2024 ANNUAL GROUNDWATER MONITORING AND CORRECTIVE ACTION REPORT CLASS 2 LANDFILL CROSS GENERATING STATION

by Santee Cooper Moncks Corner, South Carolina

January 31, 2025

Table of Contents								
vater Monitoring Report Summary	1							
Applicability	2							
a) and (c)	2							
e) – Summary	2							
e Groundwater Monitoring Program	2							
Completed	3							
ncountered	5							
Resolve Problems	5							
Activities for Upcoming Year	5							
e) – Information	5							
7.90(e)(1)	5							
7.90(e)(2)	6							
7.90(e)(3)	6							
7.90(e)(4)	6							
7.90(e)(5)	7							
	Applicability a) and (c) b) – Summary e Groundwater Monitoring Program Completed accountered desolve Problems Activities for Upcoming Year b) – Information 7.90(e)(1) 7.90(e)(2) 7.90(e)(3) 7.90(e)(4)							

Table No.	Title
1	Summary of Analytical Results
2	2024 Synoptic Water Levels for Groundwater Monitoring Wells
Figure No.	Title
1	Location of Class 2 Landfill Groundwater Monitoring Wells for CCR Compliance
2	Potentiometric Map January 2024
3	Potentiometric Map April 2024
4	Potentiometric Map June 2024
5	Potentiometric Man November 2024

Appendix A – Statistical Analyses

Appendix B – Laboratory Analytical Results

Appendix C – Well Construction Records

1. Annual Groundwater Monitoring Report Summary

The South Carolina Public Service Authority (Santee Cooper) has prepared this 2024 Annual Groundwater Monitoring Corrective Action Report for the Class 2 Landfill at the Cross Generating Station (CGS). This 2024 Annual Report was prepared to comply with the United States Environmental Protection Agency (EPA) Hazardous and Solid Waste Management System; Disposal of Coal Combustion Residuals (CCR) from Electric Utilities, 40 Code of Federal Regulations (CFR) Part 257, Subpart D dated April 17, 2015 (CCR Rule), specifically subsection § 257.90(e)(1) through (6).

The CGS Class 2 Landfill ceased operations by December 31, 2015, and closure by capping was completed by August 9, 2016, per a plan approved by the South Carolina Department of Environmental Services (SCDES), formerly the South Carolina Department of Health and Environmental Control (SCDHEC). The Class 2 Landfill was certified closed by SCDES on February 28, 2017, and is maintained in post-closure care pursuant to SCDES regulatory requirements. In addition to the federal CCR Rule groundwater monitoring program discussed throughout, an SCDES approved groundwater monitoring program is also being implemented to comply with the SCDES Post Closure Permit #08337-1601.

In accordance with § 257.90(e)(6), an overview of the current status of groundwater monitoring and corrective action programs for the CCR unit is provided below:

At the start of the current annual reporting period (January 1, 2024), the CGS Class 2 Landfill continued to operate under a corrective action monitoring program in accordance with § 257.98. Statistically significant levels (SSLs) of cobalt in monitoring well POZ-4 were identified for the January and June 2024 sampling events.

Previously, statistically significant increases (SSIs) of boron, calcium, chloride, sulfate, and TDS were identified in POZ-4, POZ-6 and POZ-7 during the detection monitoring events in 2017. This triggered an assessment monitoring program which was initiated on January 15, 2018. The statistical analysis of the downgradient wells for the Class 2 Landfill identified an SSL of the Appendix IV constituent cobalt in well POZ-4. As a result, an assessment of corrective measures was initiated on January 14, 2019, for this unit. The assessment of corrective measures report was completed on June 12, 2019, and a public meeting was held on December 3, 2019, to discuss five remedial alternatives per § 257.96(e). A remedy was selected pursuant to § 257.97 and the remedy selection report was completed July 27, 2020. The selected remedy was capping of the landfill later followed with water management enhancements and then followed by monitored natural attenuations (MNA). The water management enhancements were implemented in 2020 and MNA is on-going.

At the end of the current annual reporting period (December 31, 2024), the CGS Class 2 Landfill remained in the corrective action groundwater monitoring program. Monitoring of the selected remedy will continue in 2024.

To report on activities conducted during the prior calendar year and document progress complying with the CCR Rule, the specific requirements listed in § 257.90(e)(1) through (5) are provided in the next section in bold/italic type followed by a short narrative stating how that specific requirement was met.

2. 40 CFR § 257.90 Applicability

2.1 40 CFR § 257.90(a) and (c)

All CCR landfills, CCR surface impoundments, and lateral expansions of CCR units are subject to the groundwater monitoring and corrective action requirements under § 257.90 through § 257.98.

Once a groundwater monitoring system and groundwater monitoring program has been established at the CCR unit as required by this subpart, the owner or operator must conduct groundwater monitoring and, if necessary, corrective action through the active life and post-closure care period of the CCR unit.

The capped and closed CGS Class 2 Landfill continues to be subject to the groundwater monitoring and corrective action requirements set forth by the EPA in 40 CFR § 257.90 through § 257.98. This document satisfies the requirement under § 257.90(e) which requires the CCR landfill Owner/Operator to prepare an Annual Report during the corrective action MNA and post-closure care period of the closed CGS Class 2 Landfill.

2.2 40 CFR § 257.90(e) - SUMMARY

Annual groundwater monitoring and corrective action report. For existing CCR landfills and existing CCR surface impoundments, no later than January 31, 2018, and annually thereafter, the owner or operator must prepare an annual groundwater monitoring and corrective action report. [...] For the preceding calendar year, the annual report must document the status of the groundwater monitoring and corrective action program for the CCR unit, summarize key actions completed, describe any problems encountered, discuss actions to resolve the problems, and project key activities for the upcoming year. For purposes of this section, the owner or operator has prepared the annual report when the report is placed in the facility's operating record as required by § 257.105(h)(1).

This Annual Report documents the activities completed in 2024 for the closed CGS Class 2 Landfill as required by the subject regulations. Groundwater sampling and analysis was conducted per the requirements of § 257.93, and the status of the groundwater monitoring program, as set forth in § 257.98, is provided in this report.

2.2.1 Status of the Groundwater Monitoring and Corrective Action Program

In 2024, the corrective action groundwater monitoring program continued in accordance with § 257.98. An SSL of cobalt in POZ-4 continues to be the only exceedance of an Appendix IV groundwater protection standard (GWPS) downgradient of the Class 2 Landfill. It is worth noting that while the concentrations vary between sampling events, recent concentrations detected are lower than the historical range of concentrations for cobalt in POZ-4. This observation indicates the selected groundwater remedy is performing as anticipated.

During the 2019 Assessment of Corrective Measures and Nature & Extent evaluations, analytical results from the groundwater monitoring well installed in the uppermost aquifer at the downgradient property boundary (monitoring well CCMLF-1) showed intermittent results above the GWPS for cobalt. While offsite migration had not been confirmed, Santee Cooper notified SCDES and nearby residents and/or landowners that the GWPS for cobalt in a property boundary well had been exceeded per § 257.105(h)(8). To evaluate potential for off-site migration and impacts to off-site drinking water supplies, samples were collected from both the single potable well that supplies drinking water for the surrounding closest

residences and from multiple residential taps and analyzed for cobalt. Santee Cooper has continued to monitor this property boundary well in both the uppermost shallow and deeper aquifers and the same nearby residential potable well for cobalt through 2024. To date, any detections of cobalt (as laboratories have been able to decrease their detection limits) have been significantly below the groundwater protection standard in the nearby residents' drinking water. In 2024, cobalt concentrations at all property boundary monitoring wells, including the uppermost aquifer, were below the GWPS. Communication with SCDES and the residents has been ongoing.

The remedy selection process, in accordance with § 257.97, began in 2020 following the public meeting held on December 3, 2019, to discuss the remedial alternatives. In accordance with § 257.97(a), a semi-annual progress report was posted to the publicly available website on January 23, 2020, detailing a summary of actions completed to date in selecting and designing the remedy as well as activities planned for the remainder of 2020. The remedy selection report was finalized on July 27, 2020, and posted to the publicly available website. The selected remedial alternative is landfill closure (cap in place) with enhanced water management improvements followed by monitored natural attenuation (MNA).

The landfill was closed by installing a low-permeability geomembrane liner and clay cap and cover along with surface water controls for drainage and erosion protection. The properly engineered and installed geomembrane cap virtually eliminates infiltration of water into the CCR material within the landfill. The enhanced water management improvements refer to capturing water present in the landfill at the time of closure, thereby removing as much of the source material potentially being released from the CCR unit as is feasible. The landfill closure and water management improvements were completed in August 2016 and January 2020, respectively, under the oversight of SCDES. The remaining component of the selected remedy is MNA, which is a viable remedial strategy recognized by state and federal regulators that is applicable to inorganic compounds in groundwater. MNA occurs due to naturally occurring processes within the aquifer following source control. Therefore, MNA, in combination with source control, should continue to reduce concentrations of cobalt in groundwater downgradient of the Class 2 Landfill, thereby attaining the GWPS in the future.

Further development of the corrective action groundwater monitoring program for MNA was completed in 2023 by reevaluating the existing Groundwater Monitoring Plan (GMP). This evaluation concluded that the assessment monitoring protocol currently being implemented is sufficient to meet the needs of corrective action groundwater monitoring program, which is consistent with § 257.98(a)(1)(i) and thus will continue to be implemented during the regularly scheduled semi-annual groundwater monitoring events.

2.2.2 Key Actions Completed

The following key actions were completed in 2024:

- Prepared 2023 Annual Report including:
 - The Annual Report was placed in the facility's operating record pursuant to § 257.105(h)(1);
 - Pursuant to § 257.106(h)(1), the notification was sent to the relevant State Director within 30 days of the Annual Report being placed in the facility's operating record [§ 257.106(d)];
 - Pursuant to § 257.107(h)(1), the Annual Report was posted to the CCR Website within 30 days of the Annual Report being placed in the facility's operating record [§ 257.107(d)].

- Collected and analyzed two rounds of groundwater monitoring (January and June) in accordance with § 257.95(b) and § 257.95(d)(1) and recorded the concentrations in the facility's operating record as required by § 257.95(d)(1) (which is also consistent with § 257.98 (a)(1)). Groundwater monitoring results are summarized in Table 1 and laboratory analytical results are provided in Appendix B.
- Completed statistical evaluations associated with the January 2024 and June 2024 sampling
 events to determine statistically significant exceedance of GWPS for Appendix IV constituents in
 accordance with § 257.93(h)(2). Statistical results are summarized in Appendix A.
- In late 2022, it was decided to add existing state landfill compliance well POZ-3 to the CCR compliance groundwater monitoring network. Baseline sampling commenced to gather the eight independent samples required to complete statistical evaluations. POZ-3 will be added to the compliance groundwater monitoring network and statistical evaluations after collecting the first semi-annual sample of 2025.
- Continued to characterize the nature and extent of Appendix IV constituents identified at statistically significant levels above the GWPS in accordance with § 257.95(g)(1).
- Continued to implement the semiannual Corrective Action Groundwater Monitoring Program consistent with § 257.98(a)(1):
 - Continued monitoring boundary wells for cobalt and continued to collect drinking water samples from a nearby residential potable water well. Analytical results for these wells continue to show cobalt below the groundwater protection standard.
 - Continued monitoring surface water in the Bulltown Ditch for cobalt on a semi-annual basis. Analytical results continue to show cobalt is below the groundwater protection standard.
 - During the first semi-annual sampling event, groundwater samples were analyzed for geochemical parameters, including cations and anions, which will be used for the longterm performance monitoring of the attenuation mechanisms contributing to the cobalt concentration reductions in the groundwater.
- Piezometers CGSPZ-4 and CGSPZ-5 were abandoned and replaced by a South Carolina certified well driller in January 2024. The piezometers were moved to be outside of the easement of an infrastructure construction project. The records are included in Appendix C.
- Continued with improved potentiometric surface characterization of the uppermost aquifer given changing site conditions by completing sitewide synoptic water level measurements on an approximately quarterly basis to further evaluate temporal changes.
- Continued an evaluation of the aquifer properties to support the selected remedy of monitored natural attenuation of cobalt. In November 2024, soil samples were obtained from six (6) Direct Push Technology (DPT) borings for a series of laboratory analyses. The report for this project will not be completed until 2025.
- Continued evaluation of turbidity, oxidation-reduction potential, and well screen submersion trends sitewide in wells and to identify wells to be redeveloped by a certified well driller to remove buildup of sediment fines and suspected biofouling on the well screens. A submersible camera was also used where applicable to investigate wells with unsubmerged screens prior to redevelopment. Plans to conduct redevelopment will be finalized in 2025 and reported in the 2025 Annual Report.
- The CGS Sampling and Analysis Plan was updated in August 2024 to make general revisions and improvements to reflect changes in site conditions and procedures. It will continue to be revised as necessary.

2.2.3 Problems Encountered

No problems were encountered.

2.2.4 Actions to Resolve Problems

No actions were required.

2.2.5 Project Key Activities for Upcoming Year

Key activities to be completed in 2025 include the following:

- Prepare the 2024 annual report; place it in the record as required by § 257.105(h)(1); notify the Relevant State Director [§ 257.106(d)]; and post to the facility's publicly available CCR website [§ 257.107(d)].
- Conduct semi-annual groundwater monitoring consistent with § 257.98(a)(1) and § 257.95(d)(1) and in accordance with the CGS GMP.
- POZ-3 will be added to the compliance groundwater monitoring network in conjunction with the January 2025 sampling event.
- Update the statistical upper tolerance limits for background wells PM-1 and CBW-1 after the second semiannual sampling event of 2025 in accordance with the Unified Guidance.
- Conduct statistical analyses of semi-annual groundwater monitoring analytical results of the CCR compliance wells to determine if SSLs of the detected Appendix IV constituents are present.
- Use the existing groundwater fate and transport model as needed to compare cobalt concentrations in groundwater monitoring wells POZ-4 and POZ-6 against modeled values post-closure. Re-calibrate or enhance the model as needed to support MNA studies.
- Continue the evaluation of the aquifer properties to support the selected remedy of monitored natural attenuation of cobalt.
- Conduct additional nature and extent activities, including possible installation of additional monitoring well(s):
 - Continue monitoring the property boundary wells in the uppermost and deeper aquifers on a semi-annual basis.
 - o Continue annual monitoring of the nearby residential potable water well.
 - Continue surface water monitoring of the Bulltown Ditch.
- Continue improving the potentiometric surface characterization of the uppermost aquifer given changing site conditions by expanding the number of locations for collecting surface water elevations from unlined ponds.

2.3 40 CFR § 257.90(e) - INFORMATION

At a minimum, the annual groundwater monitoring and corrective action report must contain the following information, to the extent available:

2.3.1 40 CFR § 257.90(e)(1)

A map, aerial image, or diagram showing the CCR unit and all background (or upgradient) and downgradient monitoring wells, to include the well identification numbers, that are part of the groundwater monitoring program for the CCR unit;

As required by § 257.90(e)(1), a map showing the locations of the CCR unit and associated upgradient and downgradient monitoring wells for the Class 2 Landfill is presented as Figure 1.

2.3.2 40 CFR § 257.90(e)(2)

Identification of any monitoring wells that were installed or decommissioned during the preceding year, along with a narrative description of why those actions were taken;

Although no groundwater monitoring wells were installed or decommissioned in 2024, Piezometers CGSPZ-4 and CGSPZ-5 were abandoned and replaced by a South Carolina certified well driller in January 2024. These two (2) piezometers were located inside an easement of an infrastructure construction project, so they were relocated outside the easement for safety and accessibility. The records for these wells are included in Appendix C.

2.3.3 40 CFR § 257.90(e)(3)

In addition to all the monitoring data obtained under § 257.90 through § 257.98, a summary including the number of groundwater samples that were collected for analysis for each background and downgradient well, the dates the samples were collected, and whether the sample was required by the detection monitoring or assessment monitoring programs;

In accordance with § 257.95(b) and § 257.95(d)(1), at least two independent samples from each background and downgradient monitoring well were collected and analyzed. A summary table including the sample names, dates of sample collection, reason for sample collection, and monitoring data obtained for the groundwater monitoring program for the Class 2 Landfill is presented in Table 1 of this report. In addition, as required by § 257.95(d)(3), Table 1 includes the GWPS established under § 257.95(d)(2). Laboratory analytical data reports, along with field sampling forms, are provided in Appendix B to this report.

2.3.4 40 CFR § 257.90(e)(4)

A narrative discussion of any transition between monitoring programs (e.g., the date and circumstances for transitioning from detection monitoring to assessment monitoring in addition to identifying the constituent(s) detected at a statistically significant increase over background levels); and

The groundwater monitoring program remained in corrective action monitoring for the duration of 2024. A summary of the history of the evolution of the monitoring programs is provided in this section.

As required by § 257.93(h) a statistical analysis of the Appendix III constituents was completed on January 15, 2018. Baseline analytical data collected from background monitoring wells CBW-1 and PM-1 were combined to develop Upper Tolerance Limits (UTLs). The UTLs for each Appendix III constituent were compared to the analytical results for the downgradient monitoring wells POZ-4, POZ-6, and POZ-7. Constituents with analytical results exceeding the UTLs were identified as SSIs over background for the respective Appendix III constituent. Per § 257.94(h) an assessment monitoring program was initiated on February 14, 2018. As required by § 257.93(h)(2), the subsequent statistical evaluation of the detected Appendix IV constituents identified SSLs, specifically cobalt, above GWPS. Therefore, per §257.95(g)(3), an assessment of corrective measures and nature and extent evaluation was initiated to evaluate the horizontal and vertical nature and extent of the SSLs downgradient of the CGS Class 2 Landfill.

The statistical analysis of Appendix IV constituents was conducted within 90 days of completing each semiannual sampling and analysis event in 2024 and it was determined that an SSL of cobalt continues to be present downgradient of the Class 2 Landfill in POZ-4 only. There is no maximum contaminant level (MCL) for cobalt and elevated levels of cobalt were not identified in the background wells; therefore, the GWPS for cobalt is set at the regional screening level (RSL). The sample concentrations from the downgradient wells for each of the detected Appendix IV constituents from the monitoring events of 2024 were compared to their respective background UTLs and GWPS (Appendix A). A sample concentration greater than the GWPS is considered to represent an SSL. Based on previous compliance sampling events and statistical evaluations, interwell comparisons were utilized for all downgradient wells and constituents. During sampling events in January and June 2024, an SSL above GWPS was identified at the Class 2 Landfill in monitoring well POZ-4 for cobalt, consistent with previous results. All other wells meet the GWPS, including POZ-6, which did not meet the GWPS prior to implementation of the selected remedy. These results generally reflect the predicted cobalt groundwater fate and transport modeling results. Even though there is variability in the cobalt data, the statistical trends are all stable for the three downgradient wells, POZ-4, POZ-6, and POZ-7. The ongoing performance of the selected remedy in achieving GWPS will continue to be evaluated during subsequent semiannual monitoring events. Of note, Appendix III constituents in multiple wells continue to have analytical results that are elevated above the background wells. In addition, this Class 2 Landfill has been identified as the alternate source of elevated Appendix III constituents for the adjacent Class 3 Landfill.

Further development of the corrective action groundwater monitoring program was completed by reevaluating the existing CGS GMP in 2023. It was determined that the current assessment monitoring plan being implemented is sufficient to meet the post-closure monitoring needs to continue to evaluate the performance of the selected remedy and thus will continue to be implemented during the regularly scheduled semi-annual groundwater monitoring events. This is consistent with § 257.98(a)(1)(i).

2.3.5 40 CFR § 257.90(e)(5)

Other information required to be included in the annual report as specified in § 257.90 through § 257.98.

This Annual Report documents activities conducted to comply with Sections § 257.90 through § 257.98 of the CCR Rule.

Additionally, an overview of the performance of the remedy implementation to date is provided. The landfill closure and water management improvements were completed in August 2016 and January 2020, respectively, under the oversight of SCDES. The enhanced water management improvements refer to capturing water present in the landfill at the time of closure, therefore removing as much of the source material potentially being released from the CCR unit as is feasible. To account for any water draining through the toe drains, an improvement consisting of installing a seepage collection system, including discharge piping and lift stations, was implemented. The water captured from the toe drains is fully isolated from stormwater and is redirected to the operational Class 3 Landfill Leachate Collection Pond before further treatment in the station's permitted wastewater treatment facility prior to discharge under NPDES permit #SC0037401.

Since the completion of the water management improvements, the uppermost shallow aquifer boundary well (CCMLF-1) has shown marked decreases in cobalt concentrations from 17.8 μ g/L to 1.3 μ g/L. The sampling results from both 2024 sampling events remained below the GWPS of 6 μ g/L. The adjacent deeper aquifer boundary well (CCMLF-1D) has consistently been below the GWPS since monitoring of the

property boundary began with the initial nature & extent activities in 2019. Additionally, the two other nature & extent wells that define lateral extent, CCMLF-2 and CAP-13, continue to demonstrate cobalt below the GWPS. These wells will continue to be monitored closely in 2025. The decline in cobalt concentrations observed in the shallow aquifer boundary well CCLMF-1 indicates that the cobalt plume is contracting, and that natural attenuation is being effective in reducing cobalt concentrations in groundwater.

The only remaining monitoring well with a statistically significant level of cobalt is POZ-4. This well is located on the northeastern boundary of the CCR unit. While the concentrations increased from 77.9 μ g/L to 147 μ g/L over the course of the 2024 sampling events, these concentrations are considerably lower than the historical range. Additionally, it is not unusual to observe a temporary spike during the summer sampling events. These seasonal fluctuations do not necessarily suggest continuing releases from the Class 2 Landfill. This well will be monitored closely during ongoing corrective action sampling activities in 2025.

Groundwater flow rate and direction are provided as Figures 2, 3, 4, and 5 for each sampling event as specified in § 257.93(c).

In 2024, average turnaround time remained approximately 60 days from sample submission to receipt of validated data.

Table 1 - Summary of Analytical Results Cross Generating Station Class 2 Landfill Corrective Action Monitoring 2024

Γ	Dissolved Oxygen	mdd	1	Γ	0.720	0.260	2	0.750	1.28	2		1.09	1.19	0.740	3		0.400	2		1.06	0.220		4.53		***	2	1.00	:	0.440	2	1.36	0.400	2	132	6.47	2		2.19	1.62	*	0.370	0.260	2
				H	0	0	2	0	0	2	+	0	0.100	0	3	H	0 0	2 2		0 0	0 8		0			2	1.70	1 1	0	2	0	0	7	0	0	2		0.200	0	v	47.6	20.4	2
	Turbidity	UN	!	L	6.00	-35.0	2	354	202	2	4	90.0	35.0	19.0	3		28.0	2		-61.0	-32.0		94.0		100	2	-320	1	-55.0	2	119	114	7	-58.0	-80.0	2		90.0	160	2	80.0	81.0	2
	Oxidation Reduction Potential	mv SM2580	I										:												:			:															
reters	Temperature	o	1		15.90	24.34		15.14	20.26			15.41	17.01	31.38			17.07			18.79	26.8		19.54		***		18.34		24.63		17.61	20.94		17.94	21.01	2		17.68	22.22		13.32	26.53	
Field Paran	Specific	Sn	1	Ī	143	127	2	250	284	2		987	1010	1030	3		1900	2		2320	2280		94.0	-	**	2	6300	:	2440	2	125	156	2	308	282	2		47.0	77.0	7	327	280	2
	D Hd	ns	1	H	5.13	9.20	2	4.44	4.54	2		6.47	6.47	6.60	3		6.24	2		6.55	6.19		5.15	0 40	0.10	2	6.37	1	99.9	2	5.53	5.37	2	7.23	6.62	2	-	5.09	5.31	7	5.35	4.98	2
	fwater	Feet		l	75.21	74.73	2	76.91	75.39	2		78.03	78.56	74.76	3		78.01	2		78.25	73.91		77.66	1000	TC-6/	2	78.05		73.88	2	77.25	73.06	2	77.24	73.07	2		77.05	71.52	7	76.41	72.72	2
	o Groundwater	E .	'	H	8.03	8.51	2	8.89	10.41	2		4.58	4.05	7.85	3	H	4.72	2		5.59	9.93	L	4.36		10'/	2	5.08	ľ	9.25	2	3.61	7.80	2	341	7.58	2		7.03	12.56	2	4.36	90'8	2
L	Groundwater	Feet	I	L	<1.0	<1.0	2			2		0.	0.0	9 0	4	Ц	410	2 2		0, 0	0. 2		<1.0		***	4	0		0.	2	<1.0	0.	2	<1.0	<1.0	2				2		<1.0	2
	Thallium	ug/L B EPA 6020B	2.00	L			2	0.1>		2		١	0 0		4					0.15						4	410	•	0.1.0	2			2			2			0.15	2			2
	Selenium	ug/L EPA 6020B	90.0		Ц	<10.0		ľ					×10.0	410			<10.0			<10.0	V 410		<10.0	000			<10.0	ľ	<10.0		<10.0	<10		<10.0	L			<10.0			Ш	0.01>	
	Radium 226/228 Combined Calculation	PCI/L EPA 903.1 Mod	16.3			1.648						╛	: :	2.461	2		2.393	7			2.64				1.529		1,792	•	1.2634		1.142	2.15		1.629		2		1.274			2.609		
	Radium 228	EPA 904.0	1			1.46	2		2.79	П		╛	1 1	1.89	2	Ш	1.99	L	Ш	-0.619	1			2.30			┸		121	2	0.349	П	2		2.15		П	0.905			1.84	Ш	2
	Radium 226	PCI/L EPA 903.1 Mod	1		0.612	0.188	2	0.278	0.0311	2		0.309	: :	0.571	2		0.403	2		1.05	1.28		0.508	0.981	0.389	4	1.08		0.0534	2	0.793	0.523	2	0.631	0.391	2		0.369	0.319	7	0.769	0.392	2
	Molybdenum	ug/L EPA 60100 E	100	Ī	+5.0	45.0	2	×5.0	45.0	2		:	\$5.0	45.0	3		45.0	2		45.0	45.0		45.0	45.0	\$5.0	4	·50	:	45.0	2	45.0	<5.0	2	45.0	\$20	2		45.0	45.0	7	45.0	4£.0	2
Ш	Mercury N	ug/L EPA 7470	2.00	H	<0.2	<02	2	<02	<02	2	1		¢05	402	3		¢05	2		¢05	<0.2		<02	202	405 402	4	<02	1	<02	2	<02	<0.2	2	<0.2	<05 402	2		402	<02	7	<0.2	<0.2	2
suus	Lithium	ug/L EPA E	40.0	t	5.26	<5.0	2	0.6>	<5.0	2	1	:	65.0	\$ 6.0	3		14.5	2		9.42	2		<5.0	0.00	82	4	307	:	129	2	<5.0	<5.0	2	<5.0	<5.0	2	†	\$5.0	\$.0	7	<5.0	<5.0	2
N Constitu	Lead	ug/L EPA 6020B	15.0	t	<1.0	<1.0	2	2.4	2.1	2	1	v.1.0	0.10	0.15	4		0.10	2		0.15	2 2		<1.0	0.15	v V	4	410	:	<1.0	2	<1.0	<1.0	2	×1.0	<1.0	2		0.10	41.0	7	<1.0	<1.0	2
Appendix	Fluoride	mg/L EPA 300.0	4.00	l	<0.10	<0.10	7	0.14	0.13	2	1	<0.10	0.12	0.10	4		0.10	2		0.10	2 2		<0.10	0.10	40.10	4	<0.10		<0.10	2	<0.10	<0.10	7	<0.10	<0.10	2	+	<0.10	<0.10	7	<0.10	<0.10	2
	Cotalt	ugl EPA 6320B EF	9:00	H	1.6	1.4	2	0.87	0.84	2	1	0.89	0.98	2.5	4		77.9	2		9.	32		12	5.0	<0.5	4	<0.5		0.57	2	2.1	1.3	2	0.64	0.82	2		0.61	0.56	7	0.65	0.61	2
	Chromium	ug/L EPA 6020B EP	100	H	<5.0	<5.0	2	<5.0	<5.0	2		<5.0	\$ \$.0 \$	\$5.0	4		\$ 60	2		\$ 50	2 6.0		<5.0	0.00	0.65	4	<5.0	:	<5.0	2	<5.0	<5.0	2	<5.0	<5.0 5.0	2	-	\$ 50	\$0.0	7	<5.0	<5.0	2
	Cadmium	ug/L A 6020B	9.00	l	<0.5	<0.5	2	<0.6	<0.5	2		<0.5	<0.5	<0.5	4		<0.5	2		<0.5	20.5		<0.5	40.5	<0.5	4	<0.5	:	<0.5	2	<0.5	<0.5	2	<0.5	<0.5	2		<0.5	<0.5	7	<0.5	<0.5	2
	Beryllium	ug/I EPA 6020B EP	4.00	H	<0.5	<0.5	2	<0.5	<0.5	2		<0.5	40.5 50.5	<0.5	4		\$ 0.5	2		40.5	40.5		0.58	700	40.5 0.5	4	<0.5	:	<0.5	2	<0.5	<0.5	2	<0.5	<0.5	2	+	40.5	<0.5	7	<0.5	<0.5	2
	Barium B	ug/L EPA EF 6020B	2000	H	77.8	76.9	2	41.3	37.4	2	+	94.0	97.5	105	4		155	2	Н	83.4	81.4		94.9	90.9	255	4	282		419	7	79.7	9.59	2	37.4	41.4	2	+	21.3	28.6	7	169	123	2
ш	Arsenic	н.	16.0	l	<5.0	<5.0	-	<5.0	<5.0	1	1	<5.0	\$5.0 5.0	<5.0	4		<5.0 75.0	2		<5.0	\$ \$00 2		<5.0	0.00	×5.0	4	<5.0	:	<5.0	2	<5.0	9	-	<5.0	<5.0	-		<5.0	<5.0		<5.0	<5.0	-
ш	Antimony	ug/L ug1 EPA 6020B EPA 6620B	25.0	f	<5.0	<5.0	2	<5.0	<5.0	2	1	<5.0	\$5.0 \$5.0	<5.0	4		\$5.0 \$5.0	2		\$ \$00 P	2 × 2		<5.0	0.00	×5.0	4	<50	1	<5.0	2	<5.0	<5.0	2	<5.0	5.4	2	+	<5.0	<5.0	7	<5.0	<5.0	2
f	Hd	SO	1	t	5.13	9.20	2	4.44	4.54	2	+	6.47	6.47	6.60	3	H	6.24	2	H	6.55	6.19		5.15	0 40	27.0	2	6.37	:	99.9	2	5.53	5.37	2	7.23	6.62	2	+	5.09	5.31	7	5.35	4.98	2
	Total Dissolved Solids	mg/L SM 2540C	1	T	193.8	143.8	2	188.8	170.0	2	1	588.8	598.8	616.2	4		1552	2	Ħ	1872	2220		105.0	440.0	382.5	4	4562		2759	2	65.00	113.8	2	167.5	256.2	2		28.75	73.75	7	341.2	195.0	2
ш	Sulfate		ı	Ī	7.62	7.76	2	83.6	89.6	2	1	742	83.9	68.7	4	П	5.32	2	П	494	2		<2.0	077	5.93	4	180	:	74.6	2	15.6	6.57	2	3.99	3.41	2		2.19	420	7	84.8	28:0	2
100	Fluoride	mg/L mg/L EPA 300.0 EPA 300.0	4.00	T	<0.10	<0.10	2	0.14	0.13	2	1	<0.10	0.12	0.10	4	П	0.10	2	П	0.10	20.10		<0.10	40.10	0.10	4	<0.10		<0.10	2	<0.10	<0.10	2	<0.10	<0.10	2		0.10	40.10	7	<0.10	<0.10	2
Append	Chloride	mg/L EPA 300.0 E	1	T	12.8	12.1	2	3.48	3.22	2	1	9.42	9.09	8.41	4	Ħ	6.20	2	Ħ	323	20/2		21.0	20.4	79.7	4	2010		1140	2	9.82	7.26	2	6.16	6.14	2	1	3.26	4.96	7	4.03	9.09	2
	Calcium	mg/L EPA 6020B	i	t	119	10.5	2	25.0	24.7	2	1	180	180	176	4	Ħ	320	2	H	431	4/2		8.9	2.8	74.3	4	1030	:	624	2	13.3	23.6	2	98.0	53.2	2	+	3.0	10.4	7	42.1	29.7	2
	Boron	ug/L EPA EF 6010D	!	t	14.2	12.4	7	19.3	19.6	2	1	12.4	12.0	13.5	4	H	26.9	2	H	38.6	38.4		<10.0	10.2	13.8	4	48.4		28.6	2	24.0	16.7	2	15.6	15.6	2	+	17.0	15.6	7	15.2	18.8	2
r		Unit	GW2S/ US EPA MCLRSL	T	H	İ		Ť	ľ		1		†			П	†		Ħ	1			Ħ	t	t		†	Ħ	1	Ì	İ	H	Ì	t			†	†	1	İ	Ħ	T	
Ī	Laboratory Sample ID Number			Ī	AF87807	AG01476		AF87768	AG01438		1	AF87808	AF93803	AG01477			AG01478			AF87811	AG01480		AF87812	AF6/613	AG01482		AF87814	AF98794	AG01483	Ī	AF87789	AG01459	İ	AF87790	AG01460			AF87791	AG01461	T	AF87766	AG01436	
ш	Date of Sample Event			d Wells	1/8/24	6/4/24		1/8/24	6/4/24		Wells	1/23/24	3/5/24	6/4/24			1/23/24			1/23/24	0/4/24		1/24/24	17.24/24	6/5/24		1/25/24	5/7/2024	6/5/24		1/24/24	6/13/24		1/24/24	6/13/24			1/24/24	6/17/24		1/17/24	6/11/24	
	Purpose			Site Background Wells	П	Background	total samples	Background	Background	total samples	Class 2 Landfill Wells	Baseline	Baseline	Baseline	total samples		Corrective Action			Corrective Action	total samples		Corrective Action	Correction Action	Duplicate	total samples	CMAINE	Resample	CMANE	total samples	CMANE	CMANE	total samples	CMAINE	ı	total samples		CMANE	CMAINE	total samples	CMA/NE	Ш	total samples
	Well ID				PM-I	PM-I	-W-I	CBW-1	CBW-1	CBW-1		POZ-3	PO2-3	POZ-3	202-3		P024	P02-4	Н	POZ-6	t		Ħ	100-1	t	POZ-7	978	POZ-8	POZ-8	8-204	CCNLF-1	CMLF-1	CCNLF-1	CMLF-1D	CCNLF-1D	CCNLF-1D		CCNLF-2	CCMLF-2	CONLIN	CAF-13	3AF-13	CAF-13

Notes: 1. It groundwist raphe collected from the monitoring wise 8 Brown (Certification # 10120), Test America Laboratories in Certification # 21117, and Services (Certification # 21117), and Services (Certification # 21117), and Services (Certification # 21117), and Services in Certification # 22010).

^{2.} All Background, Corrective Measures Assessment (CMA) Hattne & Estert (REI, & Corrective Actor combiners wells have been sampled to meet § 257.96 and § 257.96 (a)(1).

3. Due to challenges with laboratory delays, all groundwater samples were not analyzed by a single laboratory. This accounts for the responty of the reporting limit variability. Metrix interference also contributed to variable RLs.

