. Furthermore, the ASD demonstrates that Landfill Area 2 is currently not a potential contributing source of the SSIs.

1.1 SCOPE AND OBJECTIVE

The objective of this ASD is to present Site-specific information, along with a technical evaluation, to document that the newly constructed Class 3 Landfill Area 2 is not responsible for the current concentrations of Appendix III constituents identified in downgradient monitoring wells WAP-9, WAP-17, WAP-18, WAP-19, and WLF-A2-6. Furthermore, even though Landfill Area 2 is in detection monitoring and the focus of this ASD is on Appendix III SSIs, this ASD also presents Site-specific

information and data demonstrating that arsenic, lithium, and molybdenum were previously detected above the groundwater protection standard (GWPS) in wells used for monitoring both the Landfill Area 2 and Ash Pond A, as well as in monitoring wells for Ash Pond B, prior to the receipt of waste in Landfill Area 2.

1.2 CCR RULE AND ASD REQUIREMENTS

The U.S. Environmental Protection Agency (USEPA) regulations regarding detection monitoring programs for CCR units, including landfills and surface impoundments, provide owners and operators with the option to conduct an ASD when an Appendix III constituent is identified as an SSI (§257.94(e)(2)).

According to the Rule, an owner or operator may "demonstrate that a source other than the CCR unit caused the SSI over background levels for a constituent or that the SSI resulted from an error in sampling, analysis, statistical evaluation, or natural variation in groundwater quality. The owner or operator must complete the written demonstration within 90 days of detecting a statistically significant increase over background levels to include obtaining a certification from a qualified professional engineer [...]."

In the absence of South Carolina-specific regulatory requirements for landfill ASDs, the North Carolina Solid Waste Section Guidelines for Alternate Source Demonstration Submittals for Solid Waste Management Facilities (NCDEQ, 2017) was used as a reference. This guidance document defines six lines of evidence that an owner/operator could pursue for an ASD, which are listed below; it also requires an ASD to address the first three lines of evidence (items 1 through 3) at a minimum. The last three lines of evidence (items 4 through 6) may also be used to support the first three lines of evidence.

- 1. An alternate source exists;
- 2. A hydraulic connection exists between the alternative source and the groundwater well with the statistically significant increase;
- 3. Constituent(s) (or precursor constituents) are present at the alternative source or along the flow path from the alternative source prior to possible release from the unit;
- 4. The relative concentration and distribution of constituents in the zone of contamination are more strongly linked to the alternative source than to the unit when the fate and transport characteristics of the constituents are considered;
- 5. The concentration observed in groundwater could not have resulted from the unit, given the waste constituents and concentrations in the unit leachate and wastes, and the site's hydrogeologic conditions; and
- 6. Data supporting conclusions regarding the alternative source are historically consistent with hydrogeologic conditions and findings of the monitoring program.

Additionally, the USEPA has commented in Part A Determinations that to rebut monitoring data and analysis that resulted in an SSI, an ASD should be supported by site-specific facts and analytical data and should meet lines of evidence as outlined in the *EPA Solid Waste Disposal Facility Criteria Technical Manual* (USEPA, 1993) which is consistent with the lines of evidence presented above.

1.3 MONITORING WELL NETWORK FOR THE WGS LANDFILL AREA 2

The monitoring well network for Landfill Area 2 was installed prior to and during construction of Landfill Area 2 (Figure 2). The WGS Ash Ponds A and B are located essentially on an island, surrounded by the WGS Industrial Cooling Pond and associated intake and discharge canals, except for a small area of land connection near the WGS Unit 1 and 2 cooling tower. As such, the design of the Landfill Area 2 groundwater monitoring well network relied on pre-existing groundwater monitoring networks for WGS Ash Pond A. Specifically, the existing CCR groundwater monitoring network and Winyah's existing network required by the facility's National Pollutant Discharge Elimination System (NPDES) permit issued by South Carolina Department of Health and Environmental Control (SCDHEC), which requires groundwater monitoring wells for WGS Ash Ponds A and B, were considered because of their colocation.

The full monitoring well network for Landfill Area 2 includes two background monitoring wells (WBW-1 and WAP-1) which were already in use for groundwater monitoring of other WGS CCR units, including Ash Ponds A and B. The network currently includes seven downgradient monitoring wells, which surround Landfill Area 2. These include WAP-9, WAP-17, WAP-18, WAP 19, WLF-A2-1, WLF-A2-2, and WLF-A2-6. Four of these monitoring wells (WAP-9, WAP-17, WAP-18, and WAP-19) pre-existed the Landfill Area 2 and are currently used to monitor WGS Ash Pond A pursuant to the CCR Rule; in fact, WAP-9 has historically been used to monitor the WGS Ash Pond A since 1995, pursuant to SCDHEC requirements.

In accordance with § 257.94, groundwater monitoring wells were constructed, and baseline sampling of the groundwater monitoring well network was completed for the newly constructed Class 3 Landfill Area 2 in February 2022. Per baseline sampling requirements outlined in § 257.94(b), a minimum of eight independent sampling events were conducted at the new downgradient well (WLF-A2-6), and samples were analyzed for Appendix III and Appendix IV constituents prior to the initial receipt of waste. In fact, nine independent sampling events were conducted, including the sampling event which occurred in February 2022, prior to the initial receipt of waste on March 28, 2022.

Two groundwater monitoring wells (WLF-A2-1 and WLF-A2-2) were installed in December 2021 for the next phase of Landfill Area 2 construction. These were installed early enough to allow time to collect a minimum of eight independent baseline samples, which occurred on a monthly basis during 2022, prior to those new cells accepting the initial deposition of waste on January 27, 2023. In fact, 10 independent baseline samples were collected in 2022 for these two monitoring wells concluding in December 2022.

The downgradient monitoring wells for Landfill Area 2 are screened in the same hydrostratigraphic unit and monitor groundwater quality in the uppermost aquifer and most are primarily at the waste boundary.

2. Alternative Source Demonstration

Consistent with the CCR Rule and guidance documents, this ASD evaluates multiple lines of evidence to address the identified SSIs individually and collectively. The ASD activities performed by Haley & Aldrich included evaluations of prior Site conditions using Site-specific facts and data, hydrogeological considerations, and statistical evaluations. A technical engineering evaluation of the contents, construction, and operations of Landfill Area 2 was conducted to evaluate the potential that the newly constructed and modern landfill was a contributing source.

The findings of this ASD demonstrate that the SSIs identified are not related to a release from Landfill Area 2. Rather, the ASD evaluations show that the residual constituents in groundwater beneath the excavated WGS Ash Ponds A and B are the source of the SSIs of the Appendix III constituents. The findings of the ASD evaluations and the lines of evidence that support this determination are described below.

2.1 SITE HISTORY FOR THE WGS ASH PONDS A AND B AND LANDFILL AREA 2

This detailed summary of the Site history of the WGS Ash Ponds A and B and Landfill Area 2 was incorporated into the ASD evaluation because of its relevance in determining the source of the SSIs. As previously noted, the approximately 65-acre WGS Landfill Area 2 was constructed in a portion of the footprint of the excavated 90-acre Ash Pond A. Ash Ponds A and B are bounded by the Intake Canal to the north, the Industrial Cooling Pond to the east, and the Discharge Canal to the west and south, with a small connecting landmass at the northwest corner of Landfill Area 2/Ash Pond A. Ash Pond A is separated from Ash Pond B by an intermediate dike, which is generally aligned from west to east (Figure 2, Figures 3A through 3D, and Figures 4A through 4D).

Ash Ponds A and B were constructed in 1975 to serve as permitted industrial wastewater treatment ponds, and they were not lined, which was the industry standard practice at that time. As noted in the *Location Restriction Compliance Demonstration* (Geosyntec Consultants [Geosyntec], 2018), the bottom of Ash Pond A was estimated to be approximately 20 feet MSL (National Geodetic Vertical Datum of 1929 [NGVD 29]) in the central portion to less than 20 feet MSL NGVD 29 in the northeastern portion. The bottom of Ash Pond B was estimated to be approximately 19 feet MSL NGVD 29 across most of the pond. The seasonal high-water level at WAP9 was 21.46 feet NGVD (Geosyntec, 2018). Thus, neither pond met the requirements of § 257.60 for placement of CCR above the uppermost aquifer. Both Ash Ponds A and B received ash-sluiced wastewater containing fly ash and bottom ash. Inflows of CCR waste and non-CCR wastewater ceased prior to the regulatory deadline of April 11, 2021. Ash Ponds A and B are undergoing closure-by-removal of CCR and removal of a pre-determined amount of subsurface soil in accordance with a State-approved closure plan.

Excavation of Ash Ponds A and B is in progress, with portions of Ash Pond A completed. SCDHEC verified closure of portions of Ash Pond A were completed pursuant to SCDHEC requirements prior to the construction of the landfill cells, based on the landfill design drawing shown in Appendix A (Geosyntec, 2021). The closure process involves removal of CCR and removal of a layer of underlying subsurface soil based on borings and analytical testing of the CCR and residual subsurface soil to determine the extent of excavation.

To prepare for construction of Landfill Area 2, fill material (soil sourced from permitted on-Site borrow pits) was placed to rebuild the subgrade and create the required separation from groundwater. Landfill

Area 2 construction commenced with cells 4 and 5 on July 30, 2021, with the installation of a 1-foot minimum clay liner (~56,000 cu yd). Groundwater monitoring well WLF-A2-6 was installed in March 2021 to establish a compliant monitoring network for baseline sampling (monthly) to be completed before December 2021. The sampling schedule for WLF-A2-6 was compressed because installation of this well had to wait until construction work in this specific area was completed due to Site access and logistics. Construction was completed on cells 4 and 5, comprising approximately 35 acres, on December 10, 2021. Construction was completed on the approximate 30 acres of cells 6 and 7 on December 8, 2022.

The Landfill Area 2 also received SCDHEC approval to operate on a cell-by-cell basis. Operating approvals were received for cells 4N, 4S, 5N, and 5S on December 20, 2021, and for cells 6N, 6S, 7N, and 7S on December 16, 2022. Currently, there are no plans to construct cells 8N or 8S.

First receipt of waste into the Landfill Area 2 occurred in cell 4S on March 28, 2022, followed by receipt of waste into cell 4N on April 5, 2022, 5N on June 8, 2022, 5S on June 12, 2022, 6N on January 27, 2023, and 6S and 7N on February 17, 2023 (Appendix A). No waste has been disposed in cell 7S as of the date of this report.

Detection monitoring commenced in July 2022 for Landfill Area 2. Of note at that time, CCR had not been placed in cells 6 and 7, and construction had only recently begun with installation of the 1-foot minimum clay liner (~50,000 cu yd) on May 30, 2022. The groundwater monitoring wells (WLF-A2-1 and WLF-A2-2) were installed in November 2021 for cells 6 and 7 to complete 8 monthly baseline samples before December 2022.

The total footprint of Landfill Area 2 is approximately 65 acres. At this time, Landfill Area 2 is operating and receiving waste, and no sections of the newly constructed landfill have been filled and capped. Ash contact stormwater and leachate are collected and collected and treated in the station's permitted wastewater system. Landfill Area 2 has a composite liner system with a leachate collection and removal system that meets the standards of §257.70.

Prior to placing CCR in the Landfill Area 2, groundwater samples were collected to establish baseline groundwater quality conditions that represent the condition of the groundwater prior to placement of CCR in the landfill and the landfill commencing operation. These independent samples were analyzed for Appendix III and Appendix IV constituents consistent with the Rule. Baseline sampling was completed in February 2022 prior to the initial receipt of CCR on March 28, 2022. Detection monitoring, as required by §257.94, was conducted at the next scheduled semi-annual sampling event in July 2022, and the analytical results were validated on October 5, 2022 by Santee Cooper.

As required by §257.93(h), Haley & Aldrich performed a statistical analysis of the Appendix III constituents detected in groundwater downgradient of Landfill Area 2 to evaluate the potential for SSIs of the Appendix III constituents to exist above background. Findings from the statistical evaluation identified that SSIs of the following Appendix III constituents were present at one or more downgradient wells: boron, calcium, chloride, sulfate, and TDS in monitoring wells WAP-9, WAP-17, WAP-18, WAP-19, and WLF-A2-6, and fluoride in monitoring wells WAP-19 and WLF-A2-6. (Haley & Aldrich, 2022a). In comparison, in 2018 during detection monitoring of Ash Pond A, SSIs for boron, calcium, chloride, fluoride, pH, sulfate, and TDS were identified in wells WAP-9, WAP-17, WAP-18, and WAP-19.

2.2 WGS ASH POND CONTENTS

The prior contents of WGS Ash Ponds A and B are discussed in this section because they are identified as the source of Appendix III and Appendix IV constituents in this ASD. WGS Ash Ponds A and B received both fly ash and bottom ash from the WGS coal-fired generating units from 1975 until CCR and non-CCR wastewater inflows ceased prior to the regulatory deadline of April 11, 2021. Throughout this period, ash was routinely removed from the unlined ponds for beneficial use. Bottom ash was excavated, screened, and removed from the ponds for use in the concrete block industry since the 1990s. Beginning in 2015, a mixture of predominantly fly ash and some bottom ash was excavated, screened, and removed for processing in an on-site SEFA STAR® unit. The STAR® unit uses a patented thermal beneficiation process to convert the CCR material into ultrafine ash, a quality product used by the concrete industry and in other industrial applications. The beneficial use program enabled closure-by-removal of WGS Ash Ponds A and B to be a viable option, with completion of ash removal from Ash Pond A by the end of March 2022.

Even with removal of the CCR and a layer of subsurface soils, there are measurable concentrations of metals in subsurface soil (Appendix B). Santee Cooper conducted extensive subsurface soil testing as a component of the WGS Ash Pond A State Closure Plan. The analytical results were submitted to SCDHEC for their review and approval for closure. The closure steps were as follows:

- 1. Receive SCDHEC approval on soil sample results from borings prior to soil removal;
- 2. Complete soil removal through excavation to the extents identified with soil sampling results;
- 3. Submit survey data to SCDHEC to demonstrate compliance with the excavation plan; and
- 4. Prepare and file a deed restriction (if necessary).

The underlying soil remaining after excavation and removal of approximately 9.1 inches (on average) of subsurface soil below the CCR had residual concentrations of metals as reported to SCDHEC (Appendix B). The pre-excavation borings and any confirmation soil sampling after removal of CCR demonstrated that CCR constituents will be removed to levels acceptable to SCDHEC and are protective of human health and the environment in conjunction with institutional controls, specifically a land use deed restriction. Even with removal of the CCR and a layer of subsurface soil, analytical results show measurable concentrations of multiple constituents below the level of the excavation including arsenic, boron, lithium, and molybdenum, among others (in other words, in the remaining subsurface soil). This included occasional samples that exceeded the pre-set target levels. Analytical testing from borings of the residual subsurface soils shows boron concentrations ranging from below detection to 49 milligrams per kilogram (mg/kg) in the location of cells 4 and 5, and from below detection to 36 mg/kg in cells 6 and 7 of Landfill Area 2, with the higher ranges typically being excavated. After review of residual subsurface soil analytical data and survey results, SCDHEC issued approval to complete State closure (not CCR Rule closure) of Ash Pond A in the location of Landfill Area 2 cells 4 and 5 on July 30, 2021 and cells 6 and 7 on March 27, 2022. Establishing a DHEC-approved excavation plan and soil removal still remains to be completed for the approximately 25-acre area of Ash Pond A outside of the landfill footprint and Ash Pond B at the time of this report.

2.3 WGS CLASS 3 LANDFILL AREA 2 CONTENTS

According to an email dated January 17, 2023, from Santee Cooper, since the first receipt of waste on March 28, 2022, through December 31, 2022, Landfill Area 2 received approximately 1,018,165 tons of

ponded ash directly from WGS Ash Ponds A and B. Ponded ash is a typically a mixture of approximately 80 percent fly ash and 20 percent bottom ash. Landfill Area 2 also received 665 tons of non-specification gypsum.

2.4 WGS CLASS 3 LANDFILL AREA 2 CONSTRUCTION AND OPERATIONS

WGS Landfill Area 2 is a permitted Class 3 Industrial Solid Waste Landfill (Permit #LF3-00042), which was designed, constructed, and is operated to meet requirements of the CCR Rule and is regulated under SCDHEC's Solid Waste Management regulations. Based on the construction, operations, and ongoing inspections of this new landfill as described in subsequent sections, it appears unlikely that there is a release at this time from the landfill which could be contributing to the SSIs of Appendix III or Appendix IV constituents.

Landfill Area 2 was designed and constructed to meet the location's restriction requirements in § 257.60 through § 257.64, including placement of waste with greater than five feet of separation from the seasonal high-water table and for unstable areas (Geosyntec, 2021). Landfill Area 2 was constructed with a composite liner system, a leachate collection and removal system, and a contact stormwater collection system. It was designed and constructed to prohibit the release of materials, including leachate, into the environment. Contact stormwater on open areas of the landfill is routed through the leachate collection system.

Throughout the construction process, Santee Cooper's licensed Professional Engineers (P.E.s) oversaw the construction to ensure it was completed in accordance with the permitted construction drawings, with a few limited exceptions previously approved by SCDHEC, which are described in the following paragraph. Additionally, construction quality assurance (CQA) was contracted to a third-party consultant, Insight Group, who performed industry-standard testing to ensure and certify construction was completed as designed and permitted. In the CQA reports for Landfill Area 2 cells 4 and 5 and cells 6 and 7, Insight Group concluded that in their professional judgment, Landfill Area 2 was constructed in accordance with the Project Plans, Project Technical Specifications, CQA Plan, and industry-accepted procedures and methodologies.

The elements of landfill construction verified by the CQA Plan included earthwork, the compacted clay liner, geosynthetic clay liner, geomembrane, geocomposite drainage layer, and the leachate transmission and transfer system. Exceptions from the original permit application and plan included a temporary leachate pond adjacent to the south side of Landfill Area 2 cells 4 and 5. This was eliminated with SCDHEC approval, and the leachate discharge pipe was reconfigured to discharge directly into the Industrial Cooling Pond Discharge Canal. The permanent leachate pond, which was originally to be located in the northeast corner of Ash Pond B, has also been eliminated from the project with SCDHEC approval. Instead, the landfill leachate, which includes CCR contact stormwater, will continue to discharge to the permitted Industrial Cooling Pond. The final exception was related to the interface shear strength testing for the geosynthetic clay liner. The initial internal shear testing performed by the manufacturer did not specifically show results that met the Project's Technical Specifications. The internal shear strength test results for both sets of cells were reviewed and accepted by the Design Engineer-of-Record (Geosyntec).

Santee Cooper oversees the operation of the landfill and conducts routine inspections. WGS personnel complete daily informal inspections and weekly formal inspections in accordance with standard engineering practices and § 257.84. The Landfill Operator-in-Charge works full time at WGS and is a certified Class 3 landfill manager authorized by the State of South Carolina. The first annual Landfill Area

2 inspection report completed by a Santee Cooper qualified civil engineer (Santee Cooper, 2022) concluded that Landfill Area 2 was "generally found in satisfactory condition." The operating areas were found to be in satisfactory condition, and overall, the maintenance appeared adequate. Based on a review of the engineering data provided and observations made during the inspection, Landfill Area 2 appears to be structurally sound under static loading conditions. Inspection recommendations were to reseed the soil in some bare areas, lower the water elevations within the perimeter dikes, and make an effort to prevent stagnant ponding of runoff surface water when possible. In summary and as detailed below, the construction and operation records indicate a release from the newly constructed Landfill Area 2 is unlikely.

2.4.1 Waste Separation from Groundwater

The CCR Rule under § 257.60(a) states that new CCR landfills "must be constructed with a base that is located no less than 1.52 meters (five feet) above the upper limit of the uppermost aquifer or must demonstrate that there will not be an intermittent, recurring, or sustained hydraulic connection between any portion of the base of the CCR unit and the upper most aquifer." The *Location Restrictions Compliance Demonstration* (Geosyntec, 2021) reviewed the design and construction of Landfill Area 2 and reported that it complied with the requirements of § 257.60(a). As shown in the Geosyntec (2021) report, the groundwater elevations range from 21 feet MSL in the central portion of Landfill Area 2 to elevation 20 feet MSL around the north, east, and west portions of the Landfill Area 2 perimeter. Geosyntec's comparative review of the engineering drawings "reveals that Landfill Area 2 is designed with a base that is located greater than 5 ft above the seasonal high-water table, with the exception of the "sumps" (i.e., low points) of the landfill cells." To address this location restriction, the sumps were equipped with a clay plug under the liner constructed beneath the base of the CCR unit which supplements the landfill composite liner system. This clay plug forms a hydraulic barrier to prevent intermittent, recurring, or sustained hydraulic connection between the sump areas and the uppermost aquifer (Geosyntec, 2021).

2.4.2 Composite Liner and Leachate Collection and Removal System

The Landfill Area 2 liner system was designed and constructed to meet the design criteria requirements. The Design Engineer-of-Record P.E. certified that the design of the composite liner and the leachate collection and removal system meets the design criteria requirements of §257.70 (Geosyntec, 2017a). On October 27, 2017, Geosyntec's P.E. certified the composite liner liquid flow rates through the lower component (geosynthetic clay layer) of the alternate composite liner for the unit and determined the liquid flow rate is no greater than through 2 feet of compacted soils with a hydraulic conductivity of 1×10^{-7} centimeters per second (cm/sec), and thus meets the requirement of § 257.70 (Geosyntec, 2017b).

In accordance with § 257.70(f), a liner construction certification was completed by a licensed P.E. for cells 4 and 5 and for cells 6 and 7. As stated in the certifications posted in Santee Cooper's CCR website, the CQA Report documents that the WGS Landfill Area 2 liner system and leachate collection and removal system was constructed in accordance with the permit drawings and the permitted technical specifications and was certified by the Insight Group on December 10, 2021 and again on December 8, 2022.

Landfill Area 2 has a leachate collection system consisting of:

a 2-foot-thick protective cover/drainage layer underlain with a geocomposite drainage layer;

- a leachate collection corridor composed of a perforated high-density polyethylene (HDPE) pipe surrounded by coarse aggregate and a filter; and
- a leachate sump at the low point that is filled with coarse aggregate surrounded by a filter and equipped with a riser pipe from which collected leachate will be withdrawn via pumps.

Leachate generated in the landfill flows in the geocomposite drainage layer component of the liner system either directly toward and into the leachate collection sumps, or to the leachate collection corridor where it is conveyed to the lined sump(s). Landfill Area 2 has leachate pipes that convey the collected leachate to the discharge point, which is the WGS Industrial Cooling Pond complex, a permitted wastewater treatment unit. These pumps operate on a routine basis to handle and discharge leachate and ash contact stormwater without any system failures.

2.4.3 Contact Stormwater Management

Contact water is stormwater runoff that has been in contact with exposed CCR waste in the active areas of Landfill Area 2. Contact stormwater is managed through sequential management as ongoing lifts of waste are placed in a landfill area cell. Initially, with the elevation of waste below the elevation of the landfill perimeter, contact stormwater is routed to the on-site Industrial Cooling Pond via the Discharge Canal using temporary pumps. Once the landfill cell has been filled to an elevation that allows the permanent drainage system to be used, the temporary pumps will be removed. After the elevation of CCR waste is raised above the elevation of the landfill perimeter within each cell, a chimney drain decant structure is or will be installed. The chimney drain consists of a perforated vertical concrete riser pipe and is surrounded by attenuating basins. The attenuating basin is a depressed area around the decant structure intended to filter the contact water. The entire active area, including the attenuating basin, is graded to drain toward the decant structure. The vertical decant structure pipe connects to a horizontal connector pipe at the base, which conveys contact water by gravity through the leachate collection system to the WGS Industrial Cooling Pond Complex. (Geosyntec, Revised February 2017).

2.4.4 Operations and Inspections

The Landfill Area 2 is formally inspected weekly by trained landfill operators under the supervision of the Landfill Operator-in-Charge. It is also inspected annually by licensed professional civil engineers in compliance with § 257.84(b) of the CCR Rule. From a compliance perspective, Landfill Area 2 is inspected monthly by SCDHEC. To date, no landfill violations have been issued based on regulatory inspections. Additional compliance inspections include routine fugitive dust inspections of the Site and weekly stormwater pollution prevention inspections by Santee Cooper employees.

The initial annual inspection was conducted September 27, 2022, by a Santee Cooper P.E. This initial inspection focused on the assessment of the stability and functionality of Landfill Area 2. The report noted it was found in satisfactory condition and safe for continued operation with no significant findings. It noted that at the time of the initial inspection, Landfill Area 2 contained approximately 487,332 cu yd of CCR, which was material sourced from the WGS Ash Ponds A and B. Additionally, a review of the weekly inspections indicated no major structural, maintenance, or operational problems. Based on field observations and discussion with WGS personnel, the operating procedures appear to be adequate. Pursuant to §257.80(b), the Fugitive Dust Control Plan indicates fugitive dust is controlled in landfilling areas prior to placement of final cover by interim cover or managing moisture levels. Plant staff make daily determinations to dispatch water trucks as necessary to minimize fugitive dust (Santee Cooper, 2018). Fugitive dust emission inspections are routinely conducted.

Based on a review of the inspection reports and construction documents and certifications, there is no evidence that Landfill Area 2 is a contributing source of the Appendix III SSIs identified with the initial detection monitoring of the Landfill Area 2, nor is it a contributing source to the Appendix IV statistically significant levels (SSLs) identified with the corrective action monitoring of WGS Ash Ponds A and B.

2.5 GROUNDWATER QUALITY – APPENDIX III AND APPENDIX IV CONSTITUENT EVALUATION

The concentrations of Appendix III constituents detected in monitoring wells during baseline sampling prior to receiving CCR are similar to the historical sampling results obtained while Ash Ponds A and B were in operation and are also similar to the concentration of Appendix III constituents monitored after the first receipt of waste (Appendix D and Appendix E). Historically, there has been some variability in the data, which possibly reflects the ongoing and dynamic excavation and closure activities, including dewatering for Ash Ponds A and B with simultaneous construction activities in and around Landfill Area 2.

The summary of statistical evaluation of Appendix III constituents for the February 2022 semiannual sampling event for Landfill Area 2 and Ash Ponds A and B, prior to first placement of CCR in Landfill Area 2, is presented in Table 1, and the summary of the statistical evaluation of Appendix III constituents post-first receipt of CCR in Landfill Area 2 is presented in Table 2.

Similarly, the summary of statistical evaluation of Appendix IV constituents for Ash Ponds A and B wells prior to first placement of CCR in Landfill Area 2 is presented in Tables 3 and 4 respectively, and the summary of statistical evaluation of Appendix IV constituents for Ash Ponds A and B wells post-first receipt of CCR in Landfill Area 2 is presented in Tables 5 and 6, respectively. Even though this ASD is addressing Appendix III SSIs, Appendix IV data is presented to further support that the groundwater was impacted prior to both construction and first receipt of waste and to show the extent of the impact.

2.6 STATISTICAL EVALUATION

On December 30, 2022, Haley & Aldrich conducted a statistical evaluation of the first semiannual detection monitoring event for the WGS Class 3 Landfill Area 2. The semiannual groundwater sampling event associated with the analytical data occurred approximately four months after the March 28, 2022, first receipt of CCR into the landfill. SSIs were identified for all Appendix III constituents in multiple wells, except for pH. This was not unexpected because the Class 3 Landfill Area 2 is located within the footprint of Ash Pond A.

The statistical evaluations used as part of this ASD were from Landfill Area 2, Ash Pond A, and Ash Pond B prior to the first placement of CCR in the Landfill Area 2 and post-CCR placement in the Landfill Area 2 (Haley & Aldrich 2021a; 2021b; 2021c, 2021d; 2022b; 2022c; 2022d; and 2022e). The results of the findings are presented in the following sections.

2.6.1 Appendix III Constituents Prior to Initial Receipt of Waste

Using interwell evaluations, sample data from the ninth baseline sampling event in February 2022 for the newly constructed Landfill Area 2 was used to evaluate the groundwater quality prior to first receipt of waste. The downgradient monitoring wells were compared to their respective background concentrations. A sample concentration greater than the upper prediction limit (UPL) is considered to represent an SSI. The results of this groundwater detection monitoring statistical evaluation are provided in Table 1. SSIs were identified for the following Appendix III constituents:

- Boron at WAP-9, WAP-17, WAP-18, WAP-19, and WLF-A2-6.
- Calcium at WAP-9, WAP-17, WAP-18, WAP-19, and WLF-A2-6.
- Chloride at WAP-9, WAP-17, WAP-18, WAP-19, and WLF-A2-6.
- Fluoride at WAP-19 and WLF-A2-6.
- Sulfate at WAP-9, WAP-17, WAP-18, WAP-19, and WLF-A2-6.
- Total Dissolved Solids (TDS) at WAP-9, WAP-17, WAP-18, WAP-19, and WLF-A2-6.

Additionally, a hypothetical intrawell statistical evaluation was conducted using the prior eight baseline sampling events to establish background and assumes the ninth was a "detection event." These results identified chloride as an SSI in WFL-A2-6, which potentially indicates natural variability in the groundwater quality during dynamic excavation and construction activities.

2.6.2 Appendix III Constituents After Initial Detection Monitoring (Post-First Receipt of CCR)

Using interwell evaluations, sample data from the first initial detection groundwater sampling event for the downgradient monitoring wells were compared to their respective background concentrations. A sample concentration greater than the UPL is consider to represent an SSI. The results of the groundwater detection monitoring statistical evaluation are provided in Table 2. The same SSIs were identified for Appendix III constituents as the statistical analysis that was performed before CCR was placed into Landfill Area 2:

- Boron at WAP-9, WAP-17, WAP-18, WAP-19, and WLF-A2-6.
- Calcium at WAP-9, WAP-17, WAP-18, WAP-19, and WLF-A2-6.
- Chloride at WAP-9, WAP-17, WAP-18, WAP-19, and WLF-A2-6.
- Fluoride at WAP-19 and WLF-A2-6.
- Sulfate at WAP-9, WAP-17, WAP-18, WAP-19, and WLF-A2-6.
- Total Dissolved Solids (TDS) at WAP-9, WAP-17, WAP-18, WAP-19, and WLF-A2-6.

As with the prior statistical evaluation, a hypothetical intrawell statistical evaluation was conducted, this time using the nine baseline data points. These results again identified chloride as an SSI in WFL-A2-6 and also identified TDS as an SSI WAP-9 and fluoride as an SSI in WAP-19. This could be due to ongoing variations in the groundwater aquifer. Because of ongoing activities for the closure of Ash Ponds A and B, the groundwater aquifer is not in equilibrium, and short-term increases in the Appendix III constituents may be observed. When an equilibrium condition is re-established, this should not be the case.

2.6.3 Appendix IV Constituents

As stated earlier, Ash Ponds A and B are currently in corrective action pursuant to § 257.98 because of SSLs for arsenic, lithium, and molybdenum. The results from the February 2022 statistical evaluation of Appendix IV constituents in Ash Ponds A and B, prior to placement of CCR in Landfill Area 2, showed SSLs of Appendix IV constituents arsenic, lithium, and molybdenum in Ash Pond A and B wells.

For the WGS Ash Pond A, SSLs were identified prior to receipt of waste for arsenic in wells WAP-9, WAP-17, WAP-18, and WAP-19, lithium in wells WAP-9, WAP-18, and WAP-19, and molybdenum in WAP-18 (Table 3).

- WGS Ash Pond B had SSLs prior to receipt of waste for arsenic and lithium in WAP-20.
- For WGS Ash Pond A, SSLs were again identified post receipt of waste for the summer 2022 sampling event for arsenic in wells WAP-9, WAP-17, WAP-18, and WAP-19, lithium in wells WAP-9, WAP-18, and WAP-19, and molybdenum in WAP-18.
- WGS Ash Pond B had SSLs post receipt of waste in the summer 2022 sampling event for arsenic in WAP-10 and WAP-20 and for lithium in WAP-20.
- Molybdenum was not identified at an SSL in Ash Pond B for the summer 2021 sampling event, or for either semiannual sampling event in 2022; however, it had been detected at an SSL at WAP-20 for the February 2020 and February 2021 semiannual sampling events, which is prior to the placement of CCR in the Landfill Area 2.

The pre-waste disposal statistical evaluation provides information on the groundwater quality prior to initial receipt of CCR into Landfill Area 2 and demonstrates SSLs existed prior to the first receipt of waste. The statistical evaluations from the July 2022 sampling events at Ash Ponds A and B, post-receipt of CCR in Landfill Area 2, have similar findings as the February 2022 sampling event (Table 4). This supports the premise that the CCR in Landfill Area 2 is not the source of CCR Appendix III and Appendix IV constituents in groundwater.

2.7 HYDROGEOLOGICAL EVALUATION

The hydrogeological evaluation for this ASD consisted of preparation of potentiometric contour maps and isoconcentration maps to evaluate the groundwater flow and distribution of Appendix III and Appendix IV constituents prior to and after the placement of CCR in Landfill Area 2.

The potentiometric maps for February 2021, July 2021, February 2022, and July 2022 for the Ash Ponds A and B, and Landfill Area 2 are presented as Figures 3A through 3D, and Figures 3E through 3H, respectively. The isoconcentration maps for Appendix III constituents (boron, calcium, chloride, sulfate, and TDS) for February 2021, July 2021, February 2022, and July 2022 are presented as Figures 4A through 4D. The isoconcentration maps for Appendix IV constituents of concern (arsenic, lithium, and molybdenum) for February 2021, July 2021, February 2022, and July 2022 are presented as Figures 5A through 5D. Hydrographs of water levels for the downgradient monitoring wells for Landfill Area 2 and Ash Ponds A and B are presented in Appendix C. Time-series plots of Appendix III constituents for the Landfill Area 2 are presented in Appendix D. Time-series plots of Appendix IV constituents of concern (arsenic, lithium, and molybdenum) for the Ash Pond A and B are presented in Appendix E.

The potentiometric maps are used to interpret groundwater flow direction and to calculate approximate flow rates (velocity) in feet per day (ft/day). The potentiometric map contour interpretations were refined between the 2021 and 2022 events because Santee Cooper began measuring the ponded surface water elevations in the unlined ash pond (WGS-PSE-1) during the 2022 semiannual monitoring events to supplement the groundwater elevation data (Figures 3C and 3D). The ponded surface water is assumed to recharge to the shallow groundwater because the pond is unlined and the depth to groundwater in the nearby groundwater monitoring wells (WAP-9 and WAP-10) has been measured relatively close to ground surface at approximately 5 to 10 feet below ground surface.

The potentiometric maps show that groundwater has consistently flowed in a radial pattern from the Ash Ponds A and B land mass toward the Intake Canal, Cooling Water Pond, and Discharge Canal. The potentiometric maps also show that groundwater is consistently interpreted to flow to the northwest across the existing Class 3 Landfill Area 2 active cells (cells 4N, 4S, 5N, and 5S; Appendix A) throughout the 2021 through 2022 groundwater monitoring period. Average linear velocity of groundwater flow in

the uppermost aquifer at Landfill Area 2 active cells area (cells 4N, 4S, 5N, and 5S; Appendix A) for the 2021 and 2022 reporting period was calculated and ranges from approximately 0.006 ft/day to 0.011 ft/day, or approximately 2 feet per year (ft/year) to 4 ft/year. This value was calculated using interpreted groundwater flow and hydraulic gradients calculated for the 2021 and 2022 semiannual sampling events (Figures 3A through 3D).

The distance between the northern edge of Landfill Area 2 and monitoring wells downgradient of the CCR placed to date in Landfill Area 2 (WAP-17, WLF-A2-6, and WAP-18) is approximately 50 feet. Based on the locations of WAP-17, WLF-A2-6, and WAP-18 and the location of the CCR in Landfill Area 2, and the range the groundwater flow rates observed for the Landfill Area 2, it is unlikely that a release directly from the landfill would have reached these downgradient monitoring wells during the first four months of landfill operations. Based on this information, a release of CCR constituents in the active cell areas (cells 4N, 4S, 5N, and 5S) would take between approximately 12 years to 600 years depending on the location of the release, if any were to occur (*i.e.*, a potential release near the edge of the unit or near the southeast corner of cell 5S, respectively). These estimates account for only the horizontal hydraulic flow rates and do not consider constituent adsorption resulting in plume retardation, which would increase the time of constituent migration to the downgradient monitoring wells.

The isoconcentration maps can be used to identify specific source areas of constituents and can be used to characterize the lateral spatial variation across a site. When isoconcentration maps are prepared for multiple groundwater sampling events, they can also be used to evaluate changes in plume geometry as the constituents migrate through the groundwater system. The February 2021, July 2021, and February 2022 isoconcentration maps for Appendix III constituents (Figure 4A through 4C) and Appendix IV constituents of concern arsenic, lithium, and molybdenum, show that plumes of the mapped constituents existed at the Site before waste was placed in Landfill Area 2. The subsequent isoconcentration maps from July 2022 (Figure 4D) demonstrate that the plume's geometry is relatively similar, and that the lateral distribution of Appendix III and Appendix IV constituents does not appear to be indicative of a point source release from Landfill Area 2.

Knowing that Ash Ponds A and B began operating in 1975, based on the hydrogeological evaluation, it is determined that during the operation period, there has been sufficient time for releases from Ash Ponds A and B to migrate to the downgradient monitoring wells. The groundwater flow velocity likely would have been greater during their operation due to the additional hydraulic head on the ponds. Conversely, one would conclude that there has not been enough time for a release from the new Landfill Area 2 to have reached the downgradient monitoring wells, even if that release occurred on the first day of operation on March 28, 2022.

3. Findings and Conclusions

Haley & Aldrich has concluded that Ash Pond A is the alternate source for the Appendix III SSIs detected downgradient of the new Class 3 Landfill Area 2, and that Landfill Area 2 is not a contributing source for the reasons summarized below. Consistent with § 257.94(e)(2), this written successful demonstration includes obtaining a certification from a qualified P.E. within 90 days of detecting an SSI above background levels. As a result, and consistent with § 257.94(e)(2), the Class 3 Landfill Area 2 at the WGS will remain in detection monitoring.

