2021 ANNUAL GROUNDWATER MONITORING AND CORRECTIVE ACTION REPORT BOTTOM ASH POND CROSS GENERATING STATION

by Santee Cooper Moncks Corner, South Carolina

January 31, 2022 (Amended March 2, 2022)

Tab	le of Contents	Page
1.	Annual Groundwater Monitoring Report Summary	1
2.	40 CFR §257.90 Applicability	1
	2.1 40 CFR § 257.90(a)	1
	2.2 40 CFR § 257.90(e) – Summary	2
	2.2.1 Status of the Groundwater Monitoring Program	2
	2.2.2 Key Actions Completed	3
	2.2.3 Problems Encountered	4
	2.2.4 Actions to Resolve Problems	4
	2.2.5 Project Key Activities for Upcoming Year	4
	2.3 40 CFR § 257.90(e) – Information	4
	2.3.1 40 CFR § 257.90(e)(1)	4
	2.3.2 40 CFR § 257.90(e)(2)	4
	2.3.3 40 CFR § 257.90(e)(3)	5
	2.3.4 40 CFR § 257.90(e)(4)	5
	2.3.5 40 CFR § 257.90(e)(5)	6

Table No. Title

1 Summary of Analytical Results

Figure No.	Title
1	Location of Bottom Ash Pond Groundwater Monitoring Wells for CCR
	Compliance
2	Potentiometric Map January – February 2021
3	Potentiometric Map June – July 2021

Appendix A – Statistical Analysis

Appendix B – Laboratory Analytical Reports

Appendix C – Well Installation Records

Appendix D – Slug Testing Results

1. Annual Groundwater Monitoring Report Summary

The South Carolina Public Service Authority (Santee Cooper) has prepared this 2021 Annual Groundwater Monitoring Corrective Action Report for Bottom Ash Pond at the Cross Generating Station (CGS). This 2021 Annual Report was prepared to comply with the United States Environmental Protection Agency (EPA) Hazardous and Solid Waste Management System; Disposal of Coal Combustion Residuals (CCR) from Electric Utilities, Title 40 Code of Federal Regulations (CFR) Part 257, Subpart D dated April 17, 2015 (CCR Rule), specifically subsection § 257.90(e)(1) through (6).

In accordance with § 257.90(e)(6), an overview of the current status of groundwater monitoring and corrective action programs for the CCR unit is provided below:

At the start of the current annual reporting period (January 1, 2021), the Bottom Ash Pond continued to operate under a corrective action monitoring program in accordance with § 257.98. Statistically significant levels (SSLs) of beryllium in monitoring wells CAP-5 and CAP-9; cobalt in monitoring wells CAP-1, CAP-3, CAP-5, CAP-7, and CAP-9; lithium in monitoring wells CAP-1 and CAP-9; and radium 226/228 in monitoring well CAP-5 were identified during the February 2021 sampling event. For the June 2021 sampling event, SSLs above the groundwater protection standard (GWPS) were identified for beryllium in monitoring wells CAP-1, CAP-5, and CAP-9; cobalt in monitoring wells CAP-1, CAP-3, CAP-5, CAP-7, and CAP-9; lithium in monitoring wells CAP-1 and CAP-9; and radium 226/228 in monitoring well CAP-5.

An assessment of corrective measures was initiated on April 15, 2019, due to the presence of Appendix IV SSLs. The assessment of corrective measures report was completed on September 11, 2019. A public meeting was held on December 3, 2019 to discuss six remedial alternatives per § 257.96(e). An addendum to the assessment corrective measures report was completed on September 30, 2020 to address radium which became an additional SSL in 2020. A remedy has been selected pursuant to § 257.97 and the remedy selection report was completed on September 30, 2020. Remedial activities were initiated in 2020 and are ongoing. At the end of the current annual reporting period (December 31, 2021), the Bottom Ash Pond remained in the corrective action groundwater monitoring program.

To report on the activities conducted during the prior calendar year and document progress complying with the CCR Rule, the specific requirements listed in § 257.90(e)(1) through (5) are provided in the next section in bold/italic type followed by a short narrative stating how that specific requirement was met.

2. 40 CFR § 257.90 Applicability

2.1 40 CFR § 257.90(a)

All CCR landfills, CCR surface impoundments, and lateral expansions of CCR units are subject to the groundwater monitoring and corrective action requirements under § 257.90 through § 257.98.

The Bottom Ash Pond at CGS is an existing surface impoundment and is subject to the groundwater monitoring and corrective action requirements set forth by the EPA in 40 CFR § 257.90 through § 257.98. This document satisfies the requirement under § 257.90(e) which requires the CCR Unit Owner/Operator to prepare an Annual Groundwater Monitoring and Corrective Action Report.

2.2 40 CFR § 257.90(e) - SUMMARY

Annual groundwater monitoring and corrective action report. For existing CCR landfills and existing CCR surface impoundments, no later than January 31, 2018, and annually thereafter, the owner or operator must prepare an annual groundwater monitoring and corrective action report. [...] For the preceding calendar year, the annual report must document the status of the groundwater monitoring and corrective action program for the CCR unit, summarize key actions completed, describe any problems encountered, discuss actions to resolve the problems, and project key activities for the upcoming year. For purposes of this section, the owner or operator has prepared the annual report when the report is placed in the facility's operating record as required by § 257.105(h)(1).

This Annual Report documents the activities completed in 2021 for the Bottom Ash Pond at CGS as required by the Groundwater Monitoring and Corrective Action regulations. Groundwater sampling and analysis was conducted per the requirements of § 257.93, and the status of the groundwater monitoring program, set forth in § 257.98, is provided in this report.

2.2.1 Status of the Groundwater Monitoring and Corrective Action Program

In 2021, the corrective action groundwater monitoring program, initiated in 2020, continued, in accordance with § 257.98. Consistent with previous results, beryllium, cobalt, lithium, and radium continue to be the only Appendix IV constituents present in groundwater at SSLs above the GWPS. Radium, which was initially identified as an SSL above GWPS in February 2020, was also present in both semiannual sampling events for 2021 in CAP-5. In March 2021, a new well, CCMAP-4, was installed to continue the nature & extent investigation of radium for CAP-5. This well was installed in the uppermost aquifer adjacent to CAP-5 to assess the horizontal extent. Radium was not identified above the GWPS in the nature & extent well, CCMAP-4, thereby indicating that the extent of radium in groundwater may be limited to the vicinity of CAP-5.

The selected remedial alternative is closure by removal (CBR) with beneficial use plus monitored natural attenuation (MNA). This remedy eliminates the source through removal thereby meeting the source control requirement stated in the CCR Rule. Over time, removing the source material will allow the concentrations of these constituents in downgradient groundwater to attenuate. Through the on-going beneficial use of reclaimed ponded bottom ash and gypsum, the amount of material that will need to be removed from the Pond has been greatly reduced prior to selecting the final groundwater remedy. This beneficial use program's success makes the option of CBR viable. The other component of the selected remedy will be to address the presence of beryllium, cobalt, lithium, and possibly radium-226/228 in the groundwater above the GWPSs. Groundwater is being addressed through MNA, which is a viable remedial technology recognized by state and federal regulators that is applicable to inorganic compounds in groundwater. MNA, in combination with source removal, is intended to reduce concentrations of beryllium, cobalt, lithium, and radium-226/228 in groundwater at the Bottom Ash Pond boundary, thereby attaining the groundwater protection standard.

The development of the corrective action groundwater monitoring program for MNA was completed by reevaluating the current groundwater sampling plan. This evaluation concluded that the assessment monitoring protocol currently being implemented was sufficient to meet the needs of the corrective action groundwater monitoring program, which is consistent with § 257.98(a)(1)(i) and thus will continue to be implemented during the regularly scheduled semi-annual groundwater monitoring events.

2.2.2 Key Actions Completed

The following key actions were completed in 2021:

- Prepared 2020 Annual Report including:
 - The Annual Report was placed in the facility's operating record pursuant to § 257.105(h)(1);
 - Pursuant to § 257.106(h)(1), the notification was sent to the relevant State Director within 30 days of the Annual Report being placed in the facility's operating record [§ 257.106(d)];
 - Pursuant to § 257.107(h)(1), the Annual Report was posted to the CCR Website within 30 days of the Annual Report being placed in the facility's operating record [§ 257.107(d)];
- Collected and analyzed two rounds of groundwater monitoring (February and June) in accordance with § 257.95(b) and § 257.95(d)(1) and recorded the concentrations in the facility's operating record as required by § 257.95(d)(1) (which is also consistent with § 257.98 (a)(1)). Groundwater monitoring results are summarized in Table 1 and laboratory analytical results are provided in Appendix B.
- Completed statistical evaluations to determine statistically significant exceedance of GWPS for Appendix IV in accordance with § 257.93(h)(2) (Appendix A).
- Installed additional groundwater monitoring well CCMAP-4 by a South Carolina Certified Well
 Driller in March 2021, as part of the Corrective Measures Assessment and Nature and Extent
 investigation to address the new SSL identified for radium § 257.95(g)(1)(i). The well installation
 records are provided in Appendix C.
- Installed additional groundwater monitoring wells (CCMAP-5, CCMAP-6, and CCMAP-7) by a South Carolina Certified Well Driller in December 2021, as part of the Corrective Measures Assessment and to further characterize the nature and extent of Appendix IV constituents in groundwater. These supplemental downgradient wells will also be used to validate and/or refine the groundwater flow and solute transport model prepared by Haley & Aldrich (refer to Appendix C of the Corrective Measures Assessment Report on the public website) to predict the downgradient extent of the plume. Preliminary modeling results indicate the plume is not anticipated to extend to the property boundary, at any time in the future. The well installation records are provided in Appendix C.
- Continued implementing the semiannual Corrective Action Groundwater Monitoring Program (MNA Sampling Protocol) consistent with § 257.98 (a)(1).
- Part of the corrective action measures includes reducing the head on the Bottom Ash Pond to
 prepare for CBR. Further dewatering was implemented in August 2021 with additional pumping
 and reestablishing internal ditch connectivity.
- Slug testing was performed on the two background (PM-1 and CBW-1) and two CMA/NE (CCMAP-1 and CCMAP-2) groundwater monitoring wells for the Bottom Ash Pond in November 2021. This data provided additional information on the hydraulic conductivity of the uppermost aquifer for the unit. The findings are summarized in Appendix D.

2.2.3 Problems Encountered

The nature and extent monitoring wells for the Bottom Ash Pond (CCMAP-1, CCMAP-2, CCMAP-3, and CCMAP-4) were not sampled to comply with § 257.95(g)(iv) as the CCR unit had already moved out of

the CMA/NE monitoring program. Only the most widely detected Appendix IV constituents identified at SSLs above GWPS (beryllium, cobalt, lithium, and radium 226/228) were sampled instead of Appendix III and Appendix IV constituents as required by § 257.95(g)(iv).

2.2.4 Actions to Resolve Problems

Actions to resolve the problem include sampling Appendix III and Appendix IV constituents for the nature and extent monitoring wells consistent with § 257.95(b) and § 257.95(d)(1) for all future sampling events.

2.2.5 Project Key Activities for Upcoming Year

Key activities to be completed in 2022 include the following:

- Conduct semi-annual groundwater monitoring consistent with § 257.98 (a)(1) and § 257.95(d)(1)
- Update the existing groundwater model to calibrate the model to existing conditions and examine the fate and transport characteristics of beryllium, cobalt, lithium, and radium in groundwater.
- Conduct additional nature and extent activities, as necessary, including possible installation of additional monitoring well(s), in accordance with § 257.95(g)(1).
- Continue reducing the head on the Bottom Ash Pond to prepare for CBR.
- Prepare the 2022 annual report; place it in the record as required by § 257.105(h)(1), notify the state [§ 257.106(d)]; and post to website [§ 257.107(d)].

2.3 40 CFR § 257.90(e) - INFORMATION

At a minimum, the annual groundwater monitoring and corrective action report must contain the following information, to the extent available:

2.3.1 40 CFR § 257.90(e)(1)

A map, aerial image, or diagram showing the CCR unit and all background (or upgradient) and downgradient monitoring wells, to include the well identification numbers, that are part of the groundwater monitoring program for the CCR unit;

As required by § 257.90(e)(1), a map showing the locations of the CCR unit and associated upgradient and downgradient monitoring wells for the Bottom Ash Pond is presented as Figure 1.

2.3.2 40 CFR § 257.90(e)(2)

Identification of any monitoring wells that were installed or decommissioned during the preceding year, along with a narrative description of why those actions were taken;

Groundwater monitoring well CCMAP-4 was installed by a South Carolina Certified Well Driller in March 2021, as part of the Corrective Measures Assessment and Nature and Extent for the new SSL, radium. It was installed downgradient of CAP-5, outside the Bottom Ash Pond, and was relied upon to evaluate the horizontal extent of radium impacts at the Ash Pond.

Groundwater monitoring wells CCMAP-5, CCMAP-6, and CCMAP-7 were installed by a South Carolina certified well driller in December 2021 as part of the on-going nature & extent investigation. These wells were installed downgradient of the Bottom Ash Pond to further characterize the nature and extent of Appendix IV constituents in groundwater. These supplemental downgradient wells will also be used to

validate and/or refine the groundwater flow and solute transport model prepared by Haley & Aldrich to predict the downgradient extent of the plume. The outer extent of the plume was initially demarcated at the facility property boundary with the installation of CCMAP-1 and CCMAP-2 in 2019.

2.3.3 40 CFR § 257.90(e)(3)

In addition to all the monitoring data obtained under § 257.90 through § 257.98, a summary including the number of groundwater samples that were collected for analysis for each background and downgradient well, the dates the samples were collected, and whether the sample was required by the detection monitoring or assessment monitoring programs;

In accordance with § 257.95(b) and § 257.95(d)(1), at least two independent samples from each background and downgradient monitoring well were collected and analyzed in 2021. A summary table including the sample names, dates of sample collection, reason for sample collection, and monitoring data obtained for the groundwater monitoring program for the Bottom Ash Pond is presented in Table 1 of this report. In addition, as required by § 257.95(d)(3), Table 1 includes the groundwater protection standards established under § 257.95(d)(2). Laboratory analytical data reports, along with field sampling forms, are provided in Appendix B to this report.

2.3.4 40 CFR § 257.90(e)(4)

A narrative discussion of any transition between monitoring programs (e.g., the date and circumstances for transitioning from detection monitoring to assessment monitoring in addition to identifying the constituent(s) detected at a statistically significant increase over background levels); and

The groundwater monitoring program remained in corrective action monitoring for the duration of 2021. A summary of the evolution of the monitoring programs is provided in this section.

As required by § 257.93(h) a statistical analysis of the Appendix III constituents was completed on January 15, 2018. Baseline analytical data collected from background monitoring wells CBW-1 and PM-1 were combined to develop Upper Tolerance Limits (UTLs). The UTLs for each Appendix III constituent were compared to the analytical results for the downgradient monitoring wells CAP-1, CAP-3, CAP-5, CAP-7, and CAP-9. Constituents with analytical results exceeding the UTLs were identified as SSIs over background for the respective Appendix III constituent. An evaluation of alternate sources was initiated and completed on April 13, 2018, as provided in § 257.94(e)(2). A source causing the SSI over background levels other than the CCR unit was not identified at that time and an Assessment Monitoring program was initiated on July 16, 2018.

As required by § 257.93(h)(2), the statistical evaluation of the detected Appendix IV constituents identified SSLs of Appendix IV constituents above GWPS. Therefore, per §257.95(g)(3), an assessment of corrective measures and nature and extent evaluation was initiated on April 15, 2019, to evaluate the horizontal and vertical nature and extent of the SSLs downgradient of the Bottom Ash Pond. The Corrective Measures Assessment (CMA) report, considering the presence and distribution of beryllium, cobalt, and lithium in the uppermost aquifer, the configuration of the Cross Bottom Ash Pond, operational history, hydrogeologic setting, and the results of the evaluation of the nature and extent available at the time of the CMA, was created.

During the February 2020 sampling event radium was detected above the GWPS in monitoring well CAP-5. An addendum to the initial CMA report was prepared and placed in the operating record on September 30, 2020. This addendum reevaluated the proposed corrective measures alternatives to address the presence of radium. Radium will continue to be evaluated during subsequent semiannual

sampling events. The Remedy Selection Report was prepared and placed in the operating record on September 30, 2020 which initiated the transition to a corrective action monitoring program. The sample concentrations from the downgradient wells for each of the detected Appendix IV constituents from the monitoring events of 2021 were compared to their respective background UTLs and GWPS (Appendix A). A sample concentration greater than the GWPS was considered to represent an SSL. Based on previous compliance sampling events and statistical evaluations, interwell comparisons were utilized for all downgradient wells and constituents. Based on the statistical evaluation of the 2021 groundwater sampling events, SSLs above GWPS were identified at the Ash Pond (beryllium, cobalt, lithium, and radium), consistent with previous findings.

The development of the corrective action groundwater monitoring program was completed by reevaluating the current groundwater sampling plan. This evaluation concluded that the assessment monitoring protocol currently being implemented was sufficient to meet the needs of the corrective action groundwater monitoring program and evaluate the performance of the selected remedy. Thus, it will continue to be implemented during the regularly scheduled semi-annual groundwater monitoring events. This is consistent with § 257.98(a)(1)(i).

2.3.5 40 CFR § 257.90(e)(5)

Other information required to be included in the annual report as specified in § 257.90 through § 257.98.

Other information including development of groundwater protection standards, recording groundwater monitoring results in the operating record, an evaluation of alternate sources, and the remedy selection process is discussed in preceding sections. Groundwater flow rate and direction are provided as Figures 2 and 3 for each sampling event as specified in § 257.93(c).

Slug testing was performed on the two background (PM-1 and CBW-1) and two CMA/NE property boundary (CCMAP-1 and CCMAP-2) groundwater monitoring wells for the Bottom Ash Pond in November 2021. This data provided additional information on the hydraulic conductivity of the uppermost aquifer in the immediate vicinity of the selected wells. The range of hydraulic conductivities from the monitoring wells that were tested were 1.387E-04 (cm/sec) to 4.800E-03 (cm/sec). These results are comparable to the Site Hydrogeologic Characterization Report completed in 2011 which reported a range of hydraulic conductivities of 3.357E-04 (cm/sec) to 8.93E-03 (cm/sec) for the shallow aquifer. This range of hydraulic conductivities is typical for the soil types identified and for this depositional setting. This information, combined with the calculated horizontal hydraulic gradients, and an assumed effective porosity of 25 percent will be used to report on groundwater flow direction and rate following each semiannual sampling event as required by § 257.93(c). These findings are provided in Appendix D.

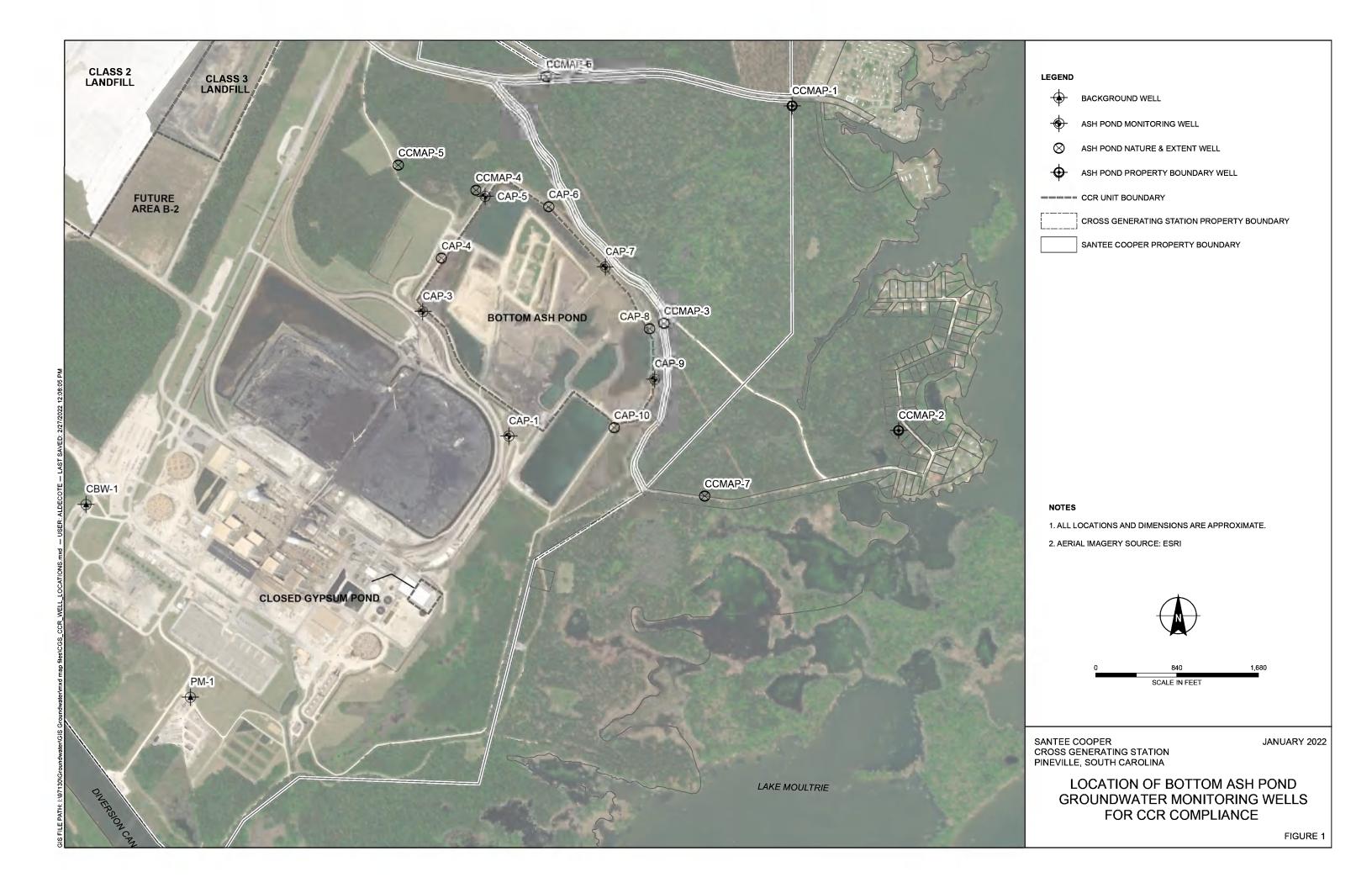
TABLES

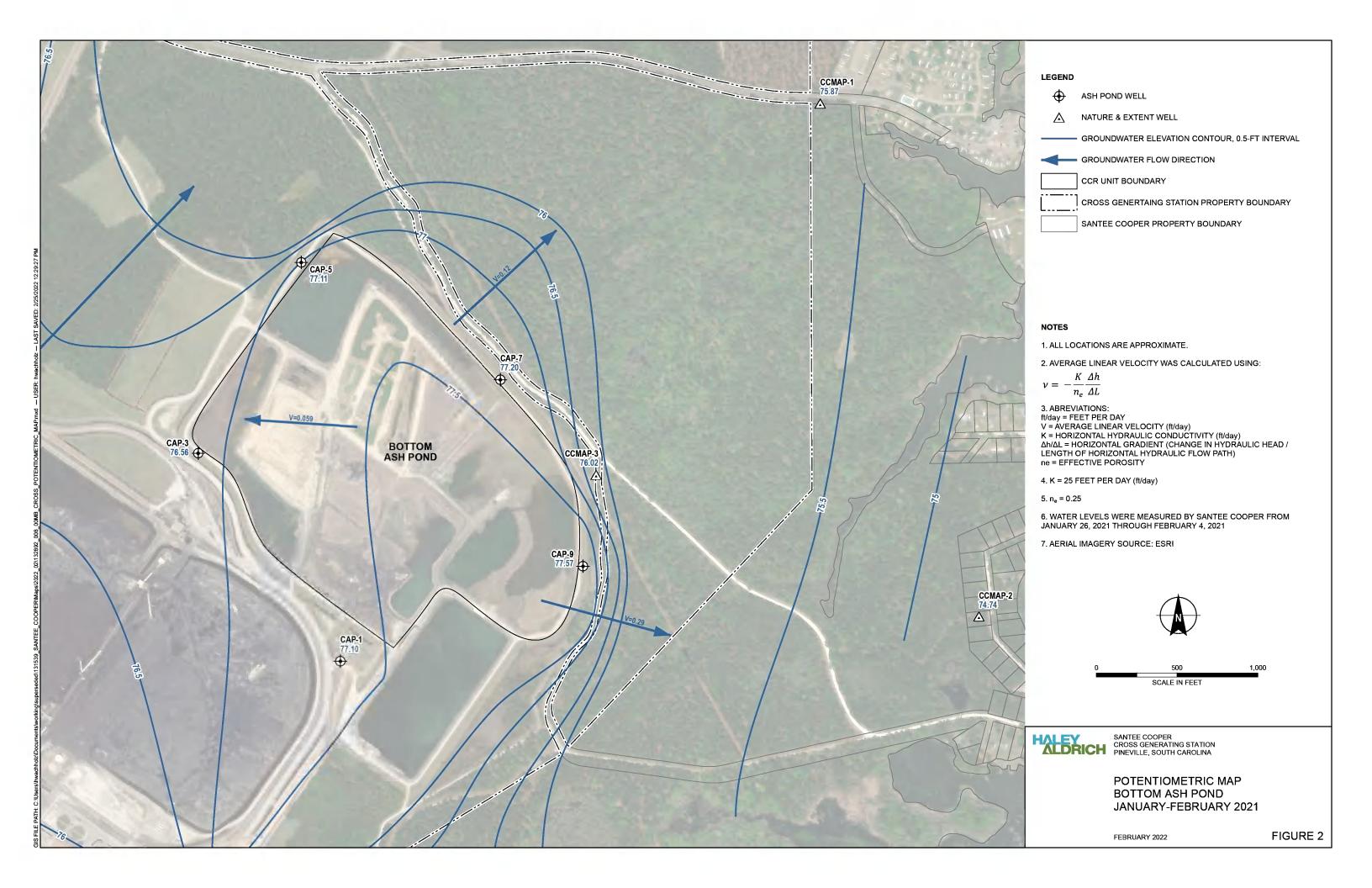
TABLE 1 - Summary of Analytical Results
Cross Generating Station Bottom Ash Pond Corrective Action Monitoring 2021

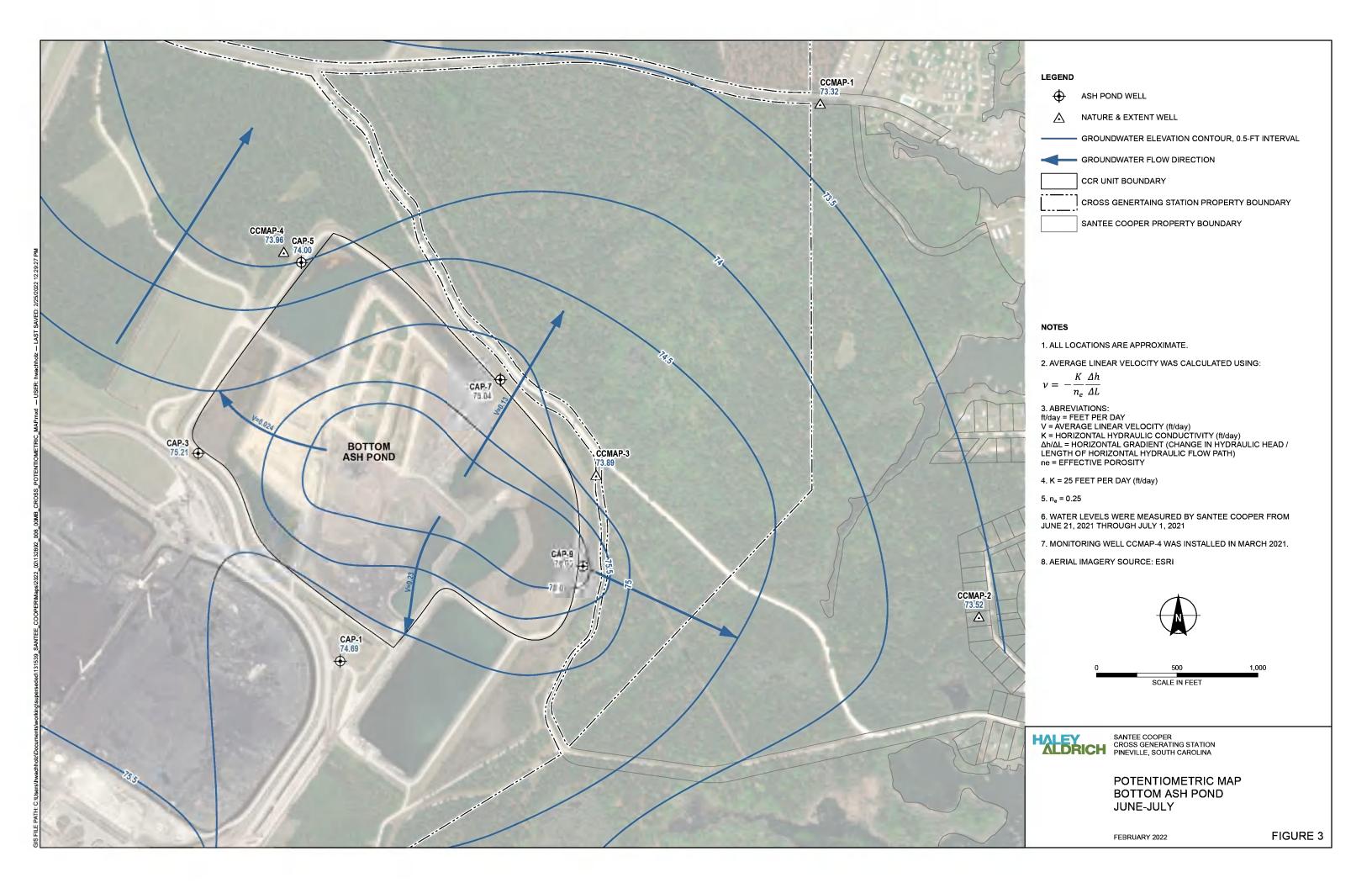
							Anner	ndix III Con:	stituents		Т								Annen	dix IV Cor	stituents											Field Par	ameters		
Well ID	Purpose	Date of	Laboratory		Baron	Calcium	Chloride	Fluoride	Sulfate	Total	ρН	Antimony	Arsenic	Barium	Beryllium	Cadmium	Chromium	Cobalt	Fluoride	Lead	Lithium	Mercury	Molybdenum	Radium 226	Radium 228		Selenium	Thallium	Depth	Elevation	рН	Specific	Temp Oxio	idation Turbidity	
		Sample Event	Sample ID Number							Dissolved Solids																226/228 Combined						Conductivity		luction tential	Oxygen
				Unit	uall	mod	mall	mail	mail		SU	unfl	uali	uall	loni	uad	uell	Len/I	mofl	uall	loot	uail	uell	nCi/l	nCill	Calculation	unil	unfl	Feet	Feet	SU	uS			ppm
				Unit Method	EPA 6010D	EPA 6020B	B EPA 300.0	mg/L EPA 300.0	EPA 300.0	SM 2540C	30	EPA 6020B	EPA 6020B	EPA 6020B	EPA 6020B	EPA 6020B	EPA 6020B	EPA 6020B	EPA 300.0	EPA 6020B	EPA 6010D	EPA 7470	EPA 6010D	EPA 903.1	pCi/L EPA 904.0	EPA 903.1	EPA 6020B	EPA 6020B	100	1661	30	- 23	SN	mv NTU #2580	- Ppin
				GWPS/US					1												<u> </u>			Mod		Mod									+
				EPA MCL/RSL	_	-	_	4	_	-	-	,6	10	2000	4	5	100	6	4	15	40	2	100	_	-	5	50	2	_	_	_	-	- -	- -	-
DU 4	Site Background	ound Wells	AE94972		c15	14	3 11	.0 <0.10	1 00	9 110	5.03	∠ 5.0	<5.80	95.7	<0.50	<0.50	25.0	,	z0.11	0 (1)	n <10	40.26	-10	0.559	2.00	3.44	0.0</td <td>-17</td> <td>Д 97</td> <td>74.97</td> <td>6.03</td> <td>1/1</td> <td>19.47</td> <td></td> <td>44 61</td>	-17	Д 97	74.97	6.03	1/1	19.47		44 61
PM-1	Hackground	6/21/2021	AF07281		<15	127	i7 ''	12 <8.10	11	9 155	5.21	<5.0	<5.8	87.3		<0.50 ⊲ 0.50	<5.0	8.94	<0.1	8 <1.	0) <10	40.2	2 <10		1.73	2.1		<1.0	7.91	75.33	5.21	169		45 4	4.3 3.96
- 1	Lotal samples				2		2	2		2]. 2	2	2	. ?	. 2	2	2	2	2		2	2 2		2 2		2	2	. 2	2	2	2	2	2	2	2	2
CBW-1 CBW-1	Background Background		AE94854 AF07259		18 <40	29.	9 3.6	22 0.19 95 0.19	86.	7 138.8 6 178.8	4.31 4.25	<5.0 <5.0	<5.8 <5.8	46.6 42.3	<0.50 <0.50	<0.50 <0.50	<5.0 <5.0	0.66	0.19	5 2. 9 2.	5 <10 5 <20	<0.26 <0.2	3 <10 2 <20	0.436	1.29 8.12	1.73 0.552	0.0<br 0.0</td <td><1.0 <1.0</td> <td>10.12 10.87</td> <td>75.68 75.73</td> <td>4.31</td> <td>192 194</td> <td>20.25 24.16</td> <td>75 C</td> <td>0.2 0.6</td>	<1.0 <1.0	10.12 10.87	75.68 75.73	4.31	192 194	20.25 24.16	75 C	0.2 0.6
	Lotal samples				2		2	2		2 2	2	2	. ?	2	2	2	2	_2		2	2 2		2 2		2	2	. 2		2	2	2	2	2	2	2
CAP-1	Corrective	2/2/2021	AE94839			17	72 92	.9 1.09	39	4 907.5	5.74	<5.0	<5.8	63.8	3.2	⊲0.50	<5.0	9.7	1.0	9 1.	7 50	<0.26	<10	1.1	0.243	1.34	< 10.0	<1.0	5.6	77.1	5.74	1000	13.89	34	8 1.9
CAP-1	Action Corrective	6/24/2021	AF07244		480	25	50 19	93 2.42	64	5 1385	5.18		<5.8	45.1	8.1	<0.50	<5.0	22.1	2.43	2 2.	2 96	<0.2	2	0.13	0.659	0.789			8.01	74.69	5.18	1550	24.03	74 58	8.7 0.
CAP-1	Action total samples				i		2	2 2		2 2	2	1	2	Ž	2	2	2	2		2	2 2		2 1	ž	2	2	1	1	2	2	2	ž	2	2	2
CAP-J	Corrective	2/3/2021	AE94841			67	77 70	00 <0.10	99	9 3391	6.34	<5.0	<5.8	64.2	<0.50	<0.50	<5.0	32.8	<0.1	8 <1.	0 15	<0.26	3 <10	0.714	1.58	2.29	<10.0	<1.0	14,93	76.56	6.34	4180	19.22	49	0 0.6
CAP-J	Action Corrective		AF07246		6300				1 00	1 3134	£ 741		-E0	BE	<0.50	<0.58	<5.0		40.11	9 21	n 13	<0.2		0.413		1 70		-1.0	16.70	75.21	6.31	3290			26 04
	Action	WZ31ZUZ1	AFU1246		0300		2	N 10.10	, 50	3121	0.31		9.0		~U.3U	√ 0.50	<5.0	20.9	30.11		11			0.413	1.30	1.79			10.20	19.21	0.31	3290	24.05	2	0.40
	total samples				1		2	2 2	1	2 2	2	1	2	2	2	2		2		2	2 2	-	2 1	. 2	2	2	1	1	2	2	2	2	2	2	2 2
CAP4	CMA/NE CMA/NE		AE94842 AF07247			67 73			79		6.57 6.45		<5.8 ≤5.8		<0.50 <0.50	<0.50 <0.50				-	28								16.48 16.87	75.29 74.9	6.57 6.45			95	D 0.76
CAP4 CAP4	total samples	- Grazor,	AUGUETI		Ö		2	2 (2 2	ž	Ō	2	2	2	ž	Ž	2		0	D 2		0 0	Ö	ò	0	0	0	2	Ž	2	2	2	2	2
CAP-5	Corrective	2/3/2021	AE94843			15	53 60	0.79	< 2.	0 1179	3.68	<5.0	<5.8	1480	5	<0.50	<5.0	14.7	0.79	5 6.	1 16	<0.2€	<10	6.31	15	21.3	<10.0	<1.0	14.67	77.11	3.68	2880	₹8.56	312	8 0.5
CAP-5	Action Corrective	6/29/2021	AF07248		<40	15	54 69	6 0.52	2 <2	0 1475	3.86		<5.8	1660	4.3	<0.50	<5.0	14.8	0.53	2 7.	3 13	<0.2	2	5.16	11.6	16.0			17.78	74	3.86	2010	24.02	116	8 0.4
CAP-5	Action total samples				. 1		j j	2		2 2	ż	1	,	7	. 2	ž	ż	2		2	2 2		1	7	j	2	i	1	2	ż	2	2	2	2	2
CAP-6	CMA/NE	21472024	AE94844			43	oc E	24	77	9 3050	£ 53		< 0	362	<0.50	<0.50		<0.50						-			_		15.00	76 72	5.67	2470	10.1	71	0 05
CAP-6	CMA/NE	6/28/2021	AF07249					00	33	5 2279	6.72		₹5.8	317	<0.50 <0.50	40.50	<5.0	40.50			<18								17.55	74.27	5.72	2430	23.92	-82 2	2.4 0.4
	total samples				0		.2	.2 (2 2	2	0	2	2	2	2	2	2		0	<u>D</u> 2		00	o c	0	0	0		2		2	2	2	2	2 2
CÁP-7	Corrective Action	2/3/2021	AE94845			106	50 22	10 < 8.10	162	6105	5.46	<5.0	<5.0	38	<0.50	<0.58	<5.0	10.2	⊲0.10	B <1.	0 <10	<0.2€	<10	1.27	2.59	3.06	<10.0	<1.0	14.44	77.2	5.46	9580	18.96	70	1 0.87
CAP-7	Corrective Action	6/30/2021	AF07250		29000	115	50 290	J5 <0.10	105	1 7198	5.51		<5.8	41.3	<0.50	⊲0.50	<5.0	9.6	<0.10	8 <1.	D <10	⊲0.2	2	0.509	1.54	1.65			16.6	75.04	5.51	8740	25.66	73	0.36
CAP-7	total samples				1		2	2		2 2	2	i	2	2	2	2	2			2	2 2		1	2		2	1	i i	2	2	<u>ż</u>	2	. 2	2	2
CAP-B CAP-B	CMA/NE CMA/NE	2/4/2021	AE94846 AF07251			87	73 12.	00	139	0 4749	6.43		<5.8	57.2	<0.50 <0.50	0.59	<5.0	32.7			70								15.89 17.67	75.72 73.94	6.43 6.75	5930 5590	18.07	-2	0 0.
	CMA/NE Lotal samples	6/28/2021	AF07251		O	199	90 128 2	2 (134	7 5032 2 2	6.75	Ó	<5.8 2	40.5	<0.50 2	2.7	<5.0	21.6		0	63 D 2		0 0	i c	ó	0	Ó	Ó	17.67	73.94	6.75 Ž	5590 2	24.17	75	0 4.95
CAP-9	Corrective	2/2/2021	AE94847			48	95 10×	10 3.9	56	5 2944	3 33	<5.0	5.7	41.2	16	<0.50	<5.0	36	3.9	1 15.	4 71	<0.26	<10	0.402	192	2.33	<10.0	<10	14.02	77.57	3.33	4440	17.49	333	8 20
I	Action		AE94848			19			EC EC	2014	5.00	<5.0		48.3	1E (<0.50			3.0	4 14	u 70	40.20	2 -10	1 110	2 72	3.00	<10.0		11.02						
CAP-9 CAP-9	Duplicate Corrective	6/29/2021	AF07252		7300				62	5 3132	3.81	~3.0	6.7	40.3	13.7	<0.50	<5.0	39	3.5	6 11.	9 63	40.2	2	0.752	2.56	3.32	×10.0	V 1.0	15.54	76.05	3.81	4230	24.46	259 7	2.6 0.4
CAP-9	Action Duplicate	6/29/2021	AF07253		6800	51	11 143	37 4.09	76	1 3284			6.7	43.7	13.6	<0.50	<5.0	39.3	4.0	9 12.	2 67	<0.2	2	0.572	2.78	3.35									\pm
	total samples				2		4	4		4 4	2	2	4	. 4	. 4	4	4	_4		4	4 4		2	.4	4	4	2	.2	2	2	2	2	2	2	.2
CAP-10 CAP-10	CMA/NÉ CMA/NE	2/3/2021 6/38/2021	AE94849 AE07254			84.	.5 23 .6 18	.0 .4	7. 4.0	3 400 6 476.2	7.07 7.04		<5.8 <5.8	89.2 83.9	<0.50 <0.50	<0.50 <0.50	<5.0 <5.0	<0.50 <0.50			<18 <18								20.22 21.71	75.46 73.97	7.07 7.04	417 373	18.05 27.03	-90 -121	0 1.0
CAP-10	Lotal samples	U-SUREVE!	10 01207		Ó		2	2 ()	2 2	2	0	2	. 2	.2	2	2	2		o j	D 2		o d	i c	0	0	0	.0	2	2	2	2	2	2	2
CCMAP-1	CMA/NE	2/11/2021	AE94855								7.11				<0.50			<0.50			<18								4.34	75.87	7.11	280	10.8	115	0 1.1
CCMAP-1	CMA/NE Lotal samples	7/1/2021	AF07262		Ó		0	0 () .	ó o	7.18	0	0	. 0	<0.50	0	0	0.82		Ó	×18		0 0	0.31	-0.0249 1	0.31	0		6.09	73.32	7.50 2	307	27.84 2	-134 0	2 0.51
CCMAP-2		2/11/2021	AE94856								5 17				<0.50			<0.50			<18								65	74 74	5 17	Δ2	17 93	140	0 16
CCMAP-2	CMA/NE	7/1/2021	AF07263								5.66			-	<0.50			1.5			<18			0.391	0.238	0.628			7.72	73.52	5.66	49	23.97	97 C	<u>0.9</u> 0.5
CCMAP-2							U	U (u .0	2	0	0		.2	0		2		U .	υ, 2		.0	. 1	1	1	0	.0	2	2	2	2	2	2	
CCMAP-3 CCMAP-3	CMA/NE Duplicate CMA/NE	2/18/2021	AE94857 AE94858					\perp			6.58				<0.50 <0.50			<0.50 <0.50			15								5.09	76.02	6.58	4240	19.33	9	0 0.66
CCMAP-3 CCMAP-3	CMA/NE Duplicate	7 <u>/1/2021</u> 7/1/2021	AF07264 AF07265								6.42				<0.50 <0.50			<0.50 <0.50			25			1.57 0.939		2.00 1.09			8.02	73.89	6.42	5660	26.72	<u>-θ</u> 2	2.7 0.39
CCMAP-3	total samples				0		0	o c	j .	o o	2	0,		.0	4	0	0	.4		0	D 4		o o	2	2	ž	Ó	0	Ż	2	2	. 2	2	2	2
CCMAP-4	CMA/NE Duplicate	4/8/2021	AF00697				1				6.19				<0.50			10			<10								5.31	76.52	6.19	541	21.39	-13	0 0.5
CCMAP-1	CMA/NE	4/8/2021 7/1/2021	AF00698 AF07266								6.48				<0.50 <0.50 <0.50			9.9 5.44			<18 <18			0.521	-0.82	0.521			7.07	73.96	6.48	581	22.01	-44 /	4.1 0.54
CCMAP-4	total samples						0	0] (0 0	2	0	0	0	.3	0	0	3		0	0] 3			1	1	1	L	0	2	2	2	2	2	2	2

All groundwater samples collected from the monitoring wells for Corrective Action Monitoring in 2021 for the constituents listed in Appendix IV of the EPA CCR Rule (40 CFR) were analyzed by South Carolina Certified laboratories: Santee Cooper Analytical Services (Certification # 08552), GEL Laboratories, LLC (Certification # 18128), and Rogers & Calicot, Inc. (Certification # 23105001).

E. Some groundwater monitoring wells are sampled for both Foderal CCR and State Permit program compliance. Applicable analytical results from the State Permit program have been included in this surmany table. All Background & Corrective Action complyance wells have been sampled to comply with § 257.98(a)(1).


2. The Corrective Measures Assessment/Nature & Estent (CMANE) wells were not sampled to comply with § 257.99(a)(1).


3. The sampler results for background with an additional insight to the nature & extent of the plumo during corrective action. Moving forward, all CMANE wells will be sampled to comply with § 257.99(a)(1).


3. The sample results for background with an additional insight to the nature & extent of the plumo during corrective action. Moving forward, all CMANE wells will be sampled to comply with § 257.99(a)(1).

3. The sample was subject to sample matrix interference resulting in a higher reporting limit. Even though the reporting limit, even though the reporting limit than the reporting li

FIGURES

Appendix A – Statistical Analysis

HALEY & ALDRICH, INC. 400 Augusta Street Suite 100 Greenville, SC 29601 864.214.8750

TECHNICAL MEMORANDUM

June 11, 2021 File No. 132892-010

SUBJECT: 2021 Semi-annual Groundwater Assessment Monitoring Data

Statistical Evaluation Cross Generating Station

Bottom Ash Pond

Pursuant to Title 40 Code of Federal Regulations (40 CFR) § 257.93 and 257.95 (Rule), this memorandum summarizes the statistical evaluation of the analytical results for the February 2021 semi-annual assessment monitoring groundwater sampling event for the Cross Generating Station (CGS) Bottom Ash Pond. The statistical evaluation discussed in this memorandum was conducted to determine if Appendix IV groundwater monitoring constituents continue to be detected in downgradient wells at concentrations that represent a statistically significant level (SSL) above the Groundwater Protection Standard (GWPS) consistent with the requirements in 40 CFR § 257.95.

Utilizing interwell statistical evaluations, data from the groundwater sampling event for the downgradient monitoring wells were compared to the GWPS established from the background dataset for the upgradient monitoring wells (PM-1 and CBW-1). GWPS for each of the Appendix IV constituents have been set equal to the highest value of the maximum contaminant level (MCL), regional screening level (RSL), or background concentration. The results of the assessment monitoring statistical evaluation are discussed below and provided in Table I.

Statistical Evaluation of Appendix IV Constituents

The Rule provides four specific options for statistical evaluation of groundwater quality data collected at a coal combustion residual (CCR) unit (40 CFR §257.93(f) (1-4)). The statistical method used for these evaluations is tolerance limit (TL), which was certified by Haley & Aldrich, Inc. on October 14, 2017. The TL method, determined applicable for this sampling event, was used to evaluate potential SSLs above GWPS. GWPS for each constituent listed in Appendix IV were computed as upper tolerance limits (UTL), and a minimum 95 percent confidence coefficient and 95 percent coverage. The most recent groundwater sampling result from each compliance well was compared to the corresponding GWPS UTL to determine if an SSL existed.

STATISTICAL EVALUATION

An interwell statistical evaluation was used to identify SSLs. An interwell evaluation compares the most recent values from downgradient compliance wells to a background dataset composed of upgradient

South Carolina Public Service Authority (Santee Cooper) 18 June 2021 Page 2

well data. Because the CCR unit has transitioned into assessment monitoring, no statistical evaluations were conducted on Appendix III (detection monitoring) semi-annual assessment monitoring data.

The parametric TL method was used to complete statistical evaluations of the referenced dataset. The TL procedure is one in which a concentration limit for each constituent is established from the distribution of the background data, with a minimum 95 percent confidence level. The upper endpoint of a tolerance limit is called the UTL. Depending on the data distribution, parametric or non-parametric TL procedures are used to evaluate groundwater monitoring data using this method. Parametric TLs utilize normally distributed data or data normalized via a transformation of the sample background data used to construct the limit. If the data are non-normal and a transformation is not indicated, non-parametric procedures (order statistics or bootstrap methods) are used to calculate the TL. If all the background data are non-detect, a maximum reporting limit may serve as an appropriate UTL.

These statistical evaluations were conducted using the background dataset for all detected Appendix IV constituents using parametric TLs. If an Appendix IV constituent concentration from the February 2021 semi-annual sampling event was above the GWPS, the lower confidence limit (LCL) for the downgradient well constituent was used to evaluate if an SSL was present. The LCL is the lower end of the confidence interval range, which is an estimated concentration range intended to contain the true mean or median of the population from which the sample is drawn. The confidence interval range is designed to locate the true population mean or median with a high degree of statistical confidence, or conversely, with a low probability of error.

The UTLs were calculated from the background well dataset using Chemstat software after testing for outlier sample results that would warrant removal from the dataset based on likely error in sampling or measurement. Both visual and statistical outlier tests for the background data were performed using Chemstat and U.S. Environmental Protection Agency's ProUCL 5.1 software, and a visual inspection of the data was performed using box plots and distribution plots for the downgradient sample data. No sample data were identified as outliers that warranted removal from the dataset.

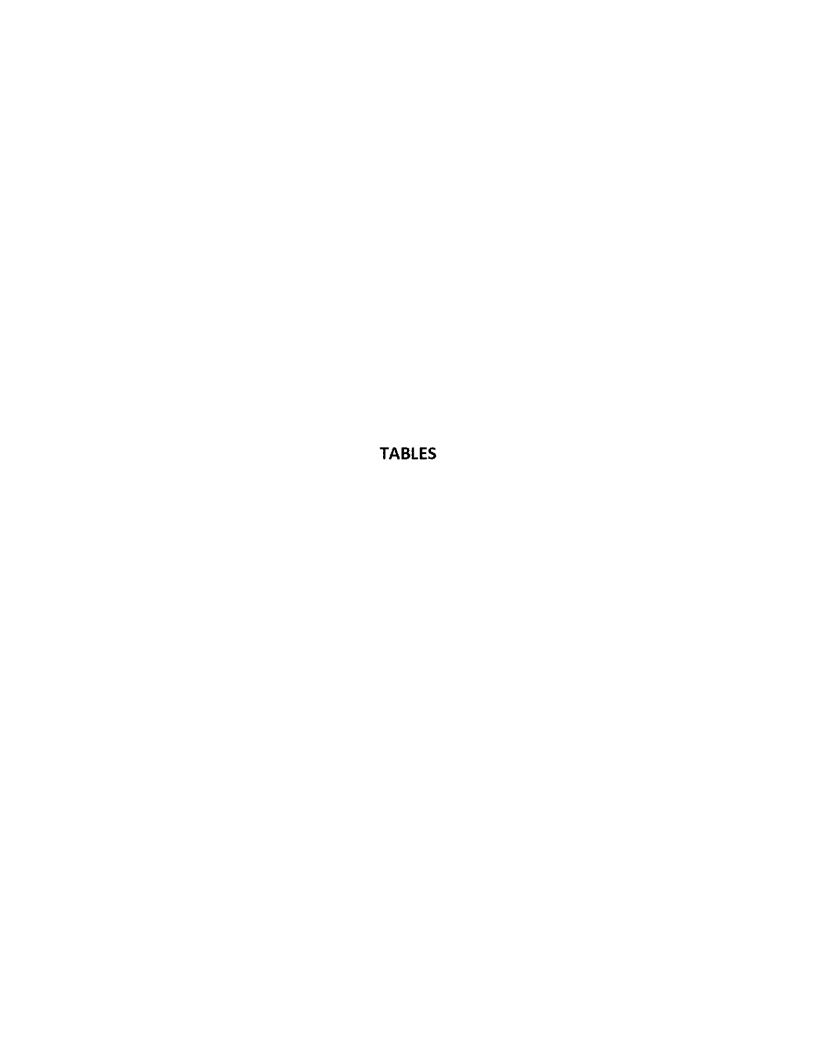
BACKGROUND DISTRIBUTIONS

The groundwater analytical results for each sampling event from the background sample locations (PM-1 and CBW-1) were combined to calculate the UTL for each detected Appendix IV constituent. The variability and distribution of the pooled dataset was evaluated to determine the method for UTL calculation. Per the document *Statistical Analysis of Groundwater Monitoring Data at RCRA Facilities, Unified Guidance, March 2009* (Unified Guidance), background concentrations were updated for the March 2020 semi-annual sampling event based on statistical evaluation of analytical results collected through March 2020. The background dataset will be updated again in March 2022 per the Unified Guidance.

RESULTS OF APPENDIX IV DOWNGRADIENT STATISTICAL COMPARISONS

The sample concentrations from the downgradient wells for each of the detected Appendix IV constituents from the February 2021 semi-annual assessment monitoring event were compared to their

South Carolina Public Service Authority (Santee Cooper) 18 June 2021 Page 3


respective GWPS (Table I). A sample concentration greater than the GWPS is considered to represent an SSL. Based on previous assessment monitoring sampling events and statistical evaluations, interwell comparisons were utilized for all downgradient wells and constituents. Consistent with previous results, the assessment of corrective measures, and the preferred remedy presented to the public in December 2019, beryllium, cobalt, lithium, and radium continue to be the only Appendix IV constituents present in groundwater at SSLs above GWPS.

The selected remedy (Closure by removal with beneficial reuse) has begun at the Bottom Ash Pond and is anticipated to be completed in 2025. As outlined in the Corrective Measures Assessment, groundwater modeling predicts that the concentrations of beryllium, cobalt, lithium, and radium will decline, or attenuate rapidly after the source removal is complete. During closure activities, a short term increase in the concentrations of Appendix IV SSLs is possible but these spikes in concentration will rapidly decrease once the closure is complete. Performance of the selected remedy will continue to be monitored in subsequent semiannual sampling events.

Tables:

Table I – Summary of Assessment Monitoring Statistical Evaluation – February 2021

																						Inter-well Analysi	s		
Location Id	Frequency of Detection	Percent Non-Detects	Range of Non- Delect	Mean	50th Percentile (Median)	95th Percentile	Maximum Detect	Variance	Standard Deviation	Coefficient of Variance	CCR MCL/RSL	Report Result Unit	Detection Exceedances (Y/N)	Number of Detection Exceedances	Number of Non-Detection Exceedances	Outlier Presence	e Outlier Removed	Trend	Distribution Well*	February 2021 Concentrations	Lower Detect? Confidenc Limit (LCL	Limit (mg/L)	SSI	GWPS (Higher of MCL/RSL or Upper Tolerance Limit) (mg/L)	
							CCR Appe	ndix-IV: Antimor	ny, Total (mg/L)																
CBW-1	0/14	100%	0.005-0.025	0.00643	0.005	0.012		0.00002857	0.005345	0.83 L5	0.006	mg/i	N	0	1	NA	NA	NA	Non parametria			0.0750		0.8350	
РМ-1	0/14	100%	0.005-0.025	0.00643	0.005	0.012		0.00002857	0.005345	0.8315	0.006	mg/L	N	0	1	NA	NA	NA	- Non-parametric			0.0250		0.0250	
CAP-1	0/12	100%	0.005-0.025	0.00667	0.005	0.014		0.00003333	0.005774	0.866	0.006	mg/L	N	0	1	NA	NA	NA	NA	0.005	N		N		FA
ДАР-З	0/12	100%	0.005-0.025	0.00667	0.005	0.014		0.00003333	0.005774	0.866	0.006	mg/L	N	0	1	NA	NA	NA	NA	0.005	N		N		F
CAP-5	0/12	100%	0.005-0.025	0.00667	0.005	0.014		0.00003333	0.005774	0.866	0.006	mg/L	N	0	1	NA	NA	NA	NA	0.005	N		N		F
CAP-7	0/12	100%	0.005-0.025	0.00667	0.005	0.014		0.00003333	0.005774	0.866	0.006	mg/L	N	0	1	NA	NA	NA	NA	0.005	N		N		F
CAP-9	0/12	100%	0.0005-0.025	0.00629	0.005	0.014		0.00003638	0.006032	0.9587	0.006	mg/L	N	0	1	NA	NA	NA	NA	0.005	N		N		F
							CCR App	endix-IV: Arsenio	c, Total (mg/L)																
CBW-1	3/16	81%	0.005-0.005	0.00582	0.005	0.009025	0.016	0.000007557	0.002749	0.4726	0.01	mg/L	Y	1	0	Yes	No	Stable	Non-parametric			0.0160		0.0160	
PM-1	2/16	88%	0.005-0.005	0.00486	0.005	0.005	0.0042	1.706E-07	0.000413L	0.08506	0.01	mg/i	N	0	0	No	No	Stable	Non-parametric			0.0100		0.0100	
CAP-L	0/16	100%	0.003-0.005	0.00475	0.005	0.005		4.667E-07	0.0006831	0.1438	0.01	mg/L	N	0	0	NA	NA	NA	NA	0.005	N		N		
CAP-3	0/16	100%	0.003-0.005	0.00475	0.005	0.005		4.667E-07	0.0006831	0.1438	0.01	mg/L	N	0	0	NA	NA	NA	NA	0.005	N		N		
CAP-5	0/16	100%	0.003-0.005	0.00475	0.005	0.005		4.667E-07	0.0006831	0.1438	0.01	mg/i	N	0	0	NA	NA	NA	NA	0.005	N		N		-
CAP-7	6/16	62%	0.005-0.005	0.0053	0.005	0.006528	0.0073	4.314E-07	0.0006568	0.1238	0.01	mg/L	N	0	0	Yes	No	Stable	Non-parametric	0.005	N		N		
CAP-9	L5/16	6%	0.005-0.005	0.00692	0.0068	0.009325	0.0103	0.000002064	0.00 L437	0.2075	0.01	mg/L	Υ	1	0	No	No	Stable	Normal	0.0057	Y		N		-
		10.					CCR App	endix-IV: Barium	, Total (mg/L)																
BW-1	16/16	0%	-	0.0442	0.04315	0.05073	0.061	0.00002457	0.004957	0.1122	2	mg/L	N	0	0	No	No	Stable	- Non-parametric			0.1030		2.0000	
PM-1	L6/16	0%	-	0.0823	0.08025	0.1007	0.103	0.00008368	0.009147	0.1112	2	mg/L	N	0	0	No	No	Stable	14 ort-barametric		100	V.103V		2.0000	
CAP-1	L6/16	0%	-	0.0472	0.0458	0.0651	0.069	0.0001255	0.0112	0.2373	2	mg/L	N	0	0	No	No	Stable	Normal	0.064	Y		N		
САР-З	L6/16	0%	-	0.091	0.07855	0. L56	0.237	0.00L793	0.04235	0.4651	2	mg/L	N	0	0	Yes	No	Stable	Non-parametric	0.064	Υ		N		
CAP-5	L6/16	0%	-	L.37	1.425	1.53	1.56	0.03589	0.1894	0.1379	2	mg/L	Ņ	0	0	Yes	No	Increasing	Non-parametric	1.480	Y		Y		
CAP-7	L6/16	0%	-	0.0325	0.03165	0.03862	0.0405	0.00001383	0.003719	0.1143	2	mg/L	N	0	0	No	No	Increasing	Normal	0.038	Y		N		
CAP-9	L6/16	0%	-	0.0572	0.0609	0.07925	0.095	0.0003295	0.01815	0.3174	2	mg/L	N	0	0	No	No	Decreasing	Normal	0.04 L	Υ		N		
							CCR Appe	endix-IV: Berylliu	m, Total (mg/L)																
BW-1	L/15	93%	0.0005-0.0005	0.000509	0.0005	0.000539	0.00063	1.127E-09	0.00003357	0.06599	0.004	mg/i	N	0	0	No	No	NA	Non-parametric			0.0006		0.0040	
PM-1	0/16	100%	0.0005-0.0005	0.0005	0.0005	0.0005		0	0	0	0.004	mg/L	N	0	0	No	No	NA	Non-parametric			0.0008		0.0040	
CAP-1	L5/15	0%	-	0.0 0 5 L6	0.0043	0.01033	0.0111	0.000007788	0.002791	0.54L2	0.004	mg/L	Y	8	0	Yes	No	Stable	Normal	0.003	Y		Y		
AP-3	0/15	100%	0.0005-0.0005	0.0005	0.0005	0.0005		0	0	0	0.004	mg/L	N	0	0	No	No	NA	NA	0.00L	N		N		
CAP-5	15/15	0%	-	0.004 L3	0.0042	0.005	0.005	6.237E-07	0.0007897	0.1913	0.004	mg/L	Y	LL	0	Yes	No	Increasing	Non-parametric	0.005	Y		Υ		
CAP-7	0/15	100%	0.0005-0.0005	0.0005	0.0005	0.0005		0	0	0	0.004	mg/L	N	0	0	No	No	NA	NA	0.001	N		N		
CAP-9	L6/16	0%	-	0.0157	0.01585	0.01792	0.018	0.000002909	0.001706	0.1087	0.004	mg/L	Υ	16	0	No	No	Stable	Normal	0.016	Y		Υ		
							CCR Appe	endix-IV: Cadmiu	m, Total (mg/L)																
CBW-1	0/15	100%	0.0005-0.0005	0.0005	0.0005	0.0005		0	0	0	0.005	mg/L	N	0	0	NA	NA	NA	- NA			0.0005		0.0050	
M-1	0/15	100%	0.0005-0.0005	0.0005	0.0005	0.0005		0	0	0	0.005	mg/i	N	0	0	NA	NA	NA	n/A			0.0005		0.0050	
AP-L	0/15	100%	0.0005-0.0005	0.0005	0.0005	0.0005		0	0	0	0.005	mg/L	N	0	0	NA	NA	NA	NA	0.0005	N		N		
САР-З	0/15	100%	0.0005-0.0005	0.0005	0.0005	0.0005		0	0	0	0.005	mg/L	N	0	0	NA	NA	NA	NA	0.0005	N		N		
CAP-5	0/15	100%	0.0005-0.0005	0.0005	0.0005	0.0005		0	0	0	0.005	mg/i	N	0	0	NA	NA	NA	NA	0.0005	N		N		
CAP-7	0/15	100%	0.0005-0.0005	0.0005	0.0005	0.0005		0	0	0	0.005	mg/L	N	0	0	NA	NA	NA	NA	0.0005	N		N		
CAP-9	0/15	100%	0.0005-0.0005	0.0005	0.0005	0.0005		0	0	0	0.005	mg/L	N	0	0	NA	NA	NA	NA	0.0005	N		N		
							CCR Appe	ndix-IV: Chromiu	ım, Total (mg/L)																
BW-1	1/15	93%	0.005-0.005	0.0056	0.005	0.0077	0.014	0.0000054	0.002324	0.415	0.1	mg/L	N	0	0	NA	NA	NA							
PM-1	0/15	100%	0.005-0.005	0.005	0.005	0.005		7.744E-21	8.8E-11	1.76E-08	0.1	mg/L	N	0	0	NA	NA	NA	- Non-parametric			0.0140		0.1000	
CAP-1	0/15	100%	0.005-0.005	0.005	0.005	0.005		7.744E-21	8.8E-1L	1.76E-08	0.1	mg/L	N	0	0	NA	NA	NA	NA	0.0050	N		N		
CAP-3	0/15	100%	0.005-0.005	0.005	0.005	0.005		7.744E-21	8.8E-1L	1.76E-08	0.1	mg/L	N	0	0	NA	NA	NA	NA	0.0050	N		N		
AP-5	L/15	93%	0.005-0.005	0.00634	0.005	0.01103	0.0251	0.00002693	0.00519	0.8186	0.1	mg/L	N	0	0	NA	NA	NA	Non-parametric	0.0050	N		N		
CAP-7	0/15	100%	0.005-0.005	0.005	0.005	0.005		7.744E-21	8.8E-1L	1.76E-08	0.1	mg/L	N	0	0	NA.	NA.	NA	NA	0.0050	N		N		
CAP-9	0/15	100%	0.005-0.005	0.005	0.005	0.005		7.744E-21	8.8E-1L	1.76E-08	0.1	mg/L	N	0	0	NA	NA	NA	NA	0.0050	N		N		
		11			100		CCR App	pendix-IV: Cobalt		100				197											
BW-1	L6/16	0%	-	0.0011	0.00094	0.001825		4.069E-07	0.0006379	0.5796	0.006	mg/i_	N	0	0	Yes	No	Decreasing							
PM-1	16/16	0%	-	0.000923	0.00091	0.001	0.00L	4.677E-09	0.00006839	0.07413	0.006	mg/L	N	0	0	No	No	Stable	Non-parametric			0.0034		0.0060	
AP-1	15/15	0%	-	0.0156	0.0167	0.024	0.024	0.0000334	0.00578	0.3699	0.006	mg/L	Y	14	0	No	No	Stable	Normal	0.010	Y		Y		
AP-3	15/15	0%	-	0.0263	0.0265	0.03084	0.0328	0.0000166	0.004075	0.155	0.006	mg/L	· Y	15	0	Yes	No	Stable	Non-parametric	0.033	Y		Y		
AP-5	15/15	0%	-	0.0126	0.013	0.01494	0.0155	0.000004961	-	0.1771	0.006	mg/L	Y	15	0	Yes	No	Increasing	Normal	0.015	Y		Y		
AP-7	15/15	0%	-	0.0107	0.0102	0.01332	0.015	0.000002735		0.1543	0.006	mg/L	Y	15	0	No	No	Decreasing	Normal	0.010	Y		· Y		
AP-9	L6/16	0%	-	0.0329	0.0331	0.0384	0.0384	0.00003228	0.005681	0.1729	0.006	mg/L	Y	16	0	Yes	No	Increasing	Normal	0.036	Y		· Y		_
	20/10	3,4			2.3001	2.3004	-	Appendix-IV: Fluo	T . T . V T	2.2723	2,000			10						5.330					
BW-1	16/16	0%	-	0.226	0.22	0.2925	0.3	0.00192	0.04381	0.1942	4	mg/L	N	0	0	No	No	Decreasing				1			
M-1	0/16	100%	0.1-0.1	0.1	0. L	0.2923	0.0	1.85E-L8	1.36E-09	1.36E-08	4	mg/L	N	0	0	NA NA	NA NA	NA	- Non-parametric			0.3000		4.0000	
	L4/15	7%	0.1-0.1	0.881	0.79	1.809	1.97	0.3028	0.5503	0.6249	4	mg/L	N	0	0	No.	No	Increasing	Normal	1.090	Y		Y		
CAP-L CAP-3		67%				0.13		0.0001257	0.01121		4			0	0	No	No	Stable					N		_
	5/15		0.1-0.1	0.106	0.1		0.13		_	0.1058	_	mg/L	N	0	0	No	No		Non-parametric	0.100	N				
CAP-5	L5/15	6784		0.483	0.54	0.666	0.75	0.02764	0.1662	0.3444	4	mg/L	N	-				Stable	Normai Non parametris	0.750	Y		Y N		
CAP-7	5/15	67%	0.1-0.1	0.113 2.51	0.1 2.21	0.153 4.064	0.16	0.0004781 1.18L	0.02187	0.1941	4	mg/L	N	0	0	No	No	Stable	Non-parametric	0.100	N				
CAP-9	L5/15	0%	-						1.087	0.4336	4	mg/L	Y	L	O	No	No	Stable	Normal	3.910	Y		Υ		

Prepared: June 11, 2021

							CCR ADI	endix-IV: Lead,	Total (mg/L)															
CBW-1	L6/16	0%	-	0.00348	0.00305	0.005563	0.011	0.000004149		0.5848	0.015	mg/L	N	0	0	Yes	No	Decreasing						
PM-1	0/16	100%	0.001-0.0025	0.00119	0.001	0.0025		2.625E-07	0.0005123	0.4315	0.015	mg/L	N	0	0	NA	NA.	NA NA	Non-parametric			0.0110	0.0150	
CAP-1	4/14	71%	0.00L-0.0025	0.00137	0.001	0.0025	0.0018	3.037E-07	0.0005511	0.4019	0.015	mg/L	N	0	a	No	No	NA	Non-parametric	0.002	Y		N	FALSE
CAP-3	0/14	100%	0.001-0.0025	0.00121	0.001	0.0025	Dia tu	2.967E-07	0.0005447	0.4486	0.015	mg/L	N	0	0	NA NA	NA NA	NA	NA NA	0.001	N N		N	FALSE
CAP-5	L3/14	7%	0.0025-0.0025	0.00553	0.00525	0.00735	0.008	0.000001753	0.001324	0.2393	0.015	mg/L	N	0	0	Yes	No	Stable	Normal	0.006	Y		N	FALSE
CAP-7	0/14	100%	0.00L-0.01	0.00186	0.001	0.005125	Diago	0.000005786	0.002405	1.295	0.015	mg/L	N	0	0	NA NA	NA.	NA.	NA.	0.001	N N		N	FALSE
CAP-9	L4/14	0%	0.001-0.01	0.0109	0.01095	0.01481	0.0154	0.000009333	0.003055	0.28L	0.015	mg/L	Y	1	0	Yes	No	Stable	Normal				N.	FALSE
CAP-3	14/14	076		0.0103	0.01033	0.01481		endix-IV: Lithium		0.261	0.013	mg/L	-	1	0	Tes	140	Steole	Rollia	0.015	Y 0.001.06		"	TALLE
CBW-1	ales	100%	0.005-0.01	0.00969	0.01	0.01	сскирр			0.120	0.04	6	N	0	0	NA NA	NA	NA						
	0/16					0.01	-	0.000001562	0.00125	0.129	0.04	mg/L			_	NA NA	NA NA	NA NA	- NA			0.0100	0.0400	
PM-1	0/16	100%	0.005-0.01	0.00969	0.01	0.01		0.000001562	0.00125	0.129	0.04	mg/L	N · v	0	0		NA No						v	-
CAP-L	L5/15	0%	-	0.091	0.0994	0. L23	0.13	0.0008409	0.029	0.3187	0.04	mg/L		14	0	No	110	Stable	Normal	0.050	Y		·	TRUE
CAP-3	11/15	27%	0.01-0.05	0.0138	0.011	0.0255	0.015	0.0001018	0.01009	0.7309	0.04	mg/i	N	0	1	Yes	No	Stable	Non-parametric	0.015	Y		Υ	FALSE
CAP-5	L4/15	7%	0.01-0.01	0.0126	0.012	0.01509	0.016	0.000002166	0.001472	0.1166	0.04	mg/i	N	0	0	No	No	Stable	Normal	0.016	Y		Y	FALSE
CAP-7	0/15	100%	0.01-0.05	0.0127	0.01	0.022		0.0001067	0.01033	0.8154	0.04	mg/L	N	0	1	NA	NA	NA	NA	0.010	N		N	FALS
CAP-9	L6/16	0%	-	0.0624	0.062	0.0713	0.0722	0.00002037	0.004514	0.07231	0.04	mg/L	Y	16	0	Yes	No	Stable	Normal	0.071	Υ		Υ	TRU
							CCR Appe	ndix-IV: Mercury																
CBW-1	0/16	100%	0.0002-0.001	0.00025	0.0002	0.0004		0.00000004	0.0002	0.8	0.002	mg/i	N	0	0	NA	NA	NA	Non-parametric			0.0010	0.0020	
PM-1	0/16	100%	0.0002-0.001	0.00025	0.0002	0.0004		0.00000004	0.0002	0.8	0.002	mg/L	N	0	0	NA	NA	NA	politicalle				5.5020	
CAP-L	0/13	100%	0.0002-0.001	0.000262	0.0002	0.00052		4.923E-08	0.0002219	0.8484	0.002	mg/L	N	0	0	NA	NA	NA	NA	0.0002	N		N	FALSE
CAP-3	0/14	100%	0.0002-0.001	0.000257	0.0002	0.00048		4.571E-08	0.0002138	0.83 L5	0.002	mg/i	N	0	0	NA	NA	NA	NA	0.0002	N		N	FALSE
CAP-5	0/14	100%	0.0002-0.001	0.000257	0.0002	0.00048		4.57 LE-08	0.0002138	0.8315	0.002	mg/L	N	o	0	NA	NA	NA	NA	0.0002	N		N	FALS
CAP-7	2/14	86%	0.0002-0.001	0.000263	0.0002	0.000506	0.00024	4.522E-08	0.0002127	0.809	0.002	mg/L	N	0	0	Yes	No	NA	NA	0.0002	N		N	FALS
CAP-9	2/14	86%	0.0002-0.001	0.000274	0.0002	0.0005645	0.00033	4.547E-08	0.0002132	0.7795	0.002	mg/L	N	0	0	NA	NA	NA	NA	0.0002	N		N	FALS
							CCR Append	ix-IV: Molybden	um, Total (mg/L))														
CBW-1	0/14	100%	0.01-0.01	0.01	0.01	0.01		5.004E-20	2.237E-L0	2.237E-08	0.1	mg/L	N	0	0	NA	NA	NA						
PM-1	0/14	100%	0.01-0.01	0.01	0.01	0.01		5.004E-20	2.237E-L0	2.237E-08	0.1	mg/L	N	0	0	NA	NA	NA	- Non-parametric			0.0100	0.1000	
CAP-1	0/12	100%	0.01-0.0L	0.01	0.01	0.01		5.914E-20	2.432E-10	2.432E-08	0.1	mg/L	N	0	a	NA	NA	NA	NA	0.010	N	- 10	N	FALSE
CAP-3	0/12	100%	0.01-0.0L	0.01	0.01	0.01		5.914E-20	2.432E-10	2.432E-08	0.1	mg/L	N	0	0	NA NA	NA.	NA.	NA NA	0.010	N N		N	FALSE
CAP-5	0/12	100%	0.01-0.0L	0.01	0.01	0.01	1	5.914E-20	2.432E-10	2.432E-08	0.1	mg/L	N N	0	0	NA.	NA NA	NA NA	NA NA	0.010	N		N	FALSE
CAP-7	0/12	100%	0.01-0.05	0.0133	0.01	0.028		0.0001333	0.01155	0.866	0.1		N N	0	0	NA NA	NA NA	NA NA	NA NA	0.010	N		N N	FALSI
CAP-9		100%	0.01-0.04	0.0133	0.01	0.0235		0.0001333	0.00866	0.6928	0.1	mg/L mg/L	N	B	0	NA NA	NA NA	NA NA	NA NA				N	FALS
CAP-9	0/12	100%	0.01-0.04	0.0125	0.01	0.0233	CCD 6	fix-IV: Radium-2		0.0926	0.1	ing/L	N	U	U	IVA	NA.	IVA	IVA	0.010	N		IV	PALS
		4-74										m: fr												
CBW-1	8/15	47%	4-4	3.63	4	5.619	6.34	2.644	1.626	0.4478	5	pCi/L	Y	3	0	Yes	No	Decreasing	- Non-parametric			L6.30	16.3000	
PM-1	9/15	40%	4-4	4.45	4	9.853	16.3	13.52	3.677	0.8267	5	pCi/L	Y	2	0	Yes	No	Stable						
CAP-L	6/14	57%	4-4	3.57	4	5. L75	5.24	1.407	1.186	0.3322	5	pCi/L	. Y	2	0	No	No	Stable	Normal	1.340	Y		N	FALS
CAP-3	7/14	50%	4-4	3.38	4	4.298	4.48	1.432	1.197	0.3546	5	pCi/L	N	0	0	No	No	Stable	Non-parametric	2.290	Υ		N	FALS
CAP-5	L5/15	0%	-	L6.9	18.1	20.18	21.3	12.28	3.505	0.2076	5	pCi/L	Y	L5	0	Yes	No	Stable	Normal	21.300	Y		Y	TRU
CAP-7	LO/14	29%	4-4	4.28	4	6.189	6.56	1.98	1.407	0.3285	5	pCi/Ł	Y	.5	0	No	No	Stable	Normal	3.860	Υ		N	FALS
CAP-9	9/14	36%	4-4	4.11	4	6. LB6	7.31	1.983	1.408	0.3425	5	pCi/L	Y	2	0	Yes	No	Stable	Non-parametric	2.330	Y		N	FALS
							CCR Appe	ndix-IV: Seleniun																
CBW-1	0/16	100%	0.01-0.02	0.0112	0.01	0.02		0.00001167	0.003416	0.3036	0.05	mg/i	N	D	0	NA	NA	NA	Non-parametric			0.0200	0.0500	
PM-1	0/16	100%	0.01-0.02	0.0112	0.01	0.02		0.00001167	0.003416	0.3036	0.05	mg/L	N	D	0	NA	NA	NA	Hon pulainettic			0.0200	0.0300	
CAP-L	0/13	100%	0.01-0.02	0.0115	0.01	0.02		0.0000141	0.003755	0.3255	0.05	mg/L	N	0	0	NA	NA	NA	NA	0.010	N		N	FALSI
CAP-3	0/13	100%	0.01-0.02	0.0115	0.01	0.02		0.0000141	0.003755	0.3255	0.05	mg/L	N	D	0	NA	NA	NA	NA	0.010	N		N	FALSE
CAP-5	0/13	100%	0.01-0.02	0.0115	0.01	0.02		0.0000141	0.003755	0.3255	0.05	mg/L	N	0	0	NA	NA	NA	NA	0.010	N		N	FALSE
CAP-7	0/13	100%	0.01-0.02	0.0115	0.01	0.02		0.0000141	0.003755	0.3255	0.05	mg/L	N	0	0	NA	NA	NA	NA	0.010	N		N	FALS
CAP-9	1/13	92%	0.01-0.02	0.0132	0.01	0.0244	0.03 L	0.00004264	0.00653	0.4964	0.05	mg/L	N	0	0	Yes	No	NA	Non-parametric	0.010	N		N	FALS
								ndix-IV: Thallium	_												7			
CBW-1	0/14	100%	0.001-0.001	0.001	0.001	0.001		0	0	0	0.002	mg/L	N	O	O	NA	NA	NA						
PM-1	0/14	100%	0.001-0.001	0.001	0.001	0.001		0	0	0	0.002	mg/L	N	0	0	NA	NA NA	NA NA	- Non-parametric			0.0010	0.0020	
CAP-1	0/12	100%	0.001-0.001	0.001	0.001	0.001	+	0	0	0	0.002	mg/L	N N	0	0	NA NA	NA.	NA NA	NΔ	0.001	N		N	FALS
								-	-	0			.,		-	NA NA		NA NA					N N	
CAP-3	0/12	100%	0.00L-0.001	0.001	0.001	0.001		0	0	-	0.002	mg/L	N .	0	0		NA NA		NA NA	0.001	N		N N	FALS
CAP-5	0/12	100%	0.001-0.001	0.001	0.001	0.001		0	0	0	0.002	mg/L	N	0	0	NA	NA	NA	NA	0.001	N		14	FALSE
CAP-7	0/12	100%	0.001-0.001	0.001	0.001	0.001		0	0	0	0.002	mg/L	N	0	0	NA	NA	NA	NA	0.001	N		N	FALSE
CAP-9	0/12	100%	0.001-0.001	0.001	0.001	0.001		0	0	0	0.002	mg/L	N	O	0	NA	NA	NA	NA	0.00 L	N		N	FALSE

HALEY & ALDRICH, INC. 400 Augusta Street Suite 100 Greenville, SC 29601 864.214.8750

TECHNICAL MEMORANDUM

October 15, 2021 File No. 132892-010

SUBJECT: Statistical Evaluation of the June 2021 Semi-annual Groundwater Assessment

Monitoring Data

Cross Generating Station

Bottom Ash Pond

Pursuant to Title 40 Code of Federal Regulations (40 CFR) § 257.93 and 257.95 (Rule), this memorandum summarizes the statistical evaluation of the analytical results for the June 2021 semi-annual groundwater assessment monitoring sampling event for the Cross Generating Station (CGS) Bottom Ash Pond. The statistical evaluation discussed in this memorandum was conducted to determine if Appendix IV groundwater monitoring constituents continue to be detected in downgradient wells at concentrations that represent a statistically significant level (SSL) above the Groundwater Protection Standard (GWPS) consistent with the requirements in 40 CFR § 257.95.