4. Depth to groundwater is measured below the top of the casing (bbc) to the water surface. Elevation is shown relative to mean sea level (ms).

Table 2
Cross Generating Station

2024 Synoptic Water Levels for Groundwater Monitoring Wells

Top of Casing Depth to CW Flovation Depth to	to water	\(\frac{1/2024}{GW}\) \(\frac{1}{GW}\) \
Well Name Elevation (ft inst) Groundwater (ft inst) Groundwat	water (c) (c) (c) (c) (c) (c) (c) (c) (c) (c)	Elevation (ft ms) 74.11 74.33 74.30 72.01 74.15 73.96 73.11 72.88 73.12 72.63 72.86 82.57 74.24 73.60 72.01 71.84 72.91 71.34 72.91 73.73 73.95 73.75 74.24 73.63 73.85 73.75 74.28 73.85 73.57 73.15 72.78 72.11
PM-1	1	(ft msj) 74.11 74.33 74.30 72.01 74.15 73.96 73.11 72.88 73.12 72.63 72.86 82.57 74.24 73.60 72.01 71.84 72.91 72.91 71.34 73.63 72.96 72.91 73.73 72.91 73.73 72.91 73.73 72.91 73.73 72.91 73.73 72.91 73.73 72.91 73.73 72.91 73.73 72.91 73.73 72.91 73.73 72.91
PM-1 83.24 7.75 75.49 8.14 83.24 8.50 74.74 9.1 CBW-1 85.80 8.50 77.30 9.12 85.80 10.41 75.39 11. CAP-1 82.70 8.50 74.20 6.61 82.70 7.66 75.04 8.4 CAP-2 89.70 15.10 74.60 15.91 89.70 16.98 72.72 17. CAP-3 91.49 14.70 76.79 15.47 91.49 16.54 74.95 17. CAP-4 91.77 15.05 76.72 15.77 91.77 16.67 74.80 17. CAP-5 91.78 14.60 77.18 15.26 91.78 16.67 74.12 18. CAP-6 91.82 14.65 77.17 15.89 91.82 18.05 73.77 18. CAP-7 91.64 14.75 76.89 15.19 91.64 17.57 74.07 18. CAP-10	77 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	74.33 74.30 72.01 74.15 73.96 73.11 72.88 73.12 72.63 72.86 82.57 74.24 73.60 72.01 71.84 72.91 72.91 73.73 73.85 73.38 72.92 72.91 73.73 74.94 75.73 76.73 77.73
CBW-1 85.80 8.50 77.30 9.12 85.80 10.41 75.39 11. CAP-1 82.70 8.50 74.20 6.61 82.70 7.66 75.04 8.4 CAP-2 89.70 15.10 74.60 15.91 89.70 16.98 72.72 17. CAP-3 91.49 14.70 76.79 15.47 91.49 16.54 74.95 17. CAP-4 91.77 15.05 76.72 15.77 91.77 16.97 74.80 17. CAP-5 91.78 14.60 77.18 15.26 91.78 17.66 74.12 18. CAP-6 91.82 14.65 77.17 15.89 91.81 18.05 73.77 18. CAP-7 91.64 14.75 76.89 15.19 91.64 17.57 74.07 18. CAP-8 91.61 15.95 75.66 16.67 91.61 19.30 73.31 18. CAP-10	77 7 7 9 9 9 9 9 9 14 4 1 1 1 1 1 1 1 1 1 1 1	74.33 74.30 72.01 74.15 73.96 73.11 72.88 73.12 72.63 72.86 82.57 74.24 73.60 72.01 71.84 72.91 72.91 73.73 73.85 73.38 72.92 72.91 73.73 74.94 75.73 76.73 77.73
CAP-1 82.70 8.50 74.20 6.61 82.70 7.66 75.04 8.4 CAP-2 89.70 15.10 74.60 15.91 89.70 16.98 72.72 17. CAP-3 91.49 14.70 76.79 15.47 91.49 16.54 74.95 17. CAP-4 91.77 15.05 76.72 15.77 91.77 16.97 74.80 17. CAP-5 91.78 14.60 77.18 15.26 91.78 17.66 74.12 18. CAP-6 91.82 14.65 77.17 15.89 91.82 18.05 73.77 18. CAP-7 91.64 14.75 76.89 15.19 91.62 18.05 73.77 18. CAP-8 91.61 15.95 75.66 16.67 91.61 18.30 73.31 18. CAP-10 95.68 20.25 75.43 21.12 95.68 22.40 73.28 13. CAP-11 <td>9 9 4 4 4 1 1 7 7 7 4 4 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2</td> <td>74.30 72.01 74.15 73.96 73.11 72.88 73.12 72.86 82.57 74.24 73.60 72.01 71.84 72.91 71.34 72.91 72.91 71.34 72.91 73.33 73.38 72.92 72.91 73.73 72.98 74.08 73.85 73.85 73.85 73.15 72.78 72.78</td>	9 9 4 4 4 1 1 7 7 7 4 4 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	74.30 72.01 74.15 73.96 73.11 72.88 73.12 72.86 82.57 74.24 73.60 72.01 71.84 72.91 71.34 72.91 72.91 71.34 72.91 73.33 73.38 72.92 72.91 73.73 72.98 74.08 73.85 73.85 73.85 73.15 72.78 72.78
CAP-2 89.70 15.10 74.60 15.91 89.70 16.98 72.72 17. CAP-3 91.49 14.70 76.79 15.47 91.49 16.54 74.95 17. CAP-4 91.77 15.05 76.72 15.77 91.77 16.97 74.80 17. CAP-5 91.78 14.60 77.18 15.26 91.78 17.66 74.12 18. CAP-6 91.82 14.65 77.17 15.89 91.82 18.05 73.77 18. CAP-7 91.64 14.75 76.89 15.19 91.64 17.57 74.07 18. CAP-8 91.61 15.95 75.66 16.67 91.61 18.30 73.31 18. CAP-9 91.59 14.35 77.24 14.62 91.59 17.82 73.77 18. CAP-10 95.68 20.25 75.43 21.12 95.68 22.40 73.28 13. CAP-11	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	74.15 73.96 73.11 72.86 73.12 72.63 72.86 82.57 74.24 73.60 72.01 71.84 72.91 72.91 71.34 73.63 73.38 72.92 72.91 73.73 73.73 72.98 74.08 73.85 73.57 73.15 74.15
CAP-3 91.49 14.70 76.79 15.47 91.49 16.54 74.95 17. CAP-4 91.77 15.05 76.72 15.77 91.77 16.97 74.80 17. CAP-5 91.78 14.60 77.18 15.26 91.78 17.66 74.12 18. CAP-6 91.82 14.65 77.17 15.89 91.82 18.05 73.77 18. CAP-7 91.64 14.75 76.89 15.19 91.64 17.57 74.07 18. CAP-8 91.61 15.95 75.66 16.67 91.61 18.30 73.31 18. CAP-9 91.59 14.35 77.24 14.62 91.59 17.82 73.77 18. CAP-10 95.68 20.25 75.43 21.12 95.68 22.40 73.28 13. CAP-11 95.55 19.20 76.35 18.72 95.55 20.71 74.84 21. CAP-1	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	74.15 73.96 73.11 72.86 73.12 72.63 72.86 82.57 74.24 73.60 72.01 71.84 72.91 72.91 71.34 73.63 73.38 72.92 72.91 73.73 73.73 72.98 74.08 73.85 73.57 73.15 74.15
CAP-5 91.78 14.60 77.18 15.26 91.78 17.66 74.12 18. CAP-6 91.82 14.65 77.17 15.89 91.82 18.05 73.77 18. CAP-7 91.64 14.75 76.89 15.19 91.64 17.57 74.07 18. CAP-8 91.61 15.95 75.66 16.67 91.61 18.30 73.31 18. CAP-9 91.59 14.35 77.24 14.62 91.59 17.82 73.77 18. CAP-10 95.68 20.25 75.43 21.12 95.68 22.40 73.28 13. CAP-11 95.55 19.20 76.35 18.72 95.55 20.71 74.84 21. CAP-12 98.33 22.25 76.08 23.72 98.33 24.13 74.20 24. CAP-12 98.33 24.13 74.20 24. R.83 80.77 7.65 73.12 8. <t< td=""><td>77 7 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4</td><td>73.11 72.88 73.12 72.63 72.86 82.57 74.24 73.60 72.91 71.84 72.91 73.63 73.38 72.92 72.91 73.73 72.92 73.73 72.98 74.08 73.85 73.57 73.15</td></t<>	77 7 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	73.11 72.88 73.12 72.63 72.86 82.57 74.24 73.60 72.91 71.84 72.91 73.63 73.38 72.92 72.91 73.73 72.92 73.73 72.98 74.08 73.85 73.57 73.15
CAP-5 91.78 14.60 77.18 15.26 91.78 17.66 74.12 18. CAP-6 91.82 14.65 77.17 15.89 91.82 18.05 73.77 18. CAP-7 91.64 14.75 76.89 15.19 91.64 17.57 74.07 18. CAP-8 91.61 15.95 75.66 16.67 91.61 18.30 73.31 18. CAP-9 91.59 14.35 77.24 14.62 91.59 17.82 73.77 18. CAP-10 95.68 20.25 75.43 21.12 95.68 22.40 73.28 13. CAP-11 95.55 19.20 76.35 18.72 95.55 20.71 74.84 21. CAP-12 98.33 22.25 76.08 23.72 98.33 24.13 74.20 24. CAP-13 80.77 4.15 76.62 4.78 80.77 7.65 73.12 8. CCMLF-1	77 7 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	72.88 73.12 72.63 72.66 82.57 74.24 73.60 72.01 71.84 72.91 71.34 73.63 73.33 72.92 72.91 73.73 73.73 72.91 73.73 72.91 73.73 72.91 73.73 72.91 73.73 72.91 73.73 72.91 73.73 72.91 73.73 72.91 73.73 72.91 73.73 72.91 72.91 73.73 72.91 73.73 72.91 73.73 72.91 73.73 72.91 73.73 72.91 73.73 72.91 73.73 72.91 73.73 72.91 73.73 72.91 73.73 72.91 73.73 72.91 73.73 72.91 73.73 72.91 73.73 72.91 73.73 73.75 74.08 73.57 73.15 72.78 72.78 72.71
CAP-7 91.64 14.75 76.89 15.19 91.64 17.57 74.07 18. CAP-8 91.61 15.95 75.66 16.67 91.61 18.30 73.31 18. CAP-10 95.68 20.25 75.43 21.12 95.68 22.40 73.28 13. CAP-11 95.55 19.20 76.35 18.72 95.55 20.71 74.84 21. CAP-12 98.33 22.25 76.08 23.72 98.33 24.13 74.20 24. CAP-13 80.77 4.35 76.42 4.83 80.77 7.65 73.12 8.3 CAP-14 80.77 4.15 76.62 4.78 80.77 7.77 73.00 8.9 CCMLF-1 80.65 3.20 77.45 3.74 4.00 80.86 7.11 73.75 7.5 CCMLF-1D 80.65 3.20 77.45 3.74 80.65 6.89 73.76 7.7	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	73.12 72.63 72.86 82.57 74.24 73.60 72.01 71.84 72.91 71.34 73.63 73.38 72.92 72.91 73.73 73.73 72.98 74.08 73.85 73.57 73.73
CAP-7 91.64 14.75 76.89 15.19 91.64 17.57 74.07 18. CAP-8 91.61 15.95 75.66 16.67 91.61 18.30 73.31 18. CAP-10 95.68 20.25 75.43 21.12 95.68 22.40 73.28 13. CAP-11 95.55 19.20 76.35 18.72 95.55 20.71 74.84 21. CAP-12 98.33 22.25 76.08 23.72 98.33 24.13 74.20 24. CAP-13 80.77 4.35 76.42 4.83 80.77 7.65 73.12 8.3 CAP-14 80.77 4.15 76.62 4.78 80.77 7.77 73.00 8.9 CCMLF-1 80.65 3.20 77.45 3.74 4.00 80.86 7.11 73.75 7.5 CCMLF-1D 80.65 3.20 77.45 3.74 80.65 6.89 73.76 7.7	8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	72.63 72.86 82.57 74.24 73.60 72.01 71.84 72.91 72.91 71.34 73.63 73.38 72.92 72.91 73.73 72.98 74.08 73.85 73.57 73.73 72.98 74.08 73.85 73.57 73.73
CAP-8 91.61 15.95 75.66 16.67 91.61 18.30 73.31 18. CAP-9 91.59 14.35 77.24 14.62 91.59 17.82 73.77 18. CAP-10 95.68 20.25 75.43 21.12 95.68 22.40 73.28 13. CAP-11 95.55 19.20 76.35 18.72 95.55 20.71 74.84 21. CAP-12 98.33 22.25 76.08 23.72 98.33 24.13 74.20 24. CAP-13 80.77 4.35 76.42 4.83 80.77 7.65 73.12 8. CAP-14 80.77 4.15 76.62 4.78 80.77 7.77 73.00 8.5 CCMLF-1 80.65 3.20 77.45 3.74 80.65 6.89 73.76 7.5 CCMLF-1D 80.65 3.20 77.45 3.74 80.65 6.89 73.76 7.5 CCMLF-2 <td>3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3</td> <td>72.86 82.57 74.24 73.60 72.01 71.84 72.91 73.63 73.38 72.92 72.91 73.73 72.98 74.08 73.85 73.57 73.15 72.78</td>	3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3	72.86 82.57 74.24 73.60 72.01 71.84 72.91 73.63 73.38 72.92 72.91 73.73 72.98 74.08 73.85 73.57 73.15 72.78
CAP-10 95.68 20.25 75.43 21.12 95.68 22.40 73.28 13. CAP-11 95.55 19.20 76.35 18.72 95.55 20.71 74.84 21. CAP-12 98.33 22.25 76.08 23.72 98.33 24.13 74.20 24. CAP-13 80.77 4.35 76.42 4.83 80.77 7.65 73.12 8.7 CAP-14 80.77 4.15 76.62 4.78 80.77 7.77 73.00 8.5 CCMLF-1 80.86 3.45 77.41 4.00 80.86 7.11 73.75 7.5 CCMLF-1D 80.65 3.20 77.45 3.74 80.65 6.89 73.76 7.7 CCMLF-2 84.08 6.75 77.33 7.43 84.08 11.53 72.55 12. POZ-3 82.61 4.30 78.81 4.98 82.61 7.80 74.81 8.5 POZ-4	11 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	82.57 74.24 73.60 72.01 71.84 72.91 72.91 72.91 73.63 73.38 72.92 72.91 73.73 72.98 74.08 73.85 73.57 73.15 73.15
CAP-I1 95.55 19.20 76.35 18.72 95.55 20.71 74.84 21. CAP-I2 98.33 22.25 76.08 23.72 98.33 24.13 74.20 24. CAP-I3 80.77 4.35 76.42 4.83 80.77 7.65 73.12 8.7 CAP-I4 80.77 4.15 76.62 4.78 80.77 7.77 73.00 8.5 CCMIF-I 80.86 3.45 77.41 4.00 80.86 7.11 73.75 7.5 CCMIF-ID 80.65 3.20 77.45 3.74 80.65 6.89 73.76 7.7 CCMIF-2 84.08 6.75 77.33 7.43 84.08 11.53 72.55 12. POZ-3 82.61 4.30 78.31 4.98 82.61 7.80 74.81 8.5 POZ-4 82.73 3.95 78.78 5.07 82.73 8.34 74.39 9.3 POZ-5D	11 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	74.24 73.60 72.01 71.84 72.91 71.34 73.63 73.38 72.92 72.91 73.73 72.98 74.08 73.85 73.57 73.57 73.73 72.78 73.73
CAP-12 98.33 22.25 76.08 23.72 98.33 24.13 74.20 24. CAP-13 80.77 4.35 76.42 4.83 80.77 7.65 73.12 8.7 CAP-14 80.77 4.15 76.62 4.78 80.77 7.77 73.00 8.9 CCMLF-1 80.86 3.45 77.41 4.00 80.86 7.11 73.75 7.5 CCMLF-1 80.65 3.20 77.45 3.74 80.65 6.89 73.76 7.7 CCMLF-2 84.08 6.75 77.33 7.43 84.08 11.53 72.55 12. POZ-3 82.61 4.30 78.31 4.98 82.61 7.80 74.81 8.5 POZ-4 82.73 3.95 78.78 5.07 82.73 8.34 74.39 9.3 POZ-5D 82.49 4.15 78.34 5.21 82.49 8.56 73.93 9.3 POZ-6 <	33 3 3 3 3 3 3 3 3 5 5 5 5 5 5 5 5 5 5	73.60 72.01 71.84 72.91 72.91 73.63 73.38 72.92 72.91 73.73 72.98 74.08 73.85 73.57 73.15 72.78 72.11
CAP-13 80.77 4.35 76.42 4.83 80.77 7.65 73.12 8.7 CAP-14 80.77 4.15 76.62 4.78 80.77 7.77 73.00 8.5 CCMLF-1 80.86 3.45 77.41 4.00 80.86 7.11 73.75 7.5 CCMLF-1D 80.65 3.20 77.45 3.74 80.65 6.89 73.76 7.7 CCMLF-2 84.08 6.75 77.33 7.43 84.08 11.53 72.55 12. POZ-3 82.61 4.30 78.31 4.98 82.61 7.80 74.81 8.5 POZ-4 82.73 3.95 78.78 5.07 82.73 8.34 74.39 9.2 POZ-5 82.49 4.15 78.34 5.21 82.49 8.56 73.93 9.3 POZ-6 83.84 5.80 78.04 6.44 83.84 9.86 73.98 10. POZ-8 8	333333333333333333333333333333333333333	72.01 71.84 72.91 72.91 73.63 73.38 72.92 72.91 73.73 72.98 74.08 73.85 73.57 73.15 72.78 72.11
CAP-14 80.77 4.15 76.62 4.78 80.77 7.77 73.00 8.5 CCMIF-1 80.86 3.45 77.41 4.00 80.86 7.11 73.75 7.5 CCMIF-1D 80.65 3.20 77.45 3.74 80.65 6.89 73.76 7.7 CCMIF-2 84.08 6.75 77.33 7.43 84.08 11.53 72.55 12. POZ-3 82.61 4.30 78.31 4.98 82.61 7.80 74.81 8.9 POZ-4 82.73 3.95 78.78 5.07 82.73 8.34 74.39 9.3 POZ-5D 82.49 4.15 78.34 5.21 82.49 8.56 73.93 9.5 POZ-6 83.84 5.80 78.04 6.44 83.84 9.86 73.98 10. POZ-7 82.02 3.95 78.07 4.77 82.02 7.44 74.58 82. POZ-8 8	3 3 3 3 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	71.84 72.91 72.91 71.34 73.63 73.38 72.92 72.91 73.73 72.98 74.08 73.85 73.57 73.15 72.78 72.11
CCMLF-1 80.86 3.45 77.41 4.00 80.86 7.11 73.75 7.5 CCMLF-1D 80.65 3.20 77.45 3.74 80.65 6.89 73.76 7.7 CCMLF-2 84.08 6.75 77.33 7.43 84.08 11.53 72.55 12. POZ-3 82.61 4.30 78.81 4.98 82.61 7.80 74.81 85. POZ-4 82.73 3.95 78.78 5.07 82.73 8.34 74.39 9.3 POZ-5D 82.49 4.15 78.34 5.21 82.49 8.56 73.93 9.5 POZ-6 83.84 5.80 78.04 6.44 83.84 9.86 73.98 10. POZ-7 82.02 3.95 78.07 4.77 82.02 7.44 74.58 8.2 POZ-8 83.13 4.80 78.33 5.84 83.13 9.12 74.01 10. CLF1B-1	33 35 55 36 37 38 39 55	72.91 72.91 71.34 73.63 73.38 72.92 72.91 73.73 72.98 74.08 73.85 73.57 73.15 72.78 72.11
CCMLF-1D 80.65 3.20 77.45 3.74 80.65 6.89 73.76 7.7. CCMLF-2 84.08 6.75 77.33 7.43 84.08 11.53 72.55 12. POZ-3 82.61 4.30 78.31 4.98 82.61 7.80 74.81 8.9 POZ-4 82.73 3.95 78.78 5.07 82.73 8.34 74.39 9.3 POZ-5D 82.49 4.15 78.34 5.21 82.49 8.56 73.93 9.3 POZ-6 83.84 5.80 78.04 6.44 83.84 9.86 73.98 10. POZ-7 82.02 3.95 78.07 4.77 82.02 7.44 74.58 8.2 POZ-8 83.13 4.80 78.33 5.84 83.13 9.12 74.01 10. CLF1B-1 83.76 6.00 77.76 6.66 83.76 8.70 75.06 9.0 CLF1B-2 <td< td=""><td>33 3 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5</td><td>72.91 71.34 73.63 73.38 72.92 72.91 73.73 72.98 74.08 73.85 73.57 73.15 72.78 72.11</td></td<>	33 3 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	72.91 71.34 73.63 73.38 72.92 72.91 73.73 72.98 74.08 73.85 73.57 73.15 72.78 72.11
CCMLF-2 84.08 6.75 77.33 7.43 84.08 11.53 72.55 12 POZ-3 82.61 4.30 78.31 4.98 82.61 7.80 74.81 8.5 POZ-4 82.73 3.95 78.78 5.07 82.73 8.34 74.39 9.3 POZ-5D 82.49 4.15 78.34 5.21 82.49 8.56 73.93 9.3 POZ-6 83.84 5.80 78.04 6.44 83.84 9.86 73.98 10. POZ-7 82.02 3.95 78.07 4.77 82.02 7.44 74.58 8.2 POZ-8 83.13 4.80 78.33 5.84 83.13 9.12 74.01 10. CLFIB-1 83.76 6.00 77.76 6.66 83.76 8.70 75.06 9.6 CLFIB-2 82.04 4.35 77.69 5.05 82.04 7.18 74.86 8.1 CLFIB-3 82	4	71.34 73.63 73.38 72.92 72.91 73.73 72.98 74.08 73.85 73.57 73.15 72.78 72.11
POZ-3 82.61 4.30 78.31 4.98 82.61 7.80 74.81 8.5 POZ-4 82.73 3.95 78.78 5.07 82.73 8.34 74.39 9.3 POZ-5D 82.49 4.15 78.34 5.21 82.49 8.56 73.93 9.5 POZ-6 83.84 5.80 78.04 6.44 83.84 9.86 73.98 10. POZ-7 82.02 3.95 78.07 4.77 82.02 7.44 74.58 8.2 POZ-8 83.13 4.80 78.33 5.84 83.13 9.12 74.01 10. CLFIB-1 83.76 6.00 77.76 6.66 83.76 8.70 75.06 9.6 CLFIB-2 82.04 4.35 77.69 5.05 82.04 71.8 74.86 8.1 CLFIB-3 82.75 3.95 78.89 5.80 82.74 8.55 74.19 9.5 CLFIB-4 82	33 55 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	73.63 73.38 72.92 72.91 73.73 72.98 74.08 73.85 73.57 73.15 72.78 72.11
POZ-4 82.73 3.95 78.78 5.07 82.73 8.34 74.39 9.3 POZ-5D 82.49 4.15 78.34 5.21 82.49 8.56 73.93 9.5 POZ-6 83.84 5.80 78.04 6.44 83.84 9.86 73.98 10. POZ-7 82.02 3.95 78.07 4.77 82.02 7.44 74.58 82. POZ-8 83.13 4.80 78.33 5.84 83.13 9.12 74.01 10. CLFIB-1 83.76 6.00 77.76 6.66 83.76 8.70 75.06 9.6 CLFIB-2 82.04 4.35 77.69 5.05 82.04 71.8 74.86 8.1 CLFIB-3 82.75 3.95 78.80 5.82 82.75 8.18 74.57 9.1 CLFIB-4 82.74 3.85 78.89 5.80 82.74 8.55 74.19 9.5 CLFIB-5	33 55 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	73.38 72.92 72.91 73.73 72.98 74.08 73.85 73.57 73.15 72.78 72.11
POZ-5D 82.49 4.15 78.34 5.21 82.49 8.56 73.93 9.3 POZ-6 83.84 5.80 78.04 6.44 83.84 9.86 73.98 10. POZ-7 82.02 3.95 78.07 4.77 82.02 7.44 74.58 8.3 POZ-8 83.13 4.80 78.33 5.84 83.13 9.12 74.01 10. CLF1B-1 83.76 6.00 77.76 6.66 83.76 8.70 75.06 9.6 CLF1B-2 82.04 4.35 77.69 5.05 82.04 7.18 74.86 8.1 CLF1B-3 82.75 3.95 78.80 5.82 82.75 8.18 74.57 9.1 CLF1B-4 82.74 3.85 78.89 5.80 82.74 8.55 74.19 9.2 CLF1B-5 81.09 3.40 77.69 4.23 81.09 7.32 73.77 8.3 CCMAP-1 <t< td=""><td>33 3 5 5 5 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6</td><td>72.92 72.91 73.73 72.98 74.08 73.85 73.57 73.15 72.78 72.11</td></t<>	33 3 5 5 5 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6	72.92 72.91 73.73 72.98 74.08 73.85 73.57 73.15 72.78 72.11
POZ-6 83.84 5.80 78.04 6.44 83.84 9.86 73.98 10. POZ-7 82.02 3.95 78.07 4.77 82.02 7.44 74.58 8.2 POZ-8 83.13 4.80 78.33 5.84 83.13 9.12 74.01 10. CLF1B-1 83.76 6.00 77.76 6.66 83.76 8.70 75.06 9.6 CLF1B-2 82.04 4.35 77.69 5.05 82.04 7.18 74.86 8.1 CLF1B-3 82.75 3.95 78.80 5.82 82.75 8.18 74.57 9.1 CLF1B-4 82.74 3.85 78.89 5.80 82.74 8.55 74.19 9.3 CLF1B-5D 80.93 3.385 77.08 4.55 80.93 7.72 73.21 8.8 CCMAP-1 80.21 4.50 75.71 5.10 80.21 7.61 72.60 8.4 CCMAP-2	3 5 5 5 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6	72.91 73.73 72.98 74.08 73.85 73.57 73.15 72.78 72.11
POZ-7 82.02 3.95 78.07 4.77 82.02 7.44 74.58 8.2 POZ-8 83.13 4.80 78.33 5.84 83.13 9.12 74.01 10. CLFIB-1 83.76 6.00 77.76 6.66 83.76 8.70 75.06 9.6 CLFIB-2 82.04 4.35 77.69 5.05 82.04 7.18 74.86 8.1 CLFIB-3 82.75 3.95 78.80 5.82 82.75 8.18 74.57 9.1 CLFIB-4 82.74 3.85 78.89 5.80 82.74 8.55 74.19 9.5 CLFIB-5 81.09 3.40 77.69 4.23 81.09 7.32 73.77 8.3 CLFIB-5D 80.93 3.85 77.08 4.55 80.93 7.72 73.21 8.8 CCMAP-1 80.21 4.50 75.71 5.10 80.21 7.61 72.60 8.4 CCMAP-2	5	73.73 72.98 74.08 73.85 73.57 73.15 72.78 72.11
POZ-8 83.13 4.80 78.33 5.84 83.13 9.12 74.01 10. CLFIB-1 83.76 6.00 77.76 6.66 83.76 8.70 75.06 9.6 CLFIB-2 82.04 4.35 77.69 5.05 82.04 71.8 74.86 8.1 CLFIB-3 82.75 3.95 78.80 5.82 82.75 8.18 74.57 9.1 CLFIB-4 82.74 3.85 78.89 5.80 82.74 8.55 74.19 9.5 CLFIB-5 81.09 3.40 77.69 4.23 81.09 7.32 73.77 8.3 CLFIB-5D 80.93 3.85 77.08 4.55 80.93 7.72 73.21 8.8 CCMAP-1 80.21 4.50 75.71 5.10 80.21 7.60 8.4 CCMAP-2 81.24 6.50 74.74 7.14 81.24 8.02 73.22 8.5 CCMAP-3 81.91	5	72.98 74.08 73.85 73.57 73.15 72.78 72.11
CLF1B-1 83.76 6.00 77.76 6.66 83.76 8.70 75.06 9.6 CLF1B-2 82.04 4.35 77.69 5.05 82.04 71.8 74.86 8.1 CLF1B-3 82.75 3.95 78.80 5.82 82.75 8.18 74.57 9.1 CLF1B-4 82.74 3.85 78.89 5.80 82.74 8.55 74.19 9.5 CLF1B-5 81.09 3.40 77.69 4.23 81.09 7.32 73.77 8.3 CLF1B-5D 80.93 3.85 77.08 4.55 80.93 7.72 73.21 8.8 CCMAP-1 80.21 4.50 75.71 5.10 80.21 7.61 72.60 8.4 CCMAP-2 81.24 6.50 74.74 7.14 81.24 8.02 73.22 8.5 CCMAP-3 81.91 6.15 75.76 6.92 81.91 8.58 73.33 8.9 CCMAP-4		74.08 73.85 73.57 73.15 72.78 72.11
CLF1B-2 82.04 4.35 77.69 5.05 82.04 7.18 74.86 8.1 CLF1B-3 82.75 3.95 78.80 5.82 82.75 8.18 74.57 9.1 CLF1B-4 82.74 3.85 78.89 5.80 82.74 8.55 74.19 9.5 CLF1B-5 81.09 3.40 77.69 4.23 81.09 7.32 73.77 8.3 CLF1B-5D 80.93 3.85 77.08 4.55 80.93 7.72 73.21 8.8 CCMAP-1 80.21 4.50 75.71 5.10 80.21 7.61 72.60 8.4 CCMAP-2 81.24 6.50 74.74 7.14 81.24 8.02 73.22 8.5 CCMAP-3 81.91 6.15 75.76 6.92 81.91 8.58 73.33 8.5 CCMAP-4 81.83 4.45 77.38 5.19 81.83 7.64 74.19 8.6) 	73.85 73.57 73.15 72.78 72.11
CLF1B-3 82.75 3.95 78.80 5.82 82.75 8.18 74.57 9.1 CLF1B-4 82.74 3.85 78.89 5.80 82.74 8.55 74.19 9.5 CLF1B-5 81.09 3.40 77.69 4.23 81.09 7.32 73.77 8.3 CCH1B-5D 80.93 3.85 77.08 4.55 80.93 7.72 73.21 8.8 CCMAP-1 80.21 4.50 75.71 5.10 80.21 7.61 72.60 8.4 CCMAP-2 81.24 6.50 74.74 7.14 81.24 8.02 73.22 8.5 CCMAP-3 81.91 6.15 75.76 6.92 81.91 8.58 73.33 8.9 CCMAP-4 81.83 4.45 77.38 5.19 81.83 7.64 74.19 8.6		73.57 73.15 72.78 72.11
CLF1B-4 82.74 3.85 78.89 5.80 82.74 8.55 74.19 9.3 CLF1B-5 81.09 3.40 77.69 4.23 81.09 7.32 73.77 8.3 CLF1B-5D 80.93 3.85 77.08 4.55 80.93 7.72 73.21 8.8 CCMAP-1 80.21 4.50 75.71 5.10 80.21 7.61 72.60 8.4 CCMAP-2 81.24 6.50 74.74 7.14 81.24 8.02 73.22 8.5 CCMAP-3 81.91 6.15 75.76 6.92 81.91 8.58 73.33 8.9 CCMAP-4 81.83 4.45 77.38 5.19 81.83 7.64 74.19 8.6		73.15 72.78 72.11
CLF1B-5 81.09 3.40 77.69 4.23 81.09 7.32 73.77 8.3 CLF1B-5D 80.93 3.85 77.08 4.55 80.93 7.72 73.21 8.8 CCMAP-1 80.21 4.50 75.71 5.10 80.21 7.61 72.60 8.4 CCMAP-2 81.24 6.50 74.74 7.14 81.24 8.02 73.22 8.5 CCMAP-3 81.91 6.15 75.76 6.92 81.91 8.58 73.33 8.9 CCMAP-4 81.83 4.45 77.38 5.19 81.83 7.64 74.19 8.6	: !	72.78 72.11
CLF1B-5D 80.93 3.85 77.08 4.55 80.93 7.72 73.21 8.8 CCMAP-1 80.21 4.50 75.71 5.10 80.21 7.61 72.60 8.4 CCMAP-2 81.24 6.50 74.74 7.14 81.24 8.02 73.22 8.5 CCMAP-3 81.91 6.15 75.76 6.92 81.91 8.58 73.33 8.5 CCMAP-4 81.83 4.45 77.38 5.19 81.83 7.64 74.19 8.6	:	72.11
CCMAP-1 80.21 4.50 75.71 5.10 80.21 7.61 72.60 8.4 CCMAP-2 81.24 6.50 74.74 7.14 81.24 8.02 73.22 8.5 CCMAP-3 81.91 6.15 75.76 6.92 81.91 8.58 73.33 8.5 CCMAP-4 81.83 4.45 77.38 5.19 81.83 7.64 74.19 8.6		
CCMAP-2 81.24 6.50 74.74 7.14 81.24 8.02 73.22 8.5 CCMAP-3 81.91 6.15 75.76 6.92 81.91 8.58 73.33 8.5 CCMAP-4 81.83 4.45 77.38 5.19 81.83 7.64 74.19 8.6	$\overline{}$	
CCMAP-3 81.91 6.15 75.76 6.92 81.91 8.58 73.33 8.5 CCMAP-4 81.83 4.45 77.38 5.19 81.83 7.64 74.19 8.6	•	71.76
CCMAP-4 81.83 4.45 77.38 5.19 81.83 7.64 74.19 8.6	. 1	72.69
	$\overline{}$	72.96
CCMAP-5 83.71 6.15 77.56 6.93 83.71 9.33 74.38 10.	$\overline{}$	73.23
500 500 10 10 10 10 10 10 10 10 10 10 10 10 1	-	73.42
CCMAP-6 84.41 7.90 76.51 8.45 84.41 11.61 72.80 12. CCMAP-7 81.57 7.05 74.52 7.59 81.57 8.21 73.36 8.5	_	71.84
	-	72.64
CCMAP-8 82.89 6.40 76.49 6.99 82.89 9.80 73.09 10. CCMAP-9 82.51 6.00 76.51 6.62 82.51 9.75 72.76 10.	$\overline{}$	72.17 71.71
CCMAP-10 81.80 5.55 76.25 6.08 81.80 9.10 72.70 10.	$\overline{}$	71.79
CCMAP-11 80.29 4.00 76.29 5.01 80.29 8.11 72.18 9.1	$\overline{}$	71.19
CCMAP-12 80.58 4.75 75.83 5.71 80.58 7.42 73.16 8.6		72.58
CCMAP-13 80.11 4.55 75.56 5.36 80.11 6.93 73.18 7.6	_	72.51
CCMAP-14 78.64 4.40 74.24 4.71 78.64 5.43 73.21 6.0	$\overline{}$	72.60
CGYP-1 91.89 15.95 75.94 19.69 91.89 17.56 74.33 17.	$\overline{}$	73.91
CGYP-2 84.88 8.50 76.38 13.20 84.88 10.56 74.32 11.	$\overline{}$	73.87
CGYP-3 83.95 6.95 77.00 9.41 83.95 9.37 74.58 9.8	$\overline{}$	74.11
CGYP-4 83.49 6.65 76.84 8.27 83.49 8.20 75.29 8.6	-	74.89
CGYP-5 84.12 7.90 76.22 9.09 84.12 8.14 75.98 8.3	$\overline{}$	75.77
CGYP-6 83.93 7.15 76.08 9.46 74.47 9.9	-	74.02
CGYP-7 85.37 9.20 76.17 13.10 85.37 10.97 74.40 11.	2	73.95
CGSPZ-1 83.31 7.45 75.86 8.64 83.31 8.61 74.70 9.2		74.09
CGSPZ-2 82.56 6.70 75.86 9.38 82.56 8.29 74.27 8.5		74.01
CGSPZ-3 82.85 4.75 78.10 6.19 82.85 9.91 72.94 10.		72.34
CGSPZ-4 81.28 3.80 77.48 4.82 81.28 7.68 73.60 8.7		72.55
CGSPZ-5 80.56 2.75 77.81 5.39 80.56 8.27 72.29 9.6		70.94
CCMGP-1 84.30 8.15 76.15 13.43 84.30 10.07 74.23 10.	3	73.77
CCMGP-2 96.73 20.05 76.68 24.20 96.73 22.54 74.19 22.	7	73.76
CCMGP-3 84.44 8.45 75.99 12.38 84.44 10.54 73.90 10.	7	73.47
CCMGP-4 84.82 8.50 76.32 12.78 84.82 10.31 74.51 10.	9	74.03
CCMGP-5 79.91 4.70 75.21 6.06 79.91 6.56 73.35 7.0		72.83
CGS-PSE-1 75.07 - 75.27 - 74.97 -		74.80
CGS-PSE-2 81.99 - 80.27 - 79.30 -		76.85
CGS-PSE-3 79.52 - 76.88 - 76.49 -		76.52
CGS-PSE-4 76.37 - 75.64 - 74.88 -		75.43
CGS-PSE-5 78.50 - 77.28 - 76.57 -		76.49
CGS-PSE-6 74.71 - 74.58 - 74.46 -		74.21
CGS-PSE-7 83.35 - 85.75 - 85.30 -		86.29
CGYPSW-1-WSE 75.13 - 75.16 - 74.88 -		74.93
CGYPSW-2-WSE 75.15 - 75.18 - 75.02 -		75.01
CGYPSW-3-WSE 75.49 - 75.37 - 75.45 -		75.26
CGYPSW-4-WSE 75.83 - 75.69 - 75.76 -		75.75
CGYPSW-6-WSE 75.12 - 75.17 - 74.85 -		74.70
CGYPSW-7-WSE 75.15 - 75.20 - 74.83 -		74.76
CGYPSW-8-WSE 75.14 - 75.23 - 74.86 -		74.79
GMPSW-WET-1SWE 75.98 - 75.81 - 74.35 -		74.24
GMPSW-WET-2SWE 75.55 - 75.34 - 74.49 -		74.50
GMPSW-CPD-1SWE 78.47 - 77.62 - 77.38 -		77.74
STAFF GAUGE 76.80 - 76.45		-
STAFF GAUGE 76.63 - 76.48		-

Notes:

^{1.} Additional groundwater monitoring wells used for development of potentiometric maps. These wells monitor groundwater constituent concentrations under the SCDES NPDES Permit #SC0037401 and are not used for CCR constituent concentrations.