1. An alternative source exists.

Appendix III and IV groundwater constituent concentrations are known to exist in the groundwater prior to first receipt of waste in Landfill Area 2. There are measurable constituent concentrations of metals, including boron, in areas of the remaining subsurface soil after excavation of the Ash Pond A and prior to construction of Landfill Area 2. WGS Ash Pond A pre-dates the existence of Landfill Area 2. WGS Ash Ponds A and B are in a corrective action program pursuant to § 257.98, which includes removal of the source through excavation of the CCR and then monitored natural attenuation as outlined in the Remedy Selection Report (Haley & Aldrich, March 2022). SSLs continue to be identified for arsenic, lithium, and occasionally molybdenum in multiple wells.

2. A hydraulic connection exists between the alternative source and the groundwater well with the significant increase.

Many of the monitoring wells used to monitor shallow groundwater for Landfill Area 2 also monitor Ash Pond A, and the monitoring wells are screened in the same hydrostratigraphic unit as the existing wells that have historically monitored groundwater for Ash Ponds A and B since approximately 1995. Ash Ponds A and B are hydraulically connected to groundwater, as evidenced by the fact that the Ash Ponds were unlined and that impacts of Appendix III and IV constituents have been identified, whereas Landfill Area 2 was constructed to not be hydraulically connected to groundwater.

Additionally, based on the landfill design, construction, and location, there is not a known hydraulic connection between Landfill Area 2 and the uppermost surficial aquifer. Landfill Area 2 was designed and constructed to meet the locations restriction requirements in § 257.60 through § 257.64, including placement of waste with greater than 5 feet of separation from the seasonal highwater table. Landfill Area 2 was constructed with a composite liner system, a leachate collection and removal system, and a contact stormwater collection system, in accordance with state and federal regulations.

3. Constituent(s) (or precursor constituents) are present at the alternative source or along the flow path from the alternative source prior to possible release from the unit.

The pre-waste disposal statistical evaluation provides information on groundwater quality prior to initial receipt of CCR into Landfill Area 2 and demonstrates that SSLs existed prior the first receipt of waste. The statistical evaluations from the July 2022 sampling events at Ash Ponds A and B, post-receipt of CCR in the Landfill Area 2, have similar findings as the February 2022 sampling event (Table 4). This supports the premise that the CCR in the Landfill Area 2 is not the source of CCR Appendix III or Appendix IV constituents in groundwater.

4. Relative concentration and distribution of constituents in the zone of contamination are more strongly linked to the alternative source than to the unit when the fate and transport characteristics of the constituents are considered.

Isoconcentration maps show that groundwater plumes of Appendix III and Appendix IV constituents pre-existed the Landfill Area 2 and are migrating radially in the direction of groundwater flow toward the downgradient wells. The isoconcentration maps demonstrate that fluctuations in plume morphology are influenced by seasonal groundwater level fluctuations that result in varying concentrations of Appendix III and Appendix IV constituents. The February 2021, July 2021, and February 2022 isoconcentration maps of Appendix III constituents (Figure 4A through 4C) and Appendix IV constituents arsenic, lithium, and molybdenum (Figures 5A through 5C), show that plumes of the mapped constituents existed at the Site at or above the background value or GWPS before waste was placed in Landfill Area 2. The subsequent isoconcentration maps from July 2022 (Figures 4D and 5D) demonstrate that the plume's geometry is relatively similar, and that the lateral distribution of Appendix III and Appendix IV constituents does not appear to be indicative of a point source release from Landfill Area 2.

5. Concentration observed in groundwater could not have resulted from the unit given the waste constituents and concentrations in the unit leachate and wastes, and the Site's hydrogeologic conditions.

The distance between the initial placement of the waste to the closest groundwater monitoring well (WAP-17) varies; however, it is at least 30 feet. The average linear velocity of groundwater flow in the uppermost aquifer at Landfill Area 2 active cells area (cells 4N, 4S, 5N, and 5S; Appendix A) for the 2021 and 2022 reporting period was calculated and ranges from approximately 0.006 ft/day to 0.011 ft/day, or approximately 2 ft/year to 4 ft/year. Based on the location of the waste, the groundwater flow rate, and the location of the CCR in Landfill Area 2, it is unlikely that a release directly from the landfill would have culminated in the monitoring area of the well during the first year of landfill operations. A release of CCR constituents in the active cell areas (cells 4N, 4S, 5N, and 5S) would take between approximately 12 years to 600 years depending on the location of the release, if any were to occur (*i.e.*, a potential release near the edge of the unit or near the southeast corner of cell 5S, respectively).

The Landfill Area 2 design, construction, and operations, including the placement of CCR into the landfill, makes it unlikely that there was a release from this relatively new landfill which would have contributed to the constituent concentrations in the groundwater. The leachate and contact stormwater are captured and pumped to the discharge point without contact with the environment.

6. Data supporting conclusions regarding the alternative source are historically consistent with hydrogeologic conditions and findings of the monitoring program.

WGS Ash Ponds A and B contained CCR from 1975 until closure. The ponds were unlined, with a hydrogeologic connection to the uppermost aquifer. The 2018 initial detection monitoring event for Ash Pond A identified SSIs for the same Appendix III constituents as identified after placement of CCR into the Class 3 Landfill Area 2 in March 2022.

4. References

Geosyntec Consultants, 2016. Santee Cooper Winyah Generating Station Class Three Landfill Permit Application Engineering Report, GSC5242/Winyah Landfill Engineering Report R2.docx. Revised February 2017.

Geosyntec Consultants, 2017a. CCR Rule – Composite Liner and Leachate Collection and Removal System Certification, Santee Cooper Winyah Generating Station (WGS) CCR Landfill. October 27.

https://www.santeecooper.com/About/CCR-Data-Rule/Winyah/pdfs/Design-Criteria/20171107-WGS-Class-3-Landfill-Liner-Criteria-257.70(c)(2).pdf

Geosyntec Consultants, 2017b. CCR Rule – Composite Liner Liquid Flow Rate Certification, Santee Cooper Winyah Generating Station (WGS) CCR Landfill. October 27.

20171107-WGS-Class-3-Landfill-Liner-Criteria-257.70(c)(2).pdf (santeecooper.com)

Geosyntec Consultants, 2018. Location Restriction Compliance Demonstration, Ash Pond A, Winyah Generating Station, Georgetown, South Carolina. October.

20181017-WGS-Ash-Pond-A-Location-Restriction.pdf (santeecooper.com)

Geosyntec Consultants, 2021. Location Restriction Compliance Demonstration, Landfill Area 2, Winyah Generating Station, Georgetown, South Carolina. November.

20211216-WGS-Class-3-Landfill-Area-2-Location-Restrictions.pdf (santeecooper.com)

Haley & Aldrich, Inc., 2021a. Semiannual Groundwater Assessment Monitoring Data Statistical Evaluation, Winyah Generating Station Ash Pond A. July 28.

Haley & Aldrich, Inc., 2021b. Semiannual Groundwater Assessment Monitoring Data Statistical Evaluation, Winyah Generating Station Ash Pond A. December 2.

Haley & Aldrich, Inc., 2021c. Semiannual Groundwater Assessment Monitoring Data Statistical Evaluation, Winyah Generating Station Ash Pond B. July 28.

Haley & Aldrich, Inc., 2021d. Semiannual Groundwater Assessment Monitoring Data Statistical Evaluation, Winyah Generating Station Ash Pond B. December 2.

Haley & Aldrich, Inc., 2022a. *Statistical Evaluation of the Summer 2022 Semiannual Groundwater Detection Monitoring Data, Winyah Generating Station, Class 3 Landfill Area 2*. December 30.

Haley & Aldrich, Inc., 2022b. Statistical Evaluation of the February 2022 Semiannual Groundwater Assessment Monitoring Data, Winyah Generating Station, Ash Pond A. August 2.

Haley & Aldrich, Inc., 2022c. Statistical Evaluation of the Summer 2022 Semiannual Groundwater Assessment Monitoring Data, Winyah Generating Station, Ash Pond A. December 30.

Haley & Aldrich, Inc., 2022d. *Statistical Evaluation of the February-March 2022 semiannual Groundwater Assessment Monitoring Data, Winyah Generating Station, Ash Pond B*. Revision 1. August 15.

Haley & Aldrich, Inc., 2022e. *Statistical Evaluation of the Summer 2022 Semiannual Groundwater Assessment Monitoring Data, Winyah Generating Station, Ash Pond B.* December 30.

North Carolina Department of Environmental Quality (NCDEQ), Division of Waste Management Solid Waste Section. 2017. North Carolina Solid Waste Section Guidelines for Alternate Source Demonstration Submittals for Solid Waste Management Facilities. July.

NCSWSGuidelinesForASD2017.pdf

Winyah Generating Station State Closure Plan for Ash Pond A, Santee Cooper, November 9, 2020.

Santee Cooper. 2018. Fugitive Dust Control Plan for compliance with 40 CFR Part 257. October. 20181101-WGS-Fugitive-Dust-Plan.pdf (santeecooper.com)

Santee Cooper. 2021. Liner Construction Certification New CCR Landfill, Winyah Generating Station (WGS), 20211216-WGS-Class-3-Landfill-Area-2-Liner-Criteria-257.70(f).pdf (santeecooper.com)

Santee Cooper. 2022. CCR Rule – Coal Combustion Residual Class 3 Landfill Inspection-Winyah Generating Station-Rev. 1 Georgetown, South Carolina. October 24. 20221031-WGS-All-Landfills-365-Day-Inspection REV1.pdf (santeecooper.com)

United States Environmental Protection Agency (USEPA). 1993. EPA Solid Waste Disposal Facility Criteria Technical Manual.

EPA Solid Waste Disposal Facility Criteria Technical Manual

Selection of Report Santee Cooper Winyah A & B Ash Ponds, Georgetown, SC, Haley & Aldrich, Inc. March 2022 20220331 WGS Ash Pond AB Remedy Selection Report.pdf (santeecooper.com)

Construction Quality Assurance Documentation Report, Winyah Generating Station Landfill Area 2 Cell 4 & 5, Georgetown, SC, December 10, 2021, Insight Number 21-0064, Insight Group, LLC

Construction Quality Assurance Documentation Report, Winyah Generating Station Landfill Area 2, Cell 6 & 7, Georgetown, SC, December 8, 2022, Insight Number 21-0064, Insight Group, LLC

TABLES

TABLE I.
SUMMARY OF DETECTION MONITORING STATISTICAL EVALUATION
FERRUAGARY 2022 MONITORING EVENT (PRIOR TO FIRST RECEIPT OF CCR)
WINNAH GENERATING STATION
CLASS 3 LANDFILL AREA 2

PAGE 1 OF 1

Marie Mari
Part Part
Control Cont
1. 1. 1. 1. 1. 1. 1. 1.
1
1
1. 1. 1. 1. 1. 1. 1. 1.
1. 1. 1. 1. 1. 1. 1. 1.
Continue Continue
1. 1. 1. 1. 1. 1. 1. 1.
1. 1. 1. 1. 1. 1. 1. 1.
1. 1. 1. 1. 1. 1. 1. 1.
1. 1. 1. 1. 1. 1. 1. 1.
1. 1. 1. 1. 1. 1. 1. 1.
1. 1. 1. 1. 1. 1. 1. 1.
1
1. 1. 1. 1. 1. 1. 1. 1.
 4. 1
1. 1. 1. 1. 1. 1. 1. 1.
1. 1. 1. 1. 1. 1. 1. 1.
1. 1. 1. 1. 1. 1. 1. 1.
The continue of the continue
Continue Continue
11 11 11 11 11 11 11 1
1. 1. 1. 1. 1. 1. 1. 1.
1,11, 1,1, 1
11 11 11 11 11 11 11 1
1.0 1.0
1. 1. 1. 1. 1. 1. 1. 1.
Column C
1. 1. 1. 1. 1. 1. 1. 1.
4. 65 6.65 6.54 7 7 7 7 8 9
Fig. 10 Fig. 12 Fig.
The continue of the continue
• 6 458 6 432 6 547 6 548 6 457 6 541 7 541 7 541 7 541 7 541 7 541 7 541 7 541 7 541 7 541 7 541 7 541 7 541 7 541 8 541 9 541 8 541
1. 1. 1. 1. 1. 1. 1. 1.
2.2 11.1 91.7 23.6 1.65 <th< td=""></th<>
2.2 11.1 9.17 2.176 2.186 2.504 7.584 0.5636 NA mg/L N 0 0 N N N N N N N
776 7395 1241 180 10770 328.1 0.4279 NA mg/L N 0 Yes No
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
1. 1. 1. 1. 1. 1. 1. 1.
25.33 31.25 31.25 1916 (3.8) 47.5 13.15 1.28T NA mg/L N 0 No No <t< td=""></t<>
15-33 5, 59 13.15 19.16 22.2 21.34 7.2 12.37 12.37 NA mg/l N mg/l N 0 0 0 NO NO NO NO NO NO NO NO NO NO NO NO NO
100-100 638 475 135 234 2323 46.19 0,7553 NA mg/L N 0 0 N No No No No No No No No No No No No N
- 1610 1636 2139 3140 28800 51166 0.222 NA mg/L N 0 0 N VG NO Decrease Normal 1185.00 Y Y Y N N N N N N N N N N N N N N N N
- 1590 1666 2051 2122 17300 415.7 0.05612 NA mg/L N 0 0 0 No No No Stable Normal 327.50 Y Y Y 1510 1846 2128 478900 214.2 0.1550 NA mg/L N 0 0 0 No No Stable Normal 1110.00 Y Y NO NO NO NO NO NO NO NO NO NO NO NO NO
- 1570 1571 1846 2128 45890 214.2 0.1362 NA mg/t N 0 0 Yes No Stable Normal 1110.00 Y Y
- 567 552.5 641.5 667.5 3351 57.89 0.1021 NA mg/L N 0 0 Ves No Stable Normal 551.20 Y

Note: *A preliminary intrawell statistical evaluation for detection monitoring constituents was completed for planning purposes.

TABLE 2 SUMMARY OF DETECTION MONITORING STATISTICAL EVALUATION JULY 2022 MONITORING EVEN (POST FIRST RECEIPT OF CCR) WINYAH GENERATING STATION CLASS 3 LANDRILL AREA 2

Analysis	SS				z	z	z	z :	z				z	z	z :	z z	z			z	z	z	: 2	: >				z	z	z	>	z	-		z	z	z	z z				z	z	z	z	z			>	- z	zz	z	z
Intra-well Analysis	Background Limit (Upper Prediction Limit)	J/8m			6.25	14.20	11.21	6.36	0.74				453.00	569.53	818.02	970.00	148./3			229.00	760.24	260.00	202.20	10 50	0000			0.11	0.32	2.84	0.58	0.40			5.52, 6.27	5.57, 6.53	5.21, 6.8	5.5, 7.05	3.35, 7.01			357.00	1810.00	1662.01	1228.42	138.35			1113.30	3403.49	3045.88	2321.83	815.65
	Exceedance above Background at Individual Well (SSI)				>	> :	> :	> :	>				>	> :	> 3	÷ >	-			>	. >-	. >	. >	- >				z	z	z	>	>			z	z	z	2 2				>	>	>	>	>			>	- >-	. >	>	>
Inter-well Analysis	Upper Prediction Limit (ug/L)		0	0.00							0.0096								14911.1							0.000	140.0							3.55, 7.61							27800.0							292500.0					
	Upper Prediction Limit F (mg/L)		2000	0.085							9.60								14.91								0.14							3.55, 7.61							27.80							292.50					
	Detect? P				>	>	>	> :	>				>	>	> :	- >	-			>	- >	. >	- >	- >	-			z	z	z	>	>			>	>	> :	- >	-			>	>	>	>	>			>	- >	- >	. >	>
	July 2022 Data				3.50	3.80	1.70	4.10	0.35				158.00	240.00	76.00	320.00	130.00			83.80	185.00	37.00	00.75	33.00	01.17			0.10	0.10	0.10	09:0	0.29			6.15	9.05	5.77	88.0	9			199.00	638.00	172.00	915.00	62.50			3745.00	1316.00	391.20	1588.00	487.50
	Distribution Well* Ju			1-parametric	Non-parametric	Non-parametric	Normal	Normal				n-parametric	parametric	Normal	Non-parametric	ion-parametric				Non-narametric	Normal	Non-narametric	Normal	I I				Non-parametric	Non-parametric	Normal	Non-parametric		Normal	Non-parametric	Normal	Normal	Non-parametric	Morrial			Normal	Normal	Non-parametric	Normal	Normal				Ion-parametric	Normal	on-parametric	Normal	Normal
	Trend							Stable					Stable No.			+											NA		Stable		rcrease h			Stable	Stable		Stable						Decrease	ecrease	Stable						ecrease	Stable	
	Outlier Removed			No																						No	No	No		No	No		No	No		No	No :					No		No D	No						No No	No	No.
	Outlier C Presence Re		No					Yes								165				No No						No	No	No	No	No				No	No	No	No :				No			No	No							Yes	
	Number of Non-Detection Exceedances		0	0	0	0	0	0 4	0		0 0	0	0	0	0 0		0			, ,			0 0	> 0		0	0	0	0	0	0	0	0	0	0	0	0 6			0	0	0	0	0	0	0		0 1	0 0	0 0	0 0	0	0
			ŀ	0	0	0	0	0 6			0 0	0	0	0	0 6	0 0				> 0				> 0		0	0	0	0	0	0	0	0	0	0	0	0			0	0	0	0	0	0			0	0 0		0 0	0	0
	Detection Number of Exceedances Detection (Y/N) Exceedances		z																							z									z																		
					Z Z			z :							z :													N N				N N	nits	nits				ph units		7	N V	N N	/L N		/- N				z z				7
	CCR Result MCL/RSL Unit			NA mg/L		NA mg/L			NA mg/L		NA mg/L		NA mg/L		NA mg/L				NA mg/L					Na Mark		4 mg		4 mg/L	4 mg/L	4 mg	4 mg/L	4 mg	NA pH units	NA pH units			NA pH units			NA mg/l		NA mg/L			NA mg/L				NA mg/L	NA mg/L		NA mg/L	
	Coefficient of Variance MC		0.7757						0.2815		4.101					0.04710			0.4930							0	0.1076	0.02282	0.4239	0.6199	0.6567	0.2527	0.0635					0.03606		0.2608				0.446		0.4308			0.7432				
	Standard Coeff Deviation Va	-		0.0103 0					m				68.54 0.					ŀ	2232						3	0		0.002294 0.0				4	4					0.0225/ 0.0	,					325.8 0								207.8 0.	
	Variance Star	CCR Appendix-III: Boron, Total (mg/L)				7.215 2.			0.0133 0.3	n, Total (n			4697 68				.10 0.	ride (mg/l	4.301				6699		ride (mg/	0	0.0001246 0.0		10			0.003485 0.0 II: pH, Field (pH units	4.77 0.06935 0.263	0.7069 0.8				0.03034	lam'	2.183 1.						421.7 20	d Solids (1			258500 50			
	Maximum Var Detect	Appendix-III: B	0.085 0.00			14.2 7.			0.74 0.0	ipua			453 41				00	R Appendix-III:	11.0						R Appendix-III:	0.1						0.31 0.00 CR Appendix-III: pl	77 0.0	7.61 0.7			6.8		To Annandiv-III	10.9 2.		357 4				7.6	lix-III: Total Diss			3140 25		2128 43	
	95th Max Percentile De	CCR			5.74					Ī			200 4						11.6													0.305 0 CCR				6.265 6				7,534		252 3				77.15 7	CCR Append					1829 2:	
	50th Percentile (Median)				5.2				0.38		0 6	2	14	e :	36	359	q		3.695									0.1					4.1	4.5	5.9	6.035	6.39	6.05.0	5	5.3	6	133	73	28	774	47.		32.5		1615		1577	
	on- Mean				2.09	2.38	4.68	96.98	0.41				165	303	385	900	173	****	4.34	11	281	96.7	177	10.4				0.101				0.234	4.15	4.69	5.91	9.09	6.31	0770	2	5,66	11.7	191	692	730	762	47.7				1590	1530	1570	555
	t Range of Non-		0.015-0.075									0												. .		0.1-0.1	0.1-0.1	0.1-0.1	0.1-0.1	0.1-0.1	0.1-0.1		ŀ								2-2					-	100	25-33.3	100-100	.	.		
	y of Percent			%0												6 8			8 8									92%								%0						%0										80	
	Frequency of Detection		9/18	18/18	16/16	19/19	17/17	17/17	11/11		6/18	19/21	21/21	19/19	18/18	18/18	11/11		18/18	21/21	19/19	18/18	10/10	11/11	11/11	1/19	2/19	1/19	12/20	16/19	15/19	11/11	19/19	21/21	21/21	20/20	20/20	20/20	11/11	18/18	18/21	21/21	19/19	18/18	18/18	11/11		14/17	21/22	12/12	18/18	18/18	11/11
	Location Id		WBW-1	WAP-01	WAP-09	WAP-17	WAP-18	WAP-19	WLF-A2-6		WBW-1	WAP-01	WAP-09	WAP-17	WAP-18	WAP-19	MLF-A2-0		T-MQM	WAP-09	WAP-17	WAP-18	WAP.19	WIE-A2-6		WBW-1	WAP-01	WAP-09	WAP-17	WAP-18	WAP-19	WLF-A2-6	WBW-1	WAP-01	WAP-09	WAP-17	WAP-18	WIE-AZ-K	2	WBW-1	WAP-01	WAP-09	WAP-17	WAP-18	WAP-19	WLF-A2-6		WBW-1	WAP-01	WAP-17	WAP-18	WAP-19	WLF-A2-6

Note: "A preliminary intrawell statistical evaluation for detection monitoring constituents was completed for planning purposes.

MARCH 2023 HALEY & ALDRICH, INC.

TABLE 3 SUMMANDE OF ASSESMENT MONITORING STATISTICAL EVALUATION BERRUARY 2022 MONITORING EVERT WINYAH ASH POND A (PRIOR TO FIRST RECEIPT OF CER AT CLASS 3 LANDFILL AREA 2)

	138			Mo	No No	No	No				Yes	Yes	Yes	Yes			No	No	No :	No			No	No	No	2			No -N	N N	No			S	No	oN oN				N N	No	No			Ī	No
	Exceedance above Background at Individual				z	z	z				>	>	> :	>			z	z	z	z			z	z	z	z			z	2 2	z			z	z	z z				zz	z	z				z
	GWPS (Higher of MCL/RSL or Background Limit)		0.025						0.010	0.010						5.0						0.004						10.0					0.1					9000						4.0		
	ISS				2 2	z	z				>	>	> :	>				z	z					z	z	z			2 2	zz	z			z	z	2 2				2 2	2	Z				z
ysis	Upper Tolerance Limit		0.025						0.008	9000						0.094						0.0005						0.0003					0.005					0.0073						0.140		
inter-well Analysi	Detect?			2	z	z	z				>	>	>	>			>	>	>	>			z	z	z	z			z	zz	z			z	z	z 2				z z	: >	z				z
	February 2022 Concentration			0000	0.002	0.002	0.002				0.049	0.153	0.082	0.199			0.058	0:030	0.068	0.036			0.0005	0.0005	0.0005	0.0005			0.0005	0.00050	0.0005			0.005	0.005	0.005	Cooro			0.0005	0.00192	0.0005				0.100
	Distribution Well*		NA	< 2	W N	NA	NA				Normal	Normal	Non-parametric			Normal	Non-parametric	Normal	Non-parametric	Non-parametric		NA NA	NA	NA	NA	NA			NA :	X X	NA		NA	NA	NA	NA NA				V V	Non-parametric	NA		Non-parametric -		Non-parametric
	Trend		NA	NA NA	NA NA	NA	NA				Decreasing	Decreasing	Stable			Increasing		Decreasing	Stable			NA	NA	NA	NA		NA		NA	NA NA	NA		NA NA	NA	NA	NA NA			NA	NA NA	Increasing	NA		NA NA		NA
	Outlier		NA :	NA NA	NA NA	NA	NA			No	No	No	No.		- N	No	No	No	Θ.	9		NA	NA	NA	NA	NA	NA		NA N	NA NA	NA		NA NA	NA	NA	N N			NA :	NA NA	N	NA		0 Z		No
	Outlier Presence		NA	NA NA	NA NA	NA	NA			Yes	No	No	0N :		Yes	No	Yes	Yes	Yes	Yes		NA	NA	NA	NA	NA	NA		NA S	NA NA	NA		NA NA	NA	NA	NA NA			NA :	NA NA	Yes	NA		0 S		No.
	Number of Non-Detection Exceedances					1	1		0	0	0	0	0	0	0	0	0	0	0	0	c	0	0	0	0	0	0	0	0 0		0		0	0	0	0 0		0	0	0 0	. 0	0		0 0		0
ľ	Number of Detection Exceedances		0	0		. 0	0		0	0	50	19	17	17	0	0	0	0	0	0	6	0	0	0	0	0	0	0	0	0	0		0	0	0	0 0		1	0	0 0		0		0 0		0
	Detection 1 Exceedances (Y/N) E		z	z 2	2 2	z	z		z	z	>	>	> :	>	z	z	z	z	z	z	2	z	z	z	z	z	z	z	z	zz	z		zz	z	z	2 2		>	z	2 2	z	z		zz		z
	Report Ex Unit		mg/L	1/8m	mg/L	mg/L	mg/L		mg/L	mg/L	mg/L	√gm	mg/L	T/8m	me/L	1/8m	mg/L	mg/L	T/8m	mg/L	me/l	mg/L mg/L	mg/L		1/8m	mg/L	mg/L	mg/L	à	mg/L	T/8m	1/8m	mg/L	mg/L		mg/L		1/8m								
	CCR MCL/RSL		9000	9000	0.006	9000	900'0		0.01	0.01	0.01	0.01	0.01	0.01	2	2	2	2	2	2	0000	0.004	0.004	0.004	0.004	0.004	0.005	0.005	0.005	0.005	0.005		0.1	0.1	0.1	0.1		900'0	9000	9000	9000	9000		4 4		4
l	Coefficient of Variance		0.8154	0.8602	0.8795	6.0	6.0		0.1691	0.2255	0.4666	0.3102	0.8709	0.5852	0.3232	0.6941	0.2876	0.3609	0.1753	0.3305		0	0	0	0	0	0	0	1.121	0.09716	0		1.129E-08	0.2853	.237E-08	2.688E-08		1.808	0.5659	0 0	0.9501	0		1.2/8E-08		0.02344
	Standard Co Deviation	ng/L)	0.005164	0.005276	0.005466	0.005677	0.005677	(1/8	0.0007859	0.001145	0.1022	0.04064	0.4463	0.06545	0.004489	0.0231	0.02151	0.01777	0.01622	0.01712	ng/L)	0	0	0	0	0	0	0	0.0008558	0.00004992	0		8.50ZE-11 U. 5.64ZE-11	Н	Н	1.3446-10		0.001934	0.0003828	0 0	0.0007784	0		1.2/8E-U9		0.002357
	Variance D	Total	H	0.00002784	+	H	0.00003223	CCR Appendix-IV: Arsenic, Total (mg/L)	6.176E-07 0	7	Н		+	0.256 0.004284 0.0654	0.00002015	H	Н	+	+	0.0002931	CCR Appendix-IV: Beryllium, Total (mg/L)	0	0	0	0	0 0			7.325E-07 0	8	Н	, Tota	3.189E-21 5	2	Н	1.807E-20 1	otal	0.000003739	40	0 0	20	0	de (m	0.000131		9
	Maximum Va	ppendix-IV: Ar	0.00	800	0.0	000	0.0	Appendix-IV: A	6.1		Н	Н	1.53 0	.256 0.0	0.0237 0.00	+	Н	+		0.1 0.0	Appendix-IV: Bo					- 1			7.3	0.00068 2.4	Н	ppendix-IV: Ch	0.005	00:0	17.	1.8	Appendix-IV: 0	0.00838 0.00	0.0016 1.4		0.0033 6.0		CR Appendix-IV	0.14		T
ļ	95th Ma Percentile D		0.011	0.011	0.012	0.013	t	S		Н	Н	H	1.362		0.02298 0.	H	Н	+	+	0.08248	O DOORS	0.0005	0.0005	0.0005	0.0005	0.0005	0.0005	0.0005	0.0022	-	Н		0.005	0.01	0.005	0.005		Н	+	50000	L	Н		0.1315		H
l				t		ŀ	l			_			+		H	t	Н	+	+	1		ŀ	H		+	1	H		+	t	H		t		Н	+			+	+	t	П		t		
	50th Percentile (Median)		0.005	+	ļ	0.005	0.005		0.005	0.005	0.194	0.119	0.306	0.102	0.0147	0.0353	0.06925	0.048	0.0915	0.051	50000	0.0005	0.0005	0.0005	0.0005	0.0005	0.0005		0.0005	+	H		0.005	L	0.005	0.005			+	0.0003	ŀ	H		0.1		0.0
	Mean			0.00613	+	H	L			_	0.219	0.131	0.512	0.112	0.0139	0.0333	0.0748	0.0492	0.0925	0.0518	0 0005					0.0005	90000		1 0.000763				0.005	Ľ	Ц	0.005				5 0,0005	L			0.104		0.101
	Range of Non- Detect		0.005-0.025	0.002-0.025	0.002-0.025	0.002-0.025	0.002-0.025		0.003-0.005	0.003-0.005											2000 0.2000	0.0005-0.0005	0.0005-0.0005	0.0005-0.0005	0.0005-0.0005	0.0005-0.0005	0.0005-0.0005	0.0005-0.0005	0.0005-0.004	0.0005-0.0005	0.0005-0.0005		0.005-0.005	0.005-0.01	0.005-0.005	0.005-0.005		0.0005-0.0005	0.0005-0.0005	0.0005-0.0005	0,0005-0,0005	0.0005-0.0005		0.1-0.1		0.1-0.1
	Percent Non-Detects		100%	100%	100%	100%	100%		100%	%68	%0	%0	% :	š	%	%0	%0	%	%	8	100%	100%	100%	100%	100%	100%	100%	100%	100%	95%	100%		100%	100%	100%	100%		%88	20%	100%	%/29	100%		84 %		94%
	Frequency of Detection		0/15	0/15	0/14	0/13	0/13		0/17	2/19	20/20	19/19	17/17	17/17	17/17	19/19	20/20	19/19	17/17	17/17	0/15	0/15	0/13	0/14	0/13	0/13	0/16	0/18	0/19	1/13	0/13		1/16	0/18	0/14	0/13	CT/O	2/17	4/17	0/15	5/15	0/15		1/18		1/18
	Location Id		WBW-1	WAP-01	WAP-17	WAP-18	WAP-19		WBW-1	WAP-01	WAP-09	WAP-17	WAP-18	WAP-19	WBW-1	WAP-01	WAP-09	WAP-17	WAP-18	WAP-19	WBW.1	WAP-01	WAP-09	WAP-17	WAP-18	WAP-19	WBW-1	WAP-01	WAP-09	WAP-1/	WAP-19		Way-1	WAP-09	WAP-17	WAP-18 WAP-19		WBW-1	WAP-01	WAP-09 WAP-17	WAP-18	WAP-19		WBW-1	WAP-U.	WAP-01

Haley Aldrich, Inc.
(Nateyaldrich, com/share/grn_common\131539 - Santee Cooper\Winyah Generating Station\Statistical Analysis\2002-01\Ash Pond A\2002-0802-HAI-CCR_WGS_CCR Stats_Summany_AP-A.xlsx

ų				٥	٥					Sk	Si	Se	20				٥	0				0		SE	0			ا	0					0		, ,					٥	٥	٥
re ound SSL lual				No.	-		No					Yes	١						N			-	No	Yes	-			N	+	2 2				+	S S	+				No.	+	+	N
Exceedance above of Background at ind Individual				z	Z	z	z			>	>	> >				Z	z	z	Z			Z		>	z				z :	2 2				z i	zz	2				z	Z	z	z
GWPS (Higher of MCL/RSL or Background Limit)		2100	0.015						0.040						0.002						0.1						5.97					0.05						.000	0.002				
ISS				Z	Z	z	z			>	>	> >				z	z	z	z			z		>	z				z	2 2				z	2 2	2	2			z	z	z	Z
Upper Tolerance Limit		0100	0.010						0.012						0.0002						0.050						5.97					0.030						1000	0.001				
Detect?				z	z	z	z			>	>	> >	>			z	z	z	z			z	>	>	z			>	> :	>	-			z	z 2	2 :	z			z	z	z	z
February 2022 Concentration				0.003	0.003	0.003	0.003			0.052	0.073	0.050	0.073			0.00020	0.00020	0.00020	0.00020			0.005	0.043	0.196	0.005			5.720	1.150	4.310	Rent .			0.005	0.005	0.000	0.003			0.001	0.001	0.001	0.001
Distribution Well*				NA	NA	NA	NA		Non-parametric	Normal	Normal	Normal				NA	NA	NA			NA.	Non-parametric		Non-parametric	Normal		Normal	Normal	Non-parametric	Non-parametric				NA:	AN AN	× ×				NA	NA	NA	NA
Trend			Decreasing	NA	NA	NA	NA		Stable	Decreasing		Increasing		NA		NA	NA	NA			NA	Decreasing		Increasing			Decreasing		Decreasing				NA	NA :	N N	VA VA		NA		NA	NA	NA	NA
Outlier Removed			No	NA	NA	NA	NA		No	No	No	oN S		AN	NA	NA	NA	NA	NA		NA	No		No	No	No	No	No	ON :	No.			NA	NA :	NA NA	VIV.		NA		NA	NA	NA	NA
Outlier Presence			Yes	NA	NA	NA	NA		Yes	oN.	Yes	9 S		NA	NA	NA	NA	NA	NA		NA	No		Yes	S S	- N	2	No	S :	2 2			NA	NA	NA NA	V V		NA		NA	NA	NA	NA
Number of Non-Detection Exceedances		0	0	1	0	0	0		0	0	0	0 0	>	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0 (0 0		0	0	0	0 0		•	0	0	0	0	0	0
Number of Detection N Exceedances		0	0	0	0	0	0	0	0	17	17	11	4	0	0	0	0	0	0	0	0	0	2	6	0	0	m	2	r- (0	.	0	0	0	0		>	0	0	0	0	0	0
Detection Exceedances (Y/N)		z	z	z	z	z	z	z	z	>	>	> >	-	z	z	z	z	z	z	z	z	z	>	>	z	z	>	>	> :	2 2		z	z	z	zz	2 2	z	z	z	z	z	z	z
Report Result Unit		mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	me/L	mg/L	mg/L	mg/L	mg/L	1/8	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	l/au	mg/L	mg/L	mg/L	mg/L	mg/L	pCi/L	DCI/L	DCI/L	DC//	DCI/I	a diad	mg/L	mg/L	mg/L	ma/l	1/8/11	1/8	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L
CCR MCL/RSL		0.015	0.015	0.015	0.015	0.015	0.015	0.04	0.04	0.04	0.04	0.04	0.04	0.002	0.002	0.002	0.002	0.002	0.002	0.1	0.1	0.1	0.1	0.1	0.1	10	25	2	10	n u	,	0.05	0.05	0.05	0.05	20.0	0000	0.002	0.002	0.002	0.002	0.002	0.002
Coefficient of Variance		1.224	1.09	2.892	0.4834	0.4886	0.4886	0.1249	0.1323	0.2751	0.6239	0.4979	0.2108	0	0	0	0.0527	0	0	0.817	0.1249	0.537	1.092	1.847	0.4128	0.5338	0.4612	0.3601	0.5918	0.3703	12100	0.3429	0.3264	0.7735	0.3521	C/C/O	0.373	0	0.2472	0	0	0	0
Standard Deviation	mg/L)	0.002256	0.002201	0.01119	0.0006387	0.0006578	0.0006578	(mg/L) 0,001213	0.001296	0.02083	0.1883	0.1312	0.05270	0 0	0	0	0.00001069	0	0	0.009852	0.001213	0.008193	0.07509	0.7449	0.01519	28 (pu/t) 1.565	1.59	1.337	1.723	1.222	I (mg/L)	0.00375	0.003536	0.009771	0.004009	0.00416	1 (mg/L)	0	0.0002324	0	0	0	0
Variance	CCR Appendix-IV: Lead, Total (mg/L)	0.0000005091	0.000004846	0.0001251	0.0000000408	4.327E-07	4.327E-07	CCR Appendix-IV: Lithium, Total (mg/L) 0.000001471 0.0012	0.00000168	0.0004341	0.03547	0.01722	0.002/83	O 0 0	0	0	1.143E-10	0	0	CCR Appendix-IV: Molybdenum, Total (mg/L)	0.000001471	0.00006713	0.005639	0.5549	0.0002308	4.33 2.45 1.565	2.527	1.787	2.97	1.450	CCR Appendix-IV: Selenium, Total (mg/L)	0.00001406	0.0000125	0.00009547	0.00001E07	0.00001/31	CCR Appendix-IV: Thallium, Total (mg/L)	0	0.000000054	0	0	0	0
Maximum Detect	CCR Appendix	_	0.00456 (CR Appendix-I	0.0116		0.825	0.54	0.303	v-vibuaddw v					1	Appendix-IV: I		0.034	0.35	H	0.057	Appendix-IV:	5.97	5.72	5.51	4.40	R Appendix-IV					İ	R Appendix-IV					1	7
95th Percentile		0.004375	0.005376	0.00725	0.0025	0.0025	0.0025	0.01	0.01032	0.1164	0.5913	0.508		0.0002	0.0002	0.0002	0.000214	0.0002	0.0002	0.018	0.01	0.03064	0.158	1.7	0.0555	4.298	5.786	5.416	4.614	4.24			0.02	0.023	0.02	0.02		0.001	0.001	0.001	0.001	0.001	0.001
50th Percentile (Median)		0.001	0.001	0.001	0.001	0.001	0.001	0.01	0.01	0.069	0.27	0.24	0.233	0.0002	0.0002	0.0002	0.0002	0.0002	0.0002	100	0.01	0.0109	0.049	0.1525	0.04005	4	4	4	4	1 4		0.01	0.01	0.01	0.01	0.01	0.00	0.001	0.001	0.001	0.001	0.001	0.001
Mean		0.00184	0.00202	0.00387	0.00132	0.00135	0.00135	0.00971	0.0098	0.0757	0.302	0.264	0.23	0.0002	0.0002	0.0002	0.000203	0.0002	0.0002	0.0121	0.00971	0.0153	0.0688	0.403	0.0368	2.93	3.45	3.71	2.91	3.33		0.0109	0.0108	0.0126	0.0111	0.0112	0.0112	0.001	0.00094	0.001	0.001	0.001	0.001
Range of Non- Detect			Н				0.001-0.0025	0.005-0.01	H					0.0002-0.0002	0.0002-0.0002	2			0.0002-0.0002	0.005-0.05	H	0.005-0.01			0.005-0.05	0-4	4-4	4-4	4-4	1 7		0.005-0.02	0.005-0.02	0.005-0.05	0.005-0.02	2000-000	20.00-000	0.001-0.001		0.001-0.001	0.001-0.001	0.001-0.001	0.001-0.001
Percent Ran Non-Detects						100% 0.0			94% 0.	r	%0	% %	85					100% 0.00			100% 0.	r	%0	%0	1	41%	29%	18%	41%	4178		100% 0.	T	100%	t	t		Г		100% 0.0	7	T	100% 0.0
Frequency of Pe Detection Non-					-		0/13 1		1/17			17/17		H	H			+	0/12 1		0/17 1		17/17		14/16	71/01	ŀ		+	10/1/		0/16 1	+	+	0/14	ł	1 61/0	0/15 1			-	+	0/13 1
				-	-	-	H	ŀ	ŀ			+	1	H	H			+	H	-	ŀ				1		ŀ		+	ł			-	+	+	ł	1	ŀ			-	+	-
Location Id		WBW-1	WAP-01	WAP-09	WAP-17	WAP-18	WAP-19	WBW-1	WAP-01	WAP-09	WAP-17	WAP-18	WAP-I.	WBW-1	WAP-01	WAP-09	WAP-17	WAP-18	WAP-19	WBW-1	WAP-01	WAP-09	WAP-17	WAP-18	WAP-19	WBW-1	WAP-01	WAP-09	WAP-17	WAP-10		WBW-1	WAP-01	WAP-09	WAP-17	OT JAMA	TLUM	WBW-1	WAP-01	WAP-09	WAP-17	WAP-18	WAP-19