Data from the June groundwater sampling event for the downgradient monitoring wells were compared to their respective GWPS established from the background dataset for the upgradient monitoring wells (PM-1 and CBW-1). GWPS for each of the Appendix IV constituents have been set equal to the highest value of the maximum contaminant level (MCL), regional screening level (RSL), or background concentration. The results of the assessment monitoring statistical evaluation are discussed below and provided in Table I.

Statistical Evaluation of Appendix IV Constituents

The Rule provides four specific options for statistical evaluation of groundwater quality data collected at a coal combustion residual (CCR) unit (40 CFR §257.93(f) (1-4)). The statistical method used for these evaluations is tolerance limit (TL), which was certified by Haley & Aldrich, Inc. on October 14, 2017. The TL method, determined applicable for this sampling event, was used to evaluate potential SSLs above GWPS. GWPS for each constituent listed in Appendix IV were computed as upper tolerance limits (UTL), and a minimum 95 percent confidence coefficient and 95 percent coverage. The most recent groundwater sampling result from each compliance well was compared to the corresponding GWPS UTL to determine if an SSL existed.

STATISTICAL EVALUATION

An interwell statistical evaluation was used to identify SSLs. An interwell evaluation compares the most recent values from downgradient compliance wells to a background dataset composed of upgradient

South Carolina Public Service Authority (Santee Cooper) 15 October 2021 Page 2

well data. Because the CCR unit is in assessment monitoring, no statistical evaluations were conducted on Appendix III (detection monitoring) constituents.

The parametric TL method was used to complete statistical evaluations of the referenced dataset. The TL procedure is one in which a concentration limit for each constituent is established from the distribution of the background data, with a minimum 95 percent confidence level. The upper endpoint of a tolerance limit is called the UTL. Depending on the data distribution, parametric or non-parametric TL procedures are used to evaluate groundwater monitoring data using this method. Parametric TLs utilize normally distributed data or data normalized via a transformation of the sample background data used to construct the limit. If the data are non-normal and a transformation is not indicated, non-parametric procedures (order statistics or bootstrap methods) are used to calculate the TL. If all the background data are non-detect, a maximum reporting limit may serve as an appropriate UTL.

These statistical evaluations were conducted using the background dataset for all detected Appendix IV constituents using parametric TLs. If an Appendix IV constituent concentration from the June 2021 semi-annual sampling event was above the GWPS, the lower confidence limit (LCL) for the downgradient well constituent was used to evaluate if an SSL was present. The LCL is the lower end of the confidence interval range, which is an estimated concentration range intended to contain the true mean or median of the population from which the sample is drawn. The confidence interval range is designed to locate the true population mean or median with a high degree of statistical confidence, or conversely, with a low probability of error.

The UTLs were calculated from the background well dataset using Chemstat software after testing for outlier sample results that would warrant removal from the dataset based on likely error in sampling or measurement. Both visual and statistical outlier tests for the background data were performed using Chemstat and U.S. Environmental Protection Agency's ProUCL 5.1 software, and a visual inspection of the data was performed using box plots and distribution plots for the downgradient sample data. No sample data were identified as outliers that warranted removal from the dataset.

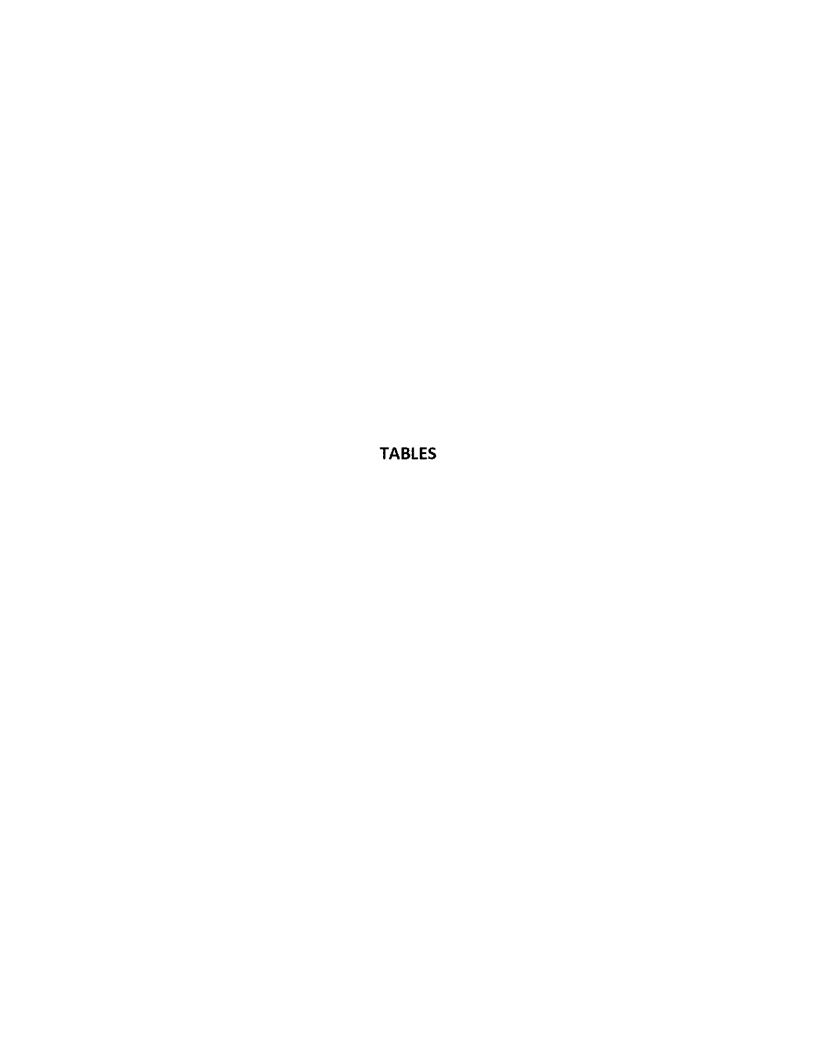
BACKGROUND DISTRIBUTIONS

The groundwater analytical results for each sampling event from the background sample locations (PM-1 and CBW-1) were combined to calculate the UTL for each detected Appendix IV constituent. The variability and distribution of the pooled dataset was evaluated to determine the method for UTL calculation. Per the document *Statistical Analysis of Groundwater Monitoring Data at RCRA Facilities, Unified Guidance, March 2009* (Unified Guidance), background concentrations were updated for the March 2020 semi-annual sampling event based on statistical evaluation of analytical results collected through March 2020. The background dataset will be updated again in March 2022 per the Unified Guidance.

RESULTS OF APPENDIX IV DOWNGRADIENT STATISTICAL COMPARISONS

The sample concentrations from the downgradient wells for each of the detected Appendix IV constituents from the June 2021 semi-annual assessment monitoring event were compared to their

South Carolina Public Service Authority (Santee Cooper) 15 October 2021 Page 3


respective GWPS (Table I). A sample concentration greater than the GWPS is considered to represent an SSL. Consistent with previous results, beryllium, cobalt, lithium, and radium continue to be the only Appendix IV constituents present in groundwater at SSLs above GWPS.

The selected remedy (Closure by removal with beneficial reuse with MNA) has begun at the Bottom Ash Pond and is anticipated to be completed in 2025. As outlined in the Corrective Measures Assessment, groundwater modeling predicts that the concentrations of beryllium, cobalt, lithium, and radium will decline, or attenuate rapidly after the source removal is complete. During closure activities, a short term increase in the concentrations of Appendix IV SSLs is possible but these spikes in concentration are predicted to rapidly decrease once the closure is complete. Performance of the selected remedy will continue to be monitored in subsequent semiannual sampling events.

Tables:

Table I – Summary of Assessment Monitoring Statistical Evaluation – June 2021

																							inter-well An	alysis			
Location kd	Frequency of Detection	Percent Non-Detects	Range of Non- Detect	Mean	50th Percentile (Median)	95th Percentile	Maximum Detect	Variance	Standard Deviation	Coefficient of Variance	CCR MCL/RSL	Report Result Unit	Detection Exceedances		Non-Detection	Ontlier Presence	Outlier Removed	Trend	Distribution Well*	Detect?	June 2021 Concentrations	Detect?		folerance (mg/L)	SSI	GWPS (Higher of MCL/RSL or Upper	SSL
							CCR Appendix	-IV: Antimony, To	tal (mg/1)			Unit	(Y/N)	Exceedances	Exceedances											Tolerance Limit) (mg/L)	
C8W-1	0/15	100%	0.005-0.025	0.00633	0.005	0.011		0.00002667	0.005164	0.8154	0.006	mg/L	N	0	1	NA	NA	NA	Non-parametric				0	025		0.025	
PM-1	0/15	100%	0.005-0.025	0.00633	0.005	0.011		0.00002667	0.005164	0.8154	0.006	mg/L	N	0	1	NA	NA	NA	Non-parametric				U.	UZ.J		0.025	
CAP-1	0/12	100%	0.005-0.025	0.00667	0.005	0.014		0.00003333	0.005774	0.866	0.006	mg/L	N	0	1	NA	NA	NA	NA	N					N		FALSE
CAP-3 CAP-5	0/12	100%	0.005-0.025 0.005-0.025	0.00667	0.005	0.014		0.00003333	0.005774	0.866	0.006	mg/L	N N	0	1	NA NA	NA NA	NA NA	NA NA	N N					N N		FALSE FALSE
CAP-7	0/12	100%	0.005-0.025	0.00667	0.005	0.014		0.00003333	0.005774	0.866	0.006	mg/L mg/L	N	0	1	NA NA	NA NA	NA NA	NA NA	N N					N N		FALSE
CAP-9	0/12	100%	0.0005-0.025	0.00629	0.005	0.014		0.00003638	0.006032	0.9587	0.006	mg/L	N	0	1	NA	NA.	NA	NA NA	N					N		FALSE
	1000	1	2		1.734		CCR Appendi	ix-IV: Arsenic, Tota	1 - 7	-	1000	3	1000	1000	30.00					1							
CBW-1	3/17	82%	0.005-0.005	0.00577	0.005	0.00856	0.016	0.000007124	0.002669	0.4627	0.01	mg/L	Y	1	0	Yes	No	NA	Non-parametric				0	016		0.016	
PM-1	2/17	88%	0.005-0.005	0.00486	0.005	0.005	0.0042	1.612E-07	0.0004015	0.08253	0.01	mg/L	N	0	0	No	No	NA						010		2.010	
CAP-1	0/17	100%	0.003-0.005	0.00476	0.005	0.005		4.412E-07	0.0006642	0.1394	0.01	mg/L	N	0	0	NA	NA	NA	NA	N	0.005	0.000			N		FALSE
CAP-3	0/17	100%	0.003-0.005	0.00476	0.005	0.005		4.412E-07	0.0006642 0.0006642	0.1394	0.01	mg/L	N N	0	0	NA NA	NA NA	NA NA	NA NA	N N	0.005	0.000			N N		FALSE FALSE
CAP-7	0/17 6/L7	65%	0.003-0.005 0.005-0.005	0.00529	0.005	0.005	0.0073	4.412E-07 4.099E-07	0.0006402	0.1394	0.01	mg/L mg/L	N	0	0	Yes	No.	Stable	Non-parametric	N	0.005	0.000			N N		FALSE
CAP-9	16/17	6%	0.005-0.005	0.00691	0.0068	0.00926	0.0103	0.000001938	0.001392	0.2014	0.01	mg/L	Y	1	0	No	No	Stable	Non-parametric	Y	0.0067	1.000			N		FALSE
	11/27							ix-IV: Barium, Tola					100								0.000						
C8W-1	17/17	0%	-	0.0441	0.043	0.05004	0.061	0.00002325	0.004822	0.1094	2	mg/L	N	0	0	Yes	No	Stable	Non-parametric				a	1030		2.0	
PM-1	17/17	0%	-	0.0826	0.0803	0.1006	0.103	0.00007993	0.00894	0.1083	2	mg/L	N	0	0	Yes	No	Stable	Hon-parameuro				U			2.0	
CAP-1	17/17	0%	-	0.0471	0.0451	0.06484	0.069	0.0001179	0.01086	0.2306	2.	mg/L	N	0	0	Na	No	Stable	Normal	Y	0.045	1.000			N		FALSE
CAP-3	17/17	0%	-	0.0907	0.081	0.1506	0.237	0.001683	0.04103	0.4524	2	mg/L	N	0	0	Yes	No.	Stable	Non-parametric	y	0.085	1.000			N V		FALSE
CAP-5 CAP-7	17/17 17/17	0%	-	0.033	1.43 0.0318	1.58 0.04066	0.0413	0.03845	0.1961	0.141	2	mg/L mg/L	N N	0	0	Yes No	No No	Increasing	Non-parametric Normal	Y	1.660 0.041	1.000			Y N		FALSE FALSE
CAP-9	17/17	0%	-	0.0562	0.0318	0.0782	0.0413	0.0000175	0.004183	0.1206	2	mg/L	N	0	0	No	No	Decreasing	Normal	Y	0.041	1.000			N N		FALSE
	2.,27							-IV: Beryllium, Tol	w-\ /~\											1000	525-10						
C8W-1	1/16	94%	0.0005-0.0005	0.000508	0.0005	0.0005325	0.00063	1.056E-09	0.0000325	0.06396	0.004	mg/L	N	0	0	Na	No	NA	M				24	0006		0.004	
PM-1	0/L7	100%	0.0005-0.0005	0.0005	0.0005	0.0005		0	0	0	0.004	mg/L	N	0	0	No	No	NA	Non-parametric				U.I	AJUU		0.004	
CAP-1	16/16	0%	-	0.00534	0.00495	0.01027	0.0111	0.000007811	0.002795	0.5233	0.004	mg/L	Y	9	0	No	No	Stable	Mormal	Y	0.008	1.000			Y		FALSE
CAP-3	0/16	100%	0.0005-0.0005	0.0005	0.0005	0.0005		0	0	0	0.004	mg/L	N	0	0	No	No	NA	NA NA	N	0.001	0.000		_	N		FALSE
CAP-5	16/16	0%		0.00414	0.00425	0.005	0.005	5.839E-07	0.0007642	0.1846	0.004	mg/L	Y N	12 0	0	Yes	No No	Stable	Normal	Y	0.004	1.000			Y		TRUE
CAP-7 CAP-9	0/16 17/17	100%	0.0005-0.0005	0.0005	0.0005	0.0005	0.018	0.00000296	0.00172	0.1105	0.004	mg/L mg/L	Y	17	0	No.	No No	Stable	Normal	N Y	0.001	0.000 1.000			Y		FALSE
UAIT-3	11/17	0.4		0.0130	0.0137		THE RESERVE OF THE PERSON NAMED IN	-IV: Cadmium, Tol		0.1103	0.004	ulgr		17	9	140	NO	Statile	Horman		0.014	1.000			,		IIIOE
CBW-1	0/16	100%	0.0005-0.0005	0.0005	0.0005	0.0005		0	0	0	0.005	mg/L	N	0	0	NA	NA.	NA									
PM-1	0/16	100%	0.0005-0.0005	0.0005	0.0005	0.0005		0	0	0	0.005	mg/L	N	0	0	NA	NA	NA	- NA				U.I	0005		0.005	
CAP-1	0/16	100%	0.0005-0.0005	0.0005	0.0005	0.0005		a	0	0	0.005	mg/L	N	0	0	NA	NA	NA	NA	N	0.0005	0.0000			N		FALSE
CAP-3	0/16	100%	0.0005-0.0005	0.0005	0.0005	0.0005		0	0	0	0.005	mg/L	N	0	0	NA	NA	NA	N.A	N	0.0005	0.0000			N		FALSE
CAP-5	0/16	100%	0.0005-0.0005	0.0005	0.0005	0.0005		0	0	D	0.005	mg/L	N N	0	0	NA NA	NA NA	NA	NA NA	N	0.0005	0.0000			N N		FALSE
CAP-7 CAP-9	0/16	100%	0.0005-0.0005	0.0005	0.0005	0.0005		0	0	0	0.005	mg/L mg/L	N	0	0	NA NA	NA NA	NA NA	NA NA	N N	0.0005	0.0000			N		FALSE FALSE
GRI 7	0/10	100%	0.00005	2.0003	0.0203		CCR Appendix	-IV: Chromium, To			0.005	Wight.									0.0003	0.0000					Transc
CBW-1	1/16	94%	0.005-0.005	0.00556	0.005	0.00725	0.014	0.000005062	0.00225	0.4045	0.1	mg/L	N	0	0	NA	NA	NA	Non managed in					014		0.10	
PM-1	0/16	100%	0.005-0.005	0.005	0.005	0.005		7.228E-21	8.502E-11	0.000000017	0.1	mg/L	N	0	0	NA	NA	NA	Non-parametric				U.	014		0.10	
CAP-1	0/16	100%	0.005-0.005	0.005	0.005	0.005		7.228E-21	8.502E-11	0.000000017	0.1	mg/L	N	0	0	NA	NA	NA	NA	N	0.0050	0.0000			N		FALSE
CAP-3	0/16	100%	0.005-0.005	0.005	0.005	0.005		7.228E-21	8.502E-11	0.00000017	0.1	mg/L	N	0	0	NA	NA	NA	NA	N	0.0050	0.0000			N		FALSE
CAP-5	1/16	94%	0.005-0.005	0.00626	0.005	0.01003	0.0251	0.00002525	0.005025	0.8032	0.1	mg/L	N	0	0	NA	NA	NA	Non-parametric	N	0.0050	0.0000			N		FALSE
CAP-7 CAP-9	0/16	100%	0.005-0.005	0.005	0.005	0.005		7.228E-21 7.228E-21	8.502E-11 8.502E-11	0.000000017	0.1	mg/L mg/L	N N	0	0	NA NA	NA NA	NA NA	NA NA	N N	0.0050	0.0000			N N		FALSE FALSE
CAT-5	0/10	100%	0.005-0.005	0.005	0.003	0.003	CCR Append	lix-IV: Cobalt, Tota		0.000000017	0.1	nig/c			3	TVA		NA.	TRA .	- 1	0.0030	0.0000					TPLSC
CBW-1	17/17	0%	-	0.00108	0.00088	0.00172	0.0034	3.909E-07	0.0006252	0.5805	0.006	mg/L	N	0	0	Yes	No	Decreasing	N							0.005	
PM-1	17/17	0%	-	0.000924	0.00091	0.001	0.001	4.403E-09	0.00006635	0.07184	0.006	mg/L	N	D	0	No	No	Stable	- Non-parametric				0.0	0034		0.006	
CAP-1	16/16	0%	-	0.016	0.01675	0.024	0.024	0.0000338	0.005814	0.3626	0.006	mg/L	Y	15	0	No	No	Stable	Normal	Y	0.022	1.000			Y		TRUE
CAP-3	16/16	0%	-	0.0264	0.0266	0.0307	0.0328	0.00001592	0.00399	0.1509	0.006	mg/L	Y	16	0	Yes	No	Stable	Non-parametric	Y	0.029	1.000			Y		TRUE
CAP-5	16/16	0%	-	0.0127	0.01305	0.01498	0.0155	0.00000494	0.002223	0.1748	0.006	mg/L	Y	16	0	Yes	No	Stable	Normal	Y	0.015	1.000			Y		TRUE
CAP-7	16/16	0%	-	0.0107	0.0102	0.0132	0.015	0.000002631	0.001622	0.1523	0.006	mg/L	Y	16	0	Yes	No	Stable	Normal	Y	0.010	1.000			Y		TRUE
CAP-9	17/17	0%	-	0.0332	0.0335	0.03852	0.039 CCR Appe	0.00003248 ndix-IV: Fluoride (r	0.005699 mg/11	0.1716	0.006	mg/L	Ą	17	0	Yes	No	Increasing	Normal	Y	0.039	1.000			Y		THUE
CBW-1	17/17	0%	-	0.224	0.22	0.292	0.3	0.001874	0.04329	0.1937	4	mg/L	N	0	0	No	No	Decreasing									
PM-1	0/17	100%	0.1-0.1	0.1	0.1	0.1		0	0	0.1331	4	mg/L	N	0	0	NA	NA NA	NA	- Non-parametric				0	.30		4.0	
CAP-1	15/L6	6%	0.1-0.1	0.977	0.805	2.082	2.42	0.4307	0.6563	0.6718	4	mg/L	N	D	0	No	No	Increasing	Normal	Y	2.420	1.000			Υ		FALSE
CAP-3	5/16	69%	0.1-0.1	0.106	0.1	0.13	0.13	0.0001196	0.01094	0.1035	4	mg/L	N	0	0	No	No	Stable	Non-parametric	N	0.100	0.000			N		FALSE
CAP-5	16/16	0%	-	0.485	0.53	0.66	0.75	0.02588	0.1609	0.3317	4	mg/L	N	0	0	Na	No	Stable	Normal	Y	0.520	1.000			Y		FALSE
CAP-7	5/16	69%	0.1-0.1	0.112	0.1	0.1525	0.16	0.0004563	0.02136	0.1909	4	mg/L	N	0	0	No	No	Stable	Non-parametric	N	0.100	0.000			N		FALSE
CAP-9	16/16	0%	-	2.57	2.23	4.04	CCR Appen	1.171 dix-IV: Lead, Total	1.082 (me/L)	0.4208	4	mg/L	Y	1	0	No	No	Increasing	Mormal	Y	3.560	1.000			Y		FALSE
C8W-1	17/17	0%	-	0.00343	0.003	0.0052	0.011	0.000003936		0.5782	0.015	mg/L	N	0	0	Yes	No	Decreasing									
PM-1	0/17	100%	0.001-0.0025	0.00118	0.001	0.0025	3.011	2.482E-07	0.0004982	0.4234	0.015	mg/L	N	0	0	NA NA	NA NA	NA	- Non-parametric				0.	011		0.015	
CAP-1	5/15	67%	0.001-0.0025	0.00143	0.001	0.0025	0.0022	3.278E-07	0.0005725	0.4013	0.015	mg/L	N	0	0	NA	NA.	NA	Non-parametric	Y	0.002	1.000			N	-	FALSE
CAP-3	0/15	100%	0.001-0.0025	0.0012	0.001	0.0025		2.786E-07	0.0005278	0.4398	0.015	mg/L	N	0	0	NA	NA	NA	NA	N	0.001	0.000			N		FALSE
CAP-5	14/15	7%	0.0025-0.0025	0.00565	0.0053	0.00751	0.008	0.000001836	0.001355	0.2397	0.015	mg/L	N	0	0	Na	No	Increasing	Normal	Y	0.007	1.000			N		FALSE
CAP-7	0/15	100%	0.001-0.01	0.0018	0.001	0.00475		0.000005421	0.002328	1.294	0.015	mg/L	N	0	0	NA	NA	NA	NA	N	0.001	0.000			N		FALSE
CAP-9	15/15	0%	_	0.0109	0.0113	0.01477	0.0154	0.000008737	0.002956	0.2701	0.015	mg/L	y	1	0	Yes	No	Stable	Normal	Y	0.012	1.000	0.010		N		FALSE

Prepared: October 5, 2021

f.							CCR Appendi	x-IV: Lithium, Tota	al (mg/L)																	
C8W-1	0/17	100%	0.005-0.02	0.0103	0.01	0.012		0.000007721	0.002779	0.2699	0.04	mg/L	N	O	0	NA	NA	NA.					2.04			
PM-1	0/17	100%	0.005-0.01	0.00971	0.01	0.01		0.000001471	0.001213	0.1249	0.04	mg/L	N	0	0	NA	NA	NA	- NA				0.01		0.04	
CAP-1	16/16	0%	-	0.0913	0.098	0.1225	0.13	0.0007864	0.02804	0.3071	0.04	mg/L	Y	15	0	No	No	Stable	Normal	γ	0.096	1.000		Y		TRUE
CAP-3	12/16	25%	0.01-0.05	0.0136	0.011	0.02375	0.015	0.00009553	0.009774	0.717	0.04	mg/L	N	0	1	Yes	No	Stable	Non-parametric	Y	0.011	1.000		Y		FALSE
CAP-5	15/16	6%	0.01-0.01	0.0127	0.012	0.01503	0.016	0.000002031	0.001425	0.1126	0.04	mg/L	N	0	0	Na	No	Stable	Normal	Y	0.013	1.000		Y		FALSE
CAP-7	0/16	100%	0.01-0.05	0.0125	0.01	0.02		0.0001	0.01	0.8	0.04	mg/L	N	0	1	NA	NA	NA	NA	N	0.010	0.000		N		FALSE
CAP-9	17/17	0%	-	0.0625	0.062	0.07124	0.0722	0.00001912	0.004373	0.07001	0.04	mg/L	γ	17	0	Yes	No	Stable	Normal	Y	0.063	1.000		Y		TRUE
						1	CCR Appendix	-IV: Mercury, Tol	al (mg/L)																	
CBW-1	0/17	100%	0.0002-0.001	0.000247	0.0002	0.00036		3.765E-08	0.000194	0.7854	0.002	mg/L	N	D	0	NA	NA	NA					2.004		- 220	
PM-1	0/17	100%	0.0002-0.001	0.000247	0.0002	0.00036		3.765E-08	0.000194	0.7854	0.002	mg/L	N	D	0	NA.	NA	NA	- Non-parametric				0.001		0.002	
CAP-1	0/14	100%	0.0002-0.001	0.000257	0.0002	0.00048		4.571E-08	0.0002138	0.8315	0.002	mg/L	N	D	0	NA	NA	NA	NA	N	0.0002	0.0000		N		FALSE
CAP-3	0/15	100%	0.0002-0.001	0.000253	0.0002	0.00044		4.267E-08	0.0002066	0.8154	0.002	mg/L	N	D	0	NA	NA	NA	NA	N	0.0002	0.0000		N		FALSE
CAP-5	0/15	100%	0.0002-0.001	0.000253	0.0002	0.00044		4.267E-08	0.0002066	0.8154	0.002	mg/L	N	0	0	NA	NA	NA	NA	N	0.0002	0.0000		N		FALSE
CAP-7	2/15	87%	0.0002-0.001	0.000259	0.0002	0.000468	0.00024	4.226E-08	0.0002056	0.7947	0.002	mg/L	N	D	0	NA NA	NA	NA	NA	N	0.0002	0.0000		N		FALSE
CAP-9	2/15	87%	0.0002-0.001	0.000269	0.0002	0.000531	0.00033	4.258E-08	0.0002064	0.7681	0.002	mg/L	N	D	0	NA	NA	NA	NA.	N	0.0002	0.0000		N		FALSE
						cc	R Appendix-IV	: Molybdenum, T	otal (mg/L)																	
CBW-1	0/15	100%	0.01-0.02	0.0107	0.01	0.013		0.000006667	0.002582	0.2421	0.1	mg/L	N	0	0	NA	NA	NA	Non-parametric				0.01		0.10	
PM-1	0/15	100%	0.01-0.01	0.01	0.01	0.01		3.098E-20	1.76E-10	1.76E-08	0.1	mg/L	N	0	0	NA	NA	NA	- Non-parametric				0.01		0.10	
CAP-1	0/12	100%	0.01-0.01	0.01	0.01	0.01		5.914E-20	2.432E-10	2.432E-08	0.1	mg/L	N	0	0	NA	NA	NA.	NA	N				N		FALSE
CAP-3	0/12	100%	0.01-0.01	0.01	0.01	0.01		5.914E-20	2.432E-10	2.432E-08	0.1	mg/L	N	0	0	NA	NA	NA	NA	N				N		FALSE
CAP-5	0/12	100%	0.01-0.01	0.01	0.0 L	0.01		5.914E-20	2.432E-10	2.432E-08	0.1	mg/L	N	0	0	NA	NA	NA	N.A	N				N		FALSE
CAP-7	0/12	100%	0.01-0.05	0.0133	0.01	0.028		0.0001333	0.01155	0.866	0.1	mg/L	N	0	0	NA	NA	NA	NA	N				N		FALSE
CAP-9	0/12	100%	0.01-0.04	0.0125	0.01	0.0235		0.000075	0.00866	0.6928	0.1	mg/L	N	0	0	NA	NA	NA	NA	N				N		FALSE
						CC	R Appendix-N	v: Radium-226 & 2	228 (pCi/L)																	
C8W-1	9/16	44%	4-4	3.44	4	5.568	6.34	3.06	1.749	0.5087	5	pCi/L	γ	3	0	Yes	No	Stable	Non-parametric				16.3		16.3	
PM-1	10/16	38%	4-4	4.3	4	9.392	16.3	12.97	3.601	0.8372	5	pCi/L	γ	2	0	Yes	No	Stable	Non-parametric				TOLO		10.3	
CAP-1	7/15	53%	4-4	3.39	4	5.17	5.24	1.822	1.35	0.3988	5	pCi/L	Y	2	0	No	No	Stable	Non-parametric	Y	0.789	1.000		N		FALSE
CAP-3	8/15	47%	4-4	3.27	4	4.284	4.48	1.498	1.224	0.3743	5	pCi/L	N	0	0	Yes	No	Stable	Non-parametric	y	1.790	1.000		N		FALSE
CAP-5	16/16	0%	-	16.9	17.81	20.1	21.3	11.47	3.386	0.2006	5	pCi/L	Y	16	0	Yes	No	Stable	Normal	Y	16.800	1.000		Y		TRUE
CAP-7	11/15	27%	4-4	4.11	4	6.161	6.56	2.301	1.517	0.3693	5	pCi/L	y	5	0	No	No	Stable	Normal	Y	1.650	1.000		N		FALSE
CAP-9	10/15	33%	4-4	4.06	- 4	6.099	7.31	1.883	1.372	0.3381	5	pCi/L	γ	2	0	Yes	No	Stable	Non-parametric	Y	3.320	1.000		N		FALSE
							CCR Appendix	IV: Selenium, Tot	al (mg/L)	,							,									
C8W-1	0/17	100%	0.01-0.02	0.0112	0.0 L	0.02		0.00001103	0.003321	0.2971	0.05	mg/L	N	0	0	NA	NA	NA	- Non-parametric				0.02		0.05	
PM-1	0/17	100%	0.01-0.02	0.0112	0.01	0.02		0.00001103	0.003321	0.2971	0.05	mg/L	N	0	Ð	NA	NA	NA								
CAP-1	0/13	100%	0.01-0.02	0.0115	0.01	0.02		0.0000141	0.003755	0.3255	0.05	mg/L	N	D	0	NA	NA	NA	NA	N				N		FALSE
CAP-3	0/13	100%	0.01-0.02	0.0115	0.01	0.02		0.0000141	0.003755	0.3255	0.05	mg/L	N	0	0	NA	NA	NA.	NA	N				N		FALSE
CAP-5	0/13	100%	0.01-0.02	0.0115	0.01	0.02		0.0000141	0.003755	0.3255	0.05	mg/L	N	0	0	NA	NA	NA	NA NA	N				N		FALSE
CAP-7	0/13	100%	0.01-0.02	0.0115	0.01	0.02		0.0000141	0.003755	0.3255	0.05	mg/L	N	0	0	NA	NA	NA	NA	N				N		FALSE
CAP-9	1/13	92%	0.01-0.02	0.0132	0.0 L	0.0244	0.031	0.00004264	0.00653	0.4964	0.05	mg/L	N	0	0	NA	NA	NA	Non-parametric	N				N		FALSE
		10.0					CCR Appendix	-rv: Thallium, Tot																		
CBW-1	0/15	100%	0.001-0.001	0.001	0.001	0.001		0	0	0	0.002	mg/L	N	D	0	NA	NA	NA	- Non-parametric				0.001		0.002	
PM-1	0/15	100%	0.001-0.001	0.001	0.001	0.001		0	0	0	0.002	mg/L	N	D	0	NA	NA	NA								
CAP-1	0/12	100%	0.001-0.001	0.001	0.001	0.001		0	0	0	0.002	mg/L	N	0	0	NA	NA	NA	NA	N				N		FALSE
CAP-3	0/12	100%	0.001-0.001	0.001	0.001	0.001		0	0	0	0.002	mg/L	N	D	0	NA	NA	NA	NA	N				N		FALSE
CAP-5	0/12	100%	0.001-0.001	0.001	0.001	0.001		0	0	0	0.002	mg/L	N	D	0	NA	NA	NA	NA	N				N		FALSE
CAP-7	0/12	100%	0.001-0.001	0.001	0.001	0.001		0	0	0	0.002	mg/L	N	0	0	NA	NA	NA	NA	N				N		FALSE
CAP-9	0/12	100%	0.001-0.001	0.001	0.001	0.001		0	0	0	0.002	mg/L	N	0	0	NA	NA	NA	NA	N				N		FALSE

Appendix B – Laboratory Analytical Reports

SANTEE COOPER ANALYTICAL SERVICES CERTIFICATE OF ANALYSIS LAB CERTIFICATION #08552

Sample # AE94854 Location: GW Well CBW-1 Date: 01/26/2021 Sample Collector: ATH/DEW

Loc. Code CBW-1 Time: 10:39

Analysis	Result	Units	Test Date	Analyst	Method
Arsenic	<5.0	ug/L	02/19/2021	SJHATCHE	EPA 6020B
Arsenic Dissolved	<5.0	ug/L	02/12/2021	SJHATCHE	EPA 6020B
Barium	46.6	ug/L	02/19/2021	SJHATCHE	EPA 6020B
Beryllium	<0.50	ug/L	02/19/2021	SJHATCHE	EPA 6020B
Boron	18	ug/L	02/10/2021	ROGERSNCALLC	EPA 6010D
Calcium	29.2	mg/L	02/19/2021	SJHATCHE	EPA 6020B
Cadmium	<0.50	ug/L	02/19/2021	SJHATCHE	EPA 6020B
Cobalt	0.66	ug/L	02/19/2021	SJHATCHE	EPA 6020B
Chromium	<5.0	ug/L	02/19/2021	SJHATCHE	EPA 6020B
Iron	64.6	ug/L	02/19/2021	SJHATCHE	EPA 6020B
Mercury	<0.20	ug/L	02/09/2021	ROGERSNCALLC	EPA 7470
Lithium	<10	ug/L	02/05/2021	ROGERSNCALLC	EPA 6010D
Molybdenum	<10	ug/L	02/05/2021	ROGERSNCALLC	EPA 6010D
Lead	2.5	ug/L	02/19/2021	SJHATCHE	EPA 6020B
Antimony	<5.0	ug/L	02/19/2021	SJHATCHE	EPA 6020B
Selenium	<10.0	ug/L	02/19/2021	SJHATCHE	EPA 6020B
Thallium	<1.0	ug/L	02/19/2021	SJHATCHE	EPA 6020B
Radium 226	0.436	pCi/L	02/25/2021	GEL	EPA 903.1 Mod
Radium 228	1.29	pCi/L	02/23/2021	GEL	EPA 904.0
Radium 226/228 Combined Calculation	1.73	pCi/L	02/25/2021	GEL	EPA 903.1 Mod
Chloride	3.22	mg/L	01/27/2021	KCWELLS	EPA 300.0
Fluoride	0.15	mg/L	01/27/2021	KCWELLS	EPA 300.0
Sulfate	80.7	mg/L	01/27/2021	KCWELLS	EPA 300.0
Total Dissolved Solids	138.8	mg/L	01/28/2021	KCWELLS	SM 2540C
pH	4.31	SU	01/26/2021	DEW/ATH	
Spec. Cond.	192	uS	01/26/2021	DEW/ATH	
Dissolved Oxygen	0.710	ppm	01/26/2021	DEW/ATH	
Oxidation Reduction Potential	338	mv	01/26/2021	DEW/ATH	SM2580
Temp	20.25	С	01/26/2021	DEW/ATH	
Turbidity	0	NTU	01/26/2021	DEW/ATH	
Depth	10.12	Feet	01/26/2021	DEW/ATH	
Elevation	75.68	Feet	02/12/2021	DEWEST	
Aluminum	0.90	mg/L	02/19/2021	SJHATCHE	EPA 6020B
Potassium	0.67	mg/L	02/19/2021	SJHATCHE	EPA 6020B
Magnesium	2.2	mg/L	02/19/2021	SJHATCHE	EPA 6020B
Sodium	2.1	mg/L	02/19/2021	SJHATCHE	EPA 6020B
Nitrate	<0.10	mg/L	01/27/2021	KCWELLS	EPA 300.0
Total Organic Carbon	2.43	mg/L	02/04/2021	GEL	SM 5310B
Zinc	<10.0	ug/L	02/19/2021	SJHATCHE	EPA 6020B

One Riverwood Drive P.O. Box 2946101 Moncks Comer, SC 29461-2901 (843) 761-8000

SANTEE COOPER ANALYTICAL SERVICES CERTIFICATE OF ANALYSIS LAB CERTIFICATION #08552

Comments:

Independent Laboratory Results: "GEL" - GEL Laboratories LLC - Lab ID # 10120; "Test America" - Test America Laboratories, Inc. - Lab ID# 98001; "Davis Brown" - Davis & Brown Lab ID # 21117; "Shealy" - Shealy Environmental Services, Inc. - Lab ID# 32010 "ROGERSCALLCO" - Rogers & Callcot, Inc. - Lab ID # 23105001

Analysis Validated:

Lindallellar

One Riverwood Drive P.O. Box 2946101 Moncks Comer, SC 29461-2901 (843) 761-8000

SANTEE COOPER ANALYTICAL SERVICES CERTIFICATE OF ANALYSIS

LAB CERTIFICATION #08552

Sample # AF03823

Location: GW Well CBW-1

Date: 05/13/2021

Sample Collector: MDG/BWM

Loc. Code

CBW-1

Time: 14:39

Analysis	Result	Units	Test Date	Analyst	Method
Depth	9.87	Feet	05/14/2021	MDG/BWM	
Elevation	75.93	Feet	05/17/2021	MDGOINGS	

Comments:

Independent Laboratory Results: "GEL" - GEL Laboratories LLC - Lab ID# 10120; "Test America" - TestAmerica Laboratories, Inc. - Lab ID# 98001; "DavisBrown"- Davis & Brown Lab ID# 21117; "Shealy"- Shealy Environmental Services, Inc.- Lab ID# 32010 "ROGERSCALLCO"-Rogers & Callcot, Inc.- Lab ID# 23105001

Analysis Validated:

SANTEE COOPER ANALYTICAL SERVICES CERTIFICATE OF ANALYSIS LAB CERTIFICATION #08552

Sample # AF07259 Location: GW Well CBW-1 Date: 06/21/2021 Sample Collector: MDG/BRT

Loc. Code CBW-1 Time: 14:13

Analysis	Result	Units	Test Date	Analyst	Method
Arsenic	<5.0	ug/L	07/29/2021	SJHATCHE	EPA 6020B
Arsenic Dissolved	<5.0	ug/L	07/28/2021	SJHATCHE	EPA 6020B
Barium	42.3	ug/L	07/29/2021	SJHATCHE	EPA 6020B
Beryllium	<0.50	ug/L	07/29/2021	SJHATCHE	EPA 6020B
Boron	<40	ug/L	07/05/2021	R&C	EPA 6010D
Calcium	29.9	mg/L	07/29/2021	SJHATCHE	EPA 6020B
Cadmium	<0.50	ug/L	07/29/2021	SJHATCHE	EPA 6020B
Cobalt	0.70	ug/L	07/29/2021	SJHATCHE	EPA 6020B
Chromium	<5.0	ug/L	07/29/2021	SJHATCHE	EPA 6020B
Iron	135	ug/L	07/29/2021	SJHATCHE	EPA 6020B
Mercury	<0.2	ug/L	07/05/2021	R&C	EPA 7470
Lithium	<20	ug/L	07/05/2021	R&C	EPA 6010D
Molybdenum	<20	ug/L	07/05/2021	R&C	EPA 6010D
Lead	2.6	ug/L	07/29/2021	SJHATCHE	EPA 6020B
Antimony	<5.0	ug/L	07/29/2021	SJHATCHE	EPA 6020B
Selenium	<10.0	ug/L	07/29/2021	SJHATCHE	EPA 6020B
Thallium	<1.0	ug/L	07/29/2021	SJHATCHE	EPA 6020B
Radium 226	0.433	pCi/L	07/13/2021	GEL	EPA 903.1 Mod
Radium 228	0.120	pCi/L	07/06/2021	GEL	EPA 904.0
Radium 226/228 Combined Calculation	0.552	pCi/L	07/20/2021	GEL	EPA 903.1 Mod
Chloride	3.05	mg/L	06/28/2021	KCWELLS	EPA 300.0
Fluoride	0.19	mg/L	06/28/2021	KCWELLS	EPA 300.0
Sulfate	86.6	mg/L	06/28/2021	KCWELLS	EPA 300.0
Total Dissolved Solids	178.8	mg/L	06/29/2021	SJBROWN	SM 2540C
рH	4.25	SU	06/21/2021	MDG/BRT	
Spec. Cond.	194	uS	06/21/2021	MDG/BRT	
Dissolved Oxygen	0.660	ppm	06/21/2021	MDG/BRT	
Oxidation Reduction Potential	75.0	mν	06/21/2021	MDG/BRT	SM2580
Temp	24.16	С	06/21/2021	MDG/BRT	
Turbidity	0.200	NTU	06/21/2021	MDG/BRT	
Depth	10.07	Feet	06/21/2021	MDG/BRT	
Elevation	75.73	Feet	07/14/2021	BRTAYLOR	
Aluminum	1.0	mg/L	07/29/2021	SJHATCHE	EPA 6020B
Potassium	0.63	mg/L	07/29/2021	SJHATCHE	EPA 6020B
Magnesium	2.2	mg/L	07/29/2021	SJHATCHE	EPA 6020B
Sodium	2.2	mg/L	07/29/2021	SJHATCHE	EPA 6020B
Nitrate	0.35	mg/L	06/28/2021	KCWELLS	EPA 300.0
Total Organic Carbon	2.11	mg/L	06/28/2021	GEL	SM 5310B
Zinc	<10.0	ug/L	07/29/2021	SJHATCHE	EPA 6020B

One Riverwood Drive P.O. Box 2946101 Moncks Comer, SC 29461-2901 (843) 761-8000

SANTEE COOPER ANALYTICAL SERVICES CERTIFICATE OF ANALYSIS LAB CERTIFICATION #08552

Comments:

Independent Laboratory Results: "GEL" - GEL Laboratories LLC - Lab ID # 10120; "Test America" - Test America Laboratories, Inc. - Lab ID# 98001; "Davis Brown" - Davis & Brown Lab ID # 21117; "Shealy" - Shealy Environmental Services, Inc. - Lab ID# 32010 "ROGERSCALLCO" - Rogers & Callcot, Inc. - Lab ID # 23105001

Analysis Validated:

Lindallellar

SANTEE COOPER ANALYTICAL SERVICES CERTIFICATE OF ANALYSIS LAB CERTIFICATION #08552

Sample # AE94872 Location: GW Well PM-1 Date: 01/26/2021 Sample Collector: ATH/DEW

Loc. Code PM-1 Time: 09:27

Analysis	Result	Units	Test Date	Analyst	Method
Arsenic	<5.00	ug/L	02/09/2021	SJHATCHE	EPA 6020B
Arsenic Dissolved	<5.0	ug/L	02/04/2021	SJHATCHE	EPA 6020B
Barium	85.7	ug/L	02/09/2021	SJHATCHE	EPA 6020B
Beryllium	<0.50	ug/L	02/09/2021	SJHATCHE	EPA 6020B
Boron	<15	ug/L	02/09/2021	ROGERSNCALLC	EPA 6010D
Calcium	14.3	mg/L	02/09/2021	SJHATCHE	EPA 6020B
Cadmium	<0.50	ug/L	02/09/2021	SJHATCHE	EPA 6020B
Cobalt	1.0	ug/L	02/09/2021	SJHATCHE	EPA 6020B
Chromium	<5.0	ug/L	02/09/2021	SJHATCHE	EPA 6020B
Iron	13300	ug/L	02/09/2021	SJHATCHE	EPA 6020B
Mercury	<0.20	ug/L	02/09/2021	ROGERSNCALLC	EPA 7470
Lithium	<10	ug/L	02/05/2021	ROGERSNCALLC	EPA 6010D
Molybdenum	<10	ug/L	02/05/2021	ROGERSNCALLC	EPA 6010D
Lead	<1.0	ug/L	02/09/2021	SJHATCHE	EPA 6020B
Antimony	<5.0	ug/L	02/09/2021	SJHATCHE	EPA 6020B
Selenium	<10.0	ug/L	02/09/2021	SJHATCHE	EPA 6020B
Thallium	<1.0	ug/L	02/10/2021	SJHATCHE	EPA 6020B
Radium 226	0.559	pCi/L	02/25/2021	GEL	EPA 903.1 Mod
Radium 228	2.88	pCi/L	02/23/2021	GEL	EPA 904.0
Radium 226/228 Combined Calculation	3.44	pCi/L	02/25/2021	GEL	EPA 903.1 Mod
Chloride	11.8	mg/L	01/27/2021	KCWELLS	EPA 300.0
Fluoride	<0.10	mg/L	01/27/2021	KCWELLS	EPA 300.0
Sulfate	9.98	mg/L	01/27/2021	KCWELLS	EPA 300.0
Total Dissolved Solids	110.0	mg/L	01/28/2021	KCWELLS	SM 2540C
рН	5.03	SU	01/26/2021	DEW/ATH	
Spec. Cond.	143	uS	01/26/2021	DEW/ATH	
Dissolved Oxygen	6.12	ppm	01/26/2021	DEW/ATH	
Oxidation Reduction Potential	1.00	mv	01/26/2021	DEW/ATH	SM2580
Temp	19.47	С	01/26/2021	DEW/ATH	
Turbidity	4.40	NTU	01/26/2021	DEW/ATH	
Depth	8.27	Feet	01/26/2021	DEW/ATH	
Elevation	74.97	Feet	02/12/2021	DEWEST	
Aluminum	<0.10	mg/L	02/09/2021	SJHATCHE	EPA 6020B
Potassium	0.57	mg/L	02/09/2021	SJHATCHE	EPA 6020B
Magnesium	0.77	mg/L	02/09/2021	SJHATCHE	EPA 6020B
Sodium	5.4	mg/L	02/09/2021	SJHATCHE	EPA 6020B
Nitrate	<0.10	mg/L	01/27/2021	KCWELLS	EPA 300.0
Total Organic Carbon	6.25	mg/L	02/04/2021	GEL	SM 5310B
Zinc	<10.0	ug/L	02/10/2021	SJHATCHE	EPA 6020B

One Riverwood Drive P.O. Box 2946101 Moncks Comer, SC 29461-2901 (843) 761-8000

SANTEE COOPER ANALYTICAL SERVICES CERTIFICATE OF ANALYSIS LAB CERTIFICATION #08552

Comments:

Independent Laboratory Results: "GEL" - GEL Laboratories LLC - Lab ID # 10120; "Test America" - Test America Laboratories, Inc. - Lab ID# 98001; "Davis Brown" - Davis & Brown Lab ID # 21117; "Shealy" - Shealy Environmental Services, Inc. - Lab ID# 32010 "ROGERSCALLCO" - Rogers & Callcot, Inc. - Lab ID # 23105001

Analysis Validated:

Lindallellar

One Riverwood Drive P.O. Box 2946101 Moncks Comer, SC 29461-2901 (843) 761-8000

SANTEE COOPER ANALYTICAL SERVICES

CERTIFICATE OF ANALYSIS

LAB CERTIFICATION #08552

Sample # AF03824

Location: GW V

GW Well PM-1

Date: 05/13/2021

Sample Collector: MDG/BWM

Loc. Code

PM-1

Time: 14:39

Analysis	Result	Units	Test Date	Analyst	Method
Depth	7.77	Feet	05/14/2021	MDG/BWM	
Elevation	75.47	Feet	05/17/2021	MDGOINGS	

Comments:

Independent Laboratory Results: "GEL" - GEL Laboratories LLC - Lab ID# 10120; "Test America" - TestAmerica Laboratories, Inc. - Lab ID# 98001; "DavisBrown"- Davis & Brown Lab ID# 21117; "Shealy"- Shealy Environmental Services, Inc.- Lab ID# 32010 "ROGERSCALLCO"-Rogers & Callcot, Inc.- Lab ID# 23105001

Analysis Validated:

Sample # AF07281 Location: GW Well PM-1 Date: 06/21/2021 Sample Collector: MDG/BRT

Loc. Code PM-1 Time: 13:08

Analysis	Result	Units	Test Date	Analyst	Method
Arsenic	<5.0	ug/L	07/09/2021	SJHATCHE	EPA 6020B
Arsenic Dissolved	<5.0	ug/L	07/06/2021	SJHATCHE	EPA 6020B
Barium	87.3	ug/L	07/09/2021	SJHATCHE	EPA 6020B
Beryllium	<0.50	ug/L	07/09/2021	SJHATCHE	EPA 6020B
Boron	<15	ug/L	07/05/2021	R&C	EPA 6010D
Calcium	17.0	mg/L	07/09/2021	SJHATCHE	EPA 6020B
Cadmium	<0.50	ug/L	07/09/2021	SJHATCHE	EPA 6020B
Cobalt	0.94	ug/L	07/09/2021	SJHATCHE	EPA 6020B
Chromium	<5.0	ug/L	07/09/2021	SJHATCHE	EPA 6020B
Iron	14800	ug/L	07/09/2021	SJHATCHE	EPA 6020B
Mercury	<0.2	ug/L	07/05/2021	R&C	EPA 7470
Lithium	<10	ug/L	07/05/2021	R&C	EPA 6010D
Molybdenum	<10	ug/L	07/05/2021	R&C	EPA 6010D
Lead	<1.0	ug/L	07/09/2021	SJHATCHE	EPA 6020B
Antimony	<5.0	ug/L	07/09/2021	SJHATCHE	EPA 6020B
Selenium	<10.0	ug/L	07/09/2021	SJHATCHE	EPA 6020B
Thallium	<1.0	ug/L	07/09/2021	SJHATCHE	EPA 6020B
Radium 226	0.369	pCi/L	07/13/2021	GEL	EPA 903.1 Mod
Radium 228	1.73	pCi/L	07/06/2021	GEL	EPA 904.0
Radium 226/228 Combined Calculation	2.10	pCi/L	07/20/2021	GEL	EPA 903.1 Mod
Chloride	12.0	mg/L	06/28/2021	KCWELLS	EPA 300.0
Fluoride	<0.10	mg/L	06/28/2021	KCWELLS	EPA 300.0
Sulfate	11.9	mg/L	06/28/2021	KCWELLS	EPA 300.0
Total Dissolved Solids	155.0	mg/L	06/29/2021	SJBROWN	SM 2540C
РH	5.21	SU	06/21/2021	MDG/BRT	
Spec. Cond.	169	uS	06/21/2021	MDG/BRT	
Dissolved Oxygen	3.96	ppm	06/21/2021	MDG/BRT	
Oxidation Reduction Potential	45.0	mν	06/21/2021	MDG/BRT	SM2580
Temp	26.49	С	06/21/2021	MDG/BRT	
Turbidity	4.30	NTU	06/21/2021	MDG/BRT	
Depth	7.91	Feet	06/21/2021	MDG/BRT	
Elevation	75.33	Feet	07/14/2021	BRTAYLOR	
Aluminum	<0.10	mg/L	07/09/2021	SJHATCHE	EPA 6020B
Potassium	0.60	mg/L	07/09/2021	SJHATCHE	EPA 6020B
Magnesium	0.79	mg/L	07/09/2021	SJHATCHE	EPA 6020B
Sodium	5.1	mg/L	07/09/2021	SJHATCHE	EPA 6020B
Nitrate	0.18	mg/L	06/28/2021	KCWELLS	EPA 300.0
Total Organic Carbon	6.57	mg/L	06/28/2021	GEL	SM 5310B
Zinc	10.8	ug/L	07/09/2021	SJHATCHE	EPA 6020B

SANTEE COOPER ANALYTICAL SERVICES CERTIFICATE OF ANALYSIS LAB CERTIFICATION #08552

Comments:

Independent Laboratory Results: "GEL" - GEL Laboratories LLC - Lab ID # 10120; "Test America" - TestAmerica Laboratories, Inc. - Lab ID# 98001; "DavisBrown"- Davis & Brown Lab ID # 21117; "Shealy"- Shealy Environmental Services, Inc.- Lab ID# 32010 "ROGERSCALLCO"-Rogers & Callcot, Inc.- Lab ID # 23105001

Analysis Validated:

Lindallellar

SANTEE COOPER ANALYTICAL SERVICES CERTIFICATE OF ANALYSIS

LAB CERTIFICATION #08552

Sample # AE94839 Location: GW Well CAP- 1 Date: 02/02/2021 Sample Collector: MDG/DEW

Loc. Code CAP-1 Time: 12:06

Analysis	Result	Units	Test Date	Analyst	Method
Arsenic	<5.0	ug/L	02/15/2021	SJHATCHE	EPA 6020B
Arsenic Dissolved	<5.0	ug/L	02/12/2021	SJHATCHE	EPA 6020B
Barium	63.8	ug/L	02/15/2021	SJHATCHE	EPA 6020B
Beryllium	3.2	ug/L	02/15/2021	SJHATCHE	EPA 6020B
Calcium	172	mg/L	02/15/2021	SJHATCHE	EPA 6020B
Cadmium	<0.50	ug/L	02/15/2021	SJHATCHE	EPA 6020B
Cobalt	9.7	ug/L	02/15/2021	SJHATCHE	EPA 6020B
Chromium	<5.0	ug/L	02/15/2021	SJHATCHE	EPA 6020B
Iron	87300	ug/L	02/15/2021	SJHATCHE	EPA 6020B
Mercury	<0.20	ug/L	02/12/2021	ROGERSNCALLC	EPA 7470
Lithium	50	ug/L	02/09/2021	ROGERSNCALLC	EPA 6010D
Molybdenum	<10	ug/L	02/09/2021	ROGERSNCALLC	EPA 6010D
Lead	1.7	ug/L	02/15/2021	SJHATCHE	EPA 6020B
Antimony	<5.0	ug/L	02/15/2021	SJHATCHE	EPA 6020B
Selenium	<10.0	ug/L	02/15/2021	SJHATCHE	EPA 6020B
Thallium	<1.0	ug/L	02/15/2021	SJHATCHE	EPA 6020B
Radium 226	1.10	pCi/L	03/05/2021	GEL	EPA 903.1 Mod
Radium 228	0.243	pCi/L	03/01/2021	GEL	EPA 904.0
Radium 226/228 Combined Calculation	1.34	pCi/L	03/08/2021	GEL	EPA 903.1 Mod
Chloride	92.9	mg/L	02/05/2021	KCWELLS	EPA 300.0
Fluoride	1.09	mg/L	02/05/2021	KCWELLS	EPA 300.0
Sulfate	394	mg/L	02/05/2021	KCWELLS	EPA 300.0
Total Dissolved Solids	907.5	mg/L	02/08/2021	KCWELLS	SM 2540C
рН	5.74	SU	02/02/2021	DEW/MDG	
Spec. Cond.	1000	uS	02/02/2021	DEW/MDG	
Dissolved Oxygen	1.93	ppm	02/02/2021	DEW/MDG	
Oxidation Reduction Potential	34.0	mv	02/02/2021	DEW/MDG	SM2580
Temp	13.89	С	02/02/2021	DEW/MDG	
Turbidity	0	NTU	02/02/2021	DEW/MDG	
Depth	5.60	Feet	02/02/2021	DEW/MDG	
Elevation	77.10	Feet	02/12/2021	DEWEST	
Aluminum	1.6	mg/L	02/15/2021	SJHATCHE	EPA 6020B
Potassium	0.63	mg/L	02/15/2021	SJHATCHE	EPA 6020B
Magnesium	5.9	mg/L	02/15/2021	SJHATCHE	EPA 6020B
Sodium	31.9	mg/L	02/15/2021	SJHATCHE	EPA 6020B

Comments:

Independent Laboratory Results: "GEL" - GEL Laboratories LLC - Lab ID# 10120; "Test America" - TestAmerica Laboratories, Inc. - Lab ID# 98001; "DavisBrown"- Davis & Brown Lab ID# 21117; "Shealy"- Shealy Environmental Services, Inc.- Lab ID# 32010 "ROGERSCALLCO"-Rogers & Callcot, Inc.- Lab ID# 23105001

Sample # AF07244 Location: GW Well CAP- 1 Date: 06/24/2021 Sample Collector: BRT/ML

Loc. Code CAP-1 Time: 12:19

- Analysis	Result	Units	Test Date	Analyst	Method
Arsenic	<5.0	ug/L	07/09/2021	SJHATCHE	EPA 6020B
Arsenic Dissolved	<5.0	ug/L	07/06/2021	SJHATCHE	EPA 6020B
Barium	45.1	ug/L	07/09/2021	SJHATCHE	EPA 6020B
Beryllium	8.1	ug/L	07/09/2021	SJHATCHE	EPA 6020B
Boron	480.0	ug/L	07/05/2021	R&C	EPA 6010D
Calcium	258	mg/L	07/09/2021	SJHATCHE	EPA 6020B
Cadmium	<0.50	ug/L	07/09/2021	SJHATCHE	EPA 6020B
Cobalt	22.1	ug/L	07/09/2021	SJHATCHE	EPA 6020B
Chromium	<5.0	ug/L	07/09/2021	SJHATCHE	EPA 6020B
Iron	58300	ug/L	07/09/2021	SJHATCHE	EPA 6020B
Mercury	<0.2	ug/L	07/05/2021	R&C	EPA 7470
Lithium	96.0	ug/L	07/05/2021	R&C	EPA 6010D
Lead	2.2	ug/L	07/09/2021	SJHATCHE	EPA 6020B
Radium 226	0.130	pCi/L	07/13/2021	GEL	EPA 903.1 Mod
Radium 228	0.659	pCi/L	07/06/2021	GEL	EPA 904.0
Radium 226/228 Combined Calculation	0.789	pCi/L	07/20/2021	GEL	EPA 903.1 Mod
Chloride	193	mg/L	06/30/2021	KCWELLS	EPA 300.0
Fluoride	2.42	mg/L	06/30/2021	KCWELLS	EPA 300.0
Sulfate	645	mg/L	06/30/2021	KCWELLS	EPA 300.0
Total Dissolved Solids	1385	mg/L	07/02/2021	SJBROWN	SM 2540C
pН	5.18	SU	06/24/2021	BRT/ML	
Spec. Cond.	1550	uS	06/24/2021	BRT/ML	
Dissolved Oxygen	0.400	ppm	06/24/2021	BRT/ML	
Oxidation Reduction Potential	74.0	mv	06/24/2021	BRT/ML	SM2580
Temp	24.03	С	06/24/2021	BRT/ML	
Turbidity	58.7	NTU	06/24/2021	BRT/ML	
Depth	8.01	Feet	07/21/2021	BRTAYLOR	
Elevation	74.69	Feet	07/21/2021	BRTAYLOR	
Aluminum	7.9	mg/L	07/09/2021	SJHATCHE	EPA 6020B
Potassium	0.65	mg/L	07/09/2021	SJHATCHE	EPA 6020B
Magnesium	7.6	mg/L	07/09/2021	SJHATCHE	EPA 6020B
Sodium	60.8	mg/L	07/09/2021	SJHATCHE	EPA 6020B

Comments:

Independent Laboratory Results: "GEL" - GEL Laboratories LLC - Lab ID# 10120; "Test America" - TestAmerica Laboratories, Inc. - Lab ID# 98001; "DavisBrown"- Davis & Brown Lab ID# 21117; "Shealy"- Shealy Environmental Services, Inc.- Lab ID# 32010 "ROGERSCALLCO"-Rogers & Callcot, Inc.- Lab ID# 23105001

SANTEE COOPER ANALYTICAL SERVICES CERTIFICATE OF ANALYSIS

LAB CERTIFICATION #08552

Sample # AE94847 Location: GW Well CAP-9 Date: 02/02/2021 Sample Collector: MDG/DEW

Loc. Code CAP-9 Time: 13:39

Analysis	Result	Units	Test Date	Analyst	Method
Arsenic	5.7	ug/L	02/15/2021	SJHATCHE	EPA 6020B
Arsenic Dissolved	6.2	ug/L	02/12/2021	SJHATCHE	EPA 6020B
Barium	41.2	ug/L	02/15/2021	SJHATCHE	EPA 6020B
Beryllium	16.0	ug/L	02/15/2021	SJHATCHE	EPA 6020B
Calcium	485	mg/L	02/18/2021	SJHATCHE	EPA 6020B
Cadmium	<0.50	ug/L	02/15/2021	SJHATCHE	EPA 6020B
Cobalt	36.0	ug/L	02/15/2021	SJHATCHE	EPA 6020B
Chromium	<5.0	ug/L	02/15/2021	SJHATCHE	EPA 6020B
Iron	85400	ug/L	02/18/2021	SJHATCHE	EPA 6020B
Mercury	<0.20	ug/L	02/12/2021	ROGERSNCALLC	EPA 7470
Lithium	71	ug/L	02/09/2021	ROGERSNCALLC	EPA 6010D
Molybdenum	<10	ug/L	02/09/2021	ROGERSNCALLC	EPA 6010D
Lead	15.4	ug/L	02/15/2021	SJHATCHE	EPA 6020B
Antimony	<5.0	ug/L	02/15/2021	SJHATCHE	EPA 6020B
Selenium	<10.0	ug/L	02/15/2021	SJHATCHE	EPA 6020B
Thallium	<1.0	ug/L	02/15/2021	SJHATCHE	EPA 6020B
Radium 226	0.402	pCi/L	03/05/2021	GEL	EPA 903.1 Mod
Radium 228	1.92	pCi/L	03/01/2021	GEL	EPA 904.0
Radium 226/228 Combined Calculation	2.33	pCi/L	03/08/2021	GEL	EPA 903.1 Mod
Chloride	1040	mg/L	02/05/2021	KCWELLS	EPA 300.0
Fluoride	3.91	mg/L	02/05/2021	KCWELLS	EPA 300.0
Sulfate	565	mg/L	02/05/2021	KCWELLS	EPA 300.0
Total Dissolved Solids	2944	mg/L	02/08/2021	KCWELLS	SM 2540C
рН	3.33	SU	02/02/2021	DEW/MDG	
Spec. Cond.	4440	uS	02/02/2021	DEW/MDG	
Dissolved Oxygen	2.05	ppm	02/02/2021	DEW/MDG	
Oxidation Reduction Potential	333	mv	02/02/2021	DEW/MDG	SM2580
Temp	17.49	С	02/02/2021	DEW/MDG	
Turbidity	0	NTU	02/02/2021	DEW/MDG	
Depth	14.02	Feet	02/02/2021	DEW/MDG	
Elevation	77.57	Feet	02/12/2021	DEWEST	
Aluminum	20.0	mg/L	02/15/2021	SJHATCHE	EPA 6020B
Potassium	6.8	mg/L	02/15/2021	SJHATCHE	EPA 6020B
Magnesium	53.6	mg/L	02/18/2021	SJHATCHE	EPA 6020B
Sodium	135	mg/L	02/15/2021	SJHATCHE	EPA 6020B

Comments:

Independent Laboratory Results: "GEL" - GEL Laboratories LLC - Lab ID# 10120; "Test America" - TestAmerica Laboratories, Inc. - Lab ID# 98001; "DavisBrown"- Davis & Brown Lab ID# 21117; "Shealy"- Shealy Environmental Services, Inc.- Lab ID# 32010 "ROGERSCALLCO"-Rogers & Callcot, Inc.- Lab ID# 23105001

Sample # AE94848 Location: GW Well CAP-9 Date: 02/02/2021 Sample Collector: MDG/DEW

Loc. Code CAP-9 Time: 13:44

	DUP		11111e. 10. 11		
Analysis	Result	Units	Test Date	Analyst	Method
Arsen	ic 5.5	ug/L	02/15/2021	SJHATCHE	EPA 6020B
Arsenic Dissolve	ed 6.1	ug/L	02/12/2021	SJHATCHE	EPA 6020B
Bariu	m 48.3	ug/L	02/15/2021	SJHATCHE	EPA 6020B
Berylliu	m 15.1	ug/L	02/15/2021	SJHATCHE	EPA 6020B
Calciu	m 498	mg/L	02/18/2021	SJHATCHE	EPA 6020B
Cadmiu	m <0.50	ug/L	02/15/2021	SJHATCHE	EPA 6020B
Coba	alt 36.1	ug/L	02/15/2021	SJHATCHE	EPA 6020B
Chromiu	m <5.0	ug/L	02/15/2021	SJHATCHE	EPA 6020B
Iro	n 80700	ug/L	02/18/2021	SJHATCHE	EPA 6020B
Mercu	ry <0.20	ug/L	02/12/2021	ROGERSNCALLC	EPA 7470
Lithiu	m 70	ug/L	02/09/2021	ROGERSNCALLC	EPA 6010D
Molybdenu	m <10	ug/L	02/09/2021	ROGERSNCALLC	EPA 6010D
Lea	id 14.8	ug/L	02/15/2021	SJHATCHE	EPA 6020B
Antimor	y <5.0	ug/L	02/15/2021	SJHATCHE	EPA 6020B
Seleniu	m <10.0	ug/L	02/15/2021	SJHATCHE	EPA 6020B
Thalliu	m <1.0	ug/L	02/15/2021	SJHATCHE	EPA 6020B
Radium 22	26 1.16	pCi/L	03/05/2021	GEL	EPA 903.1 Mod
Radium 22	2.72	pCi/L	03/01/2021	GEL	EPA 904.0
Radium 226/228 Combine Calculatio		pCi/L	03/08/2021	GEL	EPA 903.1 Mod
Chlorio	le 1050	mg/L	02/05/2021	KCWELLS	EPA 300.0
Fluorio	le 3.84	mg/L	02/05/2021	KCWELLS	EPA 300.0
Sulfa	te 562	mg/L	02/05/2021	KCWELLS	EPA 300.0
Total Dissolved Solid	ls 2814	mg/L	02/08/2021	KCWELLS	SM 2540C
Aluminu	m 19.7	mg/L	02/15/2021	SJHATCHE	EPA 6020B
Potassiu	m 7.0	mg/L	02/15/2021	SJHATCHE	EPA 6020B
Magnesiu	m 53.0	mg/L	02/18/2021	SJHATCHE	EPA 6020B
Sodiu	m 134	mg/L	02/15/2021	SJHATCHE	EPA 6020B

Comments:

Independent Laboratory Results: "GEL" - GEL Laboratories LLC - Lab ID# 10120; "Test America" - TestAmerica Laboratories, Inc. - Lab ID# 98001; "Davis Brown"- Davis & Brown Lab ID# 21117; "Shealy"- Shealy Environmental Services, Inc.- Lab ID# 32010 "ROGERSCALLCO"-Rogers & Callcot, Inc.- Lab ID# 23105001

Sample # AF07252 Location: GW Well CAP-9 Date: 06/29/2021 Sample Collector: BRT/CWS

Loc. Code CAP-9 **Time**: 14:00

Analysis	Result	Units	Test Date	Analyst	Method
Arsenic	6.7	ug/L	07/09/2021	SJHATCHE	EPA 6020B
Arsenic Dissolved	6.1	ug/L	07/06/2021	SJHATCHE	EPA 6020B
Barium	40.4	ug/L	07/09/2021	SJHATCHE	EPA 6020B
Beryllium	13.7	ug/L	07/09/2021	SJHATCHE	EPA 6020B
Boron	7300	ug/L	07/14/2021	R&C	EPA 6010D
Calcium	496	mg/L	07/09/2021	SJHATCHE	EPA 6020B
Cadmium	<0.50	ug/L	07/09/2021	SJHATCHE	EPA 6020B
Cobalt	39.0	ug/L	07/09/2021	SJHATCHE	EPA 6020B
Chromium	<5.0	ug/L	07/09/2021	SJHATCHE	EPA 6020B
Iron	92300	ug/L	07/09/2021	SJHATCHE	EPA 6020B
Mercury	<0.2	ug/L	07/16/2021	R&C	EPA 7470
Lithium	63.0	ug/L	07/14/2021	R&C	EPA 6010D
Lead	11.9	ug/L	07/09/2021	SJHATCHE	EPA 6020B
Radium 226	0.752	pCi/L	07/22/2021	GEL	EPA 903.1 Mod
Radium 228	2.56	pCi/L	07/20/2021	GEL	EPA 904.0
Radium 226/228 Combined Calculation	3.32	pCi/L	07/26/2021	GEL	EPA 903.1 Mod
Chloride	1125	mg/L	07/08/2021	KCWELLS	EPA 300.0
Fluoride	3.56	mg/L	07/08/2021	KCWELLS	EPA 300.0
Sulfate	625	mg/L	07/08/2021	KCWELLS	EPA 300.0
Total Dissolved Solids	3132	mg/L	07/07/2021	SJBROWN	SM 2540C
pН	3.81	SU	06/29/2021	BRT/CWS	
Spec. Cond.	4230	uS	06/29/2021	BRT/CWS	
Dissolved Oxygen	0.460	ppm	06/29/2021	BRT/CWS	
Oxidation Reduction Potential	259	mv	06/29/2021	BRT/CWS	SM2580
Temp	24.46	С	06/29/2021	BRT/CWS	
Turbidity	2.60	NTU	06/29/2021	BRT/CWS	
Depth	15.54	Feet	06/29/2021	BRT/CWS	
Elevation	76.05	Feet	07/14/2021	BRTAYLOR	
Aluminum	21.2	mg/L	07/09/2021	SJHATCHE	EPA 6020B
Potassium	6.6	mg/L	07/09/2021	SJHATCHE	EPA 6020B
Magnesium	53.0	mg/L	07/09/2021	SJHATCHE	EPA 6020B
Sodium	141	mg/L	07/09/2021	SJHATCHE	EPA 6020B

Comments:

Independent Laboratory Results: "GEL" - GEL Laboratories LLC - Lab ID# 10120; "Test America" - TestAmerica Laboratories, Inc. - Lab ID# 98001; "DavisBrown"- Davis & Brown Lab ID# 21117; "Shealy"- Shealy Environmental Services, Inc.- Lab ID# 32010 "ROGERSCALLCO"-Rogers & Callcot, Inc.- Lab ID# 23105001

Sample # AF07253 Location: GW Well CAP-9 Date: 06/29/2021 Sample Collector: BRT/CWS

Loc. Code CAP-9 Time: 14:05

<u>D</u>	UP				
Analysis	Result	Units	Test Date	Analyst	Method
Arsenic	6.7	ug/L	07/09/2021	SJHATCHE	EPA 6020B
Arsenic Dissolved	6.5	ug/L	07/06/2021	SJHATCHE	EPA 6020B
Barium	43.7	ug/L	07/09/2021	SJHATCHE	EPA 6020B
Beryllium	13.6	ug/L	07/09/2021	SJHATCHE	EPA 6020B
Boron	6800	ug/L	07/14/2021	R&C	EPA 6010D
Calcium	511	mg/L	07/09/2021	SJHATCHE	EPA 6020B
Cadmium	<0.50	ug/L	07/09/2021	SJHATCHE	EPA 6020B
Cobalt	39.3	ug/L	07/09/2021	SJHATCHE	EPA 6020B
Chromium	<5.0	ug/L	07/09/2021	SJHATCHE	EPA 6020B
Iron	91000	ug/L	07/09/2021	SJHATCHE	EPA 6020B
Mercury	<0.2	ug/L	07/16/2021	R&C	EPA 7470
Lithium	67.0	ug/L	07/14/2021	R&C	EPA 6010D
Lead	12.2	ug/L	07/09/2021	SJHATCHE	EPA 6020B
Radium 226	0.572	pCi/L	07/22/2021	GEL	EPA 903.1 Mod
Radium 228	2.78	pCi/L	07/20/2021	GEL	EPA 904.0
Radium 226/228 Combined Calculation	3.35	pCi/L	07/26/2021	GEL	EPA 903.1 Mod
Chloride	1437	mg/L	07/08/2021	KCWELLS	EPA 300.0
Fluoride	4.09	mg/L	07/12/2021	KCWELLS	EPA 300.0
Sulfate	761	mg/L	07/08/2021	KCWELLS	EPA 300.0
Total Dissolved Solids	3284	mg/L	07/07/2021	SJBROWN	SM 2540C
Aluminum	20.9	mg/L	07/09/2021	SJHATCHE	EPA 6020B
Potassium	6.6	mg/L	07/09/2021	SJHATCHE	EPA 6020B
Magnesium	53.6	mg/L	07/09/2021	SJHATCHE	EPA 6020B
Sodium	139	mg/L	07/09/2021	SJHATCHE	EPA 6020B

Comments:

Independent Laboratory Results: "GEL" - GEL Laboratories LLC - Lab ID# 10120; "Test America" - TestAmerica Laboratories, Inc. - Lab ID# 98001; "DavisBrown"- Davis & Brown Lab ID# 21117; "Shealy"- Shealy Environmental Services, Inc.- Lab ID# 32010 "ROGERSCALLCO"-Rogers & Callcot, Inc.- Lab ID# 23105001

SANTEE COOPER ANALYTICAL SERVICES CERTIFICATE OF ANALYSIS LAB CERTIFICATION #08552

Sample # AE94841 Location: GW Well CAP- 3 Date: 02/03/2021 Sample Collector: MDG/DEW

Loc. Code CAP-3 Time: 13:49

Analysis	Result	Units	Test Date	Analyst	Method
Arsenic	<5.0	ug/L	02/15/2021	SJHATCHE	EPA 6020B
Arsenic Dissolved	<5.0	ug/L	02/12/2021	SJHATCHE	EPA 6020B
Barium	64.2	ug/L	02/15/2021	SJHATCHE	EPA 6020B
Beryllium	<0.50	ug/L	02/15/2021	SJHATCHE	EPA 6020B
Calcium	677	mg/L	02/15/2021	SJHATCHE	EPA 6020B
Cadmium	<0.50	ug/L	02/15/2021	SJHATCHE	EPA 6020B
Cobalt	32.8	ug/L	02/15/2021	SJHATCHE	EPA 6020B
Chromium	<5.0	ug/L	02/15/2021	SJHATCHE	EPA 6020B
Iron	1640	ug/L	02/15/2021	SJHATCHE	EPA 6020B
Mercury	<0.20	ug/L	02/12/2021	ROGERSNCALLC	EPA 7470
Lithium	15	ug/L	02/09/2021	ROGERSNCALLC	EPA 6010D
Molybdenum	<10	ug/L	02/09/2021	ROGERSNCALLC	EPA 6010D
Lead	<1.0	ug/L	02/15/2021	SJHATCHE	EPA 6020B
Antimony	<5.0	ug/L	02/15/2021	SJHATCHE	EPA 6020B
Selenium	<10.0	ug/L	02/15/2021	SJHATCHE	EPA 6020B
Thallium	<1.0	ug/L	02/15/2021	SJHATCHE	EPA 6020B
Radium 226	0.714	pCi/L	03/05/2021	GEL	EPA 903.1 Mod
Radium 228	1.58	pCi/L	03/01/2021	GEL	EPA 904.0
Radium 226/228 Combined Calculation	2.29	pCi/L	03/08/2021	GEL	EPA 903.1 Mod
Chloride	700	mg/L	02/05/2021	KCWELLS	EPA 300.0
Fluoride	<0.10	mg/L	02/10/2021	KCWELLS	EPA 300.0
Sulfate	999	mg/L	02/05/2021	KCWELLS	EPA 300.0
Total Dissolved Solids	3391	mg/L	02/09/2021	COAMESWA	SM 2540C
рН	6.34	SU	02/03/2021	DEW/MDG	
Spec. Cond.	4180	uS	02/03/2021	DEW/MDG	
Dissolved Oxygen	0.680	ppm	02/03/2021	DEW/MDG	
Oxidation Reduction Potential	49.0	mv	02/03/2021	DEW/MDG	SM2580
Temp	18.22	С	02/03/2021	DEW/MDG	
Turbidity	0	NTU	02/03/2021	DEW/MDG	
Depth	14.93	Feet	02/03/2021	DEW/MDG	
Elevation	76.56	Feet	02/12/2021	DEWEST	
Aluminum	<0.50	mg/L	02/15/2021	SJHATCHE	EPA 6020B
Potassium	4.7	mg/L	02/15/2021	SJHATCHE	EPA 6020B
Magnesium	70.7	mg/L	02/15/2021	SJHATCHE	EPA 6020B
Sodium	105	mg/L	02/15/2021	SJHATCHE	EPA 6020B

Comments:

Independent Laboratory Results: "GEL" - GEL Laboratories LLC - Lab ID# 10120; "Test America" - TestAmerica Laboratories, Inc. - Lab ID# 98001; "DavisBrown"- Davis & Brown Lab ID# 21117; "Shealy"- Shealy Environmental Services, Inc.- Lab ID# 32010 "ROGERSCALLCO"-Rogers & Callcot, Inc.- Lab ID# 23105001

Sample # AF07246 Location: GW Well CAP- 3 Date: 06/29/2021 Sample Collector: BRT/CWS