^{2.} Depth to Groundwater is measured below the top of casing (btoc) to the water surface. The Top of Casing Elevation and GW Elevation are shown relative to the mean sea level (msl).

^{3.} Pond surface elevations (PSE) and staff gauge elevations were collected to aid in the potentiometric surface interpretation elevation.

HALEY & ALDRICH, INC. 400 Augusta Street Suite 100 Greenville, SC 29601 864.214.8750

TECHNICAL MEMORANDUM

July 3, 2024 File No. 132892-102-002-02

SUBJECT: Statistical Evaluation of the January 2024 Corrective Action Groundwater Monitoring Data

Cross Generating Station

Class 2 Landfill

Pursuant to Title 40 Code of Federal Regulations (40 CFR) §257.93, §257.95, and §257.98 (Rule), this memorandum summarizes the statistical evaluation of the groundwater analytical results obtained from the January 2024 corrective action groundwater monitoring event for the Cross Generating Station (CGS) Class 2 Landfill. Data for this groundwater sampling event were validated on April 4 and May 10, 2024 by Santee Cooper.

BACKGROUND

The CGS Class 2 Landfill was capped and closed, with water management enhancements as described in the Remedy Selection Report dated July 31, 2020. At that time, assessment monitoring identified the presence of cobalt in one or more downgradient wells at a statistically significant level (SSL) above the groundwater protection standard (GWPS). In addition to closure and water management enhancements, cobalt is being addressed through monitored natural attenuation (MNA).

Recent analytical testing results were evaluated to determine if SSLs exist above the GWPS of Appendix IV groundwater monitoring constituents. Using interwell evaluations, data from the semiannual sampling event for downgradient monitoring wells were compared to the GWPS established from background wells. During previous groundwater sampling events, cobalt was the only Appendix IV constituent detected at a SSL above the GWPS.

STATISTICAL EVALUATION

The Rule provides four specific options to statistically evaluate whether water quality downgradient of the CCR Unit (§257.93(f) (1-4)) represents a SSL of Appendix IV parameters above the GWPS. The selected statistical method used for these evaluations is the tolerance limit (TL) as certified by Haley & Aldrich, Inc. on October 14, 2017.

An interwell evaluation was used for statistical analysis, which compares the most recent values from downgradient compliance wells against a background dataset composed of upgradient well data. The TL method was used to evaluate potential SSLs above GWPS. The GWPS for each of the Appendix IV constituents has been set equal to the highest value of the maximum contaminant level (MCL), regional screening level (RSL), or site background concentration. Compliance well data from the most recent

South Carolina Public Service Authority (Santee Cooper) July 3, 2024 Page 2

groundwater sampling event were compared to the corresponding GWPS to determine if a SSL existed. Statistical analysis results are presented in Table 1.

As part of the TL procedure, a concentration limit for each constituent is established from the distribution of the background data with a minimum 95 percent confidence level. The upper endpoint of a tolerance interval is termed the upper tolerance limit (UTL). Depending on the assumed distribution of background, parametric or non-parametric procedures were used to develop the UTL. Parametric procedures use assumed distributions of the sample background data to develop the limits, whereas non-parametric limits use order statistics or bootstrap methods. If all the background data are non-detect, a maximum reporting limit may serve as an appropriate UTL.

If an Appendix IV constituent concentration from the event was above the GWPS, the lower confidence limit (LCL) for the downgradient well constituent was used to evaluate the presence of a SSL. The LCL is the lower end of the confidence interval range, which is an estimated concentration range intended to contain the true mean or median of the population from which the sample is drawn. The confidence interval range is designed to locate the true population mean or median with a high degree of statistical confidence.

After testing for outliers, the UTLs were calculated from the background dataset to evaluate whether removal of data was necessary based on sampling or measurement discrepancies. Both visual and statistical outlier tests for the background data were performed. A visual inspection of the data was performed using distribution plots for the downgradient sample data. Based on our review, no sample data were identified as outliers that warranted removal from the dataset.

The background well (CBW-1 and PM-1) analytical results from previous events were combined to calculate the UTL for each detected Appendix IV constituent. Variability and distribution of the pooled dataset were reviewed to establish the method for UTL calculation.

Per the document Statistical Analysis of Groundwater Monitoring Data at RCRA Facilities, Unified Guidance, March 2009 (the Unified Guidance), background concentrations were based on statistical evaluation of analytical results collected through June 2023 and updated in the Chemstat output. The background dataset will be updated in Table 1 again after four additional data points are collected (second semiannual event of 2025) in accordance with the Unified Guidance.

TREND ANALYSIS

Mann-Kendall trend analyses were performed on datasets of sufficient sample size. Results of the trend analysis are included on Table 1. In summary, 90 percent of the trends analyzed for downgradient compliance wells are identified as stable or decreasing. Trend analysis will continue to be used to monitor and evaluate concentrations in the context of overall site conditions.

RESULTS OF APPENDIX IV DOWNGRADIENT STATISTICAL COMPARISONS

As stated, Appendix IV constituent detections from downgradient well samples were compared to their respective GWPS (Table 1). Based on previous compliance sampling data and statistical evaluations,

South Carolina Public Service Authority (Santee Cooper) July 3, 2024 Page 3

interwell comparisons were used. Consistent with previous results, cobalt remains the only Appendix IV constituent present at a SSL above the GWPS at POZ-4.

All other wells meet the GWPS, including POZ-6, which did not meet the GWPS prior to implementation of the selected remedy. These results generally reflect the predicted cobalt groundwater fate and transport modeling results. Even though there is variability in the cobalt data, the statistical trends are stable for downgradient wells POZ-6 and POZ-7.

The ongoing performance of the selected remedy in achieving GWPS will continue to be evaluated during subsequent semiannual monitoring events.

Enclosures:

Table 1 – CGS Class 2 Landfill January 2024 Corrective Action Monitoring Data

https://haleyaldrich.sharepoint.com/sites/SanteeCooper2/Shared Documents/0132892.Santee Cooper CCR Consulting Service/0_Cross Generating Station/Statistical Analysis/2024-04/Class 2 Landfill/final/2024_07_HAI_CGS_Class II LF_Assessment Monitoring Stats_f.docx

TABLE

416 234 17 200

188	0 0 0 2 Z Z	0 0 0 Z Z Z	0 0 0 Z Z Z	0 0 0 Z Z Z	0 0 0 Z Z Z	0 0 0 Z Z Z	N O O	0 0 0 Z Z Z	0 0 0 Z Z Z	0 0 0 Z Z Z	0 0 0 Z Z Z	0 0 0 Z Z Z	0 0 0 Z Z Z	0 0 0 Z Z Z	0 0 0 2 Z Z
Exceedance above Background at Individual Well	ZZZ	222	2 2 2	2 2 2	2 2 2	2 2 2	> 2 2	2 2 2	Z Z Z	ZZZ	2 2 2	ZZZ	ZZZ	ZZZ	ZZZ
GWPS (Higher of MCL/RSL or Upper Tolerance Umit)	0.025	0.016	2,000	5000	5000	0700	9000	4.00	0.015	00040	0.0020	0.10	163	0500	0000
- S	Z Z Z	zzz	> 2 2	ZZZ	ZZZ	ZZZ	> Z Z	ZZZ	ZZZ	zzz	z z z	z z z	zzz	z z z	Z Z Z
Upper Tolerance	0.025	0.016	0.1030	500'0	0.0050	0.0140	0.0050	0.300	0.0110	0.020	0.0010	0.020	16.3	0.050	0.010
Upper Tolerance Uppe	25.0	16.0	103.0	9.00	Q' so	14.0	Q.	300.0	11.0	50.0	1.0	20.0	16.3	20.0	10.0
95 LCL Upper	~		*			-	590	, m	-	,					4
Detect? 95	zzz	222	> >	zz≻	zzz	zzz	> >	zzz	zzz	> > z	zzz	zzz	> >	zzz	zzz
January 2024 Concentrations	0.005	0.005	0.155	90000 90000	0.0005 0.0005 0.0005	0.005	0.0779 0.0016 0.0012	0.100	0.001	0.015	0.0002 0.0002 0.0002	0.005	2.393 1.050 1.089	0.010	0.001
Distribution Well Con	NA	srametric		srametric	V V	srametric	srametric	srametric	srametric	s ramet ric	A N	NA A	arametric	A N	AM
Trend Distrib	44444	A A A A A A A A A A A A A A A A A A A	Decreasing Stable Increasing Stable Decreasing	A A A A A A A A A A A A A A A A A A A	4444	A A A A A A A A A A A A A A A A A A A	Decreasing Non-particle Stable Stable	Decreasing Non-pi	A A A A A A A A A A A A A A A A A A A	NA Non-p: Stable NA NA	88888	44444	Decreasing Non-page Stable Stable Stable Stable	88888	44444
	Z Z Z Z Z		Decre Stal Incre: Stal	Z Z Z Z Z	Z Z Z Z Z	Z Z Z Z Z	Decre Incre N Stal	Decreasin NA Stable NA NA	Decreasing NA NA NA NA	Z Z Z	Z Z Z Z Z	Z Z Z Z Z	Decre Stal Stal	Z Z Z Z Z	Z Z Z Z Z
ince Outlier Removed	N N N N N N N N N N N N N N N N N N N	0 N N N N N N N N N N N N N N N N N N N	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	N N N N N N N N N N N N N N N N N N N	N N N N N N N N N N N N N N N N N N N	N N N N N N N N N N N N N N N N N N N	2 2 2 2	0 N N N N	N N N N N N N N N N N N N N N N N N N	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	N N N N N N N N N N N N N N N N N N N	AN AN AN AN AN AN AN AN AN AN AN AN AN A	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	N N N N N N N N N N N N N N N N N N N	N A N A N A N A N A N A N A N A N A N A
n Outlier Presence	A A A A	Yes Yes No No No	Yes Yes Yes	N N N N N	NA Yes NA No	N N N N	Y S No Y S S Y S S S S S S S S S S S S S S S	NA Yes No Yes	Yes NA NA NA	Y ess NO NO No No No No	NA NA NA Yes	AN AN AN AN AN AN AN AN AN AN AN AN AN A	No No No No No No No No No No No No No N	AN AN AN AN AN AN AN AN AN AN AN AN AN A	Z Z Z Z Z
Non-Detection S Exceedances	1 1 1 1	00000	00000	0 1 0 0 0	00000	00000	00000	0000	00000	00000	00000	00000	00000	10000	0 1 0 0 0
on Number of ices Detection Exceedances	00000	10000	00000	00000	0000	0000	0 0 24 1 0	0000	00000	00000	00000	00000	4 2 1 0 1	00000	0000
Report Detection Result Exceedances Unit (Y/N)		> N N N N	N N N N	N N N N	N N N N	N N N N	N X X N	N N N N	N N N N	N N N N N	N N N N	N N N N	PG/L Y PG/L Y PG/L Y PG/L Y PG/L PG/L PG/L PG/L PG/L PG/L PG/L PG/L	N N N N	7777
CCR Re: MCL/RSL Re: U	0000 0000 0000 0000 0000 0000	0.01 0.01 0.01 0.01 0.01	2 2 2 2 2 2 3 3 3 3 3 3 3 3 3 3 3 3 3 3	0.004 my 0.004 my 0.004 my	0.005 m 0.0005 m 0.0005 m 0.0005	0.110001	0.006 mg	4 4 4 4 4	0.015 m 0.015 m 0.015 m 0.015 m	0.04 mg	0.002 my 0.002 my 0.002 my 0.002 my	0.1100000000000000000000000000000000000	20000	0.05 0.05 0.05 0.05 0.05 0.05	0.002 mg
Coefficient of Variance N	0.7332 0.7181 0.7581 0.7581	0.4648 0.2532 0.1867 0.1745 0.1887	0.1167 0.0967 0.3885 0.2862 0.3627	0.05478 1.349 0.3893 0	113% 1374 1.1 1.13% 1.123	0.3547	0.5481 0.7182 0.7204 0.5405 0.5699	0.2383 0 0.1831 0.1905 0.3263	0.6253 1.26 1.114 1.114 1.114	0.4035 0.2663 0.3034 0.2272 0.3612	0.6985 0.726 0.739 0.7581 0.7295	0.3525 0.2477 0.2605 0.2605	0.5215 0.8275 0.4493 0.5665 0.4513	0.7102 0.38 0.4125 0.4125	0 1.375 0 0
Standard Deviation	1(mg/t) 0.004364 0.004445 0.004588 0.004588	0.002467 0.001255 0.0008495 0.0008002	0.005018 0.007915 0.04576 0.01639 0.07876	0.0002772 0.0009383 0.0002486 0 0 0.0001512	0.0007462 0.001187 0.0007452 0.0007462	0.001919	0.0005508 0.0008663 0.002 0.001631 0.0006129	0.05004 0 0.01998 0.02114 0.03664	0.002225 0.002276 0.00195 0.00195	0.00347 0.00347 0.003417	0.0001701 0.0001831 0.0001867 0.0001835 0.0001854	0.003273 0.002182 0.002262 0.002262	1.664 3.167 1.49 1.548 1.487	0.00436 0.00436 0.00436	0 0,001964
Variance	V. Antimony, Total 0.00001905 0.00001976 0.00002105 0.00002105	0.000006084 0.000001576 7.217E-07 6.403E-07 7.359E-07	CATA Appendace's Barmin', 10tal (mg/L) COS1 0.0000518 0.000 COS1 0.00006264 0.00 COS1 0.0006264 0.00 COS 0.0006264 0.00 COS 0.0006264 0.00 COS 0.0006264 0.00 COS 0.0006264 0.00	7.682E-10 8.804E-07 6.179E-08 0 2.286E-08	5.588E-07 0.000 0.0001 5.588E-07 0.000 0.50001 5.588E-07 0.000 0.5006 5.588E-07 0.000	0.00003682 0.001 0 0 0 0 0 0 3.662E-08 0.000	0.0034 3.034647 0.00 0.00189 7.5056-07 0.00 0.11 0.003844 (0.0082 0.000002661 0.00 0.0028 3.7566-07 0.00	0.002504 0.00 0 0.0003991 0.01 0.0003468 0.02 0.000342 0.03	0.00000495 0.000006534 0.000003804 0.000003804	0.0006 0.00001302 0.003504 0.00164 0.00001302 0.003208 0.0026 0.00001302 0.003208 0.0010 0.000005618 0.000327 0.001 0.00001507 0.003317	2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2	0.00001071 0.00032 0.000004752 0.00021 0.000005117 0.00022 0.000005117 0.00022 0.000005117 0.00023	6.34 2.769 1.664 1.664 1.665 1	0.00007913 0.00001672 0.00001901 0.00001901 0.00001901	0 0 0.00003857
	CCR Appendix-I	0.016 0.0042 0.0031 0.0039	0.051 0.103 0.235 0.10 0.1	0.00139 0.00(339	0.006	0.0059	0.0034 0.00189 0.11 0.0082 0.0028	0.3 0.17 0.16 0.27	0.011	0.0054 0.00544 0.0526 0.0526 0.0501 0.020	2 0.00(378		6.34 6.29 6.29 4.78 5.29	annual de una	
tile 95th Percentile	0.005 0.001 0.007 0.007	0.005567 0.005 0.005 0.005 0.005	0.04723 0.09875 0.1866 0.08805 0.303	0.0005 0.0001 0.0001 0.00089	0.0005 0.003825 0.0007995 0.0005	0.005	0.001286 0.001861 0.1978 0.004975	0.289 0.1 0.1585 0.15	0.009375 0.00925 0.0025 0.0025 0.0025	0.01 0.01 0.02116 0.01137 0.0119	0.00038 0.00056 0.00046 0.0004402	0.01	5.3 6.965 4.95 4.88	0.02 0.02 0.02 0.02	0.001 0.001 0.001 0.001
50th Percentile (Median)	00000	0000 0000 0000 0000 0000	0.0427 0.0803 0.102 0.05205	0.0005 0.0005 0.00051 0.00058	0,0005 0,0005 0,0005 0,0005 0,0005	0000 0000 0000 0000 0000	\$960000 \$9000 \$90000 \$860000	0.1	0.0028 0.001 0.001 0.001	0.01 0.01 0.0118 0.011	0.0002 0.0002 0.0002 0.0002	000 000 100 100 000 100	4 88 4 4 4	000 000 100 100 000 100	0.001 0.001 0.001 0.001 0.001
Mean	0.00595 0.00619 0.00605 0.00605 0.00605	0.00531 0.00455 0.00455 0.00455	0.043 0.0819 0.118 0.0573 0.217	05 0.000506 5 0.000696 05 0.000638 05 0.0005 05 0.000638	4 0.000659 4 0.000659 4 0.000659 4 0.000664	0.00541 0.005 0.005 0.005 0.005	0.001 0.00121 0.0861 0.00302 0.00108	0.21 0.1 0.109 0.111 0.111	0.00356 0.00204 0.00175 0.00175	0.00894 0.00867 0.0134 0.0104 0.00946	1 0.000243 1 0.000252 1 0.000253 1 0.000242 1 0.000254	0.00929 0.00881 0.00868 0.00868	3.19 3.83 3.32 2.73 3.3	0.0125 0.0108 0.0106 0.0106	0.001
Rangs of Non- ts Detect	0.005-0.025 0.005-0.025 0.005-0.025 0.005-0.025	0.003-0.005 0.003-0.01 0.003-0.005 0.003-0.005 0.003-0.005		0.005-0.0005 0.005-0.0005 0.005-0.0005 0.005-0.0005 0.005-0.0005	0.0005-0.004 0.0005-0.005 0.0005-0.004 0.0005-0.004 0.0005-0.004	0.00(\$-0.005 0.00(\$-0.005 0.00(\$-0.005 0.00(\$-0.005 0.00(\$-0.005	0.001-0.001	01-0.1 01-0.1 01-0.1 01-0.1	0.01-0.01 0.01-0.01 0.01-0.01 0.01-0.01 0.01-0.01	0.005-0.02 0.005-0.01 0.01-0.01 0.005-0.01	0.002-0.001 0.002-0.001 0.002-0.001 0.002-0.001 0.002-0.001	0.005-0.02 0.005-0.01 0.005-0.01 0.005-0.01 0.005-0.01	4 4 4 4 4	0.0(25-0.05 0.0(25-0.02 0.0(25-0.02 0.0(25-0.02 0.0(25-0.02	0.001-0.001 0.001-0.001 0.001-0.001 0.001-0.001
of Percent Non-Detects	100% 100% 100% 100%	87% 87% 95% 95% 100%	8 8 8 8	95% 100% 48% 100% 38%	100% 100% 91% 100% 95%	95% 100% 100% 100% 95%	4% 4% 0% 0% 27%	4% 100% 64% 77% 68%	4% 100% 100% 100% 100%	96% 87% 26% 74% 84%	100% 100% 100% 100% 89%	100% 100% 100% 100%	32% 27% 33% 38% 14%	100% 100% 100% 100%	100% 100% 100% 100%
Frequency of Detection	0/21 0/21 0/19 0/19 0/19	3/23 3/23 1/22 1/22 0/22	23/23 23/23 22/22 22/22 22/22	1/22 0/23 11/21 0/21	0/22 0/22 2/27 0/22 1/22	1,722 0,721 0,722 0,722 1,722	22/23 22/23 25/25 25/25 22/22	22/23 0/23 8/22 5/22 5/27	22/23 0/23 0/22 0/22 0/22	1/23 3/23 14/19 5/19 3/19	0/23 0/23 0/19 0/19 2/19	0/21 0/21 0/19 0/19 0/19	15/22 16/22 14/21 13/21 18/21	0/23 0/23 0/22 0/22 0/22	0/21 0/21 0/19 0/19 0/19
Location id	CBW-1 PM-1 POZ-4 POZ-6 POZ-6	C8W-1 PM-1 POZ-4 POZ-6 POZ-7	CBW-1 PM-1 POZ-4 POZ-6 POZ-7	CBW-1 PM-1 POZ-4 POZ-6 POZ-7	CBW-1 PM-1 POZ-4 POZ-6 POZ-7	CBW-1 PM-1 POZ-4 POZ-6 POZ-7	CBW-1 PM-1 POZ-4 POZ-6 POZ-6	CBW-1 PM-1 POZ-4 POZ-6 POZ-7	CBW-1 PM-1 POZ-4 POZ-6 POZ-7	CBW-1 PM-1 POZ-4 POZ-6 POZ-7	C8W-1 PM-1 POZ-4 POZ-6 POZ-7	CBW-1 PM-1 POZ-4 POZ-6 POZ-7	C8W-1 PM-1 POZ-4 POZ-6 POZ-7	C8W-1 PM-1 POZ-4 POZ-6 POZ-7	CBW-1 PM-1 POZ-4 POZ-6 POZ-7

JJLY 2024

HALEY & ALDRICH, INC. 400 Augusta Street Suite 100 Greenville, SC 29601 864.214.8750

TECHNICAL MEMORANDUM

October 16, 2024

File No. 132892-102-002-02

SUBJECT: Statistical Evaluation of the June 2024 Corrective Action Groundwater Monitoring Data

Cross Generating Station

Class 2 Landfill

Pursuant to Title 40 Code of Federal Regulations (40 CFR) §257.93, §257.95, and §257.98 (Rule), this memorandum summarizes the statistical evaluation of the groundwater analytical results obtained from the June 2024 corrective action groundwater monitoring event for the Cross Generating Station (CGS) Class 2 Landfill. Data for this groundwater sampling event were validated August 6, 2024 by Santee Cooper.

BACKGROUND

The CGS Class 2 Landfill was capped and closed, with water management enhancements as described in the Remedy Selection Report dated July 31, 2020. At that time, assessment monitoring identified the presence of cobalt in one or more downgradient wells at a statistically significant level (SSL) above the groundwater protection standard (GWPS). In addition to closure and water management enhancements, cobalt is being addressed through monitored natural attenuation (MNA).

Recent analytical testing results were evaluated to determine if SSLs exist above the GWPS of Appendix IV groundwater monitoring constituents. Using interwell evaluations, data from the semiannual sampling event for downgradient monitoring wells were compared to the GWPS established from the background wells. During previous groundwater sampling events, cobalt was the only Appendix IV constituent detected at a SSL above the GWPS.

STATISTICAL EVALUATION

The Rule provides four specific options to statistically evaluate whether water quality downgradient of the CCR Unit (§257.93(f) (1-4)) represents a SSL of Appendix IV parameters above the GWPS. The selected statistical method used for these evaluations is the tolerance limit (TL) as certified by Haley & Aldrich, Inc. on October 14, 2017.

An interwell evaluation was used for statistical analysis, which compares the most recent values from downgradient compliance wells against a background dataset composed of upgradient well data. The TL method was used to evaluate potential SSLs above the GWPS. The GWPS for each of the Appendix IV constituents has been set equal to the highest value of the maximum contaminant level (MCL), regional screening level (RSL), or site background concentration. Compliance well data from the most recent

South Carolina Public Service Authority (Santee Cooper) October 16, 2024 Page 2

groundwater sampling event were compared to the corresponding GWPS to determine if a SSL existed. Statistical analysis results are presented in Table 1.

As part of the TL procedure, a concentration limit for each constituent is established from the distribution of the background data with a minimum 95 percent confidence level. The upper endpoint of a tolerance interval is termed the upper tolerance limit (UTL). Depending on the assumed distribution of background, parametric or non-parametric procedures were used to develop the UTL. Parametric procedures use assumed distributions of the sample background data to develop the limits, whereas non-parametric limits use order statistics or bootstrap methods. If all the background data are non-detect, a maximum reporting limit may serve as an appropriate UTL.

If an Appendix IV constituent concentration from the event was above the GWPS, the lower confidence limit (LCL) for the downgradient well constituent was used to evaluate the presence of a SSL. The LCL is the lower end of the confidence interval range, which is an estimated concentration range intended to contain the true mean or median of the population from which the sample is drawn. The confidence interval range is designed to locate the true population mean or median with a high degree of statistical confidence.

After testing for outliers, the UTLs were calculated from the background dataset to evaluate whether removal of data was necessary based on sampling or measurement discrepancies. Both visual and statistical outlier tests for the background data were performed. A visual inspection of the data was performed using distribution plots for the downgradient sample data. Based on our review, no sample data were identified as outliers that warranted removal from the dataset.

The background well (CBW-1 and PM-1) analytical results from previous events were combined to calculate the UTL for each detected Appendix IV constituent. Variability and distribution of the pooled dataset were reviewed to establish the method for UTL calculation.

Per the document Statistical Analysis of Groundwater Monitoring Data at RCRA Facilities, Unified Guidance, March 2009 (the Unified Guidance), background concentrations were based on the statistical evaluation of analytical results collected through June 2023 and updated in the Chemstat output. The background dataset will be updated in Table 1 again after four additional data points are collected (second semiannual event of 2025) in accordance with the Unified Guidance.

TREND ANALYSIS

Mann-Kendall trend analyses were performed on datasets of sufficient sample size. Results of the trend analysis are included on Table 1. In summary, 100 percent of the trends analyzed for downgradient compliance wells are identified as stable or decreasing. Trend analysis will continue to be used to monitor and evaluate concentrations in the context of overall site conditions.

RESULTS OF APPENDIX IV DOWNGRADIENT STATISTICAL COMPARISONS

As stated, Appendix IV constituent detections from downgradient well samples were compared to their respective GWPS (Table 1). Based on previous compliance sampling data and statistical evaluations,

South Carolina Public Service Authority (Santee Cooper) October 16, 2024 Page 3

interwell comparisons were used. Consistent with previous results, cobalt remains the only Appendix IV constituent present at a SSL above the GWPS at POZ-4.

All other wells meet the GWPS, including POZ-6, which did not meet the GWPS prior to implementation of the selected remedy. These results generally reflect the predicted cobalt groundwater fate and transport modeling results. Even though there is variability in the cobalt data, the statistical trends are stable for downgradient wells POZ-6 and POZ-7.

The ongoing performance of the selected remedy in achieving GWPS will continue to be evaluated during subsequent semiannual monitoring events.

Enclosures:

Table 1 – June 2024 Corrective Action Monitoring Data (CGS Class 2 Landfill)

https://haleyaldrich.sharepoint.com/sites/SanteeCooper2/Shared Documents/0132892.Santee Cooper CCR Consulting Service/0_Cross Generating Station/Statistical Analysis/2024-10/Class 2 Landfill/final/2024_10_HAI_CGS_Class II LF_Assessment Monitoring Stats_F.docx