TABLE 4 SUMMANDY O ASSESSMENT MONITORING STATISTICAL EVALUATION ESERUAY 2022 MONITORING EVENT WINYAH ASH POND 8 (PRIOR TO FIRST RECEIPT OF CCR AT CLASS 3 LANDFILL AREA 2)

	188			ON COL	No.	No				ν ,	Yes	No			No	No	No				No	S :	No.			No	S _O	No			No	No	No.				No	No	No			N	No	No			S.	No	No
	above Background at Individual				: 2	z				2 1	>	z				z	z				z	z :	z			z	z	z			z	z	z				z	z	z				z	z			z	z	z
	GWPS (Higher of MCL/RSL or Background Limit)		0.025					0100						2.000					0.004					L	0.005				L	0.100				L	0.006					Ŀ	4.00					0.015			
	ISS			2	2	z				z	>	z			>	>	z				z	> 1	z			z	z	z			z	z	z				z	z	z			z	z	z			z	z	z
	Upper Tolerance Limit		0.025					0.00						0.094					0.0005						0.0005					0.0050					0.0023						0.140					0.0100			
Inter-well Analysis	101 56										0.059																				L	0.005						0.0008									L	0.001	
Inter-	Detect?			2	· >	z				>	>	z			>	>	>				z	>	z			z	z	z			z	>	z				z	>	z			z	>	z			z	>	z
	ebruary/March 2022 Concentration			0000	0.002	0.002				90000	0.158	0.003			0.248	0.123	0.028				0.0005	0.0013	0.0005			0.0005	0.0005	0.0005			0.005	0.138	0.005				0.0005	0.0099	0.0005			0.100	0.140	0.100			0.003	0.072	0.003
	Distribution Well* February/March 2022 Concentration		NA	× 12	NA	NA		ΔN		Non-parametric	Normal	NA		Normal		Normal	Normal		NA		NA	W.	NA A			NA	NA	NA		NA	NA	NA	NA		NA		NA	Non-parametric	NA		Non-parametric	Non-parametric	Normal	NA		Non-parametric	NA	Non-parametric	NA
	Trend		NA	NA NA	NA	NA		NA	NA	Decreasing	Decreasing	NA	Stable	Increasing		Stable	Decreasing		NA	NA	NA	W :	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA NA	l	NA	NA	NA	Increasing	NA	NA	NA	Stable	Stable	NA		Stable	NA	NA	NA
	Outlier Removed		NA	N N	NA	NA		NA	No	2 :	No	NA	N S	- N		No	No		NA	NA	NA	¥ :	NA	NA	NA	NA	NA	NA	NA AN	NA	NA	No.	NA	l	NA	ON.	NA	No	NA	No.	No	No	No	NA		2	NA	No	NA
	Outlier Presence		NA	NA NA	NA	NA		NA	Yes	Yes	00	NA	Yes	No.		Yes	Yes		NA	NA	NA	NA :	NA	NA	NA	NA	NA	NA	AM	NA	NA	No No	NA	l	NA	o _N	NA	Yes	NA	- N	No	No	No	NA		Yes	NA	Yes	NA
•	Number of Non-Detection Exceedances					-		0	0	0 1	0	0	0	0	0	0	0		0	0	0	0 4	0	0	0	0	0	0	0	0	0	0	0		0	0	0	0		0	0	0	0	0	0	0	0	0	0
	Number of Nu Detection Non- Exceedances Exc		0	0 0				0	0	7	17	0		. 0	0	0	0	ŀ	0	0	0	0 0	0	0	0	0	0	0	0	. 0	0	1	0	ŀ	1	0	0	1	0	0	0	0	0	0	0	0	0		0
	Detection Num Exceedances Det (Y/N) Excee		z	2 2	. z	z		z	z	> :	>	z	z	z	z	z	z	H	z	z	z	2 :	z	z	z	z	z	z	z	z	z	>	z	H	>	z	z	>	z	z	z	z	z	z	z	. z	z	>	z
	Report Det		mg/L	mg/L	mg/L	mg/L		mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	ŀ	mg/L	mg/L	mg/L	mg/L	1/8	mg/L	mg/L	1/8m	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	1/8	ŀ	mg/L	mg/L	mg/L	1/8m	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	me/L	mg/L	1/8m	mg/L	mg/L
	CCR RA		9000	+	0.006	H		-	n 10.0	+	+	١	H	2 "	2 n	2	2 п	H	п 6000	0.004 n	+	0.004	1	H	0.005 m	H	n 500.0	-	H	H	H	0.1 n	-	H	900'0	900:0		0.006 n	-	4	ŀ	Н	+	4	0.015	H	+	H	H
	Coefficient of Variance M		0.8154	+	0.8795	H		0.1691	+	1.577	+	0.1691	0.3232	0.6941	0.1334	.5034	0.5674		0	0	+	0.3838	0	0	0	0	0	0	0.000000017	1.129E-08	1.129E-08	2.451	2.688E-08	H	1.808	0.5659		1.45	-	1.278E-08	0.1102	0.1197	0.3309	38E-08		H	1.221	H	H
	Standard Coef Deviation Va	2/1)	41	0.005276 0	H	H		_		+	+	68	8	H			4	(1/3	0	0	+	138	0	0	0	0	0	0	-	-	Н	Н	9	H	0.001934	0.0003828 0	0	Н	301	60-	H	Н		6	92	+	H	H	_
	Sta Variance Dev	CCR Appendix-IV: Antimony, Total (mg/L)	0.00002667 0.0	0.00002784 0.0	+	H	otal	_	~	+	+	6.176E-07 0.00078	0.00002015 0.0	H		-	0.001065 0.0	CCR Appendix-IV: Beryllium, Total (mg/L)	0	0	+	8	CCR Annendix-IV: Cadmium Total (mg/l)	0	0	0	0	0	CCR Appendix-IV: Chromium, Total (mg/L) 0.005 7.228E-21 8.502E-1	3.189E-21 5.6	H	Н	CCR Appendix-IV: Cobalt. Total (mg/L)		0.0000003739 0.0	1.465E-07 0.00	0	Н	3.00079 0.000005294 0.002	1.633E-18 1.2	H		-	1.633E-18 1.2	CCR Appendix-IV: Lead, Total (mg/L) 0.000005091 0.0022	4	1	L	Н
	Maximum Var	pendix-IV: Ant	0.000	0000	0.002 0.000	t	ppendix-IV: Ar			+	0.158 0.00	6.17	0.0237 0.000	$^{+}$			0.15 0.00	pendix-IV: Ber			+	0.0013 4.57	mondiv-IV- Cad	pelicik-iv. car				- 1	pendix-IV: Chro	3.18	3.18	0.138 0.00	1.80 Appendix-IV: Co		0.00838 0.000	0.0016 1.46			0.00079 0.000	0.1 1.63	H	Н	0.79 0.0	1.63	Appendix-IV: L	0.00456 0.000		0.0716 0.00	Н
	95th Maxi Percentile Det	CCR Ap	П	0.011	H	H		-	+	0.14 0.	+	0.005	0.02298 0.0	⊬		-	0.118 0.		0.0005	0.0005	-	+	0.0005	0.0005	0.0005	0.0005	0.0005	0.0005	0.005 CCR Ap		0.005		0.005 CCR /	Н	0.003516 0.00	0.00152 0.0	0.0005	Н	0.002632 0.00	H	0.1315 0.	Н		0.1	0.004375	+	+	H	H
			H			H			+	+	+	1	H	t					+		+	+	1	H	H		1	1	-					r	t	+			1	H	ŀ	Н	1	1		t	t		l
	50th Percentile (Median)		0:002	+	ļ	L		0.005	-	+	-	0.005	ŀ	0.0353		-	0.0552	-	0.0005	0.0005	4	+	0.0005	H			-	0.0005	000	0.005	ŀ	0:002	0.00	H	0.0005	9 0.0005			0.0005	L	ŀ			0.1		0.001	L		L
	Mean		Ш	0.00613	H	H		0.00465		4	4	0.00465	0.0139	0.0333	0.276	0.0507	0.0575		500005				0.0005	0.0005				12 0.0005	0.005	L	L		0.005		0.00107	92900000		Ш	0.00108	0.1	0.104	0.104	0.538	0.1	0.00184				
	Range of Non- Detect		0.005-0.025	0.002-0.025	0.005-0.025	0.002-0.025		0.003-0.005	0.003-0.005	0.005-0.005		0.003-0.005	Ŀ						0.0005-0.0005	0.0005-0.0005	0.0005-0.0005	0.0005-0.0005	0.0005-0.0005	0.0005-0.0005	0.0005-0.0005	0.0005-0.0005	0.0005-0.0005	0.0005-0.0005	0.005-0.005	0.005-0.005	0.005-0.005	0.005-0.005	0.005-0.005	L	0.0005-0.0005	0.0005-0.0005	0.0005-0.0005	0.0005-0.001	0.0005-0.01	0.1-0.1	0.1-0.1	0.1-0.1		0.1-0.1	0.001-0.01	0.001-0.01	0.001-0.01	0.001-0.0025	0.001-0.002
	Percent Non-Detects		100%	100%	93%	100%		100%	%68	42%	%0	100%	%	%0	%0	%0	%6		100%	100%	100%	93%	100%	100%	100%	100%	100%	100%	94%	100%	100%	93%	100%		%88	76%	100%	18%	94%	94%	89%	%68	%0	100%	100%	78%	100%	86%	100%
	Frequency of Detection		0/15	0/15	1/14	0/13		0/17	2/19	11/19	17/17	0/17	17/17	19/19	19/19	17/17	17/17		0/15	0/15	0/13	1/14	0/13	0/16	0/18	0/18	0/14	0/13	1/16	0/18	0/18	1/14	0/13		2/12	4/17	0/17	14/17	1/17	1/18	2/18	2/18	18/18	0/18	0/16	4/18	0/18	2/14	0/13
	Location Id		WBW-1	WAP-01	WAP-20	WAP-21		WBW-1	WAP-01	WAP-10	WAP-20	WAP-21	WBW-1	WAP-01	WAP-10	WAP-20	WAP-21		WBW-1	WAP-01	WAP-10	WAP-20	WAP-21	WBW-1	WAP-01	WAP-10	WAP-20	WAP-21	WBW-1	WAP-01	WAP-10	WAP-20	WAP-21		WBW-1	WAP-01	WAP-10	WAP-20	WAP-21	WBW-1	WAP-01	WAP-10	WAP-20	WAP-21	WBW-1	WAP-01	WAP-10	WAP-20	WAP-21

TABLE 4 SURMANDO FASSESAREIT MONITORING STATISTICAL EVALUATION SUBMANY 2021 MONITORING EVENT WINVAH ASH POND B (PRIOR TO FIRST RECEPT OF CCR AT CLASS 3 LANDRILL AREA 2)

	155				No	Yes	No					No	N _o	No				No	No	No				No	No	No				No	No.	No				No	No	No
	Exceedance above Background at Individual Well				z	>	z					z	z	z				z	z	z				z	z	z				z	z	z				z	z	z
	GWPS (Higher of MCL/RSL or Background Limit)		000	0.040						0.0020						0	OTTO					0.9	0.0					050.0	0.030					0000	0.002			
	SS				>	>	z					Z	z	Z				z	z	z				Z	Z	z				z	z	z				Z	Z	z
	Upper Tolerance Limit		0.00	0.012						0.0002						0.00	0000					102	9:3/					0000	0.020					1000	0.001			
eli Alidiyala	101 S6					0.209																		4.71	1.68													
M-ISTIII	Detect?				>	>	z					z	z	z				z	>	z				>	>	>				z	z	z				z	z	z
	Distribution Well* February/March 2022 Concentration				0.029	0.164	0.005					0.0002	0.0002	0.0002				0.005	0.016	0.005				9.900	8.150	1.350				0.005	0.005	0.005				0.001	0.001	0.001
	Distribution Well*				Non-parametric	Normal	NA			NA		NA	NA	NA		:	T.	NA	Normal	NA		Non-parametric		Normal	Non-parametric	Non-parametric		N.	MM	NA	NA	NA		1	MM	NA	Non-parametric	NA
	Trend		NA	Stable	Stable		NA				NA		NA	NA			NA		Stable			Decreasing			Decreasing	Decreasing			NA	NA	NA	NA					NA	NA
	Outlier Removed		NA	No	No	No	NA				NA		NA	NA			NA		No			No		No	No				NA	NA	NA	NA		NA		NA	No	NA
	Outlier Presence		NA			No	NA		ΔN		NA		NA	NA			NA		No			No		No					NA	NA	NA	NA		NA			No	NA
	Number of Non-Detection Exceedances		0	0	0	0	0		c		0	0	0	0		0	0	0	0	0		0	0	0	0	0		0	0	0	0	0		0	0	0	0	0
	Number of Detection Exceedances		0	0		17	0		-		0	0	0	0		0	0	0	10	0		0	9	Ħ	1	2		0	0	0	0	0		0	0	0	0	0
	Detection Exceedances (Y/N)		z	z	>	>	z		2		z	z	z	z		z	z	z	>	z		z	>	>	>	>		z	z	z	z	z		z	z	z	z	z
	Report Result Unit		mg/L	mg/L	mg/L	mg/L	mg/L		l/au	5	mg/L	mg/L	mg/L	mg/L		mg/L	mg/L	mg/L	mg/L	mg/L		DCI/L	DCI/L	pCi/L	pCi/L	pCi/L		mg/L	mg/L	mg/L	mg/L	mg/L		mg/L	mg/L	mg/L	mg/L	mg/L
	CCR MCL/RSL		0.04	0.04	0.04	0.04	0.04		0000		0.002	0.002	0.002	0.002		0.1	0.1	0.1	0.1	0.1		2	2	s	2	S		0.05	0.05	0.05	0.05	0.05		0.002	0.002	0.002	0.002	0.002
	Coefficient of Variance		0.1249	0.1323	0.2538	0.3422	0.1249		-		0	0	0	0		0.817	0.1249	0.1249	0.755	0.817		0.5338	0.4612	0.2508	0.5351	0.4989		0.3429	0.3264	0.3264	0.3621	0.373		0	0.2472	0	0.1538	0
	Standard Deviation	otal (mg/L)	0.001213	0.001296	0.006648	0.08376	0.001213	'otal (mg/L)	c		0	0	0	0	1, Total (mg/L)	0.009852	0.001213	0.001213	0.1047	0.009852	& 228 (pCi/L)	1.565	1.59	1.323	1.812	1.693	rotal (mg/L)		0.003536	0.003536	0.004009	0.00416	fotal (mg/L)	0	0.0002324	0	0.0001604	0
	Variance	CCR Appendix-IV: Lithium, Total (mg/L)	0.000001471	0.00000168	0.0000442	0.007016	0.000001471	CCR Appendix-IV: Mercury, Total (mg/L)	0		0	0	0	0	CCR Appendix-IV: Molybdenum, Total (mg/L)	0.00009706	0.000001471	0.000001471	0.01096	0.00009706	CCR Appendix-IV: Radium-226 & 228 (pCi/L)	2.45	2.527	1.75	3.284	2.868	CCR Appendix-IV: Selenium, Total (mg/L)	0.00001406	0.0000125	0.0000125	0.00001607	0.00001731	CCR Appendix-IV: Thallium, Total (mg/L)	0	0.000000054	0	2.571E-08	0
	Maximum Detect	CCR Append		0.0116	0.0466	0.406		CCR Appendi							2R Appendix-I				0.397		CR Appendix-	4.33	5.97	6.91	8.15	2.67	CCR Appendix						CCR Appendi				0.0016	
	95th Percentile		0.01	0.01032	0.0358	0.3612	10.0		0.0002		0.0002	0.0002	0.0002	0.0002	σ	0.018	0.01	0.01	0.3194	0.018	J	4.298	5.786	6.902	5.134	5.166		0.02	0.02	0.02	0.02	0.02		0.001	0.001	0.001	0.00121	0.001
	50th Percentile (Median)		0.01	0.01	0.0231	0.24	0.01		0.0002		0.0002	0.0002	0.0002	0.0002		0.01	0.01	0.01	0.13	0.01		4	4	5.63	4	4		0.01	0.01	0.01	0.01	0.01		0.001	0.001	0:001	0.001	0.001
	Mean		0.00971	9600.0	0.0262	0.245	0.00971		0 000		0.0002	0.0002	0.0002	0.0002		0.0121	0.00971	0.00971	0.139	0.0121		2.93	3.45	5.27	3.39	3.39		0.0109	0.0108	0.0108	0.0111	0.0112		0.001	0.00094	0.001	0.00104	0.001
	Range of Non- Detect		0.005-0.01	0.005-0.01			0.005-0.01		0 0002-0 0000		0.0002-0.0002	0.0002-0.0002	0.0002-0.0002	0.0002-0.0002		0.005-0.05	0.005-0.01	0.005-0.01		0.005-0.05		0-4	4-4		4-4	4-4		0.005-0.02	0.005-0.02	0.005-0.02	0.005-0.02	0.005-0.02		0.001-0.001	0.0001-0.001	0.001-0.001	0.001-0.001	0.001-0.001
	Percent R Non-Detects		100%	94%	%0	%0	100%		100%	T	100%	100%	100%	100%		100%	100%	100%	%	100%		41%	29%	%0	41%	24%		100%	100%	100%	100%	100%		100%	П	П	П	100%
	Frequency of Detection		0/17	1/17	17/17	17/11	0/17		0/15		0/15	0/13	0/13	0/13		0/17	71/0	0/17	17/17	0/17		10/17	12/17	17/17	10/17	13/17		0/16	0/18	0/18	0/14	0/13		0/15	0/15	0/13	1/14	0/13
	Location Id		WBW-1	WAP-01	WAP-10	WAP-20	WAP-21		WRW-1		WAP-01	WAP-10	WAP-20	WAP-21		WBW-1	WAP-01	WAP-10	WAP-20	WAP-21		WBW-1	WAP-01	WAP-10	WAP-20	WAP-21		WBW-1	WAP-01	WAP-10	WAP-20	WAP-21		WBW-1	WAP-01	WAP-10	WAP-20	WAP-21

TABLE S SUMMARY OF ASSESSMENT MONITORING STATISTICAL EVALUATION ULUZ 2022 MONITORING EVENT WINYAH ASH POND A (POST FIRST RECEPT OF CCR AT CLASS 3 LANDFILL AREA 2)

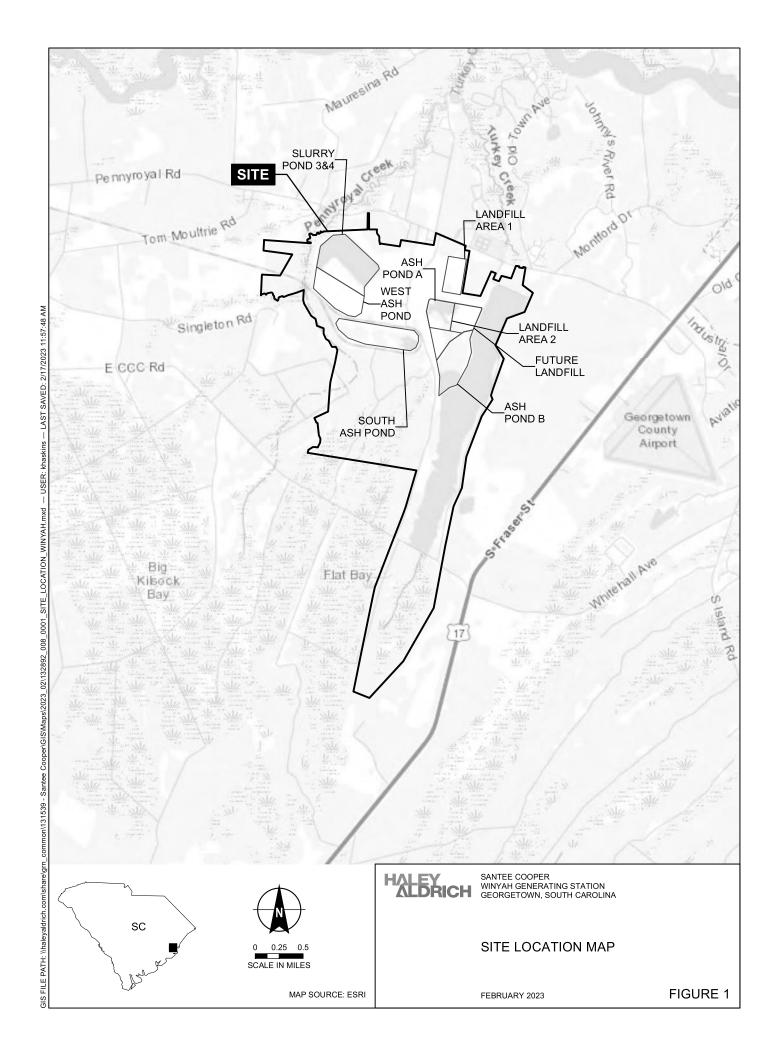
	188				SN S	2	No	No				Yes	Yes	Yes	Yes				No	No	ο _ν :	NO			272	ON 12	0 2	NO.	NO.			No	No	No	No				ON :	2 2	2 2				No	No	ON 52	ON.			2	0 2	2 2				ON :	2 2	No.	A.			Yes	No	Yes	res
	Exceedance above Background at Individual Well				2	2	Z	Z				>	>	>	>				N	N	z	z			2		2 2	2 2				N	×	N	N				z	2 2	2				N	z	2 2				z	2 2	2				z	2 2	. 2				>	N	> :	>
	GWPS (Higher of MCL/RSL or Background Limit)			0.025						0100	0.010						3.0	0.7						0.004							0.01						01							8000					0.7	2					0.015						0000	0.040				
	SSI MG				2	: 2	z	z				,	>	,	>				Z	z	z :	z			2		zz					z	z	z	Z				z	2 2	: z				z	z	2 2				z	zz					2 :	2 2	: 2				>	,	>	
	ance																																																																	
Inter-well Analysi	Upper Tolerance Limit			0.025						0.008	00000						0.004	0.034						0.0005							0.0005						0.005							0.0084					0.140	OLEAN OLEAN					0.010						0.000	0.012				
Ξ	n Detect?				2	: 2	z	z				>	>	>	>				>	>	> :	>			2	2 :	z 2	z	z			z	z	z	z				z	zz	zz				z	z	> >	-			z :	2 2	: >				z :	z 2	2	2			>	>	>	>
	July 2022 Concentration				0000	0000	0.005	0.005				0.093	0.095	0.189	0.117				0.080	0.041	0.076	0.044			00000	0.0003	0.0005	0.0003	0.0005			0.0005	0.0005	0.00050	0.0005				0.005	0.005	0.005				0.0005	0.0005	0.00207	0.0000			0.100	0.100	009'0				0.003	0.010	0.010	0000			0.042	0.040	0.050	0.770
	Distribution Well*			NA			NA			92	MM	Normal	Non-parametric	Non-parametric			Non-parametric	Non-parametric	Non-parametric	Normal				NA							NA	NA	NA	NA										NA	NA	NA			Monanamount				Non-parametric		Non-parametric							NOTIFICATION OF THE COLOR		Normal	Normal	
	Trend						NA	NA		NA	NA									Decreasing												NA	NA	NA	NA		NA	NA					NA	NA	NA	NA	Increasing			NA			Increasing		NA	NA		MA				Stable	Decreasing	Decreasing		
	Outlier Removed						NA			NA	No	No	No	No			No	No	No	No				No.	NA NA	101	NA NA	NA ::				NA	NA	NA			NA	NA								NA:				No	N :		No		NA	No						No	No	No	No	
	Outlier Presence Outli						NA							No	No										40	5 :	NA.							A)			(A	VA.								NA.				9					IA.										9	
											_		_	_			-	-	-	-															-																					-						_		-		
	f Number of Non-Detection		-		-			1		0	0	0	0	0	0		0	0	0	0	0	0		0	9 0	0	0 0	0	9	-	· c	0	0	0	0		0	0	0	0 0	0		0	0	0	0	0 0		0	0	0	0 0	0		0	0		0 0		>	0	0	0	0	0	٥
	Number of S Detection Exceedances		c				0	0		0	0	21	70	18	18		0	0	0	0	0	0		0 0	0	0	0 0	0 0	0	0		0	0	0	0		0	0	0	0 0	0			0	0	0	0 -	1	0	0	0	0 0	0		0	0	0	0		>	0	0	18	17	82	92
	Detection Exceedances (Y/N)		2	2	2	2	z	z		z	z	>	>	>	>		z	z	z	z	z :	z	2	2 :	2 2	: :	2 2	2 :	z	2	2	z	z	z	z		z	z	2 :	2 2			>	z	z	z :	2 >	-	z	z	z :	zz	z		z	z	z :	2 2	: 2	:	z	z	>	>	> :	-
	Report Result Unit			l/em			mg/L			mg/L	mg/L	mg/L	mg/L	mg/L	√8m		mg/L	mg/L	√8µ	mg/L	mg/L	mg/L		+	+	+	mg/L	+		(June				mg/L			mg/L	mg/L	mg/L	me/l	mg/L		mg/L				mg/L		mg/L	mg/L	mg/L	mg/L	mg/L			mg/L					mg/L	mg/L	mg/L	mg/L	mg/L	mg/L
	it of CCR						9000				0.01									2		7	0000	0.004	0.004	0000	0.004	0.004	0.00	0.000	0.005			0.005	0.005		38 0.1		0.1					90000							4 .					0.015									0.04	
	d Coefficient of n Variance			0.8421									0.3124	0.8891	0.5664							0.3255		0 0	0	0	0 0	0 0	0	0		1	0	11 0.0938	0		1.164E-08			1.70E-08			9 1.636			0			0			0.4239						5777			9 0.1212	3 0.1283			+	0.4756
	Standard	(otal (ms/L)	5000	Ľ				0.005466	otal (mg/L)	2 0.0008556				0.4396	0.06351	otal (mg/L)			0.021		0.01621	0.016/2	otal (mg/L)	0	0	0		0	((/ww/ wav	oren (mg/c)		0.0008351	0	0.00	0	Total (mg/L)	5.821E-11			1.138-11		tal (mg/L)	9 0.001939		0		0.0008144	* (mg/t)	0			0.0633/	0.1521	al (mg/L)				0.002324		otal (mg/L)	9 0.001179	3 0.001258			4	0.1328
	Variance	CCB Appendix-IV: Antimony. Total (mg/L)	0.00000	0.00002606	0.00002987	0.00002784	0.00002987	0.00002987	CCR Appendix-IV: Arsenic, Total (mg/L)	0.000000732	0.000001243	0.01068	0.001629	0.1932	0.004034	CCR Appendix-IV: Barium, Total (mg/L)	0.00006934	0.0006193	0.0004408	0.0003027	0.0002627	0.0002795	CCR Appendix-IV: Beryllium, Total (mg/L)	0	0	0	0 0	0	OCE Assendiv-W: Cadmium Total (mc/l)			6.974E-07	0	2.314E-09	0	CCR Appendix-IV: Chromium, Total (mg/L)	3.388E-21	0	0.000002368	1.7515.20	1.2516-20	CCR Appendix-IV: Cobalt, Total (mg/L)	0.000003759		0		6.633E-07	P	0	0.0001246	0.000005263	0.004016	0.02313	CCR Appendix-IV: Lead, Total (mg/L)		-	0.0001186	0.0000054	0.000005749	CCR Appendix-IV: Lithium, Total (mg/L)	0.000001389	0.000001583	0.0004718	0.03711	0.01874	0.01763
	Maximum e Detect	CCR Appendix	viniaddo von						CCR Appendi			0.42									0.141													8 0.00068		CCR Appendix	0000					CCR Append					0.0033		0.1			0.32	9.0	CCR Appen		9 0.00456						0.0116		+	0.54	-
	e 95th Percentile		0.00	100	0.012	0.011	0.012	0.012		0.005	0.007255	0.409	0.202	1.352	0.2348		0.02675	0.08165	0.11	0.07179	0.1147	0.08139	0.000	0.0005	0.0005	0.000	0.0005	0.0005	0.000	00000	0.0005	0.0021	0.0005	0.000563	0.0005		0.005	0.005	0.01	0.005	0.005		0.003934	0.001515	0.0005	0.0005	0.002378	0,00100	0.1	0.131	0.101	2.051	0.582		10:0	0.005104	0.004875	0.00475	0.005125	0.00016.	0.01	0.01024	0.1155	0.5775	0.506	0.3747
	50th Percentile (Median)		2000	0000	5000	0000	0.005	00:00		0.005	0.005	0.193	0.1165	0.302	0.103		0.01485	0.0376	0.0697	0.0471	0.0913	0.0483	0.000	0.0000	0.0000	00000	0.0005	0.0005	0.0005	00000	0.0005	0.0005	0.0005	0.0005	0.0005		0.005	0.005	0000	0.005	0.005		0.0005	0.0005	0.0005	0.0005	0.0005	0,000	0.1	0.1	0.1	0.125	0.17		0.001	0.001	0.001	0.001	1000	7000	10.01	0.01	0.0685	0.25	0.225	0.2575
	Mean		0.00625	0.00606	0.00621	0.00613	0.00621	0.00621		0.00456	0.00507	0.213	0.129	0.494	0.112		0.0156	0.0357	0.075	0.0488	0.0916	0.0514	0.0000	0.000	0.0000	0.000	0.0005	0.000	0.0005	90000	0.0005	0.00075	0.0005	0.000513	0.0005		0.005	0.005	0.00526	0.005	0.005		0.00118	0.000717	0.0005	0.0005	0.000898	0.000043	0.1	0.104	0.101	0.15	0.232		0.00232	0.00204	0.0038	0.00196	961000	0,000,00	0.00972	0.00981	0.0739	0.288	0.252	0.279
	Range of Non- Detect		0.005-0.025	0.002-0.025	0.002.0.025	0.002-0.025	0.002-0.025	0.002-0.025		0.003-0.005	0.003-0.005												20001 0 00001	0.0005-0.0005	0.0005-0.0005	0,000,000,000	0.0005-0.0005	0.0005-0.0005	0.0003-0.0003	0.0005.0.0005	0.0005-0.0005	0.0005-0.004	0.0005-0.0005	0.0005-0.0005	0.0005-0.0005		0.005-0.005	0.005-0.005	0.005-0.01	0.005-0.005	0.005-0.005		0.0005-0.0005	0.0005-0.0005	0.0005-0.0005	0.0005-0.0005	0.0005-0.0005	0,0003-0,0003	0.1-0.1	0.1-0.1	0.1-0.1	0.1-0.1	0.1-0.1		0.001-0.01	0.001-0.01	0.001-0.05	0.001-0.01	0.001.000	1000.000	0.005-0.01	0.005-0.01				
	Percent Non-Detects		100%	100%	100%	100%	100%	100%		100%	85%	%0	%0	%0	%6		%0	%0	%0	%0	8 8	\$	1000	1000	1006	NOOT TOO	100%	1000	100%	100%	100%	100%	100%	93%	100%		94%	100%	100%	100%	100%		83%	3,22,6					95%	89%	92%	40%	21%		100%	79%	100%	100%	100%	TOO TO	100%	94%	%0	%0	%	ŝ
	Frequency of Detection N		91/0	91/0	0/14	0/15	0/14	0/14		0/18	3/20	21/21	20/20	18/18	18/18		18/18	20/20	21/21	20/20	18/18	18/18	2000	97/0	0/16	47.00	0/15	0/14	0/14	2002	0/19	0/20	0/15	1/14	0/14		1/17	0/19	0/19	0/10	0/14		3/18	5/18	0/16	0/17	6/16	1/10	1/19	2/19	1/19	12/20	15/19		0/17	4/19	0/20	0/15	0/14	+T/o	0/18	1/18	18/18	19/19	18/18	18/18
	Location Id Fr		WRW.1	WAP-01	WAP.09	WAP-17	WAP-18	WAP-19		WBW-1	WAP-01	WAP-09	WAP-17	WAP-18	WAP-19		WBW-1	WAP-01	WAP-09	WAP-17	WAP-18	WAP-19		T-AAGAA	WAP-01	MAN AN	WAP-1/	WAP-10	WAP-19	WIDWEST	WAP-01	WAP-09	WAP-17	WAP-18	WAP-19		WBW-1	WAP-01	WAP-09	WAP-1/	WAP-19		WBW-1	WAP-01	WAP-09	WAP-17	WAP-18	MAR-12	WBW-1	WAP-01	WAP-09	WAP-1/	WAP-19		WBW-1	WAP-01	WAP-U9	WAP-1/	WAP.19	7	WBW-1	WAP-01	WAP-09	WAP-17	WAP-18	WAP-19

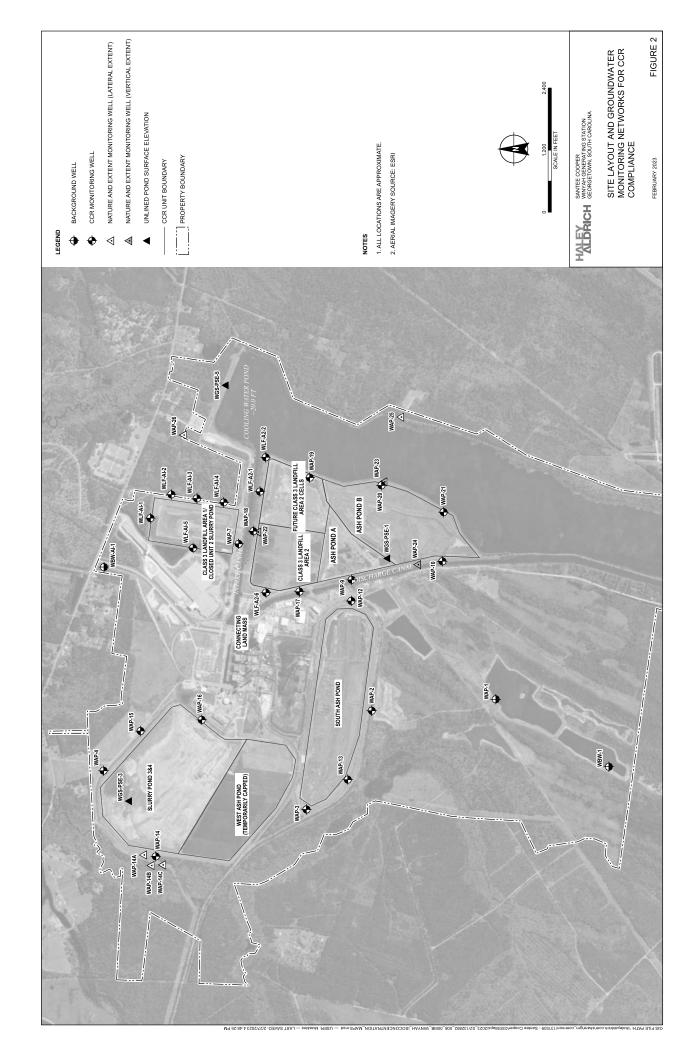
TABLE S SUMMARY OF ASSESSMENT MONITORING STATISTICAL EVALUATION ULUZ 7022 MONITORING EVENT WINYAH ASH POND A (POST FIRST RECEIPT OF CCR AT CLASS 3 LANDRILL AREA 2)