Loc. Code CAP-3 Time: 10:44

Analysis	Result	Units	Test Date	Analyst	Method
Arsenic	<5.0	ug/L	07/09/2021	SJHATCHE	EPA 6020B
Arsenic Dissolved	<5.0	ug/L	07/06/2021	SJHATCHE	EPA 6020B
Barium	85.0	ug/L	07/09/2021	SJHATCHE	EPA 6020B
Beryllium	<0.50	ug/L	07/09/2021	SJHATCHE	EPA 6020B
Boron	6300.0	ug/L	07/14/2021	R&C	EPA 6010D
Calcium	612	mg/L	07/09/2021	SJHATCHE	EPA 6020B
Cadmium	<0.50	ug/L	07/09/2021	SJHATCHE	EPA 6020B
Cobalt	28.9	ug/L	07/09/2021	SJHATCHE	EPA 6020B
Chromium	<5.0	ug/L	07/09/2021	SJHATCHE	EPA 6020B
Iron	1660	ug/L	07/09/2021	SJHATCHE	EPA 6020B
Mercury	<0.2	ug/L	07/16/2021	R&C	EPA 7470
Lithium	11.0	ug/L	07/14/2021	R&C	EPA 6010D
Lead	<1.0	ug/L	07/09/2021	SJHATCHE	EPA 6020B
Radium 226	0.413	pCi/L	07/22/2021	GEL	EPA 903.1 Mod
Radium 228	1.38	pCi/L	07/20/2021	GEL	EPA 904.0
Radium 226/228 Combined Calculation	1.79	pCi/L	07/26/2021	GEL	EPA 903.1 Mod
Chloride	608	mg/L	07/08/2021	KCWELLS	EPA 300.0
Fluoride	<0.10	mg/L	07/08/2021	KCWELLS	EPA 300.0
Sulfate	804	mg/L	07/08/2021	KCWELLS	EPA 300.0
Total Dissolved Solids	3121	mg/L	07/07/2021	SJBROWN	SM 2540C
рН	6.31	SU	06/29/2021	BRT/CWS	
Spec. Cond.	3290	uS	06/29/2021	BRT/CWS	
Dissolved Oxygen	0.480	ppm	06/29/2021	BRT/CWS	
Oxidation Reduction Potential	86.0	mv	06/29/2021	BRT/CWS	SM2580
Temp	24.59	С	06/29/2021	BRT/CWS	
Turbidity	2.60	NTU	06/29/2021	BRT/CWS	
Depth	16.28	Feet	06/29/2021	BRT/CWS	
Elevation	75.21	Feet	07/14/2021	BRTAYLOR	
Aluminum	<0.10	mg/L	07/09/2021	SJHATCHE	EPA 6020B
Potassium	3.8	mg/L	07/09/2021	SJHATCHE	EPA 6020B
Magnesium	57.9	mg/L	07/09/2021	SJHATCHE	EPA 6020B
Sodium	87.4	mg/L	07/09/2021	SJHATCHE	EPA 6020B

Comments:

Independent Laboratory Results: "GEL" - GEL Laboratories LLC - Lab ID# 10120; "Test America" - TestAmerica Laboratories, Inc. - Lab ID# 98001; "DavisBrown"- Davis & Brown Lab ID# 21117; "Shealy"- Shealy Environmental Services, Inc.- Lab ID# 32010 "ROGERSCALLCO"-Rogers & Callcot, Inc.- Lab ID# 23105001

SANTEE COOPER ANALYTICAL SERVICES CERTIFICATE OF ANALYSIS LAB CERTIFICATION #08552

Sample # AE94843 Location: GW Well CAP-5 Date: 02/03/2021 Sample Collector: MDG/DEW

Loc. Code CAP-5 Time: 12:48

Analysis	Result	Units	Test Date	Analyst	Method
Arsenic	<5.0	ug/L	02/15/2021	SJHATCHE	EPA 6020B
Arsenic Dissolved	<5.0	ug/L	02/12/2021	SJHATCHE	EPA 6020B
Barium	1480	ug/L	02/15/2021	SJHATCHE	EPA 6020B
Beryllium	5.0	ug/L	02/15/2021	SJHATCHE	EPA 6020B
Calcium	153	mg/L	02/15/2021	SJHATCHE	EPA 6020B
Cadmium	<0.50	ug/L	02/15/2021	SJHATCHE	EPA 6020B
Cobalt	14.7	ug/L	02/15/2021	SJHATCHE	EPA 6020B
Chromium	<5.0	ug/L	02/15/2021	SJHATCHE	EPA 6020B
Iron	118000	ug/L	02/15/2021	SJHATCHE	EPA 6020B
Mercury	<0.20	ug/L	02/12/2021	ROGERSNCALLC	EPA 7470
Lithium	16	ug/L	02/09/2021	ROGERSNCALLC	EPA 6010D
Molybdenum	<10	ug/L	02/09/2021	ROGERSNCALLC	EPA 6010D
Lead	6.1	ug/L	02/15/2021	SJHATCHE	EPA 6020B
Antimony	<5.0	ug/L	02/15/2021	SJHATCHE	EPA 6020B
Selenium	<10.0	ug/L	02/15/2021	SJHATCHE	EPA 6020B
Thallium	<1.0	ug/L	02/15/2021	SJHATCHE	EPA 6020B
Radium 226	6.31	pCi/L	03/05/2021	GEL	EPA 903.1 Mod
Radium 228	15.0	pCi/L	03/03/2021	GEL	EPA 904.0
Radium 226/228 Combined Calculation	21.3	pCi/L	03/08/2021	GEL	EPA 903.1 Mod
Chloride	609	mg/L	02/05/2021	KCWELLS	EPA 300.0
Fluoride	0.75	mg/L	02/05/2021	KCWELLS	EPA 300.0
Sulfate	<2.0	mg/L	02/05/2021	KCWELLS	EPA 300.0
Total Dissolved Solids	1179	mg/L	02/08/2021	KCWELLS	SM 2540C
рН	3.68	SU	02/03/2021	DEW/MDG	
Spec. Cond.	2080	uS	02/03/2021	DEW/MDG	
Dissolved Oxygen	0.590	ppm	02/03/2021	DEW/MDG	
Oxidation Reduction Potential	312	mv	02/03/2021	DEW/MDG	SM2580
Temp	18.56	С	02/03/2021	DEW/MDG	
Turbidity	0	NTU	02/03/2021	DEW/MDG	
Depth	14.67	Feet	02/03/2021	DEW/MDG	
Elevation	77.11	Feet	02/12/2021	DEWEST	
Aluminum	6.2	mg/L	02/15/2021	SJHATCHE	EPA 6020B
Potassium	0.85	mg/L	02/15/2021	SJHATCHE	EPA 6020B
Magnesium	3.9	mg/L	02/15/2021	SJHATCHE	EPA 6020B
Sodium	82.7	mg/L	02/17/2021	SJHATCHE	EPA 6020B

Comments:

Independent Laboratory Results: "GEL" - GEL Laboratories LLC - Lab ID# 10120; "Test America" - TestAmerica Laboratories, Inc. - Lab ID# 98001; "DavisBrown"- Davis & Brown Lab ID# 21117; "Shealy"- Shealy Environmental Services, Inc.- Lab ID# 32010 "ROGERSCALLCO"-Rogers & Callcot, Inc.- Lab ID# 23105001

Sample # AF07248 Location: GW Well CAP-5 Date: 06/29/2021 Sample Collector: BRT/CWS

Loc. Code CAP-5 **Time**: 11:50

Analysis	Result	Units	Test Date	Analyst	Method
Arsenic	<5.0	ug/L	07/09/2021	SJHATCHE	EPA 6020B
Arsenic Dissolved	<5.0	ug/L	07/06/2021	SJHATCHE	EPA 6020B
Barium	1660	ug/L	07/09/2021	SJHATCHE	EPA 6020B
Beryllium	4.3	ug/L	07/09/2021	SJHATCHE	EPA 6020B
Boron	<40	ug/L	07/14/2021	R&C	EPA 6010D
Calcium	154	mg/L	07/09/2021	SJHATCHE	EPA 6020B
Cadmium	<0.50	ug/L	07/09/2021	SJHATCHE	EPA 6020B
Cobalt	14.8	ug/L	07/09/2021	SJHATCHE	EPA 6020B
Chromium	<5.0	ug/L	07/09/2021	SJHATCHE	EPA 6020B
Iron	129000	ug/L	07/09/2021	SJHATCHE	EPA 6020B
Mercury	<0.2	ug/L	07/16/2021	R&C	EPA 7470
Lithium	13.0	ug/L	07/14/2021	R&C	EPA 6010D
Lead	7.3	ug/L	07/09/2021	SJHATCHE	EPA 6020B
Radium 226	5.16	pCi/L	07/22/2021	GEL	EPA 903.1 Mod
Radium 228	11.6	pCi/L	07/23/2021	GEL	EPA 904.0
Radium 226/228 Combined Calculation	16.8	pCi/L	07/26/2021	GEL	EPA 903.1 Mod
Chloride	696	mg/L	07/08/2021	KCWELLS	EPA 300.0
Fluoride	0.52	mg/L	07/08/2021	KCWELLS	EPA 300.0
Sulfate	<2.0	mg/L	07/08/2021	KCWELLS	EPA 300.0
Total Dissolved Solids	1475	mg/L	07/07/2021	SJBROWN	SM 2540C
рН	3.86	SU	06/29/2021	BRT/CWS	
Spec. Cond.	2010	uS	06/29/2021	BRT/CWS	
Dissolved Oxygen	0.410	ppm	06/29/2021	BRT/CWS	
Oxidation Reduction Potential	116	mv	06/29/2021	BRT/CWS	SM2580
Temp	24.02	С	06/29/2021	BRT/CWS	
Turbidity	0	NTU	06/29/2021	BRT/CWS	
Depth	17.78	Feet	06/29/2021	BRT/CWS	
Elevation	74.00	Feet	07/14/2021	BRTAYLOR	
Aluminum	6.1	mg/L	07/09/2021	SJHATCHE	EPA 6020B
Potassium	0.76	mg/L	07/09/2021	SJHATCHE	EPA 6020B
Magnesium	3.9	mg/L	07/09/2021	SJHATCHE	EPA 6020B
Sodium	88.5	mg/L	07/09/2021	SJHATCHE	EPA 6020B

Comments:

Independent Laboratory Results: "GEL" - GEL Laboratories LLC - Lab ID# 10120; "Test America" - TestAmerica Laboratories, Inc. - Lab ID# 98001; "Davis Brown"- Davis & Brown Lab ID# 21117; "Shealy"- Shealy Environmental Services, Inc.- Lab ID# 32010 "ROGERSCALLCO"-Rogers & Callcot, Inc.- Lab ID# 23105001

SANTEE COOPER ANALYTICAL SERVICES CERTIFICATE OF ANALYSIS

LAB CERTIFICATION #08552

Sample # AE94845 Location: GW Well CAP-7 Date: 02/03/2021 Sample Collector: MDG/DEW

Loc. Code CAP-7 Time: 11:15

Analysis	Result	Units	Test Date	Analyst	Method
Arsenic	<5.0	ug/L	02/15/2021	SJHATCHE	EPA 6020B
Arsenic Dissolved	<5.0	ug/L	02/12/2021	SJHATCHE	EPA 6020B
Barium	38.0	ug/L	02/15/2021	SJHATCHE	EPA 6020B
Beryllium	<0.50	ug/L	02/15/2021	SJHATCHE	EPA 6020B
Calcium	1060	mg/L	02/15/2021	SJHATCHE	EPA 6020B
Cadmium	<0.50	ug/L	02/15/2021	SJHATCHE	EPA 6020B
Cobalt	10.2	ug/L	02/15/2021	SJHATCHE	EPA 6020B
Chromium	<5.0	ug/L	02/15/2021	SJHATCHE	EPA 6020B
Iron	230000	ug/L	02/15/2021	SJHATCHE	EPA 6020B
Mercury	<0.20	ug/L	02/12/2021	ROGERSNCALLC	EPA 7470
Lithium	<10	ug/L	02/09/2021	ROGERSNCALLC	EPA 6010D
Molybdenum	<10	ug/L	02/09/2021	ROGERSNCALLC	EPA 6010D
Lead	<1.0	ug/L	02/15/2021	SJHATCHE	EPA 6020B
Antimony	<5.0	ug/L	02/15/2021	SJHATCHE	EPA 6020B
Selenium	<10.0	ug/L	02/15/2021	SJHATCHE	EPA 6020B
Thallium	<1.0	ug/L	02/15/2021	SJHATCHE	EPA 6020B
Radium 226	1.27	pCi/L	03/05/2021	GEL	EPA 903.1 Mod
Radium 228	2.59	pCi/L	03/01/2021	GEL	EPA 904.0
Radium 226/228 Combined Calculation	3.86	pCi/L	03/08/2021	GEL	EPA 903.1 Mod
Chloride	2210	mg/L	02/05/2021	KCWELLS	EPA 300.0
Fluoride	<0.10	mg/L	02/05/2021	KCWELLS	EPA 300.0
Sulfate	1620	mg/L	02/05/2021	KCWELLS	EPA 300.0
Total Dissolved Solids	6105	mg/L	02/08/2021	KCWELLS	SM 2540C
рН	5.46	SU	02/03/2021	DEW/MDG	
Spec. Cond.	8580	uS	02/03/2021	DEW/MDG	
Dissolved Oxygen	0.870	ppm	02/03/2021	DEW/MDG	
Oxidation Reduction Potential	78.0	mv	02/03/2021	DEW/MDG	SM2580
Temp	18.96	С	02/03/2021	DEW/MDG	
Turbidity	1.00	NTU	02/03/2021	DEW/MDG	
Depth	14.44	Feet	02/03/2021	DEW/MDG	
Elevation	77.20	Feet	02/12/2021	DEWEST	
Aluminum	0.21	mg/L	02/15/2021	SJHATCHE	EPA 6020B
Potassium	17.2	mg/L	02/15/2021	SJHATCHE	EPA 6020B
Magnesium	306	mg/L	02/15/2021	SJHATCHE	EPA 6020B
Sodium	172	mg/L	02/15/2021	SJHATCHE	EPA 6020B

Comments:

Independent Laboratory Results: "GEL" - GEL Laboratories LLC - Lab ID# 10120; "Test America" - TestAmerica Laboratories, Inc. - Lab ID# 98001; "DavisBrown"- Davis & Brown Lab ID# 21117; "Shealy"- Shealy Environmental Services, Inc.- Lab ID# 32010 "ROGERSCALLCO"-Rogers & Callcot, Inc.- Lab ID# 23105001

Sample # AF07250 Location: GW Well CAP-7 Date: 06/30/2021 Sample Collector: BRT/MDG

Loc. Code CAP-7 Time: 10:23

Analysis	Result	Units	Test Date	Analyst	Method
Arsenic	<5.0	ug/L	07/09/2021	SJHATCHE	EPA 6020B
Arsenic Dissolved	<5.0	ug/L	07/06/2021	SJHATCHE	EPA 6020B
Barium	41.3	ug/L	07/09/2021	SJHATCHE	EPA 6020B
Beryllium	<0.50	ug/L	07/09/2021	SJHATCHE	EPA 6020B
Boron	29000	ug/L	07/16/2021	R&C	EPA 6010D
Calcium	1150	mg/L	07/09/2021	SJHATCHE	EPA 6020B
Cadmium	<0.50	ug/L	07/09/2021	SJHATCHE	EPA 6020B
Cobalt	9.6	ug/L	07/09/2021	SJHATCHE	EPA 6020B
Chromium	<5.0	ug/L	07/09/2021	SJHATCHE	EPA 6020B
Iron	210000	ug/L	07/09/2021	SJHATCHE	EPA 6020B
Mercury	<0.2	ug/L	07/16/2021	R&C	EPA 7470
Lithium	<10	ug/L	07/14/2021	R&C	EPA 6010D
Lead	<1.0	ug/L	07/09/2021	SJHATCHE	EPA 6020B
Radium 226	0.509	pCi/L	07/22/2021	GEL	EPA 903.1 Mod
Radium 228	1.14	pCi/L	07/20/2021	GEL	EPA 904.0
Radium 226/228 Combined Calculation	1.65	pCi/L	07/26/2021	GEL	EPA 903.1 Mod
Chloride	2905	mg/L	07/08/2021	KCWELLS	EPA 300.0
Fluoride	<0.10	mg/L	07/08/2021	KCWELLS	EPA 300.0
Sulfate	1851	mg/L	07/08/2021	KCWELLS	EPA 300.0
Total Dissolved Solids	7198	mg/L	07/12/2021	SJBROWN	SM 2540C
рН	5.51	SU	06/30/2021	MDG/BRT	
Spec. Cond.	8740	uS	06/30/2021	MDG/BRT	
Dissolved Oxygen	0.360	ppm	06/30/2021	MDG/BRT	
Oxidation Reduction Potential	73.0	mv	06/30/2021	MDG/BRT	SM2580
Temp	25.66	С	06/30/2021	MDG/BRT	
Turbidity	0	NTU	06/30/2021	MDG/BRT	
Depth	16.60	Feet	06/30/2021	MDG/BRT	
Elevation	75.04	Feet	07/14/2021	BRTAYLOR	
Aluminum	<0.10	mg/L	07/09/2021	SJHATCHE	EPA 6020B
Potassium	17.6	mg/L	07/09/2021	SJHATCHE	EPA 6020B
Magnesium	332	mg/L	07/09/2021	SJHATCHE	EPA 6020B
Sodium	184	mg/L	07/09/2021	SJHATCHE	EPA 6020B

Comments:

Independent Laboratory Results: "GEL" - GEL Laboratories LLC - Lab ID# 10120; "Test America" - TestAmerica Laboratories, Inc. - Lab ID# 98001; "DavisBrown"- Davis & Brown Lab ID# 21117; "Shealy"- Shealy Environmental Services, Inc.- Lab ID# 32010 "ROGERSCALLCO"-Rogers & Callcot, Inc.- Lab ID# 23105001

SANTEE COOPER ANALYTICAL SERVICES

CERTIFICATE OF ANALYSIS

LAB CERTIFICATION #08552

Sample # AE94857 Location: GW Well CCMAP-3 Date: 02/10/2021 Sample Collector: MDG/DEW

Loc. Code CCMAP-3 Time: 16:09

Analysis	Result	Units	Test Date	Analyst	Method
Beryllium	<0.50	ug/L	02/19/2021	SJHATCHE	EPA 6020B
Cobalt	<0.50	ug/L	02/19/2021	SJHATCHE	EPA 6020B
Lithium	15.0	ug/L	12/30/1999	R&C	EPA 6010D
pН	6.58	SU	02/11/2021	DEW/MDG	
Spec. Cond.	4240	uS	02/11/2021	DEW/MDG	
Dissolved Oxygen	0.660	ppm	02/11/2021	DEW/MDG	
Oxidation Reduction Potential	-9.00	mv	02/11/2021	DEW/MDG	SM2580
Temp	19.33	С	02/11/2021	DEW/MDG	
Turbidity	0	NTU	02/11/2021	DEW/MDG	
Depth	5.89	Feet	02/11/2021	DEW/MDG	
Elevation	76.02	Feet	02/12/2021	DEWEST	

Comments:

Independent Laboratory Results: "GEL" - GEL Laboratories LLC - Lab ID# 10120; "Test America" - TestAmerica Laboratories, Inc. - Lab ID# 98001; "DavisBrown"- Davis & Brown Lab ID# 21117; "Shealy"- Shealy Environmental Services, Inc.- Lab ID# 32010 "ROGERSCALLCO"-Rogers & Callcot, Inc.- Lab ID# 23105001

SANTEE COOPER ANALYTICAL SERVICES

CERTIFICATE OF ANALYSIS

LAB CERTIFICATION #08552

Sample # AE94858 Location: GW Well CCMAP-3 Date: 02/10/2021 Sample Collector: MDG/DEW

Loc. Code CCMAP-3 DUP Time: 16:14

Analysis	Result	Units	Test Date	Analyst	Method
Beryllium	<0.50	ug/L	02/19/2021	SJHATCHE	EPA 6020B
Cobalt	<0.50	ug/L	02/19/2021	SJHATCHE	EPA 6020B
Lithium	16.0	ug/L	12/30/1999	R&C	EPA 6010D

Comments:

Independent Laboratory Results: "GEL" - GEL Laboratories LLC - Lab ID# 10120; "Test America" - TestAmerica Laboratories, Inc. - Lab ID# 98001; "DavisBrown"- Davis & Brown Lab ID# 21117; "Shealy"- Shealy Environmental Services, Inc.- Lab ID# 32010 "ROGERSCALLCO"-Rogers & Callcot, Inc.- Lab ID# 23105001

SANTEE COOPER ANALYTICAL SERVICES CERTIFICATE OF ANALYSIS LAB CERTIFICATION #08552

Sample # AF07264 Location: GW Well CCMAP-3 Date: 07/01/2021 Sample Collector: BRT/ATH

Loc. Code CCMAP-3 Time: 11:37

- Analysis	Result	Units	Test Date	Analyst	Method
Beryllium	<0.50	ug/L	07/29/2021	SJHATCHE	EPA 6020B
Cobalt	<0.50	ug/L	07/29/2021	SJHATCHE	EPA 6020B
Lithium	25.0	ug/L	07/14/2021	R&C	EPA 6010D
Radium 226	1.57	pCi/L	07/22/2021	GEL	EPA 903.1 Mod
Radium 228	0.509	pCi/L	07/20/2021	GEL	EPA 904.0
Radium 226/228 Combined Calculation	2.08	pCi/L	07/26/2021	GEL	EPA 903.1 Mod
рН	6.42	SU	07/01/2021	BRT/ATH	
Spec. Cond.	5660	uS	07/01/2021	BRT/ATH	
Dissolved Oxygen	0.390	ppm	07/01/2021	BRT/ATH	
Oxidation Reduction Potential	-8.00	mv	07/01/2021	BRT/ATH	SM2580
Temp	26.72	С	07/01/2021	BRT/ATH	
Turbidity	2.70	NTU	07/01/2021	BRT/ATH	
Depth	8.02	Feet	07/01/2021	BRT/ATH	
Elevation	73.89	Feet	07/14/2021	BRTAYLOR	

Comments:

Independent Laboratory Results: "GEL" - GEL Laboratories LLC - Lab ID # 10120; "Test America" - Test America Laboratories, Inc. - Lab ID# 98001; "Davis Brown" - Davis & Brown Lab ID # 21117; "Shealy" - Shealy Environmental Services, Inc. - Lab ID# 32010 "ROGERSCALLCO" - Rogers & Callcot, Inc. - Lab ID # 23105001

BRT/ATH

SANTEE COOPER ANALYTICAL SERVICES CERTIFICATE OF ANALYSIS LAB CERTIFICATION #08552

Sample # AF07265 Location: GW Well CCMAP-3 Date: 07/01/2021 Sample Collector:

Loc. Code CCMAP-3 Time: 11:42

	DOP					
Analysis	Result	Units	Test Date	Analyst	Method	
Beryllium	<0.50	ug/L	07/29/2021	SJHATCHE	EPA 6020B	
Cobalt	<0.50	ug/L	07/29/2021	SJHATCHE	EPA 6020B	
Lithium	26.0	ug/L	07/14/2021	R&C	EPA 6010D	
Radium 226	0.939	pCi/L	07/22/2021	GEL	EPA 903.1 Mod	
Radium 228	0.954	pCi/L	07/20/2021	GEL	EPA 904.0	
Radium 226/228 Combined Calculation	1.89	pCi/L	07/26/2021	GEL	EPA 903.1 Mod	

Comments:

Independent Laboratory Results: "GEL" - GEL Laboratories LLC - Lab ID# 10120; "Test America" - TestAmerica Laboratories, Inc. - Lab ID# 98001; "DavisBrown"- Davis & Brown Lab ID# 21117; "Shealy"- Shealy Environmental Services, Inc.- Lab ID# 32010 "ROGERSCALLCO"-Rogers & Callcot, Inc.- Lab ID# 23105001

SANTEE COOPER ANALYTICAL SERVICES

CERTIFICATE OF ANALYSIS

LAB CERTIFICATION #08552

Sample # AE94855 Location: GW Well CCMAP-1 Date: 02/11/2021 Sample Collector: MDG/DEW

Loc. Code CCMAP-1 Time: 12:28

Analysis	Result	Units	Test Date	Analyst	Method
Beryllium	<0.50	ug/L	02/19/2021	SJHATCHE	EPA 6020B
Cobalt	<0.50	ug/L	02/19/2021	SJHATCHE	EPA 6020B
Lithium	<10	ug/L	12/30/1999	R&C	EPA 6010D
pН	7.11	SU	02/11/2021	DEW/MDG	
Spec. Cond.	280	uS	02/11/2021	DEW/MDG	
Dissolved Oxygen	1.17	ppm	02/11/2021	DEW/MDG	
Oxidation Reduction Potential	115	mv	02/11/2021	DEW/MDG	SM2580
Temp	18.80	С	02/11/2021	DEW/MDG	
Turbidity	0	NTU	02/11/2021	DEW/MDG	
Depth	4.34	Feet	02/11/2021	DEW/MDG	
Elevation	75.87	Feet	02/12/2021	DEWEST	

Comments:

Independent Laboratory Results: "GEL" - GEL Laboratories LLC - Lab ID# 10120; "Test America" - TestAmerica Laboratories, Inc. - Lab ID# 98001; "DavisBrown"- Davis & Brown Lab ID# 21117; "Shealy"- Shealy Environmental Services, Inc.- Lab ID# 32010 "ROGERSCALLCO"-Rogers & Callcot, Inc.- Lab ID# 23105001

SANTEE COOPER ANALYTICAL SERVICES CERTIFICATE OF ANALYSIS

LAB CERTIFICATION #08552

Sample # AF07262 Location: GW Well CCMAP-1 Date: 07/01/2021 Sample Collector: BRT/ATH

Loc. Code CCMAP-1 Time: 13:47

Analysis	Result	Units	Test Date	Analyst	Method
Beryllium	<0.50	ug/L	07/29/2021	SJHATCHE	EPA 6020B
Cobalt	0.82	ug/L	07/29/2021	SJHATCHE	EPA 6020B
Lithium	<10	ug/L	07/14/2021	R&C	EPA 6010D
Radium 226	0.310	pCi/L	07/22/2021	GEL	EPA 903.1 Mod
Radium 228	-0.0249	pCi/L	07/20/2021	GEL	EPA 904.0
Radium 226/228 Combined Calculation	0.310	pCi/L	07/26/2021	GEL	EPA 903.1 Mod
рН	7.18	SU	07/01/2021	BRT/ATH	
Spec. Cond.	307	uS	07/01/2021	BRT/ATH	
Dissolved Oxygen	0.510	ppm	07/01/2021	BRT/ATH	
Oxidation Reduction Potential	-134	mv	07/01/2021	BRT/ATH	SM2580
Temp	27.84	С	07/01/2021	BRT/ATH	
Turbidity	0.900	NTU	07/01/2021	BRT/ATH	
Depth	6.89	Feet	07/01/2021	BRT/ATH	
Elevation	73.32	Feet	07/14/2021	BRTAYLOR	

Comments:

Independent Laboratory Results: "GEL" - GEL Laboratories LLC - Lab ID# 10120; "Test America" - TestAmerica Laboratories, Inc. - Lab ID# 98001; "DavisBrown"- Davis & Brown Lab ID# 21117; "Shealy"- Shealy Environmental Services, Inc.- Lab ID# 32010 "ROGERSCALLCO"-Rogers & Callcot, Inc.- Lab ID# 23105001

SANTEE COOPER ANALYTICAL SERVICES CERTIFICATE OF ANALYSIS

LAB CERTIFICATION #08552

Sample # AE94856 Location: GW Well CCMAP-2 Date: 02/11/2021 Sample Collector: MDG/DEW

Loc. Code CCMAP-2 Time: 13:14

Analysis	Result	Units	Test Date	Analyst	Method
Beryllium	<0.50	ug/L	02/19/2021	SJHATCHE	EPA 6020B
Cobalt	<0.50	ug/L	02/19/2021	SJHATCHE	EPA 6020B
Lithium	<10	ug/L	12/30/1999	R&C	EPA 6010D
рН	5.17	SU	02/11/2021	DEW/MDG	
Spec. Cond.	42.0	uS	02/11/2021	DEW/MDG	
Dissolved Oxygen	1.66	ppm	02/11/2021	DEW/MDG	
Oxidation Reduction Potential	140	mv	02/11/2021	DEW/MDG	SM2580
Temp	17.93	С	02/11/2021	DEW/MDG	
Turbidity	0	NTU	02/11/2021	DEW/MDG	
Depth	6.50	Feet	02/11/2021	DEW/MDG	
Elevation	74.74	Feet	02/12/2021	DEWEST	

Comments:

Independent Laboratory Results: "GEL" - GEL Laboratories LLC - Lab ID# 10120; "Test America" - TestAmerica Laboratories, Inc. - Lab ID# 98001; "DavisBrown"- Davis & Brown Lab ID# 21117; "Shealy"- Shealy Environmental Services, Inc.- Lab ID# 32010 "ROGERSCALLCO"-Rogers & Callcot, Inc.- Lab ID# 23105001

SANTEE COOPER ANALYTICAL SERVICES CERTIFICATE OF ANALYSIS LAB CERTIFICATION #08552

Sample # AF07263 Location: GW Well CCMAP-2 Date: 07/01/2021 Sample Collector: BRT/ATH

Loc. Code CCMAP-2 Time: 12:46

Analysis	Result	Units	Test Date	Analyst	Method
Beryllium	<0.50	ug/L	07/29/2021	SJHATCHE	EPA 6020B
Cobalt	1.5	ug/L	07/29/2021	SJHATCHE	EPA 6020B
Lithium	<10	ug/L	07/14/2021	R&C	EPA 6010D
Radium 226	0.391	pCi/L	07/22/2021	GEL	EPA 903.1 Mod
Radium 228	0.238	pCi/L	07/20/2021	GEL	EPA 904.0
Radium 226/228 Combined Calculation	0.628	pCi/L	07/26/2021	GEL	EPA 903.1 Mod
рН	5.66	SU	07/01/2021	BRT/ATH	
Spec. Cond.	49.0	uS	07/01/2021	BRT/ATH	
Dissolved Oxygen	0.510	ppm	07/01/2021	BRT/ATH	
Oxidation Reduction Potential	87.0	mv	07/01/2021	BRT/ATH	SM2580
Temp	23.97	С	07/01/2021	BRT/ATH	
Turbidity	0.900	NTU	07/01/2021	BRT/ATH	
Depth	7.72	Feet	07/01/2021	BRT/ATH	
Elevation	73.52	Feet	07/14/2021	BRTAYLOR	

Comments:

Independent Laboratory Results: "GEL" - GEL Laboratories LLC - Lab ID# 10120; "Test America" - TestAmerica Laboratories, Inc. - Lab ID# 98001; "DavisBrown"- Davis & Brown Lab ID# 21117; "Shealy"- Shealy Environmental Services, Inc.- Lab ID# 32010 "ROGERSCALLCO"-Rogers & Callcot, Inc.- Lab ID# 23105001

SANTEE COOPER ANALYTICAL SERVICES

CERTIFICATE OF ANALYSIS

LAB CERTIFICATION #08552

Sample # AF00697 Location: GW Well CCMAP-4 Date: 04/08/2021 Sample Collector: DEW/MDG

Loc. Code CCMAP-4 Time: 10:32

Analysis	Result	Units	Test Date	Analyst	Method
Beryllium	<0.50	ug/L	04/26/2021	SJHATCHE	EPA 6020B
Cobalt	10.0	ug/L	04/26/2021	SJHATCHE	EPA 6020B
Lithium	<10	ug/L	04/16/2021	ROGERSNCALLC	EPA 6010D
рН	6.19	SU	04/08/2021	DEW/MDG	
Spec. Cond.	541	uS	04/08/2021	DEW/MDG	
Dissolved Oxygen	0.570	ppm	04/08/2021	DEW/MDG	
Oxidation Reduction Potential	-13.0	mv	04/08/2021	DEW/MDG	SM2580
Temp	21.39	С	04/08/2021	DEW/MDG	
Turbidity	0	NTU	04/08/2021	DEW/MDG	
Depth	5.31	Feet	04/08/2021	DEW/MDG	
Elevation	76.52	Feet	04/22/2021	DEWEST	

Comments:

Independent Laboratory Results: "GEL" - GEL Laboratories LLC - Lab ID# 10120; "Test America" - TestAmerica Laboratories, Inc. - Lab ID# 98001; "DavisBrown"- Davis & Brown Lab ID# 21117; "Shealy"- Shealy Environmental Services, Inc.- Lab ID# 32010 "ROGERSCALLCO"-Rogers & Callcot, Inc.- Lab ID# 23105001

SANTEE COOPER ANALYTICAL SERVICES

CERTIFICATE OF ANALYSIS

LAB CERTIFICATION #08552

Sample # AF00698 Location: GW Well CCMAP-4 Date: 04/08/2021 Sample Collector: DEW/MDG

Loc. Code CCMAP-4 DUP Time: 10:37

Analysis	Result	Units	Test Date	Analyst	Method
Beryllium	<0.50	ug/L	04/26/2021	SJHATCHE	EPA 6020B
Cobalt	9.9	ug/L	04/26/2021	SJHATCHE	EPA 6020B
Lithium	<10	ug/L	04/16/2021	ROGERSNCALLC	EPA 6010D

Comments:

Independent Laboratory Results: "GEL" - GEL Laboratories LLC - Lab ID# 10120; "Test America" - TestAmerica Laboratories, Inc. - Lab ID# 98001; "DavisBrown"- Davis & Brown Lab ID# 21117; "Shealy"- Shealy Environmental Services, Inc.- Lab ID# 32010 "ROGERSCALLCO"-Rogers & Callcot, Inc.- Lab ID# 23105001

SANTEE COOPER ANALYTICAL SERVICES CERTIFICATE OF ANALYSIS

LAB CERTIFICATION #08552

Sample # AF07266 Location: GW Well CCMAP-4 Date: 07/01/2021 Sample Collector: BRT/ATH

Loc. Code CCMAP-4 Time: 10:24

Analysis	Result	Units	Test Date	Analyst	Method
Beryllium	<0.50	ug/L	07/29/2021	SJHATCHE	EPA 6020B
Cobalt	5.44	ug/L	07/29/2021	SJHATCHE	EPA 6020B
Lithium	<10	ug/L	07/14/2021	R&C	EPA 6010D
Radium 226	0.521	pCi/L	07/22/2021	GEL	EPA 903.1 Mod
Radium 228	-0.820	pCi/L	07/20/2021	GEL	EPA 904.0
Radium 226/228 Combined Calculation	0.521	pCi/L	07/26/2021	GEL	EPA 903.1 Mod
рН	6.48	SU	07/01/2021	BRT/ATH	
Spec. Cond.	581	uS	07/01/2021	BRT/ATH	
Dissolved Oxygen	0.540	ppm	07/01/2021	BRT/ATH	
Oxidation Reduction Potential	-44.0	mv	07/01/2021	BRT/ATH	SM2580
Temp	22.01	С	07/01/2021	BRT/ATH	
Turbidity	4.10	NTU	07/01/2021	BRT/ATH	
Depth	7.87	Feet	07/01/2021	BRT/ATH	
Elevation	73.96	Feet	07/14/2021	BRTAYLOR	

Comments:

Independent Laboratory Results: "GEL" - GEL Laboratories LLC - Lab ID# 10120; "Test America" - TestAmerica Laboratories, Inc. - Lab ID# 98001; "DavisBrown"- Davis & Brown Lab ID# 21117; "Shealy"- Shealy Environmental Services, Inc.- Lab ID# 32010 "ROGERSCALLCO"-Rogers & Callcot, Inc.- Lab ID# 23105001

Laboratory Services

Laboratory Report

Client Santee Cooper

Linda Williams 1 Riverwood Dr.

Moncks Corner, SC 29461

Ground Water Project: Work Order: 1020352

Received: 02/04/2021 10:45

Dear Client:

Rogers and Callcott appreciates the opportunity to be of service to you. The attached laboratory services report includes analytical results and chain of custody for samples that were received on February 04, 2021. Rogers and Callcott maintains a formal QA/QC program. Unless otherwise noted, all analyses performed under NELAP certification have complied with all the requirements for the TNI standard. The analyses met the QA/QC confidence interval for each test method unless otherwise qualified. Estimated uncertainty is available upon request.

Privileged / Confidential information may be contained in this report and is intended only for the use of the addressee. If you are not the addressee, or the person responsible for delivering to the person addressed, you may not copy or deliver this message to anyone else. If you receive this message by mistake, please notify Rogers and Callcott immediately.

We strive to provide excellent service to our clients. Please contact Lauren Hollister, your Project Manager, at lhollister@rcenviro.com, (864)-232-1556 if you have any questions about this report.

CC: Jeanette Gilmetti, Sherri Brown, Courtney Ames Watkins

Lauren Hollister

Report Approved By:

Lauren Hollister Project Manager

an employee-owned company

South Carolina Greenville Laboratory Identification 23105 South Carolina Columbia Laboratory Identification 40572 North Carolina Laboratory Certification Number 27 North Carolina Drinking Water Lab Number 45710 NELAP Utah Certificate Number SC000042014-1 Georgia Drinking Water Lab ID 880

Client Santee Cooper

Certificate of Analysis

Linda Williams
1 Riverwood Dr.

Moncks Corner, SC 29461

Project: Ground Water
Work Order: 1020352

Received: 02/04/2021 10:45

Sample Number	Sample Description	Matrix	Sampled	Type
1020352-01	AE94877 POZ-7	Ground Water	01/28/21 09:15	Grab
1020352-02	AE94878 POZ-7 Dup	Ground Water	01/28/21 09:20	Grab
1020352-03	AE94876 POZ-6	Ground Water	01/28/21 14:34	Grab
1020352-04	AE94874 POZ-4	Ground Water	01/28/21 11:43	Grab
1020352-05	AE94869 CLFIB-4	Ground Water	01/27/21 09:18	Grab
1020352-06	AE94870 CLFIB-5	Ground Water	01/27/21 10:21	Grab
1020352-07	AE94871 CLFIB-5D	Ground Water	01/27/21 11:17	Grab
1020352-08	AE94875 POZ-5D	Ground Water	01/27/21 12:23	Grab
1020352-09	AE94873 POZ-3	Ground Water	01/27/21 13:21	Grab
1020352-10	AE94872 PM-1	Ground Water	01/26/21 09:27	Grab
1020352-11	AE94854 CBW-1	Ground Water	01/26/21 10:39	Grab
1020352-12	AE94865 CLFIB-1	Ground Water	01/26/21 12:01	Grab
1020352-13	AE94866 CLFIB-1 Dup	Ground Water	01/26/21 12:06	Grab
1020352-14	AE94867 CLFIB-2	Ground Water	01/26/21 13:06	Grab
1020352-15	AE94868 CLFIB-3	Ground Water	01/26/21 13:58	Grab

PO Box 5655 | Greenville, SC 29606 | 426 Fairforest Way | Greenville, SC 29607 | main 864.232.1556 | fax 864.232.6140 rogersandcallcott.com

Santee Cooper Project: Ground Water
1 Riverwood Dr. Work Order: 1020352
Moncks Corner, SC 29461 Reported: 02/11/21 16:21

Sample Data

Sample Number

1020352-01

Sample Description

AE94877 POZ-7 collected on 01/28/21 09:15

Parameter	Result	Reporting Limit	Units	DF	Analyzed	Method	Flag	Analyst	Batch
Total Metals									
Mercury	ND	0.20	ug/L	1.00	02/09/21 10:28	EPA 7470A		MLR	B1B0412
Boron	ND	15	ug/L	1.00	02/09/21 18:02	EPA 6010D		MLR	B1B0278
Lithium	ND	10	ug/L	1.00	02/05/21 17:09	EPA 6010D		MLR	B1B0278
Molybdenum	ND	10	ug/L	1.00	02/05/21 17:09	EPA 6010D		MLR	B1B0278

Sample Number

1020352-02

Sample Description AE94878 POZ-7 Dup collected on 01/28/21 09:20

Parameter	Result	Reporting Limit	Units	DF	Analyzed	Method	Flag	Analyst	Batch
1 unimeter	Result	Limit		Dr Analyzeu		Wethou	76	2 Allany St	Daten
Total Metals									
Mercury	ND	0.20	ug/L	1.00	02/09/21 10:40	EPA 7470A		MLR	B1B0412
Boron	ND	15	ug/L	1.00	02/09/21 18:06	EPA 6010D		MLR	B1B0278
Lithium	ND	10	ug/L	1.00	02/05/21 17:12	EPA 6010D		MLR	B1B0278
Molybdenum	ND	10	ug/L	1.00	02/05/21 17:12	EPA 6010D		MLR	B1B0278

Sample Number

1020352-03

Sample Description

AE94876 POZ-6 collected on 01/28/21 14:34

Parameter	Result	Reporting Limit	Units	DF	Analyzed	Method	Flag	Analyst	Batch
Total Metals									
Mercury	ND	0.20	ug/L	1.00	02/09/21 10:42	EPA 7470A		MLR	B1B0412
Boron	44	15	ug/L	1.00	02/09/21 18:10	EPA 6010D		MLR	B1B0278
Lithium	ND	10	ug/L	1.00	02/05/21 17:16	EPA 6010D		MLR	B1B0278
Molybdenum	ND	10	ug/L	1.00	02/05/21 17:16	EPA 6010D		MLR	B1B0278

Sample Number

1020352-04

Sample Description

AE94874 POZ-4 collected on 01/28/21 11:43

Parameter	Result	Reporting Limit	Units	DF	Analyzed	Method	Flag	Analyst	Batch
Total Metals									
Mercury	ND	0.20	ug/L	1.00	02/09/21 10:45	EPA 7470A		MLR	B1B0412
Boron	ND	15	ug/L	1.00	02/10/21 13:59	EPA 6010D		MLR	B1B0474
Lithium	ND	10	ug/L	1.00	02/05/21 16:30	EPA 6010D		MLR	B1B0278
Molybdenum	ND	10	ug/L	1.00	02/05/21 16:30	EPA 6010D		MLR	B1B0278

PO Box 5655 | Greenville, SC 29606 | 426 Fairforest Way | Greenville, SC 29607 | main 864.232.1556 | fax 864.232.6140 rogersandcallcott.com

an employee-owned company

Santee Cooper 1 Riverwood Dr.

Work Order: 1020352 Moncks Corner, SC 29461 Reported: 02/11/21 16:21

Ground Water

Project:

1020352-05 Sample Number

Sample Description AE94869 CLFIB-4 collected on 01/27/21 09:18

Sample Description	AL 74007 CEI ID-4 conceied of	11 01/2//21 07.1	o							
Parameter	Resul	Reporting t Limit	Units	DF	Analyzed	Method	Flag	Analyst	Batch	
Total Metals										
Boron	17	15	ug/L	1.00	02/09/21 18:14	EPA 6010D		MLR	B1B0278	
Sample Number Sample Description	1020352-06 AE94870 CLFIB-5 collected or	n 01/27/21 10:2	1							
Parameter	Resul	Reporting t Limit	Units	DF	Analyzed	Method	Flag	Analyst	Batch	
Total Metals										
Boron	19	15	ug/L	1.00	02/09/21 18:18	EPA 6010D		MLR	B1B0278	
Sample Number Sample Description	1020352-07 AE94871 CLFIB-5D collected	1020352-07 AE94871 CLFIB-5D collected on 01/27/21 11:17								
Parameter	Resul	Reporting t Limit	Units	DF	Analyzed	Method	Flag	Analyst	Batch	
Total Metals										
Boron	ND	15	ug/L	1.00	02/09/21 18:21	EPA 6010D		MLR	B1B0278	
Sample Number Sample Description	1020352-08 AE94875 POZ-5D collected on	ı 01/27/21 12:23	3							
Parameter	Resul	Reporting t Limit	Units	DF	Analyzed	Method	Flag	Analyst	Batch	
Total Metals										
Boron	260	15	ug/L	1.00	02/09/21 18:25	EPA 6010D		MLR	B1B0278	
Sample Number Sample Description	1020352-09 AE94873 POZ-3 collected on 0	01/27/21 13:21								
Parameter	Resul	Reporting t Limit	Units	DF	Analyzed	Method	Flag	Analyst	Batch	
Total Metals										
Boron	ND	15	ug/L	1.00	02/09/21 18:29	EPA 6010D		MLR	B1B0278	

PO Box 5655 | Greenville, SC 29606 | 426 Fairforest Way | Greenville, SC 29607 | main 864.232.1556 | fax 864.232.6140 rogersandcallcott.com

Santee Cooper 1 Riverwood Dr. Moncks Corner, SC 29461 Project:

Ground Water

Work Order: Reported: 1020352 02/11/21 16:21

Sample Number

1020352-10

Sample Description

AE94872 PM-1 collected on 01/26/21 09:27

Parameter	Resu	Reporting It Limit	Units	DF	Analyzed	Method	Flag	Analyst	Batch
Total Metals									
Mercury	ND	0.20	ug/L	1.00	02/09/21 10:54	EPA 7470A		MLR	B1B0412
Boron	ND	15	ug/L	1.00	02/09/21 18:33	EPA 6010D		MLR	B1B0278
Lithium	ND	10	ug/L	1.00	02/05/21 17:51	EPA 6010D		MLR	B1B0278
Molybdenum	ND	10	ug/L	1.00	02/05/21 17:51	EPA 6010D		MLR	B1B0278
Sample Number Sample Description	1020352-11 AE94854 CBW-1 collected on	01/26/21 10:39)						
Parameter	Resu	Reporting It Limit	Units	DF	Analyzed	Method	Flag	Analyst	Batch
Total Metals									
Mercury	ND	0.20	ug/L	1.00	02/09/21 10:56	EPA 7470A		MLR	B1B0412
Boron	18	15	ug/L	1.00	02/10/21 13:36	EPA 6010D		MLR	B1B0474
Lithium	ND	10	ug/L	1.00	02/05/21 16:49	EPA 6010D		MLR	B1B0278
Molybdenum	ND	10	ug/L	1.00	02/05/21 16:49	EPA 6010D		MLR	B1B0278
Sample Number Sample Description	1020352-12 AE94865 CLFIB-1 collected o	n 01/26/21 12:0	D1						
Parameter	Resu	Reporting It Limit	Units	DF	Analyzed	Method	Flag	Analyst	Batch
Total Metals									
Boron	ND	15	ug/L	1.00	02/09/21 18:48	EPA 6010D		MLR	B1B0278
Sample Number Sample Description	1020352-13 AE94866 CLFIB-1 Dup collec	ted on 01/26/21	1 12:06						
Parameter	Resu	Reporting It Limit	Units	DF	Analyzed	Method	Flag	Analyst	Batch
Total Metals									
Boron	ND	15	ug/L	1.00	02/09/21 18:52	EPA 6010D		MLR	B1B0278
Sample Number Sample Description	1020352-14 AE94867 CLFIB-2 collected o	n 01/26/21 13:0	06						
Parameter	Resu	Reporting It Limit	Units	DF	Analyzed	Method	Flag	Analyst	Batch
Total Metals									
Boron	17	15	ug/L	1.00	02/09/21 18:56	EPA 6010D		MLR	B1B0278

PO Box 5655 | Greenville, SC 29606 | 426 Fairforest Way | Greenville, SC 29607 | main 864.232.1556 | fax 864.232.6140 | rogersandcallcott.com

an employee-owned company

Santee Cooper Project: Ground Water
1 Riverwood Dr. Work Order: 1020352
Moncks Corner, SC 29461 Reported: 02/11/21 16:21

Sample Number 1020352-15

Sample Description AE94868 CLFIB-3 collected on 01/26/21 13:58

Parameter	Result	Reporting Limit	Units	DF	Analyzed	Method	Flag	Analyst	Batch
Total Metals									
Boron	34	15	ug/L	1.00	02/09/21 19:00	EPA 6010D		MLR	B1B0278

Santee Cooper Project: Ground Water
1 Riverwood Dr. Work Order: 1020352
Moncks Corner, SC 29461 Reported: 02/11/21 16:21

Total Metals **Quality Control Summary**

		Reporting		Spike	Source		%REC		RPD	
Parameter	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Flags
Batch B1B0278 - EPA 3005A										
Blank (B1B0278-BLK1)										
Boron	ND	15	ug/L							
Lithium	ND	10	ug/L							
Molybdenum	ND	10	ug/L							
LCS (B1B0278-BS1)										
Boron	260	15	ug/L	250		103	80-120			
Lithium	261	10	ug/L	250		104	80-120			
Molybdenum	250	10	ug/L	250		102	80-120			
LCS Dup (B1B0278-BSD1)										
Boron	260	15	ug/L	250		102	80-120	0.2	20	
Lithium	262	10	ug/L	250		105	80-120	0.3	20	
Molybdenum	250	10	ug/L	250		102	80-120	0.001	20	
Matrix Spike (B1B0278-MS1)	Source: 1020352-04	ļ.								
Lithium	278	10	ug/L	250	ND	108	75-125			
Molybdenum	250	10	ug/L	250	ND	100	75-125			
Matrix Spike (B1B0278-MS2)	Source: 1020352-11									
Lithium	255	10	ug/L	250	ND	102	75-125			
Molybdenum	250	10	ug/L	250	ND	100	75-125			
Matrix Spike (B1B0278-MS3)	Source: 1020352-04	RE1								
Boron	270	30	ug/L	250	ND	107	75-125			
Matrix Spike (B1B0278-MS4)	Source: 1020352-11	RE1								
Boron	270	30	ug/L	250	ND	110	75-125			
Matrix Spike Dup (B1B0278-MSD1)	Source: 1020352-04	Į.								
Lithium	271	10	ug/L	250	ND	105	75-125	2	20	
Molybdenum	250	10	ug/L	250	ND	99	75-125	0.7	20	
Matrix Spike Dup (B1B0278-MSD2)	Source: 1020352-11									
Lithium	253	10	ug/L	250	ND	101	75-125	0.6	20	
Molybdenum	250	10	ug/L	250	ND	99	75-125	1	20	

PO Box 5655 | Greenville, SC 29606 | 426 Fairforest Way | Greenville, SC 29607 | main 864.232.1556 | fax 864.232.6140 | rogersandcallcott.com

Santee CooperProject:Ground Water1 Riverwood Dr.Work Order:1020352Moncks Corner, SC 29461Reported:02/11/21 16:21

Total Metals **Quality Control Summary**

Parameter	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Flags
Batch B1B0278 - EPA 3005A										
Matrix Spike Dup (B1B0278-MSD3)	Source: 1020352-04	4RE1								
Boron	270	30	ug/L	250	ND	106	75-125	0.9	20	
Matrix Spike Dup (B1B0278-MSD4)	Source: 1020352-11	IRE1								
Boron	280	30	ug/L	250	ND	111	75-125	0.9	20	
Post Spike (B1B0278-PS1)	Source: 1020352-04	1								
Lithium	0.521		mg/L	0.500	ND	103	75-125			
Molybdenum	0.51		mg/L	0.500	ND	102	75-125			
Post Spike (B1B0278-PS2)	Source: 1020352-11	l								
Lithium	0.475		mg/L	0.500	ND	95	75-125			
Molybdenum	0.51		mg/L	0.500	ND	101	75-125			
Post Spike (B1B0278-PS3)	Source: 1020352-04	IRE1								
Boron	1000	30	ug/L	1000	ND	103	75-125			
Post Spike (B1B0278-PS4)	Source: 1020352-11	IRE1								
Boron	1000	30	ug/L	1000	ND	102	75-125			
Batch B1B0412 - EPA 7470A										
Blank (B1B0412-BLK1)										
Mercury	ND	0.20	ug/L							
LCS (B1B0412-BS1)										
Mercury	4.8	0.20	ug/L	5.00		96	80-120			
LCS Dup (B1B0412-BSD1)										
Mercury	4.8	0.20	ug/L	5.00		95	80-120	0.9	20	
Matrix Spike (B1B0412-MS1)	Source: 1020352-01	1								

PO Box 5655 | Greenville, SC 29606 | 426 Fairforest Way | Greenville, SC 29607 | main 864.232.1556 | fax 864.232.6140 rogersandcallcott.com

Santee Cooper Project: Ground Water
1 Riverwood Dr. Work Order: 1020352
Moncks Corner, SC 29461 Reported: 02/11/21 16:21

Total Metals **Quality Control Summary**

Panamatan	n14	Reporting Limit	T7	Spike	Source	0/DEC	%REC	pnr	RPD	Flac-
Parameter	Result		Units	Level	Result	%REC	Limits	RPD	Limit	Flags
Batch B1B0412 - EPA 7470A										
Matrix Spike Dup (B1B0412-MSD1)	Source: 1020352-01									
Mercury	5.3	0.20	ug/L	5.00	ND	105	75-125	0.3	20	
Post Spike (B1B0412-PS1)	Source: 1020352-01									
Mercury	4.3		ug/L	4.00	ND	106	80-120			
Batch B1B0474 - EPA 3005A										
Blank (B1B0474-BLK1)										
Boron	ND	15	ug/L							
LCS (B1B0474-BS1)										
Boron	270	15	ug/L	250		107	80-120			
LCS Dup (B1B0474-BSD1)										
Boron	270	15	ug/L	250		107	80-120	0.2	20	
Matrix Spike (B1B0474-MS1)	Source: 1020352-11									
Boron	270	15	ug/L	250	18	101	75-125			
Matrix Spike Dup (B1B0474-MSD1)	Source: 1020352-11									
Boron	270	15	ug/L	250	18	99	75-125	2	20	
Post Spike (B1B0474-PS1)	Source: 1020352-11									
Boron	0.52		mg/L	0.500	ND	101	75-125			

PO Box 5655 | Greenville, SC 29606 | 426 Fairforest Way | Greenville, SC 29607 | main 864.232.1556 | fax 864.232.6140 rogersandcallcott.com

Santee CooperProject:Ground Water1 Riverwood Dr.Work Order:1020352Moncks Corner, SC 29461Reported:02/11/21 16:21

Sample Preparation Data

Parameter	Batch	Sample ID	Prepared	Analyst	
EPA 3005A ICP Digestion					
EPA 3005A	B1B0278	1020352-01	02/05/2021 09:16	MTH	
EPA 3005A	B1B0278	1020352-02	02/05/2021 09:16	MTH	
EPA 3005A	B1B0278	1020352-03	02/05/2021 09:16	MTH	
EPA 3005A	B1B0278	1020352-04	02/05/2021 09:16	MTH	
EPA 3005A	B1B0474	1020352-04	02/09/2021 14:39	MTH	
EPA 3005A	B1B0278	1020352-05	02/05/2021 09:16	MTH	
EPA 3005A	B1B0278	1020352-06	02/05/2021 09:16	MTH	
EPA 3005A	B1B0278	1020352-07	02/05/2021 09:16	MTH	
EPA 3005A	B1B0278	1020352-08	02/05/2021 09:16	MTH	
EPA 3005A	B1B0278	1020352-09	02/05/2021 09:16	MTH	
EPA 3005A	B1B0278	1020352-10	02/05/2021 09:16	MTH	
EPA 3005A	B1B0278	1020352-11	02/05/2021 09:16	MTH	
EPA 3005A	B1B0474	1020352-11	02/09/2021 14:39	MTH	
EPA 3005A	B1B0278	1020352-12	02/05/2021 09:16	MTH	
EPA 3005A	B1B0278	1020352-13	02/05/2021 09:16	MTH	
EPA 3005A	B1B0278	1020352-14	02/05/2021 09:16	MTH	
EPA 3005A	B1B0278	1020352-15	02/05/2021 09:16	MTH	
EPA 7470A Mercury Digestion					
EPA 7470A	B1B0412	1020352-01	02/08/2021 15:10	MLR	
EPA 7470A	B1B0412	1020352-02	02/08/2021 15:10	MLR	
EPA 7470A	B1B0412	1020352-03	02/08/2021 15:10	MLR	
EPA 7470A	B1B0412	1020352-04	02/08/2021 15:10	MLR	
EPA 7470A	B1B0412	1020352-10	02/08/2021 15:10	MLR	
EPA 7470A	B1B0412	1020352-11	02/08/2021 15:10	MLR	

Santee Cooper Project: Ground Water
1 Riverwood Dr. Work Order: 1020352
Moncks Corner, SC 29461 Reported: 02/11/21 16:21

Data Qualifiers and Definitions

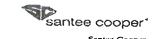
ND Analyte NOT DETECTED at or above the reporting limit

NR Not reported

RPD Relative Percent Difference

Chain of Custody

1020352



Santee Cooper One Riverwood Drive Moneks Corner, SC 29461 Phone: (843)761-8000 Ext. 5148 Fax: (843)761-4175

Custome	er Emai	il/Report Recip	ient:	Dat	e Results N	eeded i	by:		P	roject	/Task/	'Unit #:	Ren	Rerun request for any flagge					
LCWI	LLIA	@santee	cooper.co	m	_/	/		121	1567	110	102.0	7. GØI / 3	<u> ೯೭೦೦</u>	Yes	No				
															4	<u>Inalysi</u>	s Grou	up	
Labwork (Internal only)		Sample Locat Description	ion/	Collection Date	Collection Time	Sample Collector	Total # of containers	Bottle type: (Glass-G/Plactic-P)	Grab (G) or Composite (C)	Matrix(see below)	Preservative (see	Method # Reporting Misc. sam Any other	ple info		m	٦.	Mo	На	
AE949	877	POZ-7	-0	V28/2	니 0915	ATH	, ,	Þ	G	GW	2		RL 15.0	ug/L	×	X	х	X	
AE 948	3 78	102-7 DI	4P -0	2	0920				1	1			PL \$ 10.0		×	х	X	x	
AE948	7-6	POZ-6	-0	3	1434							Mo 6010 1	RLL 15.0	Mq/L	X	х	X	x	
AE948	74	POZ-4	-0'	1	1143		1			1			RLC 0.20		Х	х	X	х	
4E 94 8	69	CL=18-4	-0°	5 1/27/2	U 0918									3	Х				
4E 948	10	a.FiB-5	-01	0 1	1021										Х				
4E9487	7-1	CLFIB- 50	-0	1 1/27/21	1 1117						1				х	1			
4E 948	75	POZ-50	-04		1223										х	\top			
4E9487	-3	POZ-3	-00		1321		-								Х				
Relinquis	hed by:	Employee#	Date	Time	Receive	d by	E-	nployee	4 1			Sami	ple Receiving	(Internal U	se Onl	7)			
Sgrawu	n	3524	2/3/21	1300	Felle		E11	прюуее	*	Date		Time	1P (°C):	0.5 1	nitial:	MVA	Kin	-	
Relinquis		Employee#	Date	Time	Receive		En	nployee	#	Date		Time	rect pH: Y	es) No					
Felle	-Y		2.4.21	1045	200	228	-		ا ر	2	_	Drock	ervative Lot	#:					
Relinquisi	hed by:	Employee#	Date	Time	Receive	40	-	nployee f		7-4-2 Date	1 '	Time Time							
												Date	/Time/Init fo	r preservat	ive:				
		TALS (all)	Nut	rients	MIS	c.		Gvi	psum			Coal	Elvie	i.		evil			
□ Ag □ Al	□ Cu □ Fe	☐ Sb	+10		D BTEX	_	=1:	Wallbox			U	Itimate	Flyas Ammor		News.	Qil Oit	hant.		
□ As	□K	□ Sn	- D6	PO4	☐ Napthalen ☐ THM/HA			Gyps	um(all		1	% Moisture	LOI	.114					
ΧB	X Li	□ Sr		B.V.	□ VOC			L AIM	4			2 Ash 2 Sulfur	% Carb		100				
⊒ Ba	□ Mg		E		□ Oil & Gres □ E. Coli	15C	1	Tota	il metals		III -	J B TUs	Mineral Ana	lysis				, i	
∃ Be	□ Mn		CI	-	□ Total Colif	form		Solu	ble Mer	als	11.	Volatile Matter	Sieve						
] Ca	⋉Mo	CV	- Br		☐ Dissolved				ry (CaSt loisture		III Control	CHN er Tests:	% Meis	ture	t ian	CHL			
Cd Cd	○ Na	Zn	NO NO		☐ Dissolved : ☐ Rad 226	Fe		Sulfi			OXE	RF Scan	NPDE	S	100		100		
Co	□Ni	ЖHg		4	☐ Rad 228			Chlo			313	neness	Oil & Gr		-				
Cr	□Pb	CrVI			□ PCB		12	Partie Sulfur	cle Size		□ Par	rticulate Matter	TSS		12 0000				
		-									1000				and a				

Chain of Custody

1020352

Santee Cooper One Riverwood Drive Moneks Corner, SC 29461 Phone: (843)761-8000 Ext. 5148 Fux: (843)761-4175

Labworks ID # Comments Comm	or an	ny fla	igge	d Q
Description	No			
Description	<u>A</u> ı	nalysi	s Gro	up
Relinquished by: Employees Date Time Received by: Employees Date Time Date Time Date Time Date Time Date	m	Ĺ	γo	
Relinquished by: Employee# Date Time Received by: Employee# Date Time Date	Х	х	X	×
Relinquished by: Employee# Date Time Received by: Employee # Date Time TEMP (*C): US Interest Date Time Received by: Employee B Date Time Date/Time/Init for preservative Lot#: Preservative Lot#: Sulfur Date/Time/Init for preservative Da	Х	×	Х	X
Relinquished by: Employee# Date Time Received by: Employee # Date Time TEMP (C): US Init Relinquished by: Employee# Date Time Received by: Employee # Date Time TEMP (C): US Init Relinquished by: Employee # Date Time Received by: Employee # Date Time Temployee # Date Time Received by: Employee # Date Time Temployee # Date Time Received by: Employee # Date Time Date/Time/Init for preservative Lot#: METALS (all) Nutrients Second Secon	Х			
Relinquished by: Employee# Date Time Received by: Employee# Date Time Affire Manager Date Time Received by: Employee# Date Time Relinquished by: Employee# Date Time Received by: Employee# Date Time Relinquished by: Employee# Date Time Received by: Employee# Date Time Relinquished by: Employee# Date Time Received by: Employee# Date Time Relinquished by: Employee# Date Time Received by: Employee# Date Time Date	Х			
Relinquished by: Employee# Date Time Received by: Employee # Date Time ### Date Time Received by: Employee # Date Time ### Peell A	х			
Relinquished by: Employee# Date Time Received by: Employee # Date Time Correct pH: Yes No Preservative Lot#: METALS (all)	×			
Relinquished by: Employee# Date Time Received by: Employee # Date Time Correct pH: Yes No Preservative Lot#: METALS (all)				
Relinquished by: Employee# Date Time Received by: Employee # Date Time Correct pH: Yes No Preservative Lot#: METALS (all)				
Relinquished by: Employee# Date Time Received by: Employee # Date Time Correct pH: Yes No Preservative Lot#: METALS (all)				
Relinquished by: Employee# Date Time Received by: Employee # Date Time Correct pH: Yes No Preservative Lot#: METALS (all)				
Relinquished by: Employee# Date Time Received by: Employee # Date Time Pelley Relinquished by: Employee# Date Time Received by: Employee # Date Time Preservative Lot#: METALS (all)	e Only	1)	-	2
Relinquished by: Employee# Date Time Received by: Employee # Date Time Preservative Lot#: Relinquished by: Employee# Date Time Received by Employee # Date Time METALS (all)	itial:	MW	SX	-
Relinquished by: Employee# Date Time Received by Employee# Date Time METALS (all)				
Relinquished by: Employee# Date Time Received by Employee # Date Time METALS (all)				
METALS (all)				
□ Ag □ Cu □ Sb □ BTEX □ Se □ BTEX □ Wallboard □ Wilsture □ % Moisture □ Minoria □ Coll □ Col	ve:			
□ Ag □ Cu □ Sb □ TOC □ BTEX □ Wallboard □ Wallboard □ Wallboard □ Wallboard □ Wallboard □ White □ % Moisture □ % Moisture □ Naphalene □ THM/HAA □ VOC □ Oil & Grease □ LO □ BTUS □ BTUS □ BTUS □ BTUS □ BTUS □ Sieve □ Volatile Matter □ Volatile Volatile Volatile Matter □ Volatile Matter □ Volatile Vol		Oil		
□ As □ K □ Sn □ FPO4 □ THM/HAA □ VOC □ Oil & Grease □ Total metals □ Volatile Matter □ Volatile Matter □ Volatile Matter □ Volatile Matter □ Sieve □ Total metals □ Volatile Matter □ Volatile Volatile Matter □ Volatile	trans	_	Small	
XB XLi □ Sr □ Ba □ Mg □ Ti □ Ba □ Mg □ Ti □ Cotal Coliform Soluble Metals □ Volatile Matter Volatile Matter Volatile Matter		dole		
☐ Ba ☐ Mg ☐ Ti ☐ E. Coli ☐ Total metals ☐ Volatile Matter ☐ Volatile Matter	-	line		
U Total Coliform Soluble Mergle Volatile Matter Sieve			-	
il Be I Mn I Ti	Desir	-		
Dissolved As Other Tests:	Lisett	Oil locati		
Dissolved Fe Sulfires UXRF Scan	Mes			
□ Rad 228 □ Chlorides □ Fineness □ Grease	Han	e a c	C201.E	
PCB Particle Size Particulate Matter	COLE			
Sunur	HOLE	9		

Revised February 2018

Sample Receipt Verification

Client: Santee Cooper	Date Received:	2-	4-21		Work Order: ¹⁰²⁰³⁵²
Carrier Name: Client FedEx UP:	S US 1 10672602	Mail		Cou	rier Field Services Other:
Tracking Number:					_
Receipt Criteria		Y e s	N o	N A	Comments
Shipping container / cooler intact?		Х			Damaged Leaking Other:
Custody seals intact?				х	
COC included with samples?		Х			
COC signed when relinquished and received?		Х			
Sample bottles intact?		Х			Damaged Leaking Other:
Sample ID on COC agree with label on bottle(s)?		Х			
Date / time on COC agree with label on bottle(s)?		Х			
Number of bottles on COC agrees with number of bottle	es received?	Х			
Samples received within holding time?		Х			
Sample volume sufficient for analysis?		Х			
VOA vials free of headspace (<6mm bubble)?				х	
Samples cooled? Temp at receipt recorded on COC Temp measured with IR thermometer - SN	N: 97050067			х	Ice Cold Packs Dry Ice None
Samples requiring pH preservation at proper pH? Note: Samples for metals analysis may be preserved upon receipt i Note: Samples for O&G and VOA analysis – preservation checked		х			
Samples dechlorinated for parameters requiring chlorine the time of sample collection? Note: Chlorine checked at bench for samples requiring Bacterial, analysis.	removal at			х	
If in-hous	e preservation	used	– re	cord	Lot #
HCL	H ₃ P				
H ₂ SO ₄	NaC	Ή			
HNO ₃	Oth	er			
Comments:					
Wara non conformance issues noted at account	vinto V			Ta	
Were non-conformance issues noted at sample rece Non-Conformance issue other than noted above:	apt: Yes	or		<u>vo</u>	,
Two Comornance issue other than noted hoove.					
Davised February 2019				Co	ompleted by: KRU

Completed by:_

Page 14 of 14

Laboratory Services

Laboratory Report

Client Santee Cooper

Linda Williams 1 Riverwood Dr.

Moncks Corner, SC 29461

Ground Water **Project:** Work Order: 1020543

Received: 02/09/2021 12:30

Dear Client:

Rogers and Callcott appreciates the opportunity to be of service to you. The attached laboratory services report includes analytical results and chain of custody for samples that were received on February 09, 2021. Rogers and Callcott maintains a formal QA/QC program. Unless otherwise noted, all analyses performed under NELAP certification have complied with all the requirements for the TNI standard. The analyses met the QA/QC confidence interval for each test method unless otherwise qualified. Estimated uncertainty is available upon request.

Privileged / Confidential information may be contained in this report and is intended only for the use of the addressee. If you are not the addressee, or the person responsible for delivering to the person addressed, you may not copy or deliver this message to anyone else. If you receive this message by mistake, please notify Rogers and Callcott immediately.

We strive to provide excellent service to our clients. Please contact Lauren Hollister, your Project Manager, at lhollister@rcenviro.com, (864)-232-1556 if you have any questions about this report.

CC: Jeanette Gilmetti, Sherri Brown, Courtney Ames Watkins

Lauren Hollister

Report Approved By:

Lauren Hollister Project Manager

an employee-owned company

Page 1 of 10

South Carolina Greenville Laboratory Identification 23105

South Carolina Columbia Laboratory Identification 40572
North Carolina Laboratory Certification Number 27
North Carolina Drinking Water Lab Number 45710
NELAP Utah Certificate Number SC000042014-1
Georgia Drinking Water Lab ID 880

Client Santee Cooper Project: Ground Water
Linda Williams Work Order: 1020543

1 Riverwood Dr. **Received:** 02/09/2021 12:30 Moncks Corner, SC 29461

Sample Number	Sample Description	Matrix	Sampled	Type
1020543-01	AE94839 CAP-1	Ground Water	02/02/21 12:06	Grab
1020543-02	AE94847 CAP-9	Ground Water	02/02/21 13:39	Grab
1020543-03	AE94848 CAP-9 DUP	Ground Water	02/02/21 13:44	Grab
1020543-04	AE94845 CAP-7	Ground Water	02/03/21 11:15	Grab
1020543-05	AE94843 CAP-5	Ground Water	02/03/21 12:48	Grab
1020543-06	AE94841 CAP-3	Ground Water	02/03/21 13:49	Grab
1020543-07	AE94849 CAP-10	Ground Water	02/03/21 15:12	Grab
1020543-08	AE94846 CAP-8	Ground Water	02/04/21 10:38	Grab
1020543-09	AE94844 CAP-6	Ground Water	02/04/21 12:03	Grab
1020543-10	AE94842 CAP-4	Ground Water	02/04/21 13:20	Grab

PO Box 5655 | Greenville, SC 29606 | 426 Fairforest Way | Greenville, SC 29607 | main 864.232.1556 | fax 864.232.6140 | rogersandcallcott.com

Santee Cooper Project: Ground Water
1 Riverwood Dr. Work Order: 1020543
Moncks Corner, SC 29461 Reported: 02/16/21 16:35

Sample Data

Sample Number

1020543-01

Sample Description

AE94839 CAP-1 collected on 02/02/21 12:06

Parameter	Result	Reporting Limit	Units	DF	Analyzed	Method	Flag	Analyst	Batch
Total Metals									
Mercury	ND	0.20	ug/L	1.00	02/12/21 10:53	EPA 7470A		MLR	B1B0593
Lithium	50	10	ug/L	1.00	02/09/21 19:46	EPA 6010D		MLR	B1B0482
Molybdenum	ND	10	ug/L	1.00	02/09/21 19:46	EPA 6010D		MLR	B1B0482

Sample Number

1020543-02

Sample Description

AE94847 CAP-9 collected on 02/02/21 13:39

Parameter	Result	Reporting Limit	Units	DF	Analyzed	Method	Flag	Analyst	Batch
Total Metals									
Mercury	ND	0.20	ug/L	1.00	02/12/21 11:04	EPA 7470A		MLR	B1B0593
Lithium	71	10	ug/L	1.00	02/09/21 21:25	EPA 6010D		MLR	B1B0482
Molybdenum	ND	10	ug/L	1.00	02/09/21 21:25	EPA 6010D		MLR	B1B0482

Sample Number

1020543-03

Sample Description AE94848 CAP-9 DUP collected on 02/02/21 13:44

Parameter	Result	Reporting Limit	Units	DF	Analyzed	Method	Flag	Analyst	Batch
Total Metals									
Mercury	ND	0.20	ug/L	1.00	02/12/21 11:07	EPA 7470A		MLR	B1B0593
Lithium	70	10	ug/L	1.00	02/09/21 21:29	EPA 6010D		MLR	B1B0482
Molybdenum	ND	10	ug/L	1.00	02/09/21 21:29	EPA 6010D		MLR	B1B0482

Sample Number

1020543-04

Sample Description AE94845 CAP-7 collected on 02/03/21 11:15

Parameter	Result	Reporting Limit	Units	DF	Analyzed	Method	Flag	Analyst	Batch
Total Metals									
Mercury	ND	0.20	ug/L	1.00	02/12/21 11:09	EPA 7470A		MLR	B1B0593
Lithium	ND	10	ug/L	1.00	02/09/21 21:18	EPA 6010D		MLR	B1B0482
Molybdenum	ND	10	ug/L	1.00	02/09/21 21:18	EPA 6010D		MLR	B1B0482

PO Box 5655 | Greenville, SC 29606 | 426 Fairforest Way | Greenville, SC 29607 | main 864.232.1556 | fax 864.232.6140 rogersandcallcott.com

Santee Cooper 1 Riverwood Dr. Moncks Corner, SC 29461 Project:

Ground Water

Work Order: Reported: 1020543 02/16/21 16:35

Sample Number

1020543-05

Sample Description

AE94843 CAP-5 collected on 02/03/21 12:48

Sample Description	AE94843 CAP-5 collected on 0	2/03/21 12:48							
Parameter	Result	Reporting Limit	Units	DF	Analyzed	Method	Flag	Analyst	Batch
Total Metals									
Mercury	ND	0.20	ug/L	1.00	02/12/21 11:12	EPA 7470A		MLR	B1B0593
Lithium	16	10	ug/L	1.00	02/09/21 21:10	EPA 6010D		MLR	B1B0482
Molybdenum	ND	10	ug/L	1.00	02/09/21 21:10	EPA 6010D		MLR	B1B0482
Sample Number Sample Description	1020543-06 AE94841 CAP-3 collected on 0	2/03/21 13:49							
Parameter	Result	Reporting Limit	Units	DF	Analyzed	Method	Flag	Analyst	Batch
Total Metals									
Mercury	ND	0.20	ug/L	1.00	02/12/21 11:15	EPA 7470A		MLR	B1B0593
Lithium	15	10	ug/L	1.00	02/09/21 21:02	EPA 6010D		MLR	B1B0482
Molybdenum	ND	10	ug/L	1.00	02/09/21 21:02	EPA 6010D		MLR	B1B0482
Sample Number Sample Description	1020543-07 AE94849 CAP-10 collected on	02/03/21 15:12							
Parameter	Result	Reporting Limit	Units	DF	Analyzed	Method	Flag	Analyst	Batch
Total Metals									
Lithium	ND	10	ug/L	1.00	02/09/21 21:33	EPA 6010D		MLR	B1B0482
Sample Number Sample Description	1020543-08 AE94846 CAP-8 collected on 0	2/04/21 10:38							
Parameter	Result	Reporting Limit	Units	DF	Analyzed	Method	Flag	Analyst	Batch
Total Metals									
Lithium	70	10	ug/L	1.00	02/09/21 21:21	EPA 6010D		MLR	B1B0482
Sample Number Sample Description	1020543-09 AE94844 CAP-6 collected on 0	2/04/21 12:03							
Parameter	Result	Reporting Limit	Units	DF	Analyzed	Method	Flag	Analyst	Batch
Total Metals									
Lithium	ND	10	ug/L	1.00	02/09/21 21:14	EPA 6010D		MLR	B1B0482

PO Box 5655 | Greenville, SC 29606 | 426 Fairforest Way | Greenville, SC 29607 | main 864.232.1556 | fax 864.232.6140 rogersandcallcott.com

Santee Cooper Ground Water Project: 1 Riverwood Dr. Work Order: 1020543 Moncks Corner, SC 29461 02/16/21 16:35 Reported:

1020543-10 Sample Number

Sample Description AE94842 CAP-4 collected on 02/04/21 13:20

Parameter	Result	Reporting Limit	Units	DF	Analyzed	Method	Flag	Analyst	Batch
Total Metals									
Lithium	28	10	ug/L	1.00	02/09/21 21:06	EPA 6010D		MLR	B1B0482

 Santee Cooper
 Project:
 Ground Water

 1 Riverwood Dr.
 Work Order:
 1020543

 Moncks Corner, SC 29461
 Reported:
 02/16/21 16:35

Total Metals **Quality Control Summary**

Parameter	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Flags
Batch B1B0482 - EPA 3005A										
Blank (B1B0482-BLK1)										
Lithium	ND	10	ug/L							
Molybdenum	ND	10	ug/L							
LCS (B1B0482-BS1)										
Lithium	277	10	ug/L	250		111	80-120			
Molybdenum	250	10	ug/L	250		99	80-120			
LCS Dup (B1B0482-BSD1)										
Lithium	.275	10	ug/L	250		110	80-120	0.9	20	
Molybdenum	240	10	ug/L	250		98	80-120	0.7	20	
Matrix Spike (B1B0482-MS1)	Source: 1020543-01									
Lithium	336	10	ug/L	250	50	115	75-125			
Molybdenum	240	10	ug/L	250	ND	96	75-125			
Matrix Spike Dup (B1B0482-MSD1)	Source: 1020543-01									
Lithium	340	10	ug/L	250	50	116	75-125	1	20	
Molybdenum	250	10	ug/L	250	ND	98	75-125	2	20	
Post Spike (B1B0482-PS1)	Source: 1020543-01									
Lithium	0.585		mg/L	0.500	ND	107	75-125			
Molybdenum	0.49		mg/L	0.500	ND	97	75-125			
Batch B1B0593 - EPA 7470A										
Blank (B1B0593-BLK1)										
Mercury	ND	0.20	ug/L							
LCS (B1B0593-BS1)										
Mercury	6.0	0.20	ug/L	6.25		97	80-120			
LCS Dup (B1B0593-BSD1)										
Mercury	6.1	0.20	ug/L	6.25		97	80-120	0.3	20	

PO Box 5655 | Greenville, SC 29606 | 426 Fairforest Way | Greenville, SC 29607 | main 864.232.1556 | fax 864.232.6140 rogersandcallcott.com

 Santee Cooper
 Project:
 Ground Water

 1 Riverwood Dr.
 Work Order:
 1020543

 Moncks Corner, SC 29461
 Reported:
 02/16/21 16:35

Total Metals **Quality Control Summary**

	n	Reporting		Spike	Source	A/PEG	%REC		RPD	***
Parameter	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Flags
Batch B1B0593 - EPA 7470A										
Matrix Spike (B1B0593-MS1)	Source: 1020543-01									
Mercury	4.0	0.20	ug/L	5.00	ND	80	75-125			
Matrix Spike Dup (B1B0593-MSD1)	Source: 1020543-01									
Mercury	4.0	0.20	ug/L	5.00	ND	80	75-125	0.2	20	
Post Spike (B1B0593-PS1)	Source: 1020543-01									
Mercury	3.2		ug/L	4.00	ND	80	80-120			

Sample Preparation Data

Parameter	Batch	Sample ID	Prepared	Analyst	
EPA 3005A ICP Digestion					
EPA 3005A	B1B0482	1020543-01	02/09/2021 14:39	MTH	
EPA 3005A	B1B0482	1020543-02	02/09/2021 14:39	MTH	
EPA 3005A	B1B0482	1020543-03	02/09/2021 14:39	MTH	
EPA 3005A	B1B0482	1020543-04	02/09/2021 14:39	MTH	
EPA 3005A	B1B0482	1020543-05	02/09/2021 14:39	MTH	
EPA 3005A	B1B0482	1020543-06	02/09/2021 14:39	MTH	
EPA 3005A	B1B0482	1020543-07	02/09/2021 14:39	MTH	
EPA 3005A	B1B0482	1020543-08	02/09/2021 14:39	MTH	
EPA 3005A	B1B0482	1020543-09	02/09/2021 14:39	MTH	
EPA 3005A	B1B0482	1020543-10	02/09/2021 14:39	MTH	
EPA 7470A Mercury Digestion					
EPA 7470A	B1B0593	1020543-01	02/11/2021 17:08	MLR	
EPA 7470A	B1B0593	1020543-02	02/11/2021 17:08	MLR	
EPA 7470A	B1B0593	1020543-03	02/11/2021 17:08	MLR	
EPA 7470A	B1B0593	1020543-04	02/11/2021 17:08	MLR	
EPA 7470A	B1B0593	1020543-05	02/11/2021 17:08	MLR	
EPA 7470A	B1B0593	1020543-06	02/11/2021 17:08	MLR	

PO Box 5655 | Greenville, SC 29606 | 426 Fairforest Way | Greenville, SC 29607 | main 864.232.1556 | fax 864.232.6140 rogersandcallcott.com

Santee Cooper Project: Ground Water
1 Riverwood Dr. Work Order: 1020543
Moncks Corner, SC 29461 Reported: 02/16/21 16:35

Data Qualifiers and Definitions

ND Analyte NOT DETECTED at or above the reporting limit

NR Not reported

RPD Relative Percent Difference

Chain of Custody 1020543

Santec Cooper One Riverwood Drive Moneks Corner, SC 29461 Phone: (843)761-8000 Ext. 5148 For: (843)761-4175

stomer Email/Report Recipient: Date Results Needed by: Project/Task/Unit #: Rerun request for any flagged QC 121567 / JM02.08. GØI 1 36500 CWILLIA @santeecooper.com Yes No **Analysis Group** Comments
Method #
Reporting limit bworks ID# Sample Location/ Description iternal use ily) i ning Preservative (below) Collection Bottle type: (G/Plastic-P) Matrix(see t Α, (G) or 5 Any other notes Gab. Ξ, Ŧ w MDG Х Χ × P G GW 2 -01 2/2/21 1206 CAP -1 **:94839** Х X, 1339 - O l X. CAP-9 94847 X CAP-9 DUP X **፤**ዋ५**୫**५**୫** 1344 Χ -04 2/3/21 χ × CAP- 7 X 105 . ዓዣ 8 ፋ ፍ - 05 Y X, X. <u>-94843</u> CAP-5 1248 -06 Х χ X :94841 CAP - 3 1349 -01 GAP-10 2/3/21 Х :94849 1512 2/4/21 -0B X CAP-8 (038 **=97** 4846 **⊸** 0 9 х CAP-6 1203 **=**94 844 -10 CAP-4 74842 1320 Relinquished by: Employee# `Date Received by: Time Employee # Date Time reder Correct pH: Yes No. Brown 2/8/21 35594 13.00 Received by: 🚽 Relinquished by: . . Date Employee# - Date Time Employee # Time -Preservative Lot#: 60€У 23 Relinquished by: Time. Employee# Time Received by: Employee # Date. Date/Time/Init for preservative: ☐ METALS (all·) Gypsum Elvashet OAppronia Nutrients <u>Coal</u> MISC. 011 □ Cu ··· O St D Ultimate PWIlbord ... D BTEX las augls □ Fe ... □ Sē Gypsum(all) □ DOC ○ Napthalene ☐ % Moisture **V**□ILOI Ash
Sulfur
BTUs
CHN D THM/HAA: . □ K □-Sn U/TP/TPO4 below) 4.2 As;;. □ VOC. Ð Sr " 🛛 Li [6 Mineral] ☐ Oil & Grease ĒΤCC ≥ા ... Analysis □ E. Coli Bà 🚎 ŌΤi □Мв Dijotal metals D Soluble Metals ☐ Total Coliform (1) NO2 (1) Br Be · □ Mn O TI #□ % Moisture OpH Purity (CaSO4) (Moisture ☐ Dissolved As Other Tests: Ca □Мо $\mathbf{D}\mathbf{V}$ □ Dissolved Fe O XRF Scan 🔭 🚁 🎉 NPDES ☐ Rad 226 HGI - CON DOILOGrasse □ Rad 228 □ Fineness , D.Ni O Hg DPCB & 6 (i) Particle Size D Particulate Matter - Er (2) -□Pb □ CrVI ::

Revised February 2018

Sample Receipt Verification

Client:	Santee Cooper	Date eceived:	2/	9/21		Work Order: 1020543
Carrier Name	e: Client FedEx UPS Tracking Number: 81624067	US 1 72613	Mail		Cou	rier Field Services Other:
Receipt Cri	iteria		Y e s	N o	N A	Comments
Shipping con	tainer / cooler intact?		х			Damaged Leaking Other:
Custody seals	s intact?				х	
COC include	d with samples?		х			
COC signed	when relinquished and received?		Х			
Sample bottle	es intact?		х			Damaged Leaking Other:
Sample ID or	n COC agree with label on bottle(s)?		х			
Date / time or	n COC agree with label on bottle(s)?		х			
Number of bo	ottles on COC agrees with number of bottles rec	eived?	х			
Samples rece	ived within holding time?		х			
Sample volur	me sufficient for analysis?		х			
VOA vials fro	ee of headspace (<6mm bubble)?				х	
Samples cool	ed? Temp at receipt recorded on COC Temp measured with IR thermometer - SN: 970	50067			Х	Ice Cold Packs Dry Ice None
Note: Sample	niring pH preservation at proper pH? es for metals analysis may be preserved upon receipt in the les for O&G and VOA analysis – preservation checked at ber		х			
Samples dech the time of sa	nlorinated for parameters requiring chlorine remaining collection? Imple collection? Ine checked at bench for samples requiring Bacterial, VOA,	oval at			х	
	If in-house pre	servation	used	— re	cord	Lot#
HCL		H ₃ P				
H ₂ SO ₄ HNO ₃		NaC Oth				
Comments:	1					
Were non-ce	onformance issues noted at sample receipt?	Vec	or	. (1	Vo.	,
	nance issue other than noted above:	103	, 01		<u></u>	
Davised Fabruar	w 2010					ompleted by: KRU

Completed by:_

Page 10 of 10

Laboratory Services

Laboratory Report

Client Santee Cooper

Linda Williams 1 Riverwood Dr.