TABLE

TABLE 1 JUNE 2024 CORRECTIVE ACTION MONITORING DATA CGS CLASS 2 LANDFILL

	SSE	9 2 N	2 2 2	2 2 2	2 2 2	S S S	2 2 2	No No	0 N N	2	2 2 2	2 2 2	2 2 2	2 2 2	2 2 2	N N N
dance above	Background at	0 N N	0 N N	0 N N	2 2 2	0 N N	0 N N	> z z	2 2 2	8 8 8	0 N N	0 N N	2 2 2 N	0 N N	0 N N	0 N N
-																
Anit) Samo	MCL/RSL or Upper Tolerance Limith	0.025	0.016	2.000	500.0	0.005	0.100	0.006	4.00	0.015	0.040	0.0020	070	16.3	0.050	0.00
Inter-well Anaysis	8	8 8 8	2 2 2 2	No No Yes	2 ° 2	0 2 2 2 2 2	0 2 2 2 2 2	No No	2 2 2 2 2 2	2 2 2	N N Ves	2 2 Q	2 2 2 2 2 2	2 2 2	2 2 2 2	8 8 8
_	Upper Tolerance Limit	0.025	0.016	0.1030	500.0	0.0050	0.0140	0.0050	0000	0.01 10	0.020	0.0010	0.020	16.3	0.050	0000
	9510.							0.065								
	Detect?	2 2 2	222	Yes Yes	222	2 2 2	2 2 2	Se Yes	2 2 2	2 2 2	Yes Yes	2 2 2	2 2 2	Yes Yes	2 2 2	222
	June 2024 Concentrations	0.005	0.005	0.092	0.0005	0.0005	0.005	0.1470 0.0032 0.0005	0.100	0.001	0.025	0.0002	0.005	2.70 2.64 3.68	0.010	0.001
	Distribution Well	2	Non-parametric	Non-parametric	Non-parametric	ž	Non-parametric	Non-parametric	Non-parametric	Non-parametric	Non-parametric	5	NA.	Non-parametric	\$2	¥.
	Trend	NA NA NA NA	NA NA NA NA	Decreasing Stable Stable Stable Stable Decreasing	NA NA Decreasing NA Decreasing	NA NA NA	NA NA NA NA	Increasing trable stable stable stable	Decreasing NA Stable NA Stable Stable	NA NA NA NA NA NA NA NA	NA Stable NA NA NA NA NA NA NA NA	NA NA NA	NA NA NA	Decreasing Stable Decreasing Stable	NA NA NA	NA NA NA NA
	Outlier Removed	N N N N N	0 N N N N N N N N N N N N N N N N N N N	0 N N N N N N N N N N N N N N N N N N N	N N N N N N N N	NA NA NA NA NA NA NA NA NA NA NA NA NA N	N N N N N N N N N N N N N N N N N N N	0 N N N N N N N N N N N N N N N N N N N	N N N N N N N N N N N N N N N N N N N	N N N N N N N N N N N N N N N N N N N	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	NA NA NA NA NA NA NA NA NA NA NA NA NA N	N N N N N	0 N N N N	X X X X X	N N N N N
	Outlier Presence Outli	NA NA NA NA NA NA NA NA NA NA NA NA NA N	Yes No No NA	Yes Yes No No	NA NA NA No	NA NA Yes NA	NA NO NA NO NA NO NA NO NA NO NA NA NO NA NA NA NA NA NA NA NA NA NA NA NA NA	Yes No Yes	No Ne No Yes	Yes NA NA	Yes No No	NA NA NA NA	NA NA NA	No No No	NA NA NA NA NA NA NA NA NA NA NA NA NA N	NA NA NA NA NA NA NA NA NA NA NA NA NA N
har of	Non-Detection Outlier Exceedances			0 0 0 0	01000	0 0 0 0	0000		0 0 0 0				0 0 0 0	0 0 0 0	10000	0 1 0 0 0
	Number or Num Detection Non-D Exceedances Excee	0000	0 0 0	0000	0000	0000	0000	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	00000		0000	0000	0000	10124	0000	0000
	Exceedances Dr (Y/N) Exce	z z z z z	> z z z z	z z z z z	z z z z z	z z z z z	z z z z z	z z >> z	z z z z z	z z z z z	z z z z z	z z z z z	z z z z z	> > z >	z z z z z	z z z z z
	Result E	Jam Jam Jam	78m 78m	Yau Yau Yau	Jan Jan Jan	Yam Yam Yam	Vâm Vâm Vâm	18 m	Yam Yam Yam	Jan Jan Jan	Yau Yau Yau	Jam Jam Jam	Yam Yam Yam	ע עט עט עט	Yam Yam Yam	Jam Jam Jam Jam
	of CCR MG/RSL	90000	0.01		0.004	0.005	0.1	90000	4 4 4 4	0.015	0.00	0.002	0.1		0.05	0.002
	rd Coefficient of	54 0.7216 46 0.7082 72 0.7454 72 0.7454 72 0.7454	13 0.4558 28 0.2476 53 0.1828 65 0.1708 35 0.1848	4 0.1178 77 0.09561 3 0.3859 8 0.2879 4 0.3535	38 44 6	98 1.119 52 1.371 29 1.088 98 1.119 92 1.111	77 0.3481 0 0 0 0 77 0.03724	97 0.5408 82 0.6985 2 0.7003 34 0.5268 07 0.5814	7 0.25 0 0 1 0.1804 8 0.1881 9 0.3212	36 0.6285 28 1.264 12 1.113 12 1.113 12 1.113	2 0.4124 79 0.2793 78 0.336 34 0.2221 35 0.3548	66 0.6894 94 0.7175 21 0.7284 89 0.7454 08 0.7193	22 0.3655 79 0.2639 51 0.2766 51 0.2766	0.5128 0.838 0.444 0.5539 0.4388	15 0.7017 33 0.3731 51 0.4041 51 0.4041	1362
+	Standard Deviation W. Total (mg/L)	0.0001818 0.004264 0.00001889 0.004346 0.00002 0.004472 0.00002 0.004472	000005824 0.00128 000001587 0.00128 6.9776.07 0.000855 5.1866.07 0.000865 Barium, Total (mg/l)	0.00000254 0.00304 0.00006094 0.007807 0.00 2028 0.04503 0.00 5866 0.00724 Beryllum, Total (mg/L)	7.348E-30 0.00002711 8.438E-07 0.0009186 5.971E-08 0.0002444 0 0 2.26E-08 0.0001503	5.326E-07 0.0007298 0.000001351 0.001162 5.314E-07 0.000729 5.326E-07 0.0007298 5.317E-07 0.0007292	0.000003522 0.001877 0 0 0 0 0 0 3.522E-08 0.001877 ade-IV: Cobalt, Total (mg/l.)	2.913E-07 0.0005397 7.194E-07 0.0006482 0.003834 0.06.192 0.000002542 0.001594 3.729E-07 0.0006107	0.002659 0.05157 0.002659 0.05157 0.0003846 0.01951 0.000288 0.03798 0.001288 0.03389	0.000004823 0.002196 0.000005391 0.002528 0.000003655 0.001912 0.000003655 0.001912 0.000003655 0.001912	131 0.00362 5658 0.002379 1189 0.004678 5445 0.002334 113 0.003335 V. Tetal (me/1)	2.775E-08 0.0001666 3.217E-08 0.0001794 3.316E-08 0.0001821 0.00000032 0.0001789 3.77E-08 0.000189	001104 0.003322 0005195 0.002239 0005526 0.002351 0005526 0.002351 0005526 0.002351 m-226 & 228 (pCl/l)	2.649 1.628 9.78 3.127 2.132 1.46 2.283 1.511 2.113 1.454 Solvenium Tetal (me/1)	595 0.00871 602 0.00402 816 0.00428 816 0.00428 816 0.00428	3682 0.001919 0 0
	Maximum Variance Detect R Appendix-IV: Antimory.	0.00001818 0.00001889 0.00002 0.00002	4	0.0000254 0.103 0.0000694 0.255 0.002028 0.1 0.0002817 0.389 0.005966 uppendb-1V: Berylllum, T	063 0935 endix-N	2 *	0.0059 0.000003522 0 0 0.0059 3.522E-08	0.0034 2.913E-07 0.00189 7.194E-07 0.21 0.003834 0.0022 0.000002542 0.0028 3.729E-07	2	7	2	2.775E 3.217E 3.316E 0.00000 0.000378 3.27E ppendix-N: Molybdet	0.0000110- 0.00000519 0.00000552 0.00000552 0.00000552 endix-N: Radium-226	6.34 2.649 16.3 9.78 6.29 2.132 4.78 2.283 5.39 2.113	0.0007595 0.0081507 0.0081507 0.0081507 0.004003 0.0091561 0.009451 0.00091516 0.009451 0.009	0 0 0 0 0
	95th Mao Percentile Dx	0.002 0.00975 0.006 0.006	8	0.09813 0 0.09813 0 0.1853 0 0.08781 0	8	0.00365 0.003789 0.000789 0.00059 0.0006 0.0006		0.001279 0.0034 0.001846 0.00189 0.1978 0.21 0.00495 0.0082 0.00234 0.0028	0.2885 0.3 0.1 0.157 0.17 0.15 0.16 0.13 0.27	0.009062 0 0.008875 0.0025 0.0025 0.0025	0.01 0.00 0.01 0.00 0.0227 0.0 0.0124 0.0	0.00037 0.00054 0.00043 0.00024 0.0004091 0.00	0.01 0.01 0.01 0.01 CR App	5.29 6.84 1 4.943 6 4.573 4 4.879 5 5 6 6 8 8 8 9 5 6 6 8 8 8 9 5 6 6 8 8 8 9 5 6 6 8 8 8 9 5 6 6 8 8 8 9 5 6 6 8 8 8 9 5 6 6 8 8 8 9 5 6 6 8 8 8 9 5 6 6 8 8 8 9 5 6 6 8 8 9 5 6 6 8 8 9 5 6 8 8 9 5 6 8 8 9 5 6 8 8 9 5 6 8 8 9 5 6 8 8 9 5 6 8 8 9 5 6 8 8 9 5 6 8 8 9 5 6 8 8 9 5 6 8 8 9 5 6 8 8 9 5 6 9 5 6 9		0.001 0.001 0.001 0.001
	Soth Percentile (Median)	0.005 0.005 0.005 0.005	0.005 0.005 0.005 0.005	0.0426 0.08025 0.102 0.0536	0.0006 0.0006 0.0005 0.0005 0.000555	0.000 0.000 0.000 0.000 0.000 0.000		0.00085 0.00099 0.07145 0.0031	001	0.0028 0.001 0.001 0.001	0.01 0.01 0.01185 0.01	0.0002	0.01	3.32 4.4 4.4 4.4	0.01	0.001 0.001 0.001 0.001
	Mean 50	0.00591 0.00514 0.006 0.006	0.00529 0.00457 0.00457 0.00457	0.0428 0.0816 0.117 0.0583 0.219	0.000506 0.000688 0.000631 0.0005	0.000652 0.000848 0.00067 0.000652 0.000657	0.00539 0.005 0.005 0.005 0.00504	0.000998 0.00121 0.0884 0.00303	0.206 0.1 0.109 0.112	0.00349 0.002 0.00172 0.00172	0.00878 0.00852 0.0139 0.0105	0.000242 0.00025 0.00024 0.000251	0.00909 0.00864 0.0085 0.0085	3.77 3.73 3.29 2.73 3.31	0.0124 0.0107 0.0105 0.0105	0.001 0.00141 0.001 0.001
	Range of Non- Detect	0.005-0.025 0.005-0.025 0.005-0.025 0.005-0.025	0.003-0.005 0.003-0.01 0.003-0.005 0.003-0.005			0.0005-0.004 0.0005-0.005 0.0005-0.004 0.0005-0.004		0.001-0.001	0.1-0.1 0.1-0.1 0.1-0.1 0.1-0.1	0.01-0.01 0.001-0.01 0.001-0.01 0.001-0.01	0.005-0.02 0.005-0.01 0.01-0.01 0.005-0.01	0.0002-0.001 0.0002-0.001 0.0002-0.001 0.0002-0.001	0.005-0.02 0.005-0.01 0.005-0.01 0.005-0.01	9 4 4 4 4 9 4 4 4 4		0.001-0.001 0.001-0.01 0.001-0.001 0.001-0.001
	Percent Ra Non-Detects	100%	88% 88% 96% 0 96%	* * * * *	96% 0.100% 0.100% 0.1100% 0.141% 0.100%	100% 100% 91% 0 100% 0 96%	96% 100% 100% 100%	4 4 % 6 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	4% 100% 65% 78% 70%	4% 100% 100% 100%	96% 88% 25% 70% 80%	100% 100% 0 100% 0 100% 0 90%	100% 100% 100% 100%	30% 26% 32% 36% 14%	100%	100% 100% 100% 100%
	Frequency of Detection	0/22 0/22 0/20 0/20 0/20	3/24 3/24 1/23 1/23 0/23	24/24 24/24 23/23 23/23	1/23 0/24 11/22 0/22 13/22	0/23 0/23 2/23 0/23 1/23	1/23 0/22 0/23 0/23 1/23	23/24 23/24 26/26 23/23 16/23	23/24 0/24 8/23 5/23 7/23	23/24 0/24 0/23 0/23 0/23	1/24 3/24 15/20 6/20 4/20	0/24 0/24 0/20 0/20 2/20	0/22 0/22 0/20 0/20 0/20	16/23 17/23 15/22 14/22	0/24 0/24 0/23 0/23 0/23	0/22 0/22 0/20 0/20 0/20
	Location Id	CBW-1 PM-1 POZ-4 POZ-6 POZ-7	CBW-1 PM-1 POZ-4 POZ-6 POZ-7	CBW-1 PM-1 POZ-4 POZ-6 POZ-7	CBW-1 PM-1 POZ-4 POZ-6	CBW-1 PM-1 POZ-4 POZ-6 POZ-7	CBW-1 PM-1 POZ-4 POZ-6 POZ-7	CBW-1 PM-1 POZ-4 POZ-6 POZ-7	CBW-1 PM-1 POZ-4 POZ-6 POZ-7	CBW-1 PM-1 POZ-4 POZ-6 POZ-7	CBW-1 PM-1 POZ-4 POZ-6 POZ-7	CBW-1 PM-1 POZ-4 POZ-6 POZ-7	CBW-1 PM-1 POZ-4 POZ-6 POZ-7	CBW-1 PM-1 POZ-4 POZ-6 POZ-7	CBW-1 PM-1 POZ-4 POZ-6 POZ-7	CBW-1 PM-1 POZ-4 POZ-6

Appendix B:

Certificates of Analysis, External Lab Reports, & Field Parameters

One Riverwood Drive P.O. Box 2946101 Moncks Corner, SC 29461-2901

(843) 761-8000

SANTEE COOPER ANALYTICAL SERVICES

CERTIFICATE OF ANALYSIS

LAB CERTIFICATION #08552

Sample Collector: WJK/ML **Sample #** AF87807 Location: GW Well PM-1 Date: 01/08/2024

Loc. Code PM-1 Time: 10:48

Loc. Code Pivi-1			11me. 10.46		
Analysis	Result	Units	Test Date	Analyst	Method
Aluminum	0.86	mg/L	01/19/2024	SKJACOBS	EPA 6020B
Arsenic	<5.0	ug/L	01/19/2024	SKJACOBS	EPA 6020B
Arsenic Dissolved	<5.0	ug/L	01/12/2024	SKJACOBS	EPA 6020B
Barium	77.8	ug/L	01/19/2024	SKJACOBS	EPA 6020B
Beryllium	<0.5	ug/L	01/19/2024	SKJACOBS	EPA 6020B
Calcium	119	mg/L	01/19/2024	SKJACOBS	EPA 6020B
Cadmium	<0.5	ug/L	01/19/2024	SKJACOBS	EPA 6020B
Cobalt	1.6	ug/L	01/19/2024	SKJACOBS	EPA 6020B
Chromium	<5.0	ug/L	01/19/2024	SKJACOBS	EPA 6020B
Iron	11400	ug/L	01/19/2024	SKJACOBS	EPA 6020B
Potassium	0.65	mg/L	01/19/2024	SKJACOBS	EPA 6020B
Magnesium	0.70	mg/L	01/19/2024	SKJACOBS	EPA 6020B
Sodium	5.8	mg/L	01/19/2024	SKJACOBS	EPA 6020B
Lead	<1.0	ug/L	01/19/2024	SKJACOBS	EPA 6020B
Antimony	<5.0	ug/L	01/19/2024	SKJACOBS	EPA 6020B
Selenium	<10.0	ug/L	01/19/2024	SKJACOBS	EPA 6020B
Thallium	<1.0	ug/L	01/19/2024	SKJACOBS	EPA 6020B
Boron	14.2	ug/L	01/11/2024	SKJACOBS	EPA 6010D
Lithium	5.26	ug/L	01/11/2024	SKJACOBS	EPA 6010D
Molybdenum	<5.0	ug/L	01/11/2024	SKJACOBS	EPA 6010D
Mercury	<0.2	ug/L	01/22/2024	EUROFINS SAV	EPA 7470
Zinc	<10.0	ug/L	01/19/2024	SKJACOBS	EPA 6020B
Total Organic Carbon	5.49	mg/L	01/17/2024	GEL	SM 5310B
Nitrate	<0.10	mg/L	01/10/2024	KCWELLS	EPA 300.0
Fluoride	<0.10	mg/L	01/10/2024	KCWELLS	EPA 300.0
Chloride	12.8	mg/L	01/10/2024	KCWELLS	EPA 300.0
Sulfate	7.62	mg/L	01/10/2024	KCWELLS	EPA 300.0
Total Dissolved Solids	193.8	mg/L	01/12/2024	SJBROWN	SM 2540C
Radium 226	0.612	pCi/L	01/24/2024	GEL	EPA 903.1 Mod
Radium 228	1.24	pCi/L	01/23/2024	GEL	EPA 904.0
Radium 226/228 Combined Calculation	1.852	pCi/L	02/12/2024	SJLEVY	EPA 903.1 Mod
рН	5.13	SU	01/08/2024	WJK/ML	

Comments:

Independent Laboratory Results: "GEL" - GEL Laboratories LLC - Lab ID # 10120; "Test America" - TestAmerica Laboratories, Inc. - Lab ID# 98001; "DavisBrown"- Davis & Brown Lab ID # 21117; "Shealy"- Shealy Environmental Services, Inc.- Lab ID# 32010 "ROGERSCALLCO"-Rogers & Callcot, Inc.- Lab ID # 23105001

Validation date

Analysis Validated:

Linda Williams - Manager Analytical Services

One Riverwood Drive P.O. Box 2946101 Moncks Corner, SC 29461-2901 (843) 761-8000

SANTEE COOPER ANALYTICAL SERVICES

CERTIFICATE OF ANALYSIS

LAB CERTIFICATION #08552

Sample # AF87768 Location: GW Well CBW-1 Date: 01/08/2024 Sample Collector: WJK/ML

Loc. Code CBW-1 Time: 11:55

Loc. Code CDVV-1			11me: 11:55		
Analysis	Result	Units	Test Date	Analyst	Method
Aluminum	0.60	mg/L	01/19/2024	SKJACOBS	EPA 6020B
Arsenic	<5.0	ug/L	01/19/2024	SKJACOBS	EPA 6020B
Arsenic Dissolved	<5.0	ug/L	01/12/2024	SKJACOBS	EPA 6020B
Barium	41.3	ug/L	01/19/2024	SKJACOBS	EPA 6020B
Beryllium	<0.5	ug/L	01/19/2024	SKJACOBS	EPA 6020B
Calcium	25.0	mg/L	01/19/2024	SKJACOBS	EPA 6020B
Cadmium	<0.5	ug/L	01/19/2024	SKJACOBS	EPA 6020B
Cobalt	0.87	ug/L	01/19/2024	SKJACOBS	EPA 6020B
Chromium	<5.0	ug/L	01/19/2024	SKJACOBS	EPA 6020B
Iron	<50.0	ug/L	01/19/2024	SKJACOBS	EPA 6020B
Potassium	0.73	mg/L	01/19/2024	SKJACOBS	EPA 6020B
Magnesium	1.9	mg/L	01/19/2024	SKJACOBS	EPA 6020B
Sodium	13.4	mg/L	01/19/2024	SKJACOBS	EPA 6020B
Lead	2.4	ug/L	01/19/2024	SKJACOBS	EPA 6020B
Antimony	<5.0	ug/L	01/19/2024	SKJACOBS	EPA 6020B
Selenium	<10.0	ug/L	01/19/2024	SKJACOBS	EPA 6020B
Thallium	<1.0	ug/L	01/19/2024	SKJACOBS	EPA 6020B
Boron	19.3	ug/L	01/11/2024	SKJACOBS	EPA 6010D
Lithium	<5.0	ug/L	01/11/2024	SKJACOBS	EPA 6010D
Molybdenum	<5.0	ug/L	01/11/2024	SKJACOBS	EPA 6010D
Mercury	<0.2	ug/L	01/22/2024	EUROFINS SAV	EPA 7470
Zinc	<10.0	ug/L	01/19/2024	SKJACOBS	EPA 6020B
Total Organic Carbon	2.19	mg/L	01/17/2024	GEL	SM 5310B
Nitrate	0.72	mg/L	01/10/2024	KCWELLS	EPA 300.0
Fluoride	0.14	mg/L	01/10/2024	KCWELLS	EPA 300.0
Chloride	3.48	mg/L	01/10/2024	KCWELLS	EPA 300.0
Sulfate	83.6	mg/L	01/10/2024	KCWELLS	EPA 300.0
Total Dissolved Solids	188.8	mg/L	01/12/2024	SJBROWN	SM 2540C
Radium 226	0.278	pCi/L	01/24/2024	GEL	EPA 903.1 Mod
Radium 228	1.22	pCi/L	01/23/2024	GEL	EPA 904.0
Radium 226/228 Combined Calculation	1.498	pCi/L	02/12/2024	SJLEVY	EPA 903.1 Mod
pH	4.44	SU	01/08/2024	WJK/ML	

Comments:

Independent Laboratory Results: "GEL" - GEL Laboratories LLC - Lab ID # 10120; "Test America" - TestAmerica Laboratories, Inc. - Lab ID# 98001; "DavisBrown"- Davis & Brown Lab ID # 21117; "Shealy"- Shealy Environmental Services, Inc.- Lab ID# 32010 "ROGERSCALLCO"-Rogers & Callcot, Inc.- Lab ID # 23105001

Analysis Validated:

Linda Williams - Manager Analytical Services

Validation date: 3/27/24

One Riverwood Drive P.O. Box 2946101 Moncks Corner, SC 29461-2901 (843) 761-8000

SANTEE COOPER ANALYTICAL SERVICES

CERTIFICATE OF ANALYSIS

LAB CERTIFICATION #08552

Sample # AF87808 Location: GW Well POZ-3 Date: 01/23/2024 Sample Collector: WJK/CS

Loc. Code POZ-3 Time: 12:08

LOC. COUR POZ-3			1111le. 12.00		
Analysis	Result	Units	Test Date	Analyst	Method
Arsenic	<5.0	ug/L	02/07/2024	SKJACOBS	EPA 6020B
Arsenic Dissolved	<5.0	ug/L	02/06/2024	SKJACOBS	EPA 6020B
Barium	94.0	ug/L	02/07/2024	SKJACOBS	EPA 6020B
Beryllium	<0.5	ug/L	02/07/2024	SKJACOBS	EPA 6020B
Calcium	180	mg/L	02/07/2024	SKJACOBS	EPA 6020B
Cadmium	<0.5	ug/L	02/07/2024	SKJACOBS	EPA 6020B
Cobalt	0.89	ug/L	02/07/2024	SKJACOBS	EPA 6020B
Chromium	<5.0	ug/L	02/07/2024	SKJACOBS	EPA 6020B
Iron	<50.0	ug/L	02/07/2024	SKJACOBS	EPA 6020B
Lead	<1.0	ug/L	02/07/2024	SKJACOBS	EPA 6020B
Antimony	<5.0	ug/L	02/07/2024	SKJACOBS	EPA 6020B
Selenium	<10.0	ug/L	02/07/2024	SKJACOBS	EPA 6020B
Thallium	<1.0	ug/L	02/07/2024	SKJACOBS	EPA 6020B
Boron	12.4	ug/L	01/30/2024	SKJACOBS	EPA 6010D
Zinc	<10.0	ug/L	02/07/2024	SKJACOBS	EPA 6020B
Total Organic Carbon	2.71	mg/L	01/30/2024	GEL	SM 5310B
Nitrate	<0.10	mg/L	01/25/2024	KCWELLS	EPA 300.0
Fluoride	<0.10	mg/L	01/25/2024	KCWELLS	EPA 300.0
Chloride	9.42	mg/L	01/25/2024	KCWELLS	EPA 300.0
Sulfate	74.2	mg/L	01/25/2024	KCWELLS	EPA 300.0
Total Dissolved Solids	588.8	mg/L	01/25/2024	KCWELLS	SM 2540C
Radium 226	0.309	pCi/L	02/15/2024	GEL	EPA 903.1 Mod
Radium 228	2.73	pCi/L	02/22/2024	GEL	EPA 904.0
Radium 226/228 Combined Calculation	3.039	pCi/L	02/22/2024	TDHARRIS	EPA 903.1 Mod
рН	6.47	SU	01/23/2024	WJK/CS	

Comments:

Independent Laboratory Results: "GEL" - GEL Laboratories LLC - Lab ID # 10120; "Test America" - TestAmerica Laboratories, Inc. - Lab ID# 98001; "DavisBrown"- Davis & Brown Lab ID # 21117; "Shealy"- Shealy Environmental Services, Inc.- Lab ID# 32010 "ROGERSCALLCO"-Rogers & Callcot, Inc.- Lab ID # 23105001

Validation date: 3

Analysis Validated:

Linda Williams - Manager Analytical Services

Authorized Signature Only- Not Valid Unless Signed

One Riverwood Drive P.O. Box 2946101 Moncks Corner, SC 29461-2901 (843) 761-8000

SANTEE COOPER ANALYTICAL SERVICES

CERTIFICATE OF ANALYSIS

LAB CERTIFICATION #08552

Sample # AF87809 Location: GW Well POZ-4 Date: 01/23/2024 Sample Collector: WJK/CS

Loc. Code POZ-4 Time: 14:37

E00. 00de 1 02 7			Tillie. 14.07		
Analysis	Result	Units	Test Date	Analyst	Method
Arsenic	<5.0	ug/L	02/07/2024	SKJACOBS	EPA 6020B
Arsenic Dissolved	<5.0	ug/L	02/06/2024	SKJACOBS	EPA 6020B
Barium	155	ug/L	02/07/2024	SKJACOBS	EPA 6020B
Beryllium	<0.5	ug/L	02/07/2024	SKJACOBS	EPA 6020B
Calcium	320	mg/L	02/07/2024	SKJACOBS	EPA 6020B
Cadmium	<0.5	ug/L	02/07/2024	SKJACOBS	EPA 6020B
Cobalt	77.9	ug/L	02/07/2024	SKJACOBS	EPA 6020B
Chromium	<5.0	ug/L	02/07/2024	SKJACOBS	EPA 6020B
Iron	2080	ug/L	02/07/2024	SKJACOBS	EPA 6020B
Lead	<1.0	ug/L	02/07/2024	SKJACOBS	EPA 6020B
Antimony	<5.0	ug/L	02/07/2024	SKJACOBS	EPA 6020B
Selenium	<10.0	ug/L	02/07/2024	SKJACOBS	EPA 6020B
Thallium	<1.0	ug/L	02/07/2024	SKJACOBS	EPA 6020B
Boron	26.9	ug/L	01/30/2024	SKJACOBS	EPA 6010D
Zinc	11.6	ug/L	02/07/2024	SKJACOBS	EPA 6020B
Total Organic Carbon	1.86	mg/L	01/30/2024	GEL	SM 5310B
Nitrate	0.48	mg/L	01/25/2024	KCWELLS	EPA 300.0
Fluoride	<0.10	mg/L	01/25/2024	KCWELLS	EPA 300.0
Chloride	6.20	mg/L	01/25/2024	KCWELLS	EPA 300.0
Sulfate	5.32	mg/L	01/25/2024	KCWELLS	EPA 300.0
Total Dissolved Solids	1552	mg/L	01/25/2024	KCWELLS	SM 2540C
Radium 226	0.403	pCi/L	02/15/2024	GEL	EPA 903.1 Mod
Radium 228	1.99	pCi/L	02/22/2024	GEL	EPA 904.0
Radium 226/228 Combined Calculation	2.393	pCi/L	02/22/2024	SJLEVY	EPA 903.1 Mod
pH	6.24	SU	01/23/2024	WJK/CS	

Comments:

Independent Laboratory Results: "GEL" - GEL Laboratories LLC - Lab ID # 10120; "Test America" - TestAmerica Laboratories, Inc. - Lab ID# 98001; "DavisBrown"- Davis & Brown Lab ID # 21117; "Shealy"- Shealy Environmental Services, Inc.- Lab ID# 32010 "ROGERSCALLCO"-Rogers & Callcot, Inc.- Lab ID # 23105001

Analysis Validated:

Linda Williams - Manager Analytical Services

Validation date: 3/27/24

One Riverwood Drive P.O. Box 2946101 Moncks Comer, SC 29461-2901 (843) 761-8000

SANTEE COOPER ANALYTICAL SERVICES CERTIFICATE OF ANALYSIS LAB CERTIFICATION #08552

Sample # AF87810 Location: GW Well POZ-5D Date: 01/23/2024 Sample Collector:

Loc. Code POZ-5D Time: 10:46

Analysis	Result	Units	Test Date	Analyst	Method
Arsenic	<5.0	ug/L	02/07/2024	SKJACOBS	EPA 6020B
Arsenic Dissolved	<5.0	ug/L	02/06/2024	SKJACOBS	EPA 6020B
Barium	69.8	ug/L	02/07/2024	SKJACOBS	EPA 6020B
Cadmium	<0.5	ug/L	02/07/2024	SKJACOBS	EPA 6020B
Cobalt	9.7	ug/L	02/07/2024	SKJACOBS	EPA 6020B
Chromium	<5.0	ug/L	02/07/2024	SKJACOBS	EPA 6020B
Iron	11600	ug/L	02/07/2024	SKJACOBS	EPA 6020B
Lead	<1.0	ug/L	02/07/2024	SKJACOBS	EPA 6020B
Selenium	<10.0	ug/L	02/07/2024	SKJACOBS	EPA 6020B
Zinc	14.4	ug/L	02/07/2024	SKJACOBS	EPA 6020B
Boron	244	ug/L	01/30/2024	SKJACOBS	EPA 6010D
Total Organic Carbon	2.39	mg/L	01/30/2024	GEL	SM 5310B
Chloride	816	mg/L	01/25/2024	KCWELLS	EPA 300.0
Nitrate	<0.10	mg/L	01/25/2024	KCWELLS	EPA 300.0
Sulfate	649	mg/L	01/25/2024	KCWELLS	EPA 300.0
Total Dissolved Solids	3035	mg/L	01/25/2024	KCWELLS	SM 2540C
рН	6.47	SU	01/23/2024	WJK/CS	

Independent Laboratory Results: "GEL" - GEL Laboratories LLC - Lab ID # 10120; "Test America" - TestAmerica Laboratories, Inc. - Lab ID# 98001; "DavisBrown"- Davis & Brown Lab ID # 21117; "Shealy"- Shealy Environmental Services, Inc. - Lab ID# 32010

Sample Validated

Linda Williams - Manager, Analytical Services

Final Validation Date:

3/27/24

One Riverwood Drive P.O. Box 2946101 Moncks Corner, SC 29461-2901

(843) 761-8000

SANTEE COOPER ANALYTICAL SERVICES

CERTIFICATE OF ANALYSIS

LAB CERTIFICATION #08552

Sample Collector: WJK/CS Location: GW Well POZ-6 Date: 01/23/2024 **Sample #** AF87811

Time: 15:42 Loc. Code POZ-6

200: 0000 : 020					
Analysis	Result	Units	Test Date	Analyst	Method
Arsenic	<5.0	ug/L	02/07/2024	SKJACOBS	EPA 6020B
Arsenic Dissolved	<5.0	ug/L	02/06/2024	SKJACOBS	EPA 6020B
Barium	83.4	ug/L	02/07/2024	SKJACOBS	EPA 6020B
Beryllium	<0.5	ug/L	02/07/2024	SKJACOBS	EPA 6020B
Calcium	431	mg/L	02/07/2024	SKJACOBS	EPA 6020B
Cadmium	<0.5	ug/L	02/07/2024	SKJACOBS	EPA 6020B
Cobalt	1.6	ug/L	02/07/2024	SKJACOBS	EPA 6020B
Chromium	<5.0	ug/L	02/07/2024	SKJACOBS	EPA 6020B
Iron	13200	ug/L	02/07/2024	SKJACOBS	EPA 6020B
Lead	<1.0	ug/L	02/07/2024	SKJACOBS	EPA 6020B
Antimony	<5.0	ug/L	02/07/2024	SKJACOBS	EPA 6020B
Selenium	<10.0	ug/L	02/07/2024	SKJACOBS	EPA 6020B
Thallium	<1.0	ug/L	02/07/2024	SKJACOBS	EPA 6020B
Boron	38.6	ug/L	01/30/2024	SKJACOBS	EPA 6010D
Zinc	<10.0	ug/L	02/07/2024	SKJACOBS	EPA 6020B
Total Organic Carbon	2.77	mg/L	01/30/2024	GEL	SM 5310B
Nitrate	<0.10	mg/L	01/25/2024	KCWELLS	EPA 300.0
Fluoride	<0.10	mg/L	01/25/2024	KCWELLS	EPA 300.0
Chloride	323	mg/L	01/25/2024	KCWELLS	EPA 300.0
Sulfate	494	mg/L	01/25/2024	KCWELLS	EPA 300.0
Total Dissolved Solids	1872	mg/L	01/25/2024	KCWELLS	SM 2540C
Radium 226	1.05	pCi/L	02/15/2024	GEL	EPA 903.1 Mod
Radium 228	-0.619	pCi/L	02/22/2024	GEL	EPA 904.0
Radium 226/228 Combined Calculation	1.05	pCi/L	02/22/2024	TDHARRIS	EPA 903.1 Mod
На	6.55	SU	01/23/2024	WJK/CS	

Comments:

Independent Laboratory Results: "GEL" - GEL Laboratories LLC - Lab ID # 10120; "Test America " - TestAmerica Laboratories, Inc. - Lab ID# 98001; "DavisBrown"- Davis & Brown Lab ID # 21117; "Shealy"- Shealy Environmental Services, Inc.- Lab ID# 32010 "ROGERSCALLCO"-Rogers & Callcot, Inc.- Lab ID # 23105001

Analysis Validated:

Validation date: Linda Williams - Manager Analytical Services

SANTEE COOPER ANALYTICAL SERVICES

CERTIFICATE OF ANALYSIS

LAB CERTIFICATION #08552

Sample # AF87812 Location: GW Well POZ-7 Date: 01/24/2024 Sample Collector: WJK/ML

Loc. Code POZ-7 Time: 14:25

Loc. oode OL	11110. 14.20					
Analysis	Result	Units	Test Date	Analyst	Method	
Arsenic	<5.0	ug/L	02/07/2024	SKJACOBS	EPA 6020B	
Arsenic Dissolved	<5.0	ug/L	02/06/2024	SKJACOBS	EPA 6020B	
Barium	94.9	ug/L	02/07/2024	SKJACOBS	EPA 6020B	
Beryllium	0.58	ug/L	02/07/2024	SKJACOBS	EPA 6020B	
Calcium	8.9	mg/L	02/07/2024	SKJACOBS	EPA 6020B	
Cadmium	<0.5	ug/L	02/07/2024	SKJACOBS	EPA 6020B	
Cobalt	1.2	ug/L	02/07/2024	SKJACOBS	EPA 6020B	
Chromium	<5.0	ug/L	02/07/2024	SKJACOBS	EPA 6020B	
Iron	<50.0	ug/L	02/07/2024	SKJACOBS	EPA 6020B	
Lead	<1.0	ug/L	02/07/2024	SKJACOBS	EPA 6020B	
Antimony	<5.0	ug/L	02/07/2024	SKJACOBS	EPA 6020B	
Selenium	<10.0	ug/L	02/07/2024	SKJACOBS	EPA 6020B	
Thallium	<1.0	ug/L	02/07/2024	SKJACOBS	EPA 6020B	
Boron	<10.0	ug/L	01/30/2024	SKJACOBS	EPA 6010D	
Zinc	<10.0	ug/L	02/07/2024	SKJACOBS	EPA 6020B	
Total Organic Carbon	<1	mg/L	01/30/2024	GEL	SM 5310B	
Nitrate	<0.10	mg/L	01/25/2024	KCWELLS	EPA 300.0	
Fluoride	<0.10	mg/L	01/25/2024	KCWELLS	EPA 300.0	
Chloride	21.0	mg/L	01/25/2024	KCWELLS	EPA 300.0	
Sulfate	<2.0	mg/L	01/25/2024	KCWELLS	EPA 300.0	
Total Dissolved Solids	105.0	mg/L	01/25/2024	KCWELLS	SM 2540C	
Radium 226	0.508	pCi/L	02/15/2024	GEL	EPA 903.1 Mod	
Radium 228	0.581	pCi/L	02/22/2024	GEL	EPA 904.0	
Radium 226/228 Combined Calculation	1.089	pCi/L	02/22/2024	SJLEVY	EPA 903.1 Mod	
pH	5.15	SU	01/24/2024	WJK/ML		

Comments:

Independent Laboratory Results: "GEL" - GEL Laboratories LLC - Lab ID # 10120; "Test America" - TestAmerica Laboratories, Inc. - Lab ID# 98001; "DavisBrown"- Davis & Brown Lab ID # 21117; "Shealy"- Shealy Environmental Services, Inc.- Lab ID# 32010 "ROGERSCALLCO"-Rogers & Callcot, Inc.- Lab ID # 23105001

Analysis Validated:

Linda Williams - Manager Analytical Services

Validation date: 3/27/24

One Riverwood Drive P.O. Box 2946101 Moncks Corner, SC 29461-2901

(843) 761-8000

SANTEE COOPER ANALYTICAL SERVICES

CERTIFICATE OF ANALYSIS

LAB CERTIFICATION #08552

Location: GW Well POZ-7 Sample Collector: WJK/ML **Sample #** AF87813 Date: 01/24/2024

Loc. Code POZ-7 DUP Time: 14:30

Loc. Code POZ-7	Time: 14.30					
Analysis	Result	Units	Test Date	Analyst	Method	
Arsenic	<5.0	ug/L	02/07/2024	SKJACOBS	EPA 6020B	
Arsenic Dissolved	<5.0	ug/L	02/06/2024	SKJACOBS	EPA 6020B	
Barium	90.9	ug/L	02/07/2024	SKJACOBS	EPA 6020B	
Beryllium	0.62	ug/L	02/07/2024	SKJACOBS	EPA 6020B	
Calcium	8.2	mg/L	02/07/2024	SKJACOBS	EPA 6020B	
Cadmium	<0.5	ug/L	02/07/2024	SKJACOBS	EPA 6020B	
Cobalt	1.3	ug/L	02/07/2024	SKJACOBS	EPA 6020B	
Chromium	<5.0	ug/L	02/07/2024	SKJACOBS	EPA 6020B	
Iron	<50.0	ug/L	02/07/2024	SKJACOBS	EPA 6020B	
Lead	<1.0	ug/L	02/07/2024	SKJACOBS	EPA 6020B	
Antimony	<5.0	ug/L	02/07/2024	SKJACOBS	EPA 6020B	
Selenium	<10.0	ug/L	02/07/2024	SKJACOBS	EPA 6020B	
Thallium	<1.0	ug/L	02/07/2024	SKJACOBS	EPA 6020B	
Boron	10.2	ug/L	01/30/2024	SKJACOBS	EPA 6010D	
Zinc	<10.0	ug/L	02/07/2024	SKJACOBS	EPA 6020B	
Total Organic Carbon	<1	mg/L	01/30/2024	GEL	SM 5310B	
Nitrate	<0.10	mg/L	01/25/2024	KCWELLS	EPA 300.0	
Fluoride	<0.10	mg/L	01/25/2024	KCWELLS	EPA 300.0	
Chloride	20.4	mg/L	01/25/2024	KCWELLS	EPA 300.0	
Sulfate	<2.0	mg/L	01/25/2024	KCWELLS	EPA 300.0	
Total Dissolved Solids	68.75	mg/L	01/25/2024	KCWELLS	SM 2540C	
Radium 226	0.981	pCi/L	02/15/2024	GEL	EPA 903.1 Mod	
Radium 228	2.96	pCi/L	02/22/2024	GEL	EPA 904.0	
Radium 226/228 Combined Calculation	3.941	pCi/L	02/22/2024	SJLEVY	EPA 903.1 Mod	