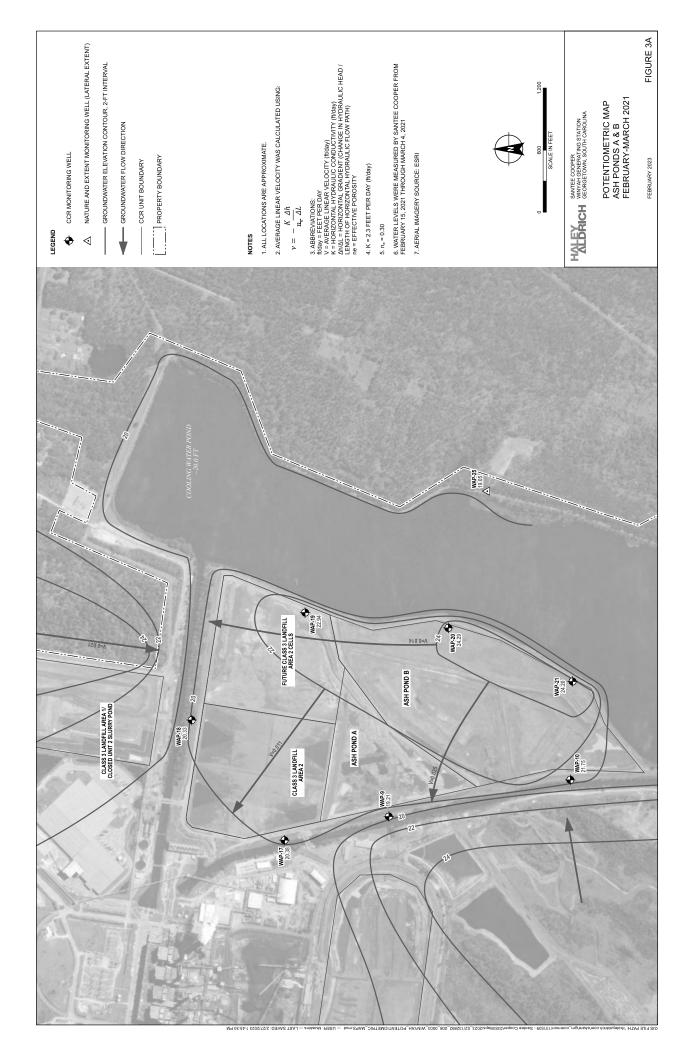
1													_											_				_						_		
	155				No	No	No	No				No	No	Yes	No				No	No	No	No				No	No	No	No				No		No	Mo
	Exceedance above Background at Individual Well				z	N	z	z				z	N	>	×				z	z	Z	z				×	×	N	z				×	N	N	N
	GWPS (Higher of MCL/RSL or Background Limit)		0000	0.002							170						10.1	/870						500	com						0000	7000				
	OW ISS				z	z	z	z				z	×	*	Z				z	×	z	z				×	×	×	Z				×	N	N	N
	Upper Tolerance Limit		0 0000	0.0002						0.00	0.000						.00	/6'6						0000	07070						0.001	1000				
	Detect? Upp				z	z	z	z				z	*	>	*				>	>	>	>				z	z	z	z				z	z	z	2
	July 2022 Di				0.00020	0.00020	0.00020	0.00020				0.010	0.025	0.190	0.050				1.200	2.970	3.910	1.940				0.003	0.003	0.003	0.003				0.001	0.001	0.001	0000
	Distribution Well* Cor				NA	NA	NA	NA				Non-parametric	Non-parametric		Normal		Non-parametric	Normal	Normal	Non-parametric	Non-parametric	Non-parametric					NA						NA		NA	
																											z									
	oved		NA	NA	NA	NA	NA	NA		NA	NA								Decreasing	Decreasing	Decreasing	Decreasing		NA	NA	NA	NA	NA	NA		NA	NA	NA		NA	
	Outlier Presence Outlier Removed		NA	NA	NA	NA	NA	NA			NA	No	No	No	No		No	No	No	No	No	No		NA	NA		NA				NA	NA	NA		NA	
			NA	NA	AM	NA	AM	NA		ΝΑ	NA	No			No		No	No	No	No	No	No		NA	NA	NA	NA		NA		NA	NA	NA		NA	
	Number of Non-Detection Exceedances		0	0	0	0	0	0		0	0	0	0	0	0		0	0	0	0	0	0		0	0	1	0	0	0		0	0	0	0	0	c
	Number of Detection Exceedances		0	0	0	0	0	0		0	0	0	2	9	0		0	4	2		0	0		0	0	0	0	0	0		0	0	0	0	0	c
	Detection Exceedances (Y/N)		z	z	z	z	z	z		z	z	z	>	>	z		z	>	>	>	z	z		z	z	z	z	z	z		z	z	z	z	z	2
	Result Unit		mg/L	mg/L	mg/L	mg/L	mg/L	mg/L		mg/L	mg/L	mg/L	mg/L	mg/L	mg/L		pCi/L	DCI/L	pCi/L	DCI/L	pCi/L	DCI/L		mg/L	mg/L	mg/L	mg/L	mg/L	mg/L		mg/L	mg/L	mg/L	mg/L	mg/L	Vow
	r ccr MCL/RSL		0.002	0.002	0.002	0.002	0.002	0.002		0.1	0.1	0.1	0.1	0.1	0.1		s	ın	s	10	s	ın		90.0	0.05	90.0	0.05	90.0	0.05		0.002	0.002	0.002	0.002	0.002	0.002
	Coefficient of Variance		0	0	0	9605000	0	0		0.8012	0.1212	0.5375	1.109	1.851	0.4006		0.5167	0.449	0.399	0.5735	0.3588	0.3814		0.3992	0.3783	0.8063	0.424	0.4383	0.4383		0	0.2384	0	0	0	c
	Standard Deviation	tal (mg/L)	0	0	0	0.00001033	0	0	Total (mg/L)	0.00957	0.001179	0.008045	0.07358	0.7231	0.01505	228 (pCi/L)	1.557	1.587	1.426	1.672	1.194	1.203	tal (mg/L)	0.004168	0.003932	0.009776	0.004452	0.004618	0.004618	tal (mg/L)	0	0.000225	0	0	0	c
	Variance	CCR Appendix-IV: Mercury, Total (mg/L)	0	0	0	1.067E-10	0	0	CCR Appendix-IV: Molybdenum, Total (mg/L)	0.00009158	0.000001389	0.00006472	0.005414	0.5229	0.0002266	CCR Appendix-IV: Radium-226 & 228 (pCi/L)	2.424	2.519	2.032	2.795	1.426	1.447	CCR Appendix-IV: Selenium, Total (mg/L)	0.00001737	0.00001546	0.00009558	0.00001982	0.00002133	0.00002133	CCR Appendix-IV: Thallium, Total (mg/L)	0	5.063E-08	0	0	0	c
	Maximum Detect	CCR Appendix-							R Appendix-IV:			0.034	0.35	5.9	0.057	R Appendix-IV	4.39	5.97	5.72	5.51	4.46	4.39	CCR Appendix-I							CCR Appendix-						
	95th Percentile		0.0002	0.0002	0.0002	0.000212	0.0002	0.0002	8	0.016	0.01	0.03043	0.146	1.62	0.0554	٥	4.339	5.774	5.397	4.558	4.332	4.271		0.02	0.02	0.0215	0.02	0.02	0.02		0.001	0.001	0.001	0.001	0.001	000
	50th Percentile (Median)		0.0002	0.0002	0.0002	0.0002	0.0002	0.0002		0.01	10:0	0.01045	0.047	0.165	0.041		4	4	4	4	4	4		0.01	0.01	10.0	0.01	10.0	0.01		0.001	0.001	0.001	0.001	0.001	1000
	Mean		0.0002	0.0002	0.0002	0.000203	0.0002	0.0002		0.0119	0.00972	0.015	0.0664	0.391	0.0376		3.01	3.54	3.57	2:92	3.33	3.15		0.0104	0.0104	0.0121	0.0105	0.0105	0.0105		0.001	0.000944	0.001	0.001	0.001	1000
	Range of Non- Detect		0.0002-0.0002	0.0002-0.0002	0.0002-0.0002	0.0002-0.00024	0.0002-0.0002	0.0002-0.0002		0.005-0.05	0.005-0.01	0.005-0.01			0.005-0.05		9-0	4-4	4-4	4-4	4-4	4-4		0.0025-0.02	0.0025-0.02	0.0025-0.05	0.0025-0.02	0.0025-0.02	0.0025-0.02		0.001-0.001	0.0001-0.001	0.001-0.001	0.001-0.001	0.001-0.001	10001.000
	Percent Non-Detects		100%	100%	100%	100%	100%	100%		100%	100%	20%	550	%0	12%		39%	28%	17%	39%	39%	20%		100%	100%	100%	100%	100%	100%		100%	100%	100%	100%	100%	100%
	Frequency of Detection N		0/16	0/16	0/14	0/15	0/14	0/14		0/18	0/18	9/18	18/18	17/17	15/17		11/18	13/18	15/18	11/18	11/18	9/18		0/17	0/19	0/20	0/15	0/14	0/14		0/16	0/16	0/14	0/15	0/14	0714
	Fr Location Id		WBW-1	WAP-01	WAP-09	WAP-17	WAP-18	WAP-19		WBW-1	WAP-01	WAP-09	WAP-17	WAP-18	WAP-19		WBW-1	WAP-01	WAP-09	WAP-17	WAP-18	WAP-19		WBW-1	WAP-01	WAP-09	WAP-17	WAP-18	WAP-19		WBW-1	WAP-01	WAP-09	WAP-17	WAP-18	WAP.19
	2							Ĺ																												Ĺ

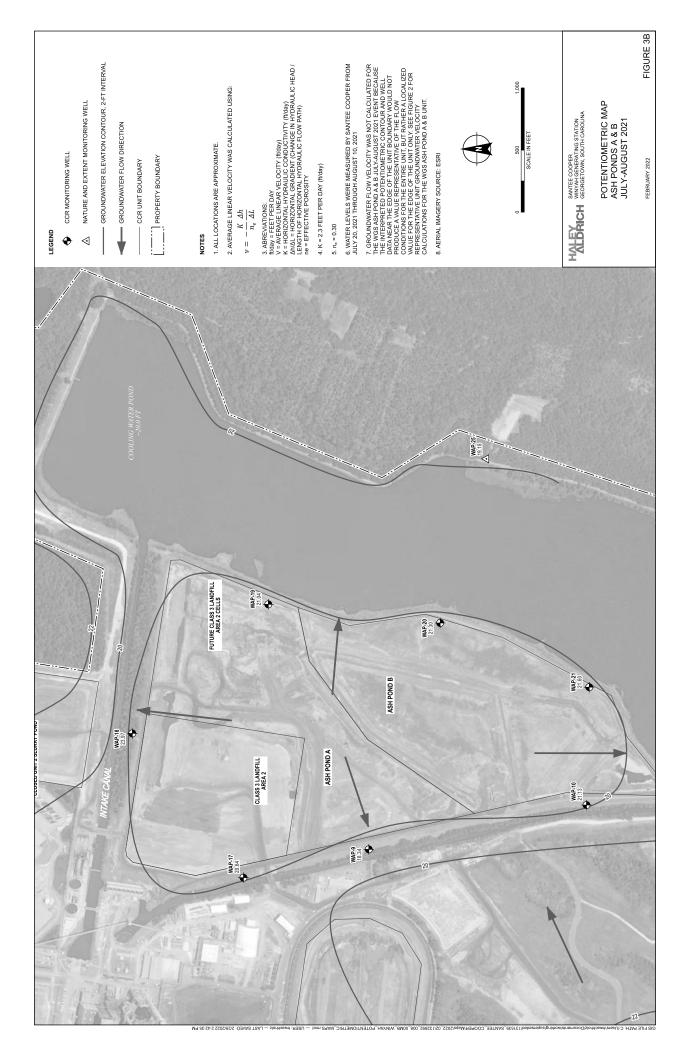
TABLE 6 SUMMARTO F ASSESSMENT MONITORING STATISTICAL EVALUATION LUT, 7022 MONITORING EVENT WINYAH ASH POND 8 (POST FIRST RECEIPT OF CCR AT CLASS 3 LANDFILL AREA 2)

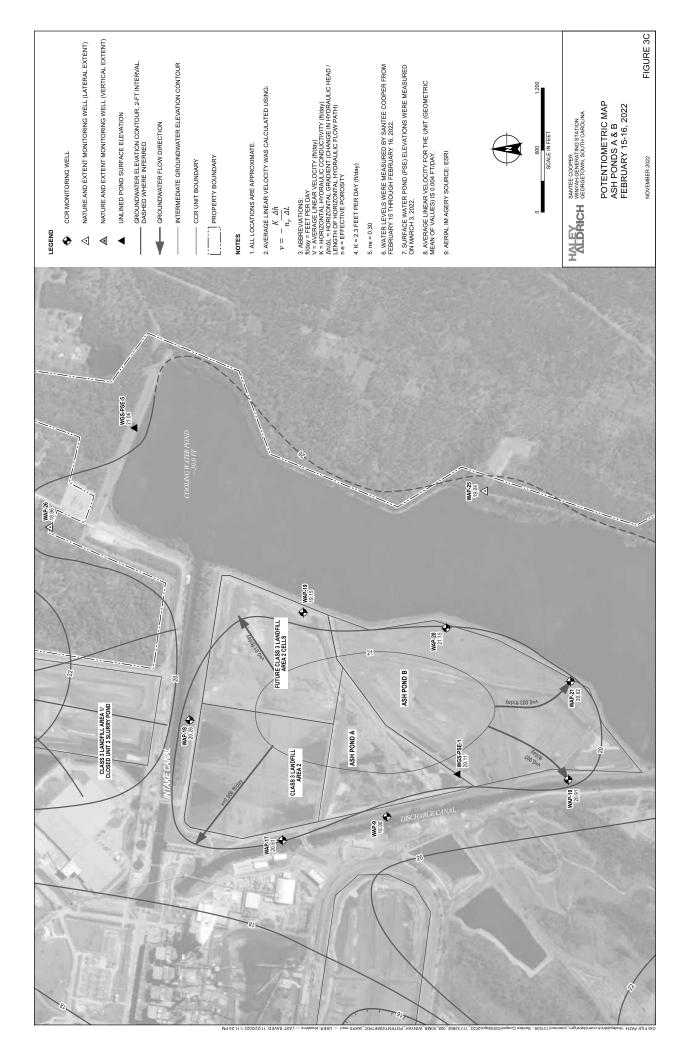
	SS		No	ON S			Yes	Yes	N.			No	2 2			2	No	No			N	No.	2			2 2	ş			No.	2 2			92	N :	2		2	2	No			Yes	No.		į	2 2	8			2 2	8			N N	
	Background at Individual Well		Z	2 >			>	>	>				zz					*				Z				zz				Z	z z				z								z >-				zz				2 2				zz	
GWPS (Higher of	MCL/RSL or Background Limit)	0.025				0.010					2:000				0.004					0.005				0010					0.008				4.00				0.015				0000	0000			00000					0.10				5.97		
	SS		z	2 >			>	>	>			>-	> z			z	>	>			z	z	-			2 2	>			z	zz			z	> :			z	2	z			- >-				z >				z >				zz	
Ilmor Tolerance	Limit	0.025				0.008					0.094				0.0005					0.0005				0 00050	0.000				0.0084				0.140				0.0100				0000	77000			00000	-				0.050				5.97		
ysis	101 %56							650'0																															0.001				0.209													
-	Detect?		z	2 2			>	>	z			>	> 2			z	٨	z			z	z	z			z >	z			z	> 2			z	> :	z		z	. >	z			- >	z			z >	z			z >	· z			> >	
Infv 2022	Concentration		0.005	0.005			0000	0.141	0.030			0.206	0.050			0.0005	0.0007	0:0020			0.0005	0.0005	0,0040			0.003	0.050			0.0005	0.00746			0.100	0.570	0.100		1000	0.050	0.010			0.210	0.010		2,0000	0.00034	0.0002			0.010	0.010			2.100	
	Distribution Well*	NA	NA	NA NA		NA	Ion-parametric				Jon-parametric	Ion-parametric	Ion-parametric		NA	NA	Ion-parametric			NA	NA	NA		978		N N	NA		lon-parametric	NA			Ion-parametric	Ion-parametric	Normal			NA				and the second	Normal		VA.		NA NA			AN :	Normal				Normal Ion-parametric	
	Trend		NA NA	NA No			Stable	Decreasing			Stable	Stable	Stable h Decreasing h		NA NA	NA NA		NA Di			NA	NA			NA	A AN	NA		NA	NA			NA NA				NA						Stable			NA	N.A.							Stable	Stable Decreasing h	
	Outlier Removed		NA NA	No			N 8				No	No	No No		NA	NA		NA				NA			NA :	N N	NA		No	NA			oN 5		No								No No			NA	NA NA							No.	No No	
	tlier Presence Ou		A A				No No				Yes	Yes	No		NA	NA						NA			NA	Yes	NA			NA			No No		No								No No			NA	NA NA							No	No No	
Aumber of	Non-Detection Outlier Presence Exceedances					0 0	0	0	0	c	. 0	0	0 0		0 0	. 0	0	0		0	0	0	0	0	0		0	0	0	0	0		0 0	0	0 0	0	0	0 0	0	0	0	0 0		0	0	0	0 0	0	0	0 (0 0	0	o	, 0	0 0	
	Detection No Exceedances El	0 1	0 0	0 0		0 0	۸ د	17	0	-	0	0	0 0		0 0	0	0	0		0 0	0	0	0	0	0 6	0 11	0	-	0	0	1 0		0 0	0	0 0	5	0	0 0		0	0	0	17	0	0	0 0	0 0	0	0	0 0	o 9	0	0		111	
Detection	Exceedances (Y/N) E	z	zz	z 2		2 2	· >	>	z	2	z	z	zz		2 2		z	z		zz	z	z	z	z	z	z >	z	>	z	z	> z		2 2	z	z	z	z	zz		z	z	z	- >	z	z	z	zz	z	z	2 2	e >	z	z	. >		
	Result	mg/L	mg/L	mg/L		mg/L	mg/L	mg/L	mg/L	Ua.	WW.	mg/L	mg/L		mg/L	mg/L	mg/L	mg/L		mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	me/L	mg/L	mg/L	mg/L me/L		mg/L	mg/L	mg/L	TIEV.	mg/L	mg/L mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	OCI/L	pC/V	DC/V	
	MCL/RSL	900'0	0.006	9000		0.01	0.01	0.01	0.01	^	2	2	2 2		0.004	0.004	0.004	0.004		0.005	0.005	0.005	0000	0.1	0.1	0.1	0.1	0.006	900'0	900'0	90000		4 4	4	4 .	,	0.015	0.015	0.015	0.015	90'0	\$0.04	0.04	90.0	0.002	0.002	0.002	0.002	0.1	0.1	170	0.1	un	, 10	57 57	
Coefficient of	Variance	0.8154	0.9	0.8795		0.1691	1.577	0.5415	0.1691	0.3232	0.6941	0.1334	0.5674		0	0	0.3838	0		0	0	0	0	0.000000017	1.129E-08	2.451	2.688E-08	1.808	0.5659	0	2.138		1.278E-08	0.1197	0.3309	1.27.05-00	1.224	1.09	2.996	0.4886	0.1249	0.1323	0.3422	0.1249	0	0	0	0	0.817	0.1249	0.755	0.817	0.5338	0.4612	0.2508	
	ation	0.005164	0.005677	0.005466	(1/3u	0.0007859	0.04265	0.0413	0.0007859	0.004489	0.0231	0.03683	0.02553	(1/Sm)	0		0.0002138	0	(1/Sm)	0	0	0	0 (mg/L)	E-11	5.647E-11	0.03555	1.3446-10	0,001934	0.0003828	0	0.002301	5	1.278E-09	0.01243	0.1781	1.2/0c-03 (mg/L)	0.002256	0.002201	0.01881	0.0006578	0.001213	0.001296	0.08376	0.001213	0	0	0 0	0	0.009852	0.001213	0.1047	0.009852	(pC(/t)	1.59	1.693	
	le Detect Variance Devi	0.00002667	0.00003223	0.00002987	CCR Appendix-IV: Arsenic, Total (mg/L)	6.176E-07	0.001819	0.001705	6.176E-07	D 00002015 0 0004489	0.0005335	0.001356	0.0006519	Beryllium, Total (mg/L)	0 0	0	4.571E-08	0	CCR Appendix-IV: Cadmium, Total (mg/L)	0	0	0	Appendix-IV: Chromium, Total (mg/L)	7.2285-21	3.1896-21	5.1898-21	1.807E-20	CCR Appendix-IV: Cobalt, Total (mg/L) 0.00838 0.000003739 0.0	1,465E-07	0	0.000004748	CCR Appendix-IV: Fluoride (mg/L)	1.633E-18	0.0001546	0.03173	Lead, Total (m	0.0000005091	0.000004846	0.0003538	4.327E-07 0.00	0.000001471	0.00000168	0.007016	0.000001471	CCR Appendix-IV: Mercury, Total (mg/L) 0	0	0 0	0 0	900009706	0.000001471	0.01096	0.00009706	CCR Appendix-IV: Radium-226 & 228 (pCi/L) 4.33 2.45 1.56	2.527	1.75	
Maximum	Detect	Appendix-14: A		0.002	Appendix-IV: /	0.0003		0.158		0.0237		0.396	0.123	÷			0.0013		Appendix-IV: C				opendix-IV: Ch	0.005		0.138		0.00838			0.00079	CR Appendix-II	0.1	0.15	0.79	CCR Appendix-IV: Lead, Total		0.00456	0.0716	-	- Commission		0.406		Appendix-IV: N			M. M.	pendix-IV: Mo		0.397		ppendix-IV: Rai	26.5	5.67	
	Percentile	0.011	0.013	0.012	CCR	0.005	0.14	0.146	0.005	0.02298	6850.0	0.3366	0.118	CCR	0.0005	0.0005	0.00078	0.0005	CCR	0.0005	0.0005	0.0005	CCR /		0.005	0.05155	0.005	0.003516	0.00152	0.0005	0.003412		0.1	0.1245	0.739	8		0.003625	0.02668	0.0025	10.0	0.01032	0.3612	0.01	0.0002	0.0002	0.0002	0.0002	0.018	0.01	0.3194	0.018	4.298	5.786	5.166	
SOth Percentile	(Median)	0.005	0.005	0.005		0.005	0.0059	0.0663	0.005	0.0147	0.0353	0.269	0.044		0.0005	0.0005	0.0005	0.0005		0.0005	0.0005	0.0005	0,000	0.005	0.005	0.005	0.005	0.0005	0.0005	0.0005	0.000		0.1	0.1	0.575	110	0.001	0.001	0.001	0.001	10:0	10:0	0.24	0.01	0.0002	0.0002	0.0002	0.0002	0.01	0.01	0.01	10.0	4	. 4	5.63	
	Mean	0.00633	0.00631	0.00621		0.00465	0.0271	0.0763	0.00465	0.0139	0.0333	0.276	0.0507		0.0005	0.0005	0.000557	0.0005		0.0005	0.0005	0.0005	0.0000	0.005	0.005	0.0145	0.005	0.00107	9/900000	0.0005	0.00108		0.10	0.104	0.538	170	0.00184	0.00202	0.00628	0.00135	0.00971	8600.0	0.245	0.00971	0.0002	0.0002	0.0002	0.0002	0.0121	0.00971	0.139	0.0121	2.93	3.45	3.39	
	Range of Non-Detect	0.005-0.025	0.002-0.025	0.005-0.025		0.003-0.005	0.005-0.005		0.003-0.005						0.0005-0.0005	0.0005-0.0005	0.0005-0.0005	0.0005-0.0005		0.0005-0.0005	0.0005-0.0005	0.0005-0.0005	0.00005-0.00005	0.005-0.005	0.005-0.005	0.005-0.005	0.005-0.005	0.0005-0.0005	0.0005-0.0005	0.0005-0.0005	0.0005-0.001		0.1-0.1	0.1-0.1		170-170	0.001-0.01	0.001-0.01	0.001-0.0025	0.001-0.0025	0.005-0.01	0.005-0.01		0.005-0.01	0.0002-0.0002	0.0002-0.0002	0.0002-0.0002	0.0002-0.0002	0.005-0.05	0.005-0.01	10.0-00.0	0.005-0.05	1	4.4	. 4-4	
Jerrent	Non-Detects Rai	100%	100%	93%		100%	42%	%	100%	ě	8	%0	88		100%		93%	100%		100%				94%	7001	93%	100%				18%		94%	89%	900	1000	100%	78%	86%	100%	100%	94%	8 8	100%			100%		100%	100%	100%	100%	41%	29%	24%	
Jo Autonia	Detection No	0/15	0/15	1/14		71/0	11/19	17/17	0/17	12/12	19/19	61/61	17/17		0/15	0/13	1/14	0/13		0/10	0/18	0/14	0/13	1/16	81/0	1/14	0/13	2/12	4/17	0/17	14/17		1/18	2/18	18/18	0/18	91/0	4/18	2/14	0/13	0/17	1/17	17/17	0/17	0/15	0/15	0/13	0/13	0/17	21/0	12/17	0/17	10/17	12/17	17/17	
	Location Id De	WBW-1	WAP-01	WAP-20			WAP-10		WAP-21	WRW-1		WAP-10			WBW-1	WAP-10	WAP-20	WAP-21		WAP-01	/AP-10	WAP-20	AP-21	WBW-1	WAP-01	AP-20	WAP-21		WAP-01		WAP-20 WAP-21			WAP-10			WBW-1	WAP-01 WAP-10	WAP-20	(AP-21	WBW-1		WAP-20		WBW-1	(AP-01	WAP-10	WAP-21		WAP-01					WAP-10 WAP-21	
	Local	WB	WAW	WA		WE	WA	WA	WA	WB	WA	WA	WA		WE	WA	WA	WA		WA	WA	WA	Š	WB	WA	WA.	W/A	WB	WA	WA	WA.		WE	WA	WA		WB	WA.	WA	WA	WB	WA	WA	WA	WB	WA	WA	WA	WB	WA	WA	WA	WB	WA	WA	

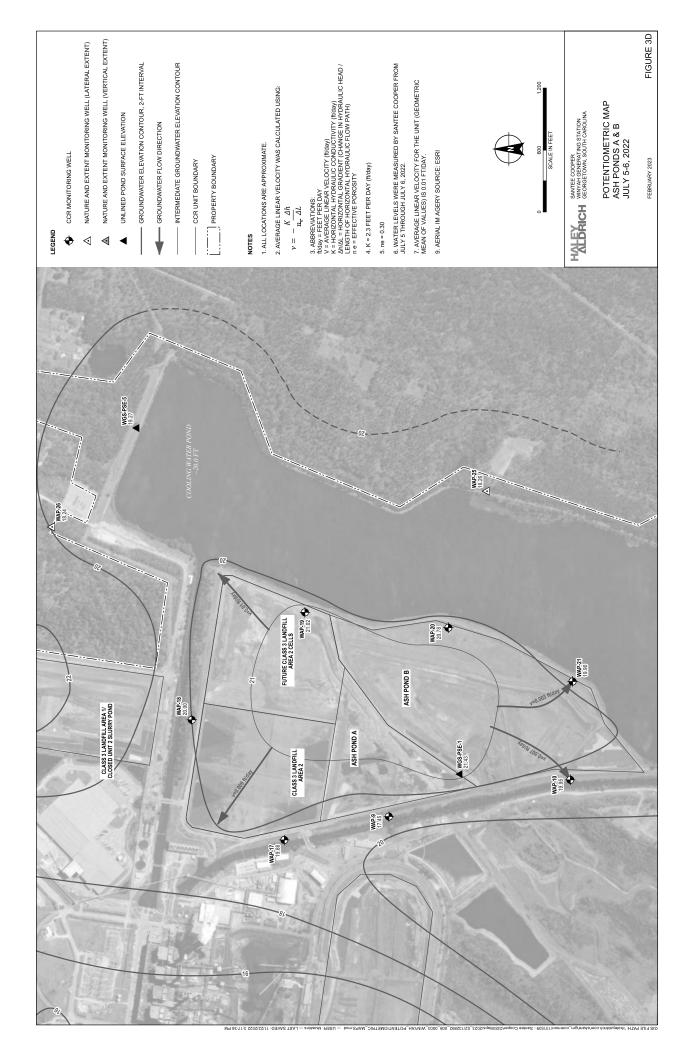

DECEMBER 2022 HALEY & ALDRICH, INC.

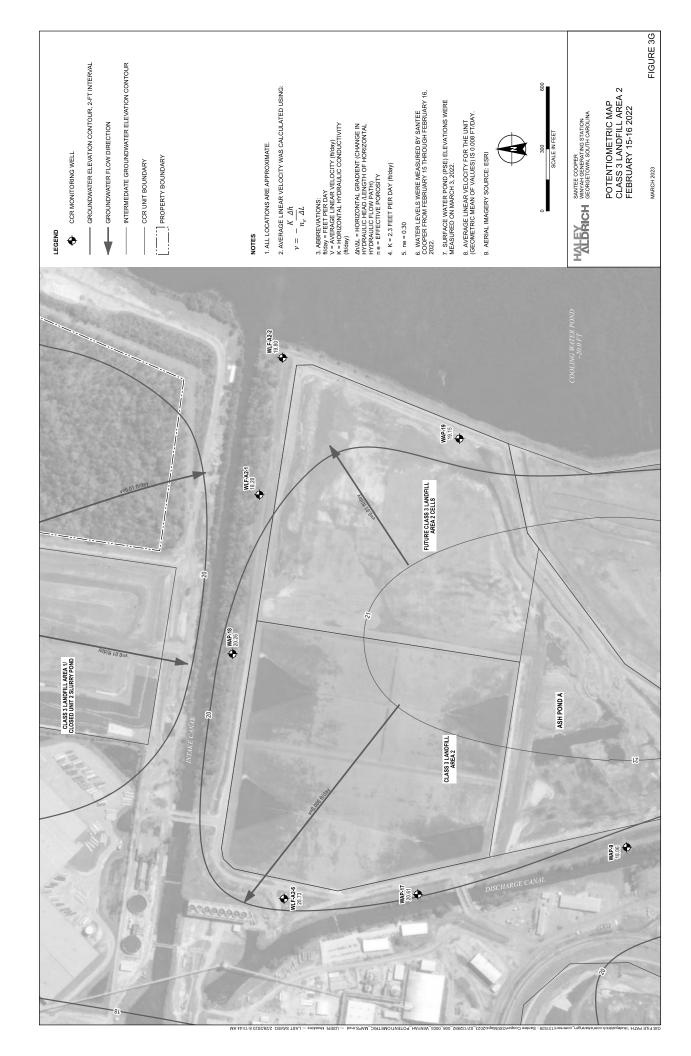

TABLE 6
SUMMARY OF ASSESSMENT MONITORING STATISTICAL EVALUATION
JULY 2022 MONITORING EVENT
WINYAH ASH POUD B (POST FIRST RECEIPT OF CCR AT CLASS 3 LAMDFILL AREA 2)

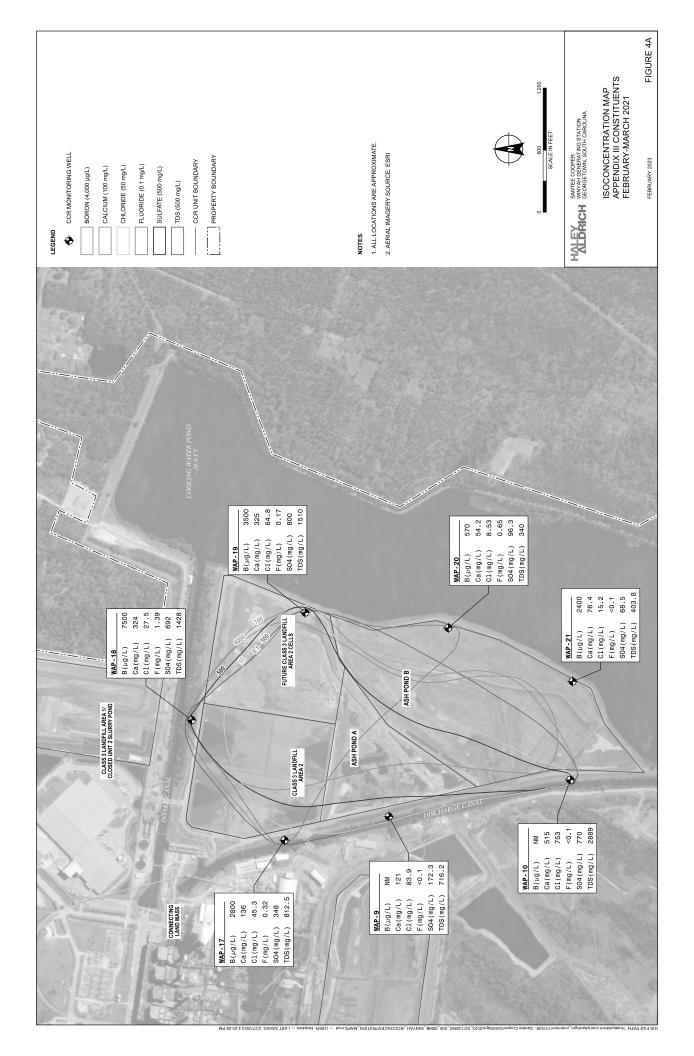

	251.				No	200	No				No	No	No
	above nd at Well												
	Exceedance above Background at Individual Well				Z	Z					z	Z	>
	GWPS (Higher of MCL/RSL or Background Limit)		0 000	0000					0000	0.002			
	ISS				z	z	>				z	z	>
	Upper Tolerance Limit		0000	0.020					0000	0.001			
Inter-well Analysis	101 %S6												
드	Detect?				z	>	z				z	z	z
	July 2022 Concentration				0.0025	0.004	0.025				0.001	0.001	0.010
	Distribution Well*			100	NA	NA			414		NA	Non-parametric	NA
	Trend		NA	NA	NA	NA			NA	NA	NA	NA	NA
	rtlier Removed		NA	NA	NA	NA			NA	NA	NA	No	NA
	Outlier Presence Outlier Removed		NA	NA	NA	NA			NA	NA	NA	No	NA
	Non-Detection O Exceedances		0	0	0	0	0		0	0	0	0	0
	Number of P Detection No Exceedances Ex		0	0	0	0	0		0	0	0	0	0
	Detection 1 Exceedances (Y/N) E		z	z	z	z	z		z	z	z	z	z
	Report Result I		mg/L	mg/L	mg/L	mg/L	mg/L		mg/L	mg/L	mg/L	mg/L	mg/L
	CCR MCL/RSL		0.05	0.05	0.05	0.05	90:0		0.002	0.002	0.002	0.002	0.002
	Coefficient of Variance		0.3429	0.3264	0.3264	0.3621	0.373		0	0.2472	0	0.1538	0
	Standard Deviation	(mg/L)	0.00375	0.003536	0.003536	0.004009	0.00416	(mg/L)	0	0.0002324	0	0.0001604	0
	Variance	CCR Appendix-IV: Selenium, Total (mg/L)	0.00001406	0.0000125	0.0000125	0.00001607	0.00001731	CCR Appendix-IV: Thallium, Total (mg/L)	0	0.0000000054	0	2.571E-08	0
	Maximum Detect	2R Appendix-IV						CR Appendix-IV				0.0016	
	95th Percentile	8	0.02	0.02	0.02	0.02	0.02	5	0.001	0.001	0.001	0.00121	0.001
	50th Percentile (Median)		0.01	0.01	0.01	0.01	0.01		0.001	0.001	0.001	0.001	0.001
	Mean		0.0109	0.0108	0.0108	0.0111	0.0112		0.001	0.00094	0.001	0.00104	0.001
	Range of Non-Detect		0.005-0.02	0.005-0.02	0.005-0.02	0.005-0.02	0.005-0.02		0.001-0.001	0.0001-0.001	0.001-0.001	0.001-0.001	0.001-0.001
	Percent F Non-Detects		100%	100%	100%	100%	100%		100%	100%	100%	93%	100%
	Frequency of Detection		0/16	81/0	81/0	0/14	0/13		0/15	0/15	0/13	1/14	0/13
	Location Id		WBW-1	WAP-01	WAP-10	WAP-20	WAP-21		WBW-1	WAP-01	WAP-10	WAP-20	WAP-21