Moncks Corner, SC 29461

Ground Water **Project:** Work Order: 1020859

Received: 02/16/2021 10:20

Dear Client:

Rogers and Callcott appreciates the opportunity to be of service to you. The attached laboratory services report includes analytical results and chain of custody for samples that were received on February 16, 2021. Rogers and Callcott maintains a formal QA/QC program. Unless otherwise noted, all analyses performed under NELAP certification have complied with all the requirements for the TNI standard. The analyses met the QA/QC confidence interval for each test method unless otherwise qualified. Estimated uncertainty is available upon request.

Privileged / Confidential information may be contained in this report and is intended only for the use of the addressee. If you are not the addressee, or the person responsible for delivering to the person addressed, you may not copy or deliver this message to anyone else. If you receive this message by mistake, please notify Rogers and Callcott immediately.

We strive to provide excellent service to our clients. Please contact Lauren Hollister, your Project Manager, at lhollister@rcenviro.com, (864)-232-1556 if you have any questions about this report.

CC: Jeanette Gilmetti, Sherri Brown, Courtney Ames Watkins

Lauren Hollister

Report Approved By:

Lauren Hollister Project Manager

an employee-owned company

South Carolina Greenville Laboratory Identification 23105 South Carolina Columbia Laboratory Identification 40572 North Carolina Laboratory Certification Number 27 North Carolina Drinking Water Lab Number 45710 NELAP Utah Certificate Number SC000042014-1 Georgia Drinking Water Lab ID 880

Project: Ground Water
Work Order: 1020859

Received: 02/16/2021 10:20

Certificate of Analysis

Client Santee Cooper

Linda Williams 1 Riverwood Dr.

Moncks Corner, SC 29461

Sample Number	Sample Description	Matrix	Sampled	Type
1020859-01	AE94857 CCMAP-3	Ground Water	02/10/21 16:09	Grab
1020859-02	AE94858 CCMAP-3 DUP	Ground Water	02/10/21 16:14	Grab
1020859-03	AE94861 CGYP-1	Ground Water	02/10/21 11:16	Grab
1020859-04	AE94862 CGYP-2	Ground Water	02/10/21 12:23	Grab
1020859-05	AE94863 CGYP-2 DUP	Ground Water	02/10/21 12:28	Grab
1020859-06	AE94864 CGYP-3	Ground Water	02/10/21 13:38	Grab
1020859-07	AE94855 CCMAP-1	Ground Water	02/11/21 12:28	Grab
1020859-08	AE94856 CCMAP-2	Ground Water	02/11/21 13:14	Grab

PO Box 5655 | Greenville, SC 29606 | 426 Fairforest Way | Greenville, SC 29607 | main 864.232.1556 | fax 864.232.6140 rogersandcallcott.com

Santee Cooper 1 Riverwood Dr.

Work Order: 1020859 Moncks Corner, SC 29461 02/24/21 17:04 Reported:

Sample Data

Project:

Ground Water

Sample Number

1020859-01

Sample Description

AE94857 CCMAP-3 collected on 02/10/21 16:09

Parameter	Res	sult	Reporting Limit	Units	DF	Analyzed	Method	Flag	Analyst	Batch
Total Metals										
Lithium	1	15	10	ug/L	1.00	02/18/21 17:54	EPA 6010D		MLR	B1B0817
Sample Number Sample Description	1020859-02 AE94858 CCMAP-3 DUP cc	ollecte	d on 02/10/2	1 16:14						
Parameter	Res	sult	Reporting Limit	Units	DF	Analyzed	Method	Flag	Analyst	Batch
Total Metals										
Lithium	1	6	10	ug/L	1.00	02/18/21 19:04	EPA 6010D		MLR	B1B0817

Sample Number

1020859-03

Sample Description AE94861 CGYP-1 collected on 02/10/21 11:16

Parameter	Result	Reporting Limit	Units	DF	Analyzed	Method	Flag	Analyst	Batch
Total Metals									
Mercury	ND	0.20	ug/L	1.00	02/23/21 11:06	EPA 7470A	S 7	MLR	B1B1040
Boron	14000	150	ug/L	10.0	02/24/21 15:46	EPA 6010D		MLR	B1B0817
Lithium	ND	100	ug/L	10.0	02/24/21 15:46	EPA 6010D	Z	MLR	B1B0817
Molybdenum	ND	500	ug/L	10.0	02/24/21 15:46	EPA 6010D	Z	MLR	B1B0817

Sample Number

1020859-04

Sample Description AE94862 CGYP-2 collected on 02/10/21 12:23

Parameter	Result	Reporting Limit	Units	DF	Analyzed	Method	Flag	Analyst	Batch
Total Metals									
Mercury	ND	0.20	ug/L	1.00	02/23/21 11:34	EPA 7470A	S 7	MLR	B1B1040
Boron	960	150	ug/L	10.0	02/23/21 18:37	EPA 6010D		MLR	B1B0817
Lithium	13	10	ug/L	1.00	02/18/21 19:12	EPA 6010D		MLR	B1B0817
Molybdenum	ND	10	ug/L	1.00	02/18/21 19:12	EPA 6010D		MLR	B1B0817

rogersandcallcott.com PO Box 5655 | Greenville, SC 29606 | 426 Fairforest Way | Greenville, SC 29607 | main 864.232.1556 | fax 864.232.6140

Santee Cooper 1 Riverwood Dr. Moncks Corner, SC 29461 Project:

Ground Water

Work Order: Reported:

1020859 02/24/21 17:04

Sample Number

1020859-05

Sample Description

AE94863 CGYP-2 DUP collected on 02/10/21 12:28

Parameter	Result	Reporting Limit	Units	DF	Analyzed	Method	Flag	Analyst	Batch
Total Metals									
Mercury	ND	0.20	ug/L	1.00	02/23/21 11:37	EPA 7470A	S 7	MLR	B1B1040
Boron	980	150	ug/L	10.0	02/23/21 18:41	EPA 6010D		MLR	B1B0817
Lithium	13	10	ug/L	1.00	02/18/21 19:16	EPA 6010D		MLR	B1B0817
Molybdenum	ND	10	ug/L	1.00	02/18/21 19:16	EPA 6010D		MLR	B1B0817

Sample Number

1020859-06

Sample Description

AE94864 CGYP-3 collected on 02/10/21 13:38

Parameter	Result	Reporting Limit	Units	DF	Analyzed	Method	Flag	Analyst	Batch
Total Metals									
Mercury	ND	0.20	ug/L	1.00	02/23/21 11:40	EPA 7470A	S 7	MLR	B1B1040
Boron	25000	150	ug/L	10.0	02/24/21 15:58	EPA 6010D		MLR	B1B0817
Lithium	110	20	ug/L	2.00	02/18/21 18:41	EPA 6010D		MLR	B1B0817
Molybdenum	ND	20	ug/L	2.00	02/18/21 18:41	EPA 6010D		MLR	B1B0817

Sample Number

1020859-07

AE94855 CCMAP-1 collected on 02/11/21 12:28 Sample Description

Parameter	Result	Reporting Limit	Units	DF	Analyzed	Method	Flag	Analyst	Batch
Total Metals									
Lithium	ND	10	ug/L	1.00	02/18/21 19:24	EPA 6010D		MLR	B1B0817

Sample Number

1020859-08

AE94856 CCMAP-2 collected on 02/11/21 13:14 Sample Description

Parameter -	Result	Reporting Limit	Units	DF	Analyzed	Method	Flag	Analyst	Batch
Total Metals									
Lithium	ND	10	ug/L	1.00	02/18/21 19:28	EPA 6010D		MLR	B1B0817

rogersandcallcott.com PO Box 5655 | Greenville, SC 29606 | 426 Fairforest Way | Greenville, SC 29607 | main 864.232.1556 | fax 864.232.6140

Santee Cooper Ground Water Project: 1 Riverwood Dr. Work Order: 1020859 Moncks Corner, SC 29461 02/24/21 17:04

> **Total Metals Quality Control Summary**

Reported:

Parameter	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Flags
Batch B1B0817 - EPA 3005A										
Blank (B1B0817-BLK1)										
Boron	ND	15	ug/L							
Lithium	ND	10	ug/L							
Molybdenum	ND	10	ug/L							
LCS (B1B0817-BS1)										
Boron	230	15	ug/L	250		93	80-120			
Lithium	249	10	ug/L	250		100	80-120			
Molybdenum	230	10	ug/L	250		92	80-120			
LCS Dup (B1B0817-BSD1)										
Boron	240	15	ug/L	250		96	80-120	3	20	
Lithium	260	10	ug/L	250		104	80-120	4	20	
Molybdenum	240	10	ug/L	250		96	80-120	4	20	
Matrix Spike (B1B0817-MS1)	Source: 1020859-0	1								
Boron	14000	75	ug/L	250	14000	209	75-125			S 5
Lithium	326	10	ug/L	250	15	124	75-125			
Molybdenum	250	10	ug/L	250	ND	98	75-125			
Matrix Spike Dup (B1B0817-MSD1)	Source: 1020859-0	1								
Boron	14000	75	ug/L	250	14000	120	75-125	2	20	
Lithium	312	10	ug/L	250	15	119	75-125	4	20	
Molybdenum	240	10	ug/L	250	ND	95	75-125	4	20	
Batch B1B1040 - EPA 7470A										
Blank (B1B1040-BLK1)										
Mercury	ND	0.20	ug/L							
LCS (B1B1040-BS1)										
Mercury	5.0	0.20	ug/L	5.00		101	80-120			
LCS Dup (B1B1040-BSD1)										
Mercury	4.9	0.20	ug/L	5.00		98	80-120	2	20	

PO Box 5655 | Greenville, SC 29606 | 426 Fairforest Way | Greenville, SC 29607 | main 864.232.1556 | fax 864.232.6140 | rogersandcallcott.com

an employee-owned company

 Santee Cooper
 Project:
 Ground Water

 1 Riverwood Dr.
 Work Order:
 1020859

 Moncks Corner, SC 29461
 Reported:
 02/24/21 17:04

Total Metals **Quality Control Summary**

Parameter	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Flags
Batch B1B1040 - EPA 7470A										
Matrix Spike (B1B1040-MS1)	Source: 1020859-03									
Mercury	4.1	0.20	ug/L	5.00	ND	80	75-125			S 7
Matrix Spike Dup (B1B1040-MSD1)	Source: 1020859-03									
Mercury	4.0	0.20	nø/L	5.00	ND	78	75-125	3	20	S 7

Sample Preparation Data

Parameter	Batch	Sample ID	Prepared	Analyst
EPA 3005A ICP Digestion				
EPA 3005A	B1B0817	1020859-01	02/17/2021 08:59	MLR
EPA 3005A	B1B0817	1020859-02	02/17/2021 08:59	MLR
EPA 3005A	B1B0817	1020859-03	02/17/2021 08:59	MLR
EPA 3005A	B1B0817	1020859-04	02/17/2021 08:59	MLR
EPA 3005A	B1B0817	1020859-05	02/17/2021 08:59	MLR
EPA 3005A	B1B0817	1020859-06	02/17/2021 08:59	MLR
EPA 3005A	B1B0817	1020859-07	02/17/2021 08:59	MLR
EPA 3005A	B1B0817	1020859-08	02/17/2021 08:59	MLR
EPA 7470A Mercury Digestion				
EPA 7470A	B1B1040	1020859-03	02/22/2021 16:38	MLR
EPA 7470A	B1B1040	1020859-04	02/22/2021 16:38	MLR
EPA 7470A	B1B1040	1020859-05	02/22/2021 16:38	MLR
EPA 7470A	B1B1040	1020859-06	02/22/2021 16:38	MLR

PO Box 5655 | Greenville, SC 29606 | 426 Fairforest Way | Greenville, SC 29607 | main 864.232.1556 | fax 864.232.6140 | rogersandcallcott.com

Analyte NOT DETECTED at or above the reporting limit

ND

Santee Cooper Project: Ground Water
1 Riverwood Dr. Work Order: 1020859
Moncks Corner, SC 29461 Reported: 02/24/21 17:04

Data Qualifiers and Definitions

NR	Not reported
RPD	Relative Percent Difference
S5	The raw sample concentration was greater than four times the spike concentration. The spike recovery was not evaluated against the control limits.
S7	Result calculated by Method of Standard Addition due to sample matrix interference and initial spike failures.
Z	Unable to meet the client requested RL for this analyte. Internal Standard (ISTD) was not within QC limits due to sample matrix interference. Therefore, the sample was diluted to reduce matrix & to meet the ISTD requirements for reporting per the method.

Chain of Custody

Santes Cooper One Riverwood Drive Moncks Corner, SC 29461 Plione: (843)761-8000 Ext, 5148 Fax: (843)761-4175

Customer Email/Report Recipient:		Date I	Date Results Needed by:					roject/	Task/	1	Rerun request for any flagged QC				I QC			
LC WIS	1.(4	@santeed	cooper.com		//			1215	567-	J J 1-	102.	09.601	36500	Yes	No			
												١	02089	59		Unalysi	k Grou	<u>16</u>
Labworks (Internal only)		Sample Location Description	on/	Collection Date	Collection Time	Sample Collector	Total # of containers	Bottle type: (Glass-G/Plasstc-P)	Greb (G) or Composite (C)	Matrix(see below)	Preservative (see	T	Comment thod # torting limit c. sample info to other notes		g	1,7	Mo	He
AE 94-8	57	CCMAP-3		2/10/21	609	NEG	1	Þ	G	GW	2	101				X		
XE948	58	CCMAP-3	DUP	1	1614	1	1	ļu.	上	1	1	-02				Y		
AE 748	61	COMP-1			116		1		1	1	}	103			^	×	х	×
AE 94-8	62	GYP-2			12-23							-04		·	×	×	X	×
AETY 86	3	CGYP- 2 D	JP		1225							-05			X	Х	Х	X
AE918	64	CGYP-3		1	1838	1			1		1	~06			λ	x	х	X
AE94.81	55	CCMAP-1		3/11/2!	1225				1			- 0 h				X		
AE948	56	CCMA-P - Z		1	(314			1		-		-013				X		
Refinqui	shed by:	Employees	Date	Time	Recei	red by:	E	mployee	# -	Date		Time	Sample Rec	eiving (Internal (Jse On	ily)		
1200 200		35 594	2/15/21	Jaco		CX		7 - 1					TEMP (°C)	:11.8	Initia	:	-	-
	shed by:	Employee#	Date	Time	Receiv	red by:	E	mployee	• 1	Date		Time	Correct pH	l: Yes No				
FGP.	(m				1					116	21	1020	Preservativ	e Lot#:				
	shed by:	Employee#	Date	Time	Receiv	red by:	E	mployee		Date		Time						
										_			Date/Time/	Init for preserva	ative:			
		TALS (all)	Nint	rients	MI	cc		GV	psur			Cont		ch		0		
□ Ag	□ Cı		TO	THE RESERVE OF THE PERSON NAMED IN	DBTEX	<u>sc.</u>	-	Wallbo	The state of the s	-		Coal Ultimate	and the second	Flyash Ammonia	٠.	Oi M. O.		
O Al	O Fe		DO		□ Napthale				sum(a	H		□ % Moist		.OI	103	gMion		
D As	□K	20	THE RESERVE OF THE PERSON NAMED IN	TPO4	□ THM/H □ VOC	AA		belo				☐ Ash		6 Carbon				
□В	□ Li	□ Sr,	E NH	2.5	□ Oil & G	rease		U AI				□ Sulfur	100	Aineral				
□Ва	DM	g DTi	CI	= - 1	☐ E. Coli ☐ Total Co	diform			al meta			☐ BTUs ☐ Volatile	Matter	Analysis lieve				
□ Be	.□ M	n 🗆 TI	NO	2	□pH		9.7		uble M			□ CHN		6 Moisture		of Oil		
□ Ca	□ M	0 🗆 V	Br		☐ Dissolve			13%	Moistur		11	ther Tests:			100			
∐ Cd	O Na	□ Zn	NO SO4		□ Rad 226			Sul				XRF Scan HGI		NPDES				
□ Co	ii Ni				☐ Rad 228			- Chi	lorides		0	Fineness	A CONTRACT OF THE PARTY OF	il & Grease		er.		
Ст	□ Pb		The same		O PCB			☐ Par ☐ Sulfur	article Size			Particulate Ma		SS		ixa.		
									8370									

Revised February 2018

Sample Receipt Verification

Client:	Santee Cooper	Date Received:	2/	16/21		Work Order:
Carrier Name	e: Client FedEx UPS 816240 Tracking Number:	US 1 672624	Mail		Cou	urier Field Services Other:
Receipt Cri	iteria		Y e s	N o	N A	Comments
Shipping con	tainer / cooler intact?		х			Damaged Leaking Other:
Custody seals	s intact?				х	
COC include	d with samples?		х			
COC signed	when relinquished and received?		х			
Sample bottle	es intact?		х			Damaged Leaking Other:
Sample ID or	a COC agree with label on bottle(s)?		х			
Date / time or	n COC agree with label on bottle(s)?		х			
Number of bo	ottles on COC agrees with number of bottles	received?	х			
Samples rece	ived within holding time?		х			
Sample volur	me sufficient for analysis?		х			
VOA vials fro	ee of headspace (<6mm bubble)?				х	
Samples cool	led? Temp at receipt recorded on COC Temp measured with IR thermometer - SN:	97050067			Х	Ice Cold Packs Dry Ice None
Note: Sample	niring pH preservation at proper pH? es for metals analysis may be preserved upon receipt in es for O&G and VOA analysis – preservation checked a		х			
Samples dech the time of sa	nlorinated for parameters requiring chlorine r ample collection? ine checked at bench for samples requiring Bacterial. Vo	emoval at			х	
	If in-house	preservation	used	– re	cord	Lot#
HCL		H ₃ P				
H ₂ SO ₄ HNO ₃		NaC Oth				
Comments:	1					
Were non-or	onformance issues noted at sample receip	nt? Ves	s or	. —	No.	,
	nance issue other than noted above:	pt: Tes	, OI	1	<u>vo</u>	
Davised Fabruar	n/2010					ompleted by: KRU

Completed by:_

Page 9 of 9

Laboratory Services

Laboratory Report

Client Santee Cooper

Linda Williams 1 Riverwood Dr.

Moncks Corner, SC 29461

Project:

Received:

Ground Water

Work Order: 1040743

04/14/2021 09:20

Dear Client:

Rogers and Callcott appreciates the opportunity to be of service to you. The attached laboratory services report includes analytical results and chain of custody for samples that were received on April 14, 2021. Rogers and Callcott maintains a formal QA/QC program. Unless otherwise noted, all analyses performed under NELAP certification have complied with all the requirements for the TNI standard. The analyses met the QA/QC confidence interval for each test method unless otherwise qualified. Estimated uncertainty is available upon request.

Privileged / Confidential information may be contained in this report and is intended only for the use of the addressee. If you are not the addressee, or the person responsible for delivering to the person addressed, you may not copy or deliver this message to anyone else. If you receive this message by mistake, please notify Rogers and Callcott immediately.

We strive to provide excellent service to our clients. Please contact Lauren Hollister, your Project Manager, at lhollister@rcenviro.com, (864)-232-1556 if you have any questions about this report.

CC: Jeanette Gilmetti, Sherri Brown, Courtney Ames Watkins

Lauren Hollister

Report Approved By:

Lauren Hollister Project Manager

This report may not be reproduced, except in full, without written permission from Rogers & Callcott, Inc.

an employee-owned company

South Carolina Greenville Laboratory Identification 23105 South Carolina Columbia Laboratory Identification 40572 North Carolina Laboratory Certification Number 27 North Carolina Drinking Water Lab Number 45710 NELAP Utah Certificate Number SC000042014-1 Georgia Drinking Water Lab ID 880

> Ground Water Project: Work Order: 1040743

Received: 04/14/2021 09:20

Certificate of Analysis

Client Santee Cooper

Linda Williams 1 Riverwood Dr.

Moncks Corner, SC 29461

Sample Number	Sample Description	Matrix	Sampled	Type
1040743-01	AF00633 CGYP-4	Ground Water	04/07/21 11:06	Grab
1040743-02	AF00629 CGYP-1	Ground Water	04/07/21 12:16	Grab
1040743-03	AF00630 CGYP-2	Ground Water	04/07/21 13:16	Grab
1040743-04	AF00631 CGYP-2 DUP	Ground Water	04/07/21 13:21	Grab
1040743-05	AF00632 CGYP-3	Ground Water	04/07/21 14:20	Grab
1040743-06	AF00634 CGYP-5	Ground Water	04/07/21 15:09	Grab
1040743-07	AF00635 CGYP-6	Ground Water	04/07/21 16:02	Grab
1040743-08	AF00697 CCMAP-4	Ground Water	04/08/21 10:32	Grab
1040743-09	AF00698 CCMAP-4 DUP	Ground Water	04/08/21 10:37	Grab
1040743-10	AF00693 WLF-A2-6	Ground Water	04/08/21 15:27	Grab
1040743-11	AF00694 WLF-A2-6 DUP	Ground Water	04/08/21 15:32	Grab
1040743-12	AF00695 WAP-17	Ground Water	04/08/21 13:31	Grab
1040743-13	AF00696 WAP-17 DUP	Ground Water	04/08/21 13:36	Grab

Santee Cooper Project: Ground Water 1 Riverwood Dr. Work Order: 1040743

Moncks Corner, SC 29461 Reported: 04/22/21 14:29

Sample Data

Sample Number

1040743-01

Sample Description

AF00633 CGYP-4 collected on 04/07/21 11:06

Parameter	Result	Reporting Limit	Units	DF	Analyzed	Method	Flag	Analyst	Batch
Total Metals									
Mercury	ND	0.20	ug/L	1.00	04/16/21 10:12	EPA 7470A		MLR	B1D0679
Boron	7600	75	ug/L	5.00	04/16/21 14:48	EPA 6010D		MLR	B1D0837
Lithium	58	10	ug/L	1.00	04/16/21 15:58	EPA 6010D		MLR	B1D0590
Molybdenum	ND	10	ug/L	1.00	04/16/21 15:58	EPA 6010D		MLR	B1D0590

Sample Number

1040743-02

Sample Description AF00629 CGYP-1 collected on 04/07/21 12:16

Parameter	Result	Reporting Limit	Units	DF	Analyzed	Method	Flag	Analyst	Batch
Total Metals									
Mercury	ND	0.20	ug/L	1.00	04/16/21 10:24	EPA 7470A		MLR	B1D0679
Boron	11000	75	ug/L	5.00	04/16/21 14:52	EPA 6010D		MLR	B1D0837
Lithium	20	20	ug/L	2.00	04/21/21 16:28	EPA 6010D	X	MLR	B1D0590
Molybdenum	ND	20	ug/L	2.00	04/21/21 16:28	EPA 6010D	X	MLR	B1D0590

Sample Number

1040743-03

Sample Description AF00

AF00630 CGYP-2 collected on 04/07/21 13:16

Parameter	Result	Reporting Limit	Units	DF	Analyzed	Method	Flag	Analyst	Batch
Total Metals									
Mercury	ND	0.20	ug/L	1.00	04/16/21 10:35	EPA 7470A		MLR	B1D0679
Boron	850	75	ug/L	5.00	04/16/21 12:53	EPA 6010D		MLR	B1D0837
Lithium	14	10	ug/L	1.00	04/16/21 13:12	EPA 6010D		MLR	B1D0590
Molybdenum	ND	10	ug/L	1.00	04/16/21 13:12	EPA 6010D		MLR	B1D0590

Sample Number

1040743-04

Sample Description AF00631 CGYP-2 DUP collected on 04/07/21 13:21

Parameter	Result	Reporting Limit	Units	DF	Analyzed	Method	Flag	Analyst	Batch
Total Metals									
Mercury	ND	0.20	ug/L	1.00	04/16/21 10:38	EPA 7470A		MLR	B1D0679
Boron	890	75	ug/L	5.00	04/16/21 14:56	EPA 6010D		MLR	B1D0837
Lithium	15	10	ug/L	1.00	04/16/21 16:29	EPA 6010D		MLR	B1D0590
Molybdenum	ND	10	ug/L	1.00	04/16/21 16:29	EPA 6010D		MLR	B1D0590

PO Box 5655 | Greenville, SC 29606 | 426 Fairforest Way | Greenville, SC 29607 | main 864.232.1556 | fax 864.232.6140 rogersandcallcott.com

an employee-owned company

Santee Cooper 1 Riverwood Dr. Moncks Corner, SC 29461 Project:

Ground Water

Work Order: Reported: 1040743 04/22/21 14:29

Sample Number

1040743-05

Sample Description

AF00632 CGYP-3 collected on 04/07/21 14:20

Parameter	Result	Reporting Limit	Units	DF	Analyzed	Method	Flag	Analyst	Batch
Total Metals									
Mercury	0.21	0.20	ug/L	1.00	04/16/21 10:46	EPA 7470A		MLR	B1D0679
Boron	23000	75	ug/L	5.00	04/16/21 15:00	EPA 6010D		MLR	B1D0837
Lithium	94	10	ug/L	1.00	04/16/21 16:33	EPA 6010D		MLR	B1D0590
Molybdenum	ND	10	ug/L	1.00	04/16/21 16:33	EPA 6010D		MLR	B1D0590

Sample Number

1040743-06

Sample Description AF006

AF00634 CGYP-5 collected on 04/07/21 15:09

Parameter	Result	Reporting Limit	Units	DF	Analyzed	Method	Flag	Analyst	Batch
Total Metals									
Mercury	ND	0.20	ug/L	1.00	04/16/21 10:49	EPA 7470A		MLR	B1D0679
Boron	3100	75	ug/L	5.00	04/16/21 15:03	EPA 6010D		MLR	B1D0837
Lithium	60	10	ug/L	1.00	04/16/21 16:36	EPA 6010D		MLR	B1D0590
Molybdenum	ND	10	ug/L	1.00	04/16/21 16:36	EPA 6010D		MLR	B1D0590

Sample Number

1040743-07

Sample Description AF00

AF00635 CGYP-6 collected on 04/07/21 16:02

Parameter	Result	Reporting Limit	Units	DF	Analyzed	Method	Flag	Analyst	Batch
Total Metals									
Mercury	ND	0.20	ug/L	1.00	04/16/21 10:52	EPA 7470A		MLR	B1D0679
Boron	7000	75	ug/L	5.00	04/16/21 15:07	EPA 6010D		MLR	B1D0837
Lithium	140	10	ug/L	1.00	04/16/21 16:40	EPA 6010D		MLR	B1D0590
Molybdenum	ND	10	ug/L	1.00	04/16/21 16:40	EPA 6010D		MLR	B1D0590

Sample Number

1040743-08

Sample Description AF00697 CCMAP-4 collected on 04/08/21 10:32

Parameter	Result	Reporting Limit	Units	DF	Analyzed	Method	Flag	Analyst	Batch
Total Metals									
Lithium	ND	10	ug/L	1.00	04/16/21 15:49	EPA 6010D		MLR	B1D0590

Santee Cooper 1 Riverwood Dr. Moncks Corner, SC 29461 Project:

Ground Water

Work Order: Reported: 1040743 04/22/21 14:29

Sample Number

1040743-09

Sample Description

AF00698 CCMAP-4 DUP collected on 04/08/21 10:37

Parameter	Result	Reporting Limit	Units	DF	Analyzed	Method	Flag	Analyst	Batch
Total Metals									
Lithium	ND	10	ug/L	1.00	04/16/21 15:54	EPA 6010D		MLR	B1D0590
	ND	10	ug/L	1.00	04/16/21 15:54	EPA 6010D		MLR	ВП

Sample Number Sample Description 1040743-10

AF00693 WLF-A2-6 collected on 04/08/21 15:27

Parameter -	Result	Reporting Limit	Units DF Analyzed		Analyzed	Method	Flag	Analyst	Batch
Total Metals									
Mercury	ND	0.20	ug/L	1.00	04/16/21 10:54	EPA 7470A		MLR	B1D0679
Boron	310	75	ug/L	5.00	04/16/21 15:11	EPA 6010D		MLR	B1D0837
Lithium	24	10	ug/L	1.00	04/16/21 16:44	EPA 6010D		MLR	B1D0590
Molybdenum	ND	10	ug/L	1.00	04/16/21 16:44	EPA 6010D		MLR	B1D0590

Sample Number

1040743-11

Sample Description

AF00694 WLF-A2-6 DUP collected on 04/08/21 15:32

Parameter	Result	Reporting Limit	g Units DF Analyzed		Method	Flag	Analyst	Batch	
Total Metals									
Mercury	ND	0.20	ug/L	1.00	04/16/21 10:57	EPA 7470A		MLR	B1D0679
Boron	280	75	ug/L	5.00	04/16/21 15:38	EPA 6010D		MLR	B1D0837
Lithium	32	10	ug/L	1.00	04/16/21 16:48	EPA 6010D		MLR	B1D0590
Molybdenum	ND	10	ug/L	1.00	04/16/21 16:48	EPA 6010D		MLR	B1D0590

Sample Number

1040743-12

Sample Description

AF00695 WAP-17 collected on 04/08/21 13:31

Parameter	Result	Reporting Limit	Units	DF	Analyzed Method		Flag Ana		Batch
Total Metals									
Mercury	ND	0.20	ug/L	1.00	04/16/21 11:00	EPA 7470A		MLR	B1D0679
Boron	3300	75	ug/L	5.00	04/16/21 13:35	EPA 6010D		MLR	B1D0837
Lithium	130	10	ug/L	1.00	04/16/21 14:01	EPA 6010D		MLR	B1D0590
Molybdenum	59	10	ug/L	1.00	04/16/21 14:01	EPA 6010D		MLR	B1D0590

Santee Cooper Project: Ground Water
1 Riverwood Dr. Work Order: 1040743

Moncks Corner, SC 29461 Reported: 04/22/21 14:29

Sample Number 1040743-13

Sample Description AF00696 WAP-17 DUP collected on 04/08/21 13:36

Parameter	Result	Reporting Limit	g Units DF Analyzed		Analyzed	Method	Flag	Analyst	Batch
Total Metals									
Mercury	ND	0.20	ug/L	1.00	04/16/21 11:03	EPA 7470A		MLR	B1D0679
Boron	3300	75	ug/L	5.00	04/16/21 15:42	EPA 6010D		MLR	B1D0837
Lithium	120	10	ug/L	1.00	04/16/21 16:52	EPA 6010D		MLR	B1D0590
Molybdenum	57	10	ug/L	1.00	04/16/21 16:52	EPA 6010D		MLR	B1D0590

04/22/2021 14:29

Santee Cooper Project: Ground Water 1 Riverwood Dr. Work Order: 1040743

Moncks Corner, SC 29461 Reported: 04/22/21 14:29

Total Metals **Quality Control Summary**

Parameter	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Flags
Batch B1D0590 - EPA 3005A										
Blank (B1D0590-BLK1)										
Lithium	ND	10	ug/L							
Molybdenum	ND	10	ug/L							
LCS (B1D0590-BS1)										
Lithium	256	10	ug/L	250		102	80-120			
Molybdenum	300	10	ug/L	250		120	80-120			
LCS Dup (B1D0590-BSD1)										
Lithium	266	10	ug/L	250		107	80-120	4	20	
Molybdenum	260	10	ug/L	250		105	80-120	14	20	
Matrix Spike (B1D0590-MS1)	Source: 1040743-03	3								
Lithium	260	10	ug/L	250	14	98	75-125			
Molybdenum	200	10	ug/L	250	ND	81	75-125			
Matrix Spike (B1D0590-MS2)	Source: 1040743-12	2								
Lithium	421	10	ug/L	250	126	118	75-125			
Molybdenum	310	10	ug/L	250	59	100	75-125			
Matrix Spike Dup (B1D0590-MSD1)	Source: 1040743-03	3								
Lithium	263	10	ug/L	250	14	100	75-125	1	20	
Molybdenum	210	10	ug/L	250	ND	83	75-125	2	20	
Matrix Spike Dup (B1D0590-MSD2)	Source: 1040743-12	2								
Lithium	412	10	ug/L	250	126	114	75-125	2	20	
Molybdenum	310	10	ug/L	250	59	98	75-125	0.9	20	
Post Spike (B1D0590-PS1)	Source: 1040743-03	3								
Lithium	501	10	ug/L	500	14	97	75-125			
Molybdenum	430	10	ug/L	500	ND	86	75-125			
Post Spike (B1D0590-PS2)	Source: 1040743-12	2								
Lithium	691	10	ug/L	500	126	113	75-125			
Molybdenum	570	10	ug/L	500	59	102	75-125			

PO Box 5655 | Greenville, SC 29606 | 426 Fairforest Way | Greenville, SC 29607 | main 864.232.1556 | fax 864.232.6140 | rogersandcallcott.com

Santee Cooper 1 Riverwood Dr. Moncks Corner, SC 29461 Project:

Ground Water

Work Order:

1040743

Reported:

04/22/21 14:29

Total Metals **Quality Control Summary**

Parameter	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Flags
Batch B1D0679 - EPA 7470A										
Blank (B1D0679-BLK1)										
Mercury	ND	0.20	ug/L							
LCS (B1D0679-BS1)										
Mercury	5.0	0.20	ug/L	5.00		101	80-120			
LCS Dup (B1D0679-BSD1)										
Mercury	5.0	0.20	ug/L	5.00		100	80-120	1	20	
Matrix Spike (B1D0679-MS1)	Source: 1040743-01									
Mercury	4.3	0.20	ug/L	5.00	ND	84	75-125			
Matrix Spike (B1D0679-MS2)	Source: 1040743-02									
Mercury	4.7	0.20	ug/L	5.00	ND	92	75-125			
Matrix Spike Dup (B1D0679-MSD1)	Source: 1040743-01									
Mercury	4.3	0.20	ug/L	5.00	ND	83	75-125	0.9	20,	
Matrix Spike Dup (B1D0679-MSD2)	Source: 1040743-02									
Mercury	4.7	0.20	ug/L	5.00	ND	93	75-125	0.7	20	
Post Spike (B1D0679-PS1)	Source: 1040743-01									
Mercury	3.4		ug/L	4.00	ND	82	80-120			
Post Spike (B1D0679-PS2)	Source: 1040743-02									
Mercury	3.6		ug/L	4.00	ND	88	80-120			
Post Spike (B1D0679-PS3)	Source: 1040743-03									
Mercury	3.2		ug/L	4.00	ND	81	80-120			
Post Spike (B1D0679-PS4)	Source: 1040743-04									
Mercury	3.2		ug/L	4.00	ND	80	80-120			
Post Spike (B1D0679-PS5)	Source: 1040743-05									
Mercury	3.8		ug/L	4.00	0.21	89	80-120			

Santee Cooper Project: Ground Water
1 Riverwood Dr. Work Order: 1040743

Moncks Corner, SC 29461 Reported: 04/22/21 14:29

Total Metals **Quality Control Summary**

Parameter	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Flags
Batch B1D0679 - EPA 7470A										
Post Spike (B1D0679-PS6)	Source: 1040743-06									
Mercury	3.5		ug/L	4.00	ND	86	80-120			
Post Spike (B1D0679-PS7)	Source: 1040743-07									
Mercury	3.6		ug/L	4.00	ND	89	80-120			
Post Spike (B1D0679-PS8)	Source: 1040743-10									
Mercury	3.9		ug/L	4.00	ND	98	80-120			
Post Spike (B1D0679-PS9)	Source: 1040743-11									
Mercury	3.8		ug/L	4.00	ND	96	80-120			
Post Spike (B1D0679-PSA)	Source: 1040743-12									
Mercury	3.7		ug/L	4.00	ND	91	80-120			
Post Spike (B1D0679-PSB)	Source: 1040743-13									
Mercury	3.8		ug/L	4.00	ND	93	80-120			
Batch B1D0837 - EPA 3005A										
Blank (B1D0837-BLK1)										
Boron	ND	15	ug/L							
LCS (B1D0837-BS1)										
Boron	210	15	ug/L	250		82	80-120			
LCS Dup (B1D0837-BSD1)										
Boron	240	15	ug/L	250		95	80-120	14	20	
Matrix Spike (B1D0837-MS1)	Source: 1040743-03									
Boron	1800	75	ug/L	1250	850	80	75-125			
Matrix Spike (B1D0837-MS2)	Source: 1040743-12									
Boron	4600	75	ug/L	1250	3300	105	75-125			

Santee Cooper 1 Riverwood Dr. Moncks Corner, SC 29461 Project:

Ground Water

Work Order: Reported: 1040743 04/22/21 14:29

Total Metals **Quality Control Summary**

Parameter	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Flags
Batch B1D0837 - EPA 3005A										
Matrix Spike Dup (B1D0837-MSD1)	Source: 1040743-03									
Boron	2000	75	ug/L	1250	850	93	75-125	8	20	
Matrix Spike Dup (B1D0837-MSD2)	Source: 1040743-12									
Boron	4600	75	ug/L	1250	3300	102	75-125	0.9	20	
Post Spike (B1D0837-PS1)	Source: 1040743-03									
Boron	3200	75	ug/L	2500	850	95	75-125			
Post Spike (B1D0837-PS2)	Source: 1040743-12									
Boron	5900	75	ug/L	2500	3300	105	75-125			

 Santee Cooper
 Project:
 Ground Water

 1 Riverwood Dr.
 Work Order:
 1040743

 Moncks Corner, SC 29461
 Reported:
 04/22/21 14:29

Sample Preparation Data

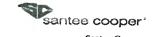
Parameter	Batch	Sample ID	Prepared	Analyst	
EPA 3005A ICP Digestion					
EPA 3005A	B1D0590	1040743-01	04/14/2021 13:25	MTH	
EPA 3005A	B1D0837	1040743-01	04/14/2021 13:25	MTH	
EPA 3005A	B1D0590	1040743-02	04/14/2021 13:25	MTH	
EPA 3005A	B1D0837	1040743-02	04/14/2021 13:25	MTH	
EPA 3005A	B1D0590	1040743-03	04/14/2021 13:25	MTH	
EPA 3005A	B1D0837	1040743-03	04/14/2021 13:25	MTH	
EPA 3005A	B1D0590	1040743-04	04/14/2021 13:25	MTH	
EPA 3005A	B1D0837	1040743-04	04/14/2021 13:25	MTH	
EPA 3005A	B1D0590	1040743-05	04/14/2021 13:25	MTH	
EPA 3005A	B1D0837	1040743-05	04/14/2021 13:25	MTH	
EPA 3005A	B1D0590	1040743-06	04/14/2021 13:25	MTH	
EPA 3005A	B1D0837	1040743-06	04/14/2021 13:25	MTH	
EPA 3005A	B1D0590	1040743-07	04/14/2021 13:25	MTH	
EPA 3005A	B1D0837	1040743-07	04/14/2021 13:25	MTH	
EPA 3005A	B1D0590	1040743-08	04/14/2021 13:25	MTH	
EPA 3005A	B1D0590	1040743-09	04/14/2021 13:25	MTH	
EPA 3005A	B1D0590	1040743-10	04/14/2021 13:25	MTH	
EPA 3005A	B1D0837	1040743-10	04/14/2021 13:25	MTH	
EPA 3005A	B1D0590	1040743-11	04/14/2021 13:25	MTH	
EPA 3005A	B1D0837	1040743-11	04/14/2021 13:25	MTH	
EPA 3005A	B1D0590	1040743-12	04/14/2021 13:25	MTH	
EPA 3005A	B1D0837	1040743-12	04/14/2021 13:25	MTH	
EPA 3005A	B1D0590	1040743-13	04/14/2021 13:25	MTH	
EPA 3005A	B1D0837	1040743-13	04/14/2021 13:25	MTH	
EPA 7470A Mercury Digestion					
EPA 7470A	B1D0679	1040743-01	04/15/2021 13:11	ELN	
EPA 7470A	B1D0679	1040743-02	04/15/2021 13:11	ELN	
EPA 7470A	B1D0679	1040743-03	04/15/2021 13:11	ELN	
EPA 7470A	B1D0679	1040743-04	04/15/2021 13:11	ELN	
EPA 7470A	B1D0679	1040743-05	04/15/2021 13:11	ELN	
EPA 7470A	B1D0679	1040743-06	04/15/2021 13:11	ELN	
EPA 7470A	B1D0679	1040743-07	04/15/2021 13:11	ELN	
EPA 7470A	B1D0679	1040743-10	04/15/2021 13:11	ELN	
EPA 7470A	B1D0679	1040743-11	04/15/2021 13:11	ELN	
EPA 7470A	B1D0679	1040743-12	04/15/2021 13:11	ELN	
EPA 7470A	B1D0679	1040743-13	04/15/2021 13:11	ELN	

PO Box 5655 | Greenville, SC 29606 | 426 Fairforest Way | Greenville, SC 29607 | main 864.232.1556 | fax 864.232.6140 | rogersandcallcott.com

Santee Cooper Project: Ground Water
1 Riverwood Dr. Work Order: 1040743
Moncks Corner, SC 29461 Reported: 04/22/21 14:29

Data Qualifiers and Definitions

ND Analyte NOT DETECTED at or above the reporting limit


NR Not reported

RPD Relative Percent Difference

X Result subject to sample matrix interference. Reporting limit has been adjusted where applicable.

Chain of Custody

1040743

Santee Cooper One Riverwood Drive Moneks Corner, SC 29461 Phone: (843)761-8000 Ext. 5148 Fax: (843)761-4175

Customer Email/Report Recipient: Date Results Needed by: Project/Task/Unit #: Rerun request for any flagged QC LCW!LLIA @santeecooper.com 121567 / JM02.09.GØI / 36500 Yes No 104843 **Analysis Group** Labworks ID# Sample Location/ Comments (Internal use Matrix(see below) Preservative (see below) **Collection Date** Collection Time Description (Glass-Fotal # of containers Sample Collector Method # only) Grab (G) or Composite (C) Reporting limit Bottle type: (G/Plastic-P) Misc. sample info Any other notes 王 30 ī ٤ DEW CGYP-4 2 AF00633 4/7/21 1106 G GW B, Li, MO - 6010 -01 X X Х 2 CGYP-1 1216 Hg 7470A ~ D & 3 AF-00630 CGYP-2 13/6 -07 4 CGYP-2 DUP 1321 -ou CGYP-3 1420 -05 AF 00634 CGYP-5 1509 -06 AF 00635 CGYP-6 -07 1602 AF 00697 4/8/21 CCMAP-4 1032 -C) & X AF-00698 CCMAP- 4 DUP 1037 -00 Х Sample Receiving (Internal Use Only) Relinquished by: Employee# Date Time Received by: Employee # Date Time TEMP (°C): |9.2 Initial: Afgroun 35594 Te dex 1/2/2/ (200) 4/12/21 1200 Relinquished by: Correct pH: Yes Employee# Date Time Received by: Employee # Date Time 4/14/21 toder Preservative Lot#: 0920 behoen Rose 14/2 0920 Relinquished by: Employee# Date Time Received by: Employee # Date Time Date/Time/Init for preservative: ☐ METALS (all) Nutrients MISC. Gypsum Coal O Ag □ Cu □ Sb Flyash OIL **DBTEX** Wallboard ∃ Fe □ Se □ Ultimate Trust, Offigual. Ammonia BEF □ Napthalene Gypsum(all ☐ % Moisture ☐ As $\Box K$ LOI ☐ Sn OTHM/HAA below) □ Ash % Carbon JVOC □ **B** AIM \Box Li □ Sr ☐ Sulfur □ Oil & Grease Mineral TOC □ BTUs □ Ba □E Coli □ Mg □ Ti Analysis Total metals ☐ Total Coliform ☐ Volatile Matter Sieve Soluble Metals □ Be C Mn □ TI □pH O CHN Punny (CaSO4) % Moishage ☐ Dissolved As □ Ca □ Mo $\square V$ % Moisture Other Tests: Dissolved Fe Sulfites O XRF Scan □ Cd **NPDES** □ Na □ Zn □ Rad 226 PH O HGI ☐ Rad 228 Oil & Grease □ Co □ Ni □ Hg Chlorides □ Fineness PCB Particulate Matter Particle Size □ Cr ☐ Pb CrVI TSS SHEER

Chain of Custody

1040743

Santee Cooper One Riverwood Drivo Moneks Corner, SC 29461 Phone: (843)761-8000 Ext. 5148 Fax: (843)761-4175

		Report Recip	ient:	Dat	Date Results Needed by:			Proj	ject/7	Task/I	Unit #:		R	erun requ	est for a	any fl	agge	d C	
LCWIL	LLIA	@santee	cooper.con	n <u> </u>	_//		_	1215	67/	JM	02.0°	ે. ઉછા	7 36	500	Ye	s No			
			Date 1 1 1 1 1 1 1 1 1														Analy:	sis Gro	пБ
Labworks (Internal to only)		Sample Locati Description	on/	Collection Date	Collection Time	Sample Collector	Total # of containers	Bottle type: (Glass-G/Plastic-P)	Grab (G) or Composite (C)	Matrix(see below)	Preservative (see below)	• 1	Co Method # Reporting li Misc. sampl Any other n	le info		TO		Mo	140
AF-006	93	WLF-A2-	6	4/8/	21 1527	DEN	i i	P	G 6	÷W.	2	ਰ, เ	i, Mo	6 C !C	-010	×	×	×	;
AF 006	94	WLF-AZ-	6 DUP	1	1532		1)				Hg	7470A		711				
AF 006	75	WAP-17			1331										1/2		\prod		
AFOC6	96	WAP-17	DUP		1336			<u> </u>			_				-13		1		
								_											
		<u></u>	- ,																
Relinquist	hed by:	Employee#	Date	Time	Receive	ed by:	Empl	oyee#		Date	1	Time	Samp	le Receiv	ing (Interna	l Use Or Initia	ly)		
Myour		35594	·	1200	Fede	+			1/12/2										
Relinquish		Employee#		Time	Receive		Empl	oyee #	1	Date		Time		ect pH:		0			
ful ex			4/1414	0920	Kledolo	, Wore			97/4	4	0	920	Prese	rvative l	Lot#:				
Relinquish	ned by:	Employee#	Date	Time	Receive	d by:	Emple	oyee #		Date		Time							
													Date/	Time/Ini	t for preser	vative:			
		ALS (all)	Nut	rients	MIS	C		Gyps	um			Coa	1	CI.	and h		-		
□ Ag	□ Cu	□ Sb	ine		BTEX		C W	Dboard			10.10	Itimate			yash	170	Di		
D Al	□ Fe	□ Se	D0	t I	□ Napthaler		4	Gypsun				3 % Mo		LO	monis			- Vinas	
□ As	□K	□ Sn		TROIL	□ VOC	apthalene HM/HAA		AJM				Ash		0 6 0	arbon				
⊡ B □ Ba	□ Li	□ Sr	F		□ Oil & Gre □ E. Coli	ase	1	THE				Sulfur BTUs		1	enal Analysis				
	∏Mg	O Ti	a 61		□ Total Coli	form		Soluble		_			le Matter	□ Sies			١.		
□ Be	□ Mn	C TI	NO Bi-		☐ pH ☐ Dissolved	An		Purity (CaSU4			CHN		e'e X	loisture	L'an	d Oil		
□ Ca	□Мо	D V	NO.		☐ Dissolved			Sulfites				er Tests RF Scan	:		DEC				
□Cd	□ Na	□ Zn	50		□ Rad 226 □ Rad 228		E	pH			DHO	31			DES				
					LI Rad 448			Chlond	- N		Fire	neness		Ullia	Gresse				
Co Cr	□ Ni □ Pb	☐ Hg			DPCB			Particle				rticulate 1	Matter	⊒As.					

Revised February 2018

Sample Receipt Verification

	Date ceived:	4/	14/21		Work Order: ¹⁰⁴⁰⁷⁴³
Carrier Name: Client FedEx UPS Tracking Number: 804037	US N	Mail		Cou	urier Field Services Other:
Tracking Number: 804037	733090				_
Receipt Criteria		Y e s	N o	N A	Comments
Shipping container / cooler intact?		Х			Damaged Leaking Other:
Custody seals intact?				х	
COC included with samples?		Χ			
COC signed when relinquished and received?		Х			
Sample bottles intact?		Х			Damaged Leaking Other:
Sample ID on COC agree with label on bottle(s)?		Х			
Date / time on COC agree with label on bottle(s)?		Х			
Number of bottles on COC agrees with number of bottles rece	ived?	Х			
Samples received within holding time?		Х			
Sample volume sufficient for analysis?		Х			
VOA vials free of headspace (<6mm bubble)?				х	
Samples cooled? Temp at receipt recorded on COC Temp measured with IR thermometer - SN: 9705	0067			×	Ice Cold Packs Dry Ice None
Samples requiring pH preservation at proper pH? Note: Samples for metals analysis may be preserved upon receipt in the la Note: Samples for O&G and VOA analysis – preservation checked at ben	b.	Х			
Samples dechlorinated for parameters requiring chlorine remo the time of sample collection? Note: Chlorine checked at bench for samples requiring Bacterial, VOA, a analysis.	val at			х	
If in-house pres	ervation	used	_ re	cord	Lot #
HCL	H ₃ P				
H ₂ SO ₄	NaC				
HNO ₃	Oth	er			
Comments:					
Were non-conformance issues noted at sample receipt?	Vec	OI		No	
Non-Conformance issue other than noted above:	1 08	01		<u> </u>	
Paried February 2010				C-	ompleted by: KRU

Completed by:____

Laboratory Services

Laboratory Report

Client Santee Cooper

Linda Williams 1 Riverwood Dr.

Moncks Corner, SC 29461

Ground Water **Project:** Work Order: 1061329

Received: 06/30/2021 09:30

Dear Client:

Rogers and Callcott appreciates the opportunity to be of service to you. The attached laboratory services report includes analytical results and chain of custody for samples that were received on June 30, 2021. Rogers and Callcott maintains a formal QA/QC program. Unless otherwise noted, all analyses performed under NELAP certification have complied with all the requirements for the TNI standard. The analyses met the QA/QC confidence interval for each test method unless otherwise qualified. Estimated uncertainty is available upon request.

Privileged / Confidential information may be contained in this report and is intended only for the use of the addressee. If you are not the addressee, or the person responsible for delivering to the person addressed, you may not copy or deliver this message to anyone else. If you receive this message by mistake, please notify Rogers and Callcott immediately.

We strive to provide excellent service to our clients. Please contact Lauren Hollister, your Project Manager, at lhollister@rcenviro.com, (864)-232-1556 if you have any questions about this report.

CC: Jeanette Gilmetti, Sherri Brown, Courtney Ames Watkins

Lauren Hollister

Report Approved By:

Lauren Hollister Project Manager

This report may not be reproduced, except in full, without written permission from Rogers & Callcott, Inc.

PO Box 5655 | Greenville, SC 29606 | 426 Fairforest Way | Greenville, SC 29607 | main 864.232.1556 | fax 864.232.6140 rogersandcallcott.com

an employee-owned company

Page 1 of 13

South Carolina Greenville Laboratory Identification 23105 South Carolina Columbia Laboratory Identification 40572 North Carolina Laboratory Certification Number 27 North Carolina Drinking Water Lab Number 45710 NELAP Utah Certificate Number SC000042014-1 Georgia Drinking Water Lab ID 880

Client Santee Cooper

Certificate of Analysis

Linda Williams 1 Riverwood Dr.

Moncks Corner, SC 29461

Project: Ground Water **Work Order:** 1061329

Received: 06/30/2021 09:30

Sample Number	Sample Description	Matrix	Sampled	Type
1061329-01	AF07281 PM-1	Ground Water	06/21/21 13:08	Grab
1061329-02	AF07259 CBW-1	Ground Water	06/21/21 14:13	Grab
1061329-03	AF07274 CLFIB-1	Ground Water	06/22/21 10:07	Grab
1061329-04	AF07275 CLFIB-1 DUP	Ground Water	06/22/21 10:12	Grab
1061329-05	AF07276 CLFIB-2	Ground Water	06/22/21 12:13	Grab
1061329-06	AF07277 CLFIB-3	Ground Water	06/22/21 13:58	Grab
1061329-07	AF07278 CLFIB-4	Ground Water	06/22/21 14:54	Grab
1061329-08	AF07283 POZ-4	Ground Water	06/23/21 13:55	Grab
1061329-09	AF07285 POZ-6	Ground Water	06/23/21 15:04	Grab
1061329-10	AF07280 CLFIB-5D	Ground Water	06/23/21 10:29	Grab
1061329-11	AF07284 POZ-5D	Ground Water	06/23/21 12:49	Grab
1061329-12	AF07279 CLFIB-5	Ground Water	06/23/21 09:15	Grab
1061329-13	AF07286 POZ-7	Ground Water	06/24/21 10:40	Grab
1061329-14	AF07287 POZ-7-DUP	Ground Water	06/24/21 10:45	Grab
1061329-15	AF07282 POZ-3	Ground Water	06/24/21 09:18	Grab
1061329-16	AF07244 CAP-1	Ground Water	06/24/21 12:19	Grab

PO Box 5655 | Greenville, SC 29606 | 426 Fairforest Way | Greenville, SC 29607 | main 864.232.1556 | fax 864.232.6140 rogersandcallcott.com

Santee Cooper Project: Ground Water
1 Riverwood Dr. Work Order: 1061329

Moncks Corner, SC 29461 Reported: 07/07/21 14:46

Sample Data

Sample Number

1061329-01

Sample Description

AF07281 PM-1 collected on 06/21/21 13:08

	Result	Reporting Limit	Units	DF	Analyzed	Method	Flag	Analyst	Batch
	ND	0.20	ug/L	1.00	07/05/21 12:07	EPA 7470A		NAR	B1G0086
	ND	15	ug/L	1.00	07/05/21 14:38	EPA 6010D		MLR	B1F1295
	ND	10	ug/L	1.00	07/05/21 14:38	EPA 6010D		MLR	B1F1295
	ND	10	ug/L	1.00	07/05/21 14:38	EPA 6010D		MLR	B1F1295
1061329-02 AF07259 CBW-1 collec	eted on 06/	21/21 14:13							
	Result	Reporting Limit	Units	DF	Analyzed	Method	Flag	Analyst	Batch
	ND	0.20	ug/L	1.00	07/05/21 12:18	EPA 7470A		NAR	B1G0086
	ND	40	ug/L	2.00	07/05/21 16:38	EPA 6010D	X	MLR	B1F1295
	ND	20	ug/L	2.00	07/05/21 16:38	EPA 6010D	X	MLR	B1F1295
	ND	20	ug/L	2.00	07/05/21 16:38	EPA 6010D	X	MLR	B1F1295
1061329-03 AF07274 CLFIB-1 colle	ected on 0	6/22/21 10:07							
	Result	Reporting Limit	Units	DF	Analyzed	Method	Flag	Analyst	Batch
	ND	15	ug/L	1.00	07/05/21 14:59	EPA 6010D		MLR	B1F1295
1061329-04 AF07275 CLFIB-1 DUF	P collected	on 06/22/21	10:12						
	Result	Reporting Limit	Units	DF	Analyzed	Method	Flag	Analyst	Batch
	AF07259 CBW-1 collect 1061329-03 AF07274 CLFIB-1 collect	ND ND ND 1061329-02 AF07259 CBW-1 collected on 06/ Result ND	ND 0.20 ND 15 ND 10 ND 20 ND 40 ND 20 ND 15 ND 10 ND	ND 0.20 ug/L ND 15 ug/L ND 10 ug/L ND 20 ug/L ND 15 ug/L ND 15 ug/L 1061329-04 AF07275 CLFIB-1 DUP collected on 06/22/21 10:12	ND 0.20 ug/L 1.00 ND 15 ug/L 1.00 ND 10 ug/L 1.00 ND 20 ug/L 2.00 ND 15 ug/L 1.00 ND 15 ug/L 1.00 1061329-04 AF07275 CLFIB-1 DUP collected on 06/22/21 10:12	ND	ND	ND	ND

PO Box 5655 | Greenville, SC 29606 | 426 Fairforest Way | Greenville, SC 29607 | main 864.232.1556 | fax 864.232.6140 | rogersandcallcott.com

MLR

B1F1295

ug/L

1.00 07/05/21 15:24

EPA 6010D

ND

15

Boron

Santee Cooper 1 Riverwood Dr. Moncks Corner, SC 29461 Project: Work Order: Ground Water 1061329

Reported:

07/07/21 14:46

Sample Number

1061329-05

Sample Description

AF07276 CLFIB-2 collected on 06/22/21 12:13

Parameter	Result	Reporting Limit	Units	DF	Analyzed	Method	Flag	Analyst	Batch
Total Metals									
Boron	16	15	ug/L	1.00	07/05/21 15:28	EPA 6010D		MLR	B1F1295
Sample Number Sample Description	1061329-06 AF07277 CLFIB-3 collected on	06/22/21 13:58	.						
Parameter	Result	Reporting Limit	Units	DF	Analyzed	Method	Flag	Analyst	Batch
Total Metals									
Boron	80	15	ug/L	1.00	07/05/21 15:32	EPA 6010D		MLR	B1F1295
Sample Number Sample Description	1061329-07 AF07278 CLFIB-4 collected on	06/22/21 14:54	ļ						
Parameter	Result	Reporting Limit	Units	DF	Analyzed	Method	Flag	Analyst	Batch
Total Metals									
Boron	16	15	ug/L	1.00	07/05/21 15:36	EPA 6010D		MLR	B1F1295
Sample Number Sample Description	1061329-08 AF07283 POZ-4 collected on 06	5/23/21 13:55							
Parameter	Result	Reporting Limit	Units	DF	Analyzed	Method	Flag	Analyst	Batch
Total Metals									
Boron	ND	15	ug/L	1.00	07/05/21 16:04	EPA 6010D		MLR	B1F1295
Sample Number Sample Description	1061329-09 AF07285 POZ-6 collected on 06	5/23/21 15:04							
Parameter	Result	Reporting Limit	Units	DF	Analyzed	Method	Flag	Analyst	Batch
Total Metals									
Boron	41	15	ug/L	1.00	07/05/21 16:09	EPA 6010D		MLR	B1F1295

PO Box 5655 | Greenville, SC 29606 | 426 Fairforest Way | Greenville, SC 29607 | main 864.232.1556 | fax 864.232.6140 rogersandcallcott.com

Santee Cooper 1 Riverwood Dr. Moncks Corner, SC 29461 Project:

Ground Water 1061329

Work Order: Reported:

07/07/21 14:46

Sample Number

1061329-10

Sample Description

AF07280 CLFIB-5D collected on 06/23/21 10:29

_		Reporting							
Parameter	Resul	Limit	Units	DF	Analyzed	Method	Flag	Analyst	Batch
Total Metals									
Boron	ND	15	ug/L	1.00	07/05/21 16:13	EPA 6010D		MLR	B1F1295
Sample Number Sample Description	1061329-11 AF07284 POZ-5D collected on	06/23/21 12:49)						
Parameter —	Resul	Reporting t Limit	Units	DF	Analyzed	Method	Flag	Analyst	Batch
Total Metals									
Boron	230	15	ug/L	1.00	07/05/21 16:17	EPA 6010D		MLR	B1F1295
Sample Number Sample Description	1061329-12 AF07279 CLFIB-5 collected or	ı 06/23/21 09:1:	5						
Parameter	Resul	Reporting t Limit	Units	DF	Analyzed	Method	Flag	Analyst	Batch
Total Metals									
Boron	19	15	ug/L	1.00	07/05/21 16:21	EPA 6010D		MLR	B1F1295
Sample Number Sample Description	1061329-13 AF07286 POZ-7 collected on 0	6/24/21 10:40							
Parameter	Resul	Reporting t Limit	Units	DF	Analyzed	Method	Flag	Analyst	Batch
Total Metals									
Boron	ND	15	ug/L	1.00	07/05/21 16:26	EPA 6010D		MLR	B1F1295
Sample Number Sample Description	1061329-14 AF07287 POZ-7-DUP collected	l on 06/24/21 1	0:45						
Parameter	Resul	Reporting t Limit	Units	DF	Analyzed	Method	Flag	Analyst	Batch
Total Metals									
Boron	15	15	ug/L	1.00	07/05/21 16:30	EPA 6010D		MLR	B1F1295

PO Box 5655 | Greenville, SC 29606 | 426 Fairforest Way | Greenville, SC 29607 | main 864.232.1556 | fax 864.232.6140 rogersandcallcott.com

Santee Cooper Project: Ground Water
1 Riverwood Dr. Work Order: 1061329
Moncks Corner, SC 29461 Reported: 07/07/21 14:46

Sample Number 1061329-15

Sample Description AF07282 POZ-3 collected on 06/24/21 09:18

Parameter		Result	Reporting Limit	Units	DF	Analyzed	Method	Flag	Analyst	Batch
Total Metals										
Boron		ND	15	ug/L	1.00	07/05/21 16:34	EPA 6010D		MLR	B1F1295
Sample Number	1061329-16									

Sample Description AF07244 CAP-1 collected on 06/24/21 12:19

Parameter	Result	Reporting Limit	Units	DF	Analyzed	Method	Flag	Analyst	Batch
Total Metals									
Mercury	ND	0.20	ug/L	1.00	07/05/21 12:21	EPA 7470A		NAR	B1G0086
Boron	480	15	ug/L	1.00	07/05/21 17:06	EPA 6010D		MLR	B1F1295
Lithium	96	10	ug/L	1.00	07/05/21 17:06	EPA 6010D		MLR	B1F1295

Santee Cooper Project: Ground Water
1 Riverwood Dr. Work Order: 1061329
Moncks Corner, SC 29461 Reported: 07/07/21 14:46

Total Metals **Quality Control Summary**

		Reporting		Spike	Spike Source		%REC		RPD	
Parameter	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Flags
Batch B1F1295 - EPA 3005A										
Blank (B1F1295-BLK1)										
Boron	ND	15	ug/L							
Lithium	ND	10	ug/L							
Molybdenum	ND	10	ug/L							
LCS (B1F1295-BS1)										
Boron	230	15	ug/L	250		93	80-120			
Lithium	235	10	ug/L	250		94	80-120			
Molybdenum	230	10	ug/L	250		91	80-120			
Matrix Spike (B1F1295-MS1)	Source: 1061329-01									
Boron	250	15	ug/L	250	ND	101	75-125			
Lithium	257	10	ug/L	250	ND	102	75-125			
Molybdenum	240	10	ug/L	250	ND	94	75-125			
Matrix Spike (B1F1295-MS2)	Source: 1061329-03									
Boron	260	15	ug/L	250	ND	102	75-125			
Lithium	290	10	ug/L	250	ND	113	75-125			
Molybdenum	240	10	ug/L	250	ND	96	75-125			
Matrix Spike Dup (B1F1295-MSD1)	Source: 1061329-01									
Boron	250	15	ug/L	250	ND	99	75-125	2	20	
Lithium	254	10	ug/L	250	ND	100	75-125	1	20	
Molybdenum	230	10	ug/L	250	ND	93	75-125	2	20	
Matrix Spike Dup (B1F1295-MSD2)	Source: 1061329-03									
Boron	250	15	ug/L	250	ND	101	75-125	2	20	
Lithium	282	10	ug/L	250	ND	109	75-125	3	20	
Molybdenum	230	10	ug/L	250	ND	94	75-125	2	20	
Post Spike (B1F1295-PS1)	Source: 1061329-01									
Boron	0.48		mg/L	0.500	ND	95	75-125			
Lithium	0.507		mg/L	0.500	ND	101	75-125			
Molybdenum	0.47		mg/L	0.500	ND	93	75-125			

PO Box 5655 | Greenville, SC 29606 | 426 Fairforest Way | Greenville, SC 29607 | main 864.232.1556 | fax 864.232.6140 | rogersandcallcott.com

 Santee Cooper
 Project:
 Ground Water

 1 Riverwood Dr.
 Work Order:
 1061329

 Moncks Corner, SC 29461
 Reported:
 07/07/21 14:46

Total Metals **Quality Control Summary**

Parameter	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Flags
Batch B1F1295 - EPA 3005A										
Post Spike (B1F1295-PS2)	Source: 1061329-03									
Boron	0.49		mg/L	0.500	ND	96	75-125			
Lithium	0.552		mg/L	0.500	ND	109	75-125			
Molybdenum	0.47		mg/L	0.500	ND	94	75-125			
Batch B1G0086 - EPA 7470A										
Blank (B1G0086-BLK1)										
Mercury	ND	0.20	ug/L							
LCS (B1G0086-BS1)										
Mercury	5.0	0.20	ug/L	5.00		100	80-120			
Matrix Spike (B1G0086-MS1)	Source: 1061329-01									
Mercury	5.0	0.20	ug/L	5.00	ND	100	75-125			
Matrix Spike Dup (B1G0086-MSD1)	Source: 1061329-01									
Mercury	4.9	0.20	ug/L	5.00	ND	99	75-125	0.7	20	
Post Spike (B1G0086-PS1)	Source: 1061329-01									
Mercury	3.9		ug/L	4.00	ND	98	80-120			

PO Box 5655 | Greenville, SC 29606 | 426 Fairforest Way | Greenville, SC 29607 | main 864.232.1556 | fax 864.232.6140 rogersandcallcott.com

Santee Cooper Project: Ground Water 1 Riverwood Dr. Work Order: 1061329 Moncks Corner, SC 29461 Reported: 07/07/21 14:46

Sample Preparation Data

Parameter	Batch	Sample ID	Prepared	Analyst	
EPA 3005A ICP Digestion					
EPA 3005A	B1F1295	1061329-01	06/30/2021 15:35	MTH	
EPA 3005A	B1F1295	1061329-02	06/30/2021 15:35	MTH	
EPA 3005A	B1F1295	1061329-03	06/30/2021 15:35	MTH	
EPA 3005A	B1F1295	1061329-04	06/30/2021 15:35	MTH	
EPA 3005A	B1F1295	1061329-05	06/30/2021 15:35	MTH	
EPA 3005A	B1F1295	1061329-06	06/30/2021 15:35	MTH	
EPA 3005A	B1F1295	1061329-07	06/30/2021 15:35	MTH	
EPA 3005A	B1F1295	1061329-08	06/30/2021 15:35	MTH	
EPA 3005A	B1F1295	1061329-09	06/30/2021 15:35	MTH	
EPA 3005A	B1F1295	1061329-10	06/30/2021 15:35	MTH	
EPA 3005A	B1F1295	1061329-11	06/30/2021 15:35	MTH	
EPA 3005A	B1F1295	1061329-12	06/30/2021 15:35	MTH	
EPA 3005A	B1F1295	1061329-13	06/30/2021 15:35	MTH	
EPA 3005A	B1F1295	1061329-14	06/30/2021 15:35	MTH	
EPA 3005A	B1F1295	1061329-15	06/30/2021 15:35	MTH	
EPA 3005A	B1F1295	1061329-16	06/30/2021 15:35	MTH	
EPA 7470A Mercury Digestion					
EPA 7470A	B1G0086	1061329-01	07/05/2021 09:25	NAR	
EPA 7470A	B1G0086	1061329-02	07/05/2021 09:25	NAR	
EPA 7470A	B1G0086	1061329-16	07/05/2021 09:25	NAR	

 Santee Cooper
 Project:
 Ground Water

 1 Riverwood Dr.
 Work Order:
 1061329

 Moncks Corner, SC 29461
 Reported:
 07/07/21 14:46

Data Qualifiers and Definitions

ND Analyte NOT DETECTED at or above the reporting limit

NR Not reported

RPD Relative Percent Difference

X Result subject to sample matrix interference. Reporting limit has been adjusted where applicable.

Chain of Custody

1061329

Santee Cooper One Riverwood Drive Moneks Corner, SC 29461 one: (843)761-8000 Ext. 5148 Fox: (843)761-4175

Customer Email/Report Recipient: Date Results Needed by: Project/Task/Unit #: Rerun request for any flagged QC LCWILLA 121567 / JM02.09. GOI / 36500 @santeecooper.com Yes No. Analysis Group Description Sample Location/ ~ Labworks ID# Date (Internal use • Method # only) Reporting limit.
Misc. sample info lection Collection b (G) or, nposite (i. ٤ A STATE OF THE PROPERTY OF THE e g \mathbf{m} MDG X X 6/21/21 (308 G GW AF07281 PM-I PRI 1 X CBW-X X Х AF01259 - 02 1443 6/22/21 AF07274 CUEIB-! -03 AF07275 1012 CLFIB- | DUP -04 - 65 × CLFIB- 2 AF07276 1213 Х AF07277 -06 CLEIB-3 1359 X −ທ໗ CLFIB-4 1454 AF-07 278 8ن-Х 4507283 0/23/21 355 POZ-4 -0 Y Χ AF07285 POZ-6 1504 Sample Receiving (Internal Use Only)
TEMP (°C): 23-8 Initial: 644 ... Relinquished by: Employee#. ?=Date Time Received by: Employee# Moroun 35594 6/29/21 Correct pH: Yes Relinquished by: Date Received by: Employee# `- Time` Employee# Date Time__ Preservative Lot#: FEOGS 10/30/21 930 Date/Time/Init for preservative: Gypsum MÉTALS (all) Flyash. Nutrients MISC. ان <mark>Coal</mark> سيعيد -011 🚣 🗅 Ag 🗓 Cü - 🔭 - □ Sb TOCETT (a) Waliboard (a) (b) (b) (b) (b) (b) DBTEX <u>கோ-மிழெங்க</u> □ Ultimate □ Fe □ Se □ Napthalene .-Le demoter 2. . ☐ % Moisture -Ash 3 □ As :-∐'Sn` D.THM/HAA $\square'\mathbf{K}$ LITEPTIFOA **EC Gulon** DNIBAN . □ voc ∵ 'D Sulfûr' 10 Mineral ĽΒ 🗈 Li Ū Šr. □ Oil & Grease □ E. Coli - (F)(g) BTUs

O, Volatile Matter □ Ba U Ti ∃ Mg --41, -- 43 -- KISES ☐ Total Coliform = = CHN_ CO SORDIE MEDIS ☐ pH _____ ☐ Dissolved As □Ве NO2 (Megge) □ Mn Penty (SaSO4) Other Tests: □ Ca □ Mo TO XRF Scan Dissolved Fe NRDES □ Rad 226-त क्ष्युर कार्य कार्योगीत हर्षे -□ Cd-□ Na. ∏HG1∵ a ii Oil & Grease ∷a Fineness an Particulate Matter □ Co □ Hg OPCB O Ni eromata. □ Cr. □ Pb □.CrVI

Chain of Custody

santee cooper

10201329

Customer Email	l/Report Recipie	ent:	Date R	esults Ne	eded b	y:	: Project/Task/Unit #:				Rerun request for any flagge			gged	I QC			
_rcmirria	@santeec	ooper.com	<i>.</i>	ــــــــــــــــــــــــــــــــــــــ	<u>. </u>		ं ।2।	567	<u>/ JN</u>	102.0	59.6¢1	1 365	00	Yes	No			
	٠. هـ						_								A	<u>ınalys</u> î	s Grou	īĒ
Labworks ID # (Internal use only)	Sample Location Description		Collection Date	Collection Time	Sample Collector	Total 8 of containers	Bottle type: (Glass- G/Plastic-P)	Grab (G) or Composite (C)	Matrix(see below)	Preservative (see	• Re • Mi • An	com third # porting lim so sample y other not	il info		D,	ני	₹	,
AF07280	CLHB-51	-10	6/23/21	1 ' ''	BRT	1	P	G	g-w	2	,	,	·	_	×			
<u>AF</u> 07284	P02- 50	711	1	12 49	1	1	1	<u>J.</u>	1	<u>. l</u>					x			
AF07279	CT=18-2	12	T	-915	Ţ	1	T	Ī	1	T					x			
AF07286	P0Z-7	-13	6/24/21	l ol o	<u>1</u>		1	<u>`</u>		Ï.		-			X			
AF-07287	102-7-DU	> - 14	1	ાઇ <u>યુક્</u> દું.ન	. 1	1	1	<u> </u>	1	<u> </u>					×			
AF07282	Poz. 3. a.	\\$:;_	-: <u>1-</u>	<u>مجادہ</u>	1] _,	1.	1	1	1.	٧	,		ı	×			
A==7244	CAP-1	-1:6	} .	1219	<u> </u>			ſ.							λ	×	х	
4507255				<u>1340</u>	Ц_				Ш	Щ		·				×	×	
	- 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1	0/28	<u> </u>	, , ,	_=-	=			_				<u>_</u>					
	. ,	•											<u> </u>			_		
:				l	•		لـــــا			! <u>-</u> -		Samala	Receiving (I	ntornal	ica On			_
Relinguished by:	Employee#:	Date-	Time's A		ed by:	S. FE	nployee	#. je	Date		Time	TEME	(C): 2.3	. <u>6</u>	Initial	<u></u>	e	·
Grown	35594	6/29/21		FGD.								Correc	t pH: Yes	No	٠.			•
Relinquished by:	Employee#	- Qate 📆	Time	- Kecein	ed by:	· r	nployee	E E	Date	- 15 C	*Time*		vative Lot#:	:	- '			
YEUGS	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		(<u>IL</u>		<u>.] </u>	4		2 <i>او</i>	<u>' 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 -</u>	<u> </u>	i leser	Value Lour		,			
Relinguished by:	Employee#	Date	Time 📜 👢	Receiv	ed by:	. Fig	nployee	# 1	Date	<u> </u>	Time]]	·	``` ````````` ````````	-	-,i-,-		
	اد اداد مادر شاه به	:		- ;	·		, , , , , , , , , , , , , , , , , , ,	. š	- F		i i i i i i i i i i i i i i i i i i i		ime/init for	preserva	tive:			
	TALS (all)		ients .	Mis	C.	- 2	G	psun	n	- 1	Coal		Flyasi	(* Light	12	[‡] O:) ,ž	
OAg DG		- FI11 OC	77.2	□ BTEX			Wallbo	o ro-	1	70	Ultimate:	. ~ ~ .	Ammoni		Tra	ns. O:	1032	Ē
□ As □ K				☐ Napthale ☐ THM/HA		. IE	or Capp India	sim(<i>a.</i> . 1)	Para de	7.0	□ % Mois □ Ash —	ture	III LOI 🛥	المظ	A.P.		सार	
OB · DL		AD NH	N-A	□ VOC □ Oil & Gr	ر. د		5. <u>V</u>	M	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		☐ Sulfur	2,423	(Papell Mineral)	2.5				
□Ва□М	_ *** - * - * * - * - * - * - * - * - *	TOP TO SERVICE TO SERV	2 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	□ E. Coli			ুনাত আত	Ellowic Ellowic		100	O Stilfur O BTUs		ec Anal El Sieve se	75ÎS	4	Ĭi.		
ÜBe ∵Ü'M		i NO	Francisco	☐ Total Co	liform		OSol	ublo Mi	e	⊊ ∥ 5÷	☐ Volatile		- ⊪% Mòist	nte 🏭	ogije. Oji		i Li	<u>4.</u> 7
□ Ca □ M		Brat	A STATE OF THE STA	□ pH □ Dissolver □ Dissolver	d As	20.00	生1.84	Moistun		£∥≒.00	her_Tests:			7.5	± 13	القاراغز	71	
□ Cd _ : □ Na			- الاستخدام	□ Rad 226	utin in				* / *		(RF Scan IGI		MANT	<u> </u>	_ = 10	<u>(5.</u>) ∧ (6)	(6.5.7) 1	ija i
□ Co □ Ni	□ Hg			☐ Rad 228 ☐ PCB = 7	ور د اي		on Go	000.5 0.0-60		ום, י	ineness_ articulate M	affer Mart	∐ Oil & Gro a∏ As ¬≟	LSE EST	- (អ - ក	gD St		
□'Cr · □ Pb	D CrVI	-5		# 17.		i iii	डिवारी इंग्रह्म	4,510 1,000			articulate to		O As DIES	-		n ex		•
		iaj mi ni unijani na	** <u> </u>	1 - 1 a			g-qua	- / - i- 1-	Part I				ar in original o				<u> </u>	

Revised February 2018

Sample Receipt Verification

Client: Santee Cooper	Date Received:	06/	Work Order: ¹⁰⁶¹³²⁹		
	received.			-	
Carrier Name: Client FedEx UPS	US I	Mail		Cou	rier Field Services Other:
Tracking Number: 81536791	5239				_
Receipt Criteria		Y e s	N o	N A	Comments
Shipping container / cooler intact?		х			Damaged Leaking Other:
Custody seals intact?				χX	
COC included with samples?		х			
COC signed when relinquished and received?		х			
Sample bottles intact?		х			Damaged Leaking Other:
Sample ID on COC agree with label on bottle(s)?		Х			
Date / time on COC agree with label on bottle(s)?		х			
Number of bottles on COC agrees with number of bottles r	received?	х			
Samples received within holding time?		х			
Sample volume sufficient for analysis?		Х			
VOA vials free of headspace (<6mm bubble)?				Х	_
Samples cooled? Temp at receipt recorded on COC Temp measured with IR thermometer - SN: 9	97050067	х			Ice Cold Packs Dry Ice None
Samples requiring pH preservation at proper pH? Note: Samples for metals analysis may be preserved upon receipt in the Note: Samples for O&G and VOA analysis – preservation checked at	he lab. bench.	х			
Samples dechlorinated for parameters requiring chlorine re the time of sample collection? Note: Chlorine checked at bench for samples requiring Bacterial, VO analysis.				х	
If in-house p	preservation	used	– re	cord :	Lot#
HCL	H ₃ P	O ₄			
H ₂ SO ₄ HNO ₃	NaC Oth				
Comments:	Oiii				
Connents.					
Ware non conformance issues noted at sample receip	at? Vaa		. (Jo	
Were non-conformance issues noted at sample receip Non-Conformance issue other than noted above:	n: I es	or or	<u></u>	<u>100</u>	
Daviced Cabrupy 2010	<u> </u>			Co	ompleted by: CTC

Completed by:_ Page 13 of 13

Laboratory Services

Laboratory Report

Client Santee Cooper

Linda Williams 1 Riverwood Dr.