Comments:

Independent Laboratory Results: "GEL" - GEL Laboratories LLC - Lab ID# 10120; "Test America" - TestAmerica Laboratories, Inc. - Lab ID# 98001; "DavisBrown"- Davis & Brown Lab ID # 21117; "Shealy"- Shealy Environmental Services, Inc.- Lab ID# 32010 "ROGERSCALLCO"-Rogers & Callcot, Inc.- Lab ID # 23105001

Validation date:

Analysis Validated:

SANTEE COOPER ANALYTICAL SERVICES

CERTIFICATE OF ANALYSIS

LAB CERTIFICATION #08552

Sample # AF87814 Location: GW Well POZ-8 Date: 01/25/2024 Sample Collector: WJK/ML

Loc. Code POZ-8 Time: 09:28

Loc. Code POZ-0	Time. 03.20					
Analysis	Result	Units	Test Date	Analyst	Method	
Arsenic	<5.0	ug/L	02/08/2024	SKJACOBS	EPA 6020B	
Barium	796	ug/L	02/12/2024	SKJACOBS	EPA 6020B	
Beryllium	<0.5	ug/L	02/12/2024	SKJACOBS	EPA 6020B	
Calcium	1030	mg/L	02/08/2024	SKJACOBS	EPA 6020B	
Cadmium	<0.5	ug/L	02/08/2024	SKJACOBS	EPA 6020B	
Cobalt	<0.5	ug/L	02/08/2024	SKJACOBS	EPA 6020B	
Chromium	<5.0	ug/L	02/08/2024	SKJACOBS	EPA 6020B	
Lead	<1.0	ug/L	02/08/2024	SKJACOBS	EPA 6020B	
Antimony	<5.0	ug/L	02/08/2024	SKJACOBS	EPA 6020B	
Selenium	<10.0	ug/L	02/08/2024	SKJACOBS	EPA 6020B	
Thallium	<1.0	ug/L	02/08/2024	SKJACOBS	EPA 6020B	
Boron	48.4	ug/L	01/31/2024	SKJACOBS	EPA 6010D	
Lithium	307	ug/L	01/31/2024	SKJACOBS	EPA 6010D	
Molybdenum	<5.0	ug/L	01/31/2024	SKJACOBS	EPA 6010D	
Mercury	<0.2	ug/L	02/06/2024	EUROFINS SAV	EPA 7470	
Fluoride	<0.10	mg/L	01/31/2024	KCWELLS	EPA 300.0	
Chloride	2010	mg/L	01/31/2024	KCWELLS	EPA 300.0	
Sulfate	180	mg/L	01/31/2024	KCWELLS	EPA 300.0	
Total Dissolved Solids	4562	mg/L	01/31/2024	KCWELLS	SM 2540C	
Radium 226	1.08	pCi/L	02/21/2024	GEL	EPA 903.1 Mod	
Radium 228	0.712	pCi/L	02/23/2024	GEL	EPA 904.0	
Radium 226/228 Combined Calculation	1.792	pCi/L	03/05/2024	SJLEVY	EPA 903.1 Mod	
На	6.37	SU	01/25/2024	WJK/ML		

Comments:

Independent Laboratory Results: "GEL" - GEL Laboratories LLC - Lab ID # 10120; "Test America" - TestAmerica Laboratories, Inc. - Lab ID# 98001; "DavisBrown"- Davis & Brown Lab ID # 21117; "Shealy"- Shealy Environmental Services, Inc.- Lab ID# 32010 "ROGERSCALLCO"-Rogers & Callcot, Inc.- Lab ID # 23105001

Validation date: 5/27/24

Analysis Validated:

SANTEE COOPER ANALYTICAL SERVICES CERTIFICATE OF ANALYSIS LAB CERTIFICATION #08552

Sample # AF87789 Loca

Location: GW Well CCMLF-1

Date: 01/24/2024

Sample Collector: WJK/ML

Loc. Code CCMLF-1

Time: 12:28

g					
Analysis	Result	Units	Test Date	Analyst	Method
Arsenic	<5.0	ug/L	02/07/2024	SKJACOBS	EPA 6020B
Barium	79.7	ug/L	02/07/2024	SKJACOBS	EPA 6020B
Beryllium	<0.5	ug/L	02/07/2024	SKJACOBS	EPA 6020B
Calcium	13.3	mg/L	02/07/2024	SKJACOBS	EPA 6020B
Cadmium	<0.5	ug/L	02/07/2024	SKJACOBS	EPA 6020B
Cobalt	2.1	ug/L	02/07/2024	SKJACOBS	EPA 6020B
Chromium	<5.0	ug/L	02/07/2024	SKJACOBS	EPA 6020B
Lead	<1.0	ug/L	02/07/2024	SKJACOBS	EPA 6020B
Antimony	<5.0	ug/L	02/07/2024	SKJACOBS	EPA 6020B
Selenium	<10.0	ug/L	02/07/2024	SKJACOBS	EPA 6020B
Thalllum	<1.0	ug/L	02/07/2024	SKJACOBS	EPA 6020B
Boron	24.0	ug/L	01/30/2024	SKJACOBS	EPA 6010D
Lithium	<5.0	ug/L	01/30/2024	SKJACOBS	EPA 6010D
Molybdenum	<5.0	ug/L	01/30/2024	SKJACOBS	EPA 6010D
Mercury	<0.2	ug/L	02/06/2024	EUROFINS SAV	EPA 7470
Fluoride	<0.10	mg/L	01/25/2024	KCWELLS	EPA 300.0
Chloride	9.82	mg/L	01/25/2024	KCWELLS	EPA 300.0
Sulfate	15.6	mg/L	01/25/2024	KCWELLS	EPA 300.0
Total Dissolved Solids	65.00	mg/L	01/25/2024	KCWELLS	SM 2540C
рН	5.53	SU	01/24/2024	WJK/ML	
Radium 226	0.793	pCi/L	02/15/2024	GEL	EPA 903.1 Mod
Radium 228	0.349	pCi/L	02/22/2024	GEL	EPA 904.0
Radium 226/228 Combined Calculation	1.142	pCi/L	03/05/2024	SJLEVY	EPA 903.1 Mod

Independent Laboratory Results: "GEL" - GEL Laboratories LLC - Lab ID # 10120; "Test America" - TestAmerica Laboratories, Inc. - Lab ID# 98001; "DavisBrown"- Davis & Brown Lab ID # 21117; "Shealy"- Shealy Environmental Services, Inc. - Lab ID# 32010

Sample Validated:

Linda Williams - Manager, Analytical Services

Final Validation Date:

3/27/24

SANTEE COOPER ANALYTICAL SERVICES CERTIFICATE OF ANALYSIS LAB CERTIFICATION #08552

Sample # AF87790 Location: GW Well CCMLF-1D Date: 01/24/2024 Sample Collector: WJK/ML

Loc. Code CCMLF-1D Time: 11:31

Analysis	Result	Units	Test Date	Analyst	Method
Arsenic	<5.0	ug/L	02/07/2024	SKJACOBS	EPA 6020B
Barium	37.4	ug/L	02/07/2024	SKJACOBS	EPA 6020B
Beryllium	<0.5	ug/L	02/07/2024	SKJACOBS	EPA 6020B
Calcium	55.0	mg/L	02/07/2024	SKJACOBS	EPA 6020B
Cadmium	<0.5	ug/L	02/07/2024	SKJACOBS	EPA 6020B
Cobalt	0.64	ug/L	02/07/2024	SKJACOBS	EPA 6020B
Chromium	<5.0	ug/L	02/07/2024	SKJACOBS	EPA 6020B
Lead	<1.0	ug/L	02/07/2024	SKJACOBS	EPA 6020B
Antimony	<5.0	ug/L	02/07/2024	SKJACOBS	EPA 6020B
Selenium	<10.0	ug/L	02/07/2024	SKJACOBS	EPA 6020B
Thallium	<1.0	ug/L	02/07/2024	SKJACOBS	EPA 6020B
Boron	15.6	ug/L	01/30/2024	SKJACOBS	EPA 6010D
Lithium	<5.0	ug/L	01/30/2024	SKJACOBS	EPA 6010D
Molybdenum	<5.0	ug/L	01/30/2024	SKJACOBS	EPA 6010D
Mercury	<0.2	ug/L	02/06/2024	EUROFINS SAV	EPA 7470
Fluoride	<0.10	mg/L	01/25/2024	KCWELLS	EPA 300.0
Chloride	6.16	mg/L	01/25/2024	KCWELLS	EPA 300.0
Sulfate	3.99	mg/L	01/25/2024	KCWELLS	EPA 300.0
Total Dissolved Solids	167.5	mg/L	01/25/2024	KCWELLS	SM 2540C
рН	7.23	SU	01/24/2024	WJK/ML	
Radium 226	0.631	pCi/L	02/15/2024	GEL	EPA 903.1 Mod
Radium 228	0.998	pCi/L	02/22/2024	GEL	EPA 904.0
Radium 226/228 Combined Calculation	1.629	pCi/L	03/05/2024	SJLEVY	EPA 903.1 Mod

Independent Laboratory Results: "GEL" - GEL Laboratories LLC - Lab ID # 10120; "Test America" - TestAmerica Laboratories, Inc. - Lab ID# 98001; "DavisBrown"- Davis & Brown Lab ID # 21117; "Shealy"- Shealy Environmental Services, Inc. - Lab ID# 32010

Sample Validated:

Linda Williams - Manager, Analytical Services

Final Validation Date: 3/27/

SANTEE COOPER ANALYTICAL SERVICES CERTIFICATE OF ANALYSIS LAB CERTIFICATION #08552

Sample # AF87791 Location: GW Well CCMLF-2 Date: 01/24/2024 Sample Collector: WJK/ML

Loc. Code CCMLF-2 Time: 09:58

Analysis	Result	Units	Test Date	Analyst	Method
Arsenic	<5.0	ug/L	02/07/2024	SKJACOBS	EPA 6020B
Barium	21.3	ug/L	02/07/2024	SKJACOBS	EPA 6020B
Beryllium	<0.5	ug/L	02/07/2024	SKJACOBS	EPA 6020B
Calcium	3.0	mg/L	02/07/2024	SKJACOBS	EPA 6020B
Cadmium	<0.5	ug/L	02/07/2024	SKJACOBS	EPA 6020B
Cobalt	0.61	ug/L	02/07/2024	SKJACOBS	EPA 6020B
Chromium	<5.0	ug/L	02/07/2024	SKJACOBS	EPA 6020B
Lead	<1.0	ug/L	02/07/2024	SKJACOBS	EPA 6020B
Antimony	<5.0	ug/L	02/07/2024	SKJACOBS	EPA 6020B
Selenium	<10.0	ug/L	02/07/2024	SKJACOBS	EPA 6020B
Thallium	<1.0	ug/L	02/07/2024	SKJACOBS	EPA 6020B
Boron	17.0	ug/L	01/30/2024	SKJACOBS	EPA 6010D
Lithium	<5.0	ug/L	01/30/2024	SKJACOBS	EPA 6010D
Molybdenum	<5.0	ug/L	01/30/2024	SKJACOBS	EPA 6010D
Mercury	<0.2	ug/L	02/06/2024	EUROFINS SAV	EPA 7470
Fluoride	<0.10	mg/L	01/25/2024	KCWELLS	EPA 300.0
Chloride	3.26	mg/L	01/25/2024	KCWELLS	EPA 300.0
Sulfate	2.19	mg/L	01/25/2024	KCWELLS	EPA 300.0
Total Dissolved Solids	28.75	mg/L	01/30/2024	TDHARRIS	SM 2540C
рН	5.09	SU	01/24/2024	WJK/ML	
Radium 226	0.369	pCi/L	02/15/2024	GEL	EPA 903.1 Mod
Radium 228	0.905	pCi/L	02/22/2024	GEL	EPA 904.0
Radium 226/228 Combined Calculation	1.274	pCi/L	03/05/2024	SJLEVY	EPA 903.1 Mod

Independent Laboratory Results: "GEL" - GEL Laboratories LLC - Lab ID # 10120; "Test America" - TestAmerica Laboratories, Inc. - Lab ID# 98001; "DavisBrown"- Davis & Brown Lab ID # 21117; "Shealy"- Shealy Environmental Services, Inc. - Lab ID# 32010

Sample Validated

Linda Williams - Manager, Analytical Services

Final Validation Date:

3/27/24

SANTEE COOPER ANALYTICAL SERVICES

CERTIFICATE OF ANALYSIS

LAB CERTIFICATION #08552

Time: 10:43

Sample # AF87766 Location: GW Well CAP-13 Date: 01/17/2024 Sample Collector: WJK/ML

Loc. Code CAP-13

Loc. Code CAP-13	Title, 10.45					
Analysis	Result	Units	Test Date	Analyst	Method	
Aluminum	<0.1	mg/L	01/30/2024	SKJACOBS	EPA 6020B	
Arsenic	<5.0	ug/L	01/30/2024	SKJACOBS	EPA 6020B	
Arsenic Dissolved	<5.0	ug/L	02/06/2024	SKJACOBS	EPA 6020B	
Barium	169	ug/L	02/06/2024	SKJACOBS	EPA 6020B	
Beryllium	<0.5	ug/L	01/30/2024	SKJACOBS	EPA 6020B	
Calcium	42.1	mg/L	01/30/2024	SKJACOBS	EPA 6020B	
Cadmium	<0.5	ug/L	01/30/2024	SKJACOBS	EPA 6020B	
Cobalt	0.65	ug/L	01/30/2024	SKJACOBS	EPA 6020B	
Chromium	<5.0	ug/L	01/30/2024	SKJACOBS	EPA 6020B	
Iron	11500	ug/L	02/06/2024	SKJACOBS	EPA 6020B	
Potassium	1.7	mg/L	01/30/2024	SKJACOBS	EPA 6020B	
Magnesium	1.9	mg/L	02/06/2024	SKJACOBS	EPA 6020B	
Sodium	5.6	mg/L	01/30/2024	SKJACOBS	EPA 6020B	
Lead	<1.0	ug/L	01/30/2024	SKJACOBS	EPA 6020B	
Antimony	<5.0	ug/L	01/30/2024	SKJACOBS	EPA 6020B	
Selenium	<10.0	ug/L	01/30/2024	SKJACOBS	EPA 6020B	
Thallium	<1.0	ug/L	01/30/2024	SKJACOBS	EPA 6020B	
Boron	15.2	ug/L	01/23/2024	SKJACOBS	EPA 6010D	
Lithium	<5.0	ug/L	01/23/2024	SKJACOBS	EPA 6010D	
Molybdenum	<5.0	ug/L	01/23/2024	SKJACOBS	EPA 6010D	
Mercury	<0.2	ug/L	01/25/2024	EUROFINS SAV	EPA 7470	
Fluoride	<0.10	mg/L	01/18/2024	KCWELLS	EPA 300.0	
Chloride	4.03	mg/L	01/18/2024	KCWELLS	EPA 300.0	
Sulfate	84.8	mg/L	01/18/2024	KCWELLS	EPA 300.0	
Total Dissolved Solids	341.2	mg/L	01/19/2024	KCWELLS	SM 2540C	
Radium 226	0.769	pCi/L	01/31/2024	GEL	EPA 903.1 Mod	
Radium 228	1.84	pCi/L	01/31/2024	GEL	EPA 904.0	
Radium 226/228 Combined Calculation	2.609	pCi/L	02/12/2024	SJLEVY	EPA 903.1 Mod	
pH	5.35	SU	01/17/2024	WJK/ML		

Comments:

Independent Laboratory Results: "GEL" - GEL Laboratories LLC - Lab ID # 10120; "Test America" - TestAmerica Laboratories, Inc. - Lab ID# 98001; "DavisBrown"- Davis & Brown Lab ID # 21117; "Shealy"- Shealy Environmental Services, Inc.- Lab ID# 32010 "ROGERSCALLCO"-Rogers & Callcot, Inc.- Lab ID # 23105001

Validation date:

Analysis Validated

SANTEE COOPER ANALYTICAL SERVICES

CERTIFICATE OF ANALYSIS

LAB CERTIFICATION #08552

Sample # AF93803

Location: GW Well POZ-3

Date: 03/05/2024

Sample Collector: WJK/BM

Loc. Code POZ-3

Time: 09:46

E00. 00d0 1 0E 0	1 me. 55. 15					
Analysis	Result	Units	Test Date	Analyst	Method	
Arsenic	<5.0	ug/L	03/12/2024	SKJACOBS	EPA 6020B	
Barium	97.5	ug/L	03/12/2024	SKJACOBS	EPA 6020B	
Beryllium	<0.5	ug/L	03/12/2024	SKJACOBS	EPA 6020B	
Calcium	179	mg/L	03/12/2024	SKJACOBS	EPA 6020B	
Cadmium	<0.5	ug/L	03/12/2024	SKJACOBS	EPA 6020B	
Cobalt	0.98	ug/L	03/12/2024	SKJACOBS	EPA 6020B	
Chromium	<5.0	ug/L	03/12/2024	SKJACOBS	EPA 6020B	
Lead	<1.0	ug/L	03/12/2024	SKJACOBS	EPA 6020B	
Antimony	<5.0	ug/L	03/12/2024	SKJACOBS	EPA 6020B	
Selenium	<10.0	ug/L	03/12/2024	SKJACOBS	EPA 6020B	
Thallium	<1.0	ug/L	03/12/2024	SKJACOBS	EPA 6020B	
Boron	12.0	ug/L	03/12/2024	SKJACOBS	EPA 6010D	
Lithium	<5.0	ug/L	03/12/2024	SKJACOBS	EPA 6010D	
Molybdenum	<5.0	ug/L	03/12/2024	SKJACOBS	EPA 6010D	
Mercury	<0.2	ug/L	03/12/2024	EUROFINS SAV	EPA 7470	
Fluoride	0.12	mg/L	03/07/2024	LCWILLIAMS	EPA 300.0	
Chloride	9.09	mg/L	03/07/2024	LCWILLIA	EPA 300.0	
Sulfate	83.9	mg/L	03/07/2024	LCWILLIA	EPA 300.0	
Total Dissolved Solids	598.8	mg/L	03/13/2024	KCWELLS	SM 2540C	
Radium 226	0.511	pCi/L	04/02/2024	GEL	EPA 903.1 Mod	
Radium 228	2.90	pCi/L	03/28/2024	GEL	EPA 904.0	
Radium 226/228 Combined Calculation	3.411	pCi/L	04/16/2024	SJLEVY	EPA 903.1 Mod	
рН	6.47	SU	03/05/2024	WJK/BM		

Comments:

Independent Laboratory Results: "GEL" - GEL Laboratories LLC - Lab ID # 10120; "Test America" - TestAmerica Laboratories, Inc. - Lab ID# 98001; "DavisBrown"- Davis & Brown Lab ID # 21117; "Shealy"- Shealy Environmental Services, Inc.- Lab ID# 32010 "ROGERSCALLCO"-Rogers & Callcot, Inc.- Lab ID # 23105001

Validation date:

Analysis Validated:

SANTEE COOPER ANALYTICAL SERVICES

CERTIFICATE OF ANALYSIS

LAB CERTIFICATION #08552

Sample # AF93804 Location: GW Well POZ-3 Date: 03/05/2024 Sample Collector: WJK/BM

Loc. Code POZ-3 DUP Time: 09:51

Loc. Code POZ-3	DOP	DOB TIME: 08:51			
Analysis	Result	Units	Test Date	Analyst	Method
Arsenic	<5.0	ug/L	03/12/2024	SKJACOBS	EPA 6020B
Barium	95.3	ug/L	03/12/2024	SKJACOBS	EPA 6020B
Beryllium	<0.5	ug/L	03/12/2024	SKJACOBS	EPA 6020B
Calcium	180	mg/L	03/12/2024	SKJACOBS	EPA 6020B
Cadmium	<0.5	ug/L	03/12/2024	SKJACOBS	EPA 6020B
Cobalt	1.1	ug/L	03/12/2024	SKJACOBS	EPA 6020B
Chromium	<5.0	ug/L	03/12/2024	SKJACOBS	EPA 6020B
Lead	<1.0	ug/L	03/12/2024	SKJACOBS	EPA 6020B
Antimony	<5.0	ug/L	03/12/2024	SKJACOBS	EPA 6020B
Selenium	<10.0	ug/L	03/12/2024	SKJACOBS	EPA 6020B
Thallium	<1.0	ug/L	03/12/2024	SKJACOBS	EPA 6020B
Boron	12.4	ug/L	03/12/2024	SKJACOBS	EPA 6010D
Lithium	<5.0	ug/L	03/12/2024	SKJACOBS	EPA 6010D
Molybdenum	<5.0	ug/L	03/12/2024	SKJACOBS	EPA 6010D
Mercury	<0.2	ug/L	03/12/2024	EUROFINS SAV	EPA 7470
Fluoride	0.12	mg/L	03/07/2024	LCWILLIAMS	EPA 300.0
Chloride	8.53	mg/L	03/07/2024	LCWILLIA	EPA 300.0
Sulfate	84.0	mg/L	03/07/2024	LCWILLIA	EPA 300.0
Total Dissolved Solids	620.0	mg/L	03/13/2024	KCWELLS	SM 2540C
Radium 226	0.220	pCi/L	04/02/2024	GEL	EPA 903.1 Mod
Radium 228	-0.599	pCi/L	03/28/2024	GEL	EPA 904.0
Radium 226/228 Combined Calculation	0.220	pCi/L	04/16/2024	SJLEVY	EPA 903.1 Mod

Comments:

Independent Laboratory Results: "GEL" - GEL Laboratories LLC - Lab ID # 10120; "Test America " - TestAmerica Laboratories, Inc. - Lab ID# 98001; "DavisBrown"- Davis & Brown Lab ID # 21117; "Shealy"- Shealy Environmental Services, Inc.- Lab ID# 32010 "ROGERSCALLCO"-Rogers & Callcot, Inc.- Lab ID # 23105001

Validation date:

Analysis Validated:

SANTEE COOPER ANALYTICAL SERVICES

CERTIFICATE OF ANALYSIS

LAB CERTIFICATION #08552

Sample # AF98794

Location: GW Well POZ-8

Date: 05/07/2024

Sample Collector: WJK/ML

Loc. Code POZ-8 Time: 13:16

Analysis	Result	Units	Test Date	Analyst	Method
Calcium	671	mg/L	05/16/2024	SKJACOBS	EPA 6020B
Lithium	143	ug/L	05/16/2024	SKJACOBS	EPA 6010D
Chloride	1220	mg/L	05/15/2024	KCWELLS	EPA 300.0
рН	6.54	SU	05/07/2024	JK/ML	

Comments:

Independent Laboratory Results: "GEL" - GEL Laboratories LLC - Lab ID # 10120; "Test America" - TestAmerica Laboratories, Inc. - Lab ID# 98001; "DavisBrown"- Davis & Brown Lab ID # 21117; "Shealy"- Shealy Environmental Services, Inc.- Lab ID# 32010 "ROGERSCALLCO"-Rogers & Callcot, Inc.- Lab ID # 23105001

Validation date:

Analysis Validated:

SANTEE COOPER ANALYTICAL SERVICES

CERTIFICATE OF ANALYSIS

LAB CERTIFICATION #08552

Sample # AG01459 Location: GW Well CCMLF-1 Date: 06/13/2024 Sample Collector: ZM/BB

Loc. Code CCMLF-1 Time: 11:26

	THIS THE					
Analysis	Result	Units	Test Date	Analyst	Method	
Arsenic	<5.0	ug/L	06/19/2024	SKJACOBS	EPA 6020B	
Barium	65.6	ug/L	06/19/2024	SKJACOBS	EPA 6020B	
Beryllium	<0.5	ug/L	06/19/2024	SKJACOBS	EPA 6020B	
Calcium	23.6	mg/L	06/19/2024	SKJACOBS	EPA 6020B	
Cadmium	<0.5	ug/L	06/19/2024	SKJACOBS	EPA 6020B	
Cobalt	1.3	ug/L	06/19/2024	SKJACOBS	EPA 6020B	
Chromium	<5.0	ug/L	06/19/2024	SKJACOBS	EPA 6020B	
Lead	<1.0	ug/L	06/19/2024	SKJACOBS	EPA 6020B	
Antimony	<5.0	ug/L	06/19/2024	SKJACOBS	EPA 6020B	
Selenium	<10.0	ug/L	06/19/2024	SKJACOBS	EPA 6020B	
Thallium	<1.0	ug/L	06/19/2024	SKJACOBS	EPA 6020B	
Boron	16.7	ug/L	06/19/2024	SKJACOBS	EPA 6010D	
Lithium	<5.0	ug/L	06/19/2024	SKJACOBS	EPA 6010D	
Molybdenum	<5.0	ug/L	06/19/2024	SKJACOBS	EPA 6010D	
Mercury	<0.2	ug/L	06/25/2024	EUROFINS SAV	EPA 7470	
Fluoride	<0.10	mg/L	06/17/2024	KCWELLS	EPA 300.0	
Chloride	7.26	mg/L	06/17/2024	KCWELLS	EPA 300.0	
Sulfate	6.57	mg/L	06/17/2024	KCWELLS	EPA 300.0	
Total Dissolved Solids	113.8	mg/L	06/18/2024	KRMATHER	SM 2540C	
Radium 226	0.523	pCi/L	07/15/2024	GEL	EPA 903.1 Mod	
Radium 228	1.63	pCi/L	07/03/2024	GEL	EPA 904.0	
Radium 226/228 Combined Calculation	2.15	pCi/L	07/31/2024	SJLEVY	EPA 903.1 Mod	
PΗ	5.37	SU	06/13/2024	ZM/BB		

Comments:

Independent Laboratory Results: "GEL" - GEL Laboratories LLC - Lab ID # 10120; "Test America" - TestAmerica Laboratories, Inc. - Lab ID# 98001; "DavisBrown"- Davis & Brown Lab ID # 21117; "Shealy"- Shealy Environmental Services, Inc.- Lab ID# 32010 "ROGERSCALLCO"-Rogers & Callcot, Inc.- Lab ID # 23105001

Validation date:

Analysis Validated:

SANTEE COOPER ANALYTICAL SERVICES

CERTIFICATE OF ANALYSIS

LAB CERTIFICATION #08552

Sample # AG01460 Location: GW Well CCMLF-1D Date: 06/13/2024 Sample Collector: ZM/BB

Loc. Code CCMLF-1D Time: 12:16

Loc. Code Colvici - ID	11me: 12.10					
Analysis	Result	Units	Test Date	Analyst	Method	
Arsenic	<5.0	ug/L	06/19/2024	SKJACOBS	EPA 6020B	
Barium	41.4	ug/L	06/19/2024	SKJACOBS	EPA 6020B	
Beryllium	<0.5	ug/L	06/19/2024	SKJACOBS	EPA 6020B	
Calcium	53.2	mg/L	06/19/2024	SKJACOBS	EPA 6020B	
Cadmium	<0.5	ug/L	06/19/2024	SKJACOBS	EPA 6020B	
Cobalt	0.82	ug/L	06/19/2024	SKJACOBS	EPA 6020B	
Chromium	<5.0	ug/L	06/19/2024	SKJACOBS	EPA 6020B	
Lead	<1.0	ug/L	06/19/2024	SKJACOBS	EPA 6020B	
Antimony	5.4	ug/L	06/19/2024	SKJACOBS	EPA 6020B	
Selenium	<10.0	ug/L	06/19/2024	SKJACOBS	EPA 6020B	
Thallium	<1.0	ug/L	06/19/2024	SKJACOBS	EPA 6020B	
Boron	15.6	ug/L	06/19/2024	SKJACOBS	EPA 6010D	
Lithium	<5.0	ug/L	06/19/2024	SKJACOBS	EPA 6010D	
Molybdenum	<5.0	ug/L	06/19/2024	SKJACOBS	EPA 6010D	
Mercury	<0.2	ug/L	06/25/2024	EUROFINS SAV	EPA 7470	
Fluoride	<0.10	mg/L	06/17/2024	KCWELLS	EPA 300.0	
Chloride	6.14	mg/L	06/17/2024	KCWELLS	EPA 300.0	
Sulfate	3.41	mg/L	06/17/2024	KCWELLS	EPA 300.0	
Total Dissolved Solids	256.2	mg/L	06/18/2024	KRMATHER	SM 2540C	
Radium 226	0.391	pCi/L	07/15/2024	GEL	EPA 903.1 Mod	
Radium 228	2.15	pCi/L	07/03/2024	GEL	EPA 904.0	
Radium 226/228 Combined Calculation	2.54	pCi/L	07/31/2024	SJLEVY	EPA 903.1 Mod	
pH	6.62	SU	06/13/2024	ZM/BB		

Comments:

Independent Laboratory Results: "GEL" - GEL Laboratories LLC - Lab ID # 10120; "Test America" - TestAmerica Laboratories, Inc. - Lab ID# 98001; "DavisBrown"- Davis & Brown Lab ID # 21117; "Shealy"- Shealy Environmental Services, Inc.- Lab ID# 32010 "ROGERSCALLCO"-Rogers & Callcot, Inc.- Lab ID # 23105001

Validation date:

Analysis Validated:

One Riverwood Drive P.O. Box 2946101 Moncks Corner, SC 29461-2901

(843) 761-8000

SANTEE COOPER ANALYTICAL SERVICES

CERTIFICATE OF ANALYSIS

LAB CERTIFICATION #08552

Sample # AG01461 Location: GW Well CCMLF-2 Date: 06/17/2024 Sample Collector: ZM/BB

Loc. Code CCMLF-2 Time: 13:21

EUU. UUU OOMEN Z					
Analysis	Result	Units	Test Date	Analyst	Method
Arsenic	<5.0	ug/L	06/25/2024	SKJACOBS	EPA 6020B
Barium	28.6	ug/L	06/25/2024	SKJACOBS	EPA 6020B
Beryllium	<0.5	ug/L	06/25/2024	SKJACOBS	EPA 6020B
Calcium	10.4	mg/L	06/25/2024	SKJACOBS	EPA 6020B
Cadmium	<0.5	ug/L	06/25/2024	SKJACOBS	EPA 6020B
Cobalt	0.56	ug/L	06/25/2024	SKJACOBS	EPA 6020B
Chromium	<5.0	ug/L	06/25/2024	SKJACOBS	EPA 6020B
Lead	<1.0	ug/L	06/25/2024	SKJACOBS	EPA 6020B
Antimony	<5.0	ug/L	06/25/2024	SKJACOBS	EPA 6020B
Selenium	<10.0	ug/L	06/25/2024	SKJACOBS	EPA 6020B
Thallium	<1.0	ug/L	06/25/2024	SKJACOBS	EPA 6020B
Boron	15.6	ug/L	06/20/2024	SKJACOBS	EPA 6010D
Lithium	<5.0	ug/L	06/20/2024	SKJACOBS	EPA 6010D
Molybdenum	<5.0	ug/L	06/20/2024	SKJACOBS	EPA 6010D
Mercury	<0.2	ug/L	06/24/2024	EUROFINS SAV	EPA 7470
Fluoride	<0.10	mg/L	06/25/2024	KCWELLS	EPA 300.0
Chloride	4.96	mg/L	06/25/2024	KCWELLS	EPA 300.0
Sulfate	<2.0	mg/L	07/08/2024	KCWELLS	EPA 300.0
Total Dissolved Solids	73.75	mg/L	06/20/2024	KRMATHER	SM 2540C
Radium 226	0.319	pCi/L	07/15/2024	GEL	EPA 903.1 Mod
Radium 228	-1.14	pCi/L	07/03/2024	GEL	EPA 904.0
Radium 226/228 Combined Calculation	-0.821	pCi/L	07/31/2024	SJLEVY	EPA 903.1 Mod
pH	5.31	SU	06/17/2024	ZM/BB	

Comments:

Independent Laboratory Results: "GEL" - GEL Laboratories LLC - Lab ID# 10120; "Test America" - TestAmerica Laboratories, Inc. - Lab ID# 98001; "DavisBrown"- Davis & Brown Lab ID# 21117; "Shealy"- Shealy Environmental Services, Inc.- Lab ID# 32010 "ROGERSCALLCO"-Rogers & Callcot, Inc.- Lab ID# 23105001_____

Analysis Validated:

Linda Williams - Manager Analytical Services

Validation date: 🗘

SANTEE COOPER ANALYTICAL SERVICES

CERTIFICATE OF ANALYSIS

LAB CERTIFICATION #08552

Sample # AG01436 Location: GW Well CAP-13 Date: 06/11/2024 Sample Collector: ZM/BB

Loc. Code CAP-13 Time: 12:37

Loc. code Oni "10	11116. 12.01					
Analysis	Result	Units	Test Date	Analyst	Method	
Arsenic	<5.0	ug/L	06/18/2024	SKJACOBS	EPA 6020B	
Barium	123	ug/L	06/18/2024	SKJACOBS	EPA 6020B	
Beryllium	<0.5	ug/L	06/18/2024	SKJACOBS	EPA 6020B	
Calcium	29.7	mg/L	06/18/2024	SKJACOBS	EPA 6020B	
Cadmium	<0.5	ug/L	06/18/2024	SKJACOBS	EPA 6020B	
Cobalt	0.61	ug/L	06/18/2024	SKJACOBS	EPA 6020B	
Chromium	<5.0	ug/L	06/18/2024	SKJACOBS	EPA 6020B	
Lead	<1.0	ug/L	06/18/2024	SKJACOBS	EPA 6020B	
Selenium	<10.0	ug/L	06/18/2024	SKJACOBS	EPA 6020B	
Antimony	<5.0	ug/L	06/18/2024	SKJACOBS	EPA 6020B	
Thallium	<1.0	ug/L	06/18/2024	SKJACOBS	EPA 6020B	
Boron	18.8	ug/L	06/17/2024	SKJACOBS	EPA 6010D	
Lithium	<5.0	ug/L	06/17/2024	SKJACOBS	EPA 6010D	
Molybdenum	<5.0	ug/L	06/17/2024	SKJACOBS	EPA 6010D	
Mercury	<0.2	ug/L	06/17/2024	EUROFINS SAV	EPA 7470	
Fluoride	<0.10	mg/L	06/17/2024	KCWELLS	EPA 300.0	
Chloride	5.05	mg/L	06/17/2024	KCWELLS	EPA 300.0	
Sulfate	58.0	mg/L	06/17/2024	KCWELLS	EPA 300.0	
Total Dissolved Solids	195.0	mg/L	06/17/2024	KRMATHER	SM 2540C	
Radium 226	0.392	pCi/L	07/09/2024	GEL	EPA 903.1 Mod	
Radium 228	1.37	pCi/L	07/02/2024	GEL	EPA 904.0	
Radium 226/228 Combined Calculation	1.762	pCi/L	07/19/2024	SJLEVY	EPA 903.1 Mod	
рН	4.98	SU	06/11/2024	ZM/BB		

Comments:

Independent Laboratory Results: "GEL" - GEL Laboratories LLC - Lab ID# 10120; "Test America" - TestAmerica Laboratories, Inc. - Lab ID# 98001; "DavisBrown"- Davis & Brown Lab ID# 21117; "Shealy"- Shealy Environmental Services, Inc.- Lab ID# 32010 "ROGERSCALLCO"-Rogers & Callcot, Inc.- Lab ID# 23105001