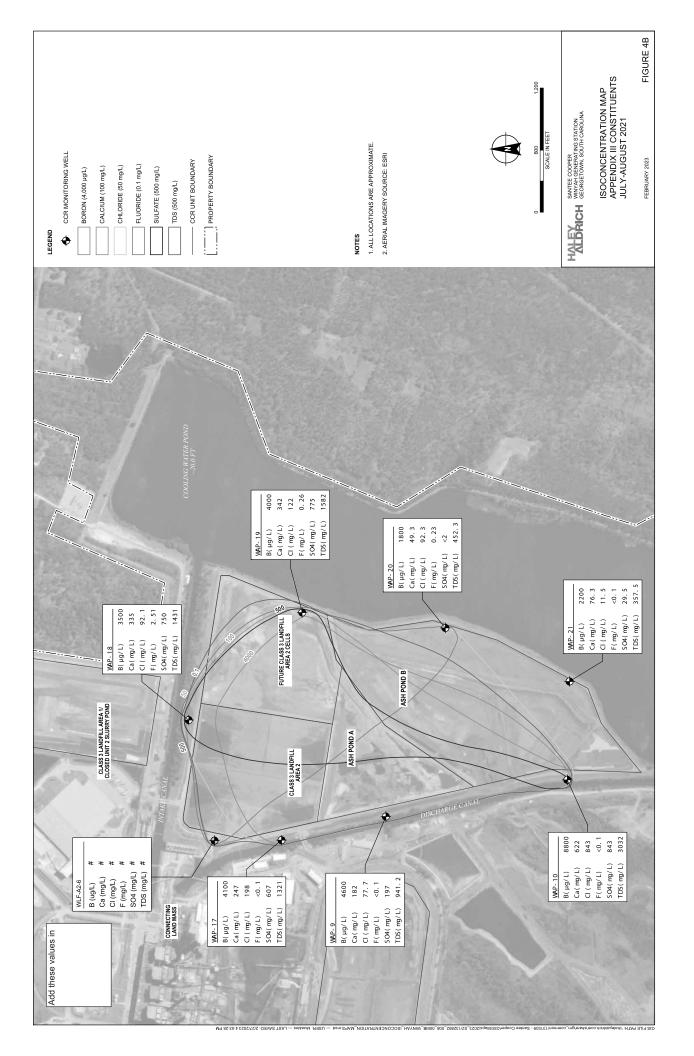

DECEMBER 2022

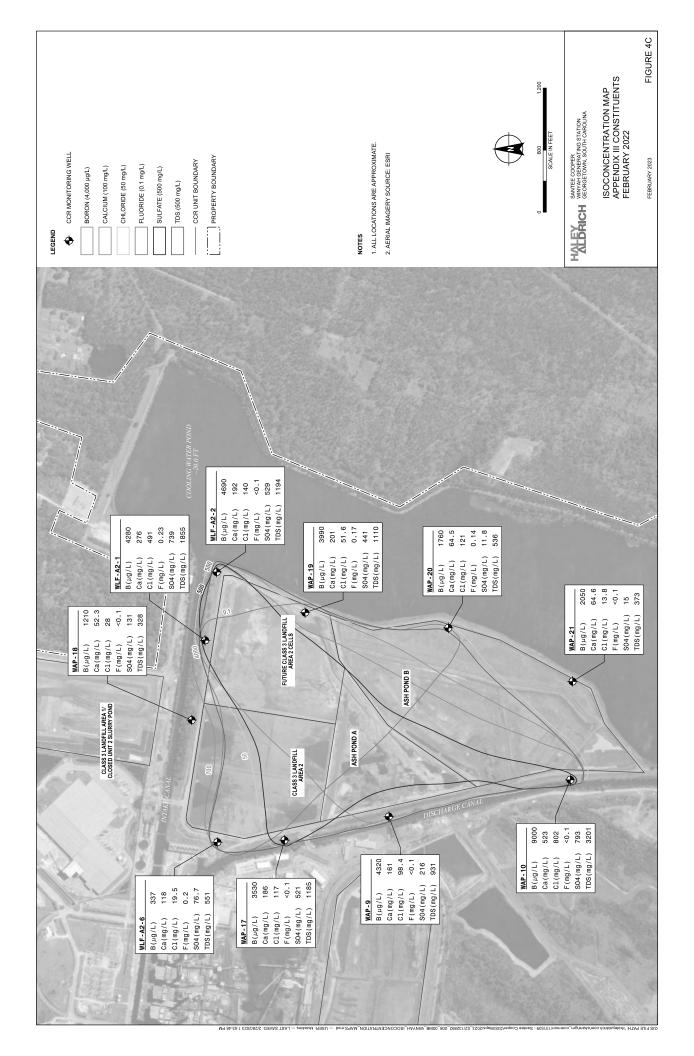

FIGURES

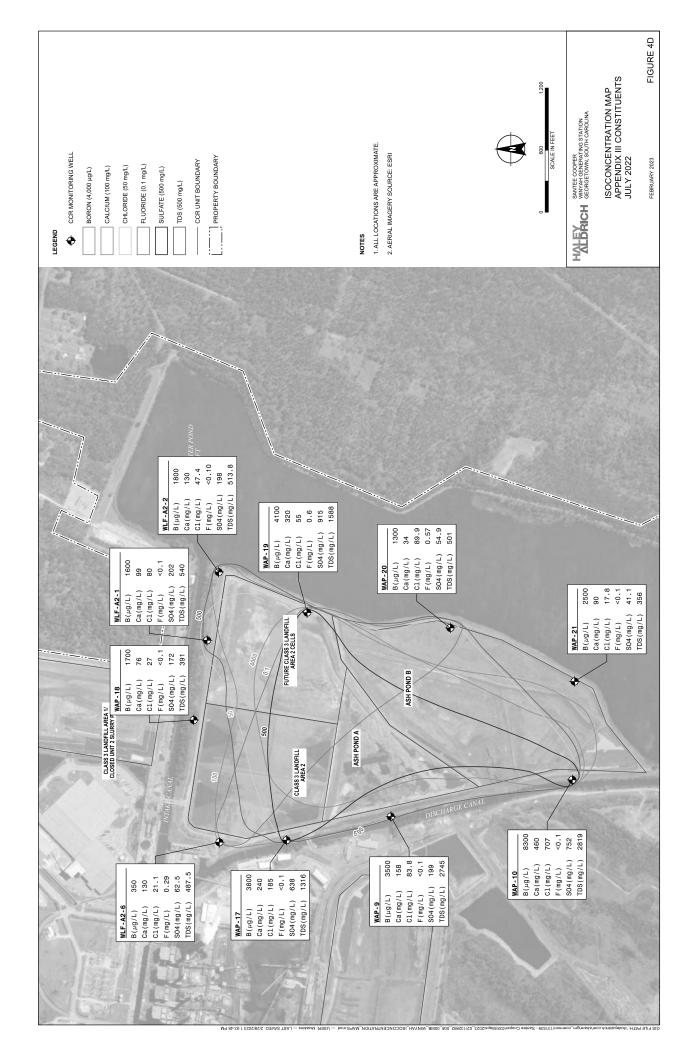


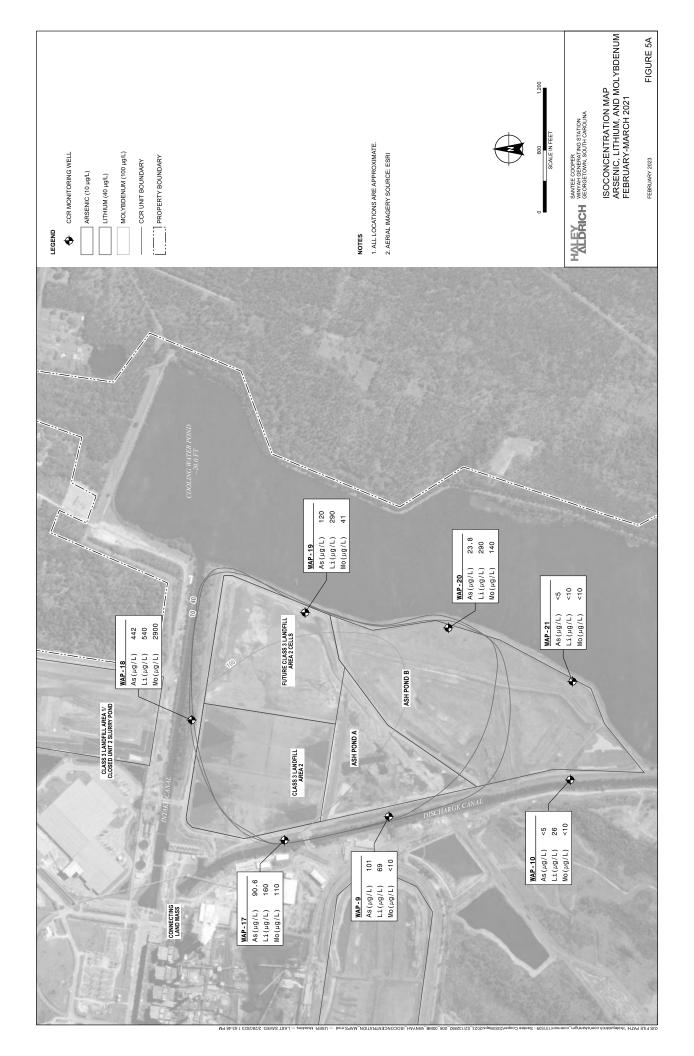


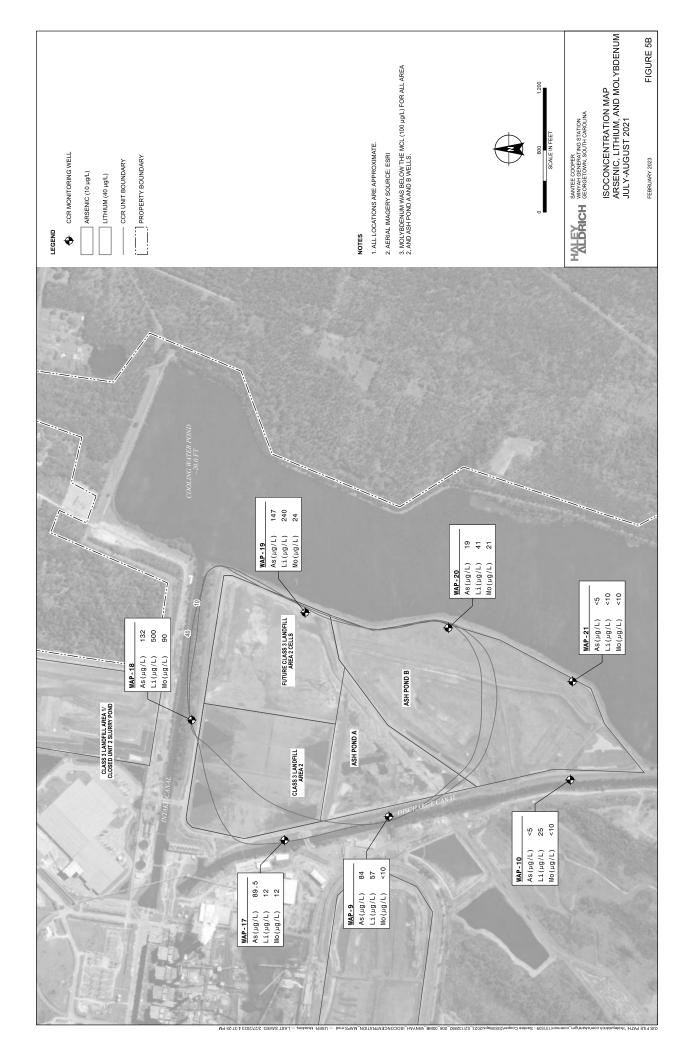


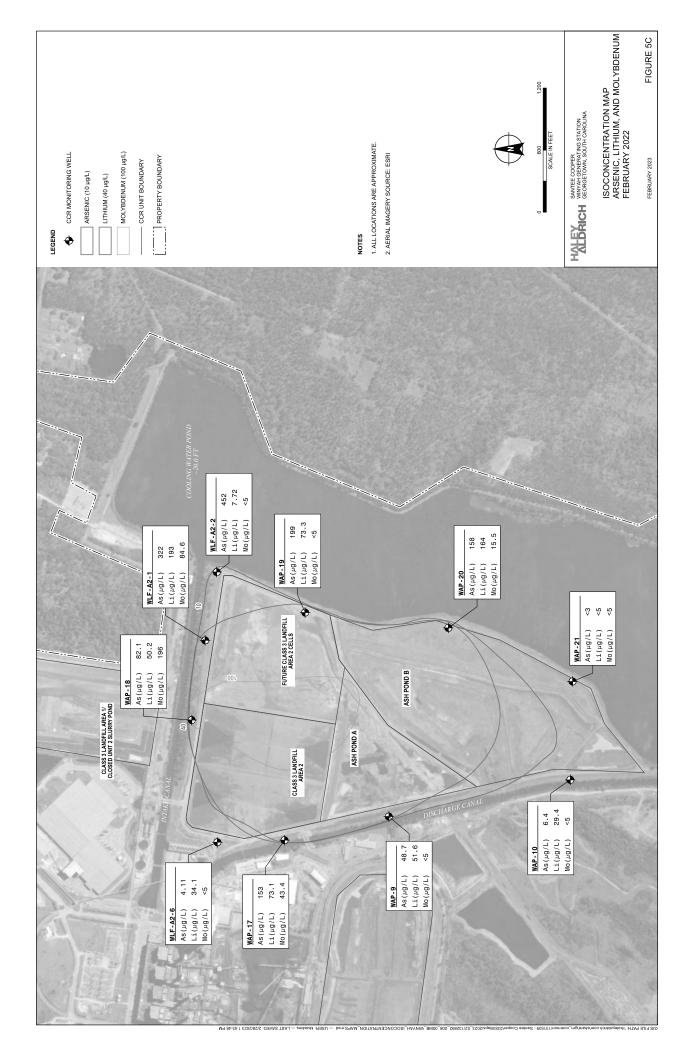


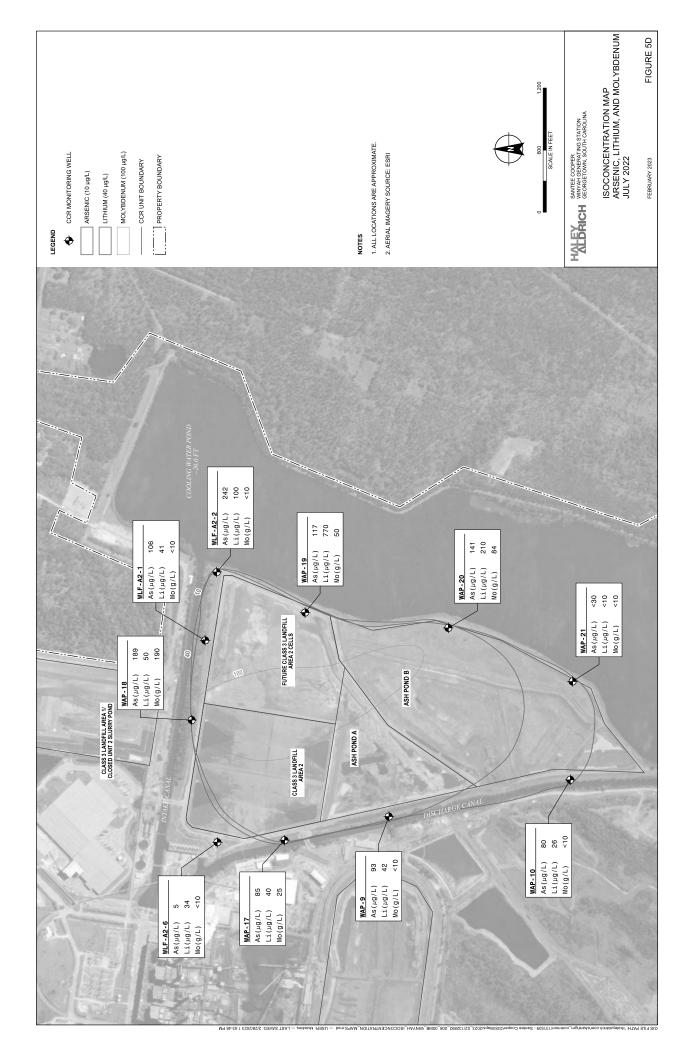


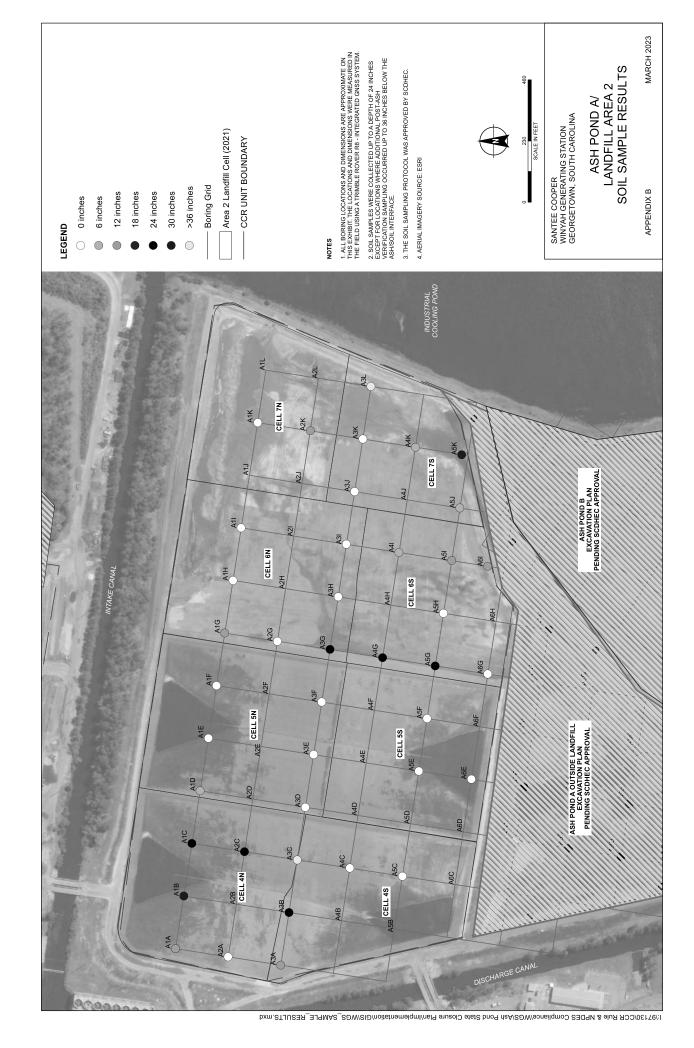












APPENDIX A Landfill Area 2 Construction Drawing

APPENDIX B
WGS Ash Pond A and B Subsurface Soil
Analytical Results, Santee Cooper

Legend:

Excavated portion of soil samples Substituted J-flag value or detection limit for non-detects in which the reporting limit exceeded the target level. Not analyzed Green text

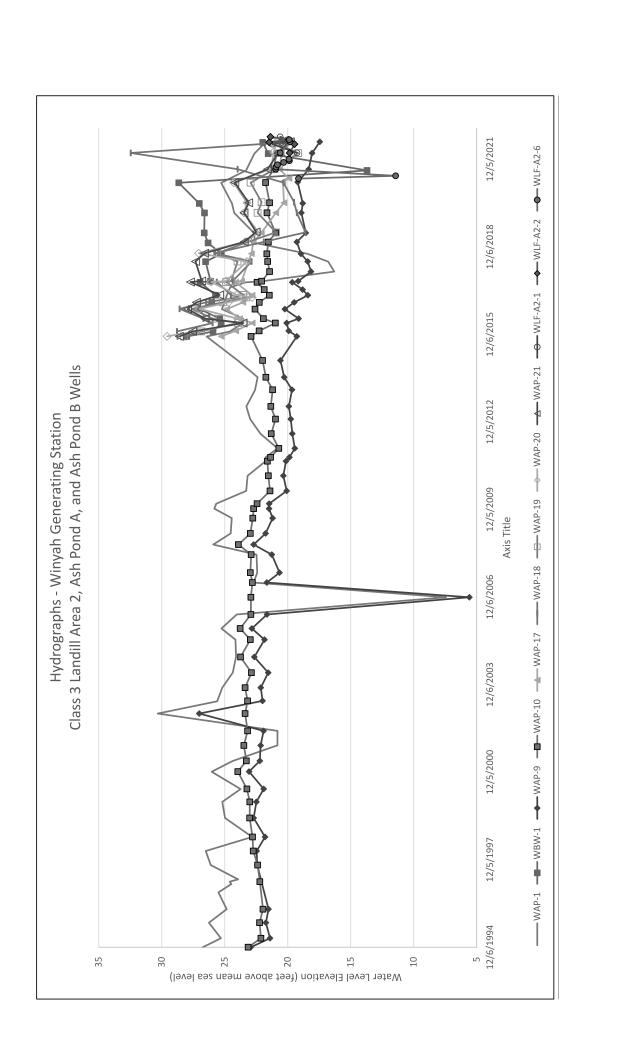
ΑĀ

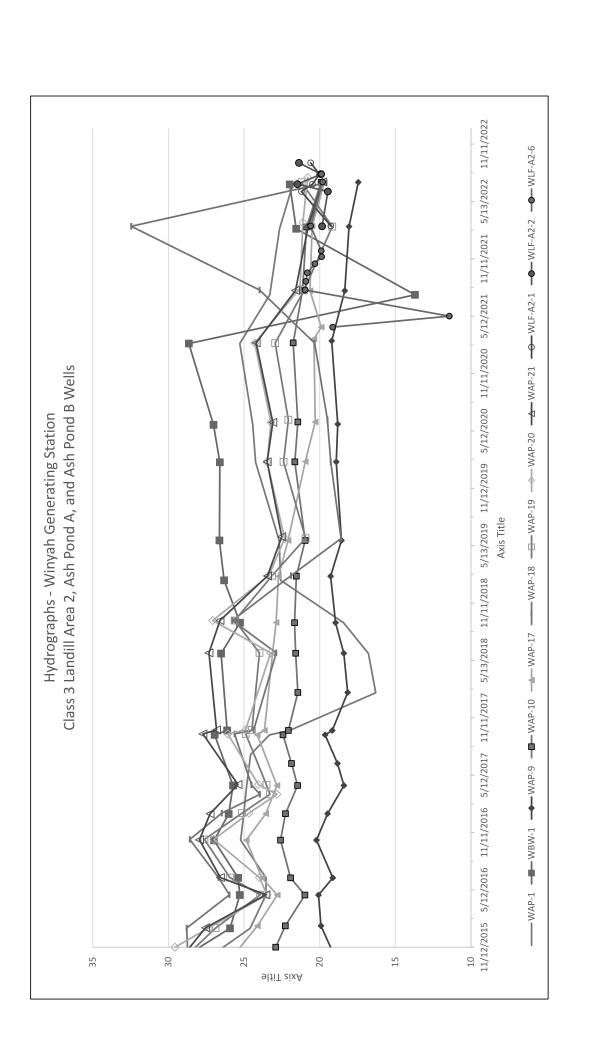
									o	Constituents					
			Ash Pond A	Arsenic	Barium	Boron	Copper	Lithium	Magnesium	Mercury	Molybdenum	Nickel	Selenium	Thallium	Vanadium
ion Ey	Ľ		Target Level												
Phase Depth (inches)	Sample ID	Sample Date	(mg/kg)	22	82	13	46	12	290 milligrams c	290 0.10 9.	9.2 (me/ke)	26	06:0	0.14	98
Cells 4 & 5	12 WC	05/05/2020	WGS A1A-6	16	14	5.2	<0.53	23	290	<0.022	15	2.1	<0.43	<0.13	7.5
	WGS A1A-12	05/05/2020	WGS A1A-12	1.8	14	4.1	<0.55	15	300	<0.021	<2.2	2.4	<0.45	<0.14	7
	WGS A1A-18	05/02/2020	WGS A1A-18	2.1	13	5.2	0.55	<5.76	300	<0.022	<2.2	2.8	0.73	<0.14	9.2
	WGS A1A-24	05/02/2020	WGS A1A-24	Э	11	5.2	<0.5	7.9	230	0.021	<2.0	2.7	0.55	<0.13	8.4
	Arithmetic Average A1A	rage A1A		5.7	13.0	4.9	0.5	12.8	280	0.022	5.4	2.5	0.54	0.14	8.0
Cells 4 & 5	30 WGS-A1B-6	05/04/2020	AE82310	32	<20.0	36	<5.00	<5.00	283	<0.031	30	<20.0	3.2	<0.11	4.1
	WGS-A1B-12	05/04/2020	AE82311	17	<20.0	21	<5.00	<5.00	213	<0.027	24	<20.0	68.0	<0.12	3.4
	WGS-A1B-18	05/04/2020	AE82312	20	<20.0	22	<5.00	<5.00	238	<0.030	40	<20.0	<0.59	<0.12	2.7
	WGS-A1B-24	05/04/2020	AE82313	12	<20.0	13	<5.00	<5.00	169	<0.029	23	<20.0	0.78	<0.13	4.4
	WGS-A1B-24 V	12/01/2020	AE90036	NA	NA	35	NA	NA	NA	NA	16	NA	AN	NA	NA
	WGS-A1B-30 V	12/01/2020	AE90037	NA	NA	42	NA	NA	NA	NA	19	NA	AN	NA	NA
	WGS-A1B-36 V	12/01/2020	AE90038	NA	NA	5.9	NA	NA	NA	NA	8.0	NA	AN	NA	AN
	Arithmetic Average A1B	rage A1B		20.1	20.0	25.1	5.0	5.0	226	0.029	23	20.0	1.4	0.12	3.7
Cells 4 & 5	24 WGS A1C-6	06/04/2020	WGS A1C-6	59	8.7	24	1.4	19	170	<0.024	40	<2.4	<0.46	<0.13	5.2
	WGS A1C-12	06/04/2020	WGS A1C-12	24	9	18	<0.54	9.6	150	<0.023	18	<2.2	0.47	<0.14	<2.7
	WGS A1C-18	06/04/2020	WGS A1C-18	20	2.4	13	<0.50	14	71	<0.024	9.3	<2.0	<0.47	<0.14	<2.5
	WGS A1C-24	06/04/2020	WGS A1C-24	8.4	6.2	6.3	<0.54	15	120	<0.024	5.5	<2.2	<0.48	0.054	<2.7
	WGS-A1C-24 V	12/01/2020	AE90039	AN	NA	NA	NA	<5.0	NA	AN	NA	NA	AN	NA	NA
	WGS-A1C-30 V	12/01/2020	AE90040	NA	NA	NA	NA	<5.0	NA	NA	NA	NA	AN	NA	NA
	WGS-A1C-36 V	12/01/2020	AE90041	NA	NA	NA	NA	<5.0	NA	NA	NA	NA	NA	NA	NA
	Arithmetic Average A1C	rage A1C		27.9	2.8	15.3	0.7	10.4	128	0.024	18.2	2.2	0.47	0.12	3.3
Cells 4 & 5	6 WGS-A1D-6	05/12/2020	AE82314	28.2	<20.0	30.9	<5.00	15.9	292	<0.035	29.6	<20.0	0.48	>0.093	4.3
	WGS-A1D-12	05/12/2020	AE82315	3.83	<20.0	<4.80	<5.00	<5.00	57	<0.034	7.1	<20.0	<0.47	<0.094	1.4
	WGS-A1D-18	05/12/2020	AE82316	<2.00	<20.0	<4.80	<5.00	<5.00	<50.0	<0.033	8.0	<20.0	<0.49	860'0>	1.6
	WGS-A1D-24	05/2/2020	AE82317	<2.00	<20.0	<4.80	<5.00	<5.00	<50.0	<0.031	2.8	<20.0	<0.42	<0.083	2.1
	Arithmetic Average A1D	rage A1D		0.6	20.0	11.3	2.0	7.7	112	0.033	11.9	20.0	0.47	60'0	2.4
Cells 4 & 5	0 WGS-A1E-6	05/12/2020	WGS-A1E-6	7.3	NA	3.9	1.4	<5.78	NA	NA	3	<2.3	0.85	<0.14	4.6
	WGS-A1E-12	05/12/2020	WGS-A1E-12	1.7	NA	3.4	0.54	<5.36	NA	NA	<2.1	<2.1	0.63	<0.14	4.2
	WGS-A1E-18	05/12/2020	WGS-A1E-18	1.6	NA	3.8	<0.56	<5.43	NA	NA	<2.2	<2.2	<0.46	<0.15	3.2
	WGS-A1E-24	05/12/2020	WGS-A1E-24	1.2	NA	3.2	<0.51	<5.6	NA	NA	<2.0	<2.0	0.45	<0.13	2.5
	Arithmetic Average A1E	rage A1E		3.0	NA	3.6	8.0	5.5	NA	NA	2.3	2.2	09'0	0.14	3.6
Cells 4 & 5	0 WGS-A1F-6	05/05/2020	AE82318	9.3	<20.0	<4.80	<5.00	<5.00	<50.0	<0.030	3.5	<20.0	<0.43	<0.086	1.9

	un.														_									2	2														_
	Vanadium	98	2.0	2.2	1.9	2.0	3.8	3.9	3.5	3.4	3.7	2.4	2.0	3.0	1.9	2.3	3.8	3.7	3.4	4	3.7	<2.5	<2.7	<2.6	<2.5	2.6	9.9	5.5	4.5	1.3	4.5	2.5	2.5	3.8	2.7	NA	NA	NA	2.9
	Thallium	0.14	<0.10	<0.092	<0.10	0.09	<0.14	<0.14	<0.037	<0.034	60.0	<0.097	<0.098	<0.12	<0.11	0.11	<0.14	<0.14	<0.14	<0.15	0.14	<0.14	<0.14	<0.15	<0.14	0.14	<0.095	<0.11	<0.097	<0.093	0.10	<0.10	<0.10	<0.11	<0.12	NA	NA	NA	0.11
	Selenium	0.90	<0.52	<0.46	<0.52	0.48	0.49	0.92	1.30	06.0	06.0	<0.48	<0.49	<0.58	<0.53	0.52	0.45	0.49	0.81	0.62	0.59	0.43	0.48	<0.43	<0.40	0.44	0.53	<0.55	<0.48	<0.47	0.51	<0.52	<0.50	<0.56	<0.59	NA	NA	NA	0.54
	Nickel	26	<20.0	<20.0	<20.0	20.0	<2.2	<2.0	<2.3	<2.2	2.2	<20.0	<20.0	<20.0	<20.0	20.0	<1.8	<1.9	<2.0	<2.2	2.0	<2.0	<2.1	<2.1	<2.0	2.1	<20.0	<20.0	<20.0	<20.0	20.0	<20.0	<20.0	<20.0	<20.0	NA	NA	NA	20.0
	Molybdenum	9.2	1.7	2.8	4.5	3.1	4.8	18	9.2	7.6	6.6	1.9	5.1	6.3	2.4	3.9	<1.8	<1.9	<2.0	<2.2	2.0	<2.0	<2.1	<2.1	<2.0	2.1	1.2	0.71	1.9	3.2	1.7	44	18	14	12	3.4	5.4	0.77	13.9
Constituents	Mercury	0.10	<0.028	<0.036	0.035	0.032	<0.022	<0.024	<0.025	<0.025	0.024	<0.032	<0.025	<0.037	<0.023	0.029	ΝΑ	NA	NA	NA	NA	NA	NA	NA	NA	NA	0.053	0.03	0.029	<0.029	0.035	<0.033	<0.026	<0.038	<0.036	NA	NA	NA	0.033
0	Magnesium	290	<50.0	69	75	61	70	95	91	92	87	<50.0	68	77	55	89	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	296	169	105	104	169	164	136	117	141	NA	NA	NA	140
	Lithium	12	<5.00	<5.00	<5.00	5.0	68.6	11.4	9.87	9.91	10.3	<5.00	<5.00	<5.00	<5.00	2.0	<5.39	<5.49	<5.77	<5.57	9.5	10	<5.57	<5.87	<5.73	8.9	5.4	<5.00	8.7	19.3	9.6	37	24	17	16	<5.0	<5.0	<5.0	15.5
	Copper	46	<5.00	<5.00	<5.00	5.0	6.0	<0.51	<0.58	<0.56	9.0	<5.00	<5.00	<5.00	<5.00	2.0	0.83	0.71	1.9	1.6	1.3	86.0	1.3	1.9	0.54	1.2	<5.00	<5.00	<5.00	<5.00	2.0	<5.00	<5.00	<5.00	<5.00	NA	NA	NA	5.0
	Boron	13	<4.80	<4.80	<4.80	4.8	11	6.8	5.3	5.9	7.3	<4.80	96'6	5.56	<4.80	6.3	3.4	3.3	5.3	3.4	3.9	2.9	<2.7	<2.6	<2.5	2.7	5.4	<4.80	8.9	<4.80	5.5	25	13	9.3	7.7	NA	NA	NA	13.7
	Barium	82	<20.0	<20.0	<20.0	20.0	4.6	9 5	5.2	4	4.9	<20.0	<20.0	<20.0	<20.0	20.0	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	<20.0	<20.0	<20.0	<20.0	20.0	<20.0	<20.0	<20.0	<20.0	AN	NA	AN	20.0
	Arsenic	22	2.67	2.21	2.39	4.1	22	12	9.5	11	13.6	12	56	3.9	9.9	12.1	69:0>	<0.71	<0.76	<0.84	8.0	13	8.7	4.2	3.3	7.3	3.2	2.8	9.7	5.8	4.9	42	22	15	12	NA	NA	NA	22.8
	Ash Pond A	Target Level (mg/kg)	AE82319	AE82320	AE82321		WGS A1G-6	WGS A1G-12	WGS A1G-18	WGS A1G-24		AE82322	AE82323	AE82324	AE82325		WGS-A11-6	WGS-A11-12	WGS-A11-18	WGS-A11-24		WGS-A1K-6	WGS-A1K-12	WGS-A1K-18	WGS-A1K-24		AE82326	AE82327	AE82328	AE82329		AE82330	AE82331	AE82332	AE82333	AE90042	AE90043	AE90044	
			05/02/2020	05/05/2020	05/05/2020	ge A1F	06/04/2020	06/04/2020	06/04/2020	06/04/2020	ge A1G	05/11/2020	05/11/2020	05/11/2020	05/11/2020	ge A1H	05/11/2020	05/11/2020	05/11/2020	05/11/2020	ge A11	05/11/2020	05/11/2020	05/11/2020	05/11/2020	ge A1K	05/05/2020	05/02/2020	05/02/2020	05/05/2020	ige A2A	05/02/50/50	05/05/2020	05/05/2020	05/05/2020	12/01/2020	12/01/2020	12/01/2020	ge A2C
			WGS-A1F-12			/era	WGS A1G-6	2			Arithmetic Average A1G	WGS-A1H-6	WGS-A1H-12	WGS-A1H-18	WGS-A1H-24	Arithmetic Average A1H	WGS-A11-6	WGS-A1I-12	WGS-A11-18	WGS-A11-24	Arithmetic Average A1I	WGS-A1K-6	WGS-A1K-12		WGS-A1K-24	Arithmetic Average A1K	WGS-A2A-6	WGS-A2A-12	WGS-A2A-18	WGS-A2A-24	Arithmetic Average A2A	WGS-A2C-6	WGS-A2C-12	WGS-A2C-18	WGS-A2C-24	WGS-A2C-24 V	WGS-A2C-30 V	WGS-A2C-36 V	Arithmetic Average A2C
		Excavation Depth				7	12		-1-	<u></u>	_	0		<u>. </u>			0			<u>. – </u>	_	0					0			<u>. </u>		24					<u>, – </u>		
		Landfill Construction E) Phase					Cells 6 & 7					Cells 6 & 7					Cells 6 & 7					Cells 6 & 7					Cells 4 & 5					Cells 4 & 5							

										J	Constituents					
				Ash Pond A	Arsenic	Barium	Boron	Copper	Lithium	Magnesium	Mercury	Molybdenum	Nickel	Selenium	Thallium	Vanadium
Landfill Construction Exco Phase D	Excavation Depth			Target Level (mg/kg)	22	82	13	46	12	290	0.10	9.2	26	0:00	0.14	98
		WGS-A2G-12	05/02/2020	AE82335	13	27	18	<5.00	15	235	<0.038	<0.50	<20.0	<0.48	960.0>	3.4
		WGS-A2G-18	05/02/2020	AE82336	4.4	<20.0	12	<5.00	5.4	139	0.047	<0.50	<20.0	0.55	>0.086	6.5
		WGS-A2G-24	05/02/2020	AE82337	<2.00	<20.0	8	<5.00	<5.00	95	<0.031	<0.50	<20.0	<0.54	<0.11	3.2
		Arithmetic Average A2G	rage A2G		7.9	22.6	12.4	5.0	8.2	142	0.035	0.5	20.0	0.53	0.10	3.8
Cells 6 & 7	12	WGS-A2K-6	05/11/2020	AE82338	72	<20.0	6	<5.00	23	162	<0.031	19	<20.0	<0.51	<0.10	7.0
		WGS-A2K-12	05/11/2020	AE82339	30	<20.0	7.5	<5.00	7.4	223	<0.038	<0.50	<20.0	<0.59	<0.12	6.2
		WGS-A2K-18	05/11/2020	AE82340	5.2	<20.0	6.1	<5.00	<5.00	151	<0.036	<0.50	<20.0	<0.50	<0.10	3.7
		WGS-A2K-24	05/11/2020	AE82341	13	<20.0	<4.80	<5.00	<5.00	72	<0.035	<0.50	<20.0	<0.56	<0.11	1.8
		Arithmetic Average A2K	rage A2K		30.0	20.0	6.9	2.0	10.2	152	0.035	5.2	20.0	0.54	0.11	4.7
Cells 4 & 5	12	WGS A3A-6	06/04/2020	WGS A3A-6	24	7.1	5.5	0.5	37.5	210	<0.021	13	<1.9	0.37	<0.13	5.6
	,	WGS A3A-12	06/04/2020	WGS A3A-12	11	7	7.4	<0.55	19.9	200	<0.023	6.3	<2.2	0.42	0.035	4.6
		WGS A3A-18	06/04/2020	WGS A3A-18	3.3	5.3	5.2	<0.54	<5.82	190	<0.024	<2.1	<2.1	0.46	<0.037	<2.0
		WGS A3A-24	06/04/2020	WGS A3A-24	4.3	3.1	9.8	<0.59	90'9>	120	<0.028	<2.4	<2.4	<0.61	<0.13	<2.9
		Arithmetic Average A3A	rage A3A		10.7	5.6	6.7	0.5	17.3	180	0.024	0.9	2.2	0.47	0.08	3.8
Cells 4 & 5	24	WGS-A3B-6	05/04/2020	AE82342	22	<20.0	6.9	<5.00	7.2	81	0.083	12	<20.0	<0.45	60.0>	3
		WGS-A3B-12	05/04/2020	AE82343	20	<20.0	15	<5.00	<5.00	137	0.031	7.8	<20.0	66.0	<0.11	2.9
		WGS-A3B-18	05/04/2020	AE82344	12	<20.0	8.7	<5.00	<5.00	89	<0.024	6.2	<20.0	<0.48	960.0>	1.3
		WGS-A3B-24	05/04/2020	AE82345	28	<20.0	49	<5.00	<5.00	371	0.04	44	<20.0	<0.48	<0.095	2.8
		WGS-A3B-24 V	12/01/2020	AE90045	15	NA	15	NA	NA	NA	NA	8.9	NA	AN	NA	NA
		WGS-A3B-30 V	12/01/2020	AE90046	19	NA	8.3	NA	NA	NA	NA	7.7	NA	NA	NA	NA
		WGS-A3B-36 V	12/01/2020	AE90047	2.3	NA	<4.80	NA	NA	NA	NA	<0.50	NA	AN	NA	NA
		Arithmetic Average A3B	rage A3B		21.1	20.0	15.4	2.0	2.6	164	0.045	12.5	20.0	09:0	0.10	2.5
Cells 4 & 5	36	WGS A3C-6	06/04/2020	WGS A3C-6	18	9.5	12	1.1	14	330	<0.023	22	<2.2	1.50	<0.14	4.8
		WGS A3C-12	06/04/2020	WGS A3C-12	8.9	3.9	5.9	0.88	7.3	130	<0.022	11	<2.1	0.67	<0.15	4.1
		WGS A3C-18	06/04/2020	WGS A3C-18	4.8	13	3.7	1.1	<5.91	260	<0.023	8.8	<2.4	<0.44	<0.14	<3.0
		WGS A3C-24		WGS A3C-24	6.6	4.9	6.7	1.4	7.1	160	<0.025	11	<2.5	0.50	<0.16	4.8
		WGS-A3C-24 V		AE90048	NA	NA	NA	NA	NA	NA	NA	16	NA	NA	NA	NA
		WGS-A3C-30 V		AE90049	NA	NA	NA	NA	NA	NA	NA	16	NA	NA	NA	NA
		WGS-A3C-36 V	12/01/2020	AE90050	NA	NA	NA	NA	NA	NA	NA	19	NA	NA	NA	NA
		Arithmetic Average A3C	rage A3C		6.6	7.8	7.1	1.1	8.5	220	0.023	14.7	2.3	0.78	0.15	4.2
Cells 4 & 5	0	WGS-A3D-6	05/12/2020	AE82346	8.9	<20.0	<4.80	<5.00	16	98.1	<0.032	<0.50	<20.0	<0.48	960:0>	7.6
		WGS-A3D-12	05/12/2020	AE82347	4.7	<20.0	<4.80	<5.00	12	56.3	0.028	<0.50	<20.0	<0.41	<0.083	7.9
		WGS-A3D-18	05/12/2020	AE82348	8.6	<20.0	<4.80	<5.00	6.9	64.2	<0.031	<0.50	<20.0	<0.50	<0.10	6.4
		WGS-A3D-24	05/12/2020	AE82349	10	<20.0	<4.80	<5.00	7.1	53.5	<0.033	<0.50	<20.0	<0.48	>0.096	9.0
		Arithmetic Average A3D	rage A3D		7.9	20.0	4.8	5.0	10.5	89	0.031	0.5	20.0	0.47	60.0	7.7
Cells 4 & 5	0	WGS-A3E-6	06/04/2020	WGS-A3E-6	3.5	NA	11	1.6	<5.91	NA	NA	<2.3	<2.3	0.77	<0.16	3.4
	•	WGS-A3E-12	06/04/2020	WGS-A3E-12	<0.84	AN	6.7	1.1	<6.35	NA	NA	<2.2	<2.2	98'0	<0.15	<2.8
		WGS-A3E-18	06/04/2020	WGS-A3E-18	<0.87	A A	13	0.94	<6.87	Ϋ́	A A	<2.3	<2.3	<0.42	<0.16	S