Moncks Corner, SC 29461

Project:

Received:

Ground Water

Work Order: 1070517

07/08/2021 09:25

Dear Client:

Rogers and Callcott appreciates the opportunity to be of service to you. The attached laboratory services report includes analytical results and chain of custody for samples that were received on July 08, 2021. Rogers and Callcott maintains a formal QA/QC program. Unless otherwise noted, all analyses performed under NELAP certification have complied with all the requirements for the TNI standard. The analyses met the QA/QC confidence interval for each test method unless otherwise qualified. Estimated uncertainty is available upon request.

Privileged / Confidential information may be contained in this report and is intended only for the use of the addressee. If you are not the addressee, or the person responsible for delivering to the person addressed, you may not copy or deliver this message to anyone else. If you receive this message by mistake, please notify Rogers and Callcott immediately.

We strive to provide excellent service to our clients. Please contact Michael Woodrum, your Project Manager, at mwoodrum@rcenviro.com, 864-232-1556 if you have any questions about this report.

CC: Jeanette Gilmetti, Sherri Brown, Courtney Ames Watkins

al A. Woodman

Report Approved By:

Michael Woodrum Project Manager

South Carolina Greenville Laboratory Identification 23105 South Carolina Columbia Laboratory Identification 40572 North Carolina Laboratory Certification Number 27 North Carolina Drinking Water Lab Number 45710 NELAP Utah Certificate Number SC000042014-1 Georgia Drinking Water Lab ID 880

Client Santee Cooper

Certificate of Analysis

Linda Williams
1 Riverwood Dr.

Moncks Corner, SC 29461

Project: Ground Water **Work Order:** 1070517

Received: 07/08/2021 09:25

Sample Number	Sample Description	Matrix	Sampled	Type
1070517-01	AF07247 CAP-4	Ground Water	06/28/21 11:55	Grab
1070517-02	AF07249 CAP-6	Ground Water	06/28/21 12:55	Grab
1070517-03	AF07251 CAP-8	Ground Water	06/28/21 14:23	Grab
1070517-04	AF07246 CAP-3	Ground Water	06/29/21 10:44	Grab
1070517-05	AF07248 CAP-5	Ground Water	06/29/21 11:50	Grab
1070517-06	AF07252 CAP-9	Ground Water	06/29/21 14:00	Grab
1070517-07	AF07253 CAP-9 DUP	Ground Water	06/29/21 14:05	Grab
1070517-08	AF07254 CAP-10	Ground Water	06/30/21 11:52	Grab
1070517-09	AF07250 CAP-7	Ground Water	06/30/21 10:23	Grab
1070517-10	AF07266 CCMAP-4	Ground Water	07/01/21 10:24	Grab
1070517-11	AF07264 CCMAP-3	Ground Water	07/01/21 11:37	Grab
1070517-12	AF07265 CCMAP-3 DUP	Ground Water	07/01/21 11:42	Grab
1070517-13	AF07263 CCMAP-2	Ground Water	07/01/21 12:46	Grab
1070517-14	AF07262 CCMAP-1	Ground Water	07/01/21 13:47	Grab

PO Box 5655 | Greenville, SC 29606 | 426 Fairforest Way | Greenville, SC 29607 | main 864.232.1556 | fax 864.232.6140 | rogersandcallcott.com

Santee Cooper Project: Ground Water 1 Riverwood Dr. Work Order: 1070517

Moncks Corner, SC 29461 Reported: 07/16/21 18:02

Sample Data

Sample Number

1070517-01

Sample Description

AF07247 CAP-4 collected on 06/28/21 11:55

Parameter	Result	Reporting Limit	Units	DF	Analyzed	Method	Flag	Analyst	Batch
Total Metals									
Lithium	27	10	ug/L	1.00	07/14/21 18:36	EPA 6010D		MLR	B1G0299
Sample Number Sample Description	1070517-02 AF07249 CAP-6 collected on 06/	/28/21 12:55							
Parameter	Result	Reporting Limit	Units	DF	Analyzed	Method	Flag	Analyst	Batch
Total Metals									
Lithium	ND	10	ug/L	1.00	07/14/21 18:40	EPA 6010D		MLR	B1G0299
Sample Number Sample Description	1070517-03 AF07251 CAP-8 collected on 06/	/28/21 14:23							
Parameter	Result	Reporting Limit	Units	DF	Analyzed	Method	Flag	Analyst	Batch
Total Metals									
Lithium	63	10	ug/L	1.00	07/14/21 19:19	EPA 6010D		MLR	B1G0299
Sample Number Sample Description	1070517-04 AF07246 CAP-3 collected on 06/	29/21 10:44							
Parameter	Result	Reporting Limit	Units	DF	Analyzed	Method	Flag	Analyst	Batch
Total Metals									
Mercury	ND	0.20	ug/L	1.00	07/16/21 14:52	EPA 7470A	S 7	ELN	B1G0636
Boron	6300	75	ug/L	5.00	07/14/21 16:07	EPA 6010D		MLR	B1G0484
Lithium	11	10	ug/L	1.00	07/14/21 18:44	EPA 6010D		MLR	B1G0299
Sample Number Sample Description	1070517-05 AF07248 CAP-5 collected on 06/	/29/21 11:50							
Parameter	Result	Reporting Limit	Units	DF	Analyzed	Method	Flag	Analyst	Batch
Total Metals									
Mercury	ND	0.20	ug/L	1.00	07/16/21 14:55	EPA 7470A	S 7	ELN	B1G0636
Boron	ND	40	ug/L	1.00	07/14/21 17:58	EPA 6010D		MLR	B1G0484
Lithium	13	10	ug/L	1.00	07/14/21 17:58	EPA 6010D		MLR	B1G0299

PO Box 5655 | Greenville, SC 29606 | 426 Fairforest Way | Greenville, SC 29607 | main 864.232.1556 | fax 864.232.6140 | rogersandcallcott.com

an employee-owned company

Santee Cooper 1 Riverwood Dr. Moncks Corner, SC 29461 Project:

Ground Water

Work Order: Reported: 1070517 07/16/21 18:02

Sample Number

1070517-06

Sample Description

AF07252 CAP-9 collected on 06/29/21 14:00

Parameter	Result	Reporting Limit	Units	DF	Analyzed	Method	Flag	Analyst	Batch
Total Metals									
Mercury	ND	0.20	ug/L	1.00	07/16/21 14:58	EPA 7470A	S 7	ELN	B1G0636
Boron	7300	75	ug/L	5.00	07/14/21 16:11	EPA 6010D		MLR	B1G0484
Lithium	63	10	ug/L	1.00	07/14/21 18:17	EPA 6010D		MLR	B1G0299

Sample Number

1070517-07

Sample Description AF07253 CAP-9 DUP collected on 06/29/21 14:05

Parameter	Result	Reporting Limit	Units	DF	Analyzed	Method	Flag	Analyst	Batch
Total Metals									
Mercury	ND	0.20	ug/L	1.00	07/16/21 15:01	EPA 7470A	S7	ELN	B1G0636
Boron	6800	75	ug/L	5.00	07/14/21 16:14	EPA 6010D		MLR	B1G0484
Lithium	67	10	ug/L	1.00	07/14/21 18:48	EPA 6010D		MLR	B1G0299

Sample Number

1070517-08

Sample Description AF07254 CAP-10 collected on 06/30/21 11:52

Parameter	Result	Reporting Limit	Units	DF	Analyzed	Method	Flag	Analyst	Batch
Total Metals									
Lithium	ND	10	ug/L	1.00	07/14/21 19:23	EPA 6010D		MLR	B1G0299

Sample Number Sample Description 1070517-09

AF07250 CAP-7 collected on 06/30/21 10:23

Parameter	Result	Reporting Limit	Units	DF	Analyzed	Method	Flag	Analyst	Batch
Total Metals									
Mercury	ND	0.20	ug/L	1.00	07/16/21 14:44	EPA 7470A	S 7	ELN	B1G0636
Boron	29000	150	ug/L	10.0	07/16/21 13:30	EPA 6010D		MLR	B1G0484
Lithium	ND	10	ug/L	1.00	07/14/21 18:52	EPA 6010D		MLR	B1G0299

Sample Number

1070517-10

Sample Description AF07266 CCMAP-4 collected on 07/01/21 10:24

Parameter	Result	Reporting Limit	Units	DF	Analyzed	Method	Flag	Analyst	Batch
Total Metals									
Lithium	ND	10	ug/L	1.00	07/14/21 19:27	EPA 6010D		MLR	B1G0299

PO Box 5655 | Greenville, SC 29606 | 426 Fairforest Way | Greenville, SC 29607 | main 864.232.1556 | fax 864.232.6140 rogersandcallcott.com

an employee-owned company

Santee Cooper Project:

1 Riverwood Dr. Work Order:

Moncks Corner, SC 29461 Reported:

Sample Number

1070517-11

Sample Description

AF07264 CCMAP-3 collected on 07/01/21 11:37

Sumple Description	AU 0/201 CCMAR 3 Collected on 0/101/21 11:37												
Parameter		Result	Reporting Limit	Units	DF	Analyzed	Method	Flag	Analyst	Batch			
Total Metals													
Lithium		25	10	ug/L	1.00	07/14/21 19:30	EPA 6010D		MLR	B1G0299			
Sample Number Sample Description	1070517-12 AF07265 CCMAP-3 DU	JP collect	ed on 07/01/2	1 11:42									
Parameter		Result	Reporting Limit	Units	DF	Analyzed	Method	Flag	Analyst	Batch			
Total Metals													
Lithium		26	10	ug/L	1.00	07/14/21 19:34	EPA 6010D		MLR	B1G0299			
Sample Number Sample Description	1070517-13 AF07263 CCMAP-2 col	1070517-13 AF07263 CCMAP-2 collected on 07/01/21 12:46											
Parameter		Result	Reporting Limit	Units	DF	Analyzed	Method	Flag	Analyst	Batch			
Total Metals													
Lithium		ND	10	ug/L	1.00	07/14/21 19:38	EPA 6010D		MLR	B1G0299			
Sample Number Sample Description	1070517-14 AF07262 CCMAP-1 col	lected on	07/01/21 13:4	7									
Parameter		Result	Reporting Limit	Units	DF	Analyzed	Method	Flag	Analyst	Batch			
Total Metals													
Lithium		ND	10	ug/L	1.00	07/14/21 19:42	EPA 6010D		MLR	B1G0299			

Ground Water

07/16/21 18:02

1070517

Santee Cooper Project:

1 Riverwood Dr. Work Order:

Moncks Corner, SC 29461 Reported:

Total Metals **Quality Control Summary**

Ground Water

07/16/21 18:02

1070517

Parameter	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Flags
Batch B1G0299 - EPA 200.7 M	Íod									
Blank (B1G0299-BLK1)										
Lithium	ND	10	ug/L							
LCS (B1G0299-BS1)										
Lithium	265	10	ug/L	250		106	80-120			
LCS Dup (B1G0299-BSD1)										
Lithium	269	10	ug/L	250		108	80-120	1	20	
Matrix Spike (B1G0299-MS1)	Source: 1070517-05									
Lithium	292	10	ug/L	250	13	112	75-125			
Matrix Spike (B1G0299-MS2)	Source: 1070517-06									
Lithium	336	10	ug/L	250	63	109	75-125			
Matrix Spike Dup (B1G0299-MSD1)	Source: 1070517-05									
Lithium	295	10	ug/L	250	13	113	75-125	1	20	
Matrix Spike Dup (B1G0299-MSD2)	Source: 1070517-06									
Lithium	332	10	ug/L	250	63	107	75-125	1	20	
Post Spike (B1G0299-PS1)	Source: 1070517-05									
Lithium	0.540		mg/L	0.500	ND	105	75-125			
Post Spike (B1G0299-PS2)	Source: 1070517-06									
Lithium	0.570		mg/L	0.500	ND	101	75-125			
Batch B1G0484 - EPA 200.7 M	1 od									
Blank (B1G0484-BLK1)										
Boron	ND	15	ug/L							
LCS (B1G0484-BS1)										
Boron	250	15	ug/L	250		99	80-120			

PO Box 5655 | Greenville, SC 29606 | 426 Fairforest Way | Greenville, SC 29607 | main 864.232.1556 | fax 864.232.6140 rogersandcallcott.com

Santee Cooper
1 Riverwood Dr.
Moncks Corner, SC 29461

Project: Ground Water
Work Order: 1070517
Reported: 07/16/21 18:02

Total Metals **Quality Control Summary**

Parameter	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Flags
Batch B1G0484 - EPA 200.7 N	Íod									
LCS Dup (B1G0484-BSD1)										
Boron	260	15	ug/L	250		102	80-120	3	20	
Matrix Spike (B1G0484-MS1)	Source: 1070517-05									
Boron	270	15	ug/L	250	ND	97	75-125			
Matrix Spike Dup (B1G0484-MSD1)	Source: 1070517-05									
Boron	270	15	ug/L	250	ND	98	75-125	0.5	20	
Post Spike (B1G0484-PS1)	Source: 1070517-05									
Boron	510	15	ug/L	500	ND	96	75-125			
Batch B1G0636 - EPA 7470A										
Blank (B1G0636-BLK1)										
Mercury	ND	0.20	ug/L							
LCS (B1G0636-BS1)										
Mercury	4.8	0.20	ug/L	5.00		96	80-120			
LCS Dup (B1G0636-BSD1)										
Mercury	4.9	0.20	ug/L	5.00		97	80-120	1	20	
Matrix Spike (B1G0636-MS1)	Source: 1070517-09									
Mercury	4.7	0.20	ug/L	5.00	ND	93	75-125			
Post Spike (B1G0636-PS1)	Source: 1070517-09									
Mercury	3.3		ug/L	4.00	ND	82	80-120			
Post Spike (B1G0636-PS2)	Source: 1070517-04									
Mercury	2.9		ug/L	4.00	ND	74	80-120			S 7
Post Spike (B1G0636-PS3)	Source: 1070517-05									
Mercury	3.0		ug/L	4.00	ND	74	80-120			S 7

PO Box 5655 | Greenville, SC 29606 | 426 Fairforest Way | Greenville, SC 29607 | main 864.232.1556 | fax 864.232.6140 | rogersandcallcott.com

 Santee Cooper
 Project:
 Ground Water

 1 Riverwood Dr.
 Work Order:
 1070517

 Moncks Corner, SC 29461
 Reported:
 07/16/21 18:02

Total Metals **Quality Control Summary**

Parameter	Result	Reporting Limit Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Flags
Batch B1G0636 - EPA 74'	70A								
Post Spike (B1G0636-PS4)	Source: 1070517-06								
Mercury	2.9	ug/L	4.00	ND	72	80-120			S 7
Post Spike (B1G0636-PS5)	Source: 1070517-07								
Mercury	2.8	ug/L	4.00	ND	69	80-120			S 7

 Santee Cooper
 Project:
 Ground Water

 1 Riverwood Dr.
 Work Order:
 1070517

 Moncks Corner, SC 29461
 Reported:
 07/16/21 18:02

Sample Preparation Data

Parameter	Batch	Sample ID	Prepared	Analyst	
EPA 200.7 M Digestion					
EPA 200.7 Mod	B1G0299	1070517-01	07/08/2021 12:10	CGH	
EPA 200.7 Mod	B1G0299	1070517-02	07/08/2021 12:10	CGH	
EPA 200.7 Mod	B1G0299	1070517-03	07/08/2021 12:10	CGH	
EPA 200.7 Mod	B1G0299	1070517-04	07/08/2021 12:10	CGH	
EPA 200.7 Mod	B1G0484	1070517-04	07/12/2021 12:10	CGH	
EPA 200.7 Mod	B1G0299	1070517-05	07/08/2021 12:10	CGH	
EPA 200.7 Mod	B1G0484	1070517-05	07/12/2021 12:10	CGH	
EPA 200.7 Mod	B1G0299	1070517-06	07/08/2021 12:10	CGH	
EPA 200.7 Mod	B1G0484	1070517-06	07/12/2021 12:10	CGH	
EPA 200.7 Mod	B1G0299	1070517-07	07/08/2021 12:10	CGH	
EPA 200.7 Mod	B1G0484	1070517-07	07/12/2021 12:10	CGH	
EPA 200.7 Mod	B1G0299	1070517-08	07/08/2021 12:10	CGH	
EPA 200.7 Mod	B1G0299	1070517-09	07/08/2021 12:10	CGH	
EPA 200.7 Mod	B1G0484	1070517-09	07/12/2021 12:10	CGH	
EPA 200.7 Mod	B1G0299	1070517-10	07/08/2021 12:10	CGH	
EPA 200.7 Mod	B1G0299	1070517-11	07/08/2021 12:10	CGH	
EPA 200.7 Mod	B1G0299	1070517-12	07/08/2021 12:10	CGH	
EPA 200.7 Mod	B1G0299	1070517-13	07/08/2021 12:10	CGH	
EPA 200.7 Mod	B1G0299	1070517-14	07/08/2021 12:10	CGH	
EPA 7470A Mercury Digestion					
EPA 7470A	B1G0636	1070517-04	07/15/2021 12:40	CAL	
EPA 7470A	B1G0636	1070517-05	07/15/2021 12:40	CAL	
EPA 7470A	B1G0636	1070517-06	07/15/2021 12:40	CAL	
EPA 7470A	B1G0636	1070517-07	07/15/2021 12:40	CAL	
EPA 7470A	B1G0636	1070517-09	07/15/2021 12:40	CAL	

Santee Cooper Project: Ground Water
1 Riverwood Dr. Work Order: 1070517
Moncks Corner, SC 29461 Reported: 07/16/21 18:02

Data Qualifiers and Definitions

ND Analyte NOT DETECTED at or above the reporting limit

NR Not reported

RPD Relative Percent Difference

S7 Result calculated by Method of Standard Addition due to sample matrix interference and initial spike failures.

Chain of Custody

1070517

Santee Cooper One Riverwood Drive Moneks Corner, SC 29461 Phone: (843)761-8000 Ext. 5148 Fax: (843)761-4175

Customer Email/Report Recipient: Date Results Needed by: Project/Task/Unit #: Rerun request for any flagged QC LCWILLIA 121567/ JM02.09. GOI / 36500 @santeecooper.com Yes No **Analysis Group** ٤ G AF67247 6/28/21 2 GW CAP-4 1155 BRI $\neg \odot 1$ Х -02 AF07249 CAP-6 1255 Х AF07251 CAP-8 1423 - O3 Х BIT 6/29/21 AF07246 CAP-3 1044 Χ X -04 Х AF67248 CAP-5 1120 Х Х AF07252 CAP-9 1400 -66 X AF07253 <u>ص</u> Х Х × CAP-9 DUP 1405 MOG -09 AF 07254 6/30/21 CAP-10 1152 X BRT -09 CAP-7 AF07250 6/30/21 1023 X X X Sample Receiving (Internal Use Only) Kelinguiskeit sya Received by: Time Employee # TEMP (°C): 25 4 Initial: 29mg wan 35594 7/7/21 Relinquished by: Correct pH: Yes Jime Employee # Preservative Lot#: Relinquished by: Received by: Date/Time/Init for preservative: --- OMETALS (all) MISC. O BTEX □ Napthalene □ THM/HAA □ VOC □ Oil & Gréase □ E: Coli □ Total Coliform OTTOR □pH Dissolved As ☑ Dissolved Fe ☑ Rad 226 ☐ Rad 228 □ PCB

Chain of Custody

1070517

santee cooper

Santee Cooper
One Riverwood Drive
Monoks Corner, SC 29461
Phone: (843)761-8000 Ext. 5148
Fax: (843)761-4175

Customer Email	/Report Recipie	ent:	Date R	esults Ne	eded b	y:		Pr	oject/	Task/	Unit #:	Rerun request for any fla		flagged Q	С	
LCWILLIA	@santeed	cooper.com		·/.			121	567	/ <u>T</u> /	102.	09.GØI	J 36500	Yes	No		
														<u>An</u>	alvsis Group	
Labvege D# (intendruse call)				office doublings	State Colored							esendar afræ Er Tan pan (** Jan state grø Leftere		ב:		
A=07266	CCMAP-	+	7/1/21	1024	BITT	(P	G	€W	2.	-10			×		
AF07264	CCMAP-3		1	1137	1			1		1	-11			×		
AF07265	CCMAP-3	DUP		1142							-12			×		
AF07263	CCMAP- 2			1246							-13			×		
A=07262	CCMAP-1		Ţ	1847		Ţ]		1		_14			Х		
												· · · · · · · · · · · · · · · · · · ·				
									<u> </u>							
												·				
Relinguished by	Employee		Tible	Recen	red by:	j je E	mployee	#.	Date		Sequility St	Sample Receiv	ing (Internal	Use Only Initial:	<i>'</i>)	
Sgrywun	35594	7/7/24	1500	POP	Gro	- 02					the state of the s	Correct pH:				
Relinquished by:	The state of the state of	- Cate		Recei	e diby:	· 英语 · · · · · · · · · · · · · · · · · ·	mployee	# 413 CC	200		0925	Preservative				
SEVER Relinquished by:		Date	Time	Receiv		Έ	mployee		Date	/21 	Time_		-		===	
		<u>, 46</u> 43 € 60 , √ 2 55	**************************************	aristifi ya jirili dala	-							Date/Time/In	it for preserv	ative:—		
DAR DOC DAI DE DAS CX DR DI EDI DBR DI DI DI DI DI DI DI DI DI DI DI DI DI D				MI DETEX DIAPTHAL THIM/H DVGC DIE Gi GIE Chi GTotal Cl DISsolve Dissolve Dissolve Rad 228 DFCB	ene AA rease liform d As ed Fe										He will He	

Revised February 2018

Sample Receipt Verification

Client: Santee Co	oper]	Date Received:	07	/08/2	11	Work Order:	1070517
Carrier Name: Clie	rnt FedEx UPS Tracking Number: 815367915	US 1 250	Mail		Cou	ırier Field Service	es Other:
Receipt Criteria			Y e s	N o	N A	Comments	
Shipping container / coo	er intact?		x			Damaged Leaking	Other:
Custody seals intact?					х		
COC included with samp	oles?		х				
COC signed when relinq	uished and received?		х				
Sample bottles intact?			Х			Damaged Leaking	Other:
Sample ID on COC agree	e with label on bottle(s)?		х				
Date / time on COC agre	e with label on bottle(s)?		Х				
Number of bottles on CC	OC agrees with number of bottles r	received?	х				
Samples received within	holding time?		х				
Sample volume sufficien	t for analysis?		х				
VOA vials free of headsp	oace (<6mm bubble)?				х		
Namples cooled?	mp at receipt recorded on COC mp measured with IR thermometer - SN: 9	97050067		ъX		Ice Cold Pac	ks Dry Ice None
Samples requiring pH pr Note: Samples for metals a	-	he lab.	х				
Samples dechlorinated for the time of sample collections	or parameters requiring chlorine re	emoval at			х		
	If in-house p	preservation	used	– re	cord	Lot #	
HCL		H ₃ P					
H ₂ SO ₄ HNO ₃		NaC Oth					
Comments:				J			
Were non-conformance	e issues noted at sample receip	at? Vec	s or	. (1	<u> </u>		
Non-Conformance issue		ic: Tes	, OI		<u> 100</u>		
Davised Eabrupry 2019						ompleted by:	ETC

Completed by:_ Page 13 of 13

PO Box 30712 Charleston, SC 29417 2040 Savage Road Charleston, SC 29407 P 843.556.8171 F 843.766.1178

gel.com

February 26, 2021

Ms. Jeanette Gilmetti Santee Cooper P.O. Box 2946101 OCO3 Moncks Corner, South Carolina 29461

Re: ABS Lab Analytical Work Order: 533780

Dear Ms. Gilmetti:

GEL Laboratories, LLC (GEL) appreciates the opportunity to provide the enclosed analytical results for the sample(s) we received on February 02, 2021. This original data report has been prepared and reviewed in accordance with GEL's standard operating procedures.

Test results for NELAP or ISO 17025 accredited tests are verified to meet the requirements of those standards, with any exceptions noted. The results reported relate only to the items tested and to the sample as received by the laboratory. These results may not be reproduced except as full reports without approval by the laboratory. Copies of GEL's accreditations and certifications can be found on our website at www.gel.com.

Our policy is to provide high quality, personalized analytical services to enable you to meet your analytical needs on time every time. We trust that you will find everything in order and to your satisfaction. If you have any questions, please do not hesitate to call me at (843) 556-8171, ext. 4289.

Sincerely,

Julie Robinson Project Manager

Purchase Order: 367074

Enclosures

2040 Savage Road Charleston SC 29407 - (843) 556-8171 - www.gel.com

Certificate of Analysis Report for

SOOP001 Santee Cooper

Client SDG: 533780 GEL Work Order: 533780

The Qualifiers in this report are defined as follows:

- * A quality control analyte recovery is outside of specified acceptance criteria
- ** Analyte is a Tracer compound
- ** Analyte is a surrogate compound
- U Analyte was analyzed for, but not detected above the MDL, MDA, MDC or LOD.

Where the analytical method has been performed under NELAP certification, the analysis has met all of the requirements of the NELAC standard unless qualified on the Certificate of Analysis.

The designation ND, if present, appears in the result column when the analyte concentration is not detected above the limit as defined in the 'U' qualifier above.

This data report has been prepared and reviewed in accordance with GEL Laboratories LLC standard operating procedures. Please direct any questions to your Project Manager, Julie Robinson.

	Julie	Robinson	
Reviewed by			

Page 2 of 16 SDG: 533780

2040 Savage Road Charleston SC 29407 - (843) 556-8171 - www.gel.com

Certificate of Analysis

Report Date: February 26, 2021

Company: Santee Cooper Address: P.O. Box 2946101

OCO3

Moncks Corner, South Carolina 29461

Contact: Ms. Jeanette Gilmetti Project: ABS Lab Analytical

 Client Sample ID:
 AE94877
 Project:
 SOOP00119

 Sample ID:
 533780001
 Client ID:
 SOOP001

Matrix: Ground Water
Collect Date: 28-JAN-21 09:15
Receive Date: 02-FEB-21
Collector: Client

0---1:6---

Parameter	Quanner	Kesun	Uncertainty	MDC	KL	Units	PF	DF	Analyst Date	Time Batch	Method
Rad Gas Flow Propo	ortional Counting										
GFPC, Ra228, Liqu	id "As Received"										
Radium-228	\mathbf{U}	0.175	+/-0.753	1.40	3.00	pCi/L			LXB3 02/23/21	0657 2090245	1
Radium-226+Radius	m-228 Calculation	n "See Pa	arent Products"								
Radium-226+228 Sum		1.45	+/-0.912			pCi/L		1	AEA 02/25/21	1158 2090294	2
Rad Radium-226											
Lucas Cell, Ra226, 1	Liquid "As Receiv	ved"									
Radium-226		1.28	+/-0.515	0.524	1.00	pCi/L			MXH8 02/25/21	0914 2089473	3

The following Analytical Methods were performed:

Method Description Analyst Comments

1 EPA 904.0/SW846 9320 Modified

2 Calculation
3 EPA 903.1 Modified

Surrogate/Tracer Recovery Test Result Nominal Recovery% Acceptable Limits

Barium-133 Tracer GFPC, Ra228, Liquid "As Received" 89 (15%-125%)

Notes:

Counting Uncertainty is calculated at the 95% confidence level (1.96-sigma).

Column headers are defined as follows:

DF: Dilution Factor Lc/LC: Critical Level
DL: Detection Limit PF: Prep Factor
MDA: Minimum Detectable Activity RL: Reporting Limit

MDC: Minimum Detectable Concentration SQL: Sample Quantitation Limit

Page 3 of 16 SDG: 533780

2040 Savage Road Charleston SC 29407 - (843) 556-8171 - www.gel.com

Certificate of Analysis

Report Date: February 26, 2021

Company: Santee Cooper Address: P.O. Box 2946101

OCO3

Moncks Corner, South Carolina 29461

Contact: Ms. Jeanette Gilmetti Project: ABS Lab Analytical

Project: Client Sample ID: AE94878 SOOP00119 Sample ID: 533780002 Client ID: SOOP001

Matrix: Ground Water Collect Date: 28-JAN-21 09:20 Receive Date: 02-FEB-21 Collector: Client

Parameter	Qualifier	Result	Uncertainty	MDC	RL	Units	PF	DF	Analy	st Date	Time	Batch	Method
Rad Gas Flow Proportion	nal Counting												
GFPC, Ra228, Liquid "A	As Received"												
Radium-228	\mathbf{U}	-0.568	+/-0.908	1.85	3.00	pCi/L			LXB3	02/23/21	0657	2090245	1
Radium-226+Radium-22	28 Calculation	n "See Pa	arent Products"										
Radium-226+228 Sum		2.27	+/-1.10			pCi/L		1	AEA	02/25/21	1158	2090294	2
Rad Radium-226													
Lucas Cell, Ra226, Liqu	id "As Recei	ved"											
Radium-226		2.27	+/-0.627	0.403	1.00	pCi/L			MXH8	02/25/21	0914	2089473	3

The following Analytical Methods were performed:

Method Description **Analyst Comments**

EPA 904.0/SW846 9320 Modified 1

2 Calculation EPA 903.1 Modified

Test Result Surrogate/Tracer Recovery Nominal Recovery% Acceptable Limits

87.6 (15%-125%) Barium-133 Tracer GFPC, Ra228, Liquid "As Received"

Notes:

Counting Uncertainty is calculated at the 95% confidence level (1.96-sigma).

Column headers are defined as follows:

DF: Dilution Factor Lc/LC: Critical Level DL: Detection Limit PF: Prep Factor MDA: Minimum Detectable Activity RL: Reporting Limit

MDC: Minimum Detectable Concentration SQL: Sample Quantitation Limit

Page 4 of 16 SDG: 533780

2040 Savage Road Charleston SC 29407 - (843) 556-8171 - www.gel.com

Certificate of Analysis

Report Date: February 26, 2021

Company: Santee Cooper Address: P.O. Box 2946101

OCO3

Moncks Corner, South Carolina 29461

Contact: Ms. Jeanette Gilmetti Project: ABS Lab Analytical

Project: Client Sample ID: AE94876 SOOP00119 Sample ID: 533780003 Client ID: SOOP001

Matrix: Ground Water Collect Date: 28-JAN-21 14:34 Receive Date: 02-FEB-21 Collector: Client

Parameter	Qualifier	Result	Uncertainty	MDC	RL	Units	PF	DF	Analy	st Date	Time	Batch	Method
Rad Gas Flow Proportio	nal Counting												
GFPC, Ra228, Liquid "A	As Received"												
Radium-228	\mathbf{U}	0.718	+/-0.820	1.38	3.00	pCi/L			LXB3	02/23/21	0657	2090245	1
Radium-226+Radium-22	28 Calculation	n "See Pa	rent Products"										
Radium-226+228 Sum		1.23	+/-0.888			pCi/L		1	AEA	02/25/21	1158	2090294	2
Rad Radium-226													
Lucas Cell, Ra226, Liqu	id "As Recei	ved"											
Radium-226		0.517	+/-0.340	0.440	1.00	pCi/L			MXH8	02/25/21	0914	2089473	3

The following Analytical Methods were performed:

Method Description **Analyst Comments**

EPA 904.0/SW846 9320 Modified 1

2 Calculation EPA 903.1 Modified

Test Result Surrogate/Tracer Recovery Nominal Recovery% Acceptable Limits

86.5 (15%-125%) Barium-133 Tracer GFPC, Ra228, Liquid "As Received"

Notes:

Counting Uncertainty is calculated at the 95% confidence level (1.96-sigma).

Column headers are defined as follows:

DF: Dilution Factor Lc/LC: Critical Level DL: Detection Limit PF: Prep Factor MDA: Minimum Detectable Activity RL: Reporting Limit

MDC: Minimum Detectable Concentration SQL: Sample Quantitation Limit

Page 5 of 16 SDG: 533780

2040 Savage Road Charleston SC 29407 - (843) 556-8171 - www.gel.com

Certificate of Analysis

Report Date: February 26, 2021

Company: Santee Cooper Address: P.O. Box 2946101

OCO3

Moncks Corner, South Carolina 29461

Contact: Ms. Jeanette Gilmetti Project: ABS Lab Analytical

Project: Client Sample ID: AE94874 SOOP00119 Sample ID: 533780004 Client ID: SOOP001

Matrix: Ground Water Collect Date: 28-JAN-21 11:43 Receive Date: 02-FEB-21 Collector: Client

Parameter	Qualifier	Result	Uncertainty	MDC	RL	Units	PF	DF	Analy	st Date	Time	e Batch	Method
Rad Gas Flow Propor	tional Counting												
GFPC, Ra228, Liquid	l "As Received"												
Radium-228	\mathbf{U}	1.43	+/-1.37	2.26	3.00	pCi/L			LXB3	02/23/21	0705	2090245	1
Radium-226+Radium	-228 Calculation	n "See Pa	arent Products"										
Radium-226+228 Sum		2.22	+/-1.42			pCi/L		1	AEA	02/25/21	1158	2090294	2
Rad Radium-226													
Lucas Cell, Ra226, Li	iquid "As Recei	ved"											
Radium-226	_	0.792	+/-0.364	0.303	1.00	pCi/L			MXH8	02/25/21	0914	2089473	3

The following Analytical Methods were performed:

Method Description **Analyst Comments**

EPA 904.0/SW846 9320 Modified 1

2 Calculation EPA 903.1 Modified

Result Surrogate/Tracer Recovery Test Nominal Recovery% Acceptable Limits

(15%-125%) Barium-133 Tracer GFPC, Ra228, Liquid "As Received" 84

Notes:

Counting Uncertainty is calculated at the 95% confidence level (1.96-sigma).

Column headers are defined as follows:

DF: Dilution Factor Lc/LC: Critical Level DL: Detection Limit PF: Prep Factor MDA: Minimum Detectable Activity RL: Reporting Limit

MDC: Minimum Detectable Concentration SQL: Sample Quantitation Limit

Page 6 of 16 SDG: 533780

2040 Savage Road Charleston SC 29407 - (843) 556-8171 - www.gel.com

Certificate of Analysis

Report Date: February 26, 2021

Company: Santee Cooper Address: P.O. Box 2946101

OCO3

Moncks Corner, South Carolina 29461

Contact: Ms. Jeanette Gilmetti Project: ABS Lab Analytical

Project: Client Sample ID: AE94872 SOOP00119 Sample ID: 533780005 Client ID: SOOP001

Matrix: Ground Water Collect Date: 26-JAN-21 09:27 Receive Date: 02-FEB-21 Collector: Client

Parameter	Qualifier	Result	Uncertainty	MDC	RL	Units	PF	DF	Analy	st Date	Time	Batch	Method
Rad Gas Flow Proportio	nal Counting												
GFPC, Ra228, Liquid "A	As Received"												
Radium-228		2.88	+/-1.39	2.06	3.00	pCi/L			LXB3	02/23/21	0705	2090245	1
Radium-226+Radium-22	28 Calculation	n "See Pa	arent Products"										
Radium-226+228 Sum		3.44	+/-1.46			pCi/L		1	AEA	02/25/21	1158	2090294	2
Rad Radium-226													
Lucas Cell, Ra226, Liqu	id "As Receiv	ved"											
Radium-226	\mathbf{U}	0.559	+/-0.438	0.659	1.00	pCi/L			MXH8	02/25/21	0914	2089473	3

The following Analytical Methods were performed:

Method Description **Analyst Comments**

EPA 904.0/SW846 9320 Modified 1

2 Calculation EPA 903.1 Modified

Test Result Surrogate/Tracer Recovery Nominal Recovery% Acceptable Limits

90.6 (15%-125%) Barium-133 Tracer GFPC, Ra228, Liquid "As Received"

Notes:

Counting Uncertainty is calculated at the 95% confidence level (1.96-sigma).

Column headers are defined as follows:

DF: Dilution Factor Lc/LC: Critical Level DL: Detection Limit PF: Prep Factor MDA: Minimum Detectable Activity RL: Reporting Limit

MDC: Minimum Detectable Concentration SQL: Sample Quantitation Limit

Page 7 of 16 SDG: 533780

2040 Savage Road Charleston SC 29407 - (843) 556-8171 - www.gel.com

Certificate of Analysis

Report Date: February 26, 2021

Company: Santee Cooper Address: P.O. Box 2946101

OCO3

Moncks Corner, South Carolina 29461

Contact: Ms. Jeanette Gilmetti Project: ABS Lab Analytical

Project: Client Sample ID: AE94854 SOOP00119 Sample ID: 533780006 Client ID: SOOP001

Matrix: Ground Water Collect Date: 26-JAN-21 10:39 Receive Date: 02-FEB-21 Collector: Client

Parameter	Qualifier	Result	Uncertainty	MDC	RL	Units	PF	DF	Analy	st Date	Time	Batch	Method
Rad Gas Flow Proportio	nal Counting												
GFPC, Ra228, Liquid "A	As Received"												
Radium-228	\mathbf{U}	1.29	+/-1.12	1.83	3.00	pCi/L			LXB3	02/23/21	0705	2090245	1
Radium-226+Radium-22	28 Calculation	n "See Pa	arent Products"										
Radium-226+228 Sum		1.73	+/-1.22			pCi/L		1	AEA	02/25/21	1158	2090294	2
Rad Radium-226													
Lucas Cell, Ra226, Liqu	id "As Receiv	ved"											
Radium-226	\mathbf{U}	0.436	+/-0.477	0.784	1.00	pCi/L			MXH8	02/25/21	0914	2089473	3

The following Analytical Methods were performed:

Method Description **Analyst Comments**

EPA 904.0/SW846 9320 Modified 1

2 Calculation EPA 903.1 Modified

Test Result Surrogate/Tracer Recovery Nominal Recovery% Acceptable Limits

90.2 (15%-125%) Barium-133 Tracer GFPC, Ra228, Liquid "As Received"

Notes:

Counting Uncertainty is calculated at the 95% confidence level (1.96-sigma).

Column headers are defined as follows:

DF: Dilution Factor Lc/LC: Critical Level DL: Detection Limit PF: Prep Factor MDA: Minimum Detectable Activity RL: Reporting Limit

MDC: Minimum Detectable Concentration SQL: Sample Quantitation Limit

Page 8 of 16 SDG: 533780

2040 Savage Road Charleston, SC 29407 - (843) 556-8171 - www.gel.com

QC Summary

Report Date: February 26, 2021

Page 1 of 2

Santee Cooper P.O. Box 2946101

OCO3

Moncks Corner, South Carolina

Contact: Ms. Jeanette Gilmetti

Workorder: 533780

Parmname	NOM	Sample	Qual	QC	Units	RPD%	REC%	Range Anlst	Date Time
Rad Gas Flow Batch 2090245									
QC1204749130 533780006 DUP Radium-228	U Uncertainty	1.29 +/-1.12	U	0.286 +/-0.659	pCi/L	N/A		N/A LXB3	02/23/21 07:05
QC1204749131 LCS Radium-228	54.8 Uncertainty			55.9 +/-3.76	pCi/L		102	(75%-125%)	02/23/21 07:05
QC1204749129 MB Radium-228	Uncertainty		U	-0.160 +/-0.717	pCi/L				02/23/21 07:05
Rad Ra-226 Batch 2089473									
QC1204747700 533780004 DUP Radium-226	Uncertainty	0.792 +/-0.364		0.729 +/-0.366	pCi/L	8.25		(0% - 100%) MXH8	02/25/21 09:55
QC1204747702 LCS Radium-226	54.1 Uncertainty			45.0 +/-2.92	pCi/L		83.3	(75%-125%)	02/25/21 09:55
QC1204747699 MB Radium-226	Uncertainty		U	-0.118 +/-0.277	pCi/L				02/25/21 09:55
QC1204747701 533780004 MS Radium-226	135 Uncertainty	0.792 +/-0.364		168 +/-12.1	pCi/L		124	(75%-125%)	02/25/21 09:55

Notes:

Counting Uncertainty is calculated at the 95% confidence level (1.96-sigma).

The Qualifiers in this report are defined as follows:

** Analyte is a Tracer compound

< Result is less than value reported</p>

> Result is greater than value reported

BD Results are either below the MDC or tracer recovery is low

FA Failed analysis.

Page 9 of 16 SDG: 533780

2040 Savage Road Charleston, SC 29407 - (843) 556-8171 - www.gel.com

QC Summary

Page 2 of 2 Parmname NOV Sample Qual \mathbf{OC} Units RPD% REC% Range Anist Date Time Η Analytical holding time was exceeded

T See case narrative for an explanation

533780

T Value is estimated

Workorder:

- K Analyte present. Reported value may be biased high. Actual value is expected to be lower.
- L Analyte present. Reported value may be biased low. Actual value is expected to be higher.
- M M if above MDC and less than LLD
- REMP Result > MDC/CL and < RDL M
- N/A RPD or %Recovery limits do not apply.
- N1 See case narrative
- ND Analyte concentration is not detected above the detection limit
- NJConsult Case Narrative, Data Summary package, or Project Manager concerning this qualifier
- One or more quality control criteria have not been met. Refer to the applicable narrative or DER. Q
- R Sample results are rejected
- U Analyte was analyzed for, but not detected above the MDL, MDA, MDC or LOD.
- UI Gamma Spectroscopy--Uncertain identification
- UJ Gamma Spectroscopy--Uncertain identification
- UL Not considered detected. The associated number is the reported concentration, which may be inaccurate due to a low bias.
- X Consult Case Narrative, Data Summary package, or Project Manager concerning this qualifier
- Y Other specific qualifiers were required to properly define the results. Consult case narrative.
- ٨ RPD of sample and duplicate evaluated using +/-RL. Concentrations are <5X the RL. Qualifier Not Applicable for Radiochemistry.
- h Preparation or preservation holding time was exceeded

N/A indicates that spike recovery limits do not apply when sample concentration exceeds spike conc. by a factor of 4 or more or %RPD not applicable.

- ^ The Relative Percent Difference (RPD) obtained from the sample duplicate (DUP) is evaluated against the acceptance criteria when the sample is greater than five times (5X) the contract required detection limit (RL). In cases where either the sample or duplicate value is less than 5X the RL, a control limit of +/- the RL is used to evaluate the DUP result.
- * Indicates that a Quality Control parameter was not within specifications.

For PS, PSD, and SDILT results, the values listed are the measured amounts, not final concentrations.

Where the analytical method has been performed under NELAP certification, the analysis has met all of the requirements of the NELAC standard unless qualified on the QC Summary.

Page 10 of 16 SDG: 533780

Radiochemistry Technical Case Narrative Santee Cooper SDG #: 533780

Product: GFPC, Ra228, Liquid

<u>Analytical Method:</u> EPA 904.0/SW846 9320 Modified <u>Analytical Procedure:</u> GL-RAD-A-063 REV# 5

Analytical Batch: 2090245

The following samples were analyzed using the above methods and analytical procedure(s).

GEL Sample ID#	Client Sample Identification
533780001	AE94877
533780002	AE94878
533780003	AE94876
533780004	AE94874
533780005	AE94872
533780006	AE94854
1204749129	Method Blank (MB)
1204749130	533780006(AE94854) Sample Duplicate (DUP)
1204749131	Laboratory Control Sample (LCS)

The samples in this SDG were analyzed on an "as received" basis.

Data Summary:

There are no exceptions, anomalies or deviations from the specified methods. All sample data provided in this report met the acceptance criteria specified in the analytical methods and procedures for initial calibration, continuing calibration, instrument controls and process controls where applicable.

Product: Lucas Cell, Ra226, Liquid **Analytical Method:** EPA 903.1 Modified

Analytical Procedure: GL-RAD-A-008 REV# 15

Analytical Batch: 2089473

The following samples were analyzed using the above methods and analytical procedure(s).

GEL Sample 1D#	Client Sample Identification
533780001	AE94877
533780002	AE94878
533780003	AE94876
533780004	AE94874
533780005	AE94872
533780006	AE94854
1204747699	Method Blank (MB)
1204747700	533780004(AE94874) Sample Duplicate (DUP)
1204747701	533780004(AE94874) Matrix Spike (MS)
1204747702	Laboratory Control Sample (LCS)
1204747702	Laboratory Control Sample (LCS)

Page 11 of 16 SDG: 533780

The samples in this SDG were analyzed on an "as received" basis.

Data Summary:

All sample data provided in this report met the acceptance criteria specified in the analytical methods and procedures for initial calibration, continuing calibration, instrument controls and process controls where applicable, with the following exceptions.

Miscellaneous Information

Additional Comments

The matrix spike, 1204747701 (AE94874MS), aliquot was reduced to conserve sample volume.

Certification Statement

Where the analytical method has been performed under NELAP certification, the analysis has met all of the requirements of the NELAC standard unless otherwise noted in the analytical case narrative.

Page 12 of 16 SDG: 533780

__ Contract Lab Due Date (Lab Only):__

7 21

Send report to <u>|cwillia@santeecooper.com</u> & <u>sjbfown@santeecooper.com</u>

Chain of Custody

Santee Cooper One Riverwood Drive Moneks Corner, SC 29461 Phone: (843)761-8000 Ext. 5148 Fax: (843)761-4175

Customer Email/Report Recipient: Date Results Needed by: Project/Task/Unit #: Rerun request for any flagged QC LCWILLIA 121567 / JMO2.09.GØI / 365∞ Yes No @santeecooper.com **Analysis Group** Labworks ID# Sample Location/ Comments Matrix(see below) **Collection Date** lection Time (Glass-(Internal use Description Method# Sample Collector TOTALRAD Total # of contain only) Grab (G) or Composite (C) Preservative (below) Reporting limit RAD 228 RAD 226 Bottle type: (G/Plastic-P) Misc. sample info Any other notes 3 3/2 Х 3 G 1/28/21 0915 GW AE94877 POZ-7 POZ-7 DUP 0920 AE94878 1434 AE94876 POZ-6 4E94874 POZ-4 1148 1/3 ATH Х 1 G G 1/27/21 GW AE 94869 CLFIB-4 0918 Χ 1021 AE 94870 CLFIB-5 X ⅓ 1117 ١ G GW 1/27/21 CLFIB- 5D AE 94871 X 1223 POZ-50 AE94875 X 1321 POZ-3 AE94873 Sample Receiving (Internal Use Only) Relinquished by: Employee# Date Time Received by: Employee # Date Time TEMP (°C):_____ Initial: 0915 35594 2/2/21 GEL 2/2/21 Symoun Correct pH: Yes No Received by: Employee # Date Time Relinquished by: Employee# Date Time Preservative Lot#: apasite h E 2 11015 Relinquished by: Date Received by: Employee # Date Time Employee Date/Time/Init for preservative: ☐ METALS (all) MISC. Nutrients Gypsum Coal <u>Flyash</u> □ Sb 🛛 Cu U Wallboard Frans. Oil Qual. □ TOC BTEX ☐ Ultimate Ammonia □ Se □ Fe □ Napthalene Gypsum(all Validations □ DOC ☐ % Moisture DIOL □ THM/HAA Color □ Sn below) □ As $\Box K$ □ TP/TPO4 □ Ash □ % Carbon □ VOC ili AlM □ NH3-N □ Sulfur \Box B 🛛 Li 🗆 Sr Chelacanii Strength Oil & Grease OTOC IJF ☐ BTUs Analysis 11.1 🛘 E. Coli 🛮 Ti ○ Fotal metals: □ Ba □ CI □ Volatile Matter ☐ Sieve Dissalved Crases ☐ Total Coliform C Soluble Metals Used Oil □ Be □ Mn o ti □ NO2 ☐ CHN ☐ % Moisture □pH © Purity (CaSO4) Thishpoint Metak in oil (As Cd C: Ni Ph Br ☐ Dissolved As Other Tests: □ % Moisture $\square V$ □ Ca □Мо ☐ Dissolved Fe C XRF Scan □ NO3 **NPDES** □ Cd □Zn ☐ Rad 226 HGI □Na 🗆 pH . □ SO4 ☐ Oil & Grease ☐ Rad 228 O Chlorides ☐ Fineness □Со □Ni □ Hg O As □ PCB El Particulate Matter D Particle Size DITSS CONFR ☐ Cr □РЬ □ CrVI Sulfur

Contract Lab Info: __GEL

Chain of Custody

Santee Cooper One Riverwood Drive Moneks Corner, SC 29461 Phone: (843)761-8000 Ext. 5148 Fax: (843)761-4175

Customer Emai	omer Email/Report Recipient: Date Results Needed by: Project/Task/Unit #:				Rerun	request	for ar	ıy fla	gged	QC							
LCWILLIA	@santeed	cooper.com			·····		1215	567	JM _	02.0	9. GØ 1	1 36500	Yes	No			
														A	nalysi	Grou	P
Labworks ID # (Internal use only)	Sample Location Description	in/	Collection Date	Collection Time	Sample Collector	Total # of containers	Bottle type: (Glass- G/Plastic-P)	Grab (G) or Composite (C)	Matrix(see below)	Preservative (see	• Me • Re • Mi • An	Comments withod # porting limit se, sample info y other notes		RAD 226	RAD 228	TOTAL RAD CALC	\$
AE94872	PM-I		1/26/21	0927	ATITY	3	P/G	G	GW	1/3/2				١	1	Х	1
AE 9485學	CBW-I		丁	1639	1	1	1	T	1	1				L	一	X	1
AE94865	CLFIB-1		1/26/21	1201		(G	G	GW.	1/3							X
AE94866	CLFIB-1 DU	IP .		1206													1
AE94867	CLF1B-2			1306													
AE94 868	CLF(B-3		<u> </u>	1358	1	<u> </u>	1	1	1								<u>]</u>
Allenta annua (na Al																	
			<u></u>									Sample Receiving	//	<u> </u>			
Relinquished by	Employee#	Date	Time	Receiv	ed by:	E	mployee		Date		Time	TEMP (°C):	internai U	se On Initial	;		
Sgrawin	35594		0915	Receiv	2		GEL		42/2		<u>15</u>	Correct pH: Y	es No				
Relinquished by	Employee#	Date	·········	- V	\ .	17	mployee	4	Date	Marie Jar	Time	Preservative Lot					
Relinquished by	Employee#	Date	1615 Time	MC(S) Réceiv			EL mployee	# 2	2 2 Date		Time						
				201	2000 S. S. S.							Date/Time/Init fo	r preserva	tive:			
	ETALS (all) u □ Sb	<u>Nuti</u>	<u>rients</u>	MIS	<u>sc.</u>		<u>Gy</u>	psur	<u>n</u>	1	<u>Coa</u>	<u>Flyas</u>	<u>ih</u>		<u>Oi</u>		
□ Al □ F		- UTO		☐ BTEX ☐ Napthale		T.	Walibe			0	Ultimate	□ Ammoi	nia 📗		is, Oil Mais	Qual.	
□As □K		□ DO □ TP/		O THM/H			- Gyp belo	sum(a w)	и	1	□ % Mois □ Ash	sture ☐ LOI ☐ % Carb	on I		o sacoto of cor	u.	
DB DL	d a constant average sure	💳 амн	200000000000000000000000000000000000000	□ VOC □ Oil & Gr		\parallel	O AI				□ Sulfur	☐ Minera			udity	Stream	
□ Ba □ M				□ E. Coli			Li TO D Tol	∙C lal meta	ls .		□ BTUs	Ana	llysis	11	1		
□Be □N		LI CI	2	☐ Total Co ☐ pH	liform	1	⊕ Sol	able M	etals		□ Volatile □ CHN	e Matter │ □ Sieve □ % Mois	thure		eselvi d OH	rd Cine	
□ Ca □ N		□Br		☐ Dissolve				rity (Ca Moistur		Stead the straighten	ther Tests:			Ţ.	ashys	nt :	
		— UNO		☐ Dissolve ☐ Rad 226			□ Sul □ pH				XRF Scan HGI	<u>NPDI</u>	<u> </u>		elala) Geral	n isil Cr.Nr.	Pb.
		() SO ₄		☐ Rad 228			CICL	lorides			Fineness	□ Oil & Gr □ As	case		e)		
☐ Co ☐ N ☐ Cr ☐ P				□РСВ			⊖ Par 3 Sulfar	ticle Si	28		Particulate N	latter G TSS			\ [
<u></u>	The second secon				ougoger sales in its	اك				اك		1					

CEE Laboratories LLC				SAMPLE RECEIPT & REVIEW FORM
Client: COP			Ten	6 32 700/ 5 2 7779 VI
			\top	G/AR/COC/Work Order:
Received By: YE			Da	FedEx Express FedEx Ground UPS Field Services Courier Other
Carrier and Tracking Number				
Suspected Hazard Information	Yes	ž	"If	Net Counts > 100cpm on samples not marked "radioactive", contact the Radiation Safety Group for further investigation.
A)Shipped as a DOT Hazardous?		V	Haz	ard Class Shipped: If UN2910, Is the Radioactive Shipment Survey Compliant? YesNo
B) Did the client designate the samples are to be received as radioactive?		4	co	C notation or rudioactive stickers on containers equal client designation.
C) Did the RSO classify the samples as radioactive?		/	Ma	cimum Net Counts Observed* (Observed Counts - Area Background Counts):CPM / mR/Hr Classified as: Rad 1
D) Did the client designate samples are hazardous?		V		Contation or hazard labels on containers equal client designation.
E) Did the RSO identify possible hazards?		1		or E is yes, select Hazards below. PCB's Flammable Foreign Soil RCRA Asbestos Beryllium Other:
Sample Receipt Criteria	Yes	ź	S.	Comments/Qualifiers (Required for Non-Conforming Items)
Shipping containers received intact and sealed?	l			Circle Applicable: Seals broken Damaged container Leaking container Other (describe)
2 Chain of custody documents included with shipment?	V			Circle Applicable: Client contacted and provided COC COC created upon receipt
3 Samples requiring cold preservation within (0 ≤ 6 deg. C)?*	V			Preservation Methods Wet Ice Ice Packs Dry ice None Other: "all temperatures are recorded in Celsius TEMP:
Daily check performed and passed on IR temperature gun?	V			Temperature Device Serial #: R3-19 Secondary Temperature Device Serial # (If Applicable):
5 Sample containers intact and sealed?	V	j.	_	Circle Applicable: Seals broken Damaged container Leaking container Other (describe)
6 Samples requiring chemical preservation at proper pH?	V	T NOT		Sample ID's and Containers Affected: If Preservation added, Lot#:
7 Do any samples require Volatile Analysis?				If Yes, are Encores or Soil Kits present for solids? YesNoNA(If yes, take to VOA Freezer) Doriquid VOA vials contain acid preservation? YesNoNA(If unknown, select No) Are liquid VOA vials free of headspace? YesNoNA Sample IO's and containers affected:
8 Samples received within holding time?	ν			ID's and tests affected:
9 Sample ID's on COC match ID's on bottles?	V			ID's and containers affected:
Date & time on COC match date & time on bottles?	V		,	Circle Applicable: No dates on containers No times on containers COC missing info Other (describe)
Number of containers received match number indicated on COC?	V			Circle Applicable: No comainer count on COC Other (describe)
Are sample containers identifiable as GEL provided by use of GEL labels? COC form is properly signed in	V		/	Circle Applicable: Not relinquisted Other (describe)
relinquished/received sections?	V			TI Committee Committee Committee
Comments (Use Continuation Form if needed):				

List of current GEL Certifications as of 26 February 2021

State Alabama	Certification 42200
Alaska	17-018
Alaska Drinking Water	SC00012
Arkansas	88-0651
CLIA	42D0904046
California	2940
Colorado	SC00012
Connecticut	PH-0169
DoD ELAP/ ISO17025 A2LA	2567.01
Florida NELAP	E87156
Foreign Soils Permit	P330-15-00283, P330-15-00253
Georgia	SC00012
Georgia SDWA	967
Hawaii	SC00012
Idaho	SC00012
Illinois NELAP	200029
Indiana	C=SC=01
Kansas NELAP	E-10332
Kentucky SDWA	90129
Kentucky Wastewater	90129
Louisiana Drinking Water	LA024
Louisiana NELAP	03046 (AI33904)
	+
Maine	2019020
Maryland	270
Massachusetts	M-SC012
Massachusetts PFAS Approv	Letter
Michigan	9976
Mississippi	SC00012
Nebraska	NE-OS-26-13
Nevada	SC000122021-1
New Hampshire NELAP	2054
New Jersey NELAP	SC002
New Mexico	SC00012
New York NELAP	11501
North Carolina	233
North Carolina SDWA	45709
North Dakota	R-158
Oklahoma	2019-165
Pennsylvania NELAP	68-00485
Puerto Rico	SC00012
S. Carolina Radiochem	10120002
Sanitation Districts of L	9255651
South Carolina Chemistry	10120001
Tennessee	TN 02934
Texas NELAP	T104704235-21-19
Utah NELAP	SC000122020-34
Vermont	VT87156
Virginia NELAP	460202
Washington	C780

PO Box 30712 Charleston, SC 29417 2040 Savage Road Charleston, SC 29407 P 843,556,8171 F 843,766,1178

gel.com

March 08, 2021

Ms. Jeanette Gilmetti Santee Cooper P.O. Box 2946101 OCO3 Moncks Corner, South Carolina 29461

Re: ABS Lab Analytical Work Order: 534607

Dear Ms. Gilmetti:

GEL Laboratories, LLC (GEL) appreciates the opportunity to provide the enclosed analytical results for the sample(s) we received on February 09, 2021. This original data report has been prepared and reviewed in accordance with GEL's standard operating procedures.

Test results for NELAP or ISO 17025 accredited tests are verified to meet the requirements of those standards, with any exceptions noted. The results reported relate only to the items tested and to the sample as received by the laboratory. These results may not be reproduced except as full reports without approval by the laboratory. Copies of GEL's accreditations and certifications can be found on our website at www.gel.com.

Our policy is to provide high quality, personalized analytical services to enable you to meet your analytical needs on time every time. We trust that you will find everything in order and to your satisfaction. If you have any questions, please do not hesitate to call me at (843) 556-8171, ext. 4289.

Sincerely,

Julie Robinson Project Manager

Purchase Order: 367074

Enclosures

2040 Savage Road Charleston SC 29407 - (843) 556-8171 - www.gel.com

Certificate of Analysis Report for

SOOP001 Santee Cooper

Client SDG: 534607 GEL Work Order: 534607

The Qualifiers in this report are defined as follows:

- * A quality control analyte recovery is outside of specified acceptance criteria
- ** Analyte is a Tracer compound
- ** Analyte is a surrogate compound
- U Analyte was analyzed for, but not detected above the MDL, MDA, MDC or LOD.

Where the analytical method has been performed under NELAP certification, the analysis has met all of the requirements of the NELAC standard unless qualified on the Certificate of Analysis.

The designation ND, if present, appears in the result column when the analyte concentration is not detected above the limit as defined in the 'U' qualifier above.

This data report has been prepared and reviewed in accordance with GEL Laboratories LLC standard operating procedures. Please direct any questions to your Project Manager, Julie Robinson.

	Julie	Robinson	
Reviewed by			

Page 2 of 15 SDG: 534607

2040 Savage Road Charleston SC 29407 - (843) 556-8171 - www.gel.com

Certificate of Analysis

Report Date:

March 8, 2021

Company: Santee Cooper Address: P.O. Box 2946101

OCO3

Moncks Corner, South Carolina 29461

Contact: Ms. Jeanette Gilmetti Project: ABS Lab Analytical

Project: Client Sample ID: AE94839 SOOP00119 Sample ID: 534607001 Client ID: SOOP001

Matrix: Ground Water Collect Date: 02-FEB-21 12:06 Receive Date: 09-FEB-21 Collector: Client

Parameter	Qualifier	Result	Uncertainty	MDC	RL	Units	PF	DF	Analy	st Date	Time	Batch	Method
Rad Gas Flow Proportio	nal Counting												
GFPC, Ra228, Liquid "A	As Received"												
Radium-228	\mathbf{U}	0.243	+/-0.966	1.77	3.00	pCi/L			LXB3	03/01/21	0949	2092726	1
Radium-226+Radium-22	28 Calculation	n "See Pa	arent Products"										
Radium-226+228 Sum		1.34	+/-1.10			pCi/L		1	AEA	03/08/21	0809	2098438	2
Rad Radium-226													
Lucas Cell, Ra226, Liqu	id "As Recei	ved"											
Radium-226		1.10	+/-0.524	0.632	1.00	pCi/L			MXH8	03/05/21	0956	2091173	3

The following Analytical Methods were performed:

Method Description **Analyst Comments**

EPA 904.0/SW846 9320 Modified 1

2 Calculation EPA 903.1 Modified

Result Surrogate/Tracer Recovery Test Nominal Recovery% Acceptable Limits

79.3 (15%-125%) Barium-133 Tracer GFPC, Ra228, Liquid "As Received"

Notes:

Counting Uncertainty is calculated at the 95% confidence level (1.96-sigma).

Column headers are defined as follows:

DF: Dilution Factor Lc/LC: Critical Level DL: Detection Limit PF: Prep Factor MDA: Minimum Detectable Activity RL: Reporting Limit

MDC: Minimum Detectable Concentration SQL: Sample Quantitation Limit

Page 3 of 15 SDG: 534607

2040 Savage Road Charleston SC 29407 - (843) 556-8171 - www.gel.com

Certificate of Analysis

Report Date:

March 8, 2021

Company: Santee Cooper Address: P.O. Box 2946101

OCO3

Moncks Corner, South Carolina 29461

Contact: Ms. Jeanette Gilmetti Project: ABS Lab Analytical

Client Sample ID: AE94847 Project: SOOP00119 Sample ID: 534607002 Client ID: SOOP001

Matrix: Ground Water Collect Date: 02-FEB-21 13:39 Receive Date: 09-FEB-21 Collector: Client

Parameter	Qualifier	Result	Uncertainty	MDC	RL	Units	PF	DF	Analy	st Date	Time	Batch	Method
Rad Gas Flow Proportio	nal Counting												
GFPC, Ra228, Liquid "A	As Received"												
Radium-228		1.92	+/-0.973	1.30	3.00	pCi/L			LXB3	03/01/21	0949	2092726	1
Radium-226+Radium-22	28 Calculation	n "See Pa	arent Products"										
Radium-226+228 Sum		2.33	+/-1.03			pCi/L		1	AEA	03/08/21	0809	2098438	2
Rad Radium-226													
Lucas Cell, Ra226, Liqu	id "As Recei	ved"											
Radium-226	\mathbf{U}	0.402	+/-0.353	0.539	1.00	pCi/L			MXH8	03/05/21	0956	2091173	3

The following Analytical Methods were performed:

Method Description **Analyst Comments**

EPA 904.0/SW846 9320 Modified 1

2 Calculation EPA 903.1 Modified

Test Result Surrogate/Tracer Recovery Nominal Recovery% Acceptable Limits

75.5 (15%-125%) Barium-133 Tracer GFPC, Ra228, Liquid "As Received"

Notes:

Counting Uncertainty is calculated at the 95% confidence level (1.96-sigma).

Column headers are defined as follows:

DF: Dilution Factor Lc/LC: Critical Level DL: Detection Limit PF: Prep Factor MDA: Minimum Detectable Activity RL: Reporting Limit

MDC: Minimum Detectable Concentration SQL: Sample Quantitation Limit

Page 4 of 15 SDG: 534607

2040 Savage Road Charleston SC 29407 - (843) 556-8171 - www.gel.com

Certificate of Analysis

Report Date:

DF Analyst Date Time Batch Method

March 8, 2021

Company: Santee Cooper Address: P.O. Box 2946101

OCO3

Moncks Corner, South Carolina 29461

Result Uncertainty

Contact: Ms. Jeanette Gilmetti Project: ABS Lab Analytical

 Client Sample ID:
 AE94848
 Project:
 SOOP00119

 Sample ID:
 534607003
 Client ID:
 SOOP001

MDC

Matrix: Ground Water
Collect Date: 02-FEB-21 13:44
Receive Date: 09-FEB-21
Collector: Client

Qualifier

1 GEGIFICACI	Quantital	1000an	Sirectamity	1.117	100	Cilius	2.1		1 1111113.	or Laure	1 11110	13111011	Modera
Rad Gas Flow Propor	tional Counting												
GFPC, Ra228, Liquid	"As Received"												
Radium-228		2.72	+/-1.20	1.62	3.00	pCi/L			LXB3	03/01/21	0949 2	2092726	1
Radium-226+Radium	-228 Calculation	n "See Pare	ent Products"										
Radium-226+228 Sum		3.88	+/-1.33			pCi/L		1	AEA	03/08/21	0809 2	2098438	2
Rad Radium-226													
Lucas Cell, Ra226, Li	iquid "As Recei	ved"											
Radium-226		1.16	+/-0.585	0.727	1.00	pCi/L			MXH8	03/05/21	0956 2	2091173	3

RI.

Units

The following Analytical Methods were performed:

Method Description Analyst Comments

1 EPA 904.0/SW846 9320 Modified

2 Calculation 3 EPA 903.1 Modified

Surrogate/Tracer Recovery Test Result Nominal Recovery% Acceptable Limits

Barium-133 Tracer GFPC, Ra228, Liquid "As Received" 77.7 (15%-125%)

Notes:

Parameter

Counting Uncertainty is calculated at the 95% confidence level (1.96-sigma).

Column headers are defined as follows:

DF: Dilution Factor Lc/LC: Critical Level
DL: Detection Limit PF: Prep Factor
MDA: Minimum Detectable Activity RL: Reporting Limit

MDC: Minimum Detectable Concentration SQL: Sample Quantitation Limit

Page 5 of 15 SDG: 534607

2040 Savage Road Charleston SC 29407 - (843) 556-8171 - www.gel.com

Certificate of Analysis

Report Date:

DF Analyst Date Time Batch Method

March 8, 2021

Company: Santee Cooper Address: P.O. Box 2946101

OCO3

Moncks Corner, South Carolina 29461

Result Uncertainty

Contact: Ms. Jeanette Gilmetti Project: ABS Lab Analytical

 Client Sample ID:
 AE94845
 Project:
 SOOP00119

 Sample ID:
 534607004
 Client ID:
 SOOP001

MDC

Matrix: Ground Water
Collect Date: 03-FEB-21 11:15
Receive Date: 09-FEB-21
Collector: Client

Qualifier

1 GEGIFICACI	Zumiiri	recourt	Checkanity	1.112	ILL.	CHIL	 	7 111113 0	, Liuce	1 11110 13	11011	1710ti10ti
Rad Gas Flow Propor	tional Counting											
GFPC, Ra228, Liquid	"As Received"											
Radium-228		2.59	+/-1.11	1.48	3.00	pCi/L		LXB3	03/01/21	0949 209	2726	1
Radium-226+Radium	-228 Calculatio	n "See Par	rent Products"									
Radium-226+228 Sum		3.86	+/-1.20			pCi/L	1	AEA	03/08/21	0809 209	18438	2
Rad Radium-226												
Lucas Cell, Ra226, Li	quid "As Recei	ved"										
Radium-226		1.27	+/-0.466	0.380	1.00	pCi/L		MXH8	03/05/21	0956 209	21173	3

RI.

Units

The following Analytical Methods were performed:

Method Description Analyst Comments

1 EPA 904.0/SW846 9320 Modified

Calculation
 EPA 903.1 Modified

Surrogate/Tracer Recovery Test Result Nominal Recovery% Acceptable Limits

Barium-133 Tracer GFPC, Ra228, Liquid "As Received" 83.9 (15%-125%)

Notes:

Parameter

Counting Uncertainty is calculated at the 95% confidence level (1.96-sigma).

Column headers are defined as follows:

DF: Dilution Factor Lc/LC: Critical Level
DL: Detection Limit PF: Prep Factor
MDA: Minimum Detectable Activity RL: Reporting Limit

MDC: Minimum Detectable Concentration SQL: Sample Quantitation Limit

Page 6 of 15 SDG: 534607

2040 Savage Road Charleston SC 29407 - (843) 556-8171 - www.gel.com

Certificate of Analysis

Report Date:

DF Analyst Date Time Batch Method

March 8, 2021

Company: Santee Cooper Address: P.O. Box 2946101

OCO3

Moncks Corner, South Carolina 29461

Result Uncertainty

Contact: Ms. Jeanette Gilmetti Project: ABS Lab Analytical

 Client Sample ID:
 AE94843
 Project:
 SOOP00119

 Sample ID:
 534607005
 Client ID:
 SOOP001

MDC

Matrix: Ground Water
Collect Date: 03-FEB-21 12:48
Receive Date: 09-FEB-21
Collector: Client

Qualifier

1 Granicici	Zummer.	ICODAIL	Checkming	1.11	142	CHILL	 	1 1111113	, Duce	1 11110 1313	ten made	-
Rad Gas Flow Proport	tional Counting											
GFPC, Ra228, Liquid	"As Received"											
Radium-228		15.0	+/-2.32	2.29	3.00	pCi/L		LXB3	03/03/21	0621 2093	2726 1	
Radium-226+Radium	-228 Calculation	n "See Par	rent Products"									
Radium-226+228 Sum		21.3	+/-2.54			pCi/L	1	AEA	03/08/21	0809 209	8438 2	
Rad Radium-226												
Lucas Cell, Ra226, Li	quid "As Recei	ved"										
Radium-226		6.31	+/-1.05	0.481	1.00	pCi/L		MXH8	03/05/21	0956 209	1173 3	

RI.

Units

The following Analytical Methods were performed:

Method Description Analyst Comments

1 EPA 904.0/SW846 9320 Modified

2 Calculation3 EPA 903.1 Modified

Surrogate/Tracer Recovery Test Result Nominal Recovery% Acceptable Limits

Barium-133 Tracer GFPC, Ra228, Liquid "As Received" 80.8 (15%-125%)

Notes:

Parameter

Counting Uncertainty is calculated at the 95% confidence level (1.96-sigma).

Column headers are defined as follows:

DF: Dilution Factor Lc/LC: Critical Level
DL: Detection Limit PF: Prep Factor
MDA: Minimum Detectable Activity RL: Reporting Limit

MDC: Minimum Detectable Concentration SQL: Sample Quantitation Limit

Page 7 of 15 SDG: 534607

2040 Savage Road Charleston SC 29407 - (843) 556-8171 - www.gel.com

Certificate of Analysis

Report Date:

March 8, 2021

Company: Santee Cooper Address: P.O. Box 2946101

OCO3

Moncks Corner, South Carolina 29461

Contact: Ms. Jeanette Gilmetti Project: ABS Lab Analytical

Project: Client Sample ID: AE94841 SOOP00119 Sample ID: 534607006 Client ID: SOOP001

Matrix: Ground Water Collect Date: 03-FEB-21 13:49 Receive Date: 09-FEB-21 Collector: Client

Parameter	Qualifier	Result	Uncertainty	MDC	RL	Units	PF	DF	Analy	st Date	Time	e Batch	Method
Rad Gas Flow Proport	ional Counting												
GFPC, Ra228, Liquid	"As Received"												
Radium-228	\mathbf{U}	1.58	+/-1.33	2.16	3.00	pCi/L			LXB3	03/01/21	0949	2092726	1
Radium-226+Radium-	228 Calculation	n "See Pa	arent Products"										
Radium-226+228 Sum		2.29	+/-1.38			pCi/L		1	AEA	03/08/21	0809	2098438	2
Rad Radium-226													
Lucas Cell, Ra226, Li	quid "As Recei	ved"											
Radium-226	_	0.714	+/-0.359	0.321	1.00	pCi/L			MXH8	03/05/21	0956	2091173	3

The following Analytical Methods were performed:

Method Description **Analyst Comments**

EPA 904.0/SW846 9320 Modified 1

2 Calculation EPA 903.1 Modified

Result Surrogate/Tracer Recovery Test Nominal Recovery% Acceptable Limits

75.1 (15%-125%) Barium-133 Tracer GFPC, Ra228, Liquid "As Received"

Notes:

Counting Uncertainty is calculated at the 95% confidence level (1.96-sigma).

Column headers are defined as follows:

DF: Dilution Factor Lc/LC: Critical Level DL: Detection Limit PF: Prep Factor MDA: Minimum Detectable Activity RL: Reporting Limit

MDC: Minimum Detectable Concentration SQL: Sample Quantitation Limit

Page 8 of 15 SDG: 534607

2040 Savage Road Charleston, SC 29407 - (843) 556-8171 - www.gel.com

QC Summary

Report Date: March 8, 2021

Page 1 of 2

Santee Cooper P.O. Box 2946101

OCO3

Moncks Corner, South Carolina

Contact: Ms. Jeanette Gilmetti

Workorder: 534607

Parmname	NOM	Sample	Qual	QC	Units	RPD%	REC%	Range Anist	Date Time
Rad Gas Flow Batch 2092726									
QC1204754313 534962004 DUP Radium-228		3.63		4.58	pCi/L	23.1		(0% - 100%) LXB3	03/01/21 09:49
	Uncertainty	+/-1.20		+/-1.47					
QC1204754314 LCS									
Radium-228	54.7			53.3	pCi/L		97.4	(75%-125%)	03/01/21 09:48
	Uncertainty			+/-3.59					
QC1204754312 MB									
Radium-228			U	-0.104	pCi/L				03/01/21 09:49
	Uncertainty			+/-0.780					
Rad Ra-226 Batch 2091173									
QC1204751180 534607001 DUP									
Radium-226		1.10		1.01	pCi/L	7.99		(0% - 100%) MXH8	03/05/21 10:32
	Uncertainty	+/-0.524		+/-0.470					
QC1204751182 LCS									
Radium-226	27.0			26.5	pCi/L		97.8	(75%-125%)	03/05/21 10:32
	Uncertainty			+/-2.08					
QC1204751179 MB									
Radium-226			U	0.267	pCi/L				03/05/21 10:32
	Uncertainty			+/-0.289					
QC1204751181 534607001 MS									
Radium-226	27.0	1.10		23.2	pCi/L		81.6	(75%-125%)	03/05/21 12:15
	Uncertainty	+/-0.524		+/-2.08					

Notes:

Counting Uncertainty is calculated at the 95% confidence level (1.96-sigma).

The Qualifiers in this report are defined as follows:

** Analyte is a Tracer compound

< Result is less than value reported</p>

> Result is greater than value reported

BD Results are either below the MDC or tracer recovery is low

FA Failed analysis.

Page 9 of 15 SDG: 534607

2040 Savage Road Charleston, SC 29407 - (843) 556-8171 - www.gel.com

QC Summary

Workorder: 534607

Page 2 of 2

Parmname NOM Sample Qual QC Units RPD% REC% Range Anlst Date Time

- H Analytical holding time was exceeded
- J See case narrative for an explanation
- J Value is estimated
- K Analyte present. Reported value may be biased high. Actual value is expected to be lower.
- L Analyte present. Reported value may be biased low. Actual value is expected to be higher.
- M M if above MDC and less than LLD
- M REMP Result > MDC/CL and < RDL
- N/A RPD or %Recovery limits do not apply.
- N1 See case narrative
- ND Analyte concentration is not detected above the detection limit
- NJ Consult Case Narrative, Data Summary package, or Project Manager concerning this qualifier
- Q One or more quality control criteria have not been met. Refer to the applicable narrative or DER.
- R Sample results are rejected
- U Analyte was analyzed for, but not detected above the MDL, MDA, MDC or LOD.
- UI Gamma Spectroscopy--Uncertain identification
- UJ Gamma Spectroscopy--Uncertain identification
- UL Not considered detected. The associated number is the reported concentration, which may be inaccurate due to a low bias.
- X Consult Case Narrative, Data Summary package, or Project Manager concerning this qualifier
- Y Other specific qualifiers were required to properly define the results. Consult case narrative.
- ^ RPD of sample and duplicate evaluated using +/-RL. Concentrations are <5X the RL. Qualifier Not Applicable for Radiochemistry.
- h Preparation or preservation holding time was exceeded

N/A indicates that spike recovery limits do not apply when sample concentration exceeds spike conc. by a factor of 4 or more or %RPD not applicable.