Validation date:

Analysis Validated:

Linda Williams - Manager Analytical Services

- -

SANTEE COOPER ANALYTICAL SERVICES

CERTIFICATE OF ANALYSIS

LAB CERTIFICATION #08552

Sample # AG01476 Location: GW Well PM-1 Date: 06/04/2024 Sample Collector: ZM/BB

Loc. Code PM-1 Time: 09:58

Loc. Gode Pivi-1	1 ime: 09.36					
Analysis	Result	Units	Test Date	Analyst	Method	
Arsenic	<5.0	ug/L	06/11/2024	SKJACOBS	EPA 6020B	
Barium	76.9	ug/L	06/11/2024	SKJACOBS	EPA 6020B	
Beryllium	<0.5	ug/L	06/11/2024	SKJACOBS	EPA 6020B	
Calcium	10.5	mg/L	06/11/2024	SKJACOBS	EPA 6020B	
Cadmium	<0.5	ug/L	06/11/2024	SKJACOBS	EPA 6020B	
Cobalt	1.4	ug/L	06/11/2024	SKJACOBS	EPA 6020B	
Chromium	<5.0	ug/L	06/11/2024	SKJACOBS	EPA 6020B	
Iron	8890	ug/L	06/11/2024	SKJACOBS	EPA 6020B	
Lead	<1.0	ug/L	06/11/2024	SKJACOBS	EPA 6020B	
Selenium	<10.0	ug/L	06/11/2024	SKJACOBS	EPA 6020B	
Antimony	<5.0	ug/L	06/11/2024	SKJACOBS	EPA 6020B	
Thallium	<1.0	ug/L	06/11/2024	SKJACOBS	EPA 6020B	
Zinc	<10.0	ug/L	06/11/2024	SKJACOBS	EPA 6020B	
Boron	12.4	ug/L	06/12/2024	SKJACOBS	EPA 6010D	
Lithium	<5.0	ug/L	06/12/2024	SKJACOBS	EPA 6010D	
Molybdenum	<5.0	ug/L	06/12/2024	SKJACOBS	EPA 6010D	
Mercury	<0.2	ug/L	06/17/2024	EUROFINS SAV	EPA 7470	
Total Organic Carbon	4.48	mg/L	06/12/2024	GEL	SM 5310B	
Fluoride	<0.10	mg/L	06/11/2024	KCWELLS	EPA 300.0	
Chloride	12.1	mg/L	06/11/2024	KCWELLS	EPA 300.0	
Nitrate	<0.10	mg/L	06/11/2024	KCWELLS	EPA 300.0	
Sulfate	7.75	mg/L	06/11/2024	KCWELLS	EPA 300.0	
Total Dissolved Solids	143.8	mg/L	06/07/2024	KCWELLS	SM 2540C	
Radium 226	0.188	pCi/L	06/19/2024	GEL	EPA 903.1 Mod	
Radium 228	1.46	pCi/L	06/25/2024	GEL	EPA 904.0	
Radium 226/228 Combined Calculation	1.648	pCi/L	07/19/2024	SJLEVY	EPA 903.1 Mod	
рН	5.20	SU	06/04/2024	ZM/BB		

Comments:

Independent Laboratory Results: "GEL" - GEL Laboratories LLC - Lab ID # 10120; "Test America" - TestAmerica Laboratories, Inc. - Lab ID# 98001; "DavisBrown"- Davis & Brown Lab ID # 21117; "Shealy"- Shealy Environmental Services, Inc.- Lab ID# 32010 "ROGERSCALLCO"-Rogers & Callcot, Inc.- Lab ID # 23105001

Validation date:

Analysis Validated:

SANTEE COOPER ANALYTICAL SERVICES

CERTIFICATE OF ANALYSIS

LAB CERTIFICATION #08552

Sample # AG01438 Location: GW Well CBW-1 Date: 06/04/2024 Sample Collector: ZM/BB

Loc. Code CBW-1 Time: 08:53

Loc. Code CDW-1	Title, 00.00					
Analysis	Result	Units	Test Date	Analyst	Method	
Arsenic	<5.0	ug/L	06/11/2024	SKJACOBS	EPA 6020B	
Barium	37.4	ug/L	06/11/2024	SKJACOBS	EPA 6020B	
Beryllium	<0.5	ug/L	06/11/2024	SKJACOBS	EPA 6020B	
Calcium	24.7	mg/L	06/11/2024	SKJACOBS	EPA 6020B	
Cadmium	<0.5	ug/L	06/11/2024	SKJACOBS	EPA 6020B	
Cobalt	0.84	ug/L	06/11/2024	SKJACOBS	EPA 6020B	
Chromium	<5.0	ug/L	06/11/2024	SKJACOBS	EPA 6020B	
Iron	<50.0	ug/L	06/11/2024	SKJACOBS	EPA 6020B	
Lead	2.1	ug/L	06/11/2024	SKJACOBS	EPA 6020B	
Selenium	<10.0	ug/L	06/11/2024	SKJACOBS	EPA 6020B	
Antimony	<5.0	ug/L	06/11/2024	SKJACOBS	EPA 6020B	
Thallium	<1.0	ug/L	06/11/2024	SKJACOBS	EPA 6020B	
Zinc	<10.0	ug/L	06/11/2024	SKJACOBS	EPA 6020B	
Boron	19.6	ug/L	06/12/2024	SKJACOBS	EPA 6010D	
Lithium	<5.0	ug/L	06/12/2024	SKJACOBS	EPA 6010D	
Molybdenum	<5.0	ug/L	06/12/2024	SKJACOBS	EPA 6010D	
Mercury	<0.2	ug/L	06/17/2024	EUROFINS SAV	EPA 7470	
Total Organic Carbon	1.47	mg/L	06/12/2024	GEL	SM 5310B	
Fluoride	0.13	mg/L	06/11/2024	KCWELLS	EPA 300.0	
Chloride	3.22	mg/L	06/11/2024	KCWELLS	EPA 300.0	
Nitrate	0.61	mg/L	06/11/2024	KCWELLS	EPA 300.0	
Sulfate	89.6	mg/L	06/11/2024	KCWELLS	EPA 300.0	
Total Dissolved Solids	170.0	mg/L	06/07/2024	KCWELLS	SM 2540C	
Radium 226	0.0311	pCi/L	06/19/2024	GEL	EPA 903.1 Mod	
Radium 228	2.79	pCi/L	06/25/2024	GEL	EPA 904.0	
Radium 226/228 Combined Calculation	2.8211	pCi/L	07/19/2024	SJLEVY	EPA 903.1 Mod	
рН	4.54	SU	06/04/2024	ZM/BB		

Comments:

Independent Laboratory Results: "GEL" - GEL Laboratories LLC - Lab ID # 10120; "Test America" - TestAmerica Laboratories, Inc. - Lab ID# 98001; "DavisBrown" - Davis & Brown Lab ID # 21117; "Shealy" - Shealy Environmental Services, Inc. - Lab ID# 32010 "ROGERSCALLCO" - Rogers & Callcot, Inc. - Lab ID # 23105001

Analysis Validated:

Linda Williams - Manager Analytical Services

Validation date:

SANTEE COOPER ANALYTICAL SERVICES

CERTIFICATE OF ANALYSIS

LAB CERTIFICATION #08552

Sample # AG01477 Location: GW Well POZ-3 Date: 06/04/2024 Sample Collector: ZM/BB

Time: 12:12 Loc. Code POZ-3

Loc. Code 1 OZ-0	1111G. 12.12					
Analysis	Result	Units	Test Date	Analyst	Method	
Arsenic	<5.0	ug/L	06/11/2024	SKJACOBS	EPA 6020B	
Arsenic Dissolved	<5.0	ug/L	06/11/2024	SKJACOBS	EPA 6020B	
Barium	105	ug/L	06/11/2024	SKJACOBS	EPA 6020B	
Beryllium	<0.5	ug/L	06/11/2024	SKJACOBS	EPA 6020B	
Calcium	176	mg/L	06/11/2024	SKJACOBS	EPA 6020B	
Cadmium	<0.5	ug/L	06/11/2024	SKJACOBS	EPA 6020B	
Cobalt	2.5	ug/L	06/11/2024	SKJACOBS	EPA 6020B	
Chromium	<5.0	ug/L	06/11/2024	SKJACOBS	EPA 6020B	
Iron	165	ug/L	06/11/2024	SKJACOBS	EPA 6020B	
Lead	<1.0	ug/L	06/11/2024	SKJACOBS	EPA 6020B	
Selenium	<10.0	ug/L	06/11/2024	SKJACOBS	EPA 6020B	
Antimony	<5.0	ug/L	06/11/2024	SKJACOBS	EPA 6020B	
Thallium	<1.0	ug/L	06/11/2024	SKJACOBS	EPA 6020B	
Zinc	<10.0	ug/L	06/11/2024	SKJACOBS	EPA 6020B	
Boron	13.5	ug/L	06/12/2024	SKJACOBS	EPA 6010D	
Lithium	<5.0	ug/L	06/12/2024	SKJACOBS	EPA 6010D	
Molybdenum	<5.0	ug/L	06/12/2024	SKJACOBS	EPA 6010D	
Mercury	<0.2	ug/L	06/17/2024	EUROFINS SAV	EPA 7470	
Total Organic Carbon	2.81	mg/L	06/12/2024	GEL	SM 5310B	
Fluoride	0.10	mg/L	06/11/2024	KCWELLS	EPA 300.0	
Chloride	8.41	mg/L	06/11/2024	KCWELLS	EPA 300.0	
Nitrate	<0.10	mg/L	06/11/2024	KCWELLS	EPA 300.0	
Sulfate	68.7	mg/L	06/11/2024	KCWELLS	EPA 300.0	
Total Dissolved Solids	616.2	mg/L	06/07/2024	KCWELLS	SM 2540C	
Radium 226	0.571	pCi/L	06/19/2024	GEL	EPA 903.1 Mod	
Radium 228	1.89	pCi/L	06/25/2024	GEL	EPA 904.0	
Radium 226/228 Combined Calculation	2.461	pCi/L	07/19/2024	SJLEVY	EPA 903.1 Mod	
pH	6.60	SU	06/04/2024	ZM/BB		

Comments:

Independent Laboratory Results: "GEL" - GEL Laboratories LLC - Lab ID # 10120; "Test America" - TestAmerica Laboratories, Inc. - Lab ID# 98001; "DavisBrown"- Davis & Brown Lab ID # 21117; "Shealy"- Shealy Environmental Services, Inc.- Lab ID# 32010 "ROGERSCALLCO"-Rogers & Callcot, Inc.- Lab ID # 23105001

Analysis Validated:

SANTEE COOPER ANALYTICAL SERVICES

CERTIFICATE OF ANALYSIS

LAB CERTIFICATION #08552

Sample # AG01478 Location: GW Well POZ-4 Date: 06/05/2024 Sample Collector: ZM/GK

Loc. Code POZ-4 Time: 11:45

LUC. COULE FOLT	Time, 11.70					
Analysis	Result	Units	Test Date	Analyst	Method	
Arsenic	<5.0	ug/L	06/14/2024	SKJACOBS	EPA 6020B	
Arsenic Dissolved	<5.0	ug/L	06/11/2024	SKJACOBS	EPA 6020B	
Barium	92.2	ug/L	06/14/2024	SKJACOBS	EPA 6020B	
Beryllium	<0.5	ug/L	06/14/2024	SKJACOBS	EPA 6020B	
Calcium	396	mg/L	06/14/2024	SKJACOBS	EPA 6020B	
Cadmium	<0.5	ug/L	06/14/2024	SKJACOBS	EPA 6020B	
Cobalt	147	ug/L	06/14/2024	SKJACOBS	EPA 6020B	
Chromium	<5.0	ug/L	06/14/2024	SKJACOBS	EPA 6020B	
Iron	2110	ug/L	06/14/2024	SKJACOBS	EPA 6020B	
Lead	<1.0	ug/L	06/14/2024	SKJACOBS	EPA 6020B	
Selenium	<10.0	ug/L	06/14/2024	SKJACOBS	EPA 6020B	
Antimony	<5.0	ug/L	06/14/2024	SKJACOBS	EPA 6020B	
Thallium	<1.0	ug/L	06/14/2024	SKJACOBS	EPA 6020B	
Zinc	13.2	ug/L	06/14/2024	SKJACOBS	EPA 6020B	
Boron	35.0	ug/L	06/13/2024	SKJACOBS	EPA 6010D	
Lithium	24.6	ug/L	06/13/2024	SKJACOBS	EPA 6010D	
Molybdenum	<5.0	ug/L	06/13/2024	SKJACOBS	EPA 6010D	
Mercury	<0.2	ug/L	06/17/2024	EUROFINS SAV	EPA 7470	
Total Organic Carbon	1.83	mg/L	06/12/2024	GEL	SM 5310B	
Fluoride	<0.10	mg/L	06/07/2024	KCWELLS	EPA 300.0	
Chloride	623	mg/L	06/07/2024	KCWELLS	EPA 300.0	
Nitrate	<0.10	mg/L	06/07/2024	KCWELLS	EPA 300.0	
Sulfate	186	mg/L	06/07/2024	KCWELLS	EPA 300.0	
Total Dissolved Solids	2300	mg/L	06/11/2024	KCWELLS	SM 2540C	
Radium 226	1.28	pCi/L	06/19/2024	GEL	EPA 903.1 Mod	
Radium 228	1.42	pCi/L	06/25/2024	GEL	EPA 904.0	
Radium 226/228 Combined Calculation	2.70	pCi/L	07/19/2024	SJLEVY	EPA 903.1 Mod	
pH	6.25	SU	06/05/2024	ZM/GK		

Comments:

Independent Laboratory Results: "GEL" - GEL Laboratories LLC - Lab ID # 10120; "Test America" - TestAmerica Laboratories, Inc. - Lab ID# 98001; "DavisBrown"- Davis & Brown Lab ID # 21117; "Shealy"- Shealy Environmental Services, Inc.- Lab ID# 32010 "ROGERSCALLCO"-Rogers & Callcot, Inc.- Lab ID # 23105001

Validation date:

Analysis Validated:

Linda Williams - Manager Analytical Services

Authorized Signature Only- Not Valid Unless Signed

SANTEE COOPER ANALYTICAL SERVICES CERTIFICATE OF ANALYSIS LAB CERTIFICATION #08552

Sample # AG01479 Location: GW Well POZ-5D Date: 06/05/2024 Sample Collector: ZM/GK

Loc. Code POZ-5D Time: 12:45

Analysis	Result	Units	Test Date	Analyst	Method
Arsenic	<5.0	ug/L	06/14/2024	SKJACOBS	EPA 6020B
Arsenic Dissolved	<5.0	ug/L	06/11/2024	SKJACOBS	EPA 6020B
Barium	54.8	ug/L	06/14/2024	SKJACOBS	EPA 6020B
Cadmium	<0.5	ug/L	06/14/2024	SKJACOBS	EPA 6020B
Cobalt	3.3	ug/L	06/14/2024	SKJACOBS	EPA 6020B
Chromium	<5.0	ug/L	06/14/2024	SKJACOBS	EPA 6020B
Iron	11200	ug/L	06/14/2024	SKJACOBS	EPA 6020B
Lead	<1.0	ug/L	06/14/2024	SKJACOBS	EPA 6020B
Selenium	<10.0	ug/L	06/14/2024	SKJACOBS	EPA 6020B
Zinc	<10.0	ug/L	06/14/2024	SKJACOBS	EPA 6020B
Boron	238	ug/L	06/13/2024	SKJACOBS	EPA 6010D
Total Organic Carbon	2.22	mg/L	06/12/2024	GEL	SM 5310B
Chloride	795	mg/L	06/07/2024	KCWELLS	EPA 300.0
Nitrate	<0.10	mg/L	06/07/2024	KCWELLS	EPA 300.0
Sulfate	654	mg/L	06/07/2024	KCWELLS	EPA 300.0
Total Dissolved Solids	3289	mg/L	06/07/2024	KCWELLS	SM 2540C
рН	6.69	SU	06/05/2024	ZM/GK	

Independent Laboratory Results: "GEL" - GEL Laboratories LLC - Lab ID # 10120; "Test America" - TestAmerica Laboratories, Inc. - Lab ID# 98001; "DavisBrown" - Davis & Brown Lab ID # 21117; "Shealy" - Shealy Environmental Services, Inc. - Lab ID# 32010

Sample Validated:

Linda Williams - Manager, Analytical Services

Final Validation Date: 7/22/24

SANTEE COOPER ANALYTICAL SERVICES

CERTIFICATE OF ANALYSIS

LAB CERTIFICATION #08552

Sample # AG01480 Location: GW Well POZ-6 Date: 06/04/2024 Sample Collector: ZM/BB

Loc. Code POZ-6 Time: 13:14

Time, 10.17				
Date Analys	st Method			
1/2024 SKJAC	OBS EPA 6020B			
1/2024 SKJAC	OBS EPA 6020B			
1/2024 SKJAC	OBS EPA 6020B			
1/2024 SKJAC	OBS EPA 6020B			
1/2024 SKJAC	OBS EPA 6020B			
1/2024 SKJAC	OBS EPA 6020B			
1/2024 SKJAC	OBS EPA 6020B			
1/2024 SKJAC	OBS EPA 6020B			
1/2024 SKJAC	OBS EPA 6020B			
1/2024 SKJAC	OBS EPA 6020B			
1/2024 SKJAC	OBS EPA 6020B			
1/2024 SKJAC	OBS EPA 6020B			
1/2024 SKJAC	OBS EPA 6020B			
1/2024 SKJAC	OBS EPA 6020B			
2/2024 SKJAC	OBS EPA 6010D			
2/2024 SKJAC	OBS EPA 6010D			
2/2024 SKJAC	OBS EPA 6010D			
7/2024 EUROFIN	IS SAV EPA 7470			
2/2024 GE	L SM 5310B			
1/2024 KCWE	LLS EPA 300.0			
1/2024 KCWE	LLS EPA 300.0			
1/2024 KCWE	LLS EPA 300.0			
1/2024 KCWE	ELS EPA 300.0			
7/2024 KCWE	LLS SM 2540C			
9/2024 GE	L EPA 903.1 Mod			
5/2024 GE	L EPA 904.0			
9/2024 SJLE	VY EPA 903.1 Mod			
4/2024 7M/E	RR .			
	11/2024 SKJAC 11/2024 SKJAC 11/2024 SKJAC 11/2024 SKJAC 12/2024 SKJAC 12/2024 SKJAC 12/2024 SKJAC 12/2024 SKJAC 12/2024 EUROFIN 12/2024 KCWE 11/2024 KCWE			

Comments:

Independent Laboratory Results: "GEL" - GEL Laboratories LLC - Lab ID # 10120; "Test America" - TestAmerica Laboratories, Inc. - Lab ID# 98001; "DavisBrown"- Davis & Brown Lab ID # 21117; "Shealy"- Shealy Environmental Services, Inc.- Lab ID# 32010 "ROGERSCALLCO"-Rogers & Callcot, Inc.- Lab ID # 23105001

Analysis Validated:

Linda Williams - Manager Analytical Services

Linda yyimanio Managor / Marytoar Cor vices

One Riverwood Drive P.O. Box 2946101 Moncks Corner, SC 29461-2901

(843) 761-8000

SANTEE COOPER ANALYTICAL SERVICES

CERTIFICATE OF ANALYSIS

LAB CERTIFICATION #08552

Sample # AG01481 Location: GW Well POZ-7 Date: 06/05/2024 Sample Collector: ZM/GK

Time: 08:45 Loc. Code POZ-7

LUC. Code POZ-1	Time. 00.40				
Analysis	Result	Units	Test Date	Analyst	Method
Arsenic	<5.0	ug/L	06/14/2024	SKJACOBS	EPA 6020B
Arsenic Dissolved	<5.0	ug/L	06/11/2024	SKJACOBS	EPA 6020B
Barium	249	ug/L	06/14/2024	SKJACOBS	EPA 6020B
Beryllium	<0.5	ug/L	06/14/2024	SKJACOBS	EPA 6020B
Calcium	72.4	mg/L	06/14/2024	SKJACOBS	EPA 6020B
Cadmium	<0.5	ug/L	06/14/2024	SKJACOBS	EPA 6020B
Cobalt	<0.5	ug/L	06/14/2024	SKJACOBS	EPA 6020B
Chromium	<5.0	ug/L	06/14/2024	SKJACOBS	EPA 6020B
Iron	<50.0	ug/L	06/14/2024	SKJACOBS	EPA 6020B
Lead	<1.0	ug/L	06/14/2024	SKJACOBS	EPA 6020B
Selenium	<10.0	ug/L	06/14/2024	SKJACOBS	EPA 6020B
Antimony	<5.0	ug/L	06/14/2024	SKJACOBS	EPA 6020B
Thallium	<1.0	ug/L	06/14/2024	SKJACOBS	EPA 6020B
Zinc	<10.0	ug/L	06/14/2024	SKJACOBS	EPA 6020B
Boron	13.9	ug/L	06/13/2024	SKJACOBS	EPA 6010D
Lithium	8.3	ug/L	06/13/2024	SKJACOBS	EPA 6010D
Molybdenum	<5.0	ug/L	06/13/2024	SKJACOBS	EPA 6010D
Mercury	<0.2	ug/L	06/17/2024	EUROFINS SAV	EPA 7470
Total Organic Carbon	<1	mg/L	06/12/2024	GEL	SM 5310B
Fluoride	<0.10	mg/L	06/07/2024	KCWELLS	EPA 300.0
Chloride	79.5	mg/L	06/07/2024	KCWELLS	EPA 300.0
Nitrate	<0.10	mg/L	06/07/2024	KCWELLS	EPA 300.0
Sulfate	5.93	mg/L	06/07/2024	KCWELLS	EPA 300.0
Total Dissolved Solids	410.0	mg/L	06/07/2024	KCWELLS	SM 2540C
Radium 226	0.380	pCi/L	06/19/2024	GEL	EPA 903.1 Mod
Radium 228	3.30	pCi/L	06/25/2024	GEL	EPA 904.0
Radium 226/228 Combined Calculation	3.68	pCi/L	07/19/2024	SJLEVY	EPA 903.1 Mod
pH	6.13	SU	06/05/2024	ZM/GK	

Comments:

Independent Laboratory Results: "GEL" - GEL Laboratories LLC - Lab ID# 10120; "Test America" - TestAmerica Laboratories, Inc. - Lab ID# 98001; "DavisBrown"- Davis & Brown Lab ID # 21117; "Shealy"- Shealy Environmental Services, Inc.- Lab ID# 32010 "ROGERSCALLCO"-Rogers & Callcot, Inc.- Lab ID # 23105001

Validation date:

Analysis Validated:

SANTEE COOPER ANALYTICAL SERVICES

CERTIFICATE OF ANALYSIS

LAB CERTIFICATION #08552

Sample # AG01482 Location: GW Well POZ-7 Date: 06/05/2024 Sample Collector: ZM/GK

Loc. Code POZ-7 DUP Time: 08:50

Loc. Code POZ-7	DUP	DUP Time: 08:50				
Analysis	Result	Units	Test Date	Analyst	Method	
Arsenic	<5.0	ug/L	06/14/2024	SKJACOBS	EPA 6020B	
Arsenic Dissolved	<5.0	ug/L	06/11/2024	SKJACOBS	EPA 6020B	
Barium	255	ug/L	06/14/2024	SKJACOBS	EPA 6020B	
Beryllium	<0.5	ug/L	06/14/2024	SKJACOBS	EPA 6020B	
Calcium	74.3	mg/L	06/14/2024	SKJACOBS	EPA 6020B	
Cadmium	<0.5	ug/L	06/14/2024	SKJACOBS	EPA 6020B	
Cobalt	<0.5	ug/L	06/14/2024	SKJACOBS	EPA 6020B	
Chromium	<5.0	ug/L	06/14/2024	SKJACOBS	EPA 6020B	
Iron	<50.0	ug/L	06/14/2024	SKJACOBS	EPA 6020B	
Lead	<1.0	ug/L	06/14/2024	SKJACOBS	EPA 6020B	
Selenium	<10.0	ug/L	06/14/2024	SKJACOBS	EPA 6020B	
Antimony	<5.0	ug/L	06/14/2024	SKJACOBS	EPA 6020B	
Thallium	<1.0	ug/L	06/14/2024	SKJACOBS	EPA 6020B	
Zinc	<10.0	ug/L	06/14/2024	SKJACOBS	EPA 6020B	
Boron	13.8	ug/L	06/13/2024	SKJACOBS	EPA 6010D	
Lithium	8.2	ug/L	06/13/2024	SKJACOBS	EPA 6010D	
Molybdenum	<5.0	ug/L	06/13/2024	SKJACOBS	EPA 6010D	
Mercury	<0.2	ug/L	06/17/2024	EUROFINS SAV	EPA 7470	
Total Organic Carbon	<1	mg/L	06/12/2024	GEL	SM 5310B	
Fluoride	<0.10	mg/L	06/07/2024	KCWELLS	EPA 300.0	
Chloride	79.7	mg/L	06/07/2024	KCWELLS	EPA 300.0	
Nitrate	<0.10	mg/L	06/07/2024	KCWELLS	EPA 300.0	
Sulfate	5.93	mg/L	06/07/2024	KCWELLS	EPA 300.0	
Total Dissolved Solids	382.5	mg/L	06/07/2024	KCWELLS	SM 2540C	
Radium 226	0.389	pCi/L	06/19/2024	GEL	EPA 903.1 Mod	
Radium 228	1.14	pCi/L	06/25/2024	GEL	EPA 904.0	
Radium 226/228 Combined Calculation	1.529	pCi/L	07/19/2024	SJLEVY	EPA 903.1 Mod	
pH	***	SU	06/05/2024	ZDMCHENR		

Comments:

Independent Laboratory Results: "GEL" - GEL Laboratories LLC - Lab ID # 10120; "Test America" - TestAmerica Laboratories, Inc. - Lab ID# 98001; "DavisBrown"- Davis & Brown Lab ID # 21117; "Shealy"- Shealy Environmental Services, Inc. - Lab ID# 32010 "ROGERSCALLCO"-

Rogers & Callcot, Inc.- Lab ID # 23105001

Analysis Validated:

Linda Williams - Manager Analytical Services

Validation date:

SANTEE COOPER ANALYTICAL SERVICES

CERTIFICATE OF ANALYSIS

LAB CERTIFICATION #08552

Location: GW Well POZ-8 Sample Collector: ZM/GK **Sample #** AG01483 Date: 06/05/2024

Loc. Code POZ-8 Time: 10:20

antee cooper

Loc. Code POZ-o	Time. 10.20					
Analysis	Result	Units	Test Date	Analyst	Method	
Arsenic	<5.0	ug/L	06/14/2024	SKJACOBS	EPA 6020B	
Arsenic Dissolved	<5.0	ug/L	06/11/2024	SKJACOBS	EPA 6020B	
Barium	419	ug/L	06/14/2024	SKJACOBS	EPA 6020B	
Beryllium	<0.5	ug/L	06/14/2024	SKJACOBS	EPA 6020B	
Calcium	624	mg/L	06/14/2024	SKJACOBS	EPA 6020B	
Cadmium	<0.5	ug/L	06/14/2024	SKJACOBS	EPA 6020B	
Cobalt	0.57	ug/L	06/14/2024	SKJACOBS	EPA 6020B	
Chromium	<5.0	ug/L	06/14/2024	SKJACOBS	EPA 6020B	
Iron	15900	ug/L	06/14/2024	SKJACOBS	EPA 6020B	
Lead	<1.0	ug/L	06/14/2024	SKJACOBS	EPA 6020B	
Selenium	<10.0	ug/L	06/14/2024	SKJACOBS	EPA 6020B	
Antimony	<5.0	ug/L	06/14/2024	SKJACOBS	EPA 6020B	
Thallium	<1.0	ug/L	06/14/2024	SKJACOBS	EPA 6020B	
Zinc	<10.0	ug/L	06/14/2024	SKJACOBS	EPA 6020B	
Boron	28.6	ug/L	06/13/2024	SKJACOBS	EPA 6010D	
Lithium	129	ug/L	06/13/2024	SKJACOBS	EPA 6010D	
Molybdenum	<5.0	ug/L	06/13/2024	SKJACOBS	EPA 6010D	
Mercury	<0.2	ug/L	06/17/2024	EUROFINS SAV	EPA 7470	
Total Organic Carbon	1.26	mg/L	06/12/2024	GEL	SM 5310B	
Fluoride	<0.10	mg/L	06/07/2024	KCWELLS	EPA 300.0	
Chloride	1140	mg/L	06/07/2024	KCWELLS	EPA 300.0	
Nitrate	<0.10	mg/L	06/07/2024	KCWELLS	EPA 300.0	
Sulfate	74.6	mg/L	06/07/2024	KCWELLS	EPA 300.0	
Total Dissolved Solids	2759	mg/L	06/12/2024	KRMATHER	SM 2540C	
Radium 226	0.0534	pCi/L	06/19/2024	GEL	EPA 903.1 Mod	
Radium 228	1.21	pCi/L	06/25/2024	GEL	EPA 904.0	
Radium 226/228 Combined Calculation	1.2634	pCi/L	07/19/2024	SJLEVY	EPA 903.1 Mod	
pH	6.66	SU	06/05/2024	ZM/GK		

Comments:

Independent Laboratory Results: "GEL" - GEL Laboratories LLC - Lab ID # 10120; "Test America" - TestAmerica Laboratories, Inc. - Lab ID# 98001; "DavisBrown"- Davis & Brown Lab ID # 21117; "Shealy"- Shealy Environmental Services, Inc.- Lab ID# 32010 "ROGERSCALLCO"-Rogers & Callcot, Inc.- Lab ID # 23105001

Validation date:

Analysis Validated:

a member of The GEL Group INC

gel.com

February 26, 2024

Ms. Jeanette Gilmetti Santee Cooper P.O. Box 2946101 OCO3 Moncks Corner, South Carolina 29461

Re: ABS Lab Analytical Work Order: 654136

Dear Ms. Gilmetti:

GEL Laboratories, LLC (GEL) appreciates the opportunity to provide the enclosed analytical results for the sample(s) we received on February 02, 2024. This original data report has been prepared and reviewed in accordance with GEL's standard operating procedures.

The samples were delivered with proper chain of custody documentation and signatures. All sample containers arrived without any visible signs of tampering or breakage. There are no additional comments concerning sample receipt.

Test results for NELAP or ISO 17025 accredited tests are verified to meet the requirements of those standards, with any exceptions noted. The results reported relate only to the items tested and to the sample as received by the laboratory. These results may not be reproduced except as full reports without approval by the laboratory. Copies of GEL's accreditations and certifications can be found on our website at www.gel.com.

Our policy is to provide high quality, personalized analytical services to enable you to meet your analytical needs on time every time. We trust that you will find everything in order and to your satisfaction. If you have any questions, please do not hesitate to call me at (843) 556-8171, ext. 4289.

Sincerely,

Jordan Melton for Julie Robinson Project Manager

Purchase Order: 125915/JM02.09.G01.1/36500

Enclosures

2040 Savage Road Charleston SC 29407 - (843) 556-8171 - www.gel.com

Certificate of Analysis Report for

SOOP001 Santee Cooper

Client SDG: 654136 GEL Work Order: 654136

The Qualifiers in this report are defined as follows:

- * A quality control analyte recovery is outside of specified acceptance criteria
- ** Analyte is a Tracer compound
- ** Analyte is a surrogate compound
- U Analyte was analyzed for, but not detected above the MDL, MDA, MDC or LOD.

Where the analytical method has been performed under NELAP certification, the analysis has met all of the requirements of the NELAC standard unless qualified on the Certificate of Analysis.

The designation ND, if present, appears in the result column when the analyte concentration is not detected above the limit as defined in the 'U' qualifier above.

This data report has been prepared and reviewed in accordance with GEL Laboratories LLC standard operating procedures. Please direct any questions to your Project Manager, Julie Robinson.

2040 Savage Road Charleston SC 29407 - (843) 556-8171 - www.gel.com

Certificate of Analysis

Report Date: February 26, 2024

SOOP00119

85.6

(15%-125%)

Company: Santee Cooper Address: P.O. Box 2946101

OCO3

Moncks Corner, South Carolina 29461

Contact: Ms. Jeanette Gilmetti Project: ABS Lab Analytical

Client Sample ID: AF87814 Sample ID:

Matrix: GW

Collect Date: 25-JAN-24 09:28 Receive Date: 02-FEB-24 Collector: Client

Project: 654136001 Client ID: SOOP001

Parameter	Qualifier	Result	Uncertainty	MDC	RL	Units	PF 1	DF Analy	st Date	Time Batch	Method
Rad Gas Flow Proportion	onal Counting										
GFPC, Ra228, Liquid ".	As Received"										
Radium-228	U	0.712	+/-1.28	2.23	3.00	pCi/L		JE1	02/23/24	1110 2568526	1
Rad Radium-226											
Lucas Cell, Ra226, Liqu	uid "As Recei	ved"									
Radium-226		1.08	+/-0.486	0.322	1.00	pCi/L		MJ2	02/21/24	0800 2563217	2
The following Analytic	al Methods w	ere perfo	ormed:								
Method	Description						Analyst	Comment	S		
1	EPA 904.0/SW	846 9320 1	Modified				-				
2	EPA 903.1 Mo	dified									
Surrogate/Tracer Recov	ery Test				F	Result	Nominal	l Reco	very%	Acceptable Li	mits

Notes:

Barium-133 Tracer

Counting Uncertainty is calculated at the 95% confidence level (1.96-sigma).

GFPC, Ra228, Liquid "As Received"

Column headers are defined as follows:

DF: Dilution Factor Lc/LC: Critical Level DL: Detection Limit PF: Prep Factor MDA: Minimum Detectable Activity **RL**: Reporting Limit

MDC: Minimum Detectable Concentration SQL: Sample Quantitation Limit

Page 3 of 15 SDG: 654136

2040 Savage Road Charleston SC 29407 - (843) 556-8171 - www.gel.com

Certificate of Analysis

Report Date: February 26, 2024

SOOP00119

89.3

(15%-125%)

Company: Santee Cooper Address: P.O. Box 2946101

OCO3

Moncks Corner, South Carolina 29461

Contact: Ms. Jeanette Gilmetti Project: ABS Lab Analytical

Client Sample ID: AF87778 Sample ID: 654136002

Matrix: GW

Collect Date: 25-JAN-24 10:46 Receive Date: 02-FEB-24 Collector: Client

Project: Client ID: SOOP001

Parameter	Qualifier	Result	Uncertainty	MDC	RL	Units	PF I	OF Analy	yst Date	Time Batch	Method
Rad Gas Flow Proportion	nal Counting										
GFPC, Ra228, Liquid "A	As Received"										
Radium-228		1.60	+/-1.00	1.53	3.00	pCi/L		JE1	02/23/24	1110 2568526	1
Rad Radium-226											
Lucas Cell, Ra226, Liqu	iid "As Recei	ved"									
Radium-226		0.515	+/-0.364	0.430	1.00	pCi/L		MJ2	02/21/24	0800 2563217	2
The following Analytic	al Methods w	ere perfo	ormed:								
Method	Description						Analyst (Comment	S		
1	EPA 904.0/SW	7846 93 2 0 1	Modified				-				
2	EPA 903.1 Mo	dified									
Surrogate/Tracer Recov	ery Test				R	esult	Nominal	Reco	very%	Acceptable L	imits

Notes:

Barium-133 Tracer

Counting Uncertainty is calculated at the 95% confidence level (1.96-sigma).