									COLISCIACIO					
		Ash Pond A	Arsenic	Barium	Boron	Copper	Lithium	Magnesium	Mercury	Molybdenum	Nickel	Selenium	Thallium	Vanadium
		Target Level	22	87	۲			290	0.10	6.6		06:0	0.14	98
WGS-A3E-24	06/04/2020	WGS-A3E-24	>0.86	S &	2	<0.57	<5.77	NA	NA	<2.3	<2.3	<0.48	<0.14	<2.9
Arithmetic Average A3E	rage A3E		1.5	NA	8.9	1.1	6.2	NA	NA	2.3	2.3	0.63	0.15	3.5
WGS-A3F-6	05/02/2050	AE82350	<2.00	<20.0	<4.80	<5.00	<5.00	<50.0	<0.029	<0.50	<20.0	<0.49	<0.097	1.5
NGS-A3F-12	05/01/2020	AE82351	<2.00	<20.0	<4.80	<5.00	<5.00	<50.0	0.063	<0.50	<20.0	<0.49	<0.098	1.8
WGS-A3F-18	05/07/2020	AE82352	<2.00	<20.0	<4.80	<5.00	<5.00	<50.0	<0.027	<0.50	<20.0	<0.58	<0.12	1.6
NGS-A3F-24	05/02/2020	AE82353	<2.00	<20.0	<4.80	<5.00	<5.00	<50.0	<0.030	<0.50	<20.0	<0.54	<0.11	2.3
Arithmetic Average A3F	rage A3F		2.0	20.0	4.8	5.0	5.0	20	0.037	0.5	20.0	0.53	0.11	1.8
NGS A3G-6	06/04/2020	WGS A3G-6	1.4	5.9	14	<0.54	>6.56	180	<0.12	<2.2	<2.2	0.88	<0.17	3.7
NGS A3G-12	06/04/2020	WGS A3G-12	2.2	16	16	0.62	56	029	0.075	<2.3	<2.3	96.0	<0.15	6
WGS A3G-18	06/04/2020	WGS A3G-18	4.1	18	23	0.72	24	420	0.041	<2.3	3.4	1.0	<0.13	17
NGS A3G-24	06/04/2020	WGS A3G-24	3.2	16	23	69.0	19	330	0.082	<2.1	3.3	1.2	<0.14	16
NGS-A3G-24 V		AE90051	NA	NA	<4.80	NA	<5.00	172	NA	NA	NA	<0.49	NA	NA
NGS-A3G-30 V	12/01/2020	AE90052	NA	NA	<4.80	AN	<5.00	118	NA	NA	AN	<0.47	AN	NA
WGS-A3G-36 V	12/01/2020	AE90053	NA	NA	<4.80	NA	<5.00	118	NA	NA	NA	<0.49	NA	NA
Arithmetic Average A3G	įυ		2.7	14.0	12.9	9.0	12.9	287	0800	2.2	2.8	0.78	0.15	11.4
VGS-A3H-6	05/01/2020	AE82354	<2.00	<20.0	<4.80	<5.00	<5.00	79	<0.035	<0.50	<20.0	<0.53	<0.11	2.8
WGS-A3H-12	05/01/2020	AE82355	<2.00	<20.0	<4.80	<5.00	5.5	189	<0.026	<0.50	<20.0	<0.50	660'0>	6.9
NGS-A3H-18	05/02/2050	AE82356	<2.00	<20.0	<4.80	<5.00	<5.00	<50.0	<0.036	<0.50	<20.0	<0.50	<0.10	1.1
NGS-A3H-24	05/07/2020	AE82357	<2.00	<20.0	<4.80	<5.00	<5.00	<50.0	<0.028	<0.50	<20.0	<0.57	<0.11	0.97
Arithmetic Average A3H	rage A3H		2.0	20.0	4.8	2.0	5.1	92	0.031	0.5	20.0	0.53	0.10	2.9
WGS A3I-6	05/01/2020	WGS A31-6	32	34	7.5	5.9	<5.49	06	<0.023	9.6	<2.2	1.50	<0.13	9.6
WGS A3I-12	05/07/2020	WGS A3I-12	9.6	14	7.4	1.7	<5.51	61	<0.024	<2.2	<2.2	<0.45	<0.035	3.2
NGS A3I-18	05/07/2020	WGS A3I-18	4.4	4.8	3	0.64	<5.79	<33	<0.022	<2.1	<2.1	<0.43	<0.14	<2.7>
NGS A3I-24	05/01/2020	WGS A31-24	3.6	6.3	<2.7	89.0	<5.79	<34	<0.021	<2.2	<2.2	<0.45	<0.13	<i>4.</i> 2.7
Arithmetic Average A3I	rage A3I		12.4	14.8	5.2	2.2	5.6	22	0.023	4.0	2.2	0.71	0.11	4.6
NGS-A3J-6	05/01/2020	AE82358	11.1	<20.0	7.72	<5.00	9.33	108	<0.038	<0.50	<20.0	<0.55	<0.11	5.5
NGS-A3J-12	05/01/2020	AE82359	2.28	<20.0	7.4	<5.00	<5.00	123	<0.028	<0.50	<20.0	<0.51	<0.10	5.1
NGS-A3J-18	05/07/2020	AE82360	<2.00	<20.0	7.71	<5.00	<5.00	128	<0.034	<0.50	<20.0	<0.52	<0.10	5.3
NGS-A3J-24	05/01/2020	AE82361	3.76	<20.0	2.65	<5.00	<5.00	90.3	<0.032	<0.50	<20.0	<0.54	<0.11	4.5
Arithmetic Average A3J	rage A3J		4.8	20.0	7.1	2.0	6.1	112	0.033	0.5	20.0	0.53	0.11	5.1
WGS-A3K-6	05/11/2020	WGS-A3K-6	1	NA	<3.1	<0.62	<6.87	NA	NA	<2.5	<2.5	0.51	<0.18	7.9
VGS-A3K-12	05/11/2020	WGS-A3K-12	1.1	NA	<2.6	1.1	<5.79	AN	ΝΑ	<2.1	<2.1	0.50	<0.16	5.5
NGS-A3K-18	05/11/2020	WGS-A3K-18	3	NA	6.9>	3.9	<13.0	NA	NA	<5.6	<5.6	1.50	<0.32	11
WGS-A3K-24	05/11/2020	WGS-A3K-24	1.2	NA	<3.9	0.94	<7.64	ΝΑ	ΝΑ	<3.1	<3.1	<0.64	<0.20	<3.9
Arithmetic Average A3K	rage A3K		1.6	NA	4.1	1.6	8.3	NA	NA	3.3	3.3	0.79	0.22	7.1
WGS-A3L-6	05/11/2020	AE82362	62	<20.0	22	<5.00	8.4	96	0.033	12	<20.0	0.79	<0.092	2.8
NGS-A3L-12	05/11/2020	AE82363	42	<20.0	19	<5.00	<5.00	09	0.051	3.1	<20.0	<.056	<0.11	1.6
WGS-A3L-18	05/11/2020	AE82364	41	<20.0	56	<5.00	7.4	97	0.054	2.6	<20.0	<0.57	<0.11	2.7

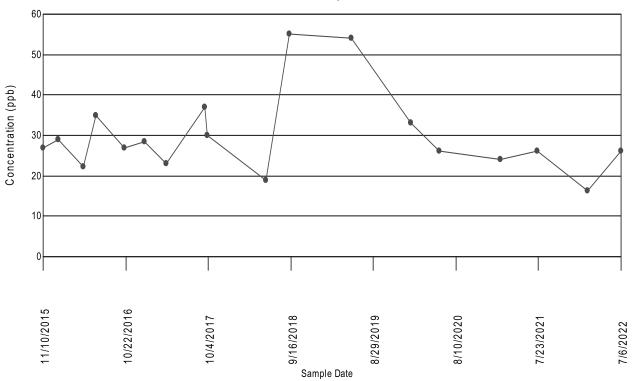

										0	Constituents					
				Ash Pond A	Arsenic	Barium	Boron	Copper	Lithium	Magnesium	Mercury	Molybdenum	Nickel	Selenium	Thallium	Vanadium
Landfill Construction Exca Phase De	Excavation Depth			Target Level (mg/kg)	22	82	13	46	12	290	0.10	9.2	26	0.90	0.14	98
	WGS	WGS-A3L-24	05/11/2020	AE82365	14	<20.0	18	<5.00	<5.00	<50.0	<0.026	1.8	<20.0	<0.48	<0.095	1.6
	WGS	WGS-A3L-24 V	10/27/2021	AF18985	NA	NA	20	NA	NA	NA	NA	NA	NA	AN	AN	NA
	WGS	WGS-A3L-30 V	10/27/2021	AF18986	NA	NA	27	NA	NA	NA	NA	NA	NA	NA	NA	AN
	WGS	WGS-A3L-36 V	10/27/2021	AF18987	NA	NA	26	NA	NA	NA	NA	NA	NA	AN	NA	NA
	Arith	Arithmetic Average A3L	ge A3L		39.7	20.0	22.6	5.0	6.4	76	0.041	4.9	20.0	0.47	0.10	2.2
Cells 4 & 5	0 WGS	WGS-A4C-6	05/12/2020	AE82366	15	<20.0	12	<5.00	<5.00	166	<0.036	11	<20.0	0.53	<0.099	3.6
	WGS	WGS-A4C-12	05/12/2020	AE82367	4.2	<20.0	4.9	<5.00	<5.00	86	<0.039	5.6	<20.0	09:0>	<0.12	3.2
	WGS	WGS-A4C-18	05/12/2020	AE82368	4.1	<20.0	<4.80	<5.00	<5.00	73	<0.041	5.7	<20.0	86.0	<0.12	3.9
	WGS	WGS-A4C-24	05/12/2020	AE82369	2.4	<20.0	<4.80	<5.00	<5.00	<50.0	<0.026	2.5	<20.0	69'0	<0.11	3.0
	Arith	Arithmetic Average A4C	ge A4C		6.4	20.0	9.9	5.0	5.0	26	0.036	6.2	20.0	0.70	0.11	3.4
Cells 6 & 7	24 WGS	WGS-A4G-6	05/06/2020	AE82370	6.9	56	12	<5.00	9.5	310	0.041	<0.50	<20.0	<0.63	<0.13	3.9
	WGS	WGS-A4G-12	05/06/2020	AE82371	<2.00	<20.0	6.4	<5.00	<5.00	477	0.049	<0.50	<20.0	0.94	<0.12	5.4
	WGS	WGS-A4G-18	05/06/2020	AE82372	<2.00	<20.0	20	<5.00	<5.00	729	0.065	<0.50	<20.0	<0.74	<0.15	5.9
	WGS	WGS-A4G-24	05/06/2020	AE82373	<2.00	<20.0	15	<5.00	<5.00	346	0.076	<0.50	<20.0	<0.74	<0.15	5.1
	WGS	WGS-A4G-24 V	10/27/2021	AF18988	NA	NA	<5.0	NA	NA	<64	NA	NA	NA	AN	<0.13	NA
	WGS	WGS-A4G-30 V	10/27/2021	AF18989	NA	NA	<5.4	NA	NA	99>	NA	NA	NA	AN	<0.13	NA
	WGS	WGS-A4G-36 V	10/27/2021	AF18990	NA	NA	<5.4	NA	NA	69>	NA	NA	NA	AN	<0.14	NA
	Arith	Arithmetic Average A4G	ge A4G		3.2	21.5	10.0	2.0	6.1	294	0.058	0.5	20.0	0.76	0.14	5.1
Cells 6 & 7	e WGS	WGS-A4I-6	05/06/2020	AE82374	88	<20.0	12	<5.00	7.9	98	0.041	21.1	<20.0	<0.58	<0.12	2.4
	WGS	WGS-A4I-12	05/06/2020	AE82375	13	<20.0	8.9	<5.00	9.9	146	<0.024	1.78	<20.0	<0.60	<0.12	2.0
	WGS	WGS-A4I-18	05/06/2020	AE82376	5.7	<20.0	5.0	<5.00	<5.00	86	<0.035	<0.50	<20.0	<0.60	<0.12	1.9
	WGS	WGS-A4I-24	05/06/2020	AE82377	5.3	<20.0	<4.80	<5.00	<5.00	104	<0.033	<0.50	<20.0	<0.60	<0.12	2.0
	Arith	Arithmetic Average A4I	ge A4I		27.9	20.0	7.7	2.0	6.1	109	0.033	0.9	20.0	09'0	0.12	2.1
Cells 6 & 7	e WGS	WGS-A4K-6	05/11/2020	AE82378	84	30	7.6	<5.00	13	184	<0.032	6.3	<20.0	1.20	0.14	9.9
	WGS		05/11/2020	AE82379	17	<20.0	5.4	<5.00	5.8	136	<0.037	0.64	<20.0	<0.57	<0.11	3.6
	WGS	WGS-A4K-18	05/11/2020	AE82380	<2.00	<20.0	<4.80	<5.00	<5.00	113	<0.033	<0.50	<20.0	<0.55	<0.11	3.6
	WGS-	WGS-A4K-24	05/11/2020	AE82381	3.6	59	30	<5.00	<5.00	850	0.11	<0.50	<20.0	<1.1	<0.21	5.9
	Arith	Arithmetic Average A4K	ge A4K		26.7	24.9	11.9	5.0	7.1	321	0.053	2.0	20.0	0.74	0.14	4.9
Cells 4 & 5	0 WGS		05/12/2020	9-25-89M	34	NA	21	2.9	98'9>	NA	NA	22	<2.2	1.20	<0.15	4.2
	WGS	WGS-A5C-12	05/12/2020	WGS-A5C-12	2.9	NA	4.0	1.3	<5.95	NA	NA	3.7	<2.1	0.45	<0.15	<2.6
	WGS		05/12/2020	WGS-A5C-18	1.2	NA	<2.6	0.78	<5.83	NA	NA	<2.1	<2.1	<0.43	<0.14	<2.6
	WGS	WGS-A5C-24	05/12/2020	WGS-A5C-24	1.5	NA	<2.8	<0.55	<5.71	NA	NA	<2.2	<2.2	<0.45	<0.14	<2.8
	Arith	Arithmetic Average A5C	ge A5C		6.6	NA	7.6	1.4	0.9	NA	NA	7.5	2.2	0.63	0.15	3.1
Cells 4 & 5	0 WGS		05/12/2020	WGS-A5E-6	14	NA	4.5	1.2	16	NA	NA	<2.1	<2.1	92'0	<0.14	8.3
	WGS	WGS-A5E-12	05/12/2020	WGS-A5E-12	1.6	NA	<2.5	<0.50	<5.32	NA	NA	<2.0	<2.0	<0.41	<0.15	7.1
	WGS	WGS-A5E-18	05/12/2020	WGS-A5E-18	1.3	NA	3.0	<0.47	<5.99	NA	NA	<1.9	<1.9	<0.38	<0.14	2.4
	WGS	WGS-A5E-24	05/12/2020	WGS-A5E-24	<0.78	NA	2.7	0.61	<5.89	NA	NA	<2.1	<2.1	<0.42	<0.15	3.1
	Arith	Arithmetic Average A5E	ge A5E		4.4	NA	3.2	0.7	8.4	NA	NA	2.0	2.0	0.49	0.15	5.2

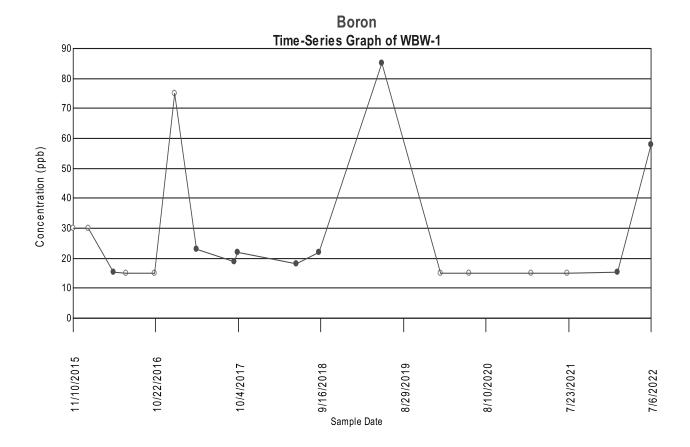

CHIN 6 M. M. Charles M. M. Charles M. M. M. M. M. M. M. M. M. M. M. M. M.											3	Constituents					
Property Property					Ash Pond A	Arsenic	Barium				Magnesiiim	Mercury	Molyhdenim	N P S P	Selenium	Thallium	Vanadium
MINISTRACE GENERAL STATE ASSESSED AS		xcavation			Target Level	22	83				062	0.10	9.7	26	06.0	0.14	98
WEG-AND-13 ARENSAS 3.2 CADO 9.4 3.2 CADO CADO 9.4 3.2 CADO CADO 9.4 3.2 CADO CADO 6.0 9.4 3.2 CADO 6.0 3.0 CADO 9.4 3.2 CADO CADO CADO 3.0 3.0 CADO 3.0 <t< th=""><th>Cells 4 & 5</th><th>0</th><th></th><th>15/06/2020</th><th>AE82382</th><th>28</th><th>09</th><th>20</th><th><5.00</th><th><5.00</th><th>179</th><th><0.032</th><th>1.04</th><th><20.0</th><th>0.61</th><th><0.12</th><th>3.0</th></t<>	Cells 4 & 5	0		15/06/2020	AE82382	28	09	20	<5.00	<5.00	179	<0.032	1.04	<20.0	0.61	<0.12	3.0
WIGS-AS-12-4 GS/GR/2020 ARE2388 3.1 C200 S-4 C500 C500 314 O.056 C400 C405 C401 C401				15/06/2020	AE82383	3.2	<20.0	5.6	<5.00	9.4	332	<0.038	<0.50	<20.0	<0.59	<0.12	4.8
Macci-Acid-Acid-Acid-Acid-Acid-Acid-Acid-A				15/06/2020	AE82384	2.3	<20.0	5.4	<5.00	<5.00	314	0.050	<0.50	<20.0	<0.53	<0.11	7.3
Modes Authors of Authors of Authors (Authors of Authors of Authors (Authors of Authors of Authors (Authors of Authors of				15/06/2020	AE82385	3.1	<20.0	8.5	<5.00	<5.00	175	0.056	<0.50	<20.0	<0.51	<0.10	8.0
44 MCS-AGE-12 CARACAGE OF AGE AGE AGE AGE AGE AGE AGE AGE AGE AGE			Arithmetic Averag	e A5F		9.2	30.0	6.6	5.0	6.1	250	0.044	9.0	20.0	0.56	0.11	5.8
WORG-ARGE-10 FOR CANADARD STATES AND CARRELS AND CARRESTS AN	Cells 6 & 7	24		15/06/2020	WGS-A5G-6	1.5	16	14	1.5	<6.78	350	<0.028	<2.8	<2.8	0.59	0.063	6.1
WIGG-ASCR-12 EVACH ASCRIADOR ONCE-ASCRIA C411 4.6 1.1 4.8 C730 170 0.061 4.2 0.055 0.003 WIGG-ASCR-12 B. CANGARGO AND ANGARGO AND AND AND AND AND AND AND AND AND AND			7	15/06/2020	WGS-A5G-12	<1.0	6.2	11	4.9	<7.71	290	0.046	<2.7	<2.7	1.0	<0.046	4.9
WGS-AGG-3Q Volyment Volyme				15/06/2020	WGS-A5G-18	<1.1	4.6	11	4.8	<7.30	120	0.061	<2.9	<2.9	0.95	<0.038	3.8
WGS-ANG-30 V D/27/2021 A				15/06/2020	WGS-A5G-24	68.0>	11	5.3	3.0	<6.29	330	0.07	<2.4	<2.4	1.1	690.0	11
WGS-ASGE-SQ JQ277/2021 AF18992 NA NA NA NA NA NA NA N				0/27/2021	AF18991	NA	NA	NA	NA	NA	33	AN	NA	NA	<0.57	NA	NA
WGSASSI-SE VILONIZIOZIO AFRENDATION NA				0/27/2021	AF18992	NA	NA	NA	NA	NA	170	NA	NA	NA	<0.59	NA	NA
Afthmetic Average ASG ARE246 11 95 103 500 27 0.73 40 005 MCSS-ASH-12 05/06/2020 ARE2446 16 <20.0				0/27/2021	AF18993	NA	NA	NA	NA	NA	253	NA	NA	NA	0.63	NA	NA
WGS-ASH-6 G5/06/2020 AER2446 15 C-200 S-4 C-500			Arithmetic Averag	e A5G		1.1	9.5	10.3	3.6	7.0	221	0.051	2.7	2.7	0.78	0.05	6.5
WGS-ASFI-12 GY/06/2020 AEB2449 131 <20.00 6.5 <5.00 5.50 148 <0.039 1.4 <0.00 <0.57 <0.011 WGS-ASFI-13 GY/06/2020 AEB2449 3.7 <2.00 <4.80 <5.00 <5.00 5.50 105 <0.023 <0.023 <0.020 <0.050 <0.011 WGS-ASFI-13 GY/06/2020 AEP3049 AEP3049 3.7 <2.00 <4.80 <5.00 <5.00 6.50 6.00 <0.023 <0.023 <0.020 <0.050 <0.011 WGS-ASFI-13 GY/06/2020 AEP3049 AEP3049 3.6 <2.00 <0.054 <0.012 <0.023 <0.023 <0.023 <0.023 <0.023 <0.023 <0.023 <0.023 <0.023 <0.023 <0.023 <0.023 <0.023 <0.023 <0.023 <0.023 <0.023 <0.023 <0.023 <0.023 <0.023 <0.023 <0.023 <0.023 <0.023 <0.023 <0.023 <0.023 <0.023 <0.023 <0.023 <0.023 <0.023 <0.023 <0.023 <0.023 <0.023 <0.023 <0.023 <0.023 <0.023 <0.023 <0.023 <0.023 <0.023 <0.023 <0.023 <0.023 <0.023 <0.023 <0.023 <0.023 <0.023 <0.023 <0.023 <0.023 <0.023 <0.023 <0.023 <0.023 <0.023 <0.023 <0.023 <0.023 <0.023 <0.023 <0.023 <0.023 <0.023 <0.023 <0.023 <0.023 <0.023 <0.023 <0.023 <0.023 <0.023 <0.023 <0.023 <0.023 <0.023 <0.023 <0.023 <0.023 <0.023 <0.023 <0.023 <0.023 <0.023 <0.023 <0.023 <0.023 <0.023 <0.023 <0.023 <0.023 <0.023 <0.023 <0.023 <0.023 <0.023 <0.023 <0.023 <0.023 <0.023 <0.023 <0.023 <0.023 <0.023 <0.023 <0.023 <0.023 <0.023 <0.023 <0.023 <0.023 <0.023 <0.023 <0.023 <0.023 <0.023 <0.023 <0.023 <0.023 <0.023 <0.023 <0.023 <0.023 <0.023 <0.023 <0.023 <0.023 <0.023 <0.023 <0.023 <0.023 <0.023 <0.023 <0.023 <0.023 <0.023 <0.023 <0.023 <0.023 <0.023 <0.023 <0.023 <0.023 <0.023 <0.023 <0.023 <0.023 <0.023 <0.023 <0.023 <0.023 <0.023 <0.023 <0.023 <0.023 <0.023 <0.023 <0.023 <0.023 <0.023 <0.023 <0.023 <0.023 <0.023 <0.023 <0.023 <0.023 <0.023 <0.02	Cells 6 & 7	0		15/06/2020	AE82446	16	<20.0	5.4	<5.00	<5.00	123	<0.034	4.0	<20.0	<0.52	<0.10	2.1
WGS-ASH-18 GS/06/2020 AE8748 3.7 C2.00 C4.80 C5.00 C5.00 C5.00 C0.50 C0				15/06/2020	AE82447	13	<20.0	6.5	<5.00	<5.00	148	<0.039	1.4	<20.0	<0.57	<0.11	1.1
WGS-ASH-24 05/06/2020 AEB2449 4.2 2.0.0 4.8 5.0 5.0 0.95 4.0 0.055 4.0.1 WGS-ASH-8 05/06/2020 AE79003 2.6 2.0 2.0 4.8 2.0 5.0 0.63 4.0 0.055 4.0 1.0 0.055 WGS-ASH-8 05/06/2020 AE79003 2.6 2.0 2.1 2.0 2.0 2.4 2.0 0.054 0.016 WGS-ASH-8 05/06/2020 AE79004 4.8 8.8 6.6 0.62 14 340 4.0021 4.1 4.1 0.046 0.056 WGS-ASH-8 05/06/2020 AE79004 4.8 8.8 6.6 0.62 14 340 4.0021 4.1 4.1 0.047 0.046 WGS-ASH-8 05/01/2020 AE79004 4.8 8.8 6.6 0.62 14 340 4.0021 4.1 4.1 0.047 WGS-ASH-8 05/01/2020 AE79004 4.8 8.8 6.6 0.62 14 340 4.0021 4.1 4.1 0.074 WGS-ASH-9 05/11/2020 AE82389 7.1 6.5 5.1 6.5 3.3 372 4.0021 2.2 2.3 0.00 0.06 WGS-ASH-9 05/11/2020 AE82389 7.1 4.20.0 6.5 5.00 3.8 5.0 1.9 0.024 2.2 2.2 0.024 0.011 WGS-ASH-9 05/11/2020 AE82389 7.1 4.20.0 6.5 5.00 3.9 1.1 0.024 2.1 0.024 0.025 0.011 WGS-ASH-1 05/11/2020 AE82389 7.1 4.20.0 8.5 5.00 5.00 1.1 0.022 0.027 0.027 0.027 0.027 0.027 WGS-ASK-1 05/11/2020 WGS-ASK-1 05/11/				15/06/2020	AE82448	3.7	<20.0	<4.80	<5.00	<5.00	62	<0.038	<0.50	<20.0	<0.52	<0.10	1.0
Arthmetic Average ASH 50 200 54 50 105 6038 116 200 0.54 0.11 12 WGS-ASI-12 G)C/6/2020 AF79003 26 2.07 3.4 350 <0.038 <.2.8 <.2.8 1.07 0.076 WGS-ASI-12 G)C/6/2020 AF79005 5.6 1.0 5.1 0.78 9.6 490 <0.023 <2.4 <2.1 0.47 0.076 WGS-ASI-12 G)C/6/2020 AF79005 6.7 1.0 5.1 0.78 9.6 490 <0.023 <2.4 <2.4 <0.076 WGS-ASI-12 G)C/6/2020 AF79005 6.7 6.7 6.6 8.6 330 <0.024 <2.2 6.4 <0.027 <0.024 <2.2 <0.048 <0.035 <0.015 <0.037 <0.024 <0.2 <0.024 <0.024 <0.2 <0.024 <0.024 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0				15/06/2020	AE82449	4.2	<20.0	<4.80	<5.00	<5.00	87	<0.027	<0.50	<20.0	<0.55	<0.11	2.4
12 WGS-ASI-G 05/06/2020			Arithmetic Averag	e A5H		9.0	20.0	5.4	5.0	5.0	105	0.035	1.6	20.0	0.54	0.11	1.7
WGS-ASI-12 5/06/2020 AF79004 4.8 8.8 6.6 0.62 14 340 <21	Cells 6 & 7	12		15/06/2020	AE79003	26	23	17	<0.71	34	350	<0.028	<2.8	<2.8	1.10	0.076	5.7
WGS-ASI-18 G5/06/2020 4.7 0.7 8.6 390 <0.023				15/06/2020	AE79004	4.8	8.8	9.9	0.62	14	340	<0.021	<2.1	<2.1	0.47	0.046	6.8
WGS-ASI-24 G5/06/2020 G-7 G-5 4.7 0.6 8.6 330 < 0.0024				15/06/2020	AE79005	5.6	10	5.1	0.78	9.6	490	<0.023	<2.4	<2.4	<0.48	0.076	10
Arithmetic Average ASI ARE3386 71 84 0.7 16.5 378 0.024 2.3 2.3 0.60 0.06 WGS-ASI-6 65/11/2020 ARE3386 71 58 12 5.6 33 372 <0.024 2.7 0.90 0.16 WGS-ASI-18 65/11/2020 ARE3388 8.0 <20.0 6.5 <20.0 1.59 <0.024 2.7 <20.0 0.90 0.16 WGS-ASI-18 05/11/2020 ARE3388 8.0 <20.0 6.5 6.7 0.029 1.9 <0.024 2.7 <20.0 0.5 0.0 0.037 2.3 <0.01 0.1 0.009 0.1 0.009 0.01 0.1 0.002 0.029 0.01 0.009 0.016 0.01 0.009 0.016 0.01 0.009 0.016 0.000 0.009 0.016 0.002 0.009 0.012 0.011 0.002 0.029 0.012 0.011 0.009 0.011 0.009 0.				15/06/2020	AE79006	6.7	6.5	4.7	9.0	9.8	330	<0.022	<1.9	<1.9	<0.35	0.037	7.9
6 WGS-AS1-6 05/11/2020 AEB2386 7.1 5.6 3.3 37.2 < 0.032			Arithmetic Averag	re A5I		10.8	12.1	8.4	0.7	16.5	378	0.024	2.3	2.3	09:0	90.0	7.6
MGS-A5I-12 G5/11/2020 AE8238 R. C. C. C. C. C. C. C. C. C. C. C. C. C.	Cells 6 & 7	9		15/11/2020	AE82386	71	28	12	5.6	33	372	<0.032	20	<20.0	06.0	0.16	15
WGS-A5I-18 G5/11/2020 AEB38B 8.0 <20.00				15/11/2020	AE82387	14	<20.0	6.4	<5.00	<5.00	159	<0.024	2.7	<20.0	<0.58	<0.12	6.0
WGS-ASI-24 G5/11/2020 AFER389 7.4				15/11/2020	AE82388	8.0	<20.0	6.5	<5.00	8.6	187	<0.022	1.9	<20.0	<0.54	<0.11	5.0
Arithmetic Average ASJ VGS-ASK-6 0721 29.6 8.3 5.1 13.3 214 0.029 6.7 20.0 0.65 0.13 WGS-ASK-6 07/21/2020 WGS-ASK-6 103 25.2 14 <5.00 14.9 145 NA 21 <20.0 2.31 <0.15 WGS-ASK-1 WGS-ASK-1 86.6 <20.0 38 <5.00 11.6 143 NA 2.8 <20.0 <2.00 <0.15 WGS-ASK-1 07/21/2020 WGS-ASK-24 07/21/2020 WGS-ASK-24 19.9 <20.0 11.6 143 NA 1.1 NA <0.50 <2.00 <2.00 <0.13 <0.13 <0.13 <0.00 <0.13 <0.13 <0.13 <0.13 <0.13 <0.00 <0.13 <0.13 <0.13 <0.13 <0.13 <0.00 <0.13 <0.13 <0.13 <0.13 <0.13 <0.00 <0.13 <0.13 <0.10 <0.13 <0.10 <0.10 <0.13 <th></th> <th></th> <th></th> <th>15/11/2020</th> <th>AE82389</th> <th>7.4</th> <th><20.0</th> <th>8.5</th> <th><5.00</th> <th><5.00</th> <th>139</th> <th>0.037</th> <th>2.3</th> <th><20.0</th> <th><0.56</th> <th><0.11</th> <th>3.0</th>				15/11/2020	AE82389	7.4	<20.0	8.5	<5.00	<5.00	139	0.037	2.3	<20.0	<0.56	<0.11	3.0
30 WGS-ASK-6 07/21/2020 WGS-ASK-6 103 25.2 14 45.00 14.9 145 NA 21 <20.0			Avera	re A5J		25.1	29.6	8.3	5.1	13.3	214	0.029	6.7	20.0	0.65	0.13	7.3
WGS-ASK-12 07/21/2020 WGS-ASK-12 86.6 < 20.0	Cells 6 & 7	30		17/21/2020	WGS-A5K-6	103	25.2	14	<5.00	14.9	145	NA	21	<20.0	2.31	<0.15	<20.0
WGS-ASK-18 07/21/2020 WGS-ASK-18 48.9 < 20.0 33 < 5.00 5.79 118 NA 1.1 < 20.0 < 2.00 < 0.13 < 6.13				7/21/2020	WGS-A5K-12	9.98	<20.0	36	<5.00	11.6	143	NA	2.8	<20.0	<2.00	<0.15	<20.0
WGS-ASK-24 07/21/2020 WGS-ASK-24 07/21/2020 WGS-ASK-24 19.9 <20.0 15 < < <t< td=""><th></th><td></td><td></td><td>7/21/2020</td><th>WGS-A5K-18</th><td>48.9</td><td><20.0</td><td>33</td><td><5.00</td><td>5.79</td><td>118</td><td>NA</td><td>1.1</td><td><20.0</td><td><2.00</td><td><0.13</td><td><20.0</td></t<>				7/21/2020	WGS-A5K-18	48.9	<20.0	33	<5.00	5.79	118	NA	1.1	<20.0	<2.00	<0.13	<20.0
WGS-ASK-24 V 11/3/2021 AF19704 NA NA 15 NA NA NA AG027 NA NA NA AG023 NA				7/21/2020	WGS-A5K-24	19.9	<20.0	15	<5.00	<5.00	71	NA	<0.50	<20.0	<2.00	<0.15	<20.0
WGS-ASK-30 V 11/3/2021 AF19705 NA NA AO NA NA AO NA NA NA NA AO NA N				1/3/2021	AF19704	NA	NA	15	NA	NA	NA	<0.027	NA	NA	NA	<0.13	NA
WGS-ASK-36 V 11/3/2021 AF19706 NA NA 40 NA N				1/3/2021	AF19705	NA	NA	8.9	NA	NA	NA	<0.025	NA	NA	NA	<0.12	NA
Arithmetic Average ASK 64.6 21.3 23.0 5.0 9.3 119 0.028 6.3 20.0 2.08 0.13 WGS-A6E-6 05/06/2020 4E82390 <2.00 <20.0 <4.80 <5.00 <5.00 <5.00 <5.00 <5.00 <5.00 <5.00 <5.00 <5.00 <5.00 <5.00 <5.00 <5.00 <5.00 <5.00 <5.00 <5.00 <5.00 <5.00 <5.00 <5.00 <5.00 <5.00 <5.00 <5.00 <5.00 <5.00 <5.00 <5.00 <5.00 <5.00 <5.00 <5.00 <5.00 <5.00 <5.00 <5.00 <5.00 <5.00 <5.00 <5.00 <5.00 <5.00 <5.00 <5.00 <5.00 <5.00 <5.00 <5.00 <5.00 <5.00 <5.00 <5.00 <5.00 <5.00 <5.00 <5.00 <5.00 <5.00 <5.00 <5.00 <5.00 <5.00 <5.00 <5.00 <5.00 <5.00 <5.00 <5.00				1/3/2021	AF19706	NA	NA	40	NA	NA	NA	0.031	NA	NA	NA	<0.095	NA
0 WGS-A6E-6 05/06/2020 AE82391 <2.00 <20.0 <4.80 <5.00 <5.00 <131 <0.025 <0.50 <20.0 <0.55 <0.57 <0.57 <0.57 <0.57 <0.57 <0.57 <0.57 <0.57 <0.57 <0.57 <0.57 <0.57 <0.57 <0.57 <0.57 <0.57 <0.57 <0.57 <0.57 <0.57 <0.57 <0.57 <0.57 <0.57 <0.57 <0.57 <0.57 <0.57 <0.57 <0.57 <0.57 <0.57 <0.57 <0.57 <0.57 <0.57 <0.57 <0.57 <0.57 <0.57 <0.57 <0.57 <0.57 <0.57 <0.57 <0.57 <0.57 <0.57 <0.57 <0.57 <0.57 <0.57 <0.57 <0.57 <0.57 <0.57 <0.57 <0.57 <0.57 <0.57 <0.57 <0.57 <0.57 <0.57 <0.57 <0.57 <0.57 <0.57 <0.57 <0.57 <0.57 <0.57 <0.57 <0.57 <0.57 <0.57 <0.57 <0.57 <0.57 <0.57 <0.57 <0.57 <0.57 <0.57 <0.57 <0.57 <0.57 <0.57 <0.57 <0.57 <0.57 <0.57 <0.57 <0.57 <0.57 <0.57 <0.57 <0.57 <0.57 <0.57 <0.57 <0.57 <0.57 <0.57 <0.57 <0.57 <0.57 <0.57 <0.57 <0.57 <0.57 <0.57 <0.57 <0.57 <0.57 <0.57 <0.57 <0.57 <0.57 <0.57 <0.57 <0.57 <0.57 <0.57 <0.57 <0.57 <0.57 <0.57 <0.57 <0.57 <0.57 <0.57 <0.57 <0.57 <0.57 <0.57 <0.57 <0.57 <0.57 <0.57 <0.57 <0.57 <0.57 <0.57 <0.57 <0.57 <0.57 <0.57 <0.57 <0.57 <0.57 <0.57 <0.57 <0.57 <0.57 <0.57 <0.57 <0.57 <0.57 <0.57 <0.57 <0.57 <0.57 <0.57 <0.57 <0.57 <0.57 <0.57 <0.57 <0.57 <0.57 <0.57 <0.57 <0.57 <0.57 <0.57 <0.57 <0.57 <0.57 <0.57 <0.57 <0.57 <0.57 <0.57 <0.57 <0.57 <0.57 <0.57 <0.57 <0.57 <0.57 <0.57 <0.57 <0.57 <0.57 <0.57 <0.57 <0.57 <0.57 <0.57 <0.57 <0.57 <0.57 <0.57 <0.57 <0.57 <0.57 <0.57 <0.57 <0.57 <0.57 <0.57 <0.57 <0.57 <0.57 <0.57 <0.57 <0.57 <0.57 <0.57 <0.57 <0.57 <0.57 <0.57 <0.57 <0.57 <0.57 <0.57 <0.57 <0.57 <0.57 <0.57 <0.57 <0.57 <0.57 <0.57 <0.57 <0.57 <0.57 <0.57 <0.57 <0.57 <0.57 <0.57 <0.57 <0.57 <0.57 <0.57 <0.57 <0.57 <0.57 <0.57 <0.57 <0.57 <0.57 <0.57 <0.57 <0.57 <0.57 <0.57 <0.57 <0.57 <0.57 <0.57 <0.57 <0.57 <0.57 <0.57 <0.57 <0.57 <0.57 <0.57 <0.57 <0.57 <0.57 <0.57 <0.57 <0.57 <0.57 <0.57 <0.57 <0.57 <0.57 <0.57 <0.57 <0.57 <0.57 <0.57 <0.57 <0.57 <0.57 <0.57 <0.57 <0.57 <0.57 <0.57 <0.57 <0.57 <0.57 <0.57 <0.57 <0.57 <0.57 <0.57 <0.57 <0.57 <0.57 <0.57 <0.57 <0.57 <0.57 <0.57 <0.57 <0.57 <0.57 <0.57 <0.57 <0.57 <0.57 <0.57 <0.57 <0.57 <0.57 <0.57 <0.57 <0.			Arithmetic Averag	e A5K		64.6	21.3	23.0	5.0	9.3	119	0.028	6.3	20.0	2.08	0.13	20.0
05/06/2020 AE82391 <2.00 <20.0 <4.80 <5.00 <5.00 153 <0.030 <0.50 <20.0 <0.53 <0.11	Cells 4 & 5	0		15/06/2020	AE82390	<2.00	<20.0	<4.80	<5.00	<5.00	131	<0.025	<0.50	<20.0	<0.55	<0.11	2.0
				15/06/2020	AE82391	<2.00	<20.0	<4.80	<5.00	<5.00	153	<0.030	<0.50	<20.0	<0.53	<0.11	2.2