- ^ The Relative Percent Difference (RPD) obtained from the sample duplicate (DUP) is evaluated against the acceptance criteria when the sample is greater than five times (5X) the contract required detection limit (RL). In cases where either the sample or duplicate value is less than 5X the RL, a control limit of +/- the RL is used to evaluate the DUP result.
- * Indicates that a Quality Control parameter was not within specifications.

For PS, PSD, and SDILT results, the values listed are the measured amounts, not final concentrations.

Where the analytical method has been performed under NELAP certification, the analysis has met all of the requirements of the NELAC standard unless qualified on the QC Summary.

Page 10 of 15 SDG: 534607

Radiochemistry Technical Case Narrative Santee Cooper SDG #: 534607

Product: GFPC, Ra228, Liquid

<u>Analytical Method:</u> EPA 904.0/SW846 9320 Modified <u>Analytical Procedure:</u> GL-RAD-A-063 REV# 5

Analytical Batch: 2092726

The following samples were analyzed using the above methods and analytical procedure(s).

GEL Sample ID#	Client Sample Identification
534607001	AE94839
534607002	AE94847
534607003	AE94848
534607004	AE94845
534607005	AE94843
534607006	AE94841
1204754312	Method Blank (MB)
1204754313	534962004(AE94864) Sample Duplicate (DUP)
1204754314	Laboratory Control Sample (LCS)

The samples in this SDG were analyzed on an "as received" basis.

Data Summary:

All sample data provided in this report met the acceptance criteria specified in the analytical methods and procedures for initial calibration, continuing calibration, instrument controls and process controls where applicable, with the following exceptions.

Technical Information

Recounts

Sample 534607005 (AE94843) was re-eluted and recounted to verify sample result. The recount is reported.

Product: Lucas Cell, Ra226, Liquid Analytical Method: EPA 903.1 Modified

Analytical Procedure: GL-RAD-A-008 REV# 15

Analytical Batch: 2091173

The following samples were analyzed using the above methods and analytical procedure(s).

GEL Sample ID#	Client Sample Identification
534607001	AE94839
534607002	AE94847
534607003	AE94848
534607004	AE94845
534607005	AE94843

Page 11 of 15 SDG: 534607

534607006	AE94841
1204751179	Method Blank (MB)
1204751180	534607001(AE94839) Sample Duplicate (DUP)
1204751181	534607001(AE94839) Matrix Spike (MS)
1204751182	Laboratory Control Sample (LCS)

The samples in this SDG were analyzed on an "as received" basis.

Data Summary:

All sample data provided in this report met the acceptance criteria specified in the analytical methods and procedures for initial calibration, continuing calibration, instrument controls and process controls where applicable, with the following exceptions.

Technical Information

Recounts

Sample 1204751181 (AE94839MS) was recounted due to low recovery. The recount is reported.

Certification Statement

Where the analytical method has been performed under NELAP certification, the analysis has met all of the requirements of the NELAC standard unless otherwise noted in the analytical case narrative.

Page 12 of 15 SDG: 534607

534607

Chain of Custody

Santee Cooper One Riverwood Drive Moncks Corner, SC 29461 Phone: (843)761-8000 Ext. 5148 Fax: (843)761-4175

Customer Emai	ail/Report Recipient: Date Results Needed by:							Pr	oject/	Task/	Rerun requ	terun request for any flagged Q				
LCWILLIA	@santee	cooper.com		//			1215	567	<u>/_J</u> w	102.0	9.GØI	<u> </u>	s No			
													1	Analys	is Group	
Labworks ID # (Internal use only)	Sample Locati Description	on/	Collection Date	Collection Time	Sample Collector	Total # of containers	Bottle type: (Glass- G/Plastic.P)	Grab (G) or Composite (C)	Matrix(see below)	Preservative (see	• M • Re • M	Comments ethod # porting limit ise: sample info iy other notes	RAD 226	1	TOTAL RAD CALC.	
AE94837	CAP-I		2/2/21	1206	MDG	2	P	G	GW	2			X	×	X	
AE94847	CAP-9			1339												
AE94848	CAP-9 DU	P	11	1344		1				\prod				П		
AE94845	CAP-7		2/3/21	1115		1	(1					\prod		
AE94848	CAP-5	,	1	1248												
AE94841	CA12-3			1349												
					·											
			 													
Relinquished by:	 		L sussession of the sussession			sac-sta		547688 F266		Augusta a	<u></u>	Sample Receiving (Intern	nal Use Oi	l l nly)		
Symoun	Employee#	2/9/21		. A	red by:	E	nployee GEL				Time 0945	TEMP (°C):	_ Initia	l:		
Relinquished by:			Time	Kecejy	ed by:	Er	nployee	ar ar arm contra	Date		Time	Correct pH: Yes	No			
MP	16	29-21	10000	A.h	Wy.	- /2	FI	Б	lala	31	15:05	Preservative Lot#:				
Relinquished by:	Employee#	Dafe*	प्राति	Receiv		Er	nployee	#	Date	·	Time					
				7.7.0007.5.5.0000								Date/Time/Init for pres	ervative:	,		
□МІ	ETALS (all)	Nut	rients	MI			Gu	psun	4	T	Coa		T	Oi		
□ Ag □ C		<u> по</u>	Control of the Contro	□ BTEX	-		Wallbo	THE RESERVE OF THE PERSON OF T	•	1	<u>555</u> Ultimate	<u>Flyash</u> □ Ammonia	100	CAN THE SECRETARY	! ! Qual.	
DAI DE		DO	C	□ Napthale			Gyp	sum(a)	77	1	□ % Moi		1000	%Mois		
□ As □ K	The state of the state of the	□ TP/ □ NH	TPO4	☐ THM/H. ☐ VOC			— beloi □ Al				□ Ash	☐ % Carbon		olor Voulity		
□B □Li		OF	J-1.	□ Oil & G	rease		0.70	C :		1	☐ Sulfur ☐ BTUs	☐ Mineml Analysis		delective FT	Strength	
□ Ba □ M		cr		☐ E. Coli ☐ Total Co	liform			tal meta uble Me			□ Volatile		# A 5 () () () () () () () () () (ed Clases	
□Be □M	n □Tl	U NO		□pH			- O Pur	ity (Cat	(O4)		□ CHN	☐ % Moisture	Us	ed Oil	l	
□Ca □M	o □V	□ □ Br □ □ NO	ACTOR ACCOUNT PRINTED ON BY MANAGED BY	☐ Dissolve ☐ Dissolve			□ % ! □ Sul	Moistun Grae)		ther Tests XRF Scan			lashpo detale i		
□ Cd □ Na	a □ Zn	L SO	ASSESSMENT OF THE PROPERTY OF	☐ Rad 226			ti pH			l o	HGI	NPDES	1	AsCd	Cr.Nt.Pb	
□ Co □ Ni	i □ Hg			☐ Rad 228 ☐ PCB			□ Chi	lorides			Fineness Particulate N	☐ Oil & Grease □ As		ilg) X		
□ Cr □ Pt						1	⊖rar Sulfor	ticle Siz	A.	1	. orrivatate N	D'TSS		HER	100	

GEL Laboratories LLC		JĄ		SAMPLE RECEIPT & REVIEW FORM
Client: 500 P			SD	G/AR/COC/Work Order: 534(e)7
Received By: AJA			Da	te Received: 2/9/21
Carrier and Tracking Number				Circle Applicable: FedEx Express FedEx Ground UPS Field Services Courier Other
Suspected Hazard Information	Yes	No	*If	Net Counts > 100cpm on samples not marked "radioactive", contact the Radiation Safety Group for further investigation.
A)Shipped as a DOT Hazardous?		/	Haz	ard Class Shipped: UN#: If UN2910, Is the Radioactive Shipment Survey Compliant? YesNo
B) Did the client designate the samples are to be received as radioactive?		/	CO	C notation or radioactive stickers on containers equal client designation.
C) Did the RSO classify the samples as radioactive?		/	Ma	ximum Net Counts Observed (Observed Counts - Area Background Counts);CPM / mR/Hr Classified as: Rad 1
D) Did the client designate samples are hazardous?		1		C notation or hazard labels on containers equal client designation.
E) Did the RSO identify possible hazards?		/	AF D	or E is yes, select Hazards below. PCB's Flammable Foreign Soil RCRA Asbestos Beryllium Other:
Sample Receipt Criteria	Yes	N. A.	å	Comments/Qualifiers (Required for Non-Conforming Items)
Shipping containers received intact and sealed?	/			Circle Applicable: Seals broken Damaged container Leaking container Other (describe)
2 Chain of custody documents included with shipment?	/			Circle Applicable: Client contacted and provided COC COC created upon receipt
3 Samples requiring cold preservation within (0 ≤ 6 deg. C)?*		1		Preservation Method: Wet Ice Ice Packs Dry ice None Other: *all temperatures are recorded in Celsius TEMP:
4 Daily check performed and passed on IR temperature gun?	/			Temperature Device Serial #: IR1-21 Secondary Temperature Device Serial # (If Applicable):
5 Sample containers intact and sealed?	/	(Circle Applicable: Seals broken Damaged container Leaking container Other (describe)
6 Samples requiring chemical preservation at proper pH?	/			Sample ID's and Containers Affected: If Preservation added, Lot#:
7 Do any samples require Volatile Analysis?			/	If Yes, are Encores or Soil Kits present for solids? YesNoNA(If yes, take to VOA Freezer) Do liquid VOA vials contain acid preservation? YesNoNA(If unknown, select No) Are liquid VOA vials free of headspace? YesNoNA Sample IDs and containers affected:
8 Samples received within holding time?	/			ID's and tests affected:
9 Sample ID's on COC match ID's on bottles?	/	1		ID's and containers affected:
10 Date & time on COC match date & time on bottles?	1	5	1	Circle Applicable: No dates on containers No times on containers COC missing info Other (describe)
Number of containers received match number indicated on COC? Are sample containers identifiable as	/			Circle Applicable: No container count on COC Other (describe)
13 GEL provided by use of GEL labels? 13 COC form is properly signed in relinquished/received sections?	1	7		Circle Applicable: Not relinquished Other (describe)
Comments (Use Continuation Form if needed): PM (or PM	A) n	ayja.	yr fair	tials

List of current GEL Certifications as of 08 March 2021

State Alabama	Certification 42200
Alaska	17-018
Alaska Drinking Water	SC00012
Arkansas	88-0651
CLIA	42D0904046
California	2940
Colorado	SC00012
Connecticut	PH-0169
DoD ELAP/ ISO17025 A2LA	2567.01
Florida NELAP	E87156
Foreign Soils Permit	P330-15-00283, P330-15-00253
Georgia	SC00012
Georgia SDWA	967
Hawaii	SC00012
Idaho	SC00012
Illinois NELAP	200029
Indiana	C-SC-01
Kansas NELAP	E-10332
Kentucky SDWA	90129
Kentucky Wastewater	90129
Louisiana Drinking Water	LA024
Louisiana NELAP	03046 (AI33904)
	2019020
Maine	2019020
Maryland	
Massachusetts	M-SC012
Massachusetts PFAS Approv	Letter
Michigan	9976
Mississippi	SC00012
Nebraska	NE-OS-26-13
Nevada	SC000122021-1
New Hampshire NELAP	2054
New Jersey NELAP	SC002
New Mexico	SC00012
New York NELAP	11501
North Carolina	233
North Carolina SDWA	45709
North Dakota	R-158
Oklahoma	2019-165
Pennsylvania NELAP	68-00485
Puerto Rico	SC00012
S. Carolina Radiochem	10120002
Sanitation Districts of L	9255651
South Carolina Chemistry	10120001
Tennessee	TN 02934
Texas NELAP	T104704235-21-19
Utah NELAP	SC000122020-34
Vermont	VT87156
Virginia NELAP	460202
_	
Washington	C780

PO Box 30712 Charleston, SC 29417 2040 Savage Road Charleston, SC 29407 P 843,556,8171 F 843,766,1178

gel.com

July 26, 2021

Ms. Jeanette Gilmetti Santee Cooper P.O. Box 2946101 OCO3 Moncks Corner, South Carolina 29461

Re: ABS Lab Analytical Work Order: 548337

Dear Ms. Gilmetti:

GEL Laboratories, LLC (GEL) appreciates the opportunity to provide the enclosed analytical results for the sample(s) we received on June 25, 2021. This original data report has been prepared and reviewed in accordance with GEL's standard operating procedures.

Test results for NELAP or ISO 17025 accredited tests are verified to meet the requirements of those standards, with any exceptions noted. The results reported relate only to the items tested and to the sample as received by the laboratory. These results may not be reproduced except as full reports without approval by the laboratory. Copies of GEL's accreditations and certifications can be found on our website at www.gel.com.

Our policy is to provide high quality, personalized analytical services to enable you to meet your analytical needs on time every time. We trust that you will find everything in order and to your satisfaction. If you have any questions, please do not hesitate to call me at (843) 556-8171, ext. 4289.

Sincerely,

Julie Robinson Project Manager

Purchase Order: 367074

Enclosures

2040 Savage Road Charleston SC 29407 - (843) 556-8171 - www.gel.com

Certificate of Analysis Report for

SOOP001 Santee Cooper

Client SDG: 548337 GEL Work Order: 548337

The Qualifiers in this report are defined as follows:

- * A quality control analyte recovery is outside of specified acceptance criteria
- ** Analyte is a Tracer compound
- ** Analyte is a surrogate compound
- U Analyte was analyzed for, but not detected above the MDL, MDA, MDC or LOD.

Where the analytical method has been performed under NELAP certification, the analysis has met all of the requirements of the NELAC standard unless qualified on the Certificate of Analysis.

The designation ND, if present, appears in the result column when the analyte concentration is not detected above the limit as defined in the 'U' qualifier above.

This data report has been prepared and reviewed in accordance with GEL Laboratories LLC standard operating procedures. Please direct any questions to your Project Manager, Julie Robinson.

	Inlie	Robinson	
Reviewed by			

Page 2 of 17 SDG: 548337

2040 Savage Road Charleston SC 29407 - (843) 556-8171 - www.gel.com

Certificate of Analysis

Report Date:

July 26, 2021

Company: Santee Cooper Address: P.O. Box 2946101

OCO3

Moncks Corner, South Carolina 29461

Contact: Ms. Jeanette Gilmetti Project: ABS Lab Analytical

Project: Client Sample ID: AF07244 SOOP00119 Sample ID: 548337001 Client ID: SOOP001

Matrix: Ground Water Collect Date: 24-JUN-21 12:19 Receive Date: 25-JUN-21 Collector: Client

Parameter	Qualifier	Result	Uncertainty	MDC	RL	Units	PF	DF Ana	lyst Date	Time Batch	Method
Rad Gas Flow Proport	tional Counting										
GFPC, Ra228, Liquid	"As Received"										
Radium-228	U	0.659	+/-1.18	2.07	3.00	pCi/L		JXC	07/06/21	1315 2144300	1
Radium-226+Radium	-228 Calculatio	n "See Pa	rent Products"								
Radium-226+228 Sum		0.789	+/-1.19			pCi/L		1 AEA	07/20/21	0551 2144335	2
Rad Radium-226											
Lucas Cell, Ra226, Li	quid "As Recei	ved"									
Radium-226	U	0.130	+/-0.190	0.332	1.00	pCi/L		LXP	07/13/21	0828 2144215	3

The following Analytical Methods were performed:

Method Description **Analyst Comments**

EPA 904.0/SW846 9320 Modified 1

2 Calculation EPA 903.1 Modified

Result Surrogate/Tracer Recovery Test Nominal Recovery% Acceptable Limits

79.4 (15%-125%) Barinm-133 Tracer GFPC, Ra228, Liquid "As Received"

Notes:

Counting Uncertainty is calculated at the 95% confidence level (1.96-sigma).

Column headers are defined as follows:

DF: Dilution Factor Lc/LC: Critical Level DL: Detection Limit PF: Prep Factor MDA: Minimum Detectable Activity RL: Reporting Limit

MDC: Minimum Detectable Concentration SQL: Sample Quantitation Limit

Page 3 of 17 SDG: 548337

2040 Savage Road Charleston SC 29407 - (843) 556-8171 - www.gel.com

Certificate of Analysis

Report Date:

July 26, 2021

Company: Santee Cooper Address: P.O. Box 2946101

OCO3

Moncks Corner, South Carolina 29461

Contact: Ms. Jeanette Gilmetti Project: ABS Lab Analytical

Project: Client Sample ID: AF07286 SOOP00119 Sample ID: 548337003 Client ID: SOOP001

Matrix: Ground Water Collect Date: 24-JUN-21 10:40 Receive Date: 25-JUN-21 Collector: Client

Parameter	Qualifier	Result	Uncertainty	MDC	RL	Units	PF	DF	Analy	st Date	Time I	Batch	Method
Rad Gas Flow Proportional Counting													
GFPC, Ra228, Liquid "A	As Received"												
Radium-228	\mathbf{U}	1.50	+/-1.16	1.81	3.00	pCi/L			JXC9	07/06/21	1315 2	144300	1
Radium-226+Radium-22	28 Calculation	n "See Pa	rent Products"										
Radium-226+228 Sum		1.63	+/-1.17			pCi/L		1	AEA	07/20/21	0551 2	144335	2
Rad Radium-226													
Lucas Cell, Ra226, Liquid "As Received"													
Radium-226	\mathbf{U}	0.124	+/-0.151	0.254	1.00	pCi/L			LXP1	07/13/21	0828 2	144215	3

The following Analytical Methods were performed:

Method Description **Analyst Comments**

EPA 904.0/SW846 9320 Modified 1

2 Calculation EPA 903.1 Modified

Test Result Surrogate/Tracer Recovery Nominal Recovery% Acceptable Limits

78.8 (15%-125%) Barium-133 Tracer GFPC, Ra228, Liquid "As Received"

Notes:

Counting Uncertainty is calculated at the 95% confidence level (1.96-sigma).

Column headers are defined as follows:

DF: Dilution Factor Lc/LC: Critical Level DL: Detection Limit PF: Prep Factor MDA: Minimum Detectable Activity RL: Reporting Limit

MDC: Minimum Detectable Concentration SQL: Sample Quantitation Limit

Page 4 of 17 SDG: 548337

2040 Savage Road Charleston SC 29407 - (843) 556-8171 - www.gel.com

Certificate of Analysis

Report Date:

July 26, 2021

Company: Santee Cooper Address: P.O. Box 2946101

OCO3

Moncks Corner, South Carolina 29461

Contact: Ms. Jeanette Gilmetti Project: ABS Lab Analytical

 Client Sample ID:
 AF07287
 Project:
 SOOP00119

 Sample ID:
 548337004
 Client ID:
 SOOP001

Matrix: Ground Water
Collect Date: 24-JUN-21 10:45
Receive Date: 25-JUN-21
Collector: Client

Parameter	Qualifier	Result	Uncertainty	MDC	RL	Units	PF	DF Ana	lyst Date	Time Batch	Method
Rad Gas Flow Proport	ional Counting										
GFPC, Ra228, Liquid	"As Received"										
Radium-228	\mathbf{U}	0.116	+/-0.995	1.87	3.00	pCi/L		JXC	07/06/21	1315 2144300	1
Radium-226+Radium-	228 Calculatio	n "See Pa	arent Products"								
Radium-226+228 Sum		0.977	+/-1.03			pCi/L		1 AEA	07/20/21	0551 2144335	5 2
Rad Radium-226											
Lucas Cell, Ra226, Lie	quid "As Recei	ved"									
Radium-226		0.862	+/-0.270	0.230	1.00	nCi/I		LAD	07/13/21	0828 2144214	3

The following Analytical Methods were performed:

Method Description Analyst Comments

1 EPA 904.0/SW846 9320 Modified

2 Calculation3 EPA 903.1 Modified

Surrogate/Tracer Recovery Test Result Nominal Recovery% Acceptable Limits

Barium-133 Tracer GFPC, Ra228, Liquid "As Received" 84.5 (15%-125%)

Notes:

Counting Uncertainty is calculated at the 95% confidence level (1.96-sigma).

Column headers are defined as follows:

DF: Dilution Factor Lc/LC: Critical Level
DL: Detection Limit PF: Prep Factor
MDA: Minimum Detectable Activity RL: Reporting Limit

MDC: Minimum Detectable Concentration SQL: Sample Quantitation Limit

Page 5 of 17 SDG: 548337

2040 Savage Road Charleston SC 29407 - (843) 556-8171 - www.gel.com

Certificate of Analysis

Report Date:

July 26, 2021

Company: Santee Cooper Address: P.O. Box 2946101

OCO3

Moncks Corner, South Carolina 29461

Contact: Ms. Jeanette Gilmetti Project: ABS Lab Analytical

Project: Client Sample ID: AF07281 SOOP00119 Sample ID: 548337005 Client ID: SOOP001

Matrix: Ground Water Collect Date: 21-JUN-21 13:08 Receive Date: 25-JUN-21 Collector: Client

Parameter	Qualifier	Result	Uncertainty	MDC	RL	Units	PF	DF A	Analy	st Date	Time	e Batch	Method
Rad Gas Flow Propor	tional Counting												
GFPC, Ra228, Liquid	l "As Received"												
Radium-228	\mathbf{U}	1.73	+/-1.22	1.89	3.00	pCi/L			JXC9	07/06/21	1315	2144300	1
Radium-226+Radium	-228 Calculatio	n "See Pa	arent Products"										
Radium-226+228 Sum		2.10	+/-1.23			pCi/L		1 .	AEA	07/20/21	0551	2144335	2
Rad Radium-226													
Lucas Cell, Ra226, Li	iquid "As Recei	ved"											
Radium-226	=	0.369	+/-0.179	0.194	1.00	pCi/L		1	LXP1	07/13/21	0828	2144215	3

The following Analytical Methods were performed:

Method Description **Analyst Comments**

EPA 904.0/SW846 9320 Modified 1

2 Calculation EPA 903.1 Modified

Result Surrogate/Tracer Recovery Test Nominal Recovery% Acceptable Limits

89.3 (15%-125%) Barium-133 Tracer GFPC, Ra228, Liquid "As Received"

Notes:

Counting Uncertainty is calculated at the 95% confidence level (1.96-sigma).

Column headers are defined as follows:

DF: Dilution Factor Lc/LC: Critical Level DL: Detection Limit PF: Prep Factor MDA: Minimum Detectable Activity RL: Reporting Limit

MDC: Minimum Detectable Concentration SQL: Sample Quantitation Limit

Page 6 of 17 SDG: 548337

2040 Savage Road Charleston SC 29407 - (843) 556-8171 - www.gel.com

Certificate of Analysis

Report Date:

July 26, 2021

Company: Santee Cooper Address: P.O. Box 2946101

OCO3

Moncks Corner, South Carolina 29461

Contact: Ms. Jeanette Gilmetti Project: ABS Lab Analytical

 Client Sample ID:
 AF07259
 Project:
 SOOP00119

 Sample ID:
 548337006
 Client ID:
 SOOP001

Matrix: Ground Water
Collect Date: 21-JUN-21 14:13
Receive Date: 25-JUN-21
Collector: Client

Parameter	Qualifier	Result	Uncertainty	MDC	RL	Units	PF	DF A	Analy	st Date	Time	e Batch	Method
Rad Gas Flow Proport	ional Counting												
GFPC, Ra228, Liquid	"As Received"												
Radium-228	\mathbf{U}	0.120	+/-1.04	1.96	3.00	pCi/L		J	XC9	07/06/21	1315	2144300	1
Radium-226+Radium-	-228 Calculation	n "See Pa	arent Products"										
Radium-226+228 Sum		0.552	+/-1.06			pCi/L		1 A	AEA	07/20/21	0551	2144335	2
Rad Radium-226													
Lucas Cell, Ra226, Li	quid "As Recei	ved"											
Radium-226		0.433	+/-0.218	0.254	1.00	pCi/L		T	XP1	07/13/21	0828	2144215	3

The following Analytical Methods were performed:

Method Description Analyst Comments

1 EPA 904.0/SW846 9320 Modified

2 Calculation 3 EPA 903.1 Modified

Surrogate/Tracer Recovery Test Result Nominal Recovery% Acceptable Limits

Barium-133 Tracer GFPC, Ra228, Liquid "As Received" 83 (15%-125%)

Notes:

Counting Uncertainty is calculated at the 95% confidence level (1.96-sigma).

Column headers are defined as follows:

DF: Dilution Factor Lc/LC: Critical Level
DL: Detection Limit PF: Prep Factor
MDA: Minimum Detectable Activity RL: Reporting Limit

MDC: Minimum Detectable Concentration SQL: Sample Quantitation Limit

Page 7 of 17 SDG: 548337

2040 Savage Road Charleston SC 29407 - (843) 556-8171 - www.gel.com

Certificate of Analysis

Report Date:

July 26, 2021

Company: Santee Cooper Address: P.O. Box 2946101

OCO3

Moncks Corner, South Carolina 29461

Contact: Ms. Jeanette Gilmetti Project: ABS Lab Analytical

Project: Client Sample ID: AF07283 SOOP00119 Sample ID: 548337007 Client ID: SOOP001

Matrix: Ground Water Collect Date: 23-JUN-21 13:55 Receive Date: 25-JUN-21 Collector: Client

Parameter	Qualifier	Result	Uncertainty	MDC	RL	Units	PF	DF	Analy	st Date	Time I	Batch	Method	
Rad Gas Flow Proportional Counting														
GFPC, Ra228, Liquid "A	As Received"													
Radium-228	\mathbf{U}	-0.898	+/-0.740	1.73	3.00	pCi/L			JXC9	07/06/21	1315 2	144300	1	
Radium-226+Radium-22	28 Calculation	n "See Pa	arent Products"											
Radium-226+228 Sum		0.244	+/-0.757			pCi/L		1	AEA	07/20/21	0551 2	144335	2	
Rad Radium-226														
Lucas Cell, Ra226, Liqu	id "As Recei	ved"												
Radium-226		0.244	+/-0.160	0.195	1.00	pCi/L			LXP1	07/13/21	0828 2	144215	3	

The following Analytical Methods were performed:

Method Description **Analyst Comments**

EPA 904.0/SW846 9320 Modified 1

2 Calculation EPA 903.1 Modified

Test Result Surrogate/Tracer Recovery Nominal Recovery% Acceptable Limits

88.4 (15%-125%) Barium-133 Tracer GFPC, Ra228, Liquid "As Received"

Notes:

Counting Uncertainty is calculated at the 95% confidence level (1.96-sigma).

Column headers are defined as follows:

DF: Dilution Factor Lc/LC: Critical Level DL: Detection Limit PF: Prep Factor MDA: Minimum Detectable Activity RL: Reporting Limit

MDC: Minimum Detectable Concentration SQL: Sample Quantitation Limit

Page 8 of 17 SDG: 548337

2040 Savage Road Charleston SC 29407 - (843) 556-8171 - www.gel.com

Certificate of Analysis

Report Date:

July 26, 2021

Company: Santee Cooper Address: P.O. Box 2946101

OCO3

Moncks Corner, South Carolina 29461

Contact: Ms. Jeanette Gilmetti Project: ABS Lab Analytical

Project: Client Sample ID: AF07285 SOOP00119 Sample ID: 548337008 Client ID: SOOP001

Matrix: Ground Water Collect Date: 23-JUN-21 15:04 Receive Date: 25-JUN-21 Collector: Client

Parameter	Qualifier	Result	Uncertainty	MDC	RL	Units	PF	DF A	alyst Date	Time Batch	Method
Rad Gas Flow Proport	tional Counting										
GFPC, Ra228, Liquid	"As Received"										
Radium-228	U	0.801	+/-1.20	2.07	3.00	pCi/L		JX	C9 07/06/21	1315 214430	0 1
Radium-226+Radium	-228 Calculatio	n "See Pa	arent Products"								
Radium-226+228 Sum		0.971	+/-1.20			pCi/L		1 AF	A 07/20/21	0551 214433	5 2
Rad Radium-226											
Lucas Cell, Ra226, Li	quid "As Recei	ved"									
Radium-226		0.170	+/-0 144	0.203	1.00	pCi/L		1.3	P1 07/13/21	0900 214421	5 3

The following Analytical Methods were performed:

Method Description **Analyst Comments**

EPA 904.0/SW846 9320 Modified 1

2 Calculation EPA 903.1 Modified

Result Surrogate/Tracer Recovery Test Nominal Recovery% Acceptable Limits

(15%-125%) Barium-133 Tracer GFPC, Ra228, Liquid "As Received" 80

Notes:

Counting Uncertainty is calculated at the 95% confidence level (1.96-sigma).

Column headers are defined as follows:

DF: Dilution Factor Lc/LC: Critical Level DL: Detection Limit PF: Prep Factor MDA: Minimum Detectable Activity RL: Reporting Limit

MDC: Minimum Detectable Concentration SQL: Sample Quantitation Limit

Page 9 of 17 SDG: 548337

2040 Savage Road Charleston, SC 29407 - (843) 556-8171 - www.gel.com

QC Summary

Report Date: July 26, 2021

Page 1 of 2

Santee Cooper P.O. Box 2946101

OCO3

Moncks Corner, South Carolina

Contact: Ms. Jeanette Gilmetti

Workorder: 548337

Parmname	NOM	Sample	Qual	QC	Units	RPD%	REC%	Range Anist	Date Time
Rad Gas Flow Batch 2144300									
QC1204852392 548337008 DUP Radium-228	U Uncertainty	0.801 +/-1.20	U	-0.509 +/-0.937	pCi/L	N/A		N/A JXC9	07/06/21 13:15
QC1204852393 LCS Radium-228	51.1 Uncertainty			51.6 +/-4.05	pCi/L		101	(75%-125%)	07/06/21 13:15
QC1204852391 MB Radium-228	Uncertainty		U	-1.27 +/-0.862	pCi/L				07/06/21 13:15
Rad Ra-226 Batch 2144215									
QC1204852184 548337001 DUP Radium-226	U Uncertainty	0.130 +/-0.190	U	0.270 +/-0.196	pCi/L	N/A		N/A LXP1	07/13/21 09:00
QC1204852186 LCS Radium-226	26.8 Uncertainty			23.6 +/-1.30	pCi/L		87.9	(75%-125%)	07/13/21 09:00
QC1204852183 MB Radium-226	Uncertainty		U	0.107 +/-0.111	pCi/L				07/13/21 09:00
QC1204852185 548337001 MS Radium-226	134 U Uncertainty	0.130 +/-0.190		115 +/-6.66	pCi/L		85.6	(75%-125%)	07/13/21 09:00

Notes:

Counting Uncertainty is calculated at the 95% confidence level (1.96-sigma).

The Qualifiers in this report are defined as follows:

** Analyte is a Tracer compound

< Result is less than value reported</p>

> Result is greater than value reported

BD Results are either below the MDC or tracer recovery is low

FA Failed analysis.

Page 10 of 17 SDG: 548337

2040 Savage Road Charleston, SC 29407 - (843) 556-8171 - www.gel.com

QC Summary

Workorder: 548337

Parmname NOM Sample Qual QC Units RPD% REC% Range AnIst Date Time

- H Analytical holding time was exceeded
- J See case narrative for an explanation
- J Value is estimated
- K Analyte present. Reported value may be biased high. Actual value is expected to be lower.
- L Analyte present. Reported value may be biased low. Actual value is expected to be higher.
- M M if above MDC and less than LLD
- M REMP Result > MDC/CL and < RDL
- N/A RPD or %Recovery limits do not apply.
- N1 See case narrative
- ND Analyte concentration is not detected above the detection limit
- NJ Consult Case Narrative, Data Summary package, or Project Manager concerning this qualifier
- Q One or more quality control criteria have not been met. Refer to the applicable narrative or DER.
- R Sample results are rejected
- U Analyte was analyzed for, but not detected above the MDL, MDA, MDC or LOD.
- UI Gamma Spectroscopy--Uncertain identification
- UJ Gamma Spectroscopy--Uncertain identification
- UL Not considered detected. The associated number is the reported concentration, which may be inaccurate due to a low bias.
- X Consult Case Narrative, Data Summary package, or Project Manager concerning this qualifier
- Y Other specific qualifiers were required to properly define the results. Consult case narrative.
- ^ RPD of sample and duplicate evaluated using +/-RL. Concentrations are <5X the RL. Qualifier Not Applicable for Radiochemistry.
- h Preparation or preservation holding time was exceeded

N/A indicates that spike recovery limits do not apply when sample concentration exceeds spike conc. by a factor of 4 or more or %RPD not applicable.

- ^ The Relative Percent Difference (RPD) obtained from the sample duplicate (DUP) is evaluated against the acceptance criteria when the sample is greater than five times (5X) the contract required detection limit (RL). In cases where either the sample or duplicate value is less than 5X the RL, a control limit of +/- the RL is used to evaluate the DUP result.
- * Indicates that a Quality Control parameter was not within specifications.

For PS, PSD, and SDILT results, the values listed are the measured amounts, not final concentrations.

Where the analytical method has been performed under NELAP certification, the analysis has met all of the requirements of the NELAC standard unless qualified on the QC Summary.

Page 11 of 17 SDG: 548337

Radiochemistry Technical Case Narrative Santee Cooper SDG #: 548337

Product: GFPC, Ra228, Liquid

Analytical Method: EPA 904.0/SW846 9320 Modified Analytical Procedure: GL-RAD-A-063 REV# 5

Analytical Batch: 2144300

The following samples were analyzed using the above methods and analytical procedure(s).

GEL Sample ID#	Client Sample Identification
548337001	AF07244
548337003	AF07286
548337004	AF07287
548337005	AF07281
548337006	AF07259
548337007	AF07283
548337008	AF07285
1204852391	Method Blank (MB)
1204852392	548337008(AF07285) Sample Duplicate (DUP)
1204852393	Laboratory Control Sample (LCS)

The samples in this SDG were analyzed on an "as received" basis.

Data Summary:

There are no exceptions, anomalies or deviations from the specified methods. All sample data provided in this report met the acceptance criteria specified in the analytical methods and procedures for initial calibration, continuing calibration, instrument controls and process controls where applicable.

Product: Lucas Cell, Ra226, Liquid Analytical Method: EPA 903.1 Modified

Analytical Procedure: GL-RAD-A-008 REV# 15

Analytical Batch: 2144215

The following samples were analyzed using the above methods and analytical procedure(s).

GEL Sample ID#	Client Sample Identification
548337001	AF07244
548337003	AF07286
548337004	AF07287
548337005	AF07281
548337006	AF07259
548337007	AF07283
548337008	AF07285
1204852183	Method Blank (MB)
1204852184	548337001(AF07244) Sample Duplicate (DUP)

Page 12 of 17 SDG: 548337

1204852185 548337001(AF07244) Matrix Spike (MS) 1204852186 Laboratory Control Sample (LCS)

The samples in this SDG were analyzed on an "as received" basis.

Data Summary:

All sample data provided in this report met the acceptance criteria specified in the analytical methods and procedures for initial calibration, continuing calibration, instrument controls and process controls where applicable, with the following exceptions.

Miscellaneous Information

Additional Comments

The matrix spike, 1204852185 (AF07244MS), aliquot was reduced to conserve sample volume.

Certification Statement

Where the analytical method has been performed under NELAP certification, the analysis has met all of the requirements of the NELAC standard unless otherwise noted in the analytical case narrative.

Page 13 of 17 SDG: 548337

Contract Lab Due Date (Lab Only):_

7/2/21

Send report to lcwillia@santeecooper.com & sjbrown@santeecooper.com & sjbrown & <a href="mailto:s

Chain of Custody

548333 548337

Santee Cooper One Riverwood Drive Moneks Corner, SC 29461 Phone: (843)761-8000 Ext. 5148 Fex: (843)761-4175

Customer Email/Report Recipient:			Date	Results N	leeded b	y:		P	roject/	Rerun request for any flagged Q									
LCWILLIA	LCWILLIA @santeecooper.com												MO2.09. GOI / 36500						
																£	\nalysi	s Grou	īb
Labworks ID ((Internal use only)			ple Locatio	pn/	Collection Date	Collection Time	Sample Collector	Total # of containers	Bottle type: (Glass-G/Plastic-P)	Grab (G) or Composite (C)	Matrix(see below)	Preservative (see	• Me • Rep • Mis • Any	Comments thod # corting limit sc. sample info y other notes		Toc	RAD 226	FMD 228	DIAL FORD ONLC.
AF07280		CL	F B-51	>	6/23/2	1 1029	BRT	ı	G	G	GW	1/3				X			
AF07284	+	Þo	z- 50		1	1249	1	l	G	G	GW	1				X			
A=07279	and the second of the second o	CLI	-(B -5		1	0915	1	1	G	G-	€W	1				×			
AF07244		ÇA:	P-1		6/24/-	4 1219	BRT	2	₽	G	GW.	2					×	×	X
AF07246		CA	P-3		1	1340	1	2	þ	G	GW	2					Х	×	×
AF07286		PO	2 -7			1040	4	3	P/G	6	GW	2/1,3				X	×	X	×
AF07287	-	P07	-7 DUF	>	1-	1045	<u> </u>	3	P/6	G	GW	2/1,3		***************************************		×	Х	×	X
AF07282	1	Poz	-3		6/24/2	0718	1_	1	G	G	GW	1,3			······································	X			
	11						-												
	\coprod					<u> </u>	<u></u>										<u> </u>		
Relinquished	by:	K. (4)	mployee#	Date	Time	Rece	ived by:	A E	mployee	#	Date		Time		ving (Internal U				
Sproun]3	5594	6/25/21	1310	· Sad			GEL 6/25/21			1310						-	
Relinquished	by:		Employee#	Date	Time	Received by:			Employee# Date				Time	Yes No					
Relinquished	by:		Maria	67.35.A	1440	4009 July E				0 Z Z Z		44 <u>6</u>	Preservative	Lot#:					
	1	660 130	Marie Carrier					35 32			A SHOWER	G. 35.67 D		Date/Time/Ir	nit for preserva	tive:			
$\begin{array}{c cccc} \square \ Ag & \square \ Cu & \square \ Sb & \qquad \square \ Tc \\ \square \ AI & \square \ Fe & \square \ Se & \qquad D \\ \hline \square \ As & \square \ K & \square \ Sn & \qquad T \\ \end{array}$		OC /TPO4 13-N 92	MI BTEX Naptha THM/F VOC Oil & C E. Coli Total C Dissolv Dissolv Rad 22t Rad 22t PCB	IAA Grease oliform ed As ed Fe 5		Wallbo Gyp belai Fi Al Fi TO Fi Tot Fi Sol Fi Sol F	sum(a iv) M (' al meta able M ity (Ca Vioistur files	u is etals SO4) e	O:	Coal Ultimate	Matter □ Sie	Carbon ineral Analysis eve Moisture PDES & Grease	OF THE STATE OF TH	issolve d Oil ashpo etals i Vs Cd. g)	Qual ure Streng d Cas ut i mi	rh CS			

__ Contract Lab Due Date (Lab Only):_ Contract Lab Info:

Send report to lcwillia@santeecooper.com & sibrown@santeecooper.com & sibrown.com & <a hr

Chain of Custody

Santee Cooper One Riverwood Drive Moncks Corner, SC 29461 Phone: (843)761-8000 Ext. 5148 Fax: (843)761-4175

Customer Email/Repor	t Recipient:	Date F	Results Ne	eded by	/ :		Pr	oject/	Task/l	Jnit #:		Rerui	n request	for a	ny fla	gged	QC
LCWILLIA @	santeecooper.com		<i>J</i>			1215	67	/ JM	62.09	7. GØI	<u> </u>	<u>~</u>	Yes	No			
														E	nalys	s Grou	īĐ
Labworks ID # Samp (Internal use only)	le Location/ iption	Collection Date	Collection Time	Sample Collector	Total # of containers	Bottle type: (Glass- G/Plastic-P)	Grab [G] or Composite (C)	Matrix(see below)	Preservative (see below)	Met Rep Mis Any	Comm hod # orting limit c. sample in other note	nfo		RAD 226	RAD 228	TOTAL RAD CALC	Toc
AF07281 PM-	-1	6/21/2	1308	MDG/ BRT	3	1/6	G	GW	2/1,3					X	Х	Х	Х
AF07259 CBW	ı - [1	1413	Ţ	3	P/G	G	GW	2/1,3				-	X	Х	×	×
AF07274 CLF	(B-1	6/22/21	1 1007	BRT/ML	1	G	G		3ر ا								X
AF07275 CLF1	3-1 DUP		1012														Х
AF07276 CLF1	B-4		1213								***************************************						Х
AF-07-277 CLF1	8-3		1358							·	***************************************						X
AF07278 CLFI	в-4		1454		<u> </u>	1	1										Х
AF07283 POZ	- 4-	6/23/21	1355	BRT	3	P/G	G	GW	2/1,3			w		×	×	Х	×
AF07285 POZ.	- 6	1 4	1504	1	1	<u> </u>	1	1_	<u>L</u>					×	X	Х	Χ
											T						
SATYrown 35 Relinquished by: En	nployee# Date 5594 6/25/21 nployee# Date bloyee# Veste/	Time 1310 Time Time	Receiv Aud (18)	red by: red by: (1) (2) (2) (3) (4) (4) (4) (4) (5)	16	mployee mployee EQ mployee	# ()	Date 6/25/ Date Date	¹ 21 2	Time: 1310 Time 1440 Time	Correct						
									2 Sample of the			me/Init f	or preserv	ative:			
METAL: Ag	☐ Sb ☐ TC ☐ DC ☐ Sn ☐ TF	OC 7/TPO4 13-N D2	MII: D BTEX Napthale THM/H. VOC Oil & G E Coli Total Co D H Dissolve Rad 226 Rad 228	ene AA rease sliform d As d Fe	10 E	Wallbo	stum(a w) iM OC ttal mett luble M rity (Ca Moistur llites ttole Si	dl dls etals SO(4) e	00 01 01	Coal Ultimate □ % Moist □ Ash □ Sulfur □ BTUs □ Volatile □ CHN ther Tests: XRF Scan HGI Fineness Particulate Ma	ure Matter	Flya Amma LOI W Car Sieve W Mo NPE D As	onia bon al al alysis isture	E E E E E E E E E E E E E E E E E E E	AMor ofor cidity distri- issolved Oi fashpo letals & Cid lg)	T Qual dure : Sucar ed Gas 	÷ 6

	€ Laboratories LLC				SAMPLE RECEIPT & REVIEW FORM
Clie	1200			SDC	G/AR/COC/Work Order: 54.8333
ļ					1005/01
Rece	ived By: TYE			Dat	c Received: Circle Applicable: FedEx Express FedEx Ground UPS Field Services Courier Other
	Carrier and Tracking Number				
Susp	cted Hazard Information	Yes	å	*If 1	Net Counts > 100cpm on samples not marked "radioactive", contact the Radiation Safety Group for further investigation.
A)Sh	ipped as a DOT Hazardous?		V	Haza	ard Class Shipped: If UN2910, Is the Radioactive Shipment Survey Compliant? YesNo
	d the client designate the samples are to be ed as radioactive?		V	coc	C notation or radioactive stickers on containers equal client designation.
	d the RSO classify the samples as active?		1	Иах	imum Net Counts Observed* (Observed Counts - Area Background Counts): CPM / mR/Hr Classified as: Rad 1 Rad 2 Rad 3
D) D	d the client designate samples are hazardous?	_	/		O notation or hazard labels on containers equal client designation. Or E is yes, select Hazards below.
E) D	d the RSO identify possible hazards?		1/	<u> </u>	PCB's Flammable Foreign Soil RCRA Asbestos Beryllium Other.
<u> </u>	Sample Receipt Criteria	Yes	Z.	ž	Comments/Qualifiers (Required for Non-Conforming Items)
	Shipping containers received intact and caled?				Circle Applicable: Scals broken Damaged container Leaking container Other (describe)
	Chain of custody documents included with shipment?	V			Circle Applicable: Client contacted and provided COC COC created upon receipt Preservation Method: Wet Ice Ice Packs Dry Ice None Other:
	Samples requiring cold preservation within (0 ≤ 6 deg. C)?*	V	for:		*all temperatures are recorded in Celsius TEMP: CHEW-W
	Paily check performed and passed on IR emperature gun?	V			Temperature Device Serial #: <u>IR2-20</u> Secondary Temperature Device Serial # (If Applicable): Circle Applicable: Seals broken Damaged container Leaking container Other (describe)
\vdash	Sample containers intact and sealed?	~	接		Sample ID's and Conceiners Affected:
	Samples requiring chemical preservation t proper pH?	V	1000 E	ļ	If Preservation added, 1,614: If Yes, are Encores or Soit Kits present for solids? YesNoNA(If yes, take to VOA Freezer)
7	Do any samples require Volatile Analysis?			V	Doziquid VOA vials contain acid preservation? Yes No NA (If unknown, select No) Are liquid VOA vials free of headspace? Yes No NA Sample ID's and containers affected:
8	Samples received within holding time?		K		ID's and tests effected:
	Sample ID's on COC match ID's on bottles?	V			ID's and containers affected:
10	Date & time on COC match date & time on bottles?	V			Circle Applicable: No dates on containers No times on containers COC missing info Other (describe)
11	Number of containers received match number indicated on COC? Are sample containers identifiable as	1			Circle Applicable: No container count on COC Other (describe)
	GEL provided by use of GEL labels?			H	
13	COC form is properly signed in relinquished/received sections?				Circle Applicable: Not relinquished Other (describe)
Com	ments (Use Continuation Form if needed):				

Page 16 of 17 SDG: 548337

PM (or PMA) review; Initials

List of current GEL Certifications as of 26 July 2021

State Alabama	Certification 42200
Alaska	17-018
Alaska Drinking Water	SC00012
Arkansas	88-0651
CLIA	42D0904046
California	2940
Colorado	SC00012
Connecticut	PH-0169
DoD ELAP/ ISO17025 A2LA	2567.01
Florida NELAP	E87156
Foreign Soils Permit	P330-15-00283, P330-15-00253
Georgia	SC00012
Georgia SDWA	967
Hawaii	SC00012
Idaho	SC00012
Illinois NELAP	200029
Indiana	C=SC=01
Kansas NELAP	E-10332
Kentucky SDWA	90129
Kentucky Wastewater	90129
Louisiana Drinking Water	LA024
Louisiana NELAP	
	03046 (AI33904)
Maine	2019020
Maryland	270
Massachusetts	M-SC012
Massachusetts PFAS Approv	Letter
Michigan	9976
Mississippi	SC00012
Nebraska	NE-OS-26-13
Nevada	SC000122021-1
New Hampshire NELAP	2054
New Jersey NELAP	SC002
New Mexico	SC00012
New York NELAP	11501
North Carolina	233
North Carolina SDWA	45709
North Dakota	R-158
Oklahoma	2019-165
Pennsylvania NELAP	68-00485
Puerto Rico	SC00012
S. Carolina Radiochem	10120002
Sanitation Districts of L	9255651
South Carolina Chemistry	10120001
Tennessee	TN 02934
Texas NELAP	T104704235-21-19
Utah NELAP	SC000122021-35
Vermont	VT87156
V CHILDIN	
Virginia NELAP	460202

gel.com

August 02, 2021

Ms. Jeanette Gilmetti Santee Cooper P.O. Box 2946101 OCO3 Moncks Corner, South Carolina 29461

Re: ABS Lab Analytical Work Order: 548894

Dear Ms. Gilmetti:

GEL Laboratories, LLC (GEL) appreciates the opportunity to provide the enclosed analytical results for the sample(s) we received on July 02, 2021. This original data report has been prepared and reviewed in accordance with GEL's standard operating procedures.

Test results for NELAP or ISO 17025 accredited tests are verified to meet the requirements of those standards, with any exceptions noted. The results reported relate only to the items tested and to the sample as received by the laboratory. These results may not be reproduced except as full reports without approval by the laboratory. Copies of GEL's accreditations and certifications can be found on our website at www.gel.com.

Our policy is to provide high quality, personalized analytical services to enable you to meet your analytical needs on time every time. We trust that you will find everything in order and to your satisfaction. If you have any questions, please do not hesitate to call me at (843) 556-8171, ext. 4289.

Sincerely,

Julie Robinson Project Manager

Purchase Order: 367074

Enclosures

2040 Savage Road Charleston SC 29407 - (843) 556-8171 - www.gel.com

Certificate of Analysis Report for

SOOP001 Santee Cooper

Client SDG: 548894 GEL Work Order: 548894

The Qualifiers in this report are defined as follows:

- * A quality control analyte recovery is outside of specified acceptance criteria
- ** Analyte is a Tracer compound
- ** Analyte is a surrogate compound
- U Analyte was analyzed for, but not detected above the MDL, MDA, MDC or LOD.

Where the analytical method has been performed under NELAP certification, the analysis has met all of the requirements of the NELAC standard unless qualified on the Certificate of Analysis.

The designation ND, if present, appears in the result column when the analyte concentration is not detected above the limit as defined in the 'U' qualifier above.

This data report has been prepared and reviewed in accordance with GEL Laboratories LLC standard operating procedures. Please direct any questions to your Project Manager, Julie Robinson.

	Inlie	Robinson	
Reviewed by			

Page 2 of 19 SDG: 548894

2040 Savage Road Charleston SC 29407 - (843) 556-8171 - www.gel.com

Certificate of Analysis

Report Date:

July 26, 2021

Company: Santee Cooper Address: P.O. Box 2946101

OCO3

Moncks Corner, South Carolina 29461

Contact: Ms. Jeanette Gilmetti Project: ABS Lab Analytical

 Client Sample ID:
 AF07246
 Project:
 SOOP00119

 Sample ID:
 548894001
 Client ID:
 SOOP001

Matrix: Ground Water
Collect Date: 29-JUN-21 10:44
Receive Date: 02-JUL-21
Collector: Client

Parameter	Qualifier	Result	Uncertainty	MDC	RL.	Units	PF	DF Anal	yst Date	Time Batch	Method
Rad Gas Flow Propo	rtional Counting										
GFPC, Ra228, Liqui	d "As Received"										
Radium-228	U	1.38	+/-1.37	2.27	3.00	pCi/L		JXC9	07/20/21	0845 2147055	1
Radium-226+Radiur	n-228 Calculation	n "See Pa	rent Products"								
Radium-226+228 Sum		1.79	+/-1.39			pCi/L		1 AEA	07/26/21	0417 2147065	2
Rad Radium-226											
Lucas Cell, Ra226, I	iquid "As Receiv	ved"									
Radium-226	-	0.413	+/-0.226	0.247	1.00	pCi/L		LXP1	07/22/21	0945 2149561	3

The following Analytical Methods were performed:

Method Description Analyst Comments

1 EPA 904.0/SW846 9320 Modified

2 Calculation3 EPA 903.1 Modified

Surrogate/Tracer Recovery Test Result Nominal Recovery% Acceptable Limits

Barium-133 Tracer GFPC, Ra228, Liquid "As Received" 74.6 (15%-125%)

Notes:

Counting Uncertainty is calculated at the 95% confidence level (1.96-sigma).

Column headers are defined as follows:

DF: Dilution Factor Lc/LC: Critical Level
DL: Detection Limit PF: Prep Factor
MDA: Minimum Detectable Activity RL: Reporting Limit

MDC: Minimum Detectable Concentration SQL: Sample Quantitation Limit

Page 3 of 19 SDG: 548894

2040 Savage Road Charleston SC 29407 - (843) 556-8171 - www.gel.com

Certificate of Analysis

Report Date:

July 26, 2021

Company: Santee Cooper Address: P.O. Box 2946101

OCO3

Moncks Corner, South Carolina 29461

Contact: Ms. Jeanette Gilmetti Project: ABS Lab Analytical

Client Sample ID: AF07248 Project: SOOP00119 Sample ID: 548894002 Client ID: SOOP001

Matrix: Ground Water Collect Date: 29-JUN-21 11:50 Receive Date: 02-JUL-21 Collector: Client

Parameter	Qualifier	Result	Uncertainty	MDC	RL	Units	PF	DF	Analy	st Date	Time Ba	ch Method
Rad Gas Flow Proportio	nal Counting											
GFPC, Ra228, Liquid "A	As Received"											
Radium-228		11.6	+/-1.82	1.41	3.00	pCi/L			JXC9	07/23/21	0836 2147	055 1
Radium-226+Radium-22	28 Calculation	n "See Pa	arent Products"									
Radium-226+228 Sum		16.8	+/-1.95			pCi/L		1	AEA	07/26/21	0417 2147	065 2
Rad Radium-226												
Lucas Cell, Ra226, Liqu	id "As Receiv	ved"										
Radium-226		5.16	+/-0.692	0.287	1.00	pCi/L			LXP1	07/22/21	0945 2149	561 3

The following Analytical Methods were performed:

Method Description **Analyst Comments**

EPA 904.0/SW846 9320 Modified 1

2 Calculation EPA 903.1 Modified

Test Result Surrogate/Tracer Recovery Nominal Recovery% Acceptable Limits

79.1 (15%-125%) Barium-133 Tracer GFPC, Ra228, Liquid "As Received"

Notes:

Counting Uncertainty is calculated at the 95% confidence level (1.96-sigma).

Column headers are defined as follows:

DF: Dilution Factor Lc/LC: Critical Level DL: Detection Limit PF: Prep Factor MDA: Minimum Detectable Activity RL: Reporting Limit

MDC: Minimum Detectable Concentration SQL: Sample Quantitation Limit

Page 4 of 19 SDG: 548894

2040 Savage Road Charleston SC 29407 - (843) 556-8171 - www.gel.com

Certificate of Analysis

Report Date:

July 26, 2021

Company: Santee Cooper Address: P.O. Box 2946101

OCO3

Moncks Corner, South Carolina 29461

Contact: Ms. Jeanette Gilmetti Project: ABS Lab Analytical

Client Sample ID: AF07252 Project: SOOP00119 Sample ID: 548894003 Client ID: SOOP001

Matrix: Ground Water
Collect Date: 29-JUN-21 14:00
Receive Date: 02-JUL-21
Collector: Client

Parameter	Qualifier	Result	Uncertainty	MDC	RL	Units	PF	DF	Analy	st Date	Time	Batch	Method
Rad Gas Flow Proportio	nal Counting												
GFPC, Ra228, Liquid "A	As Received"												
Radium-228		2.56	+/-1.23	1.75	3.00	pCi/L			JXC9	07/20/21	0846	2147055	1
Radium-226+Radium-22	28 Calculation	n "See Pa	rent Products"										
Radium-226+228 Sum		3.32	+/-1.26			pCi/L		1	AEA	07/26/21	0417	2147065	2
Rad Radium-226													
Lucas Cell, Ra226, Liqu	id "As Receiv	ved"											
Radium-226		0.752	+/-0.284	0.260	1.00	pCi/L			LXP1	07/22/21	0945	2149561	3

The following Analytical Methods were performed:

Method Description Analyst Comments

1 EPA 904.0/SW846 9320 Modified

2 Calculation3 EPA 903.1 Modified

Surrogate/Tracer Recovery Test Result Nominal Recovery% Acceptable Limits

Barium-133 Tracer GFPC, Ra228, Liquid "As Received" 73.6 (15%-125%)

Notes:

Counting Uncertainty is calculated at the 95% confidence level (1.96-sigma).

Column headers are defined as follows:

DF: Dilution Factor Lc/LC: Critical Level
DL: Detection Limit PF: Prep Factor
MDA: Minimum Detectable Activity RL: Reporting Limit

MDC: Minimum Detectable Concentration SQL: Sample Quantitation Limit

Page 5 of 19 SDG: 548894

2040 Savage Road Charleston SC 29407 - (843) 556-8171 - www.gel.com

Certificate of Analysis

Report Date:

July 26, 2021

Company: Santee Cooper Address: P.O. Box 2946101

OCO3

Moncks Corner, South Carolina 29461

Contact: Ms. Jeanette Gilmetti Project: ABS Lab Analytical

 Client Sample ID:
 AF07253
 Project:
 SOOP00119

 Sample ID:
 548894004
 Client ID:
 SOOP001

Matrix: Ground Water
Collect Date: 29-JUN-21 14:05
Receive Date: 02-JUL-21
Collector: Client

Parameter	Qualifier	Result	Uncertainty	MDC	RL	Units	PF	DF	Analy	st Date	Time	Batch	Method
Rad Gas Flow Proportio	nal Counting												
GFPC, Ra228, Liquid "A	As Received"												
Radium-228		2.78	+/-1.02	1.23	3.00	pCi/L			JXC9	07/20/21	0846	2147055	1
Radium-226+Radium-22	28 Calculation	n "See Pa	rent Products"										
Radium-226+228 Sum		3.35	+/-1.05			pCi/L		1	AEA	07/26/21	0417	2147065	2
Rad Radium-226													
Lucas Cell, Ra226, Liqu	id "As Receiv	ved"											
Radium-226		0.572	+/-0.233	0.175	1.00	pCi/L			LXP1	07/22/21	0945	2149561	3

The following Analytical Methods were performed:

Method Description Analyst Comments

1 EPA 904.0/SW846 9320 Modified

2 Calculation
3 EPA 903.1 Modified

Surrogate/Tracer Recovery Test Result Nominal Recovery% Acceptable Limits

Barium-133 Tracer GFPC, Ra228, Liquid "As Received" 81 (15%-125%)

Notes:

Counting Uncertainty is calculated at the 95% confidence level (1.96-sigma).

Column headers are defined as follows:

DF: Dilution Factor Lc/LC: Critical Level
DL: Detection Limit PF: Prep Factor
MDA: Minimum Detectable Activity RL: Reporting Limit

MDC: Minimum Detectable Concentration SQL: Sample Quantitation Limit

Page 6 of 19 SDG: 548894

2040 Savage Road Charleston SC 29407 - (843) 556-8171 - www.gel.com

Certificate of Analysis

Report Date:

July 26, 2021

Company: Santee Cooper Address: P.O. Box 2946101

OCO3

Moncks Corner, South Carolina 29461

Contact: Ms. Jeanette Gilmetti Project: ABS Lab Analytical

Project: Client Sample ID: AF07250 SOOP00119 Sample ID: 548894005 Client ID: SOOP001

Matrix: Ground Water Collect Date: 30-JUN-21 10:23 Receive Date: 02-JUL-21 Collector: Client

Parameter	Qualifier	Result	Uncertainty	MDC	RL	Units	PF	DF An	ılyst Date	Time Batch	Method
Rad Gas Flow Proport	ional Counting										
GFPC, Ra228, Liquid	"As Received"										
Radium-228	U	1.14	+/-1.05	1.71	3.00	pCi/L		JXC	9 07/20/21	0846 2147055	1
Radium-226+Radium-	228 Calculatio	n "See Pa	rent Products"								
Radium-226+228 Sum		1.65	+/-1.07			pCi/L		1 AE.	07/26/21	0417 2147065	2
Rad Radium-226											
Lucas Cell, Ra226, Li	quid "As Recei	ved"									
Radium-226	_	0.509	+/-0.217	0.169	1.00	pCi/L		LX	1 07/22/21	0945 2149561	3

The following Analytical Methods were performed:

Method Description **Analyst Comments**

EPA 904.0/SW846 9320 Modified 1

2 Calculation EPA 903.1 Modified

Result Surrogate/Tracer Recovery Test Nominal Recovery% Acceptable Limits

82.7 (15%-125%) Barium-133 Tracer GFPC, Ra228, Liquid "As Received"

Notes:

Counting Uncertainty is calculated at the 95% confidence level (1.96-sigma).

Column headers are defined as follows:

DF: Dilution Factor Lc/LC: Critical Level DL: Detection Limit PF: Prep Factor MDA: Minimum Detectable Activity RL: Reporting Limit

MDC: Minimum Detectable Concentration SQL: Sample Quantitation Limit

Page 7 of 19 SDG: 548894

2040 Savage Road Charleston SC 29407 - (843) 556-8171 - www.gel.com

Certificate of Analysis

Report Date:

July 26, 2021

Company: Santee Cooper Address: P.O. Box 2946101

OCO3

Moncks Corner, South Carolina 29461

Contact: Ms. Jeanette Gilmetti Project: ABS Lab Analytical

 Client Sample ID:
 AF07266
 Project:
 SOOP00119

 Sample ID:
 548894006
 Client ID:
 SOOP001

Matrix: Ground Water
Collect Date: 01-JUL-21 10:24
Receive Date: 02-JUL-21
Collector: Client

Parameter	Qualifier	Result	Uncertainty	MDC	RL	Units	PF	DF	Analy	st Date	Time	Batch	Method
Rad Gas Flow Proportio	nal Counting												
GFPC, Ra228, Liquid "A	As Received"												
Radium-228	\mathbf{U}	-0.820	+/-0.756	1.67	3.00	pCi/L			JXC9	07/20/21	0846	2147055	1
Radium-226+Radium-22	28 Calculation	n "See Pa	rent Products"										
Radium-226+228 Sum		0.521	+/-0.796			pCi/L		1	AEA	07/26/21	0417	2147065	2
Rad Radium-226													
Lucas Cell, Ra226, Liqu	id "As Receiv	ved"											
Radium-226		0.521	+/-0.250	0.250	1.00	pCi/L			LXP1	07/22/21	0945	2149561	3

The following Analytical Methods were performed:

Method Description Analyst Comments

1 EPA 904.0/SW846 9320 Modified

Calculation
 EPA 903.1 Modified

Surrogate/Tracer Recovery Test Result Nominal Recovery% Acceptable Limits

Barium-133 Tracer GFPC, Ra228, Liquid "As Received" 77.4 (15%-125%)

Notes:

Counting Uncertainty is calculated at the 95% confidence level (1.96-sigma).

Column headers are defined as follows:

DF: Dilution Factor Lc/LC: Critical Level
DL: Detection Limit PF: Prep Factor
MDA: Minimum Detectable Activity RL: Reporting Limit

MDC: Minimum Detectable Concentration SQL: Sample Quantitation Limit

Page 8 of 19 SDG: 548894

2040 Savage Road Charleston SC 29407 - (843) 556-8171 - www.gel.com

Certificate of Analysis

Report Date:

July 26, 2021

Company: Santee Cooper Address: P.O. Box 2946101

OCO3

Moncks Corner, South Carolina 29461

Contact: Ms. Jeanette Gilmetti Project: ABS Lab Analytical

Client Sample ID: AF07264 Project: SOOP00119 Sample ID: 548894007 Client ID: SOOP001

Matrix: Ground Water Collect Date: 01-JUL-21 11:37 Receive Date: 02-JUL-21 Collector: Client

Parameter	Qualifier	Result	Uncertainty	MDC	RL	Units	PF	DF Ana	lyst Date	Time Batch	Method
Rad Gas Flow Proport	tional Counting										
GFPC, Ra228, Liquid	"As Received"										
Radium-228	U	0.509	+/-0.890	1.56	3.00	pCi/L		JXC	07/20/21	0846 2147055	1
Radium-226+Radium	-228 Calculatio	n "See Pa	rent Products"								
Radium-226+228 Sum		2.08	+/-0.993			pCi/L		1 AEA	07/26/21	0417 2147065	2
Rad Radium-226											
Lucas Cell, Ra226, Li	quid "As Recei	ved"									
Radium-226	_	1.57	+/-0.440	0.384	1.00	pCi/L		LXP	07/22/21	0945 2149561	3

The following Analytical Methods were performed:

Method Description **Analyst Comments**

EPA 904.0/SW846 9320 Modified 1

2 Calculation EPA 903.1 Modified

Result Surrogate/Tracer Recovery Test Nominal Recovery% Acceptable Limits

82.5 (15%-125%) Barium-133 Tracer GFPC, Ra228, Liquid "As Received"

Notes:

Counting Uncertainty is calculated at the 95% confidence level (1.96-sigma).

Column headers are defined as follows:

DF: Dilution Factor Lc/LC: Critical Level DL: Detection Limit PF: Prep Factor MDA: Minimum Detectable Activity RL: Reporting Limit

MDC: Minimum Detectable Concentration SQL: Sample Quantitation Limit

Page 9 of 19 SDG: 548894

2040 Savage Road Charleston SC 29407 - (843) 556-8171 - www.gel.com

Certificate of Analysis

Report Date:

July 26, 2021

Company: Santee Cooper Address: P.O. Box 2946101

OCO3

Moncks Corner, South Carolina 29461

Contact: Ms. Jeanette Gilmetti Project: ABS Lab Analytical

Client Sample ID: AF07265 Project: SOOP00119 Sample ID: 548894008 Client ID: SOOP001

Matrix: Ground Water Collect Date: 01-JUL-21 11:42 Receive Date: 02-JUL-21 Collector: Client

Parameter	Qualifier	Result	Uncertainty	MDC	RL	Units	PF	DF	Analy	st Date	Time	Batch	Method
Rad Gas Flow Proportio	nal Counting												
GFPC, Ra228, Liquid "A	As Received"												
Radium-228	\mathbf{U}	0.954	+/-0.931	1.53	3.00	pCi/L			JXC9	07/20/21	0846	2147055	1
Radium-226+Radium-22	28 Calculation	n "See Pa	arent Products"										
Radium-226+228 Sum		1.89	+/-0.987			pCi/L		1	AEA	07/26/21	0417	2147065	2
Rad Radium-226													
Lucas Cell, Ra226, Liqu	id "As Recei	ved"											
Radium-226		0.939	+/-0.328	0.257	1.00	pCi/L			LXP1	07/22/21	0945	2149561	3

The following Analytical Methods were performed:

Method Description **Analyst Comments**

EPA 904.0/SW846 9320 Modified 1

2 Calculation EPA 903.1 Modified

Test Result Surrogate/Tracer Recovery Nominal Recovery% Acceptable Limits

(15%-125%) Barium-133 Tracer GFPC, Ra228, Liquid "As Received" 84

Notes:

Counting Uncertainty is calculated at the 95% confidence level (1.96-sigma).

Column headers are defined as follows:

DF: Dilution Factor Lc/LC: Critical Level DL: Detection Limit PF: Prep Factor MDA: Minimum Detectable Activity RL: Reporting Limit

MDC: Minimum Detectable Concentration SQL: Sample Quantitation Limit

Page 10 of 19 SDG: 548894

2040 Savage Road Charleston SC 29407 - (843) 556-8171 - www.gel.com

Certificate of Analysis

Report Date:

July 26, 2021

Company: Santee Cooper Address: P.O. Box 2946101

OCO3

Moncks Corner, South Carolina 29461

Contact: Ms. Jeanette Gilmetti Project: ABS Lab Analytical

 Client Sample ID:
 AF07263
 Project:
 SOOP00119

 Sample ID:
 548894009
 Client ID:
 SOOP001

Matrix: Ground Water
Collect Date: 01-JUL-21 12:46
Receive Date: 02-JUL-21
Collector: Client

0---1:6---

Parameter	Quanner	Kesun	Uncertainty	MDC	KL	Units	PF	DF Ana	iyst Date	Time Batch	Method
Rad Gas Flow Propo	ortional Counting										
GFPC, Ra228, Liqui	id "As Received"										
Radium-228	\mathbf{U}	0.238	+/-0.799	1.47	3.00	pCi/L		JXC9	07/20/21	0846 2147055	1
Radium-226+Radius	m-228 Calculation	n "See Pa	arent Products"								
Radium-226+228 Sum		0.628	+/-0.840			pCi/L		1 AEA	07/26/21	0417 2147065	2
Rad Radium-226											
Lucas Cell, Ra226, I	Liquid "As Receiv	ved"									
Radium-226		0.391	+/-0.257	0.332	1.00	pCi/L		LXP	07/22/21	1020 2149561	3

The following Analytical Methods were performed:

Method Description Analyst Comments

1 EPA 904.0/SW846 9320 Modified

2 Calculation
3 EPA 903.1 Modified

Surrogate/Tracer Recovery Test Result Nominal Recovery% Acceptable Limits

Barium-133 Tracer GFPC, Ra228, Liquid "As Received" 82.6 (15%-125%)

Notes:

Counting Uncertainty is calculated at the 95% confidence level (1.96-sigma).

Column headers are defined as follows:

DF: Dilution Factor Lc/LC: Critical Level
DL: Detection Limit PF: Prep Factor
MDA: Minimum Detectable Activity RL: Reporting Limit

MDC: Minimum Detectable Concentration SQL: Sample Quantitation Limit

Page 11 of 19 SDG: 548894

2040 Savage Road Charleston SC 29407 - (843) 556-8171 - www.gel.com

Certificate of Analysis

Report Date:

July 26, 2021

Company: Santee Cooper Address: P.O. Box 2946101

OCO3

Moncks Corner, South Carolina 29461

Contact: Ms. Jeanette Gilmetti Project: ABS Lab Analytical

 Client Sample ID:
 AF07262
 Project:
 SOOP00119

 Sample ID:
 548894010
 Client ID:
 SOOP001

Matrix: Ground Water
Collect Date: 01-JUL-21 13:47
Receive Date: 02-JUL-21
Collector: Client

Parameter	Qualifier	Result	Uncertainty	MDC	RL	Units	PF	DF	Analy	st Date	Time	Batch	Method
Rad Gas Flow Proportio	nal Counting												
GFPC, Ra228, Liquid "A	As Received"												
Radium-228	\mathbf{U}	-0.0249	+/-0.893	1.67	3.00	pCi/L			JXC9	07/20/21	0846	2147055	1
Radium-226+Radium-22	28 Calculation	n "See Pa	rent Products"										
Radium-226+228 Sum		0.310	+/-0.911			pCi/L		1	AEA	07/26/21	0417	2147065	2
Rad Radium-226													
Lucas Cell, Ra226, Liqu	id "As Receiv	ved"											
Radiun-226		0.310	+/-0.181	0.183	1.00	pCi/L			LXP1	07/22/21	1020	2149561	3

The following Analytical Methods were performed:

Method Description Analyst Comments

1 EPA 904.0/SW846 9320 Modified

2 Calculation 3 EPA 903.1 Modified

Surrogate/Tracer Recovery Test Result Nominal Recovery% Acceptable Limits

Barium-133 Tracer GFPC, Ra228, Liquid "As Received" 86.4 (15%-125%)

Notes:

Counting Uncertainty is calculated at the 95% confidence level (1.96-sigma).

Column headers are defined as follows:

DF: Dilution Factor Lc/LC: Critical Level
DL: Detection Limit PF: Prep Factor
MDA: Minimum Detectable Activity RL: Reporting Limit

MDC: Minimum Detectable Concentration SQL: Sample Quantitation Limit

Page 12 of 19 SDG: 548894

2040 Savage Road Charleston, SC 29407 - (843) 556-8171 - www.gel.com

QC Summary

Report Date: August 2, 2021

Page 1 of 2

Santee Cooper P.O. Box 2946101

OCO3

Moncks Corner, South Carolina

Contact:

Ms. Jeanette Gilmetti

Workorder: 548894

Parmname	NOM	Sample	Qual	QC	Units	RPD%	REC%	Range Anlst	Date Time
Rad Gas Flow Batch 2147055									
QC1204857738 548894008 DUP Radium-228	U Uncertainty	0.954 +/-0.931	U	0.860 +/-1.04	pCi/L	N/A		N/A JXC9	07/20/21 10:30
QC1204857739 LCS Radium-228	52.0 Uncertainty			41.6 +/-3.15	pCi/L		80	(75%-125%)	07/20/21 08:44
QC1204857737 MB Radium-228	Uncertainty		U	0.117 +/-0.889	pCi/L				07/20/21 10:30
Rad Ra-226 Batch 2149561									
QC1204862383 548894001 DUP Radium-226	Uncertainty	0.413 +/-0.226	U	0.344 +/-0.250	pCi/L	18.2		(0% - 100%) LXP1	07/22/21 11:02
QC1204862385 LCS Radium-226	26.8 Uncertainty			24.2 +/-1.49	pCi/L		90.5	(75%-125%)	07/22/21 11:02
QC1204862382 MB Radium-226	Uncertainty		U	0.176 +/-0.182	pCi/L				07/22/21 11:02
QC1204862384 548894001 MS Radium-226	134 Uncertainty	0.413 +/-0.226		101 +/-6.78	pCi/L		75.5	(75%-125%)	07/22/21 13:10

Notes:

Counting Uncertainty is calculated at the 95% confidence level (1.96-sigma).

The Qualifiers in this report are defined as follows:

** Analyte is a Tracer compound

Result is less than value reported

> Result is greater than value reported

BD Results are either below the MDC or tracer recovery is low

FA Failed analysis.

Page 13 of 19 SDG: 548894

2040 Savage Road Charleston, SC 29407 - (843) 556-8171 - www.gel.com

QC Summary

Page 2 of 2 Parmname NOV Sample Qual \mathbf{OC} Units RPD% REC% Range Anist Date Time Η Analytical holding time was exceeded T See case narrative for an explanation T Value is estimated

K Analyte present. Reported value may be biased high. Actual value is expected to be lower.

L Analyte present. Reported value may be biased low. Actual value is expected to be higher.

M M if above MDC and less than LLD

548894

REMP Result > MDC/CL and < RDL M

N/A RPD or %Recovery limits do not apply.

N1 See case narrative

Workorder:

ND Analyte concentration is not detected above the detection limit

NJConsult Case Narrative, Data Summary package, or Project Manager concerning this qualifier

One or more quality control criteria have not been met. Refer to the applicable narrative or DER. Q

R Sample results are rejected

U Analyte was analyzed for, but not detected above the MDL, MDA, MDC or LOD.

UI Gamma Spectroscopy--Uncertain identification

UJ Gamma Spectroscopy--Uncertain identification

UL Not considered detected. The associated number is the reported concentration, which may be inaccurate due to a low bias.

X Consult Case Narrative, Data Summary package, or Project Manager concerning this qualifier

Y Other specific qualifiers were required to properly define the results. Consult case narrative.

٨ RPD of sample and duplicate evaluated using +/-RL. Concentrations are <5X the RL. Qualifier Not Applicable for Radiochemistry.

h Preparation or preservation holding time was exceeded

N/A indicates that spike recovery limits do not apply when sample concentration exceeds spike conc. by a factor of 4 or more or %RPD not applicable.

^ The Relative Percent Difference (RPD) obtained from the sample duplicate (DUP) is evaluated against the acceptance criteria when the sample is greater than five times (5X) the contract required detection limit (RL). In cases where either the sample or duplicate value is less than 5X the RL, a control limit of +/- the RL is used to evaluate the DUP result.

* Indicates that a Quality Control parameter was not within specifications.

For PS, PSD, and SDILT results, the values listed are the measured amounts, not final concentrations.

Where the analytical method has been performed under NELAP certification, the analysis has met all of the requirements of the NELAC standard unless qualified on the QC Summary.

Page 14 of 19 SDG: 548894

Radiochemistry Technical Case Narrative Santee Cooper SDG #: 548894

Product: GFPC, Ra228, Liquid

<u>Analytical Method:</u> EPA 904.0/SW846 9320 Modified <u>Analytical Procedure:</u> GL-RAD-A-063 REV# 5

Analytical Batch: 2147055

The following samples were analyzed using the above methods and analytical procedure(s).

GEL Sample ID#	Client Sample Identification
548894001	AF07246
548894002	AF07248
548894003	AF07252
548894004	AF07253
548894005	AF07250
548894006	AF07266
548894007	AF07264
548894008	AF07265
548894009	AF07263
548894010	AF07262
1204857737	Method Blank (MB)
1204857738	548894008(AF07265) Sample Duplicate (DUP)
1204857739	Laboratory Control Sample (LCS)

The samples in this SDG were analyzed on an "as received" basis.

Data Summary:

All sample data provided in this report met the acceptance criteria specified in the analytical methods and procedures for initial calibration, continuing calibration, instrument controls and process controls where applicable, with the following exceptions.

Technical Information

Recounts

Sample 1204857737 (MB) was recounted due to a suspected blank false positive. The recount is reported. Sample 1204857738 (AF07265DUP) was recounted due to a suspected false positive. The recount is reported. Sample 548894002 (AF07248) was re-eluted and recounted to verify sample result. The recount is reported.

<u>Product:</u> Lucas Cell, Ra226, Liquid <u>Analytical Method:</u> EPA 903.1 Modified

Analytical Procedure: GL-RAD-A-008 REV# 15

Analytical Batch: 2149561

Page 15 of 19 SDG: 548894

The following samples were analyzed using the above methods and analytical procedure(s).

GEL Sample ID#	Client Sample Identification
548894001	AF07246
548894002	AF07248
548894003	AF07252
548894004	AF07253
548894005	AF07250
548894006	AF07266
548894007	AF07264
548894008	AF07265
548894009	AF07263
548894010	AF07262
1204862382	Method Blank (MB)
1204862383	548894001(AF07246) Sample Duplicate (DUP)
1204862384	548894001(AF07246) Matrix Spike (MS)
1204862385	Laboratory Control Sample (LCS)

The samples in this SDG were analyzed on an "as received" basis.

Data Summary:

All sample data provided in this report met the acceptance criteria specified in the analytical methods and procedures for initial calibration, continuing calibration, instrument controls and process controls where applicable, with the following exceptions.

Technical Information

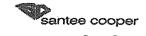
Recounts

Sample 1204862384 (AF07246MS) was recounted due to low recovery. The recount is reported.

Miscellaneous Information

Additional Comments

The matrix spike, 1204862384 (AF07246MS), aliquot was reduced to conserve sample volume.


Certification Statement

Where the analytical method has been performed under NELAP certification, the analysis has met all of the requirements of the NELAC standard unless otherwise noted in the analytical case narrative.