GFPC, Ra228, Liquid "As Received"

Column headers are defined as follows:

DF: Dilution Factor Lc/LC: Critical Level DL: Detection Limit PF: Prep Factor MDA: Minimum Detectable Activity RL: Reporting Limit

MDC: Minimum Detectable Concentration SQL: Sample Quantitation Limit

Page 4 of 15 SDG: 654136

2040 Savage Road Charleston SC 29407 - (843) 556-8171 - www.gel.com

Certificate of Analysis

Report Date: February 26, 2024

92.4

(15%-125%)

Company: Santee Cooper Address: P.O. Box 2946101

OCO3

Moncks Corner, South Carolina 29461

Contact: Ms. Jeanette Gilmetti Project: ABS Lab Analytical

Client Sample ID: AF87777 Sample ID: 654136003

Matrix: GW

Collect Date: 25-JAN-24 11:31
Receive Date: 02-FEB-24
Collector: Client

F87777 Project: SOOP00119
54136003 Client ID: SOOP001

Parameter	Qualifier	Result	Uncertainty	MDC	RL	Units	PF]	DF Analy	yst Date	Time Batch	Method
Rad Gas Flow Proportion	onal Counting										
GFPC, Ra228, Liquid ".	As Received"										
Radium-228	U	0.948	+/-0.936	1.54	3.00	pCi/L		JE1	02/23/24	1110 2568526	1
Rad Radium-226											
Lucas Cell, Ra226, Liqu	uid "As Recei	ved"									
Radium-226	U	-0.0272	+/-0.192	0.510	1.00	pCi/L		MJ2	02/21/24	0836 2563217	2
The following Analytic	al Methods w	ere perfo	ormed:								
Method	Description						Analyst (Comment	S		
1	EPA 904.0/SW	7846 9320 I	Modified								
2	EPA 903.1 Mo	dified									
Surrogate/Tracer Recov	ery Test				F	Result	Nominal	Reco	very%	Acceptable Li	mits

Notes:

Barium-133 Tracer

Counting Uncertainty is calculated at the 95% confidence level (1.96-sigma).

GFPC, Ra228, Liquid "As Received"

Column headers are defined as follows:

DF: Dilution Factor Lc/LC: Critical Level
DL: Detection Limit PF: Prep Factor
MDA: Minimum Detectable Activity RL: Reporting Limit

MDC: Minimum Detectable Concentration SQL: Sample Quantitation Limit

Page 5 of 15 SDG: 654136

2040 Savage Road Charleston SC 29407 - (843) 556-8171 - www.gel.com

Certificate of Analysis

Report Date: February 26, 2024

SOOP00119

87.6

(15%-125%)

Project:

Company: Santee Cooper Address: P.O. Box 2946101

OCO3

Moncks Corner, South Carolina 29461

Contact: Ms. Jeanette Gilmetti Project: ABS Lab Analytical

Client Sample ID: AF87769 Sample ID: 654136004

Matrix: GW

Collect Date: 25-JAN-24 12:20 Receive Date: 02-FEB-24 Collector: Client

Client ID: SOOP001

Parameter	Qualifier	Result	Uncertainty	MDC	RL	Units	PF	DF Analy	st Date	Time Batch	Method
Rad Gas Flow Proportion	onal Counting										
GFPC, Ra228, Liquid "A	As Received"										
Radium-228	U	0.635	+/-0.802	1.36	3.00	pCi/L		JE1	02/23/24	1110 2568526	1
Rad Radium-226											
Lucas Cell, Ra226, Liqu	ıid "As Recei	ved"									
Radium-226		0.601	+/-0.329	0.260	1.00	pCi/L		MJ2	02/21/24	0836 2563217	2
The following Analytic	al Methods w	ere perfo	ormed:								
Method	Description						Analyst	t Comment	S		
1	EPA 904.0/SW	7846 9320 I	Modified								
2	EPA 903.1 Mo	dified									
Surrogate/Tracer Recov	ery Test				R	esult	Nomina	al Reco	very%	Acceptable Li	imits

Notes:

Barium-133 Tracer

Counting Uncertainty is calculated at the 95% confidence level (1.96-sigma).

GFPC, Ra228, Liquid "As Received"

Column headers are defined as follows:

DF: Dilution Factor Lc/LC: Critical Level
DL: Detection Limit PF: Prep Factor
MDA: Minimum Detectable Activity RL: Reporting Limit

MDC: Minimum Detectable Concentration SQL: Sample Quantitation Limit

Page 6 of 15 SDG: 654136

2040 Savage Road Charleston SC 29407 - (843) 556-8171 - www.gel.com

Certificate of Analysis

Project:

Client ID:

Report Date: February 26, 2024

SOOP00119

SOOP001

Company: Santee Cooper Address: P.O. Box 2946101

OCO3

Moncks Corner, South Carolina 29461

Contact: Ms. Jeanette Gilmetti Project: ABS Lab Analytical

Client Sample ID: AF87780 Sample ID: 654136005

Matrix: GW

Collect Date: 25-JAN-24 13:46 Receive Date: 02-FEB-24 Collector: Client

Parameter	Qualifier	Result	Uncertainty	MDC	RL	Units	PF	DF Anal	yst Date	Time Batch	Method
Rad Gas Flow Propor	tional Counting										
GFPC, Ra228, Liquid	d "As Received"										
Radium-228	U	0.289	+/-0.631	1.14	3.00	pCi/L		JE1	02/23/24	1110 2568526	1
Rad Radium-226											
Lucas Cell, Ra226, La	iquid "As Recei	ved"									
Radium-226		0.575	+/-0.383	0.455	1.00	pCi/L		MJ2	02/21/24	0836 2563217	2
The following Analy	tical Methods w	ere perfo	ormed:								
Method	Description						Analys	st Comment	S		

Method	Description	Analyst Comments
1	EPA 904.0/SW846 9320 Modified	
2	EPA 903.1 Modified	

EPA 903.1 Modified

Surrogate/Tracer Recovery Test Result Nominal Recovery% Acceptable Limits Barium-133 Tracer GFPC, Ra228, Liquid "As Received" (15%-125%) 89.1

Notes:

Counting Uncertainty is calculated at the 95% confidence level (1.96-sigma).

Column headers are defined as follows:

DF: Dilution Factor Lc/LC: Critical Level DL: Detection Limit PF: Prep Factor MDA: Minimum Detectable Activity **RL**: Reporting Limit

MDC: Minimum Detectable Concentration SQL: Sample Quantitation Limit

Page 7 of 15 SDG: 654136

2040 Savage Road Charleston SC 29407 - (843) 556-8171 - www.gel.com

Certificate of Analysis

Project:

Client ID:

Report Date: February 26, 2024

SOOP00119

SOOP001

Company: Santee Cooper Address: P.O. Box 2946101

OCO3

Moncks Corner, South Carolina 29461

Contact: Ms. Jeanette Gilmetti Project: ABS Lab Analytical

Client Sample ID: AF87779 Sample ID: 654136006

Matrix: GW

Collect Date: 25-JAN-24 14:34
Receive Date: 02-FEB-24
Collector: Client

Parameter	Qualifier	Result	Uncertainty	MDC	RL	Units	PF	DF Anal	yst Date	Time Batch	Method
Rad Gas Flow Proportion	onal Counting										
GFPC, Ra228, Liquid ".	As Received"										
Radium-228	U	-0.283	+/-0.635	1.34	3.00	pCi/L		JE1	02/23/24	1110 2568526	1
Rad Radium-226											
Lucas Cell, Ra226, Liqu	uid "As Recei	ved"									
Radium-226		1.49	+/-0.496	0.290	1.00	pCi/L		MJ2	02/21/24	0836 2563217	2
The following Analytic	cal Methods w	ere perfo	ormed:								

MethodDescriptionAnalyst Comments1EPA 904.0/SW846 9320 Modified

EPA 903.1 Modified

Surrogate/Tracer Recovery Test Result Nominal Recovery% Acceptable Limits

Barium-133 Tracer GFPC, Ra228, Liquid "As Received"

91 (15%-125%)

Notes:

Counting Uncertainty is calculated at the 95% confidence level (1.96-sigma).

Column headers are defined as follows:

DF: Dilution Factor Lc/LC: Critical Level
DL: Detection Limit PF: Prep Factor
MDA: Minimum Detectable Activity RL: Reporting Limit

MDC: Minimum Detectable Concentration SQL: Sample Quantitation Limit

Page 8 of 15 SDG: 654136

2040 Savage Road Charleston, SC 29407 - (843) 556-8171 - www.gel.com

QC Summary

Report Date: February 26, 2024

Page 1 of 2

Santee Cooper P.O. Box 2946101

OCO3

Moncks Corner, South Carolina

Contact: Ms. Jeanette Gilmetti

Workorder: 654136

Parmname		NOM	Sample	Qual	QC	Units	RPD%	REC%	Range	Anlst	Date Time
Rad Gas Flow Batch 2568526											
QC1205650263 6541360 Radium-228	01 DUP	U Uncertainty	0.712 +/-1.28		1.52 +/-0.944	pCi/L	72.3		(0% - 100%)	JE1	02/23/24 11:11
QC1205650264 LCS Radium-228		72.0 Uncertainty			71.4 +/-3.83	pCi/L		99.2	(75%-125%)		02/23/24 11:11
QC1205650262 MB Radium-228		Uncertainty		U	0.536 +/-0.599	pCi/L					02/23/24 11:11
Rad Ra-226 Batch 2563217											
QC1205639954 6541360 Radium-226	01 DUP	Uncertainty	1.08 +/-0.486		0.917 +/-0.490	pCi/L	15.9		(0% - 100%)	МЈ2	02/21/24 08:36
QC1205639957 LCS Radium-226		26.9 Uncertainty			27.0 +/-2.18	pCi/L		100	(75%-125%)		02/21/24 09:11
QC1205639952 MB Radium-226		Uncertainty		Ū	0.210 +/-0.286	pCi/L					02/21/24 08:36
QC1205639956 6541360 Radium-226	01 MS	130 Uncertainty	1.08 +/-0.486		119 +/-9.93	pCi/L		90.5	(75%-125%)		02/21/24 09:11

Notes:

Counting Uncertainty is calculated at the 95% confidence level (1.96-sigma).

The Qualifiers in this report are defined as follows:

U Analyte was analyzed for, but not detected above the MDL, MDA, MDC or LOD.

J Value is estimated

X Consult Case Narrative, Data Summary package, or Project Manager concerning this qualifier

H Analytical holding time was exceeded

< Result is less than value reported

Page 9 of 15 SDG: 654136

2040 Savage Road Charleston, SC 29407 - (843) 556-8171 - www.gel.com

QC Summary

Workorder: 654136

Parmname

NOM Sample Qual QC Units RPD% REC% Range AnIst Date Time

>	Result is	greater than	value reported	

- UI Gamma Spectroscopy--Uncertain identification
- BD Results are either below the MDC or tracer recovery is low
- h Preparation or preservation holding time was exceeded
- R Sample results are rejected
- ^ RPD of sample and duplicate evaluated using +/-RL. Concentrations are <5X the RL. Qualifier Not Applicable for Radiochemistry.
- N/A RPD or %Recovery limits do not apply.
- ND Analyte concentration is not detected above the detection limit
- M if above MDC and less than LLD
- NJ Consult Case Narrative, Data Summary package, or Project Manager concerning this qualifier
- FA Failed analysis.
- UJ Gamma Spectroscopy--Uncertain identification
- Q One or more quality control criteria have not been met. Refer to the applicable narrative or DER.
- K Analyte present. Reported value may be biased high. Actual value is expected to be lower.
- UL Not considered detected. The associated number is the reported concentration, which may be inaccurate due to a low bias.
- L Analyte present. Reported value may be biased low. Actual value is expected to be higher.
- N1 See case narrative
- Y Other specific qualifiers were required to properly define the results. Consult case narrative.
- ** Analyte is a Tracer compound
- M REMP Result > MDC/CL and < RDL
- J See case narrative for an explanation

N/A indicates that spike recovery limits do not apply when sample concentration exceeds spike conc. by a factor of 4 or more or %RPD not applicable.

- ^ The Relative Percent Difference (RPD) obtained from the sample duplicate (DUP) is evaluated against the acceptance criteria when the sample is greater than five times (5X) the contract required detection limit (RL). In cases where either the sample or duplicate value is less than 5X the RL, a control limit of +/- the RL is used to evaluate the DUP result.
- * Indicates that a Quality Control parameter was not within specifications.

For PS, PSD, and SDILT results, the values listed are the measured amounts, not final concentrations.

Where the analytical method has been performed under NELAP certification, the analysis has met all of the requirements of the NELAC standard unless qualified on the QC Summary.

Page 10 of 15 SDG: 654136

Radiochemistry Technical Case Narrative Santee Cooper SDG #: 654136

Product: GFPC, Ra228, Liquid

<u>Analytical Method:</u> EPA 904.0/SW846 9320 Modified <u>Analytical Procedure:</u> GL-RAD-A-063 REV# 5

Analytical Batch: 2568526

The following samples were analyzed using the above methods and analytical procedure(s).

GEL Sample ID#	Client Sample Identification
654136001	AF87814
654136002	AF87778
654136003	AF87777
654136004	AF87769
654136005	AF87780
654136006	AF87779
1205650262	Method Blank (MB)
1205650263	654136001(AF87814) Sample Duplicate (DUP)
1205650264	Laboratory Control Sample (LCS)

The samples in this SDG were analyzed on an "as received" basis.

Data Summary:

There are no exceptions, anomalies or deviations from the specified methods. All sample data provided in this report met the acceptance criteria specified in the analytical methods and procedures for initial calibration, continuing calibration, instrument controls and process controls where applicable.

<u>Product:</u> Lucas Cell, Ra226, Liquid <u>Analytical Method:</u> EPA 903.1 Modified

Analytical Procedure: GL-RAD-A-008 REV# 15

Analytical Batch: 2563217

The following samples were analyzed using the above methods and analytical procedure(s).

GEL Sample ID#	Client Sample Identification
654136001	AF87814
654136002	AF87778
654136003	AF87777
654136004	AF87769
654136005	AF87780
654136006	AF87779
1205639952	Method Blank (MB)
1205639954	654136001(AF87814) Sample Duplicate (DUP)
1205639956	654136001(AF87814) Matrix Spike (MS)
1205639957	Laboratory Control Sample (LCS)

The samples in this SDG were analyzed on an "as received" basis.

Page 11 of 15 SDG: 654136

Data Summary:

All sample data provided in this report met the acceptance criteria specified in the analytical methods and procedures for initial calibration, continuing calibration, instrument controls and process controls where applicable, with the following exceptions.

Miscellaneous Information

Additional Comments

Aliquots for the matrix spikes, 1205639956 (AF87814MS), were reduced to conserve sample volume.

Certification Statement

Where the analytical method has been performed under NELAP certification, the analysis has met all of the requirements of the NELAC standard unless otherwise noted in the analytical case narrative.

Page 12 of 15 SDG: 654136

Chain of Custody

Santee Cooper One Riverwood Drive Moncks Corner, SC 29461 Phone: (843)761-8000 Ext. 5148 Fax: (843)761-4175

Customer Email/Report Recipient:		Date I	Results N	eeded b	y:		P	roject/	Task/	Unit #:		Rerun reques	t for a	ny flag	ged C		
LINDA	WILLIA	₩S@santee	ecooper.com		JJ			125	125915 / JM02.09.601.1 / 36500 (Yes)						No		
															Ē	Analysis	Group
(Internionly)	rks ID # al use	Sample Locat Description	ion/	Collection Date	Collection Time	Sample Collector	Total # of containers	Bottle type: (Glass-G/Plastic-P)	Grab (G) or Composite (C)	Matrix(see below)	Preservative (see	• M • Re • M	cethod # eporting linisc. sample	e info	RAD 226	RAD 228	
VL 8.	7814	F0Z-8		1/25/24	0928	WIK	2	Р	G	GW	2				1	1	
4F87	778	CCMAP-9			1046		1	1	1	1	1				1		+
1	דד	CCMAP-8			1131										+	H	+
	67	CCMAP-1			1220			\Box							+	H	-
	80	COMAP- II	(4		1346		$\exists \exists$				+				+		+
	79						+		+	H	+				H	H	+
	- 1	CCMAP-10			1434	_	-	-	1	1					7	1	+
																	\perp
Relinq	uished by:	Employee#	Date	Time	Receive	ed by:	Em	ployee #	#	Date		Time	Sampl	e Receiving (Internal	Use On	ly)	
ten	14	36851		0947	Da	1	G	HEL	2	12/20	+	0947		ct pH: Yes No		_	_
Relinqu	uished by:	Employee#	Date	Time	Deceived by:		Em	Employee #		Date		Time	Correct pH: Yes				
Poling	aished by:	GEL 2-2-24		575		5				2/2	9 1	525	Prese	servative Lot#:			
Kemiqi	isileu by.	Employee#	Date	Time	Receive	d by:	Em	ployee #		Date		Time	D				
7474	□ ME	TALS (all)											Date/	Time/Init for preserva	itive:		
Ag		□Sb	Nutri	MINISTER STATE	MIS	<u>C.</u>		St. St. St. St.	osum			Coal		<u>Flyash</u>		Oil	
A1	□ Fe	□ Se		CONTRACTOR OF THE PARTY OF THE	☐ BTEX ☐ Naphthale	ne		Vallboa	ird um(<i>ali</i>			Ultimate		☐ Ammonia		s. Oil Q	
As	□K	□ Sn	□ TP/T	PO4	□ THM/HA	A		below)			☐ % Mois ☐ Ash	ture	□ LOI □ % Carbon	II Co	Moistur olor	e
В	□ Li	□ Sr	□ NH3		□ VOC □ Oil & Gre	ase		II AIN				□ Sulfur		☐ Mineral	DAG	idity	
Ba	□Mg	□ Ti			□ E. Coli				l metals	,		□ BTUs		Analysis	□ IF	electric St T	rength
Ве	□Mn	□ T1	□ NO2		□ Total Coli □ pH	form		□ Solul	ble Met	als		□ Volatile □ CHN	Matter	□ Sieve	□ Di	ssolved	Gases
Ca	□Мо	EACH MITTER	□ Br		☐ Dissolved			☐ Purit ☐ % M			1 1 A CO CO CO CO CO CO CO CO CO CO CO CO CO	her Tests:		□ % Moisture		d Oil ashpoint	
Cd	□ Na	□ Zn	□ NO3		☐ Dissolved ☐ Rad 226	Fe		□ Sulfi			□X	RF Scan		NPDES	□ Me	etals in c	oil
	5 25 8 TO	Charles and the same of	□ SO4		□ Rad 228			□ pH □ Chlo	ridec		DH	GI ineness		□ Oil & Grease		s,Cd,Cr	,Ni,Pb
Co Cr	□ Ni □ Pb	☐ Hg			□ PCB			□ Partic				articulate M	atter	□ As	H _I		
i Ci	l PO	□ CrVI				72.54		Sulfur			1 3000			□ TSS	GOF		

	GEL Laboratories LLC				SAMPLE RECEIPT & REVIEW FORM
	lient: SOCP			SI	DG/AR/COC/Work Order: U54136
R	eceived By: QG			D	ate Received: 2/2/29
	Carrier and Tracking Number				Circle Applicable: FedEx Express FedEx Ground UPS Field Services Courier Other
					n/a
St	ispected Hazard Information	Yes	No		f Net Counts > 100cpm on samples not marked "radioactive", contact the Radiation Safety Group for further investigation.
A	Shipped as a DOT Hazardous?		1	Hi	ward Class Shipped: UN#: If UN2910, Is the Radioactive Shipment Survey Compliant? Yes No
B) red	Did the client designate the samples are to be ceived as radioactive?		1	CC	OC notation or radioactive stickers on containers equal client designation.
C) rac	Did the RSO classify the samples as lioactive?		/	Mi	ximum Net Counts Observed* (Observed Counts - Area Background Counts): Classified as: Rad 1 Rad 2 Rad 3
D)	Did the client designate samples are hazardous	?	/	/	O or E is yes, select Hazards below.
E)	Did the RSO identify possible hazards?				PCB's Flammable Foreign Soil RCRA Asbestos Beryllium Other.
L	Sample Receipt Criteria	Yes	NA	No	
1	sealed?	/			Circle Applicable: Seals broken Damaged container Leaking container Other (describe)
2	Chain of custody documents included with shipment?			. ,	Circle Applicable: Client contacted and provided COC COC created upon receipt
3	Samples requiring cold preservation within $(0 \le 6 \text{ deg. C})$?*		/		Preservation Method: Wet Ice Ice Packs Dry ice one Other: *all temperatures are recorded in Celsius TEMP: 13 **C
4	Daily check performed and passed on IR temperature gun?	~			Temperature Device Serial #: <u>IR1-23</u> Secondary Temperature Device Serial # (If Applicable):
5					Circle Applicable: Seals broken Damaged container Leaking container Other (describe)
6	Samples requiring chemical preservation at proper pH?				Sample ID's and Containers Affected: If Preservation added, Lot#:
	Do any samples require Volatile			,	If Yes, are Encores or Soil Kits present for solids? YesNoNA(If yes, take to VOA Freezer) Do liquid VOA vials contain acid preservation? YesNoNA(If unknown, select No)
7	Analysis?			-	Are liquid VOA vials free of headspace? Yes No NA(If unknown, select No) Sample ID's and containers affected:
8	Samples received within holding time?			•	ID's and tests affected:
9	Sample ID's on COC match ID's on bottles?				ID's and containers affected:
10	Date & time on COC match date & time on bottles?	1			Circle Applicable: No dates on containers No times on containers COC missing info Other (describe)
11	Number of containers received match number indicated on COC?	/	8		Circle Applicable: No container count on COC Other (describe)
12	Are sample containers identifiable as GEL provided by use of GEL labels?			1	client and Get Iches
15	COC form is properly signed in relinquished/received sections?			-	Circle Applicable: Not relinquished Other (describe)
om	ments (Use Continuation Form if needed):				

List of current GEL Certifications as of 26 February 2024

State	Certification
Alabama	42200
Alaska	17-018
Alaska Drinking Water	SC00012
Arkansas	88-00651
CLIA	42D0904046
California	2940
Colorado	SC00012
Connecticut	PH-0169
DoD ELAP/ ISO17025 A2LA	2567.01
Florida NELAP	E87156
Foreign Soils Permit	P330-15-00283, P330-15-00253
Georgia	SC00012
Georgia SDWA	967
Hawaii	SC00012
Idaho	SC00012
Illinois NELAP	200029
Indiana	C-SC-01
Kansas NELAP	E-10332
Kentucky SDWA	KY90129
Kentucky Wastewater	KY90129
Louisiana Drinking Water	LA024
Louisiana NELAP	03046 (AI33904)
Maine	2023019
Maryland	270
Massachusetts	M-SC012
Massachusetts PFAS Approv	Letter
Michigan	9976
Mississippi	SC00012
Nebraska	NE-OS-26-13
Nevada	SC000122024-05
New Hampshire NELAP	2054
New Jersey NELAP	SC002
New Mexico	SC00012
New York NELAP	11501
North Carolina	233
North Carolina SDWA	45709
North Dakota	R-158
Oklahoma	2023-152
Pennsylvania NELAP	68-00485
Pucrto Rico	SC00012
S. Carolina Radiochem	10120002
Sanitation Districts of L	9255651
South Carolina Chemistry	10120001
Tennessee	TN 02934
Texas NELAP	T104704235-23-21
Utah NELAP	SC000122023-38
Vermont	VT87156
Virginia NELAP	460202
Washington	C780

10

12

13

ANALYTICAL REPORT

PREPARED FOR

Attn: Linda Williams
South Carolina Public Service Authority
Santee Cooper
PO BOX 2946101
Moncks Corner, South Carolina 29461-2901

Generated 2/6/2024 1:13:01 PM

JOB DESCRIPTION

125915/JM02.09.G01.1/36500

JOB NUMBER

680-246129-1

Eurofins Savannah 5102 LaRoche Avenue Savannah GA 31404

Eurofins Savannah

Job Notes

This report may not be reproduced except in full, and with written approval from the laboratory. The results relate only to the samples tested. For questions please contact the Project Manager at the e-mail address or telephone number listed on this page.

The test results in this report relate only to the samples as received by the laboratory and will meet all requirements of the methodology, with any exceptions noted. This report shall not be reproduced except in full, without the express written approval of the laboratory. All questions should be directed to the Eurofins Environment Testing Southeast, LLC Project Manager.

Authorization

Generated 2/6/2024 1:13:01 PM

Authorized for release by Jerry Lanier, Project Manager I <u>Jerry.Lanier@et.eurofinsus.com</u> (912)250-0281 Client: South Carolina Public Service Authority Project/Site: 125915/JM02.09.G01.1/36500

Laboratory Job ID: 680-246129-1

Table of Contents

Cover Page	1
Table of Contents	3
Case Narrative	4
Sample Summary	5
Method Summary	6
Definitions	7
Detection Summary	8
Client Sample Results	9
QC Sample Results	18
QC Association	19
Chronicle	20
Chain of Custody	22
Receipt Checklists	23
Certification Summary	24

6

Ω

9

10

12

13

Case Narrative

Client: South Carolina Public Service Authority

Project: 125915/JM02.09.G01.1/36500

Job ID: 680-246129-1 Eurofins Savannah

Job Narrative 680-246129-1

Analytical test results meet all requirements of the associated regulatory program listed on the Accreditation/Certification Summary Page unless otherwise noted under the individual analysis. Data qualifiers are applied to indicate exceptions. Noncompliant quality control (QC) is further explained in narrative comments.

- Matrix QC may not be reported if insufficient sample or site-specific QC samples were not submitted. In these situations, to demonstrate precision and accuracy at a batch level, a LCS/LCSD may be performed, unless otherwise specified in the method.
- · Surrogate and/or isotope dilution analyte recoveries (if applicable) which are outside of the QC window are confirmed unless attributed to a dilution or otherwise noted in the narrative.

Regulated compliance samples (e.g. SDWA, NPDES) must comply with the associated agency requirements/permits.

Receipt

The samples were received on 2/1/2024 10:06 AM. Unless otherwise noted below, the samples arrived in good condition, and, where required, properly preserved and on ice. The temperature of the cooler at receipt time was 11.1°C

Metals

No additional analytical or quality issues were noted, other than those described above or in the Definitions/ Glossary page.

Eurofins Savannah

Page 4 of 24 2/6/2024

2

Job ID: 680-246129-1

3

4

5

7

8

9

1 1

12

Sample Summary

Client: South Carolina Public Service Authority Project/Site: 125915/JM02.09.G01.1/36500

Job ID: 680-246129-1

Lab Sample ID	Client Sample ID	Matrix	Collected	Received
680-246129-1	AF87791	Water	01/24/24 09:58	02/01/24 10:06
680-246129-2	AF87790	Water	01/24/24 11:31	02/01/24 10:06
680-246129-3	AF87789	Water	01/24/24 12:28	02/01/24 10:06
680-246129-4	AF87814	Water	01/25/24 09:28	02/01/24 10:06
680-246129-5	AF87778	Water	01/25/24 10:46	02/01/24 10:06
680-246129-6	AF87777	Water	01/25/24 11:31	02/01/24 10:06
680-246129-7	AF87769	Water	01/25/24 12:20	02/01/24 10:06
680-246129-8	AF87780	Water	01/25/24 13:46	02/01/24 10:06
680-246129-9	AF87779	Water	01/25/24 14:34	02/01/24 10:06

Δ

5

7

8

9

44

10

13

Method Summary

Client: South Carolina Public Service Authority Project/Site: 125915/JM02.09.G01.1/36500

Job ID: 680-246129-1

Method	Method Description	Protocol	Laboratory
7470A	Mercury (CVAA)	SW846	EET SAV
7470A	Preparation, Mercury	SW846	EET SAV

Protocol References:

SW846 = "Test Methods For Evaluating Solid Waste, Physical/Chemical Methods", Third Edition, November 1986 And Its Updates.

Laboratory References:

EET SAV = Eurofins Savannah, 5102 LaRoche Avenue, Savannah, GA 31404, TEL (912)354-7858

3

5

6

0

9

11

10

Definitions/Glossary

Client: South Carolina Public Service Authority

Project/Site: 125915/JM02.09.G01.1/36500

Job ID: 680-246129-1

Qualifiers

Metals

U Indicates the analyte was analyzed for but not detected.

Glossary

Abbreviation

These commonly used abbreviations may or may not be present in this report.

Listed under the "D" column to designate that the result is reported on a dry weight basis

%R Percent Recovery

CFL Contains Free Liquid

CFU Colony Forming Unit

CNF Contains No Free Liquid

DER Duplicate Error Ratio (normalized absolute difference)

Dil Fac Dilution Factor

DL Detection Limit (DoD/DOE)

DL, RA, RE, IN Indicates a Dilution, Re-analysis, Re-extraction, or additional Initial metals/anion analysis of the sample

DLC Decision Level Concentration (Radiochemistry)

EDL Estimated Detection Limit (Dioxin)

LOD Limit of Detection (DoD/DOE)

LOQ Limit of Quantitation (DoD/DOE)

MCL EPA recommended "Maximum Contaminant Level"

MDA Minimum Detectable Activity (Radiochemistry)

MDC Minimum Detectable Concentration (Radiochemistry)

MDL Method Detection Limit
ML Minimum Level (Dioxin)
MPN Most Probable Number
MQL Method Quantitation Limit

NC Not Calculated

ND Not Detected at the reporting limit (or MDL or EDL if shown)

NEG Negative / Absent
POS Positive / Present

PQL Practical Quantitation Limit

PRES Presumptive
QC Quality Control

RER Relative Error Ratio (Radiochemistry)

RL Reporting Limit or Requested Limit (Radiochemistry)

RPD Relative Percent Difference, a measure of the relative difference between two points

TEF Toxicity Equivalent Factor (Dioxin)
TEQ Toxicity Equivalent Quotient (Dioxin)

TNTC Too Numerous To Count

I ID 000 040400 4

2

- 0

4

5

J

0

9

- -

12

13

Detection Summary

Project/Site: 125915/JM02.09.G01.1/36500	333 15. 333 2 10 120 1
Client Sample ID: AF87791	Lab Sample ID: 680-246129-1
No Detections.	
Client Sample ID: AF87790	Lab Sample ID: 680-246129-2
No Detections.	
Client Sample ID: AF87789	Lab Sample ID: 680-246129-3
No Detections.	
Client Sample ID: AF87814	Lab Sample ID: 680-246129-4
No Detections.	
Client Sample ID: AF87778	Lab Sample ID: 680-246129-5
No Detections.	
Client Sample ID: AF87777	Lab Sample ID: 680-246129-6
No Detections.	
Client Sample ID: AF87769	Lab Sample ID: 680-246129-7
No Detections.	
Client Sample ID: AF87780	Lab Sample ID: 680-246129-8
No Detections.	
Client Sample ID: AF87779	Lab Sample ID: 680-246129-9
No Detections.	

This Detection Summary does not include radiochemical test results.

Client: South Carolina Public Service Authority

Eurofins Savannah

Job ID: 680-246129-1

Client: South Carolina Public Service Authority Project/Site: 125915/JM02.09.G01.1/36500

Job ID: 680-246129-1

Lab Sample ID: 680-246129-1

Matrix: Water

Client Sample ID: AF87791 Date Collected: 01/24/24 09:58

Date Received: 02/01/24 10:06

Method: SW846 7470A - Mercury (CVAA)

Analyte	Result	Qualifier	RI	MDL	Unit	D	Prepared	Analyzed	Dil Fac	
rinaryte		addillio!					Treparea	, mary zea	- DII 1 40	
Mercury	0.200	H	0.200		ua/l		02/05/24 10:16	02/06/24 10:12	1	

4

5

7

8

10

13

Client: South Carolina Public Service Authority Project/Site: 125915/JM02.09.G01.1/36500

Job ID: 680-246129-1

Lab Sample ID: 680-246129-2

Matrix: Water

Client Sample ID: AF87790 Date Collected: 01/24/24 11:31

Date Received: 02/01/24 10:06

Method: SW846 7470A - Mercury (CVAA)

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac	
Mercury	0.200	П	0.200		ua/l		02/05/24 10:16	02/06/24 10:18	1	

5

C

0

10

12

13

Client: South Carolina Public Service Authority Project/Site: 125915/JM02.09.G01.1/36500

Job ID: 680-246129-1

Client Sample ID: AF87789

Lab Sample ID: 680-246129-3

Date Collected: 01/24/24 12:28 Date Received: 02/01/24 10:06

Matrix: Water

	Method:	SW846	7470A -	Mercury	(CVAA)
--	---------	-------	---------	---------	--------

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Mercury	0.200	U	0.200		ua/L		02/05/24 10:16	02/06/24 10:20	1

Client: South Carolina Public Service Authority Project/Site: 125915/JM02.09.G01.1/36500

Job ID: 680-246129-1

Lab Sample ID: 680-246129-4

Matrix: Water

Client Sample ID: AF87814 Date Collected: 01/25/24 09:28

Date Received: 02/01/24 10:06

Method: SW846 7470A - Mercury (CVAA)

Analyte	Result	Qualifier	RL	MDL	Unit	D)	Prepared	Analyzed	Dil Fac
Mercury	0.200	U	0.200		ua/l			02/05/24 10:16	02/06/24 10:22	1

__

0

10

111

13

Client: South Carolina Public Service Authority Project/Site: 125915/JM02.09.G01.1/36500

Job ID: 680-246129-1

Client Sample ID: AF87778 Lab Sample ID: 680-246129-5

Matrix: Water

Date Collected: 01/25/24 10:46 Date Received: 02/01/24 10:06

 Method: SW846 7470A - Mercury (CVAA)

 Analyte
 Result
 Qualifier
 RL
 MDL
 Unit
 D
 Prepared
 Analyzed
 Dil Fac

 Mercury
 0.200
 U
 0.200
 ug/L
 02/05/24 10:16
 02/06/24 10:24
 1

1

5

Q

9

11

12

Client: South Carolina Public Service Authority

Job ID: 680-246129-1 Project/Site: 125915/JM02.09.G01.1/36500

Client Sample ID: AF87777 Lab Sample ID: 680-246129-6

Date Collected: 01/25/24 11:31 Matrix: Water

Date Received: 02/01/24 10:06

Method: SW846 7470A - Mercury (CVAA)										
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac	
Mercury	0.200	П	0.200		ua/l		02/05/24 10:16	02/06/24 10:26	1	

Client: South Carolina Public Service Authority Project/Site: 125915/JM02.09.G01.1/36500

Job ID: 680-246129-1

Lab Sample ID: 680-246129-7 **Client Sample ID: AF87769**

Matrix: Water

Date Collected: 01/25/24 12:20 Date Received: 02/01/24 10:06

Method: SW846 7470A - Mercury (CVAA)								
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Mercury	0.200	U	0.200		ug/L		02/05/24 10:16	02/06/24 10:32	1

Client: South Carolina Public Service Authority Project/Site: 125915/JM02.09.G01.1/36500

Job ID: 680-246129-1

Lab Sample ID: 680-246129-8

Matrix: Water

Client Sample ID: AF87780 Date Collected: 01/25/24 13:46

Date Received: 02/01/24 10:06

Method: SW846 7470A - Mercury (CVAA)											
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac		
Mercury	0.200	U	0.200		ug/L		02/05/24 10:16	02/06/24 10:34	1		

.