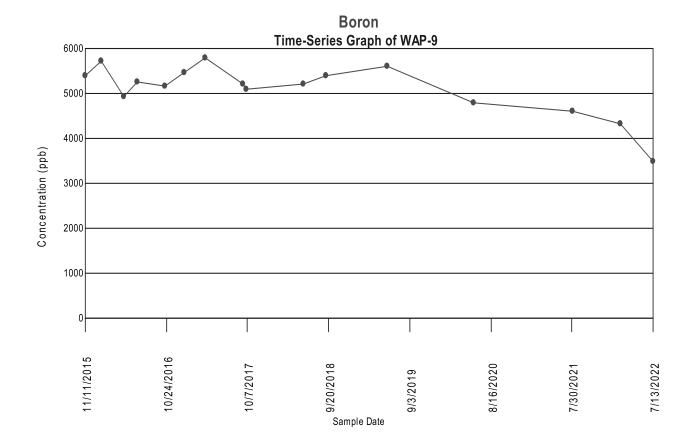
										3	Constituents					
				4								-	-		Ë	
Landfill				Asn Pond A	Arsenic	Barium	Boron	Copper	רונטומש	Magnesium	Mercury	Molypaenum	Nickei	seienium	ınaııınm	vanadium
Construction Excavation	cavation			Target Level												
Phase	Depth			(mg/kg)	22	82	13	46	12	290	0.10	9.2	56	06.0	0.14	98
		WGS-A6E-18	05/06/2020	AE82392	3.7	<20.0	10	<5.00	<5.00	369	<0.035	<0.50	<20.0	09:0>	<0.12	2.8
		WGS-A6E-24	05/06/2020	AE82393	3.0	<20.0	15	<5.00	<5.00	365	0.12	<0.50	<20.0	<1.3	<0.26	7.1
		Arithmetic Average A6E	rage A6E		2.7	20.0	8.8	2.0	2.0	255	0.053	0.5	20.0	0.75	0.15	3.5
Cells 6 & 7	0	WGS-A6G-6	VGS-A6G-6 05/13/2020	AE82394	8.2	<20.0	<4.80	<5.00	<5.00	<50.0	<0.030	0.51	<20.0	<0.61	<0.12	2.3
		WGS-A6G-12	VGS-A6G-12 05/13/2020	AE82395	4.0	<20.0	<4.80	<5.00	<5.00	<50.0	<0.033	<0.50	<20.0	<0.53	<0.11	1.2
		WGS-A6G-18	/GS-A6G-18 05/13/2020	AE82396	6.5	<20.0	<4.80	<5.00	<5.00	<50.0	<0.029	<0.50	<20.0	<0.61	<0.12	2.2
		WGS-A6G-24	VGS-A6G-24 05/13/2020	AE82397	8.8	<20.0	5.1	<5.00	<5.00	<50.0	0.035	1.2	<20.0	<0.54	<0.11	2.3
		Arithmetic Average A6G	rage A6G		6.9	20.0	4.9	2.0	2.0	20	0.032	0.7	20.0	0.57	0.12	2.0
Cells 6 & 7	12	WGS-A6I-6	07/21/2020	AE82398	65	22	10	7.8	14	242	<0.044	4.2	<20.0	2.3	0.21	11
		WGS-A6I-12	07/21/2020	AE82399	26	42	21	5.3	12	381	<0.053	3.2	<20.0	0.92	<0.15	13
		WGS-A6I-18	07/21/2020	AE82400	<2.00	<20.0	6.7	<5.00	<5.00	255	<0.037	1.3	<20.0	<0.52	<0.10	5.9
		WGS-A6I-24	07/21/2020	AE82401	5.6	<20.0	7.9	<5.00	16	295	0.032	1.1	<20.0	0.75	0.14	5.7
		Arithmetic Average A61	rage A6I		73.7	6 DE	12.1	2 8	11.7	293	0.042	2.4	006	1 12	0.15	6 8

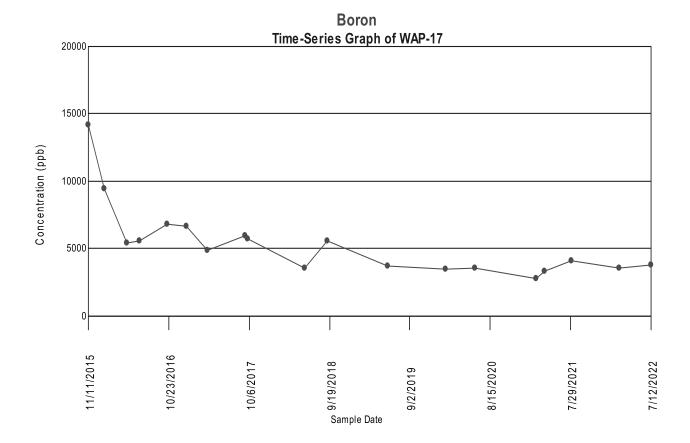
Average Excavation Depth: 9.1 inches

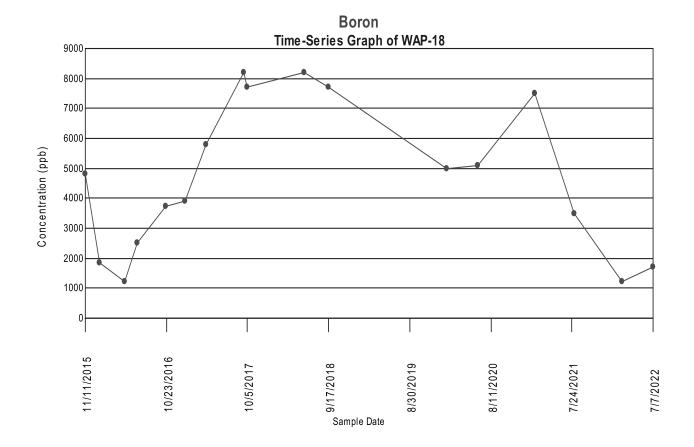
APPENDIX C Hydrographs

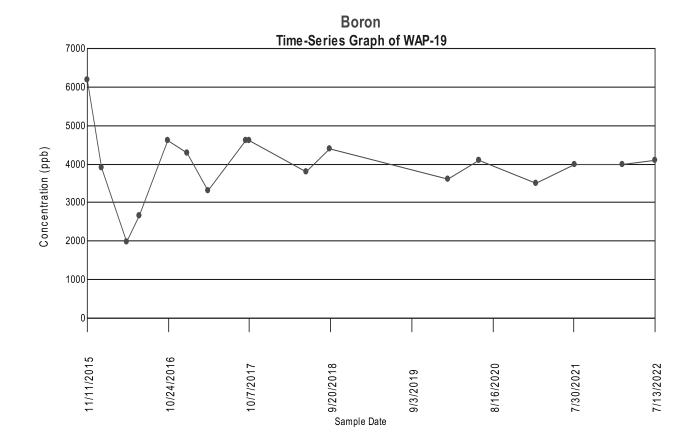


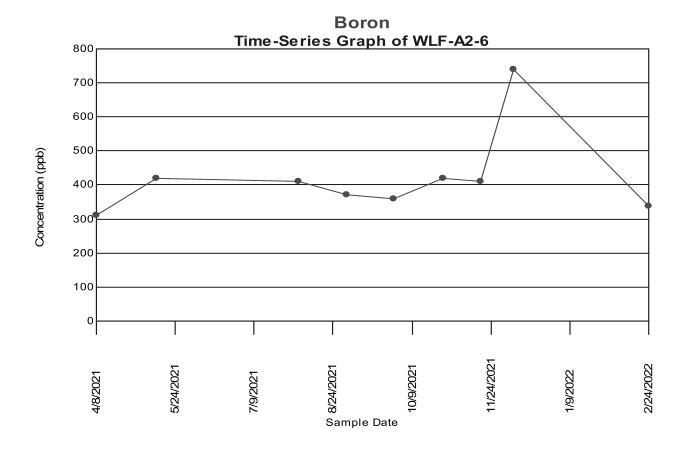


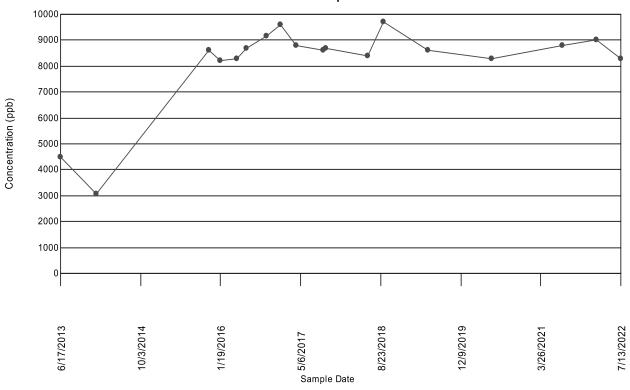

APPENDIX D

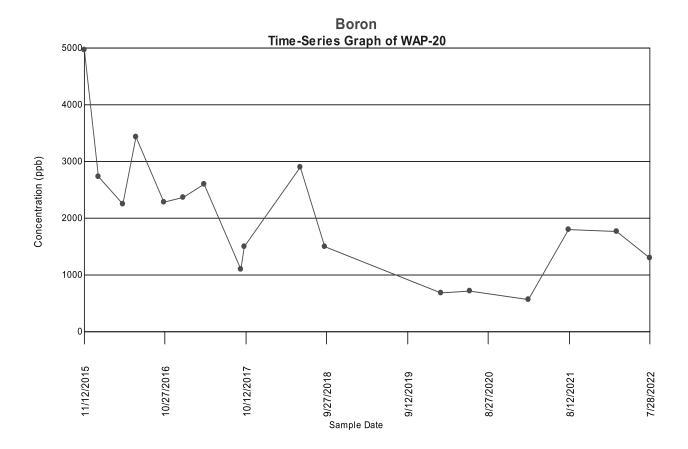

Time-Series Plots for Appendix III Constituents, Landfill Area 2, Ash Ponds A and B Monitoring Wells