Page 16 of 19 SDG: 548894

nfo: GEL Contract Lab Due Date (Lab Only):_

Chain of Custody

Santee Cooper One Riverwood Drive Moneks Corner, SC 29461 Phone: (843)761-8000 Ext. 5148 Fax: (843)761-4175

Customer I	mai	I/Re	port Recipie	ent:	D	ate R	lesuits Ne	eded b	γ:		P	roject/	Task/	Unit #:		Rerun request	for a	ny fla	igged	QC
Lawill	(A		@santeec	ooper.com			//			1219	567	/ JM	02.0	9. GØ1	1 36500	Yes	No			
			-	•	·····						-						£	\nalys	is Grou	ıρ
Labworks II (internal use only)	* 25 - 21	20000	mple Locatio scription	n/	Collection Date		Collection Time	Sample Collector	Total # of containers	Bottle type: (Glass-G/Plastic-P)	Grab (G) or	Matrix(see below)	Preservative (see	Rep Mis	Comme hod # orting limit c. sample inf other notes		RAD 226	RAD 22.8	1 02 1	
AF-0724	4	a	₩-3	Addition of the second	6/2	9/21	1044	BINET	2	P	G	GW	2				×	X	X	
AF07248	7	CA	p-5				1150		1											
AF07252	2	CA	4-9		<u> </u>		1400		<u> </u>											
AF07253	3	CA	P-9 DUP		<u> </u>	<u> </u>	1465	1	1	<u> </u>	1		<u> </u>				-			
AF07250		GA	rP-7		6/2	60/劉	1023	BRT			1	Ш_	Ц_							
AF07266		a	CMAP-4		7/1	/21	1024	BRT				Ш.			······································					
A+67264		α	CMAP-3		1	······································	1137								**************************************			_		
A+07265	5	cc	MAP-3	DUP	<u> </u>		1142					<u> </u>								
AF07268		co	MAP-2				1246								***************************************					
AF07262	2	90	MAP-1		<u></u>	<u> </u>	1347	<u> </u>	1	1	<u></u>				7					
Relinquishe	ed by:	J.Gra	Employee#	Date	Tin	ie	Receiv	ed by:	Ei	nployee	#	Date		Time		eceiving (Internal L C):			•	
Symoun			35594	7/2/21	100	ч	M	_		GEL		7/2/2		1004		H: Yes No		·		-
Relinquishe	ed by:	1.)Kili	Employee#	Date	Tin	ie	Receiv	ed by:	- C	nployee	800 L	Date	and Allege	Time		tive Lot#:				
Kelinquishe	ed by:	& 1 P	Employee#	7.2.2, Date	95	7	Receiv	ed by:		SEL nployee		7/æ/ Date		Time						
			SERVICE SERVIC					vioniti manifesto.						-	Date/Tim	e/Init-for preserva	itive:			
☐ Ag ☐ Al ☐ As ☐ Ba ☐ Be ☐ Ca ☐ Cd ☐ Co		g n o	LS (all)	Nut I TO I DO I TP I NH I F I CI I NO I Br I NO I SO	C C TPO4 3-N 2		MIS DETEX DIAPTHAILE THM/H/ VOC DIA GIB. Coli DIA CO DISSOIVE DISSOIVE Rad 226 Rad 228 DPCB	ne LA ease liform		Wallbo Gyp belo U Al U IC U So U Pu U So U Su U Su U Su U Su U Su U Su U Su U Su	sum(a w) M C tal met table M Fity (C: Moista fites	alls als etals SO(4)	0000	Coal Ultimate □ % Moist □ Ash □ Sulfur □ BTUs □ Volatile □ CHN ther Tests: XRF Scan HGI Fineness Particulate Ma	ure f	Flyash Animonia LOI % Carbon Mineral Analysis Sieve % Moisture NPDES Oil & Grease As TSS	CARPORATE AND A PART OF A	aMoisolor cidity siccini p issolv ed Gi hisbpo ictals As Cd (g)	- I Qual ture Sireng ed Gas I	di ta

EEL Laboratories LLC

SAMPLE RECEIPT & REVIEW FORM

+	06.6.7				SAMPLE RECEIPT & REVIEW FORM
Clie	nt: 500Kg			SDG	/AR/COC/Work Order: 54 8 89 4 / 59 869 3
Rec	eived By:			Date	e Received: 7/2/31
	0				Circle Applicable: FedEx Express FedEx Ground UPS Field Services Courier Other
	Carrier and Tracking Number				
Susp	ected Hazard Information	Yes	No		let Counts > 100cpm on samples not marked "radioactive", contact the Radiation Safety Group for further investigation.
A)St	uipped as a DOT Hazardous?			Maza	rd Class Shipped: If UN2910, Is the Radioactive Shipment Survey Compliant? Yes No
	oid the client designate the samples are to be ved as radioactive?			co	notation or radioactive stickers on containers equal client designation.
	old the RSO classify the samples as active?			Mix	imum Net Counts Observed* (Observed Counts - Area Background Counts):CPM/rtR/Hr Classified as: Rad 1 Rad 2 Rad 3
D) [oid the client designate samples are hazardous?		SERVICE SERVICE		notation or hazard labels on containers equal client designation.
E) D	id the RSO identify possible hazards?		Salara	иD	or E is yes, select Hazards below. PCB's Flammable Foreign Soil RCRA Asbestos Beryllium Other:
	Sample Receipt Criteria	Yes	NA	ů	Comments/Qualifiers (Required for Non-Conforming Items)
1	Shipping containers received intact and scaled?				Circle Applicable: Seals broken Damaged container Leaking container Other (describe)
2	Chain of custody documents included with shipment?				Circle Applicable: Client contacted and provided COC COC created upon receipt
3	Samples requiring cold preservation within $(0 \le 6 \text{ deg. C})$?*		TEE		Preservation Method: Wet Ice Ice Packs Dry ice None Other: *all temperatures are recorded in Celsius TEMP: 23
4	Daily check performed and passed on IR temperature gun?				Temperature Device Serial #: 4
5	Sample containers intact and sealed?	esse ^d			Circle Applicable: Seals broken Damaged container Leaking container Other (describe)
6	Samples requiring chemical preservation at proper pH?	San			Sample ID's and Containers Affected: If Preservation added, Lot#:
7	Do any samples require Volatile				If Yes, are Encores or Soil Kits present for solids? Yes No NA (If yes, take to VOA Freezer) Bo liquid VOA vials contain acid preservation? Yes No NA (If unknown, select No) Are liquid VOA vials free of headspace? Yes No NA
	Analysis?				Sample ID's and containers affected:
8	Samples received within holding time?	/			ID's and tests affected:
9	Sample ID's on COC match ID's on bottles?	1			ID's and containers affected:
10	Date & time on COC match date & time on bottles?	1			Circle Applicable: No dates on containers No times on containers COC missing info Other (describe)
11	Number of containers received match number indicated on COC?				Circle Applicable: No container count on COC Other (describe)
12	Are sample containers identifiable as GEL provided by use of GEL labels?				
13	COC form is properly signed in relinquished/received sections?				Circle Applicable: Not relinquished Other (describe)
Con	ments (Use Continuation Form if needed):	J	phoia	L	
L	PM (or PM	(A) re	view	: Initi	als PC Date 7/21 Page of

List of current GEL Certifications as of 02 August 2021

State Alabama	Certification 42200
Alaska	17-018
Alaska Drinking Water	SC00012
Arkansas	88-0651
CLIA	42D0904046
California	2940
Colorado	SC00012
Connecticut	PH-0169
DoD ELAP/ ISO17025 A2LA	2567.01
Florida NELAP	E87156
Foreign Soils Permit	P330-15-00283, P330-15-00253
Georgia	SC00012
Georgia SDWA	967
Hawaii	SC00012
Idaho	SC00012
Illinois NELAP	200029
Indiana	C=SC=01
Kausas NELAP	E-10332
Kentucky SDWA	90129
Kentucky Wastewater	90129
Louisiana Drinking Water	LA024
Louisiana NELAP	03046 (AI33904)
Maine	2019020
Maryland	270
Massachusetts	M-SC012
Massachusetts PFAS Approv	Letter
Michigan	9976
Mississippi	SC00012
Nebraska	NE-OS-26-13
Nevada	SC000122021-1
New Hampshire NELAP	2054
New Jersey NELAP	SC002
New Mexico	SC002 SC00012
New York NELAP	11501
North Carolina	233
North Carolina SDWA	45709
North Dakota	R-158
Oklahoma	2019–165
Pennsylvania NELAP	
· [68-00485
Puerto Rico S. Carolina Radiochem	SC00012
	10120002
Sanitation Districts of L	9255651
South Carolina Chemistry	10120001 TN 02024
Tennessee	TN 02934
Texas NELAP	T104704235-21-19
Utah NELAP	SC000122021-35
Vermont	VT87156
Virginia NELAP	460202
Washington	C780

Field Data Sheets

(Note: the color coding is to assist field personnel in determining when the well has stabilized enough to begin sample collection.)

Well ID	TOC	GW	Screen	Sample	Sample	Total
	Elevation	Depth	Intervals	Date	Time	Well
	(feet)	(feet)	(ft, bgs)			Depth
PM-1	83.24	8.27	4-24	1/26/2021	927	26.31

Drawdown: 8.82 depth to GW (ft)

Temp round 1	pH round 1	Eh ORP	Spec Cond round 1	Turbidity	Dissolved Oxygen
(celcius)	(units)	(mV)	(uS/cm)	(NTU)	(ppm)
19.45	5.07	57	146	0	7.86
19.37	4.86	30	143	11.8	6.69
19.43	4.92	18	142	13.3	6.44
19.51	4.95	8	142	2.6	6.16
19.47	5.03	1	143	4.4	6.12
-					
	round 1 (celcius) 19.45 19.37 19.43 19.51	round 1 (celcius) (units) 19.45 5.07 19.37 4.86 19.43 4.92 19.51 4.95	round 1 round 1 ORP (celcius) (units) (mV) 19.45 5.07 57 19.37 4.86 30 19.43 4.92 18 19.51 4.95 8	round 1 round 1 ORP (uS/cm) (celcius) (units) (mV) (uS/cm) 19.45 5.07 57 146 19.37 4.86 30 143 19.43 4.92 18 142 19.51 4.95 8 142	round 1 (celcius) round 1 (units) ORP (mV) (uS/cm) round 1 (uS/cm) (NTU) 19.45 5.07 57 146 0 19.37 4.86 30 143 11.8 19.43 4.92 18 142 13.3 19.51 4.95 8 142 2.6

Comments/Conditions:

Samples were collected by Aaron Hill and Trey West

Well ID	TOC	GW	Screen	Sample	Sample	Total
	Elevation	Depth	Intervals	Date	Time	Well
	(feet)	(feet)	(ft, bgs)			Depth
PM-1	83.24	7.91	4-24	6/21/2021	1308	26.33

Drawdown: 8.34 depth to GW (ft)

Time	Temp	pН	Eh	Spec Cond	Turbidity	Dissolved
	round 1	round 1	ORP	round 1		Oxygen
	(celcius)	(units)	(mV)	(uS/cm)	(NTU)	(ppm)
1240	25.76	4.9	63	183	14.6	3.07
1245	26.43	4.87	67	184	14.4	5.7
1250	26.24	5.29	40	182	10.5	5.17
1255	26.41	5.21	43	178	6.4	4.65
1300	26.34	5.23	41	172	4.5	4.32
1305	26.47	5.17	45	170	5.2	4.09
1308	26.49	5.21	45	169	4.3	3.96
	·					

Comments/Conditions:

Samples were collected by Melanie Goings and Ben Taylor

Well ID	TOC	GW	Screen	Sample	Sample	Total
	Elevation	Depth	Intervals	Date	Time	Well
	(feet)	(feet)	(ft, bgs)			Depth
CBW-1	85.80	10.12	14-24	1/26/2021	1039	26.94

Drawdown: 10.15 depth to GW (ft)

Time	Temp round 1 (celcius)	pH round 1 (units)	Eh ORP (mV)	Spec Cond round 1 (uS/cm)	Turbidity (NTU)	Dissolved Oxygen (ppm)
1005	20.71	4.33	160	187	3.2	2.82
1010	20.31	4.27	221	187	0.6	1.48
1015	20.2	4.2	268	191	0	1.15
1020	20.25	4.22	288	191	0	1.05
1025	20.3	4.29	303	192	0	0.84
1030	20.32	4.29	318	192	0	0.78
1033	20.34	4.29	326	192	0	0.76
1036	20.31	4.28	334	192	0	0.74
1039	20.25	4.31	338	192	0	0.71
		1				

Comments/Conditions:

Samples were collected by Aaron Hill and Trey West

Well ID	TOC	GW	Screen	Sample	Sample	Total
	Elevation	Depth	Intervals	Date	Time	Well
	(feet)	(feet)	(ft, bgs)			Depth
CBW-1	85.80	10.07	14-24	6/21/2021	1413	26.76

Drawdown: 10.11 depth to GW (ft)

Time	Temp	pН	Eh	Spec Cond	Turbidity	Dissolved
	round 1	round 1	ORP	round 1		Oxygen
	(celcius)	(units)	(mV)	(uS/cm)	(NTU)	(ppm)
1345	26.18	4.24	96	167	0	1.66
1350	25.53	4.18	98	182	0	0.92
1355	24.62	3.9	104	187	0	0.78
1400	24.48	3.94	98	190	0	0.73
1405	23.9	4.28	76	193	0	0.7
1410	23.89	4.27	74	194	0.4	0.67
1413	24.16	4.25	75	194	0.2	0.66
_						

Comments/Conditions:

Samples were collected by Melanie Goings and Ben Taylor

Well ID	TOC	GW	Screen	Sample	Sample	Total
	Elevation	Depth	Intervals	Date	Time	Well
	(feet)	(feet)	(ft, bgs)			Depth
CAP-1*	82.7	5.6	5'-19'	2/2/2021	1206	20.32

Drawdown: 5.96 depth to GW (ft)

Time	Temp round 1	pH round 1	Eh ORP	Spec Cond round 1	•	Dissolved Oxygen
	(celcius)	(units)	(mV)	(uS/cm)	(NTU)	(ppm)
1135		5.89	9	855	64.9	5.46
1140	16.6	5.86	19	872	5.2	4.47
1145	15.01	5.83	24	918	1.8	4.17
1150	14.55	5.85	24	935	0.3	3.58
1155	14.27	5.79	29	960	0	2.72
1200	14.1	5.76	31	979	0	2.14
1203	14	5.75	33	985	0	2.04
1206	13.89	5.74	34	1000	0	1.93

^{*} Original well, PM-3, was renamed CAP-1

Comments/Conditions:

Samples were collected by Melanie Goings and Trey West

Well ID	TOC	GW	Screen	Sample	Sample	Total
	Elevation	Depth	Intervals	Date	Time	Well
	(feet)	(feet)	(ft, bgs)			Depth
CAP-1*	82.7	8.01	5'-19'	6/24/2021	1219	21.63

Drawdown: 8.23 depth to GW (ft)

Time	Temp round 1	pH round 1	Eh ORP	Spec Cond round 1	Turbidity	Dissolved
					AITIN	Oxygen
11.40	(celcius)	(units)	(mV)	(uS/cm)	(NTU)	(ppm)
1148	25.07	5.58	56	1100	123	1.84
1153	24.82	5.44	60	1200	108	0.8
1158	24.45	5.37	65	1290	99.7	0.55
1203	24.32	5.33	68	1330	95.7	0.48
1208	24.14	5.28	70	1410	82.2	0.44
1213	24.12	5.24	72	1480	72	0.42
1216	24.05	5.22	73	1510	64.9	0.41
1219	24.03	5.18	74	1550	58.7	0.4
				-		

^{*} Original well, PM-3, was renamed CAP-1

Comments/Conditions:

Samples were collected by Marvin Lewis and Ben Taylor

Well ID	TOC	GW	Screen	Sample	Sample	Total
	Elevation	Depth	Intervals	Date	Time	Well
	(feet)	(feet)	(ft, bgs)			Depth
CAP-3	91.49	14.93	15.5-30.5	2/3/2021	1349	30.9

Drawdown: 14.92 depth to GW (ft)

Time	Temp round 1	pH round 1	Eh ORP	Spec Cond round 1	Turbidity	Dissolved Oxygen
	(celcius)	(units)	(mV)	(uS/cm)	(NTU)	(ppm)
1321	17.37	6.27	78	4350	7.7	2.46
1326	17.7	6.35	56	4170	1.4	1.24
1331	17.75	6.35	56	4180	0	0.95
1336	17.87	6.35	53	4190	0	0.84
1341	18.01	6.34	52	4190	0	0.74
1346	18.13	6.34	50	4190	0	0.7
1349	18.22	6.34	49	4180	0	0.68

Comments/Conditions:

Samples were collected by Melanie Goings and Trey West

Well ID	TOC	GW	Screen	Sample	Sample	Total
	Elevation	Depth	Intervals	Date	Time	Well
	(feet)	(feet)	(ft, bgs)			Depth
CAP-3	91.49	16.28	15.5-30.5	6/29/2021	1044	32.74

Drawdown: 16.26 depth to GW (ft)

Time	Temp round 1	pH round 1	Eh ORP	Spec Cond round 1	Turbidity	Dissolved Oxygen
	(celcius)	(units)	(mV)	(uS/cm)	(NTU)	(ppm)
1013	22.03	6.07	102	1050	5	2.38
1018	23.26	6.09	90	1120	17.7	0.93
1023	23.62	6.14	100	1200	40.1	0.79
1028	23.92	6.22	103	2750	28.5	0.62
1033	24.2	6.28	95	3130	43.1	0.58
1038	24.3	6.3	90	3230	4.5	0.52
1041	24.45	6.32	87	3260	6.3	0.5
1044	24.59	6.31	86	3290	2.6	0.48

Comments/Conditions:

Samples were collected by Connor Smalling and Ben Taylor

Well ID	TOC	GW	Screen	Sample	Sample	Total
	Elevation	Depth	Intervals	Date	Time	Well
	(feet)	(feet)	(ft, bgs)			Depth
CAP-4	91.77	16.48	40.5-60.5	2/4/2021	1320	62.5

Drawdown: 15.46 depth to GW (ft)

Time	Temp round 1 (celcius)	pH round 1 (units)	Eh ORP (mV)	Spec Cond round 1 (uS/cm)	Turbidity (NTU)	Dissolved Oxygen (ppm)
1255	19.36	6.6	89	4320	4.1	2.62
1300	19.29	6.59	88	4250	5.8	1.29
1305	19.34	6.58	90	4260	0	1.03
1310	19.45	6.57	92	4260	0	0.89
1315	19.59	6.57	93	4250	0	0.81
1320	19.56	6.57	95	4240	0	0.76

Comments/Conditions:

Samples were collected by Melanie Goings and Trey West

Well ID	TOC	GW	Screen	Sample	Sample	Total
	Elevation	Depth	Intervals	Date	Time	Well
	(feet)	(feet)	(ft, bgs)			Depth
CAP-4	91.77	16.87	40.5-60.5	6/28/2021	1155	62.42

Drawdown: 16.87 depth to GW (ft)

Time	Temp round 1	pH round 1	Eh ORP	Spec Cond round 1	Turbidity	Dissolved Oxygen
	(celcius)	(units)	(mV)	(uS/cm)	(NTU)	(ppm)
1135	23.63	6.42	18	4480	0	1.65
1140	22.98	6.44	-3	4550	0	0.68
1145	22.84	6.44	-7	4540	0	0.6
1150	22.83	6.45	-10	4530	0	0.56
1155	22.86	6.45	-13	4530	0	0.52
				14-7		

Comments/Conditions:

Samples were collected by Melanie Goings and Ben Taylor

Well ID	TOC	GW	Screen	Sample	Sample	Total
	Elevation	Depth	Intervals	Date	Time	Well
	(feet)	(feet)	(ft, bgs)			Depth
CAP-5	91.78	14.67	15.5-30.5	2/3/2021	1248	32.73

Drawdown: 15.96 depth to GW (ft)

Time	Temp round 1	pH round 1	Eh ORP	Spec Cond round 1	Turbidity	Dissolved Oxygen
	(celcius)	(units)	(mV)	(uS/cm)	(NTU)	(ppm)
1220	17.66	3.76	307	2100	13	2.48
1225	17.9	3.73	308	2080	7.5	1.01
1230	18.11	3.7	311	2080	3.1	0.76
1235	18.18	3.69	311	2080	1.8	0.73
1240	18.35	3.68	312	2070	0	0.65
1245	18.4	3.68	312	2080	0	0.6
1248	18.56	3.68	312	2080	0	0.59

Comments/Conditions:

Samples were collected by Melanie Goings and Trey West

Well ID	TOC	GW	Screen	Sample	Sample	Total
	Elevation	Depth	Intervals	Date	Time	Well
	(feet)	(feet)	(ft, bgs)			Depth
CAP-5	91.78	17.78	15.5-30.5	6/29/2021	1150	32.67

Drawdown: 18.07 depth to GW (ft)

Time	Temp round 1	pH round 1	Eh ORP	Spec Cond round 1	-	Dissolved Oxygen
	(celcius)	(units)	(mV)	(uS/cm)	(NTU)	(ppm)
1122	24.36	3.99	100	2010	0	1.39
1127	24.36	4	100	2010	0	0.75
1132	24.19	3.86	106	2010	0	0.59
1137	24.36	3.88	108	2000	0	0.48
1142	23.97	3.87	110	2010	0	0.43
1147	24.03	3.86	114	2010	0	0.41
1150	24.02	3.86	116	2010	0	0.41

Comments/Conditions:

Samples were collected by Connor Smalling and Ben Taylor

Well ID	TOC	GW	Screen	Sample	Sample	Total
	Elevation	Depth	Intervals	Date	Time	Well
	(feet)	(feet)	(ft, bgs)			Depth
CAP-6	91.82	15.09	40.5-60.5	2/4/2021	1203	62,95

Drawdown: 15.09 depth to GW (ft)

Time	Temp	pН	Eh	Spec Cond	Turbidity	Dissolved
	round 1	round 1	ORP	round 1		Oxygen
	(celcius)	(units)	(mV)	(uS/cm)	(NTU)	(ppm)
1123	19.96	7.01	9	2090	17.2	7.03
1128	17.21	6.99	23	2060	0	2.49
1133	17.24	6.9	23	2080	0	1.97
1138	17.43	6.83	28	2130	0	1.47
1143	17.58	6.74	29	2190	0	1.07
1148	17.97	6.67	-15	2280	0	0.86
1151	17.97	6.65	-35	2330	0	0.81
1154	18.06	6.65	-53	2370	0	0.75
1157	18.07	6.64	-63	2410	0	0.72
1200	18.02	6.63	-68	2440	0	0.69
1203	18.1	6.62	-71	2470	0	0.67

Comments/Conditions:

Had trouble getting the tubing down to the screen zone even with the weight on

Samples were collected by Melanie Goings and Trey West

Well ID	TOC	GW	Screen	Sample	Sample	Total
	Elevation	Depth	Intervals	Date	Time	Well
	(feet)	(feet)	(ft, bgs)			Depth
CAP-6	91.82	17.55	40.5-60.5	6/28/2021	1255	63.35

Drawdown: 17.65 depth to GW (ft)

Time	Temp	pН	Eh	Spec Cond	Turbidity	Dissolved
	round 1	round 1	ORP	round 1		Oxygen
	(celcius)	(units)	(mV)	(uS/cm)	(NTU)	(ppm)
1224	25.5	7.08	-14	2040	0	2.16
1229	25.06	7.02	-21	2040	0	0.95
1234	24.61	7.03	-25	2030	2	0.83
1239	24.42	7.02	-26	2030	3	0.77
1244	24.32	6.88	-38	2100	3.2	0.67
1249	24.12	6.75	-79	2360	3	0.45
1252	24.09	6.72	-81	2400	2.8	0.44
1255	23.92	6.72	-82	2430	2.4	0.41

Comments/Conditions:

Samples were collected by Melanie Goings and Ben Taylor

Well ID	TOC	GW	Screen	Sample	Sample	Total
	Elevation	Depth	Intervals	Date	Time	Well
	(feet)	(feet)	(ft, bgs)			Depth
CAP-7	91.64	14.44	15.5-30.5	2/3/2021	1115	32.98

Drawdown: 14.61 depth to GW (ft)

Time	Temp round 1	pH round 1	Eh ORP	Spec Cond round 1	Turbidity	Dissolved Oxygen
	(celcius)	(units)	(mV)	(uS/cm)	(NTU)	(ppm)
1050	19.64	5.45	81	8660	7.2	1.97
1055	19.56	5.43	77	8630	6.1	1.33
1100	19.42	5.43	78	8620	2.9	1.15
1105	19.28	5.45	78	8610	1	1.02
1110	19.12	5.46	77	8590	0.4	0.95
1115	18.96	5.46	78	8580	1	0.87

Comments/Conditions:

Well ID	TOC	GW	Screen	Sample	Sample	Total
	Elevation	Depth	Intervals	Date	Time	Well
	(feet)	(feet)	(ft, bgs)			Depth
CAP-7	91.64	16.6	15.5-30.5	6/30/2021	1023	33.05

Drawdown: 16.78 depth to GW (ft)

Time	Temp	pН	Eh	Spec Cond	Turbidity	Dissolved
	round 1	round 1	ORP	round 1		Oxygen
	(celcius)	(units)	(mV)	(uS/cm)	(NTU)	(ppm)
955	23.15	5.37	110	9100	3.5	2.02
1000	23.53	5.43	92	9100	1.8	0.69
1005	23.89	5.44	89	9060	0.6	0.65
1010	24.43	5.47	85	8980	0.8	0.53
1015	24.93	5.49	80	8880	0	0.41
1020	25.47	5.51	75	8770	0	0.37
1023	25.66	5.51	73	8740	0	0.36
	_					

Comments/Conditions:

Samples were collected by Melanie Goings and Ben Taylor

Well ID	TOC	GW	Screen	Sample	Sample	Total
	Elevation	Depth	Intervals	Date	Time	Well
	(feet)	(feet)	(ft, bgs)			Depth
CAP-8	91.61	15.89	40.5-60.5	2/4/2021	1038	63.44

Drawdown: 15.88 depth to GW (ft)

Time	Temp	pН	Eh	Spec Cond	Turbidity	Dissolved
	round 1	round 1	ORP	round 1		Oxygen
	(celcius)	(units)	(mV)	(uS/cm)	(NTU)	(ppm)
1010	18.66	6.44	30	5940	3.6	2.57
1015	17.09	6.44	10	5930	0	1.45
1020	17.32	6.44	5	5930	0	1.19
1025	17.56	6.43	2	5940	0	1.05
1030	17.81	6.43	0	5930	0	0.92
1035	17.79	6.43	-1	5930	0	0.85
1038	18.07	6.43	-2	5930	0	0.8

Comments/Conditions:

Well ID	TOC	GW	Screen	Sample	Sample	Total
	Elevation	Depth	Intervals	Date	Time	Well
	(feet)	(feet)	(ft, bgs)			Depth
CAP-8	91.61	17.67	40.5-60.5	6/28/2021	1423	63.53

Drawdown: 17.72 depth to GW (ft)

Time	Temp	pН	Eh	Spec Cond	Turbidity	Dissolved
	round 1	round 1	ORP	round 1		Oxygen
	(celcius)	(units)	(mV)	(uS/cm)	(NTU)	(ppm)
1403	25.39	6.77	54	5480	0	6.14
1408	24.05	6.76	58	5680	0	5.81
1413	24.39	6.76	65	5600	0	5.39
1418	24.26	6.75	71	5580	0	5.13
1423	24.17	6.75	75	5590	0	4.99

Comments/Conditions:

Samples were collected by Melanie Goings and Ben Taylor

Well ID	TOC	GW	Screen	Sample	Sample	Total
	Elevation	Depth	Intervals	Date	Time	Well
	(feet)	(feet)	(ft, bgs)			Depth
CAP-9	91.59	14.02	15.5-30.5	2/2/2021	1339	32.44

Drawdown: 16.01 depth to GW (ft)

Time	Temp round 1	pH round 1	Eh ORP	Spec Cond round 1	Turbidity	Dissolved Oxygen
	(celcius)	(units)	(mV)	(uS/cm)	(NTU)	(ppm)
1308	15.78	3.37	332	4560	29	5.38
1313	16.3	3.34	335	4510	25.8	3.11
1318	16.69	3.32	335	4490	18.9	2.58
1323	17.02	3.32	335	4480	10.3	2.57
1328	17.15	3.32	334	4470	6.5	2.48
1333	17.32	3.33	333	4460	2.5	2.1
1336	17.41	3.33	333	4450	1.3	2.02
1339	17.49	3.33	333	4440	0	2.05

Comments/Conditions:

Duplicate at 1344

Well ID	TOC	GW	Screen	Sample	Sample	Total
	Elevation	Depth	Intervals	Date	Time	Well
	(feet)	(feet)	(ft, bgs)			Depth
CAP-9	91.59	15.54	15.5-30.5	6/29/2021	1400	32.46

Drawdown: 18.62 depth to GW (ft)

Time	Temp	pН	Eh	Spec Cond	Turbidity	Dissolved
	round 1	round 1	ORP	round 1		Oxygen
	(celcius)	(units)	(mV)	(uS/cm)	(NTU)	(ppm)
1332	25.38	3.87	253	4190	0	4.69
1337	25.01	3.82	258	4260	0	0.99
1342	24.56	3.8	259	4270	0	0.64
1347	24.49	3.8	259	4260	0	0.58
1352	24.42	3.8	258	4250	1.5	0.51
1357	24.47	3.8	259	4230	2.9	0.47
1400	24.46	3.81	259	4230	2.6	0.46
	_					

Comments/Conditions:

Duplicate taken at 1405

Samples were collected by Connor Smalling and Ben Taylor

Well ID	TOC	GW	Screen	Sample	Sample	Total
	Elevation	Depth	Intervals	Date	Time	Well
	(feet)	(feet)	(ft, bgs)			Depth
CAP-10	95.68	20.22	43-63	2/3/2021	1512	66.08

Drawdown: 20.24 depth to GW (ft)

Time	Temp round 1	pH round 1	Eh ORP	Spec Cond round 1	Turbidity	Dissolved Oxygen
	(celcius)	(units)	(mV)	(uS/cm)	(NTU)	(ppm)
1452	18.08	7.17	60	406	0	1.69
1457	17.67	7.06	-48	407	0	1.37
1502	17.71	7.07	-81	415	0	1.2
1507	17.85	7.07	-86	416	0	1.12
1512	18.05	7.07	-90	417	0	1.05

Comments/Conditions:

Well ID	TOC	GW	Screen	Sample	Sample	Total
	Elevation	Depth	Intervals	Date	Time	Well
	(feet)	(feet)	(ft, bgs)			Depth
CAP-10	95.68	21.71	43-63	6/30/2021	1152	65.35

Drawdown: 21.72 depth to GW (ft)

Time	Temp round 1	pH round 1	Eh ORP	Spec Cond round 1	-	Dissolved Oxygen
	(celcius)	(units)	(mV)	(uS/cm)	(NTU)	(ppm)
1115	30.52	6.7	8	636	0	4.38
1120	28.7	7.12	-64	451	0	I
1125	27.7	7.14	-57	396	0	0.52
1130	27.47	7.11	-55	384	0	0.43
1135	27.16	7.06	-63	379	0	0.39
1140	27.14	7.01	-97	373	0	0.36
1143	27.07	7.01	-107	373	0	0.36
1146	27.08	7.02	-115	373	0	0.35
1149	27.09	7.03	-119	373	0	0.35
1152	27.03	7.04	-121	373	0	0.34
7.1						

Comments/Conditions:

Samples were collected by Melanie Goings and Ben Taylor

Well ID	TOC	GW	Depth of	Sample	Sample	Total
	Elevation	Depth	Screened	Date	Time	Well
	(feet)	(feet)	Interval (ft, bgs)			Depth
CCMAP-1	80.21	4.34	13-23	2/11/2021	1228	26.36

Drawdown: 5.47 depth to GW (ft)

Time	Temp	pH	Eh	Spec Cond	Turbidity	Dissolved
	round 1	round 1	ORP	round 1	O LEEL D	Oxygen
	(celcius)	(units)	(mV)	(uS/cm)	(NTU)	(ppm)
1200	19.89	7.24	123	276	0	3.1
1205	19.65	7.15	124	283	0	1.41
1210	19.6	7.13	123	279	0	1.75
1215	19.36	7.13	119	276	0	1.51
1220	19.1	7.11	119	278	0	1.27
1225	18.9	7.11	116	280	0	1.21
1228	18.8	7.11	115	280	0	1.17

Comments/Conditions:

Well ID	TOC	GW	Depth of	Sample	Sample	Total
	Elevation	Depth	Screened	Date	Time	Well
	(feet)	(feet)	Interval (ft, bgs)			Depth
CCMAP-1	80.21	6.89	13-23	7/1/2021	1347	26.39

Drawdown: 7.17 depth to GW (ft)

Time	Temp	pН	Eh	Spec Cond	Turbidity	Dissolved
	round 1	round 1	ORP	round 1		Oxygen
	(celcius)	(units)	(mV)	(uS/cm)	(NTU)	(ppm)
1319	29.08	6.82	-39	304	1	1.28
1324	28.85	6.88	-76	311	4	0.76
1329	28.59	7.02	-109	309	1.8	0.63
1334	28.13	7.07	-120	308	1.3	0.57
1339	28.09	7.13	-129	308	1.6	0.55
1344	27.92	7.15	-133	308	0.9	0.53
1347	27.84	7.18	-134	307	0.9	0.51
				T		

Comments/Conditions:

Samples were collected by Aaron Hill and Ben Taylor

Well ID	TOC	GW	Screen	Sample	Sample	Total
	Elevation	Depth	Intervals	Date	Time	Well
	(feet)	(feet)	(ft, bgs)			Depth
CCMAP-2	81.24	6.5	13-23	2/11/2021	1314	26.71

Drawdown: 6.54 depth to GW (ft)

Time	Temp	pН	Eh	Spec Cond	Turbidity	Dissolved
	round 1	round 1	ORP	round 1		Oxygen
	(celcius)	(units)	(mV)	(uS/cm)	(NTU)	(ppm)
1254	18.67	5.45	131	44	0	3.31
1259	17.9	5.22	138	43	0	2.2
1304	17.92	5.21	135	42	0	1.93
1309	17.89	5.2	137	42	0	1.77
1314	17.93	5.17	140	42	0	1.66

Comments/Conditions:

Well ID	TOC	GW	Screen	Sample	Sample	Total
	Elevation	Depth	Intervals	Date	Time	Well
	(feet)	(feet)	(ft, bgs)			Depth
CCMAP-2	81.24	7.72	13-23	7/1/2021	1246	26.71

Drawdown: 7.8 depth to GW (ft)

Time	Temp	pН	Eh	Spec Cond	Turbidity	Dissolved
	round 1	round 1	ORP	round 1		Oxygen
	(celcius)	(units)	(mV)	(uS/cm)	(NTU)	(ppm)
1215	23.93	6.74	-11	105	4.4	2.14
1220	23.41	5.99	45	59	38.8	0.71
1225	24.29	5.77	67	55	3.2	0.59
1230	24.21	5.73	74	53	2.1	0.55
1235	24.16	5.69	80	52	1.2	0.52
1240	24.04	5.67	84	50	1	0.51
1243	24.05	5.66	86	50	1	0.51
1246	23.97	5.66	87	49	0.9	0.51

Comments/Conditions:

Samples were collected by Aaron Hill and Ben Taylor

Well ID	TOC	GW	Screen	Sample	Sample	Total
	Elevation	Depth	Intervals	Date	Time	Well
	(feet)	(feet)	(ft, bgs)			Depth
CCMAP-3	81.91	5.89	24'-34'	2/10/2021	1609	36.73

Drawdown: 5.9 depth to GW (ft)

Time	Temp	pН	Eh	Spec Cond	Turbidity	Dissolved
	round 1	round 1	ORP	round 1		Oxygen
	(celcius)	(units)	(mV)	(uS/cm)	(NTU)	(ppm)
1538	20.91	6.89	237	1700	0	5.64
1543	20.54	7.21	212	1670	0	5.25
1548	20.27	7.24	207	1680	0	5.24
1553	19.96	7.26	202	3330	0	3.23
1558	19.75	6.52	27	4180	0	0.93
1603	19.56	6.56	2	4220	0	0.73
1606	19.42	6.58	-5	4240	0	0.68
1609	19.33	6.58	-9	4240	0	0.66

Comments/Conditions: Duplicate was collected at 1614

Well ID	TOC	GW	Screen	Sample	Sample	Total
	Elevation	Depth	Intervals	Date	Time	Well
	(feet)	(feet)	(ft, bgs)			Depth
CCMAP-3	81.91	8.02	24'-34'	7/1/2021	1137	36.87

Drawdown: 8.07 depth to GW (ft)

Time	Temp round 1	pH round 1	Eh ORP	Spec Cond round 1	Turbidity	Dissolved Oxygen
	(celcius)	(units)	(mV)	(uS/cm)	(NTU)	(ppm)
1109	26.11	6.4	6	5620	29.5	2.18
1114	26.16	6.4	-1	5820	33	0.77
1119	26.1	6.4	-5	5790	24.6	0.57
1124	26.27	6.41	-6	5750	11.7	0.48
1129	26.57	6.41	-7	5700	5.6	0.43
1134	26.75	6.42	-8	5670	4.3	0.41
1137	26.72	6.42	-8	5660	2.7	0.39

Comments/Conditions:

Duplicate at 1142

Samples were collected by Aaron Hill and Ben Taylor

Well ID	TOC	GW	Screen	Sample	Sample	Total
	Elevation	Depth	Intervals	Date	Time	Well
	(feet)	(feet)	(ft, bgs)			Depth
CCMAP-4	81.83	5.31	8-18	4/8/2021	1032	21.15

Drawdown: 5.4 depth to GW (ft)

Time	Temp round 1	pH round 1	Eh ORP	Spec Cond round 1	Turbidity	Dissolved Oxygen
	(celcius)	(units)	(mV)	(uS/cm)	(NTU)	(ppm)
1001	19.98	6.17	91	621	5.5	2.69
1006	20.19	6.19	34	614	2.3	1.21
1011	20.62	6.2	15	610	2.9	0.84
1016	20.93	6.2	1	587	1.8	0.7
1021	21.05	6.19	-5	577	0.7	0.63
1026	21.31	6.19	-10	559	0.4	0.6
1029	21.34	6.19	-12	547	0	0.58
1032	21.39	6.19	-13	541	0	0.57
_						

Comments/Conditions: Duplicate taken at 1037

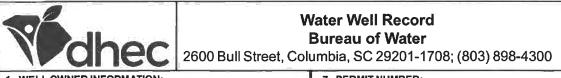
Well ID	TOC	GW	Screen	Sample	Sample	Total
	Elevation	Depth	Intervals	Date	Time	Well
	(feet)	(feet)	(ft, bgs)			Depth
CCMAP-4	81.83	7.87	8'-18'	7/1/2021	1024	21.16

Drawdown: 8 depth to GW (ft)

Time	Temp round 1	pH round 1	Eh ORP	Spec Cond round 1	Turbidity	Dissolved Oxygen
	(celcius)	(units)	(mV)	(uS/cm)	(NTU)	(ppm)
953	22.63	6.48	-14	610	6.2	7.25
958	22.3	6.53	-20	610	5.2	1.12
1003	22.01	6.59	-33	612	3.8	0.78
1008	22.16	6.57	-4 1	608	4.1	0.68
1013	22.05	6.55	-41	602	3.3	0.65
1018	22.04	6.51	-44	590	3	0.58
1021	21.86	6.49	-44	584	1.7	0.56
1024	22.01	6.48	-44	581	4.1	0.54
, and the second						

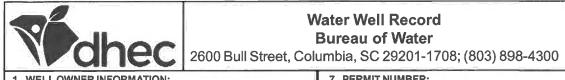
Comments/Conditions:

Samples were collected by Aaron Hill and Ben Taylor

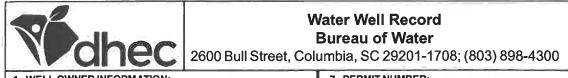

Appendix C – Well Installation Records

Water Well Record Bureau of Water

2600 Bull Street, Columbia, SC 29201-1708; (803) 898-4300


PROMOTE PROTECT PROSPER		2000 DL	ili Street, Columbia, 3C 23201-1700, (003) 030-4300					
WELL OWNER INFORMATION: Name: SANTEE COOPER	-		7. PERMIT NUMBER: SC0037401					
(last) Address: ONE RIVERWOOD DRIVE City: MONCKS CORNER State: SC			8. USE: Residential Public Supply Process Irrigation Air Conditioning Emergency Test Well Monitor Well Replacement					
			9. WELL DEPTH (completed) Date Started: 03/01/21					
	Home:							
2. LOCATION OF WELL: SC CO		ELEY	18.0 ft. Date Completed: 03/01/21 10. CASING: ☑ Threaded ☑ Welded					
Name: CROSS GENERATING ST Street Address: 553 CROSS STA City: PINEVILLE Latitude: 33° 23' 10.94" Longitude	TION ROAD ^{Zip:} 29468		Type: PVC Galvanized Steel Other 2.0 in. toft. depth in. toft. depth					
3. PUBLIC SYSTEM NAME: PU	JBLIC SYSTE CC-MAP		11. SCREEN: Type: SCH 40 PVC Diam.: 2 INCH					
4. ABANDONMENT: Yes 🗹	No		Slot/Gauge: .010 Length: 10.0 FEET Set Between: 8.0 ft. and 18.0 ft. NOTE: MULTIPLE SCREENS ft. and ft. USE SECOND SHEET					
Grouted Depth: from	1		Sieve Analysis Yes (please enclose) No					
Formation Description	*Thickness of	Depth to Bottom of	12. STATIC WATER LEVEL 6.0 ft. below land surface after 24 hours 13. PUMPING LEVEL Below Land Surface.					
SANDY CLAY	Stratum 18.0	Stratum 18.0	ft. after hrs. Pumping G.P.M. Pumping Test: Yes (please enclose) No					
		_	Yield:					
	1	14. WATER QUALITY Chemical Analysis ☐ Yes ☐ No Bacterial Analysis ☐ Yes ☐ No Please enclose lab results.						
			15. ARTIFICIAL FILTER (filter pack) ☑ Yes ☐ No Installed from 6.0 ft. to 18.0 ft. Effective size 1.43 Uniformity Coefficient 1.30					
		- :	16. WELL GROUTED? ☑ Yes ☑ No ☑ Neat Cement ☑ Bentonite ☐ Bentonite/Cement ☑ Other ☐ Depth: From 0.0 ft. to 3.0 ft.					
			17. NEAREST SOURCE OF POSSIBLE CONTAMINATION: ft direction Type Well Disinfected □ Yes □ No Type: Amount:					
			18. PUMP: Date installed: Not installed Mfr. Name: Model No.: H.P. Volts Length of drop pipe ft. Capacity gpm TYPE: Submersible Jet (shallow) Turbine Jet (deep) Reciprocating Centrifugal					
			19. WELL DRILLER: JEREMY RINGLER CERT. NO.: 02294 Address: (Print) Level: A B C D (circle one) 176 COMMERCE BLVD STATESVILLE, NC 28625					
*Indicate Water Bearing Zones			Telephone No.: 704-872-7686 Fax No.: 704-872-0248 20. WATER WELL DRILLER'S CERTIFICATION: This well was drilled under					
(Use a 2nd sheet if needed)			my direction and this report is true to the best of my knowledge and belief.					
5. REMARKS:			,					
BENTONITE SEAL 3.0 - 6.0 FEET			Signed:					
6. TYPE: Mud Rotary Jetted Dug Air Ro Cable tool Other	_	Bored Driven	If D Level Driller, provide supervising driller's name:					

Water Well Record


Note: Personal information provided on this document is subject to public scrutiny or release.

1. WELL OWNER INFORMATION:			7. PERMIT NUMBER: CCMAP-5
Name: Santee Cooper (last)	(fir:	p#\	
Address: One Riverwood Drive	(1113	oi)	8. USE:
One Riverwood Drive			☐ Residential ☐ Public Supply ☐ Process ☐ Irrigation ☐ Air Conditioning ☐ Emergency
City: Moncks Corner State: SC	Zip: 29	9461-2998	☐ Irrigation ☐ Air Conditioning ☐ Emergency ☐ Test Well ☐ Monitor Well ☐ Replacement
Telephone: Work:	Home:		9. WELL DEPTH (completed) Date Started: 12.13.21
2. LOCATION OF WELL: SC		elev	20 ft. Date Completed: 12.13.21
Name: Cross Generating Station	· · · · · · · · · · · · · · · · · ·	cicy	10. CASING: ☑ Threaded ☐ Welded
Street Address: 553 Cross Station	Pood		Diam.: 2 Height: Above/Below
	Zip:		Type: 🗹 PVC 🗆 Galvanized Surface ft.
7 intevine, se	•		Steel Other Weight
Latitude: 33.3705 Longitude	: -80.1121		o in. to 10 ft. depth Drive Shoe? Yes No
			in. toft. depth
3. PUBLIC SYSTEM NAME: PU	BLIC SYSTE	M NUMBER:	11. SCREEN: Type: PVC Diam.: 2
			Slot/Gauge: 0.010 Length: 10
4. ABANDONMENT: ☐ Yes ☑	No		Set Between: 10 ft. and 20 ft. NOTE: MULTIPLE SCREENS
Give Details Below			ft. andft. USE SECOND SHEET
Grouted Depth: from			Sieve Analysis 🔲 Yes (please enclose) 🖸 No
Francisco Brandadian	*Thickness		12. STATIC WATER LEVEL ft. below land surface after 24 hours
Formation Description	of Stratum	Bottom of Stratum	13. PUMPING LEVEL Below Land Surface.
0 77.11 0 0		5	ft. after hrs. PumpingG.P.M.
Orange Yellow Gray Clay	0	٥	Pumping Test:
Orange Yellow Gray Clay w/Sand	5	9.5	Yield:
Orange Tenow Gray Cray w/Sand	3	7.5	14. WATER QUALITY
Orange White Fi-Med Sand w/Cl	9.5	11.5	Chemical Analysis ☐ Yes ☐ No Bacterial Analysis ☐ Yes ☐ No Please enclose lab results.
Yellow White Coarse Sand w/Cl	11.5	18	15. ARTIFICIAL FILTER (filter pack) ☑ Yes ☐ No
Tellow with Coarse Sand w/Ci	11.5	10	Installed from 8 ft. to 21 ft.
Dark Green Clay w/Coarse Sand	18	18.5	Effective size #2 Uniformity Coefficient
			16. WELL GROUTED? ☑ Yes ☐ No
Greenish Gray Fine Sand w/Silt	18.5	20	☑ Neat Cement ☑ Bentonite ☐ Bentonite/Cement ☐ Other
			Depth: From 0 ft. to 8 ft.
			17. NEAREST SOURCE OF POSSIBLE CONTAMINATION: ft direction
1			Type
			Well Disinfected ☐ Yes ☐ No Type: Amount:
			18. PUMP: Date installed: Not installed □
			Mfr. Name: Model No.;
	-		H.P Volts Length of drop pipe ft. Capacity gpm
	;		TYPE: ☐ Submersible ☐ Jet (shallow) ☐ Turbine ☐ Jet (deep) ☐ Reciprocating ☐ Centrifugal
		-	
		1	19. WELL DRILLER: Robert Felder CERT. NO.: 1864
	-		Address: (Print) Level: A B C D (circle one)
			PO Box 8446 Columbia, SC 29202
*Indicate Water Bearing Zones			Telephone No.: Fax No.:
			20. WATER WELL DRILLER'S CERTIFICATION: This well was drilled under
(Use a 2nd sheet if needed)			my direction and this report is true to the best of my knowledge and belief.
5. REMARKS:			
			Signed:
			Signed: Date:
6. TYPE: ☐ Mud Rotary ☐ Jetted		Bored	If D. Lovel Driller, provide automicina drillede name:
□ Dug □ Air Ro		Driven	If D Level Driller, provide supervising driller's name:
☐ Cable tool	•		William Walker 2042

Note: Personal information provided on this document is subject to public scrutiny or release.

1. WELL OWNER INFORMATION: Name: Santee Cooper			7. PERMIT NUMBER: CCMAP-6			
(last)	(firs	st)				
Address: One Riverwood Drive	(,	8. USE:			
One Riverwood Drive			Residential Public Supply Process			
City: Moncks Corner State: SC	Zip: 29	9461-2998	☐ Irrigation ☐ Air Conditioning ☐ Emergency ☐ Test Well ☐ Monitor Well ☐ Replacement			
Telephone:Work:	Home:		9. WELL DEPTH (completed) Date Started: 12.13.21			
2. LOCATION OF WELL: SC	OUNTY: Berk	elev	20 ft. Date Completed: 12.13.21			
Name: Cross Generating Station	Dork	cicy	10. CASING: ☑ Threaded ☐ Welded			
Street Address: 553 Cross Station	Road	1	Diam.: 2 Height: Above/Below			
City: Pineville, SC	Zip:		Type: 🗹 PVC 🗌 Galvanized Surface: ft.			
- Finevine, SC			☐ Steel ☐ Other Weight —			
Latitude: 33,3705 Longitude	e: -80 1121		0 in, to 10 ft. depth Drive Shoe? \square Yes \square No			
	. 00.1121		in. toft. depth			
3. PUBLIC SYSTEM NAME: PL	IBLIC SYSTE	M NUMBER:	11. SCREEN: Type: PVC Diam.: 2			
			Slot/Gauge: 0.010 Length: 10			
4. ABANDONMENT: ☐ Yes ☑	No		Set Between: 10 ft. and 20 ft. NOTE: MULTIPLE SCREENS			
Give Details Below			ft. andft. USE SECOND SHEET			
Grouted Depth: from			Sieve Analysis 🔲 Yes (please enclose) 🗹 No			
	*Thickness		12. STATIC WATER LEVEL ft. below land surface after 24 hours			
Formation Description	of Stratum	Bottom of Stratum	13. PUMPING LEVEL Below Land Surface.			
0 7/11 0 01		5	ft. after hrs. Pumping G.P.M.			
Orange Yellow Gray Clay	0	3	Pumping Test: 🗌 Yes (please enclose) 🗎 No			
O Valland Grand Glaver/Sand	5	11	Yield:			
Orange Yellow Gray Clay w/Sand	5	11	14. WATER QUALITY			
Yellow Orange Med-Coarse Sand	11	12	Chemical Analysis ☐ Yes ☐ No Bacterial Analysis ☐ Yes ☐ No			
	-	-	Please enclose lab results.			
Yellow Orange Fine Sand w/Clay	12	15	15. ARTIFICIAL FILTER (filter pack) ☑ Yes ☐ No			
	-		Installed from 8ft. to 21ft. Effective size #2Uniformity Coefficient			
Light Gray Medium Sand	15	20				
		-	16. WELL GROUTED? ☑ Yes ☐ No ☑ Neat Cement ☑ Bentonite ☐ Bentonite/Cement ☐ Other			
			Depth: From 0			
			17. NEAREST SOURCE OF POSSIBLE CONTAMINATION: ft direction			
		_ :	Type			
			Well Disinfected ☐ Yes ☐ No Type: Amount:			
			18. PUMP: Date installed: Not installed □			
			Mfr. Name: Model No.:			
			H.P. Volts Length of drop pipe ft. Capacity gpm			
			TYPE: ☐ Submersible ☐ Jet (shallow) ☐ Turbine			
			☐ Jet (deep) ☐ Reciprocating ☐ Centrifugal			
			19. WELL DRILLER: Robert Felder CERT. NO.: 1864			
			Address: (Print) Level: A B C D (circle one)			
			PO Box 8446 Columbia, SC 29202			
*Indicate Water Bearing Zones			Telephone No.: Fax No.:			
(Upp a 2nd shoot if readed)			20. WATER WELL DRILLER'S CERTIFICATION: This well was drilled under			
(Use a 2nd sheet if needed)		-	my direction and this report is true to the best of my knowledge and belief.			
5. REMARKS:	1					
			Signed: Date:			
			Well Driller			
6. TYPE: ☐ Mud Rotary ☐ Jetted		Bored	If D Level Driller, provide supervising driller's name:			
☐ Dug ☐ Air Ro	tary 🗆	Driven	William Walker 2042			
☐ Cable tool ☑ Other			YYIIIaili YYainei 2042			

Note: Personal information provided on this document is subject to public scrutiny or release.

1. WELL OWNER INFORMATION:			7. PERMIT NUMBER: CCMAP-7				
Name: Santee Cooper			CCMAP-7				
(last)	(fir	st)	8. USE:				
Address: One Riverwood Drive			☐ Residential ☐ Public Supply ☐ Process				
City: Moncks Corner State: SC Zip: 29461-2998			☐ Irrigation ☐ Air Conditioning ☐ Emergency ☐ Test Well ☐ Monitor Well ☐ Replacement				
Telephone: Work:	Home:		9. WELL DEPTH (completed) Date Started: 12.13.21				
2. LOCATION OF WELL: SC	DUNTY: Berk	eley	20 ft. Date Completed: 12.13.21				
Name: Cross Generating Station			10. CASING: ☑ Threaded ☐ Welded				
Street Address: 553 Cross Station	n Road		Diam.: 2 Height: Above/Below				
City: Pineville, SC	Zip:		Type: 🛮 PVC 🔲 Galvanized Surfaceft.				
		1	U Steel U Other Weight Weight				
Latitude: 33,3705 Longitude	= -80.1121		in. toft. depth				
3. PUBLIC SYSTEM NAME: PU	IBLIC SYSTE	M NUMBER:	11. SCREEN: Type: PVC Diam.: 2				
4. ABANDONMENT: ☐ Yes ☑	No		Slot/Gauge: 0.010 Length: 10				
Give Details Below	INO		Set Between: 10 ft. and 20 ft. NOTE: MULTIPLE SCREENS				
Grouted Depth: from	ft to —	ft.	ft. andft. USE SECOND SHEET Sieve Analysis ☐ Yes (please enclose) ☑ No				
Crowde Dopan Hom.	*Thickness		12. STATIC WATER LEVEL ft. below land surface after 24 hours				
Formation Description	of	Bottom of					
	Stratum	Stratum	13. PUMPING LEVEL Below Land Surface. ft. after hrs. Pumping G.P.M.				
Orange Yellow Gray Clay	0	5	Pumping Test: Yes (please enclose) No				
			Yield:				
Orange Yellow Gray Clay w/Sand	5	12	14. WATER QUALITY				
Owner White Fire Med Sand m/Cl	12	13	Chemical Analysis ☐ Yes ☐ No Bacterial Analysis ☐ Yes ☐ No				
Orange White Fine-Med Sand w/Cl			Please enclose lab results.				
Orange White Med-Co Sand w/Cl	13	15	15. ARTIFICIAL FILTER (filter pack) ☑ Yes ☐ No				
	1.5	20	Installed from 8 ft. to 21 ft. Effective size #2 Uniformity Coefficient				
Lt Gray Fi-Coarse Sand w/Cl	15	20	16. WELL GROUTED? ☑ Yes ☐ No				
			✓ Neat Cement ✓ Bentonite				
			Depth: From 0 ft. to 8 ft.				
,			17. NEAREST SOURCE OF POSSIBLE CONTAMINATION: ft direction				
			Type				
			Well Disinfected ☐ Yes ☐ No Type: Amount:				
= = =			18. PUMP: Date installed: Not installed				
			Mfr. Name: Model No.:				
	-		H.P Volts Length of drop pipe ft. Capacity gpm TYPE: Submersible Jet (shallow) Turbine				
			TYPE: ☐ Submersible ☐ Jet (shallow) ☐ Turbine ☐ Jet (deep) ☐ Reciprocating ☐ Centrifugal				
			19. WELL DRILLER: Robert Felder CERT. NO.: 1864				
			Address: (Print) Level: A B C D (circle one)				
			PO Box 8446 Columbia, SC 29202				
*Indicate Water Rearing Zones			·				
*Indicate Water Bearing Zones			Telephone No.: Fax No.: 20. WATER WELL DRILLER'S CERTIFICATION: This well was drilled under				
(Use a 2nd sheet if needed)			my direction and this report is true to the best of my knowledge and belief.				
5. REMARKS:							
		'					
			Signed: Date:				
			Well Driller				
6. TYPE: ☐ Mud Rotary ☐ Jetted		Bored	If D Level Driller, provide supervising driller's name:				
☐ Dug ☐ Air Ro		Driven					
☐ Cable tool ☑ Other			William Walker 2042				

Appendix D – Slug Testing Results

HALEY & ALDRICH, INC. 400 Augusta Street Suite 100 Greenville, SC 29601 864.214.8750

MEMORANDUM

January 27, 2022 File No. 132892-013

SUBJECT: Slug Testing Results

Cross Generating Station

Rising-head and falling-head permeability ("slug") tests were conducted for the newly installed monitoring wells in the vicinity of the Closed Gypsum Pond, site-wide background wells and nature and extent monitoring wells for the Bottom Ash Pond and Class 2 Landfill. These slug tests were conducted to measure the hydraulic conductivity of the uppermost aquifer for the newly installed/existing monitoring wells, compare them to historical results documented in the "Site Hydrogeologic Characterization Report" by Garrett & Moore in 2011, and if necessary and appropriate, refine the hydraulic properties in the groundwater flow and solute transport model.

SLUG TESTING AND DATA ANALYSIS PROCEDURES

To conduct the slug tests at the well locations, the following steps were completed at each location.

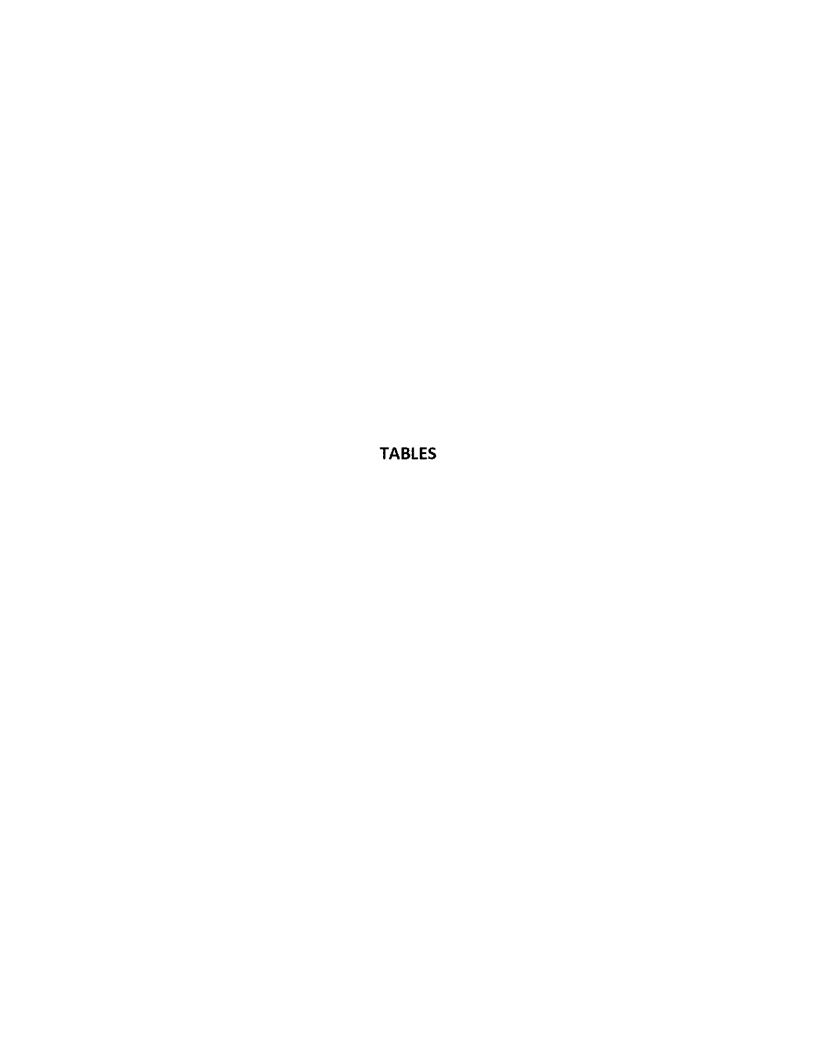
- Static water level measurements were collected at the well prior to the test.
- To measure the displacement of the water column over time in the well, a pressure transducer was lowered to the bottom of the well (In-Situ Level Troll™).
- A solid PVC rod was constructed cut to length and attached to a rope to be used as a slug of known volume to displace water within the well.
- The slug was lowered into the well instantaneously and completely below the static water level without splashing the water column. The water level was then allowed to recover to within 90 percent of the static water level. This portion of the test constituted the "slug in" test.
- Once the water level recovered the slug was removed instantaneously and completely from the
 water column and the water level was allowed to recover to within 90 percent of the static
 water level. This portion of the test constituted the "slug out" test.
- This pair of slug in and slug out tests were repeated at each well up to three times to compare results and obtain a geometric mean for hydraulic conductivity.
- The measured rate of recovery of the water level is a function of the horizontal hydraulic conductivity of the aquifer material in the vicinity of the monitoring well.

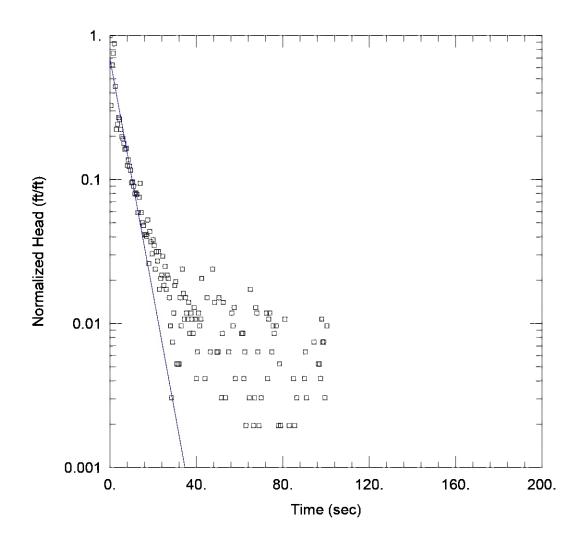
The slug test data were analyzed using the HydroSOLVE, Inc. AQTESOLV for Windows™ program according to the Bouwer-Rice solution method. This method estimates hydraulic conductivity through graphical straight line slope matching. The data output and graphs generated by AQTESOLV™ are provided in Attachment A. Calculated values of K based on the slug test data are presented in Table 1.

South Carolina Public Service Authority (Santee Cooper) 27 January 2021 Page 2

SLUG TESTING RESULTS

The range of hydraulic conductivities from the monitoring wells that were tested were 1.387E-04 (cm/sec) to 4.800E-03 (cm/sec). These results are comparable to the Site Hydrogeologic Characterization Report which reported a range of hydraulic conductivities of 3.357E-04 (cm/sec) to 8.93E-03 (cm/sec) for the shallow aquifer. This range of hydraulic conductivities is typical for the soil types identified and for this depositional setting. This information, combined with the calculated horizontal hydraulic gradients, and an assumed effective porosity of 25 percent will be used to report on groundwater flow direction and rate following each semiannual sampling event as required by § 257.93(c) of the Federal CCR Rule.




TABLE 1
SUMMARY OF SLUG TEST DATA
CROSS GENERATING STATION
SANTEE COOPER
CROSS, SOUTH CAROLINA

Well ID	Slug In 1 (cm/sec)	Slug Out 1 (cm/sec)	Slug In 2 (cm/sec)	Slug Out 2 (cm/sec)	Slug In 3 (cm/sec)	Slug Out 3 (cm/sec)	Geom. Mean (cm/sec)	Formatted Geom. (cm/sec)
CGYP-5	0.0001439	0.0001419	0.0001481	0.0001225			0.000138734	1.387E-04
CGYP-2	0.0003882	0.000484	0.0004948	0.0004822			0.000460139	4.601E-04
CGYP-6	0.0005347	0.0004815	0.0005616	0.0005252			0.000524946	5.249E-04
CGYP-3	0.0005141	0.0005617	0.0005961	0.0005746			0.000560802	5.608E-04
POZ-4	0.0006012	0.0006036	0.000628	0.0006124			0.00061121	6.112E-04
CGYP-4	0.0007695	0.0007741	0.0007724	0.0007743			0.000772573	7.726E-04
CCMAP-1	0.001106	0.001122	0.001127	0.001169			0.001130763	1.131E-03
PM-1	0.002385	0.001913	0.003361	0.00166	0.006277	0.00214	0.002644383	2.644E-03
CCMAP-2	0.002834	0.002656	0.002835	0.002556			0.0027176	2.718E-03
CGYP-1	0.001177	0.004646	0.00266	0.004105	0.002869	0.004905	0.003071874	3.072E-03
CBW-1	0.005518	0.004379	0.004712	0.004799	0.004725	0.00474	0.004800452	4.800E-03

Notes:

Geom. = Geometric Mean

Data Set: C:\Users\nschaffer\Documents\SCC slug working\CBW1 Slug In 1.aqt

Date: 11/08/21 Time: 10:58:16

PROJECT INFORMATION

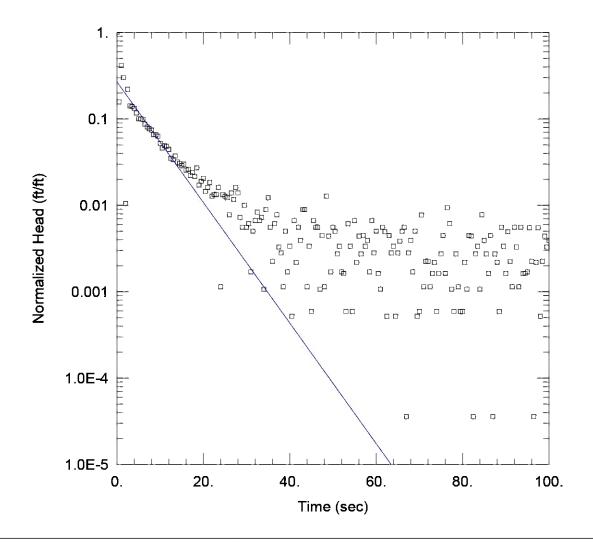
Company: <u>Haley & Aldrich</u> Client: <u>Santee Cooper</u> Project: 131539

Location: Cross, SC Test Well: CBW-1

AQUIFER DATA

Saturated Thickness: 15.01 ft Anisotropy Ratio (Kz/Kr): 1.

WELL DATA (CBW-1)


Initial Displacement: 0.9118 ft Static Water Column Height: 15.01 ft

Total Well Penetration Depth: 15.01 ft Screen Length: 10. ft Casing Radius: 0.083 ft Well Radius: 0.3438 ft

SOLUTION

Aquifer Model: Unconfined Solution Method: Bouwer-Rice

K = 0.005518 cm/sec y0 = 0.6261 ft

Data Set: C:\Users\nschaffer\Documents\SCC slug working\CBW1 Slug In 2.aqt

Date: 11/08/21 Time: 11:06:54

PROJECT INFORMATION

Company: Haley & Aldrich Client: Santee Cooper

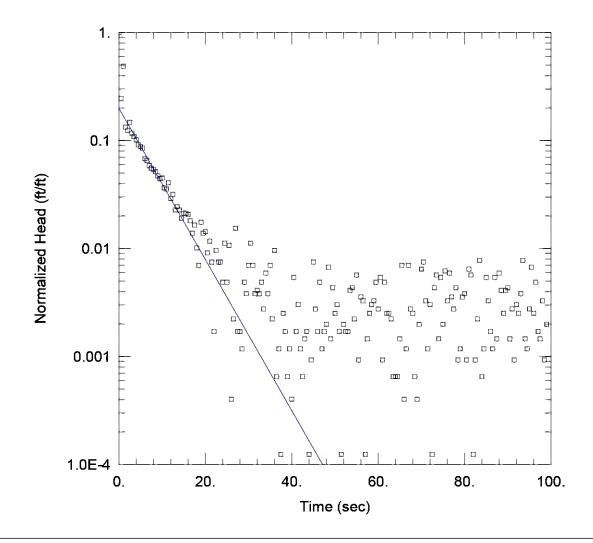
Project: 131539 Location: Cross, SC Test Well: CBW-1

AQUIFER DATA

Saturated Thickness: 15.01 ft Anisotropy Ratio (Kz/Kr): 1.

WELL DATA (CBW-1)

Initial Displacement: 1.802 ft Static Water Column Height: 15.01 ft


Total Well Penetration Depth: 15.01 ft Screen Length: 10. ft

Casing Radius: 0.083 ft Well Radius: 0.3438 ft

SOLUTION

Aquifer Model: Unconfined Solution Method: Bouwer-Rice

K = 0.004712 cm/sec y0 = 0.4834 ft

Data Set: C:\Users\nschaffer\Documents\SCC slug working\CBW1 Slug in 3.aqt

Date: 11/08/21 Time: 11:44:47

PROJECT INFORMATION

Company: <u>Haley & Aldrich</u> Client: <u>Santee Cooper</u> Project: 131539

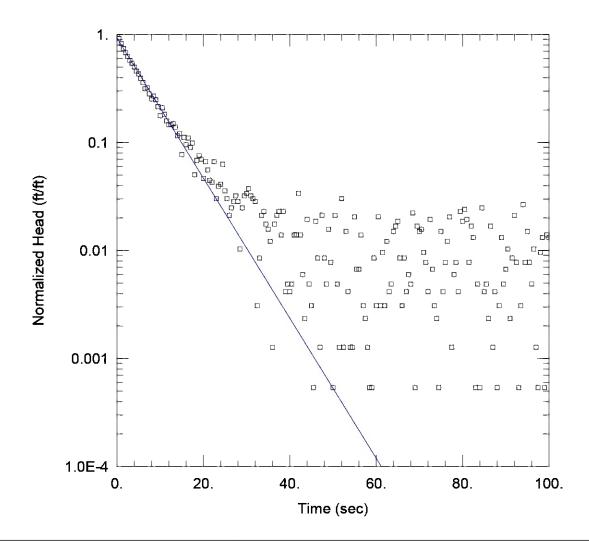
Location: Cross, SC Test Well: CBW-1

AQUIFER DATA

Saturated Thickness: 15.01 ft Anisotropy Ratio (Kz/Kr): 1.

WELL DATA (CBW-1)

Initial Displacement: 1.896 ft Static Water Column Height: 15.01 ft


Total Well Penetration Depth: 15.01 ft Screen Length: 10. ft

Casing Radius: 0.083 ft Well Radius: 0.3438 ft

SOLUTION

Aquifer Model: Unconfined Solution Method: Bouwer-Rice

K = 0.004725 cm/sec y0 = 0.3762 ft

Data Set: C:\Users\nschaffer\Documents\SCC slug working\CBW1 Slug out 1.aqt

Date: 11/08/21 Time: 10:59:18

PROJECT INFORMATION

Company: <u>Haley & Aldrich</u> Client: <u>Santee Cooper</u> Project: 131539

Location: Cross, SC Test Well: CBW-1

AQUIFER DATA

Saturated Thickness: 15.01 ft Anisotropy Ratio (Kz/Kr): 1.

WELL DATA (CBW-1)

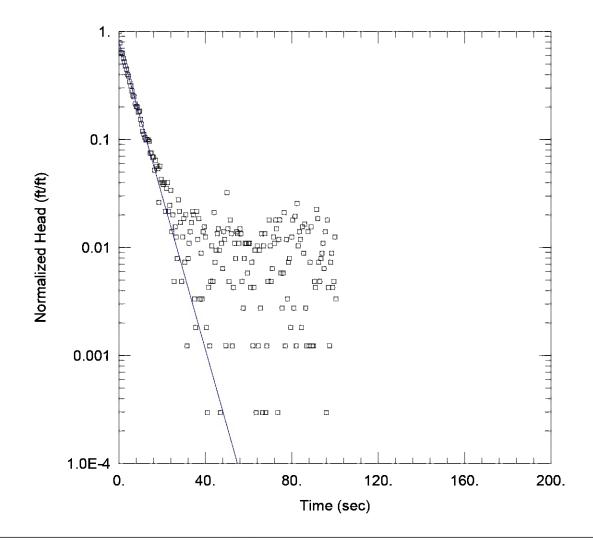
Initial Displacement: 0.5517 ft

Static Water Column Height: 15.01 ft

Total Well Penetration Depth: 15.01 ft

Screen Length: 10. ft Well Radius: 0.3438 ft

Casing Radius: 0.083 ft


SOLUTION

Aquifer Model: Unconfined

Solution Method: Bouwer-Rice

K = 0.004379 cm/sec

y0 = 0.5124 ft

Data Set: C:\Users\nschaffer\Documents\SCC slug working\CBW1 Slug out 2.aqt

Date: 11/08/21 Time: 11:39:00

PROJECT INFORMATION

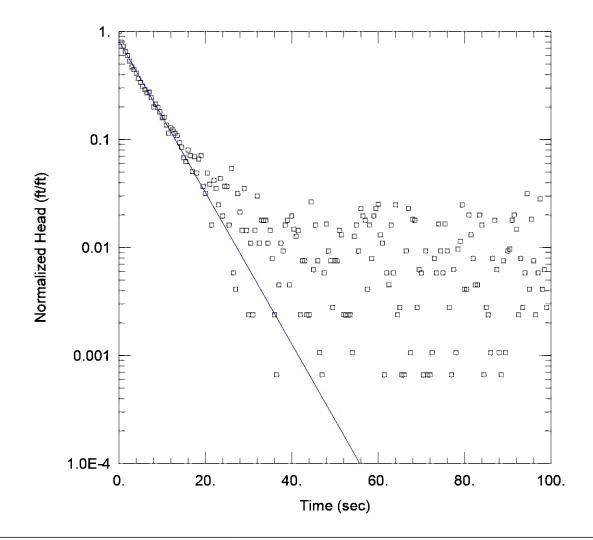
Company: <u>Haley & Aldrich</u> Client: <u>Santee Cooper</u> Project: 131539

Location: Cross, SC Test Well: CBW-1

AQUIFER DATA

Saturated Thickness: 15.01 ft Anisotropy Ratio (Kz/Kr): 1.

WELL DATA (CBW-1)


Initial Displacement: 0.6562 ft Static Water Column Height: 15.01 ft

Total Well Penetration Depth: 15.01 ft Screen Length: 10. ft Casing Radius: 0.083 ft Well Radius: 0.3438 ft

SOLUTION

Aquifer Model: Unconfined Solution Method: Bouwer-Rice

K = 0.004799 cm/sec y0 = 0.5205 ft

Data Set: C:\Users\nschaffer\Documents\SCC slug working\CBW1 Slug out 3.aqt

Date: 11/08/21 Time: 11:51:27

PROJECT INFORMATION

Company: <u>Haley & Aldrich</u> Client: <u>Santee Cooper</u> Project: 131539

Location: Cross, SC Test Well: CBW-1

AQUIFER DATA

Saturated Thickness: 15.01 ft Anisotropy Ratio (Kz/Kr): 1.

WELL DATA (CBW-1)

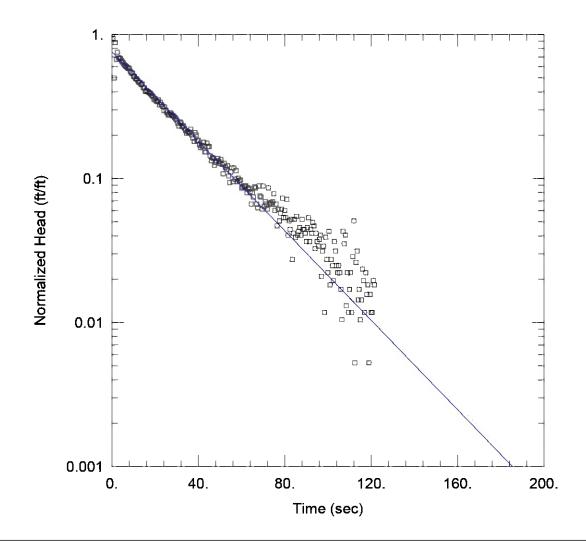
Initial Displacement: 0.5804 ft

Static Water Column Height: 15.01 ft

Total Well Penetration Depth: 15.01 ft

Screen Length: 10. ft Well Radius: 0.3438 ft

Casing Radius: 0.083 ft


SOLUTION

Aquifer Model: Unconfined

Solution Method: Bouwer-Rice

K = 0.00474 cm/sec

y0 = 0.4754 ft

Data Set: C:\Users\nschaffer\Documents\SCC slug working\CCMAP1 Slug in 1.aqt

Date: 11/08/21 Time: 16:24:09

PROJECT INFORMATION

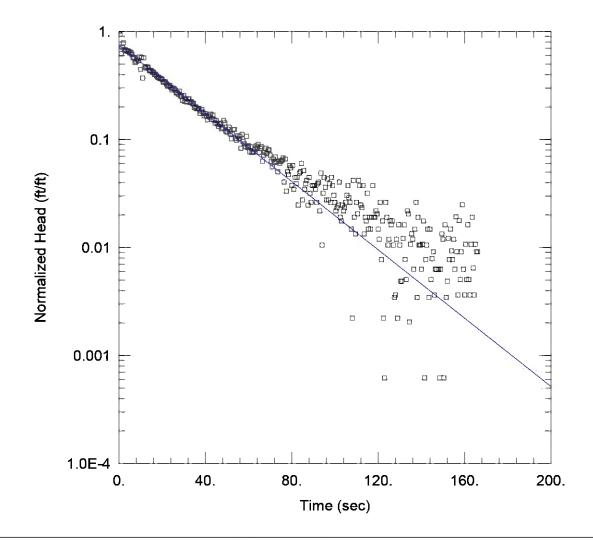
Company: Haley & Aldrich
Client: Santee Cooper
Project: 131539

Location: <u>Cross, SC</u> Test Well: <u>CCMAP-1</u>

AQUIFER DATA

Saturated Thickness: 18.75 ft Anisotropy Ratio (Kz/Kr): 1.

WELL DATA (CCMAP-1)


Initial Displacement: 0.767 ft Static Water Column Height: 18.75 ft

Total Well Penetration Depth: 18.75 ft Screen Length: 10. ft Casing Radius: 0.0833 ft Well Radius: 0.3438 ft

SOLUTION

Aquifer Model: Unconfined Solution Method: Bouwer-Rice

K = 0.001106 cm/sec y0 = 0.5808 ft

Data Set: C:\Users\nschaffer\Documents\SCC slug working\CCMAP1 Slug in 2.aqt

Date: 11/08/21 Time: 16:23:51

PROJECT INFORMATION

Company: Haley & Aldrich Client: Santee Cooper Project: 131539

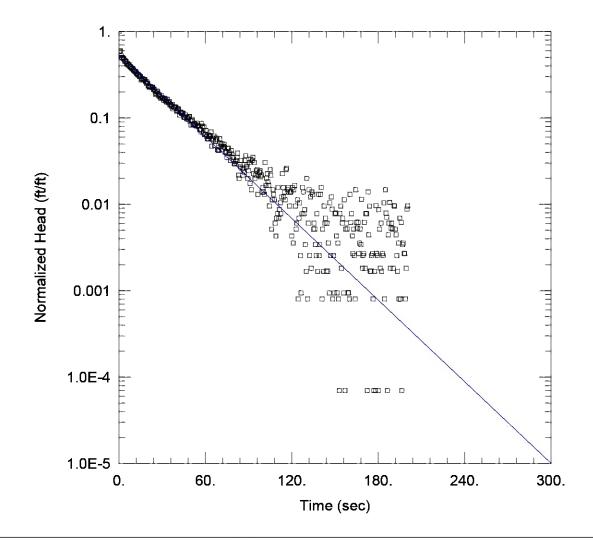
Location: Cross, SC Test Well: CCMAP-1

AQUIFER DATA

Saturated Thickness: 18.75 ft Anisotropy Ratio (Kz/Kr): 1.

WELL DATA (CCMAP-1)

Initial Displacement: 0.7044 ft Static Water Column Height: 18.75 ft


Total Well Penetration Depth: 18.75 ft Screen Length: 10. ft

Casing Radius: 0.0833 ft Well Radius: 0.3438 ft

SOLUTION

Aquifer Model: Unconfined Solution Method: Bouwer-Rice

K = 0.001127 cm/sec y0 = 0.5305 ft

Data Set: C:\Users\nschaffer\Documents\SCC slug working\CCMAP1 Slug out 1.aqt

Date: 11/08/21 Time: 16:23:35

PROJECT INFORMATION

Company: <u>Haley & Aldrich</u> Client: <u>Santee Cooper</u> Project: 131539

Location: Cross, SC Test Well: CCMAP-1

AQUIFER DATA

Saturated Thickness: 18.75 ft Anisotropy Ratio (Kz/Kr): 1.

WELL DATA (CCMAP-1)


Initial Displacement: 1.144 ft Static Water Column Height: 18.75 ft

Total Well Penetration Depth: 18.75 ft Screen Length: 10. ft Casing Radius: 0.0833 ft Well Radius: 0.3438 ft

SOLUTION

Aquifer Model: Unconfined Solution Method: Bouwer-Rice

K = 0.001122 cm/sec y0 = 0.6091 ft

Data Set: C:\Users\nschaffer\Documents\SCC slug working\CCMAP1 Slug out 2.aqt

Date: 11/08/21 Time: 16:20:26

PROJECT INFORMATION

Company: <u>Haley & Aldrich</u> Client: <u>Santee Cooper</u> Project: 131539

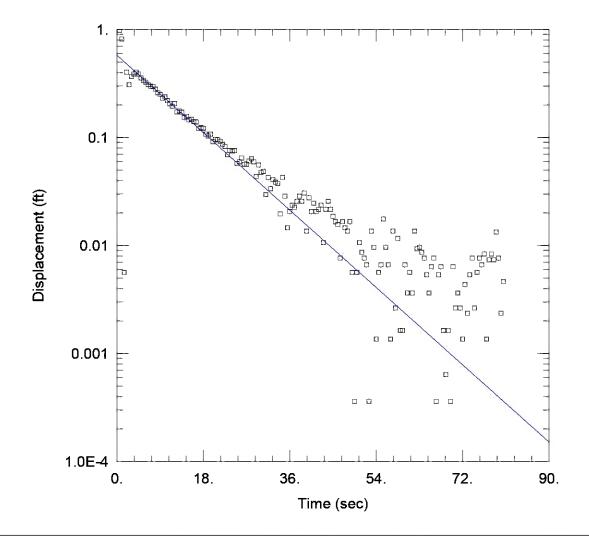
Location: Cross, SC Test Well: CCMAP-1

AQUIFER DATA

Saturated Thickness: 18.75 ft Anisotropy Ratio (Kz/Kr): 1.

WELL DATA (CCMAP-1)

Initial Displacement: 0.9028 ft Static Water Column Height: 18.75 ft


Total Well Penetration Depth: 18.75 ft Screen Length: 10. ft

Casing Radius: 0.0833 ft Well Radius: 0.3438 ft

SOLUTION

Aquifer Model: Unconfined Solution Method: Bouwer-Rice

K = 0.001169 cm/sec y0 = 0.6094 ft

Data Set: C:\Users\nschaffer\Documents\SCC slug working\CCMAP-2 Slug In 1.aqt

Date: 11/08/21 Time: 16:39:53

PROJECT INFORMATION

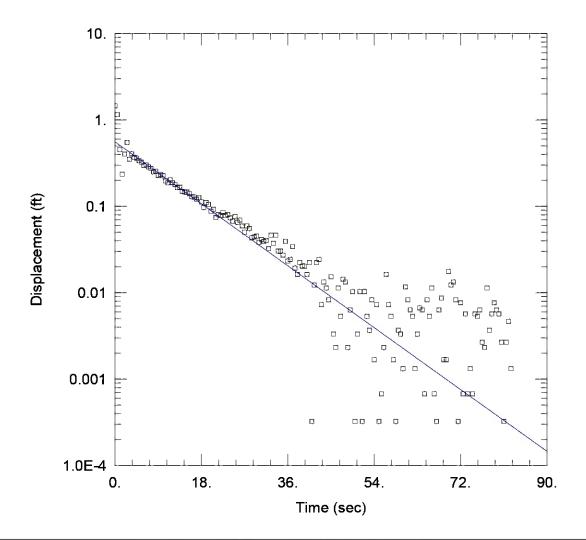
Company: Haley & Aldrich
Client: Santee Cooper
Project: 131539

Location: <u>Cross, SC</u>
Test Well: <u>CCMAP-2</u>

AQUIFER DATA

Saturated Thickness: <u>18.65</u> ft Anisotropy Ratio (Kz/Kr): <u>1.</u>

WELL DATA (CCMAP-2)


Initial Displacement: 1.109 ft Static Water Column Height: 18.65 ft

Total Well Penetration Depth: 18.65 ft Screen Length: 10. ft Casing Radius: 0.08333 ft Well Radius: 0.3438 ft

SOLUTION

Aquifer Model: Unconfined Solution Method: Bouwer-Rice

K = 0.002834 cm/sec y0 = 0.5778 ft

Data Set: C:\Users\nschaffer\Documents\SCC slug working\CCMAP-2 Slug in 2.aqt

Date: 11/08/21 Time: 16:59:53

PROJECT INFORMATION

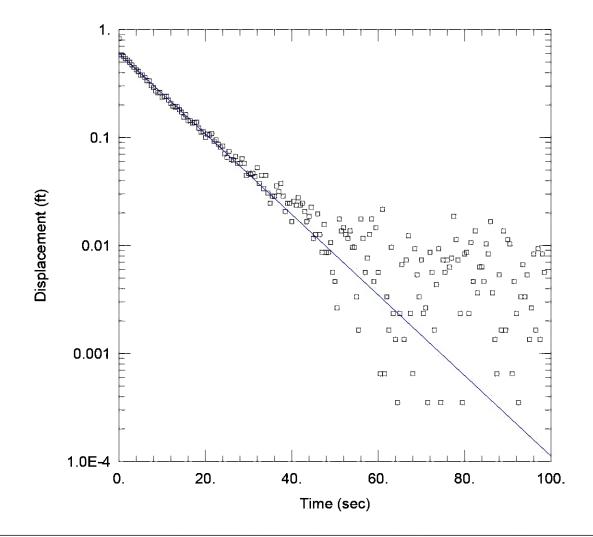
Company: Haley & Aldrich
Client: Santee Cooper
Project: 131539

Location: Cross, SC Test Well: CCMAP-2

AQUIFER DATA

Saturated Thickness: 18.65 ft Anisotropy Ratio (Kz/Kr): 1.

WELL DATA (CCMAP-2)


Initial Displacement: 1.46 ft Static Water Column Height: 18.65 ft

Total Well Penetration Depth: 18.65 ft Screen Length: 10. ft Casing Radius: 0.08333 ft Well Radius: 0.3438 ft

SOLUTION

Aquifer Model: Unconfined Solution Method: Bouwer-Rice

K = 0.002835 cm/sec y0 = 0.5577 ft

Data Set: C:\Users\nschaffer\Documents\SCC slug working\CCMAP-2 Slug out 1.aqt

Date: 11/08/21 Time: 16:55:05

PROJECT INFORMATION

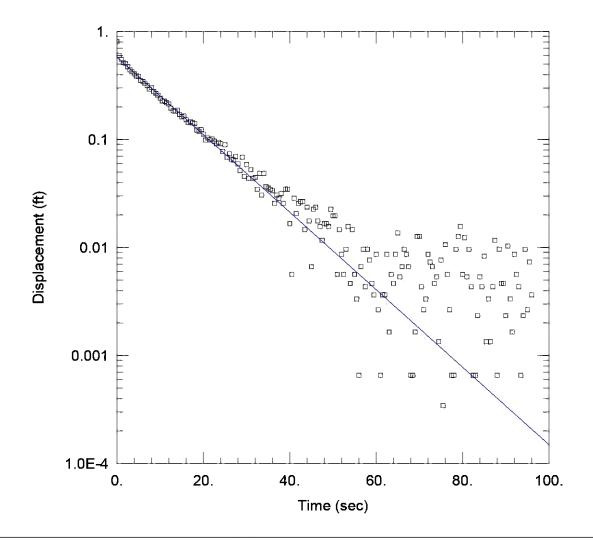
Company: Haley & Aldrich
Client: Santee Cooper
Project: 131539

Location: <u>Cross, SC</u> Test Well: <u>CCMAP-2</u>

AQUIFER DATA

Saturated Thickness: 18.65 ft Anisotropy Ratio (Kz/Kr): 1.

WELL DATA (CCMAP-2)


Initial Displacement: 0.8286 ft Static Water Column Height: 18.65 ft

Total Well Penetration Depth: 18.65 ft Screen Length: 10. ft Casing Radius: 0.08333 ft Well Radius: 0.3438 ft

SOLUTION

Aquifer Model: Unconfined Solution Method: Bouwer-Rice

K = 0.002656 cm/sec y0 = 0.6026 ft

Data Set: C:\Users\nschaffer\Documents\SCC slug working\CCMAP-2 Slug out 2.aqt

Date: 11/08/21 Time: 17:19:40

PROJECT INFORMATION

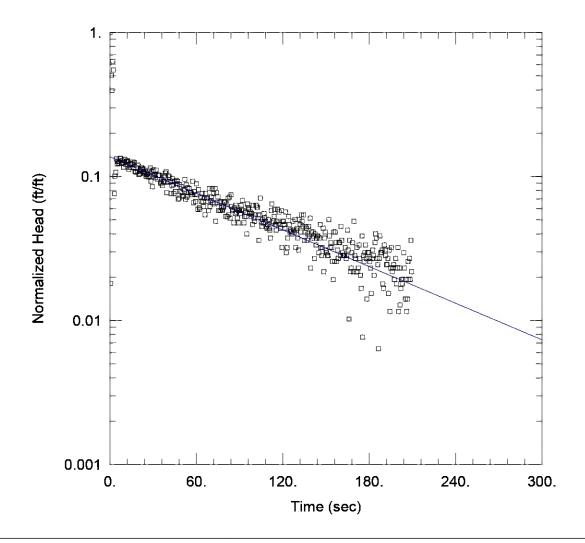
Company: Haley & Aldrich Client: Santee Cooper Project: 131539

Location: Cross, SC Test Well: CCMAP-2

AQUIFER DATA

Saturated Thickness: 18.65 ft Anisotropy Ratio (Kz/Kr): 1.

WELL DATA (CCMAP-2)


Static Water Column Height: 18.65 ft Initial Displacement: 0.8047 ft

Total Well Penetration Depth: 18.65 ft Screen Length: 10. ft Casing Radius: 0.08333 ft Well Radius: 0.3438 ft

SOLUTION

Aquifer Model: Unconfined Solution Method: Bouwer-Rice

K = 0.002556 cm/secy0 = 0.5789 ft

Data Set: C:\Users\nschaffer\Documents\SCC slug working\CGYP-1 Slug in 1.aqt

Date: 11/09/21 Time: 09:06:02

PROJECT INFORMATION

Company: Haley & Aldrich
Client: Santee Cooper

Project: 131539 Location: Cross, SC Test Well: CGYP-1

AQUIFER DATA

Saturated Thickness: 9.32 ft Anisotropy Ratio (Kz/Kr): 1.

WELL DATA (CGYP-1)

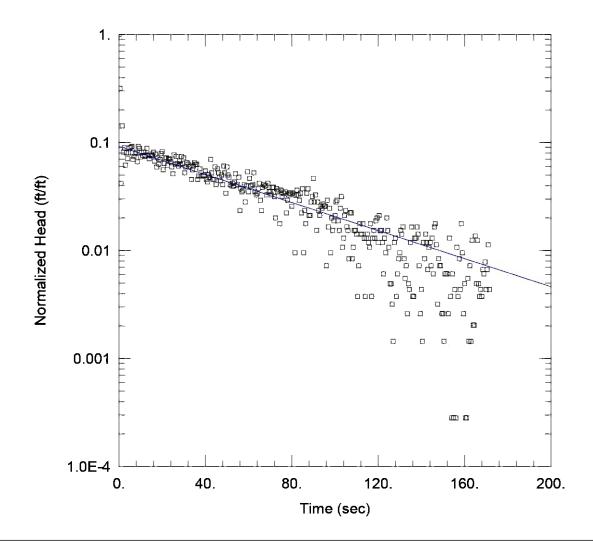
Initial Displacement: 0.7749 ft

Total Well Penetration Depth: 10. ft

Casing Radius: 0.08333 ft

Static Water Column Height: 9.32 ft

Screen Length: 10. ft
Well Radius: 0.3438 ft
Gravel Pack Porosity: 0.2


SOLUTION

Aquifer Model: Unconfined

Solution Method: Bouwer-Rice

K = 0.001177 cm/sec

y0 = 0.1063 ft

Data Set: C:\Users\nschaffer\Documents\SCC slug working\CGYP-1 Slug in 2.aqt

Date: 11/09/21 Time: 12:22:13

PROJECT INFORMATION

Company: <u>Haley & Aldrich</u> Client: <u>Santee Cooper</u> Project: 131539

Location: Cross, SC Test Well: CGYP-1

AQUIFER DATA

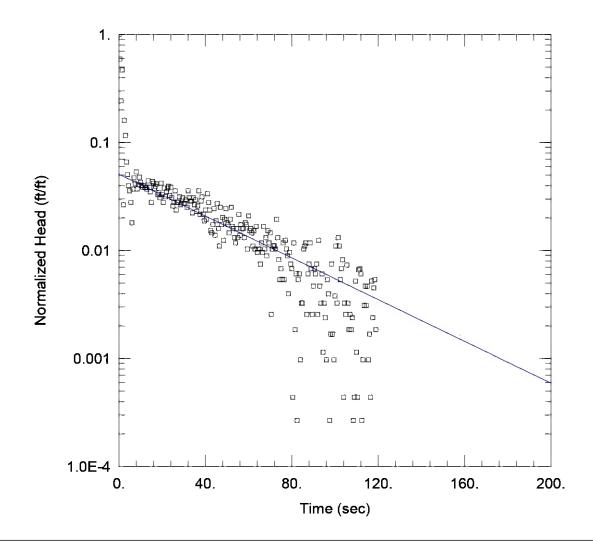
Saturated Thickness: 9.33 ft Anisotropy Ratio (Kz/Kr): 1.

WELL DATA (CGYP-1)

Initial Displacement: 0.8622 ft

Total Well Penetration Depth: 9.32 ft

Casing Radius: 0.08333 ft


Static Water Column Height: 9.32 ft

Screen Length: 9.32 ft Well Radius: 0.3438 ft Gravel Pack Porosity: 0.3

SOLUTION

Aquifer Model: Unconfined Solution Method: Bouwer-Rice

K = 0.00266 cm/sec y0 = 0.07938 ft

Data Set: C:\Users\nschaffer\Documents\SCC slug working\CGYP-1 Slug in 3.aqt

Date: 11/09/21 Time: 12:19:23

PROJECT INFORMATION

Company: Haley & Aldrich
Client: Santee Cooper

Project: 131539 Location: Cross, SC Test Well: CGYP-1

AQUIFER DATA

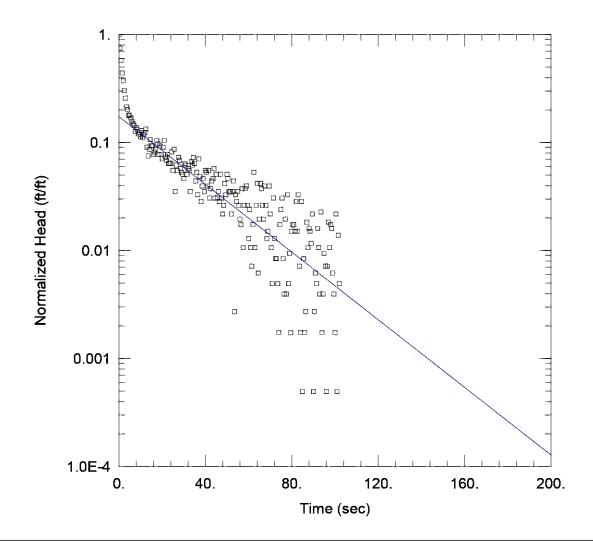
Saturated Thickness: 9.33 ft Anisotropy Ratio (Kz/Kr): 1.

WELL DATA (CGYP-1)

Initial Displacement: 1.416 ft Static Water Column Height: 9.32 ft

Total Well Penetration Depth: 9.32 ft

Casing Radius: 0.08333 ft


Well Radius: 0.3438 ft

Gravel Pack Porosity: 0.2

SOLUTION

Aquifer Model: Unconfined Solution Method: Bouwer-Rice

K = 0.002869 cm/sec y0 = 0.07198 ft

Data Set: C:\Users\nschaffer\Documents\SCC slug working\CGYP-1 Slug out 1.aqt

Date: 11/09/21 Time: 12:21:09

PROJECT INFORMATION

Company: Haley & Aldrich
Client: Santee Cooper
Project: 131539

Location: <u>Cross, SC</u> Test Well: <u>CGYP-1</u>

AQUIFER DATA

Saturated Thickness: 9.33 ft Anisotropy Ratio (Kz/Kr): 1.

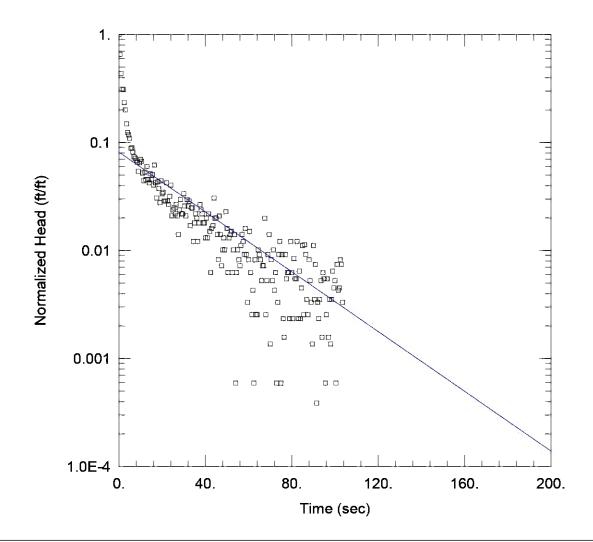
WELL DATA (CGYP-1)

SOLUTION

Initial Displacement: 0.4488 ft

Static Water Column Height: 9.32 ft

Total Well Penetration Depth: 9.32 ft


Screen Length: 9.32 ft Well Radius: 0.3438 ft Gravel Pack Porosity: 0.2

Casing Radius: 0.08333 ft

Aquifer Model: Unconfined

Solution Method: Bouwer-Rice

K = 0.004646 cm/sec y0 = 0.07784 ft

Data Set: C:\Users\nschaffer\Documents\SCC slug working\CGYP-1 Slug out 2.aqt

Date: 11/09/21 Time: 12:23:26

PROJECT INFORMATION

Company: Haley & Aldrich
Client: Santee Cooper

Project: 131539 Location: Cross, SC Test Well: CGYP-1

AQUIFER DATA

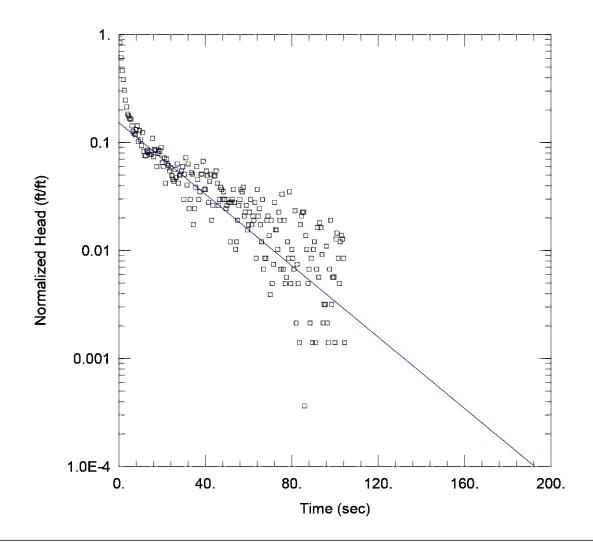
Saturated Thickness: 9.33 ft Anisotropy Ratio (Kz/Kr): 1.

WELL DATA (CGYP-1)

Initial Displacement: 1.022 ft Static Water Column Height: 9.32 ft

Total Well Penetration Depth: 9.32 ft

Casing Radius: 0.08333 ft


Well Radius: 0.3438 ft

Gravel Pack Porosity: 0.2

SOLUTION

Aquifer Model: Unconfined Solution Method: Bouwer-Rice

K = 0.004105 cm/sec y0 = 0.08324 ft

Data Set: C:\Users\nschaffer\Documents\SCC slug working\CGYP-1 Slug out 3.aqt

Date: 11/09/21 Time: 12:27:39

PROJECT INFORMATION

Company: Haley & Aldrich
Client: Santee Cooper
Project: 131539

Location: Cross, SC Test Well: CGYP-1

AQUIFER DATA

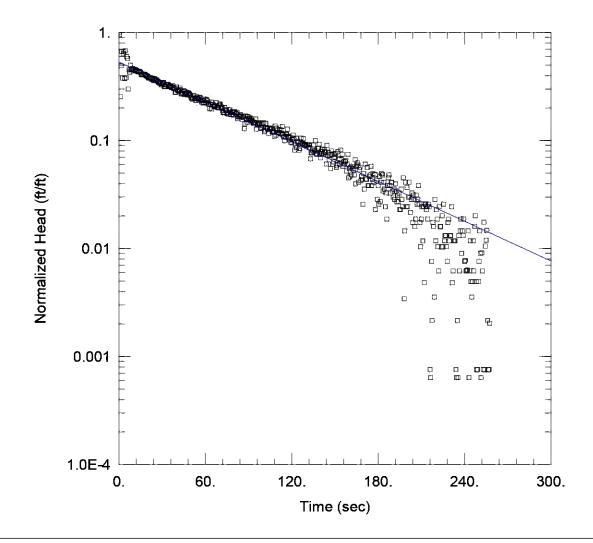
Saturated Thickness: 9.33 ft Anisotropy Ratio (Kz/Kr): 1.

WELL DATA (CGYP-1)

Initial Displacement: 0.5648 ft

Total Well Penetration Depth: 9.32 ft

Casing Radius: 0.08333 ft


Static Water Column Height: 9.32 ft

Screen Length: 9.32 ft Well Radius: 0.3438 ft Gravel Pack Porosity: 0.2

SOLUTION

Aquifer Model: Unconfined Solution Method: Bouwer-Rice

K = 0.004904 cm/sec y0 = 0.08604 ft

Data Set: C:\Users\nschaffer\Documents\SCC slug working\CGYP-2 slug in 1.aqt

Date: 11/09/21 Time: 12:40:30

PROJECT INFORMATION

Company: Haley & Aldrich
Client: Santee Cooper
Project: 131539

Location: Cross, SC Test Well: CGYP-2

AQUIFER DATA

Saturated Thickness: 10.83 ft Anisotropy Ratio (Kz/Kr): 1.

WELL DATA (CGYP-2)

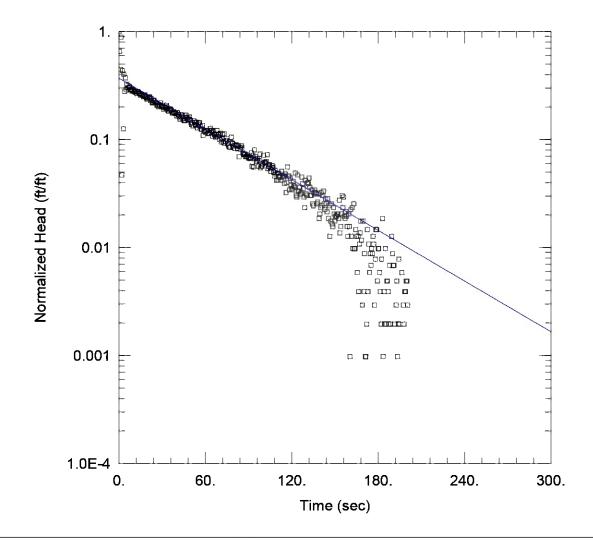
Initial Displacement: 0.7165 ft

Static Water Column Height: 10.83 ft

Total Well Penetration Depth: 10.83 ft

Screen Length: 10. ft Well Radius: 0.3438 ft

Casing Radius: 0.08333 ft


SOLUTION

Aquifer Model: Unconfined

Solution Method: Bouwer-Rice

K = 0.0003882 cm/sec

y0 = 0.382 ft

Data Set: C:\Users\nschaffer\Documents\SCC slug working\CGYP-2 slug in 2.aqt

Date: 11/09/21 Time: 12:52:59

PROJECT INFORMATION

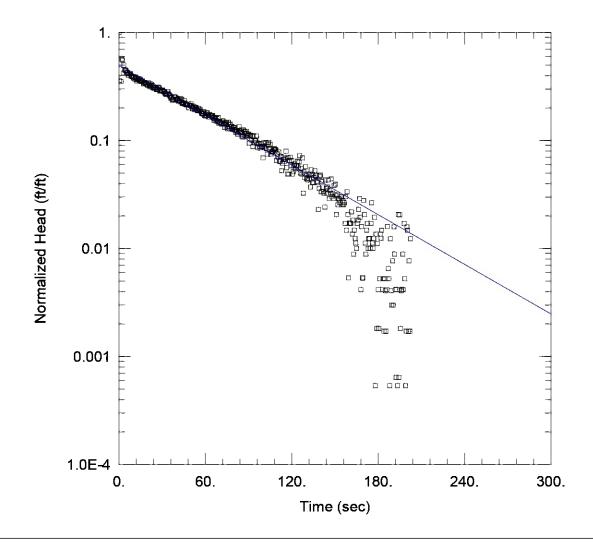
Company: Haley & Aldrich
Client: Santee Cooper
Project: 131539

Location: Cross, SC Test Well: CGYP-2

AQUIFER DATA

Saturated Thickness: 10.83 ft Anisotropy Ratio (Kz/Kr): 1.

WELL DATA (CGYP-2)


Initial Displacement: 1.023 ft Static Water Column Height: 10.83 ft

Total Well Penetration Depth: 10.83 ft Screen Length: 10. ft Casing Radius: 0.08333 ft Well Radius: 0.3438 ft

SOLUTION

Aquifer Model: Unconfined Solution Method: Bouwer-Rice

K = 0.0004948 cm/sec y0 = 0.3788 ft

Data Set: C:\Users\nschaffer\Documents\SCC slug working\CGYP-2 slug out 1.aqt

Date: 11/09/21 Time: 12:48:20

PROJECT INFORMATION

Company: Haley & Aldrich
Client: Santee Cooper
Project: 131539

Location: Cross, SC Test Well: CGYP-2

AQUIFER DATA

Saturated Thickness: 10.83 ft Anisotropy Ratio (Kz/Kr): 1.

WELL DATA (CGYP-2)

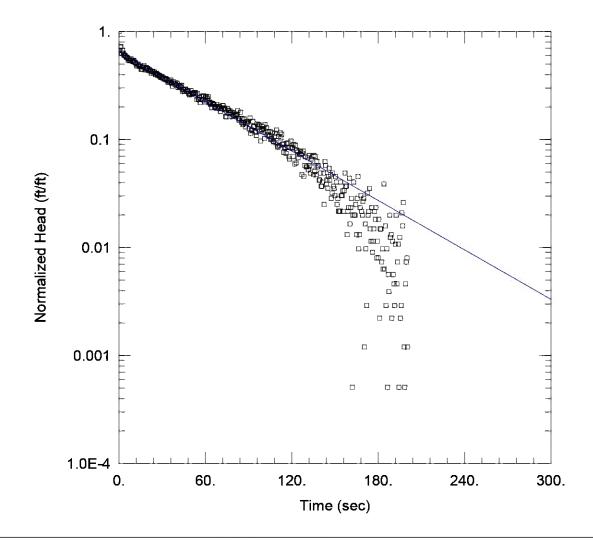
Initial Displacement: 0.8485 ft

Static Water Column Height: 10.83 ft

Total Well Penetration Depth: 10.83 ft

Screen Length: 10. ft Well Radius: 0.3438 ft

Casing Radius: 0.08333 ft


SOLUTION

Aquifer Model: Unconfined

Solution Method: Bouwer-Rice

K = 0.000484 cm/sec

y0 = 0.4172 ft

Data Set: C:\Users\nschaffer\Documents\SCC slug working\CGYP-2 slug out 2.aqt

Date: 11/09/21 Time: 13:16:15

PROJECT INFORMATION

Company: <u>Haley & Aldrich</u> Client: <u>Santee Cooper</u> Project: 131539

Location: Cross, SC Test Well: CGYP-2

AQUIFER DATA

Saturated Thickness: 10.83 ft Anisotropy Ratio (Kz/Kr): 1.

WELL DATA (CGYP-2)

Initial Displacement: 0.5857 ft

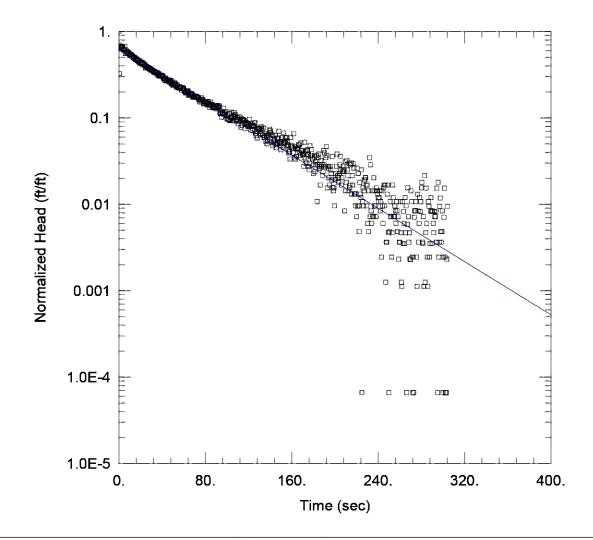
Static Water Column Height: 10.83 ft

Total Well Penetration Depth: 10.83 ft

Screen Length: 10. ft

Casing Radius: 0.08333 ft

Well Radius: 0.3438 ft


SOLUTION

Aquifer Model: Unconfined

Solution Method: Bouwer-Rice

K = 0.0004822 cm/sec

y0 = 0.3778 ft

Data Set: C:\Users\nschaffer\Documents\SCC slug working\CGYP-3 slug in 1.aqt

Date: 11/09/21 Time: 16:18:17

PROJECT INFORMATION

Company: Haley & Aldrich
Client: Santee Cooper
Project: 131539

Location: Cross, SC Test Well: CGYP-3

AQUIFER DATA

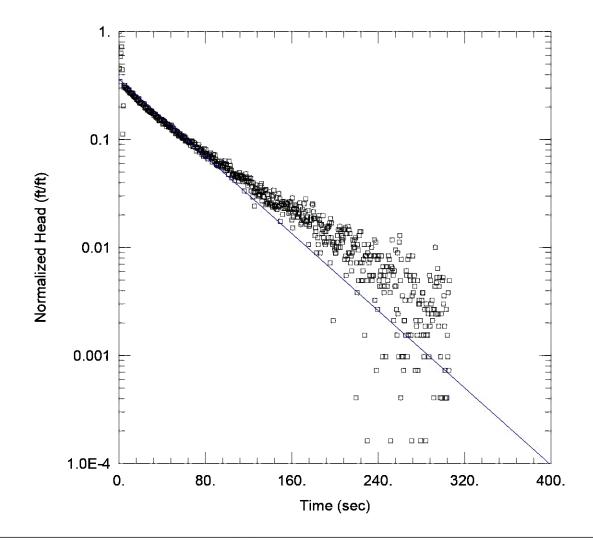
Saturated Thickness: 13.71 ft Anisotropy Ratio (Kz/Kr): 1.

WELL DATA (CGYP-3)

Initial Displacement: 0.8391 ft

Total Well Penetration Depth: 13.71 ft Screen L

Casing Radius: 0.08333 ft


Static Water Column Height: 13.71 ft

Screen Length: 10. ft Well Radius: 0.3438 ft

SOLUTION

Aquifer Model: Unconfined Solution Method: Bouwer-Rice

K = 0.0005141 cm/sec y0 = 0.5324 ft

Data Set: C:\Users\nschaffer\Documents\SCC slug working\CGYP-3 slug in 2.aqt

Date: 11/09/21 Time: 16:36:50

PROJECT INFORMATION

Company: Haley & Aldrich Client: Santee Cooper Project: 131539

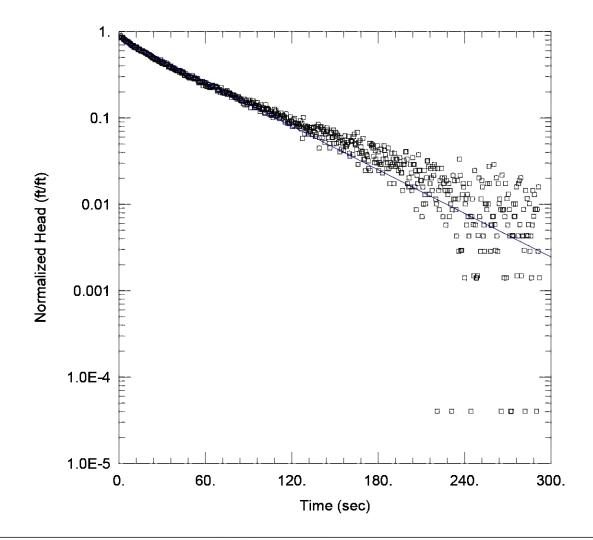
Location: Cross, SC Test Well: CGYP-3

AQUIFER DATA

Saturated Thickness: 13.71 ft Anisotropy Ratio (Kz/Kr): 1.

WELL DATA (CGYP-3)

Static Water Column Height: 13.71 ft Initial Displacement: 1.76 ft


Total Well Penetration Depth: 13.71 ft Screen Length: 10. ft Casing Radius: 0.08333 ft

Well Radius: 0.3438 ft

SOLUTION

Aquifer Model: Unconfined Solution Method: Bouwer-Rice

K = 0.0005961 cm/secy0 = 0.6374 ft

Data Set: C:\Users\nschaffer\Documents\SCC slug working\CGYP-3 slug out 1.aqt

Date: 11/09/21 Time: 16:32:26

PROJECT INFORMATION

Company: Haley & Aldrich Client: Santee Cooper Project: 131539

Location: Cross, SC Test Well: CGYP-3

AQUIFER DATA

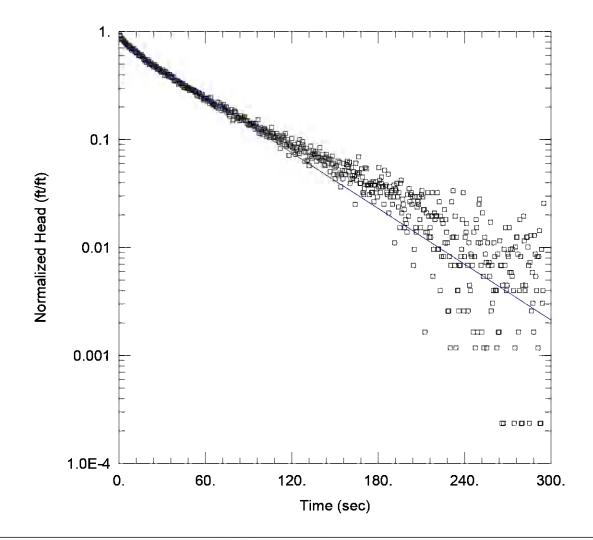
Saturated Thickness: 13.71 ft Anisotropy Ratio (Kz/Kr): 1.

WELL DATA (CGYP-3)

Initial Displacement: 0.69 ft

Total Well Penetration Depth: 13.71 ft

Casing Radius: 0.08333 ft


Static Water Column Height: 13.71 ft

Screen Length: 10. ft Well Radius: 0.3438 ft

SOLUTION

Aquifer Model: Unconfined Solution Method: Bouwer-Rice

K = 0.0005617 cm/sec y0 = 0.5682 ft

Data Set: C:\Users\nschaffer\Documents\SCC slug working\CGYP-3 slug out 2.aqt

Date: 11/09/21 Time: 16:45:48

PROJECT INFORMATION

Company: Haley & Aldrich Client: Santee Cooper Project: 131539

Location: Cross, SC Test Well: CGYP-3

AQUIFER DATA

Saturated Thickness: 13.71 ft Anisotropy Ratio (Kz/Kr): 1.

WELL DATA (CGYP-3)

Initial Displacement: 0.7078 ft

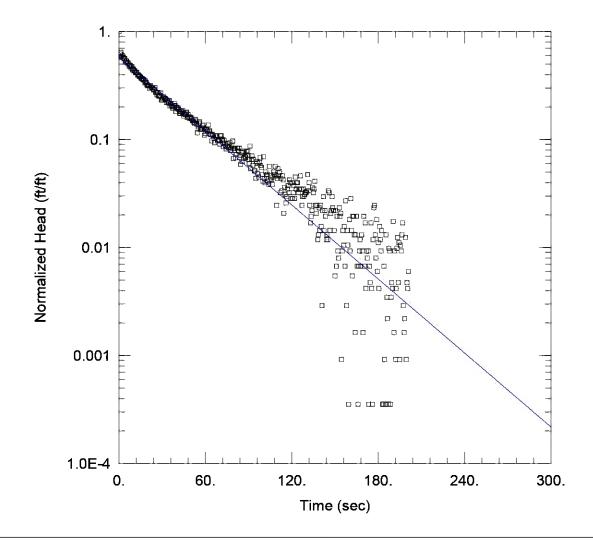
Static Water Column Height: 13.71 ft

Total Well Penetration Depth: 13.71 ft

Screen Length: 10. ft

Casing Radius: 0.08333 ft

Well Radius: 0.3438 ft


SOLUTION

Aquifer Model: Unconfined

Solution Method: Bouwer-Rice

K = 0.0005746 cm/sec

y0 = 0.578 ft

Data Set: C:\Users\nschaffer\Documents\SCC slug working\CGYP4 Slug Out 1.aqt

Date: 11/08/21 Time: 10:52:34

PROJECT INFORMATION

Company: Haley & Aldrich Client: Santee Cooper

Project: 131539 Location: Cross, SC Test Well: CGYP-4

AQUIFER DATA

Saturated Thickness: 14.7 ft Anisotropy Ratio (Kz/Kr): 1.

WELL DATA (CGYP-4)

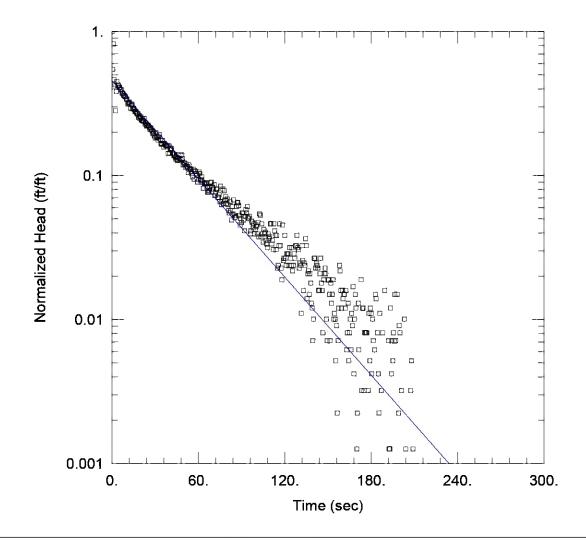
Initial Displacement: 0.7843 ft

Static Water Column Height: 14.7 ft

Total Well Penetration Depth: 14.7 ft

Screen Length: 10. ft Well Radius: 0.3438 ft

Casing Radius: 0.08333 ft


SOLUTION

Aquifer Model: Unconfined

Solution Method: Bouwer-Rice

K = 0.0007741 cm/sec

y0 = 0.4567 ft

Data Set: C:\Users\nschaffer\Documents\SCC slug working\CGYP4 Slug In 1.aqt

Date: 11/08/21 Time: 10:52:03

PROJECT INFORMATION

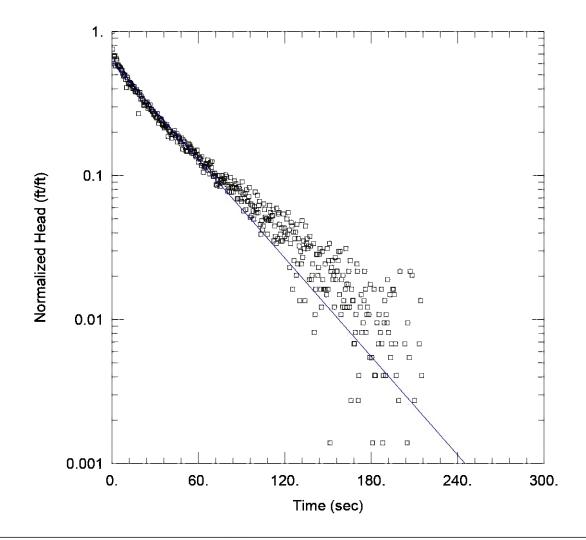
Company: Haley & Aldrich Client: Santee Cooper Project: 131539

Location: Cross, SC Test Well: CGYP-4

AQUIFER DATA

Saturated Thickness: 14.7 ft Anisotropy Ratio (Kz/Kr): 1.

WELL DATA (CGYP-4)


Initial Displacement: 1.023 ft Static Water Column Height: 14.7 ft

Total Well Penetration Depth: 14.7 ft Screen Length: 10. ft Casing Radius: 0.08333 ft Well Radius: 0.3438 ft

SOLUTION

Aquifer Model: Unconfined Solution Method: Bouwer-Rice

K = 0.0007695 cm/sec y0 = 0.4651 ft

Data Set: C:\Users\nschaffer\Documents\SCC slug working\CGYP4 Slug In 2.aqt

Date: 11/08/21 Time: 10:53:20

PROJECT INFORMATION

Company: Haley & Aldrich Client: Santee Cooper Project: 131539

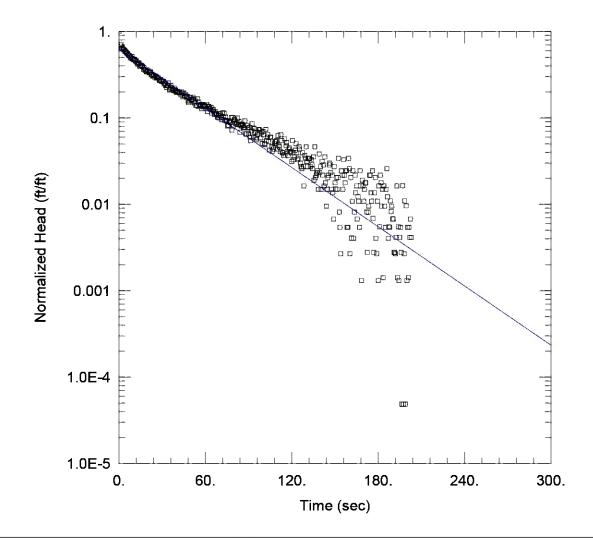
Location: Cross, SC Test Well: CGYP-4

AQUIFER DATA

Saturated Thickness: 14.7 ft Anisotropy Ratio (Kz/Kr): 1.

WELL DATA (CGYP-4)

Initial Displacement: 0.741 ft Static Water Column Height: 14.7 ft


Total Well Penetration Depth: 14.7 ft Screen Length: 10. ft

Casing Radius: 0.08333 ft Well Radius: 0.3438 ft

SOLUTION

Aquifer Model: Unconfined Solution Method: Bouwer-Rice

K = 0.0007724 cm/sec y0 = 0.4623 ft

Data Set: C:\Users\nschaffer\Documents\SCC slug working\CGYP4 Slug Out 2.aqt

Date: 11/08/21 Time: 10:53:38

PROJECT INFORMATION

Company: Haley & Aldrich Client: Santee Cooper

Project: 131539 Location: Cross, SC Test Well: CGYP-4

AQUIFER DATA

Saturated Thickness: 14.7 ft Anisotropy Ratio (Kz/Kr): 1.

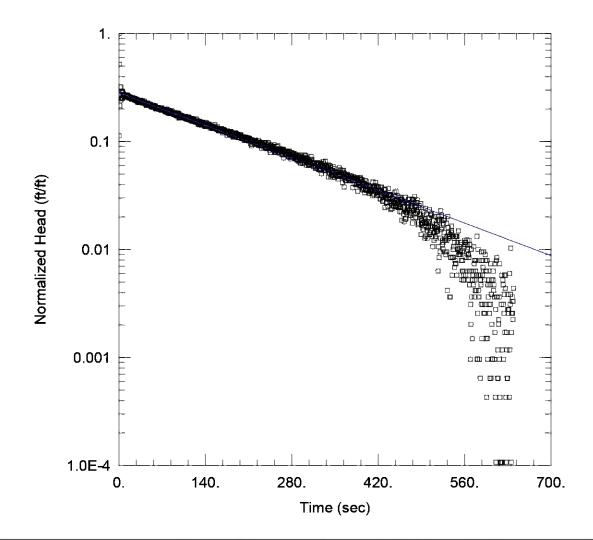
WELL DATA (CGYP-4)

Initial Displacement: 0.732 ft

Total Well Penetration Depth: 14.7 ft

Casing Radius: 0.08333 ft

Static Water Column Height: 14.7 ft


Screen Length: 10. ft Well Radius: 0.3438 ft

SOLUTION

Aquifer Model: Unconfined

Solution Method: Bouwer-Rice

K = 0.0007743 cm/secy0 = 0.4594 ft

Data Set: C:\Users\nschaffer\Documents\SCC slug working\CGYP-5 slug in 1.aqt

Date: 11/09/21 Time: 13:37:30

PROJECT INFORMATION

Company: Haley & Aldrich
Client: Santee Cooper
Project: 131539

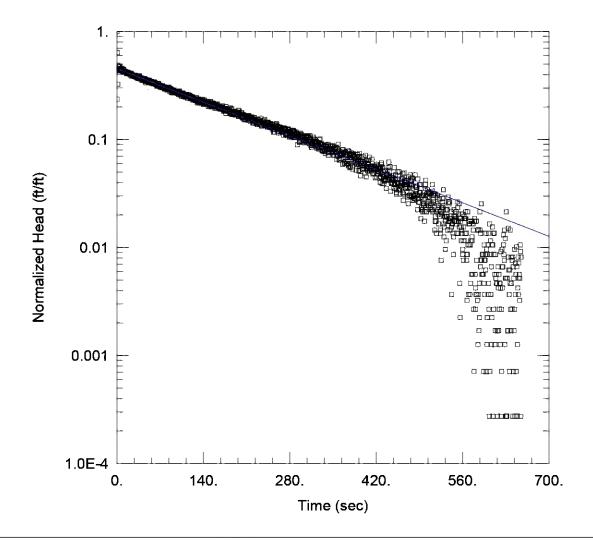
Location: Cross, SC Test Well: CGYP-5

AQUIFER DATA

Saturated Thickness: 13.76 ft Anisotropy Ratio (Kz/Kr): 1.

WELL DATA (CGYP-5)

Initial Displacement: 1.868 ft Static Water Column Height: 13.76 ft


Total Well Penetration Depth: 13.76 ft Screen Length: 10. ft

Casing Radius: 0.08333 ft Well Radius: 0.3438 ft

SOLUTION

Aquifer Model: Unconfined Solution Method: Bouwer-Rice

K = 0.0001439 cm/sec y0 = 0.5285 ft

Data Set: C:\Users\nschaffer\Documents\SCC slug working\CGYP-5 slug in 2.aqt

Date: 11/09/21 Time: 14:07:54

PROJECT INFORMATION

Company: <u>Haley & Aldrich</u> Client: <u>Santee Cooper</u> Project: 131539

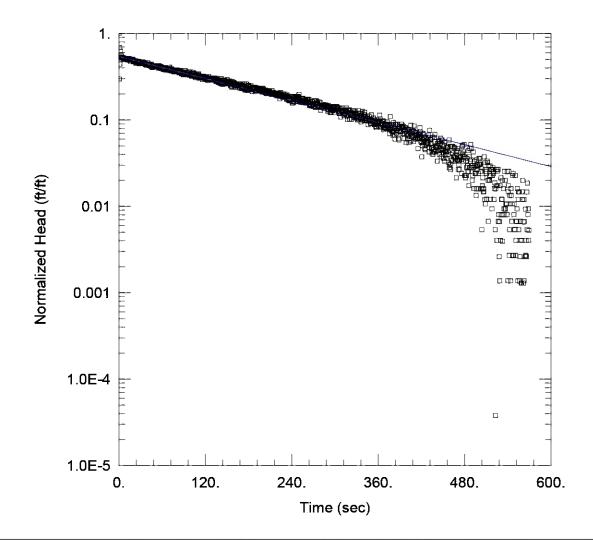
Location: Cross, SC Test Well: CGYP-5

AQUIFER DATA

Saturated Thickness: 13.76 ft Anisotropy Ratio (Kz/Kr): 1.

WELL DATA (CGYP-5)

Initial Displacement: 1.013 ft Static Water Column Height: 13.76 ft


Total Well Penetration Depth: 13.76 ft Screen Length: 10. ft

Casing Radius: 0.08333 ft Well Radius: 0.3438 ft

SOLUTION

Aquifer Model: Unconfined Solution Method: Bouwer-Rice

K = 0.0001481 cm/sec y0 = 0.4592 ft

Data Set: C:\Users\nschaffer\Documents\SCC slug working\CGYP-5 slug out 1.aqt

Date: 11/09/21 Time: 14:01:56

PROJECT INFORMATION

Company: Haley & Aldrich Client: Santee Cooper Project: 131539

Location: Cross, SC Test Well: CGYP-5

AQUIFER DATA

Saturated Thickness: 13.76 ft Anisotropy Ratio (Kz/Kr): 1.

WELL DATA (CGYP-5)

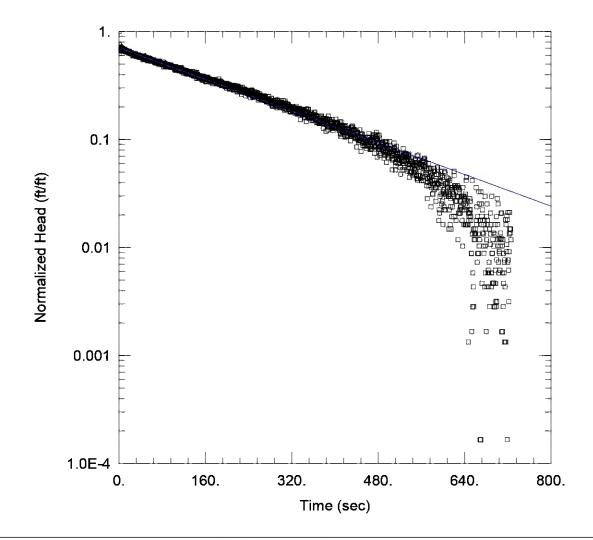
Initial Displacement: 0.75 ft

Total Well Penetration Depth: 13.76 ft

Casing Radius: 0.08333 ft

Static Water Column Height: 13.76 ft

Screen Length: 10. ft Well Radius: 0.3438 ft


SOLUTION

Aquifer Model: Unconfined

Solution Method: Bouwer-Rice

K = 0.0001419 cm/sec

y0 = 0.4073 ft

Data Set: C:\Users\nschaffer\Documents\SCC slug working\CGYP-5 slug out 2.aqt

Date: 11/09/21 Time: 14:52:44

PROJECT INFORMATION

Company: <u>Haley & Aldrich</u> Client: <u>Santee Cooper</u> Project: 131539

Location: Cross, SC Test Well: CGYP-5

AQUIFER DATA

Saturated Thickness: 13.76 ft Anisotropy Ratio (Kz/Kr): 1.

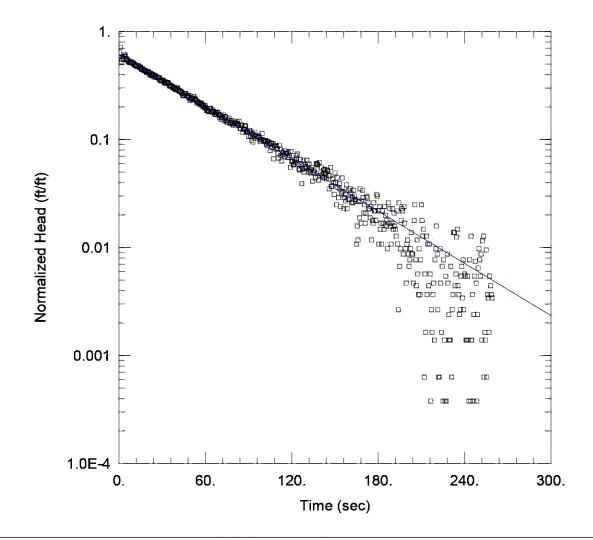
WELL DATA (CGYP-5)

Initial Displacement: 0.6669 ft

Static Water Column Height: 13.76 ft

Total Well Penetration Depth: 13.76 ft

Screen Length: 10. ft Well Radius: 0.3438 ft


Casing Radius: 0.08333 ft

SOLUTION

Aquifer Model: Unconfined

Solution Method: Bouwer-Rice

K = 0.0001225 cm/sec y0 = 0.4725 ft

Data Set: C:\Users\nschaffer\Documents\SCC slug working\CGYP-6 slug in 1.aqt

Date: 11/09/21 Time: 15:07:12

PROJECT INFORMATION

Company: Haley & Aldrich
Client: Santee Cooper
Project: 131539

Location: Cross, SC Test Well: CGYP-6

AQUIFER DATA

Saturated Thickness: 13.37 ft Anisotropy Ratio (Kz/Kr): 1.

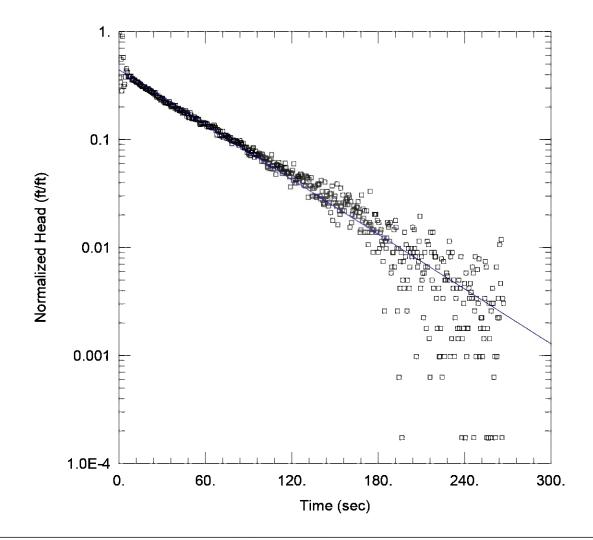
WELL DATA (CGYP-6)

Initial Displacement: 0.9886 ft

Static Water Column Height: 13.37 ft

Total Well Penetration Depth: 13.37 ft

Screen Length: 10. ft Well Radius: 0.3438 ft


Casing Radius: 0.08333 ft

SOLUTION

Aquifer Model: Unconfined

Solution Method: Bouwer-Rice

K = 0.0005347 cm/sec y0 = 0.6054 ft

Data Set: C:\Users\nschaffer\Documents\SCC slug working\CGYP-6 slug in 2.aqt

Date: 11/09/21 Time: 15:16:47

PROJECT INFORMATION

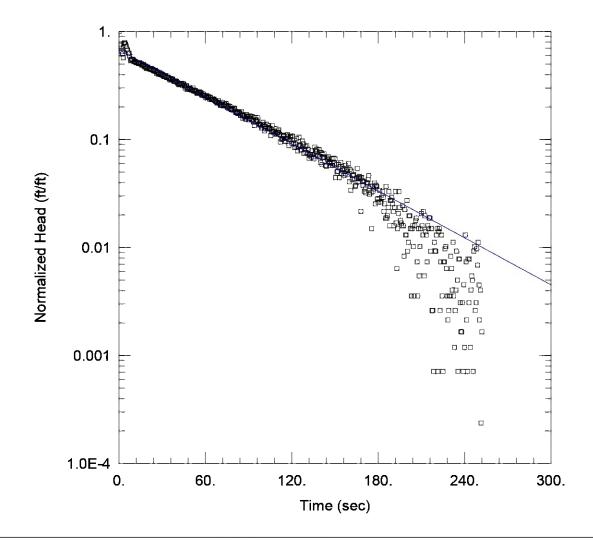
Company: Haley & Aldrich Client: Santee Cooper Project: 131539

Location: Cross, SC Test Well: CGYP-6

AQUIFER DATA

Saturated Thickness: 13.37 ft Anisotropy Ratio (Kz/Kr): 1.

WELL DATA (CGYP-6)


Initial Displacement: 1.244 ft Static Water Column Height: 13.37 ft

Total Well Penetration Depth: 13.37 ft Screen Length: 10. ft Casing Radius: 0.08333 ft Well Radius: 0.3438 ft

SOLUTION

Aquifer Model: Unconfined Solution Method: Bouwer-Rice

K = 0.0005616 cm/sec y0 = 0.5522 ft

Data Set: C:\Users\nschaffer\Documents\SCC slug working\CGYP-6 slug out 1.aqt

Date: 11/09/21 Time: 15:13:09

PROJECT INFORMATION

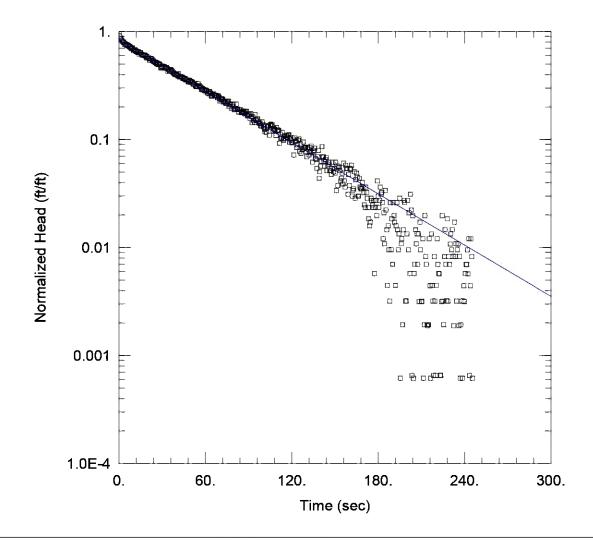
Company: <u>Haley & Aldrich</u> Client: <u>Santee Cooper</u> Project: 131539

Location: Cross, SC Test Well: CGYP-6

AQUIFER DATA

Saturated Thickness: 13.37 ft Anisotropy Ratio (Kz/Kr): 1.

WELL DATA (CGYP-6)


Initial Displacement: 1.053 ft Static Water Column Height: 13.37 ft

Total Well Penetration Depth: 13.37 ft Screen Length: 10. ft Casing Radius: 0.08333 ft Well Radius: 0.3438 ft

SOLUTION

Aquifer Model: Unconfined Solution Method: Bouwer-Rice

K = 0.0004815 cm/sec y0 = 0.7143 ft

Data Set: C:\Users\nschaffer\Documents\SCC slug working\CGYP-6 slug out 2.aqt

Date: 11/09/21 Time: 15:21:42

PROJECT INFORMATION

Company: <u>Haley & Aldrich</u> Client: <u>Santee Cooper</u> Project: 131539

Location: Cross, SC Test Well: CGYP-6

AQUIFER DATA

Saturated Thickness: 13.37 ft Anisotropy Ratio (Kz/Kr): 1.

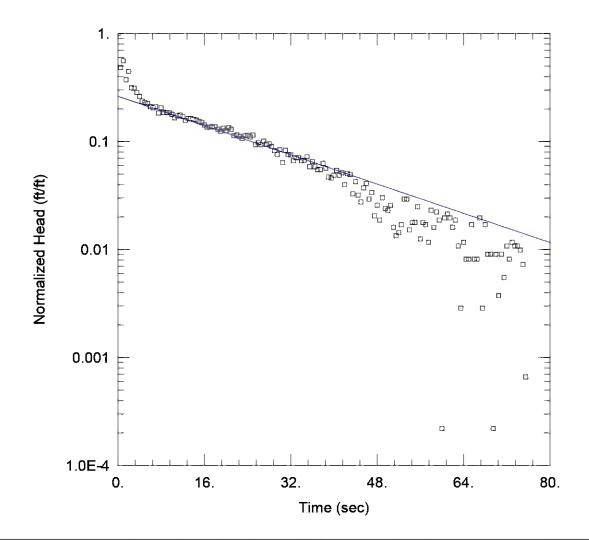
WELL DATA (CGYP-6)

Initial Displacement: 0.7865 ft

Static Water Column Height: 13.37 ft

Total Well Penetration Depth: 13.37 ft

Screen Length: 10. ft Well Radius: 0.3438 ft


Casing Radius: 0.08333 ft

SOLUTION

Aquifer Model: Unconfined

Solution Method: Bouwer-Rice

K = 0.0005252 cm/sec y0 = 0.6574 ft

Data Set: C:\Users\nschaffer\Documents\SCC slug working\PM-1 slug in 1.aqt

Date: 11/10/21 Time: 15:48:50

PROJECT INFORMATION

Company: Haley & Aldrich
Client: Santee Cooper

Project: 131539 Location: Cross, SC Test Well: PM-1

AQUIFER DATA

Saturated Thickness: 17.1 ft Anisotropy Ratio (Kz/Kr): 1.

WELL DATA (PM-1)

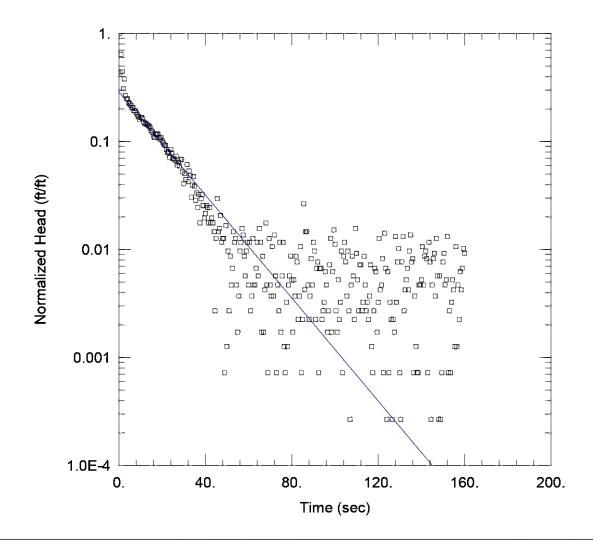
Initial Displacement: 1.134 ft

Total Well Penetration Depth: 17.1 ft

Casing Radius: 0.1042 ft

Static Water Column Height: 17.1 ft

Screen Length: 17.1 ft
Well Radius: 0.25 ft
Gravel Pack Porosity: 0.2


SOLUTION

Aquifer Model: Unconfined

Solution Method: Bouwer-Rice

K = 0.002385 cm/sec

y0 = 0.2976 ft

Data Set: C:\Users\nschaffer\Documents\SCC slug working\PM-1 slug in 2.aqt

Date: 11/10/21 Time: 15:49:56

PROJECT INFORMATION

Company: Haley & Aldrich
Client: Santee Cooper

Project: 131539 Location: Cross, SC Test Well: PM-1

AQUIFER DATA

Saturated Thickness: 17.1 ft Anisotropy Ratio (Kz/Kr): 1.

WELL DATA (PM-1)

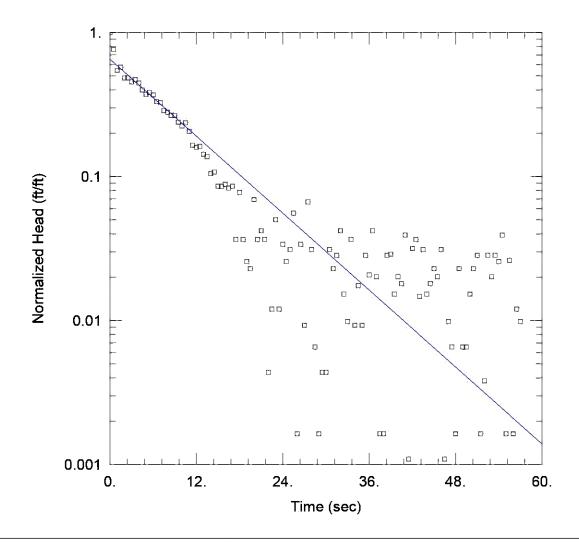
Initial Displacement: 1.006 ft

Total Well Penetration Depth: 17.1 ft

Casing Radius: 0.1042 ft

Static Water Column Height: 17.1 ft

Screen Length: 17.1 ft
Well Radius: 0.25 ft
Gravel Pack Porosity: 0.2


SOLUTION

Aquifer Model: Unconfined

Solution Method: Bouwer-Rice

K = 0.003361 cm/sec

y0 = 0.2893 ft

Data Set: C:\Users\nschaffer\Documents\SCC slug working\PM-1 slug in 3.aqt

Date: 11/10/21 Time: 15:50:38

PROJECT INFORMATION

Company: <u>Haley & Aldrich</u> Client: <u>Santee Cooper</u> Project: 131539

Location: Cross, SC Test Well: PM-1

AQUIFER DATA

Saturated Thickness: 17.1 ft Anisotropy Ratio (Kz/Kr): 1.

WELL DATA (PM-1)

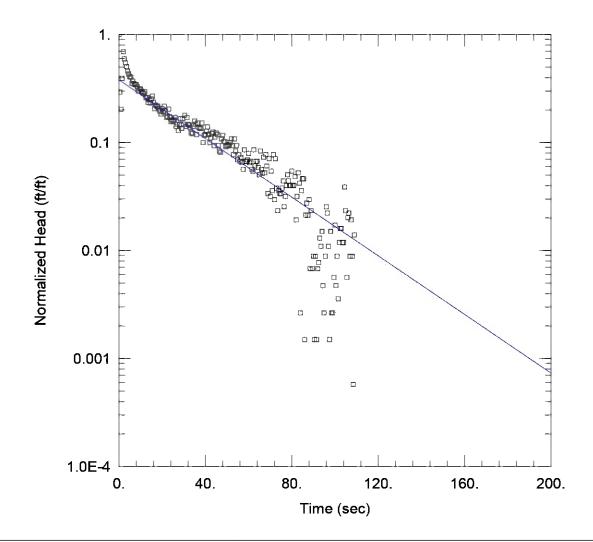
Initial Displacement: 0.3664 ft

Total Well Penetration Depth: 17.1 ft

Casing Radius: 0.1042 ft

Static Water Column Height: 17.1 ft

Screen Length: 17.1 ft
Well Radius: 0.25 ft
Gravel Pack Porosity: 0.2


SOLUTION

Aquifer Model: Unconfined

Solution Method: Bouwer-Rice

K = 0.006277 cm/sec

y0 = 0.2392 ft

Data Set: C:\Users\nschaffer\Documents\SCC slug working\PM-1 slug out 1.aqt

Date: 11/10/21 Time: 15:51:32

PROJECT INFORMATION

Company: Haley & Aldrich Client: Santee Cooper

Project: 131539 Location: Cross, SC Test Well: PM-1

AQUIFER DATA

Saturated Thickness: 17.1 ft Anisotropy Ratio (Kz/Kr): 1.

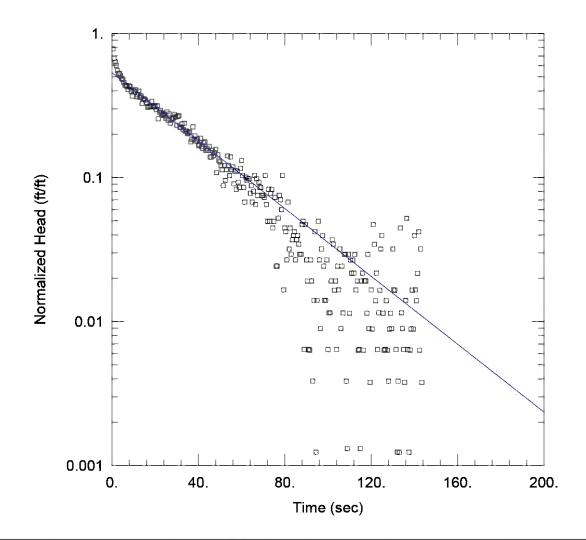
WELL DATA (PM-1)

Initial Displacement: 0.4823 ft

Total Well Penetration Depth: 17.1 ft

Casing Radius: 0.1042 ft

Static Water Column Height: 17.1 ft


Screen Length: 17.1 ft
Well Radius: 0.25 ft
Gravel Pack Porosity: 0.2

SOLUTION

Aquifer Model: Unconfined

Solution Method: Bouwer-Rice

K = 0.001913 cm/sec y0 = 0.1835 ft

Data Set: C:\Users\nschaffer\Documents\SCC slug working\PM-1 slug out 2.aqt

Date: 11/10/21 Time: 15:52:36

PROJECT INFORMATION

Company: Haley & Aldrich Client: Santee Cooper

Project: 131539 Location: Cross, SC Test Well: PM-1

AQUIFER DATA

Saturated Thickness: 17.1 ft Anisotropy Ratio (Kz/Kr): 1.

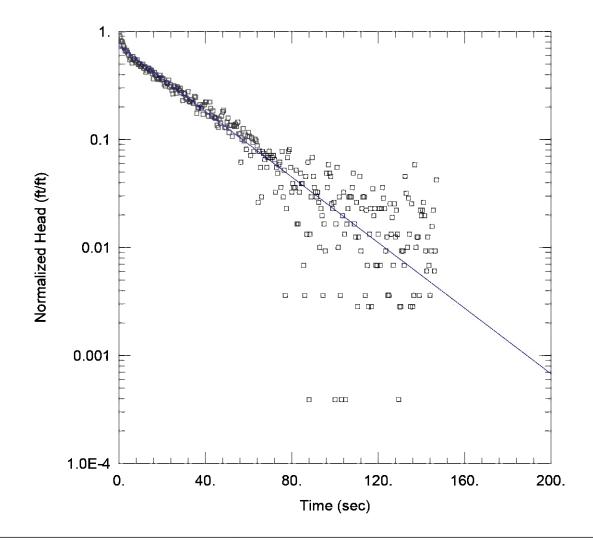
WELL DATA (PM-1)

Initial Displacement: 0.3925 ft

Total Well Penetration Depth: 17.1 ft

Casing Radius: 0.1042 ft

Static Water Column Height: 17.1 ft


Screen Length: 17.1 ft
Well Radius: 0.25 ft
Gravel Pack Porosity: 0.2

SOLUTION

Aquifer Model: Unconfined

Solution Method: Bouwer-Rice

K = 0.00166 cm/sec y0 = 0.2096 ft

Data Set: C:\Users\nschaffer\Documents\SCC slug working\PM-1 slug out 3.aqt

Date: 11/10/21 Time: 15:55:51

PROJECT INFORMATION

Company: Haley & Aldrich Client: Santee Cooper

Project: 131539 Location: Cross, SC Test Well: PM-1

AQUIFER DATA

Saturated Thickness: 17.1 ft Anisotropy Ratio (Kz/Kr): 1.

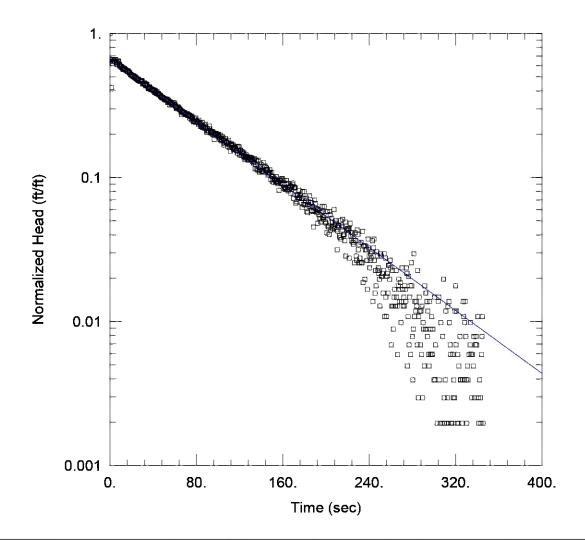
WELL DATA (PM-1)

Initial Displacement: 0.3101 ft

Total Well Penetration Depth: 17.1 ft

Casing Radius: 0.1042 ft

Static Water Column Height: 17.1 ft


Screen Length: 17.1 ft
Well Radius: 0.25 ft
Gravel Pack Porosity: 0.2

SOLUTION

Aquifer Model: Unconfined

Solution Method: Bouwer-Rice

K = 0.00214 cm/sec y0 = 0.2286 ft

Data Set: C:\Users\nschaffer\Documents\SCC slug working\POZ-4 slug in 1.aqt

Date: 11/10/21 Time: 15:43:54

PROJECT INFORMATION

Company: <u>Haley & Aldrich</u> Client: <u>Santee Cooper</u> Project: 131539

Location: Cross, SC Test Well: POZ-4

AQUIFER DATA

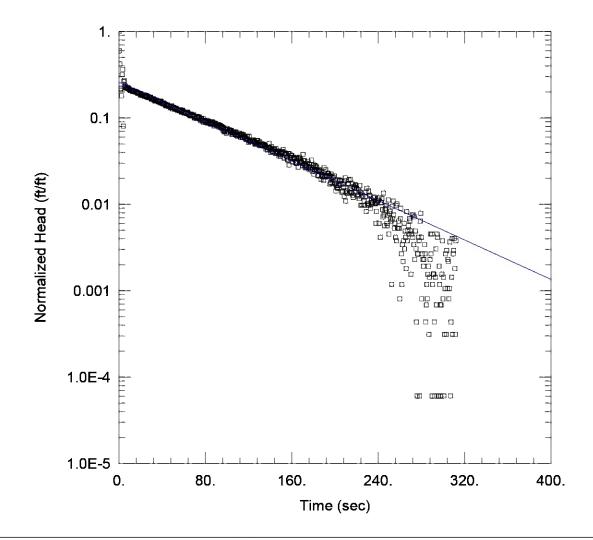
Saturated Thickness: 8.66 ft Anisotropy Ratio (Kz/Kr): 1.

WELL DATA (POZ-4)

Initial Displacement: 1.016 ft

Static Water Column Height: 8.66 ft

Total Well Penetration Depth: 8.66 ft


Screen Length: 5. ft Well Radius: 0.3438 ft

Casing Radius: 0.08333 ft

SOLUTION

Aquifer Model: Unconfined Solution Method: Bouwer-Rice

K = 0.0006012 cm/sec y0 = 0.6789 ft

Data Set: C:\Users\nschaffer\Documents\SCC slug working\POZ-4 slug in 2.aqt

Date: 11/10/21 Time: 16:13:56

PROJECT INFORMATION

Company: Haley & Aldrich Client: Santee Cooper Project: 131539

Location: Cross, SC Test Well: POZ-4

AQUIFER DATA

Saturated Thickness: 8.66 ft Anisotropy Ratio (Kz/Kr): 1.

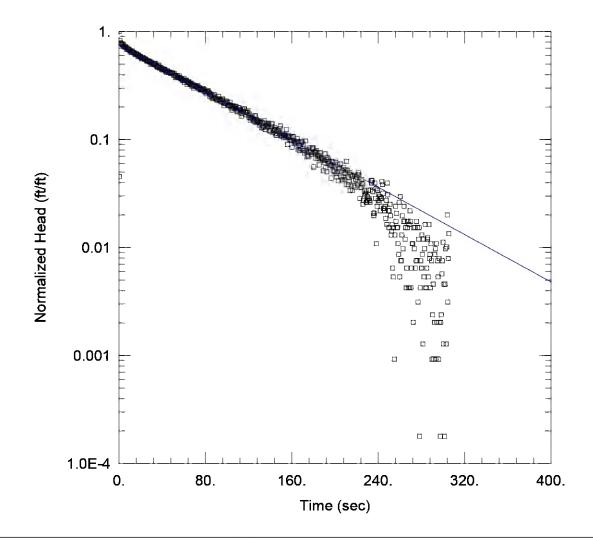
WELL DATA (POZ-4)

Initial Displacement: 2.677 ft

Static Water Column Height: 8.66 ft

Total Well Penetration Depth: 8.66 ft

Screen Length: 5. ft Well Radius: 0.3438 ft


Casing Radius: 0.08333 ft

SOLUTION

Aquifer Model: Unconfined

Solution Method: Bouwer-Rice

K = 0.000628 cm/secy0 = 0.6943 ft

Data Set: C:\Users\nschaffer\Documents\SCC slug working\POZ-4 slug out 1.aqt

Date: 11/10/21 Time: 16:01:28

PROJECT INFORMATION

Company: Haley & Aldrich Client: Santee Cooper Project: 131539

Location: Cross, SC Test Well: POZ-4

AQUIFER DATA

Saturated Thickness: 8.66 ft Anisotropy Ratio (Kz/Kr): 1.

WELL DATA (POZ-4)

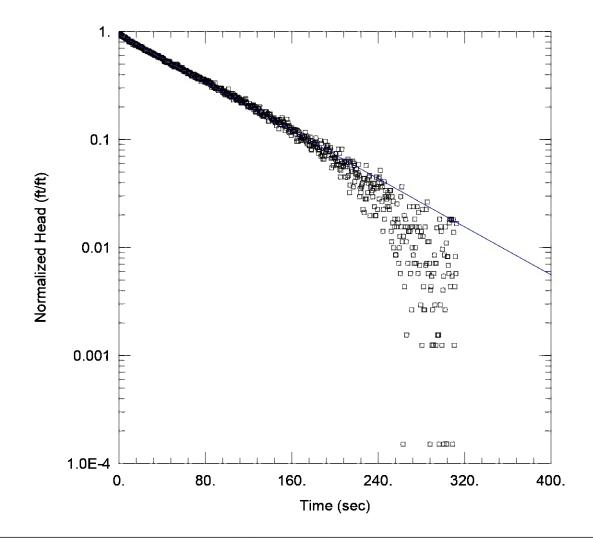
Initial Displacement: 0.9062 ft

Static Water Column Height: 8.66 ft

Total Well Penetration Depth: 8.66 ft

Screen Length: 5. ft Well Radius: 0.3438 ft

Casing Radius: 0.08333 ft


SOLUTION

Aquifer Model: Unconfined

Solution Method: Bouwer-Rice

K = 0.0006036 cm/sec

y0 = 0.6804 ft

Data Set: C:\Users\nschaffer\Documents\SCC slug working\POZ-4 slug out 2.aqt

Date: 11/10/21 Time: 16:32:06

PROJECT INFORMATION

Company: Haley & Aldrich Client: Santee Cooper Project: 131539

Location: Cross, SC Test Well: POZ-4

AQUIFER DATA

Saturated Thickness: 8.66 ft Anisotropy Ratio (Kz/Kr): 1.

WELL DATA (POZ-4)

Initial Displacement: 0.7151 ft

Total Well Penetration Depth: 8.66 ft

Casing Radius: 0.08333 ft

Static Water Column Height: 8.66 ft

Screen Length: 5. ft Well Radius: 0.3438 ft

SOLUTION

Aquifer Model: Unconfined

Solution Method: Bouwer-Rice

K = 0.0006124 cm/sec

y0 = 0.6719 ft