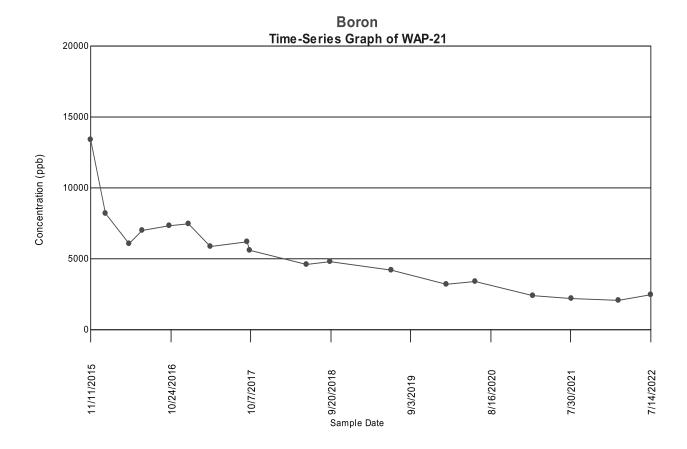

Boron Time-Series Graph of WAP-1

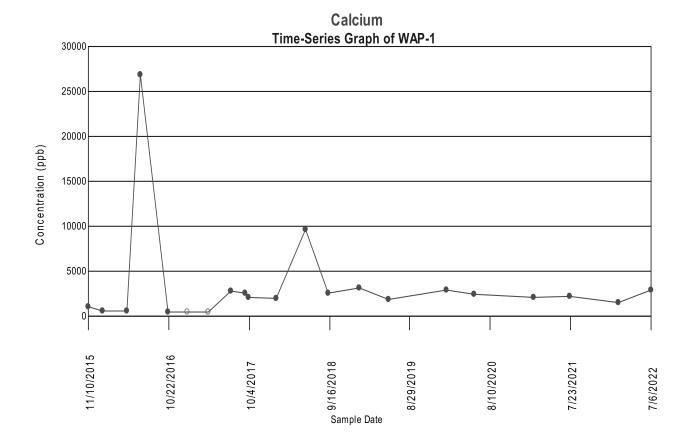


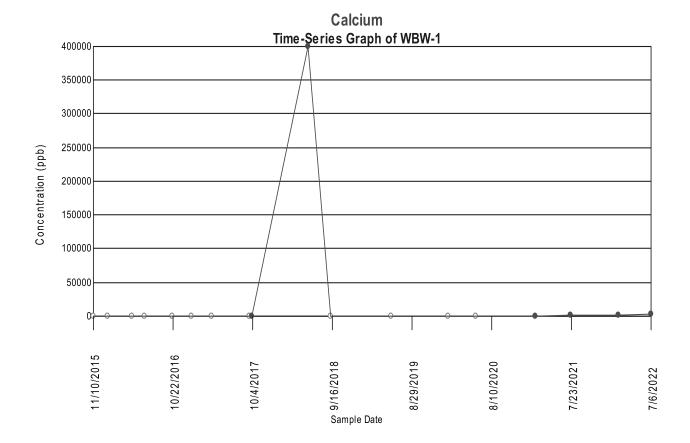


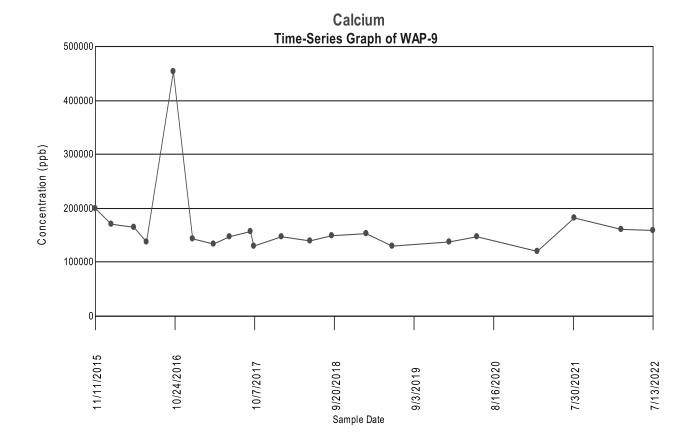


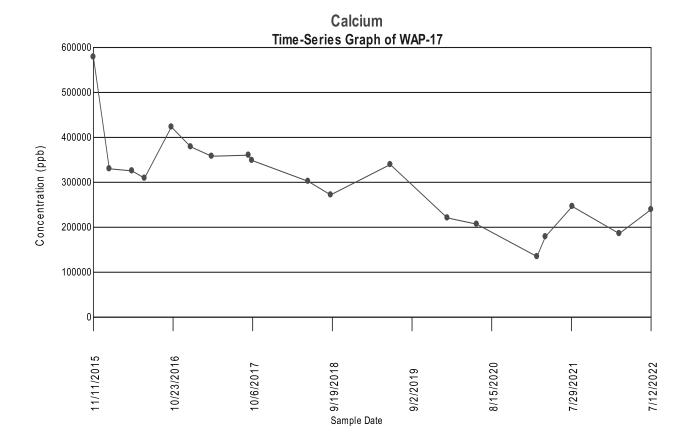


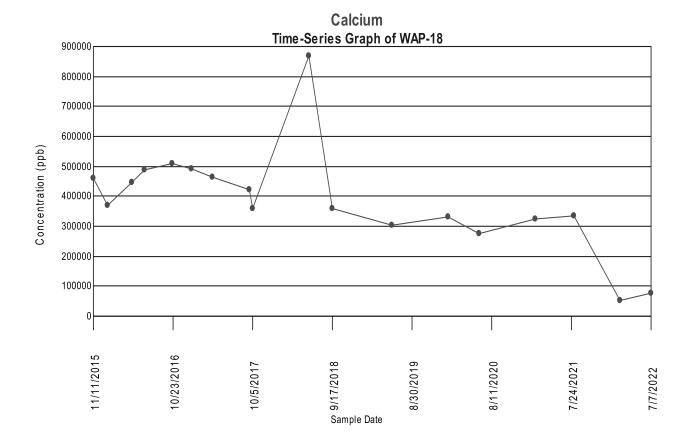


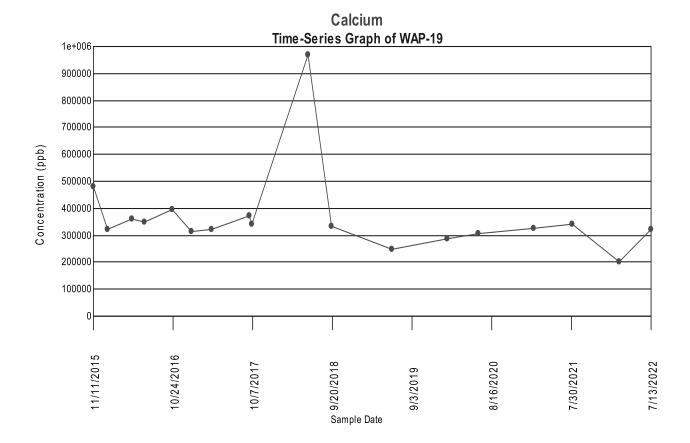


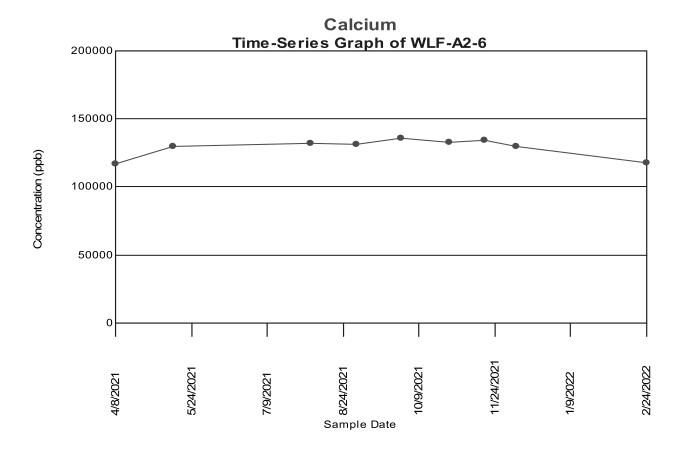


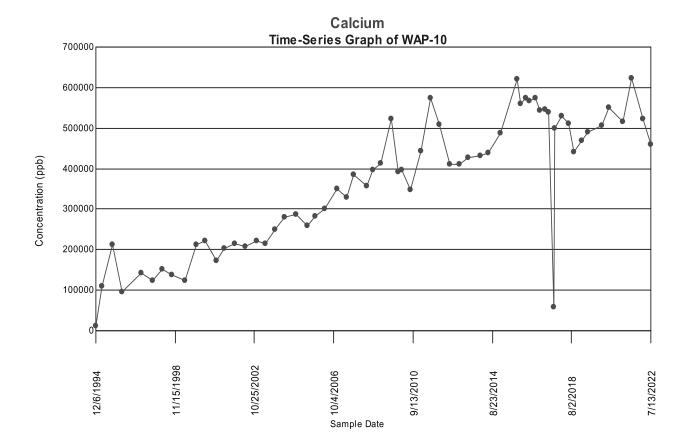


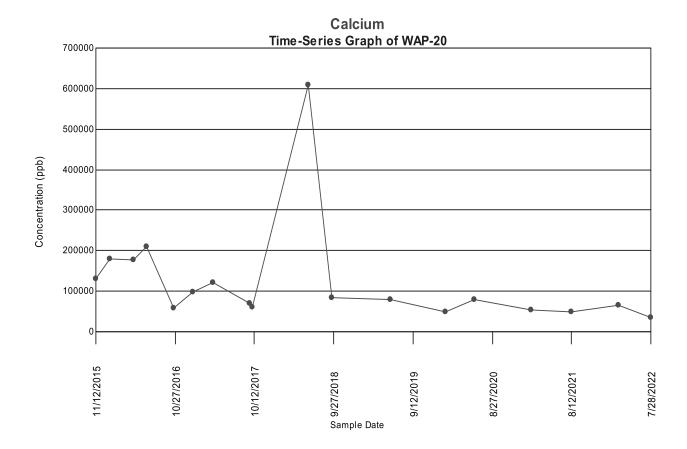


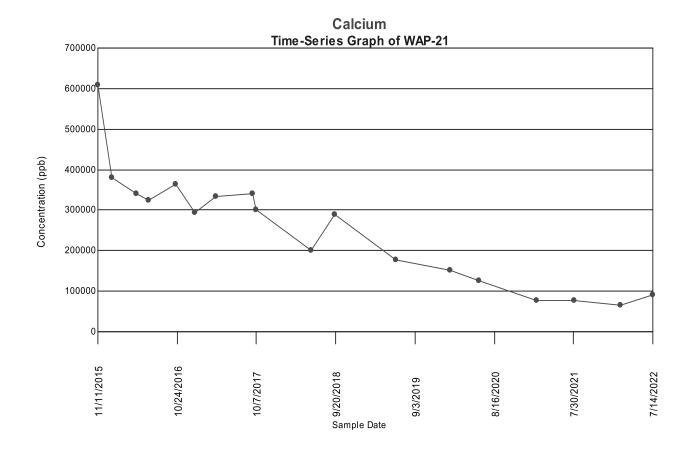


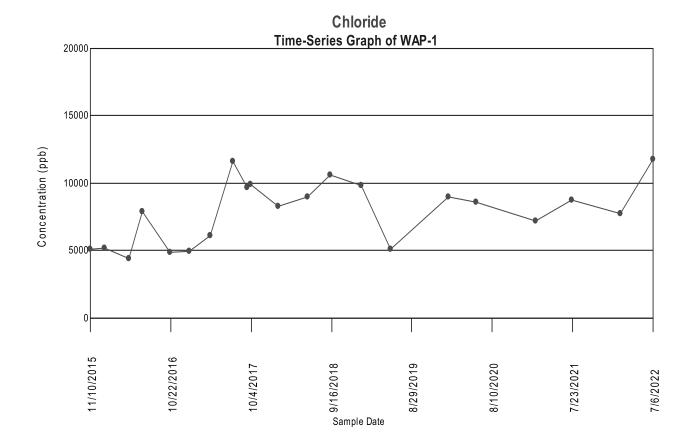


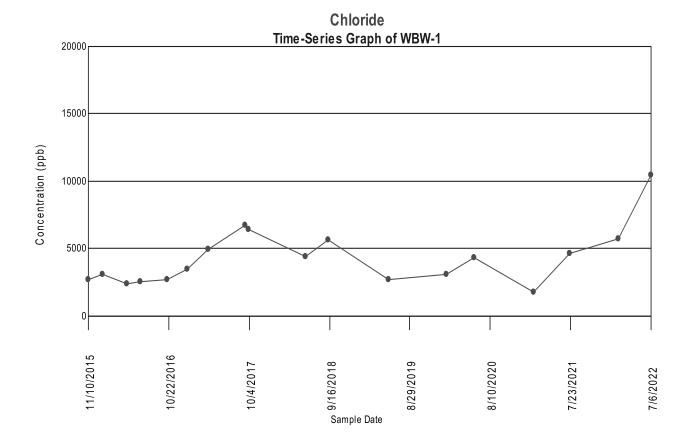


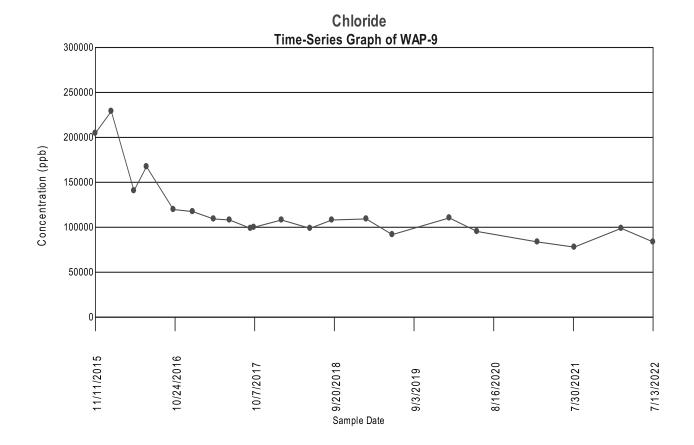


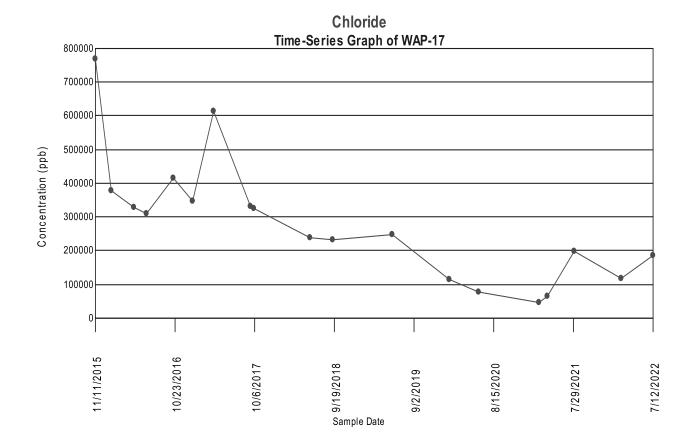


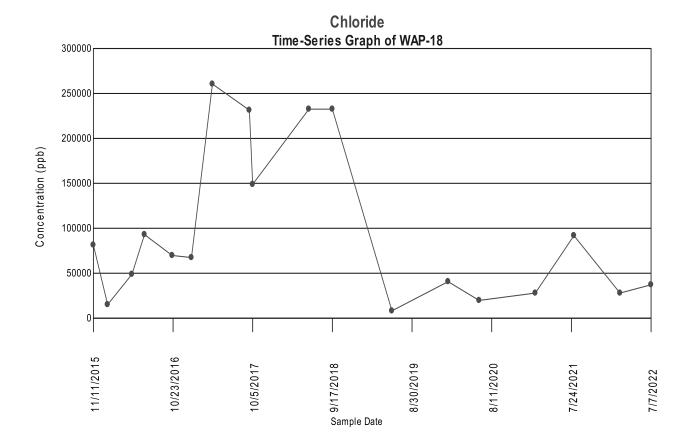


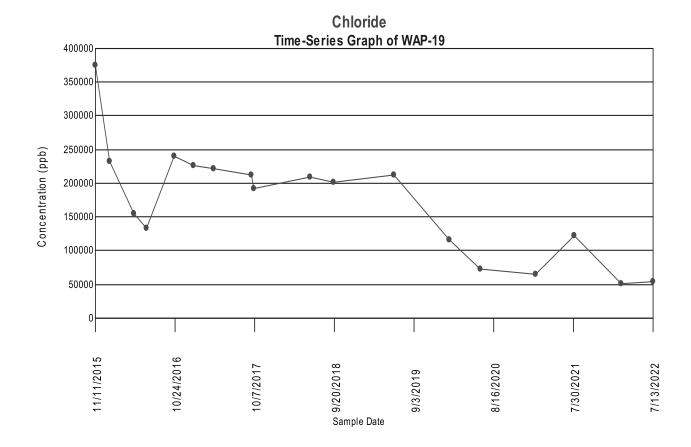


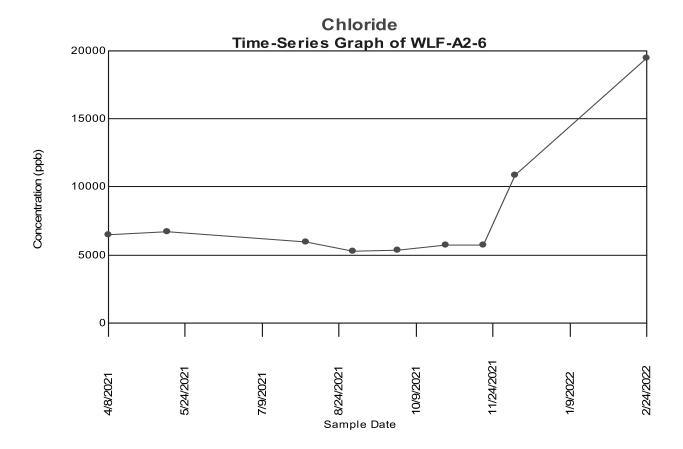


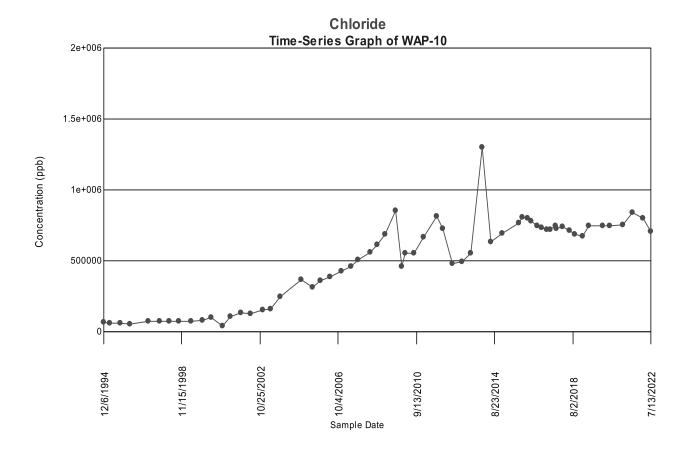


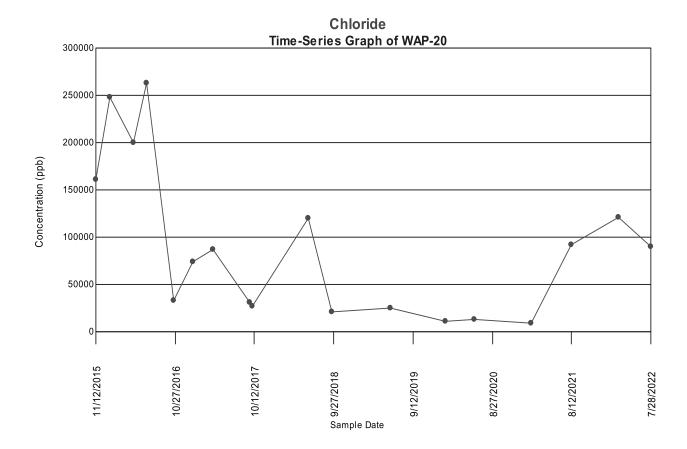


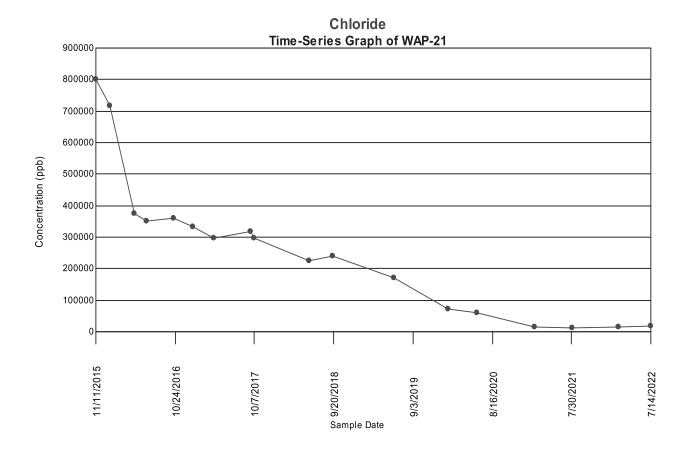


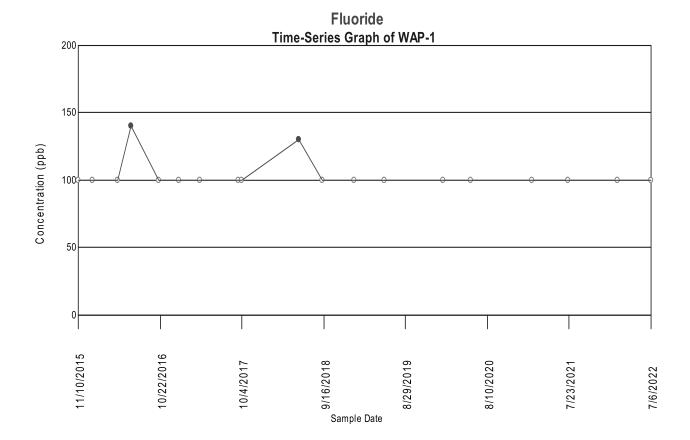


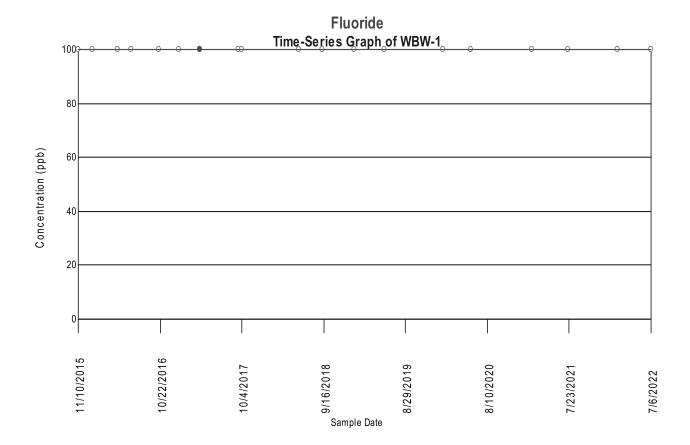


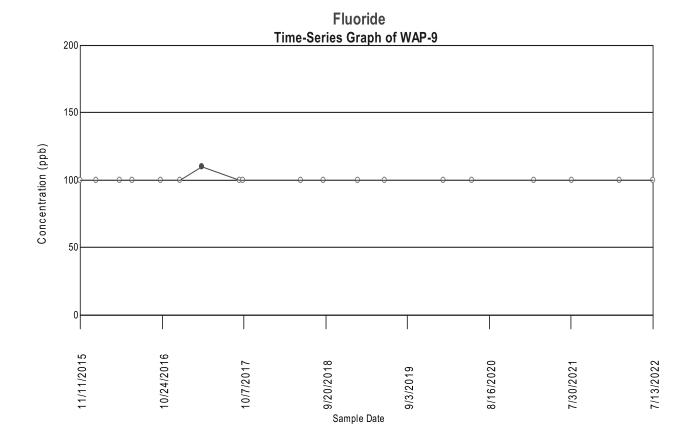


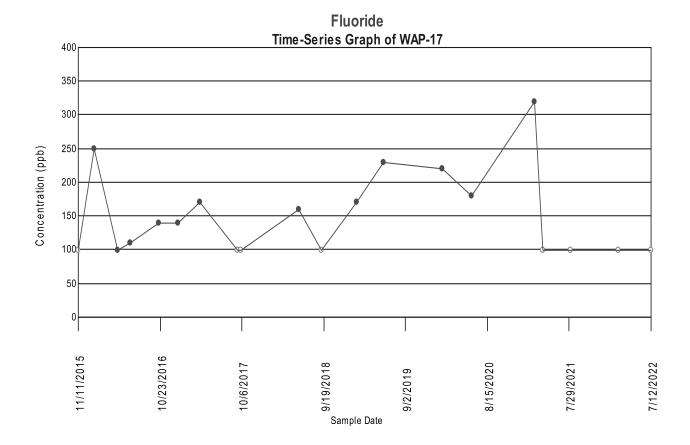


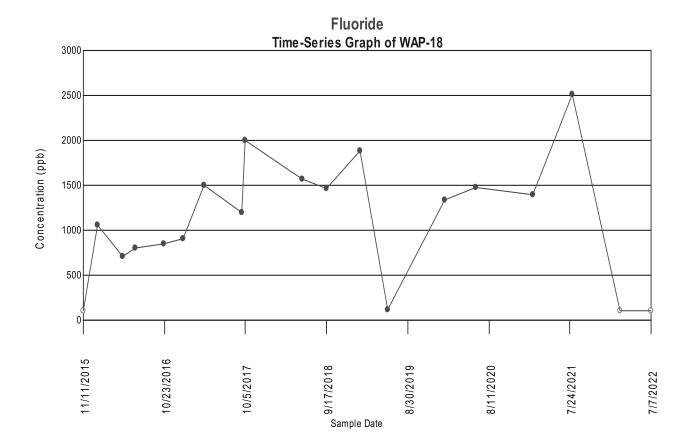


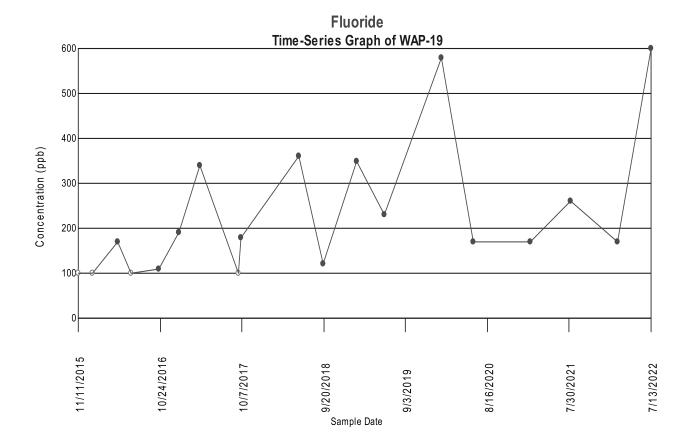


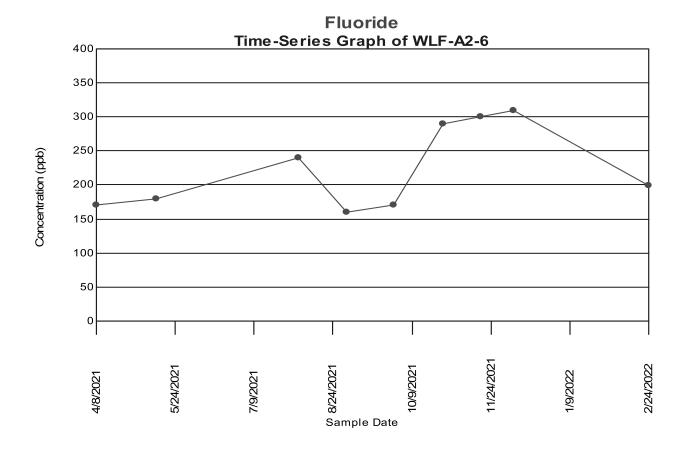


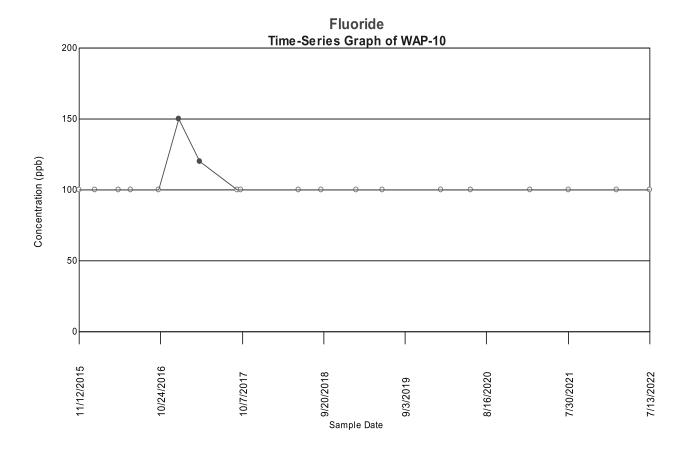


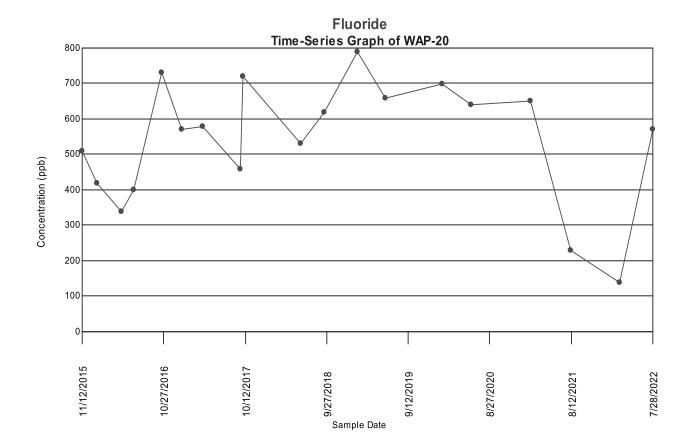


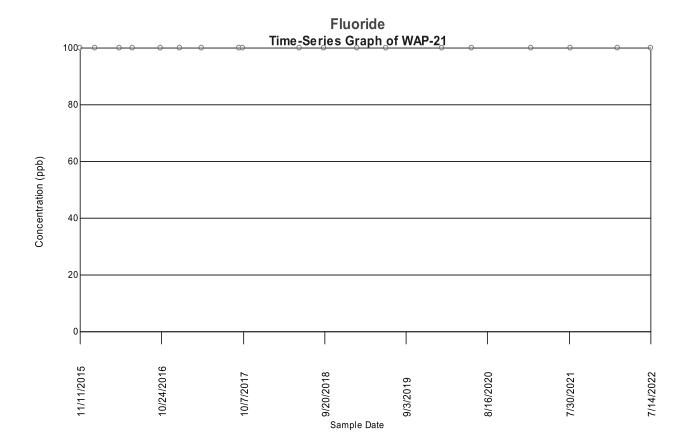


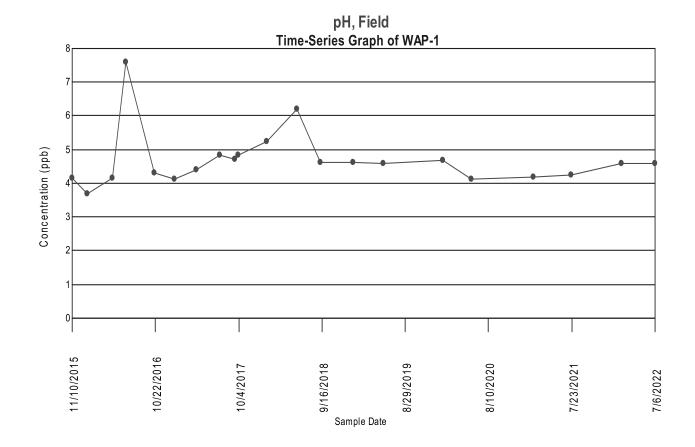


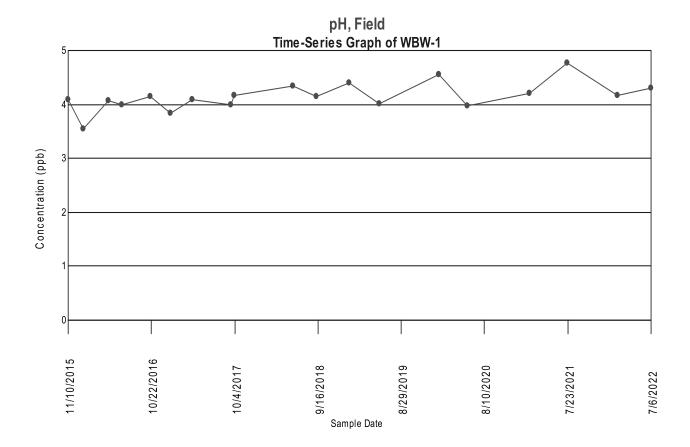


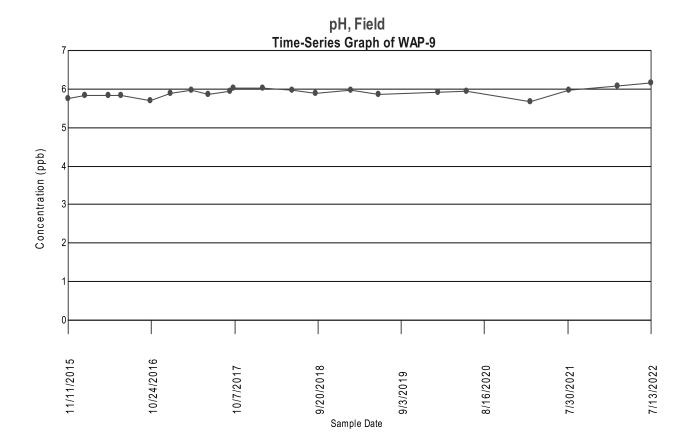


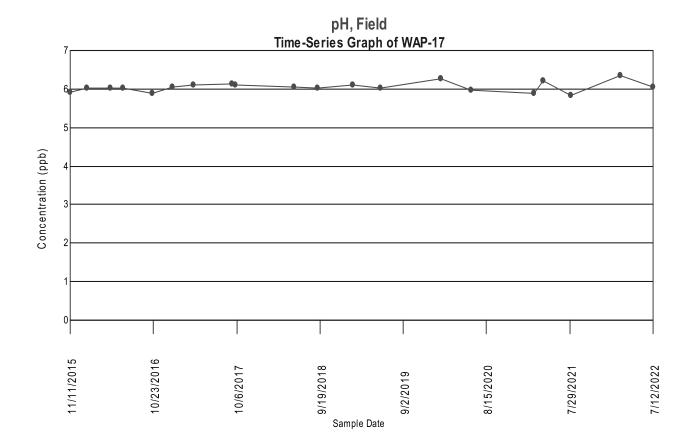


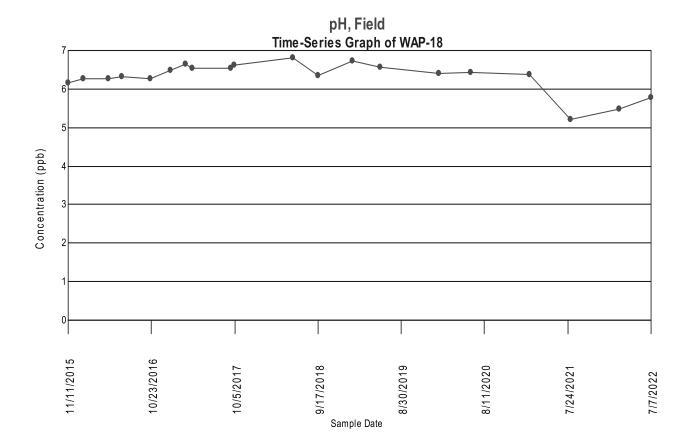


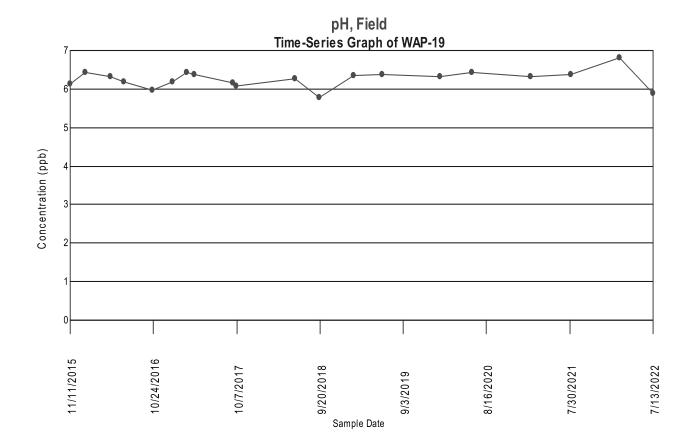


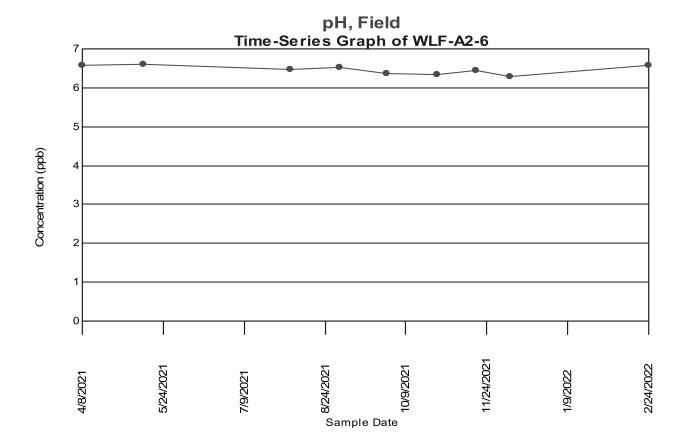


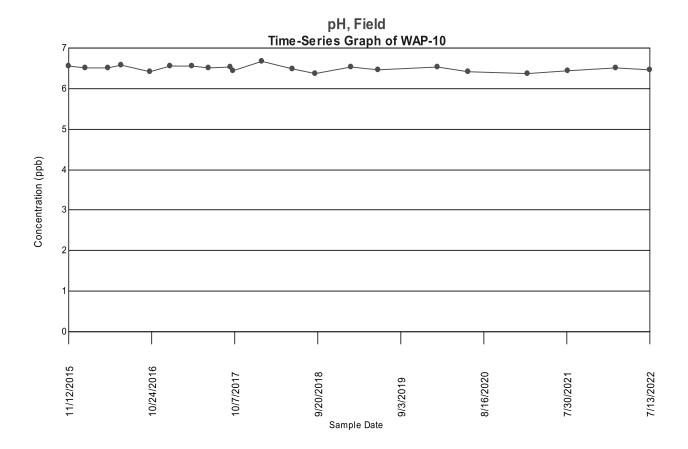


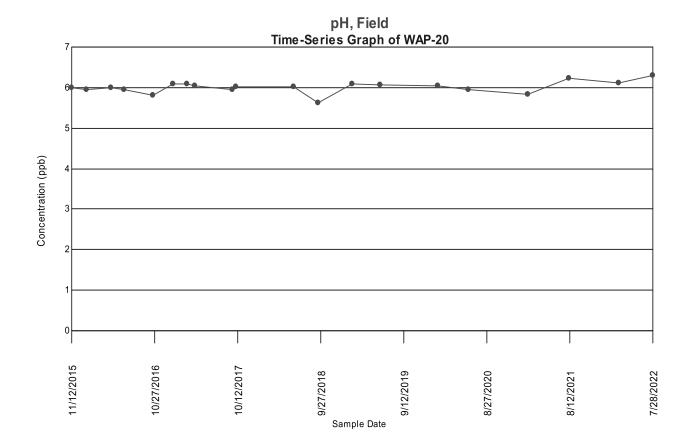


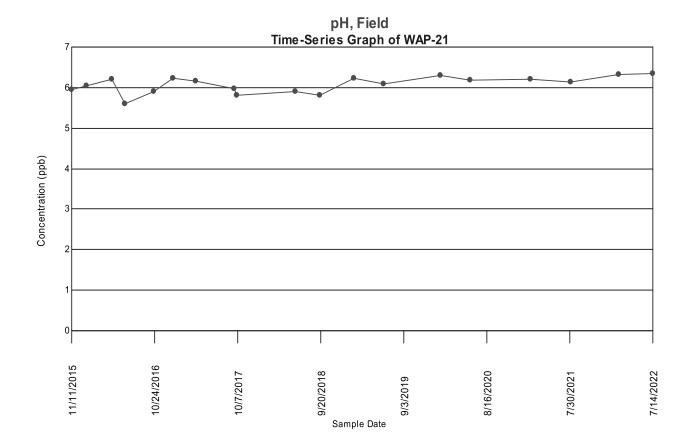


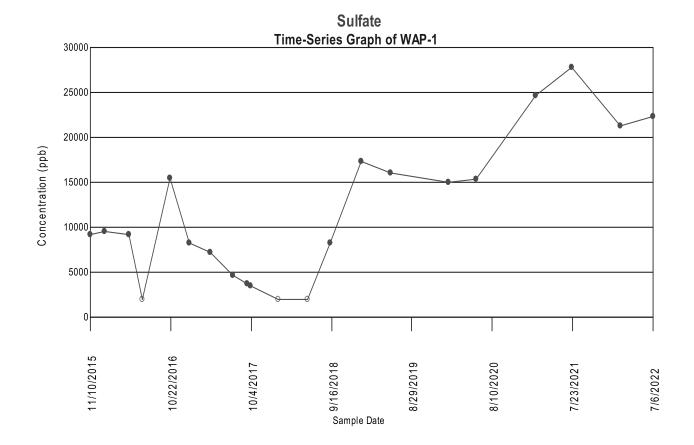


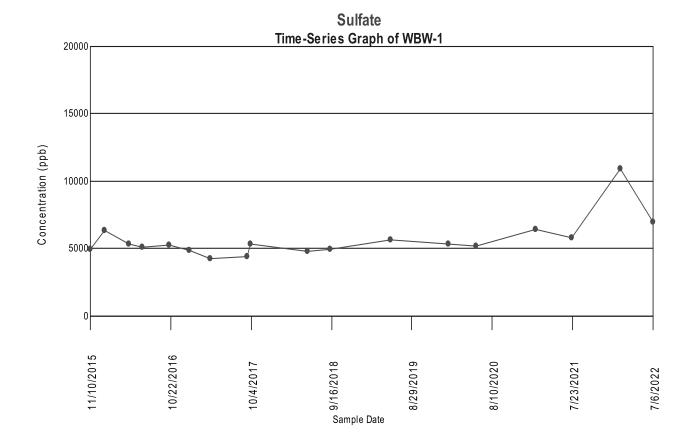


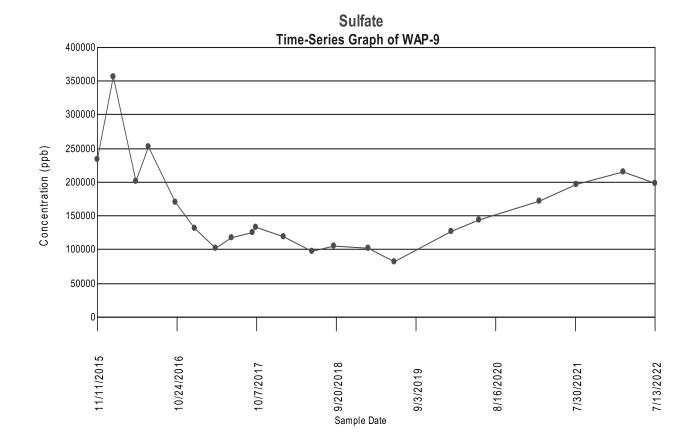


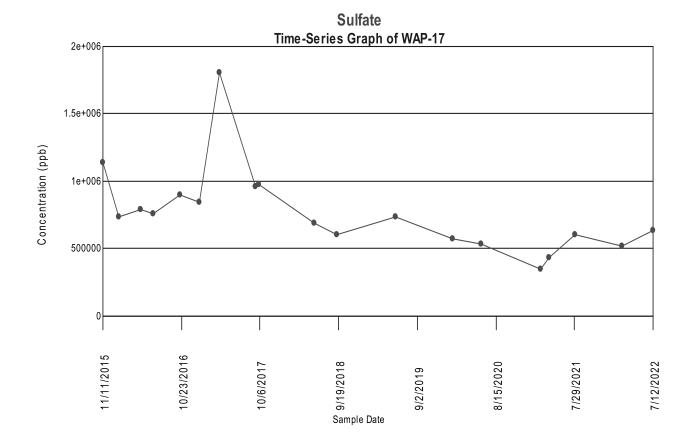


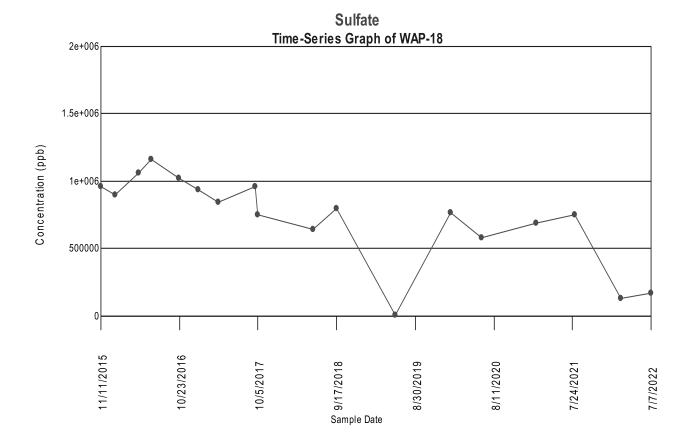


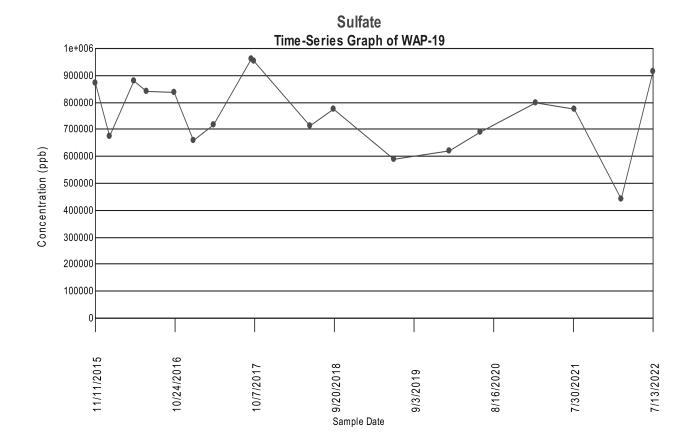


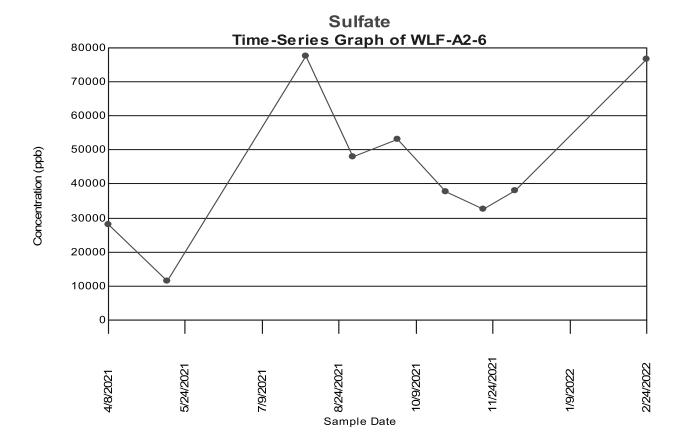


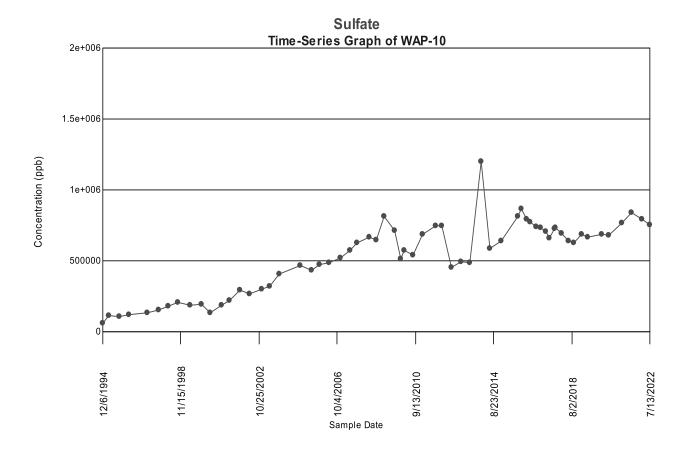


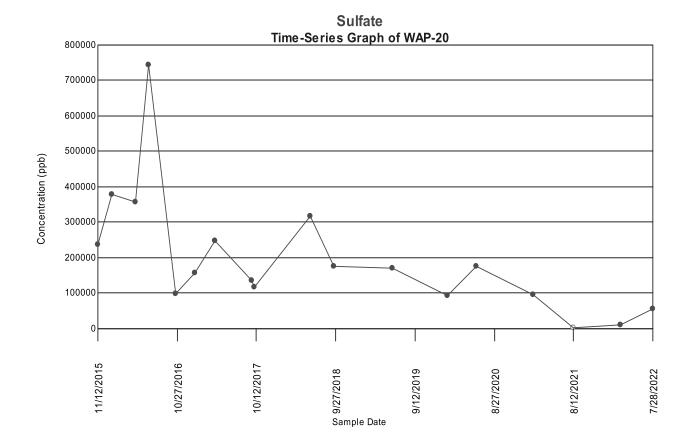


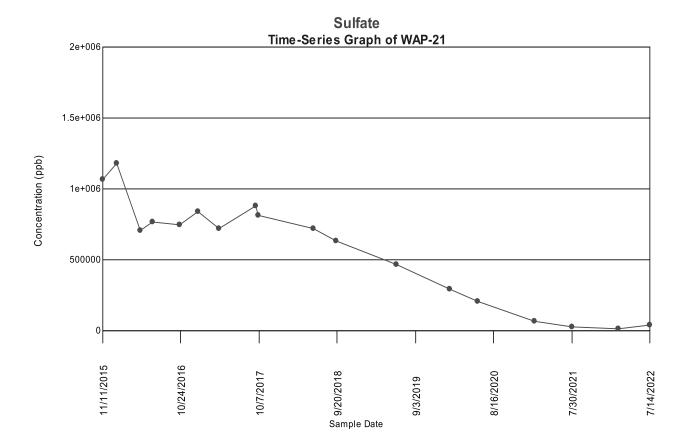


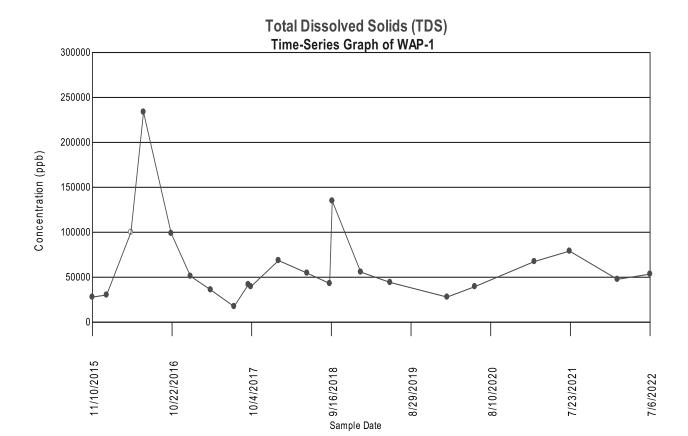


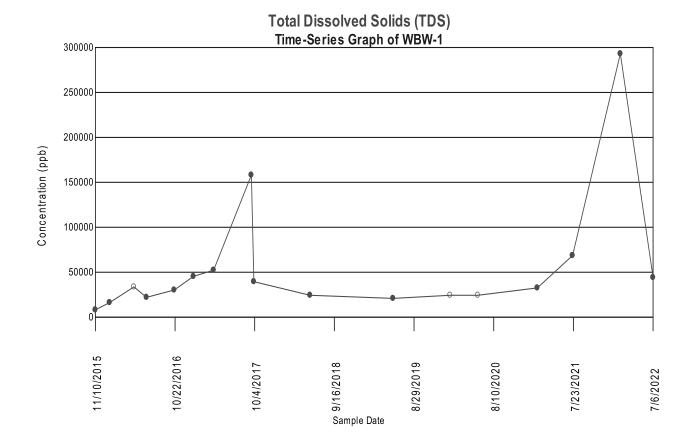




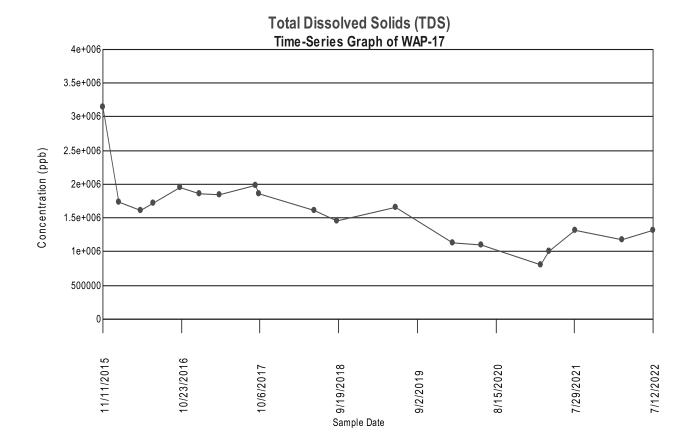


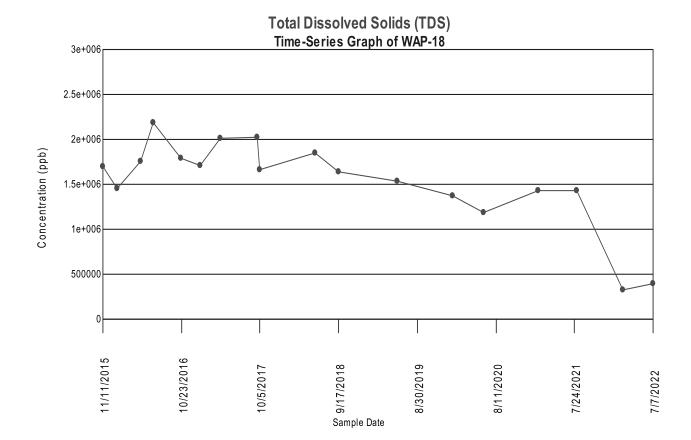


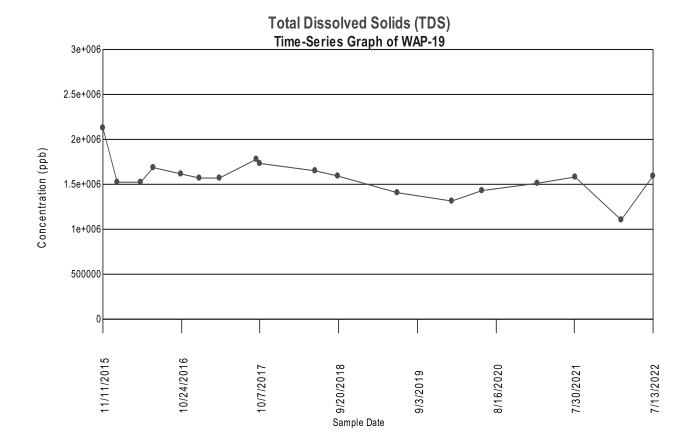


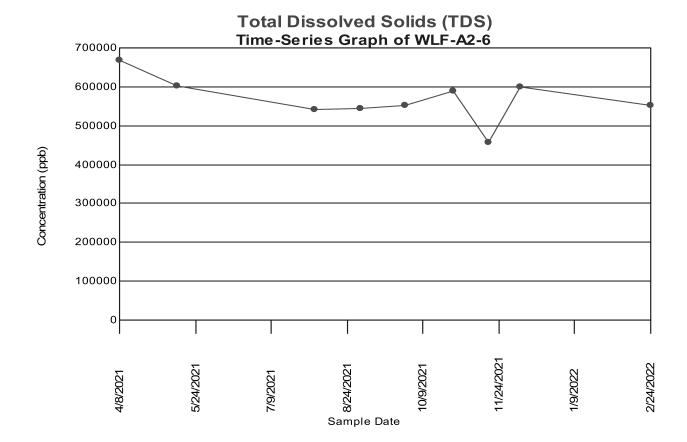


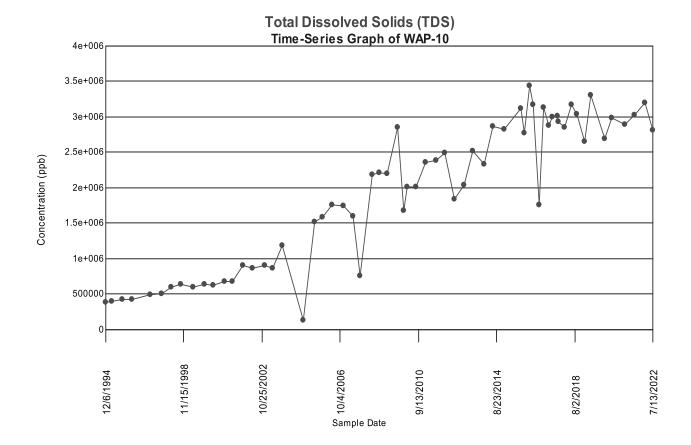


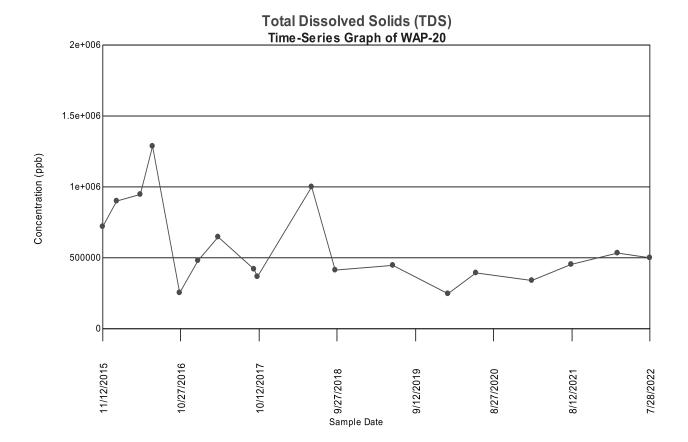


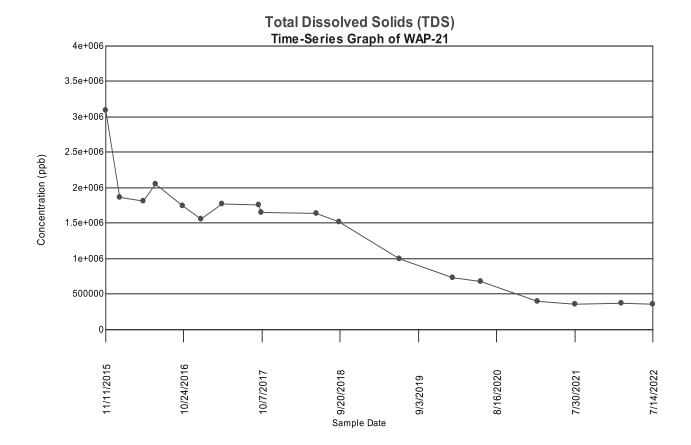


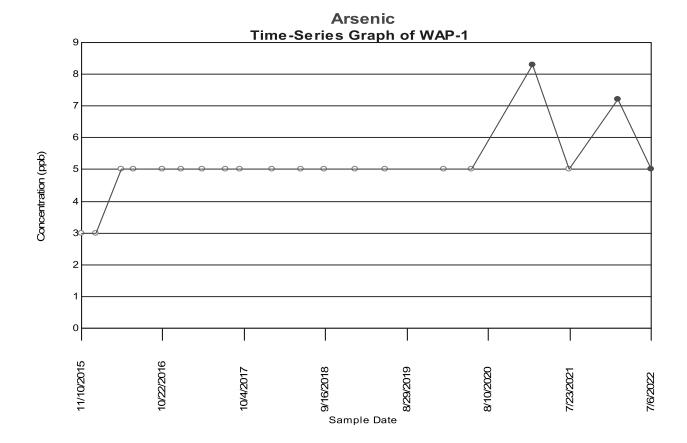


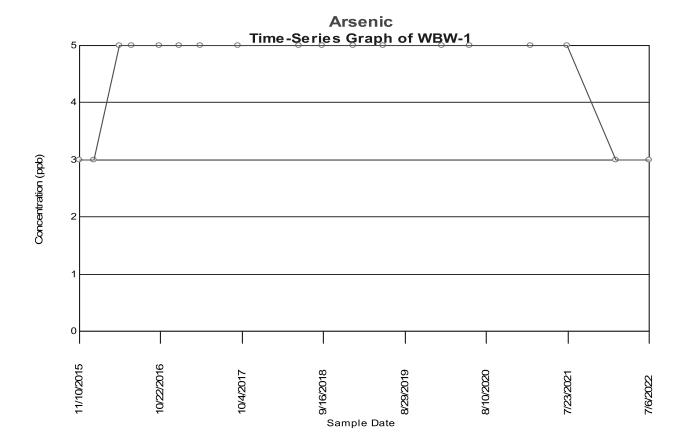


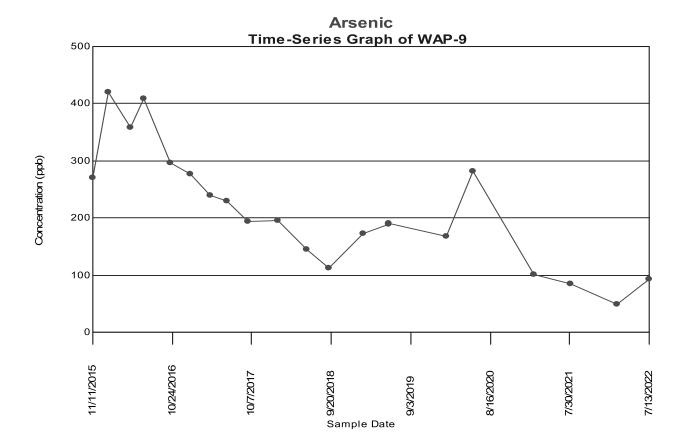


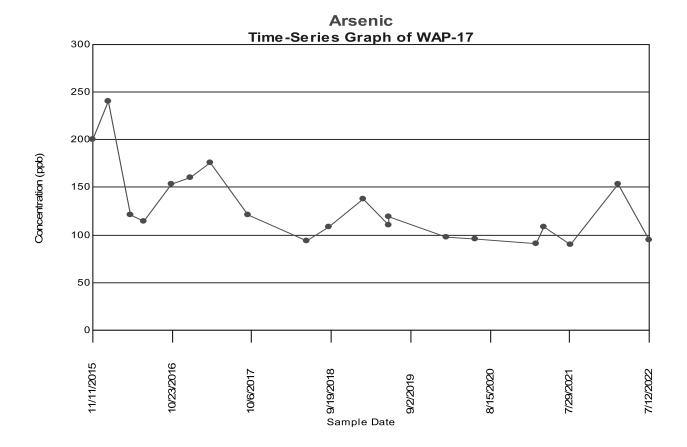


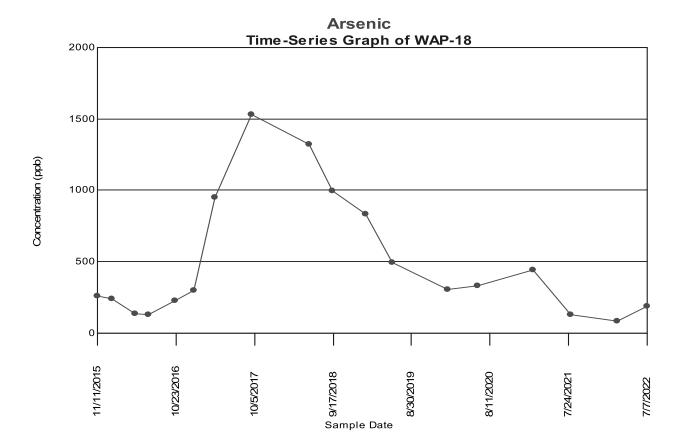









APPENDIX E


Time-Series Plots for Appendix IV Constituents – Arsenic, Lithium, and Molybdenum, Ash Ponds A and B