5

6

g

11

12

12

Client: South Carolina Public Service Authority Project/Site: 125915/JM02.09.G01.1/36500

Job ID: 680-246129-1

Client Sample ID: AF87779 Lab Sample ID: 680-246129-9 Date Collected: 01/25/24 14:34

Matrix: Water

Date Received: 02/01/24 10:06

Method: SW846 7470A - Mercury (CVAA)											
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac		
Mercury	0.200	U	0.200		ug/L		02/05/24 10:16	02/06/24 10:36	1		

QC Sample Results

Client: South Carolina Public Service Authority Project/Site: 125915/JM02.09.G01.1/36500

Job ID: 680-246129-1

Method: 7470A - Mercury (CVAA)

Lab Sample ID: MB 680-821046/1-A

Matrix: Water

Analysis Batch: 821322 MB MB Client Sample ID: Method Blank Prep Type: Total/NA

Prep Batch: 821046

MDL Unit Dil Fac Analyte Result Qualifier RL Prepared Analyzed 02/05/24 10:16 Mercury 0.200 U 0.200 ug/L 02/06/24 10:08

Lab Sample ID: LCS 680-821046/2-A Client Sample ID: Lab Control Sample **Matrix: Water** Prep Type: Total/NA

Analysis Batch: 821322 Prep Batch: 821046 Spike LCS LCS %Rec

Analyte Added Result Qualifier Unit D %Rec Limits Mercury 2.50 2.508 ug/L 100 80 _ 120

Lab Sample ID: 680-246129-1 MS Client Sample ID: AF87791

Matrix: Water Prep Type: Total/NA

Analysis Batch: 821322 Prep Batch: 821046 Sample Sample Spike MS MS %Rec

Analyte Result Qualifier Added Result Qualifier Unit %Rec Limits 0.200 U 1.00 Mercury 0.9583 96 80 _ 120 ug/L

Lab Sample ID: 680-246129-1 MSD Client Sample ID: AF87791 Prep Type: Total/NA

Matrix: Water

Prep Batch: 821046 Analysis Batch: 821322

%Rec **RPD** Sample Sample Spike MSD MSD

Analyte Result Qualifier Added %Rec RPD Limit Result Qualifier Unit Limits Mercury 0.200 U 1.00 0.9759 80 - 120 ug/L 98 2 20

QC Association Summary

Client: South Carolina Public Service Authority
Project/Site: 125915/JM02.09.G01.1/36500

Job ID: 680-246129-1

Metals

Prep Batch: 821046

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
680-246129-1	AF87791	Total/NA	Water	7470A	
680-246129-2	AF87790	Total/NA	Water	7470A	
680-246129-3	AF87789	Total/NA	Water	7470A	
680-246129-4	AF87814	Total/NA	Water	7470A	
680-246129-5	AF87778	Total/NA	Water	7470A	
680-246129-6	AF87777	Total/NA	Water	7470A	
680-246129-7	AF87769	Total/NA	Water	7470A	
680-246129-8	AF87780	Total/NA	Water	7470A	
680-246129-9	AF87779	Total/NA	Water	7470A	
MB 680-821046/1-A	Method Blank	Total/NA	Water	7470A	
LCS 680-821046/2-A	Lab Control Sample	Total/NA	Water	7470A	
680-246129-1 MS	AF87791	Total/NA	Water	7470A	
680-246129-1 MSD	AF87791	Total/NA	Water	7470A	

Analysis Batch: 821322

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
680-246129-1	AF87791	Total/NA	Water	7470A	821046
680-246129-2	AF87790	Total/NA	Water	7470A	821046
680-246129-3	AF87789	Total/NA	Water	7470A	821046
680-246129-4	AF87814	Total/NA	Water	7470A	821046
680-246129-5	AF87778	Total/NA	Water	7470A	821046
680-246129-6	AF87777	Total/NA	Water	7470A	821046
680-246129-7	AF87769	Total/NA	Water	7470A	821046
680-246129-8	AF87780	Total/NA	Water	7470A	821046
680-246129-9	AF87779	Total/NA	Water	7470A	821046
MB 680-821046/1-A	Method Blank	Total/NA	Water	7470A	821046
LCS 680-821046/2-A	Lab Control Sample	Total/NA	Water	7470A	821046
680-246129-1 MS	AF87791	Total/NA	Water	7470A	821046
680-246129-1 MSD	AF87791	Total/NA	Water	7470A	821046

Eurofins Savannah

Job ID: 680-246129-1

Client: South Carolina Public Service Authority Project/Site: 125915/JM02.09.G01.1/36500

Client Sample ID: AF87791

Date Collected: 01/24/24 09:58 Date Received: 02/01/24 10:06 Lab Sample ID: 680-246129-1

Matrix: Water

	Batch	Batch		Dilution	Batch			Prepared
Prep Type	Type	Method	Run	Factor	Number	Analyst	Lab	or Analyzed
Total/NA	Prep	7470A			821046	DW	EET SAV	02/05/24 10:16
Total/NA	Analysis	7470A		1	821322	ВСВ	EET SAV	02/06/24 10:12

Client Sample ID: AF87790 Lab Sample ID: 680-246129-2

Date Collected: 01/24/24 11:31 Matrix: Water

Date Received: 02/01/24 10:06

	Batch	Batch		Dilution	Batch			Prepared
Prep Type	Туре	Method	Run	Factor	Number	Analyst	Lab	or Analyzed
Total/NA	Prep	7470A			821046	DW	EET SAV	02/05/24 10:16
Total/NA	Analysis	7470A		1	821322	ВСВ	EET SAV	02/06/24 10:18

Client Sample ID: AF87789 Lab Sample ID: 680-246129-3

Date Collected: 01/24/24 12:28 **Matrix: Water**

Date Received: 02/01/24 10:06

	Batch	Batch		Dilution	Batch			Prepared
Prep Type	Type	Method	Run	Factor	Number	Analyst	Lab	or Analyzed
Total/NA	Prep	7470A			821046	DW	EET SAV	02/05/24 10:16
Total/NA	Analysis	7470A		1	821322	ВСВ	EET SAV	02/06/24 10:20

Client Sample ID: AF87814 Lab Sample ID: 680-246129-4

Date Collected: 01/25/24 09:28 Date Received: 02/01/24 10:06

Batch Batch Dilution Batch **Prepared** Method **Prep Type** Type Run Factor **Number Analyst** Lab or Analyzed Total/NA Prep 7470A 821046 DW **EET SAV** 02/05/24 10:16 Total/NA Analysis 7470A 821322 BCB EET SAV 02/06/24 10:22

Client Sample ID: AF87778 Lab Sample ID: 680-246129-5

Date Collected: 01/25/24 10:46 **Matrix: Water**

Date Received: 02/01/24 10:06

	Batch	Batch		Dilution	Batch			Prepared
Prep Type	Type	Method	Run	Factor	Number	Analyst	Lab	or Analyzed
Total/NA	Prep	7470A			821046	DW	EET SAV	02/05/24 10:16
Total/NA	Analysis	7470A		1	821322	ВСВ	EET SAV	02/06/24 10:24

Client Sample ID: AF87777 Lab Sample ID: 680-246129-6

Date Collected: 01/25/24 11:31 **Matrix: Water**

Date Received: 02/01/24 10:06

	Batch	Batch		Dilution	Batch			Prepared
Prep Type	Type	Method	Run	Factor	Number	Analyst	Lab	or Analyzed
Total/NA	Prep	7470A			821046	DW	EET SAV	02/05/24 10:16
Total/NA	Analysis	7470A		1	821322	ВСВ	EET SAV	02/06/24 10:26

Eurofins Savannah

2/6/2024

Page 20 of 24

Matrix: Water

Lab Chronicle

Client: South Carolina Public Service Authority Project/Site: 125915/JM02.09.G01.1/36500

Job ID: 680-246129-1

Lab Sample ID: 680-246129-7

Matrix: Water

Client Sample ID: AF87769 Date Collected: 01/25/24 12:20

Date Received: 02/01/24 10:06

	Batch	Batch		Dilution	Batch			Prepared
Prep Type	Type	Method	Run	Factor	Number	Analyst	Lab	or Analyzed
Total/NA	Prep	7470A			821046	DW	EET SAV	02/05/24 10:16
Total/NA	Analysis	7470A		1	821322	ВСВ	EET SAV	02/06/24 10:32

Client Sample ID: AF87780 Lab Sample ID: 680-246129-8

EET SAV

02/06/24 10:36

Date Collected: 01/25/24 13:46 Matrix: Water Date Received: 02/01/24 10:06

Batch Batch Dilution Batch Prepared **Prep Type** Туре Method Run Factor Number Analyst Lab or Analyzed Total/NA 7470A 821046 DW EET SAV 02/05/24 10:16 Prep Total/NA 7470A 821322 BCB 02/06/24 10:34 Analysis **EET SAV**

Client Sample ID: AF87779 Lab Sample ID: 680-246129-9

1

Date Collected: 01/25/24 14:34 **Matrix: Water** Date Received: 02/01/24 10:06

821322 BCB

Batch Batch Dilution Batch Prepared Method or Analyzed **Prep Type** Type Run Factor Number Analyst Lab Total/NA Prep 7470A 821046 **EET SAV** 02/05/24 10:16

Laboratory References:

Analysis

Total/NA

EET SAV = Eurofins Savannah, 5102 LaRoche Avenue, Savannah, GA 31404, TEL (912)354-7858

7470A

2/6/2024

Contract Lab Info: TA-SAV

_ Contract Lab Due Date (Lab Only):___

2,7,24

Send report to levv@santeecooper.com

Chain of Custody

Santee Cooper One Riverwood Drive Moneks Comer, SC 29461 Phone: (843)761-8000 Ext. 5148 Fax: (843)761-4175

Project/Task/Unit #: Rerun request for any flagged QC **Customer Email/Report Recipient: Date Results Needed by:** LINDA. WILLHAMS 125915 / JM02.09.G81.1/ 36500 (Yes) No @santeecooper.com Analysis Group Labworks ID# Sample Location/ Comments Matrix(see below Collection Date Method # (Internal use Description Collection Time Sample Collector Fotal # of contal Preservative (s below) Reporting limit Grab (G) or Composite (C) only) Bottle type: (G/Plastic-P) Misc. sample info Any other notes # WIK 1 X 2 1/24/24 0958 P G GW 7470 RL= 0.2 ug/L COMLE - 2 AF87791 90 CCMLF-ID 1131 CCMLF-1 1228 89 1/25/24 0928 POZ-8 AF87814 CCMAP-9 AF87778 1046 CCMAP - 8 1131 77 69 CCMAP-1 1220 80 CCMAP-11 1346 680-246129 Chain of Custody 79 CCMAP-10 1434 Sample Receiving (Internal Use Only) Relinquished by: Jime . Received by: Employee#. Date Time. Employee# -Date TEMP (°C): //. / Initial: 2-1-24 Shevy 35594 1/31/24 1000 m 1006 Correct pH: Yes No Employee # Date Time Relinquished by: Employee# Date Time Received by: Preservative Lot#: Date Time Relinquished by: Employee# Date Time Received by: Employee# Date/Time/Init for preservative: ☐ METALS (all) MISC. Coal Nutrients Flyash □ Ag □ Cu □ Sb I TOC **BTEX** □ Ultimate O Ammonia O Al □ Fe □ Se Campested. □ Naphthalene D % Moisture DDOE DEOI OTHM/HAA OK □ Sn O As D TP/TPO4 O Ash 1 % Carbon □ VOC D Sulfur D.NHJ.N i) Mineral Admitysis OLi □ Sr OB □ Oil & Grease □ BTUs DE. Coli □ Ba □ Mg O Ti □ Volatile Matter ☐ Total Coliform D Steve 1 % Molituge □ Mn D TI D NO2 O CHN O Be ОрН D BE ☐ Dissolved As Other Tests: □ Ca □Мо DV Dissolved Fe E XRF Scan DNO NEDES □ Zn D 304 □ Rad 226 OHGI □ Cd O Na ool afficase o TSS □ Rad 228 D Fineness □Со ONI O Hg T PCR ☐ Particulate Matter □РЬ □ CrVI O Cr

Login Sample Receipt Checklist

Client: South Carolina Public Service Authority

Job Number: 680-246129-1

Login Number: 246129 List Source: Eurofins Savannah

List Number: 1

Creator: Sims, Robert D

Greator. Sillis, Robert D		
Question	Answer	Comment
Radioactivity wasn't checked or is = background as measured by a survey meter.</td <td>N/A</td> <td></td>	N/A	
The cooler's custody seal, if present, is intact.	True	
Sample custody seals, if present, are intact.	True	
The cooler or samples do not appear to have been compromised or tampered with.	True	
Samples were received on ice.	False	Thermal preservation not required.
Cooler Temperature is acceptable.	True	
Cooler Temperature is recorded.	True	
COC is present.	True	
COC is filled out in ink and legible.	True	
COC is filled out with all pertinent information.	True	
Is the Field Sampler's name present on COC?	True	
There are no discrepancies between the containers received and the COC.	True	
Samples are received within Holding Time (excluding tests with immediate HTs)	True	
Sample containers have legible labels.	True	
Containers are not broken or leaking.	True	
Sample collection date/times are provided.	True	
Appropriate sample containers are used.	True	
Sample bottles are completely filled.	True	
Sample Preservation Verified.	N/A	
There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs	True	
Containers requiring zero headspace have no headspace or bubble is <6mm (1/4").	N/A	
Multiphasic samples are not present.	True	
Samples do not require splitting or compositing.	True	
Residual Chlorine Checked.	N/A	

3

4

5

7

10

111

13

Accreditation/Certification Summary

Client: South Carolina Public Service Authority

Project/Site: 125915/JM02.09.G01.1/36500

Job ID: 680-246129-1

Laboratory: Eurofins Savannah

The accreditations/certifications listed below are applicable to this report.

Authority	Program	Identification Number	Expiration Date
South Carolina	State	98001	06-30-24

.

3

4

5

7

0

10

10

13

a member of The GEL Group INC

2040 Savage Road | Charleston, SC 29407

gel.com

February 23, 2024

Ms. Jeanette Gilmetti Santee Cooper P.O. Box 2946101 OCO3 Moncks Corner, South Carolina 29461

Re: ABS Lab Analytical Work Order: 653147

Dear Ms. Gilmetti:

GEL Laboratories, LLC (GEL) appreciates the opportunity to provide the enclosed analytical results for the sample(s) we received on January 26, 2024. This original data report has been prepared and reviewed in accordance with GEL's standard operating procedures.

The samples were delivered with proper chain of custody documentation and signatures. All sample containers arrived without any visible signs of tampering or breakage. There are no additional comments concerning sample receipt.

Test results for NELAP or ISO 17025 accredited tests are verified to meet the requirements of those standards, with any exceptions noted. The results reported relate only to the items tested and to the sample as received by the laboratory. These results may not be reproduced except as full reports without approval by the laboratory. Copies of GEL's accreditations and certifications can be found on our website at www.gel.com.

Our policy is to provide high quality, personalized analytical services to enable you to meet your analytical needs on time every time. We trust that you will find everything in order and to your satisfaction. If you have any questions, please do not hesitate to call me at (843) 556-8171, ext. 4289.

Sincerely,

Max Gloth for Julie Robinson Project Manager

Purchase Order: 125915/JM02.09.G01.1/36500

Enclosures

2040 Savage Road Charleston SC 29407 - (843) 556-8171 - www.gel.com

Certificate of Analysis Report for

SOOP001 Santee Cooper

Client SDG: 653147 GEL Work Order: 653147

The Qualifiers in this report are defined as follows:

- * A quality control analyte recovery is outside of specified acceptance criteria
- ** Analyte is a Tracer compound
- ** Analyte is a surrogate compound
- U Analyte was analyzed for, but not detected above the MDL, MDA, MDC or LOD.

Where the analytical method has been performed under NELAP certification, the analysis has met all of the requirements of the NELAC standard unless qualified on the Certificate of Analysis.

The designation ND, if present, appears in the result column when the analyte concentration is not detected above the limit as defined in the 'U' qualifier above.

This data report has been prepared and reviewed in accordance with GEL Laboratories LLC standard operating procedures. Please direct any questions to your Project Manager, Julie Robinson.

Reviewed by _____

Page 2 of 14 SDG: 653147

2040 Savage Road Charleston SC 29407 - (843) 556-8171 - www.gel.com

Certificate of Analysis

Report Date: February 23, 2024

SOOP00119

SOOP001

Project:

Client ID:

Company: Santee Cooper Address: P.O. Box 2946101

OCO3

Moncks Corner, South Carolina 29461

Contact: Ms. Jeanette Gilmetti Project: ABS Lab Analytical

Client Sample ID: AF87812 Sample ID: 653147001

Matrix: GW

Collect Date: 24-JAN-24 14:25 Receive Date: 26-JAN-24 Collector: Client

Parameter	Qualifier	Result	Uncertainty	MDC	RL	Units	PF	DF Analy	yst Date	Time Batch	Method	
Rad Gas Flow Proportional Counting												
GFPC, Ra228, Liquid "A	As Received"											
Radium-228	U	0.581	+/-0.774	1.33	3.00	pCi/L		JE1	02/22/24	0848 2563691	1	
Rad Radium-226												
Lucas Cell, Ra226, Liqu	iid "As Recei	ved"										
Radium-226	U	0.508	+/-0.389	0.567	1.00	pCi/L		MJ2	02/15/24	1008 2561057	2	
The following Analytic	al Methods w	ere perfo	ormed:									
Method	Description					1	Analys	st Comment	S			
1	EPA 904.0/SW	846 9320 1	Modified									

2 EPA	903.1 Modified				
Surrogate/Tracer Recovery	Test	Result	Nominal	Recovery%	Acceptable Limits
Barium-133 Tracer	GFPC, Ra228, Liquid "As Received"			80	(15%-125%)

Notes:

Counting Uncertainty is calculated at the 95% confidence level (1.96-sigma).

Column headers are defined as follows:

DF: Dilution Factor Lc/LC: Critical Level
DL: Detection Limit PF: Prep Factor
MDA: Minimum Detectable Activity RL: Reporting Limit

MDC: Minimum Detectable Concentration SQL: Sample Quantitation Limit

Page 3 of 14 SDG: 653147

2040 Savage Road Charleston SC 29407 - (843) 556-8171 - www.gel.com

Certificate of Analysis

Project:

Client ID:

Report Date: February 23, 2024

SOOP00119

76.5

(15%-125%)

SOOP001

Company: Santee Cooper Address: P.O. Box 2946101

OCO3

Moncks Corner, South Carolina 29461

Contact: Ms. Jeanette Gilmetti Project: ABS Lab Analytical

Client Sample ID: AF87813 Sample ID: 653147002

Matrix: GW

Collect Date: 24-JAN-24 14:30 Receive Date: 26-JAN-24 Collector: Client

Parameter	Qualifier	Result	Uncertainty	MDC	RL	Units	PF	DF Analy	yst Date	Time Batch	Method		
Rad Gas Flow Proportional Counting													
GFPC, Ra228, Liquid	"As Received"												
Radium-228		2.96	+/-1.56	2.37	3.00	pCi/L		JE1	02/22/24	0848 2563691	1		
Rad Radium-226													
Lucas Cell, Ra226, Li	Lucas Cell, Ra226, Liquid "As Received"												
Radium-226		0.981	+/-0.563	0.743	1.00	pCi/L		MJ2	02/15/24	1008 2561057	2		
The following Analys	tical Methods we	ere perfo	ormed:										
Method	Description					I	Analys	st Comment	S				
1	EPA 904.0/SW8	346 9320 N	Modified				-						

2	EPA 903.1 Modified				
Surrogate/Tra	acer Recovery Test	Result	Nominal	Recovery%	Acceptable Limits

Barium-133 Tracer GFPC, Ra228, Liquid "As Received"

Notes:

Counting Uncertainty is calculated at the 95% confidence level (1.96-sigma).

Column headers are defined as follows:

DF: Dilution Factor Lc/LC: Critical Level
DL: Detection Limit PF: Prep Factor
MDA: Minimum Detectable Activity RL: Reporting Limit

MDC: Minimum Detectable Concentration SQL: Sample Quantitation Limit

Page 4 of 14 SDG: 653147

2040 Savage Road Charleston SC 29407 - (843) 556-8171 - www.gel.com

Certificate of Analysis

Project:

Client ID:

Report Date: February 23, 2024

SOOP00119

SOOP001

Company: Santee Cooper Address: P.O. Box 2946101

OCO3

Moncks Corner, South Carolina 29461

Contact: Ms. Jeanette Gilmetti Project: ABS Lab Analytical

Client Sample ID: AF87809 Sample ID: 653147003

Matrix: GW

Collect Date: 23-JAN-24 12:08
Receive Date: 26-JAN-24
Collector: Client

Parameter	Qualifier	Result U	Jncertainty	MDC	RL	Units	PF	DF Anal	yst Date	Time Batch	Method		
Rad Gas Flow Proportional Counting													
GFPC, Ra228, Liquid "	'As Received"	1											
Radium-228	U	1.99	+/-1.30	2.03	3.00	pCi/L		JE1	02/22/24	0848 2563691	1		
Rad Radium-226													
Lucas Cell, Ra226, Liq	uid "As Recei	ved"											
Radium-226		0.403	+/-0.312	0.386	1.00	pCi/L		MJ2	02/15/24	1008 2561057	2		
The following Analytical Methods were performed:													

Method	Description	Analyst Comments
1	EPA 904.0/SW846 9320 Modified	

EPA 903.1 Modified

Surrogate/Tracer Recovery Test Result Nominal Recovery% Acceptable Limits

Barium-133 Tracer GFPC, Ra228, Liquid "As Received"

78.6 (15%-125%)

Notes:

Counting Uncertainty is calculated at the 95% confidence level (1.96-sigma).

Column headers are defined as follows:

DF: Dilution Factor Lc/LC: Critical Level
DL: Detection Limit PF: Prep Factor
MDA: Minimum Detectable Activity RL: Reporting Limit

MDC: Minimum Detectable Concentration SQL: Sample Quantitation Limit

Page 5 of 14 SDG: 653147

2040 Savage Road Charleston SC 29407 - (843) 556-8171 - www.gel.com

Certificate of Analysis

Report Date: February 23, 2024

Company: Santee Cooper Address: P.O. Box 2946101

OCO3

Moncks Corner, South Carolina 29461

Contact: Ms. Jeanette Gilmetti Project: ABS Lab Analytical

Client Sample ID: AF87811 Sample ID: 653147004

Matrix: GW

Collect Date: 23-JAN-24 14:37 Receive Date: 26-JAN-24 Collector: Client Project: SOOP00119 Client ID: SOOP001

Parameter	Qualifier	Result	Uncertainty	MDC	RL	Units	PF	DF Analy	yst Date	Time Batch	Method		
Rad Gas Flow Proportional Counting													
GFPC, Ra228, Liquid	"As Received"	1											
Radium-228	U	-0.619	+/-1.13	2.25	3.00	pCi/L		JE1	02/22/24	1022 2563691	1		
Rad Radium-226													
Lucas Cell, Ra226, Li	Lucas Cell, Ra226, Liquid "As Received"												
Radium-226		1.05	+/-0.439	0.336	1.00	pCi/L		MJ2	02/15/24	1008 2561057	2		
The following Analy	tical Methods w	ere perfe	ormed:										
Method	Description						Analy	st Comment	ts				
1	EPA 904.0/SW	EPA 904.0/SW846 9320 Modified											
2	EDA 002 1 Ma	dified											

2 EPA 903.1 Modified

Surrogate/Tracer Recovery Test Result Nominal Recovery% Acceptable Limits

Barium-133 Tracer GFPC, Ra228, Liquid "As Received" 80.1 (15%-125%)

Notes:

Counting Uncertainty is calculated at the 95% confidence level (1.96-sigma).

Column headers are defined as follows:

DF: Dilution Factor Lc/LC: Critical Level
DL: Detection Limit PF: Prep Factor
MDA: Minimum Detectable Activity RL: Reporting Limit

MDC: Minimum Detectable Concentration SQL: Sample Quantitation Limit

Page 6 of 14 SDG: 653147

2040 Savage Road Charleston SC 29407 - (843) 556-8171 - www.gel.com

Certificate of Analysis

Report Date: February 23, 2024

SOOP00119

SOOP001

Company: Santee Cooper P.O. Box 2946101 Address:

OCO₃

Moncks Corner, South Carolina 29461

Contact: Ms. Jeanette Gilmetti Project: ABS Lab Analytical

Client Sample ID: AF87808 Sample ID: 653147005

Matrix: GW

Collect Date: 23-JAN-24 15:42 Receive Date: 26-JAN-24 Collector: Client

Oualifier Result Uncertainty **MDC** RLUnits PF DF Analyst Date Time Batch Method Rad Gas Flow Proportional Counting GFPC, Ra228, Liquid "As Received" 1

Project:

Client ID:

Analyst Comments

Radium-228 2.73 +/-1.031.24 3.00 pCi/L JE1 02/22/24 0848 2563691 Rad Radium-226

Lucas Cell, Ra226, Liquid "As Received"

Radium-226 0.309 +/-0.302 0.475 1.00 pCi/L MJ2 02/15/24 1008 2561057 The following Analytical Methods were performed:

Method Description

EPA 903.1 Modified 2 Surrogate/Tracer Recovery Test Result Nominal Recovery% Acceptable Limits

Barium-133 Tracer (15%-125%) GFPC, Ra228, Liquid "As Received" 79.6

Notes:

Parameter

Counting Uncertainty is calculated at the 95% confidence level (1.96-sigma).

EPA 904.0/SW846 9320 Modified

Column headers are defined as follows:

DF: Dilution Factor Lc/LC: Critical Level DL: Detection Limit PF: Prep Factor MDA: Minimum Detectable Activity **RL**: Reporting Limit

MDC: Minimum Detectable Concentration SQL: Sample Quantitation Limit

Page 7 of 14 SDG: 653147

2040 Savage Road Charleston, SC 29407 - (843) 556-8171 - www.gel.com

QC Summary

Report Date: February 23, 2024

Santee Cooper P.O. Box 2946101

OCO3

Moncks Corner, South Carolina

Contact: Ms. Jeanette Gilmetti

Workorder: 653147

Parmname	NOM	Sample	Qual	QC	Units	RPD%	REC%	Range Anlst	Date Time
Rad Gas Flow									
Batch 2563691 ——									
QC1205641030 653141001 DUP									
Radium-228	U	0.337	U	1.06	pCi/L	N/A		N/A JE	1 02/22/24 08:48
	Uncertainty	+/-1.07		+/-0.798					
QC1205641031 LCS									
Radium-228	74.0			68.3	pCi/L		92.3	(75%-125%)	02/22/24 08:48
	Uncertainty			+/-4.05					
QC1205641029 MB									
Radium-228			U	0.921	pCi/L				02/22/24 08:48
	Uncertainty			+/-0.735					
Rad Ra-226									
Batch 2561057 —									
QC1205636195 653141001 DUP									
Radium-226		0.619	U	0.138	pCi/L	127*		(0% - 100%) MJ	2 02/15/24 10:08
	Uncertainty	+/-0.385		+/-0.201					
QC1205636197 LCS									
Radium-226	27.0			22.5	pCi/L		83.4	(75%-125%)	02/15/24 10:41
	Uncertainty			+/-2.00					
QC1205636194 MB									
Radium-226			U	0.119	pCi/L				02/15/24 09:00
	Uncertainty			+/-0.174					
QC1205636196 653141001 MS									
Radium-226	123	0.619		135	pCi/L		109	(75%-125%)	02/15/24 10:08
	Uncertainty	+/-0.385		+/-10.9					

Notes:

Counting Uncertainty is calculated at the 95% confidence level (1.96-sigma).

The Qualifiers in this report are defined as follows:

U Analyte was analyzed for, but not detected above the MDL, MDA, MDC or LOD.

J Value is estimated

X Consult Case Narrative, Data Summary package, or Project Manager concerning this qualifier

H Analytical holding time was exceeded

< Result is less than value reported

Page 8 of 14 SDG: 653147

Page 1 of 2

2040 Savage Road Charleston, SC 29407 - (843) 556-8171 - www.gel.com

QC Summary

Workorder: 653147 Page 2 of 2 Pa

Parmname	NOM	Sample (Qual	QC	Units	RPD%	REC%	Range	Anlst	Date	Time

- Result is greater than value reported
- UI Gamma Spectroscopy--Uncertain identification
- BDResults are either below the MDC or tracer recovery is low
- Preparation or preservation holding time was exceeded h
- R Sample results are rejected
- RPD of sample and duplicate evaluated using +/-RL. Concentrations are <5X the RL. Qualifier Not Applicable for Radiochemistry.
- N/A RPD or %Recovery limits do not apply.
- ND Analyte concentration is not detected above the detection limit
- M M if above MDC and less than LLD
- NJConsult Case Narrative, Data Summary package, or Project Manager concerning this qualifier
- FA Failed analysis.
- UJ Gamma Spectroscopy--Uncertain identification
- Q One or more quality control criteria have not been met. Refer to the applicable narrative or DER.
- K Analyte present. Reported value may be biased high. Actual value is expected to be lower.
- UL Not considered detected. The associated number is the reported concentration, which may be inaccurate due to a low bias.
- L Analyte present. Reported value may be biased low. Actual value is expected to be higher.
- N1See case narrative
- Y Other specific qualifiers were required to properly define the results. Consult case narrative.
- ** Analyte is a Tracer compound
- REMP Result > MDC/CL and < RDL M
- J See case narrative for an explanation

N/A indicates that spike recovery limits do not apply when sample concentration exceeds spike conc. by a factor of 4 or more or %RPD not applicable.

- ^ The Relative Percent Difference (RPD) obtained from the sample duplicate (DUP) is evaluated against the acceptance criteria when the sample is greater than five times (5X) the contract required detection limit (RL). In cases where either the sample or duplicate value is less than 5X the RL, a control limit of +/- the RL is used to evaluate the DUP result.
- * Indicates that a Quality Control parameter was not within specifications.

For PS, PSD, and SDILT results, the values listed are the measured amounts, not final concentrations.

Where the analytical method has been performed under NELAP certification, the analysis has met all of the requirements of the NELAC standard unless qualified on the QC Summary.

Page 9 of 14 SDG: 653147

Radiochemistry Technical Case Narrative Santee Cooper SDG #: 653147

Product: GFPC, Ra228, Liquid

<u>Analytical Method:</u> EPA 904.0/SW846 9320 Modified <u>Analytical Procedure:</u> GL-RAD-A-063 REV# 5

Analytical Batch: 2563691

The following samples were analyzed using the above methods and analytical procedure(s).

GEL Sample ID#	Client Sample Identification
653147001	AF87812
653147002	AF87813
653147003	AF87809
653147004	AF87811
653147005	AF87808
1205641029	Method Blank (MB)
1205641030	653141001(AF87770) Sample Duplicate (DUP)
1205641031	Laboratory Control Sample (LCS)

The samples in this SDG were analyzed on an "as received" basis.

Data Summary:

All sample data provided in this report met the acceptance criteria specified in the analytical methods and procedures for initial calibration, continuing calibration, instrument controls and process controls where applicable, with the following exceptions.

Technical Information

Recounts

Sample 653147004 (AF87811) was recounted due to a suspected false positive. The recount is reported.

<u>Product:</u> Lucas Cell, Ra226, Liquid <u>Analytical Method:</u> EPA 903.1 Modified

Analytical Procedure: GL-RAD-A-008 REV# 15

Analytical Batch: 2561057

The following samples were analyzed using the above methods and analytical procedure(s).

GEL Sample ID#	Client Sample Identification
653147001	AF87812
653147002	AF87813
653147003	AF87809
653147004	AF87811
653147005	AF87808
1205636194	Method Blank (MB)
1205636195	653141001(AF87770) Sample Duplicate (DUP)
1205636196	653141001(AF87770) Matrix Spike (MS)

Page 10 of 14 SDG: 653147

1205636197

Laboratory Control Sample (LCS)

The samples in this SDG were analyzed on an "as received" basis.

Data Summary:

All sample data provided in this report met the acceptance criteria specified in the analytical methods and procedures for initial calibration, continuing calibration, instrument controls and process controls where applicable, with the following exceptions.

Quality Control (QC) Information

Duplication Criteria between QC Sample and Duplicate Sample

The Sample and the Duplicate, (See Below), did not meet the relative percent difference requirement; however, they do meet the relative error ratio requirement with the value listed below.

Sample	Analyte	Value
1205636195 (AF87770DUP)	Radium-226	RPD 127* (0.0%-100.0%) RER 2.1 (0-3)

Miscellaneous Information

Additional Comments

The matrix spike, 1205636196 (AF87770MS), aliquot was reduced to conserve sample volume.

Certification Statement

Where the analytical method has been performed under NELAP certification, the analysis has met all of the requirements of the NELAC standard unless otherwise noted in the analytical case narrative.

Page 11 of 14 SDG: 653147

Send report to lcwillia@santeecooper.com sipbrown@santeecooper.com sipbrown.com sip

Chain of Custody

Santee Cooper One Riverwood Drive Moneks Corner, SC 29461 Phone: (843)761-8000 Ext. 5148 Fax: (843)761-4175

LINDA. WILL	LIABAS				Date Results Needed by:					Project/Task/Unit #:						Rerun request for any flagged					
	@santeecooper.com							1259	15	j JM	02.07	1. Gøl. l	J_36500	(Yes)	No						
															<u>A</u>	nalysis	Group				
Labworks ID # (Internal use only)		Sample Location/ Description						Collection Date	Collection Time	Sample Collector	Total # of containers	Bottle type: (Glass-G/Plastic-P)	Grab (G) or Composite (C)	Matrix(see below)	Preservative (see	Metl Repo Miss Any	Comme nod # orting limit c. sample info other notes		RAD 226	KAD 228	
A=87812	2 P	02 -7	18	1/24/29	1425	WIK	2	P	G	ew.	2				l	1					
AF87813	F	02-7 DUP		1	1430	1	1	1	1	1	1				1	1					
AF87869	+	°-7-4		1/23/24	1208				1	1											
1 11	F	°02-6			1437																
08	F	0Z-3		1	1542					_	1				Į	1					
										. 47											
Relinquished	l bv:	Employee#	Date	Time	Receiv	ed by:	E	nployee	#	Date		Time	Sample Re	eceiving (Internal	Use On	ly)					
tul		3685-1	1/26/24	(M) se	0.4					GEL 1/26/			TEMP (°	1P (°C):		:	_				
Relinquished	l by:	Employee#	1./-	Time	Receiv	ed by:	E	Employee # Date			Correct			H: Yes No							
Relinquished	by:	GEL Employee#	lall des	1610 Time		ed by:		Employee# Date			Time	Preservat	tive Lot#:								
in in General Well	Hero over	T G (W)	seval and an					OF STREET		The second				e/Init for preserv	ative:						
	MET⊿ □ Cu	ALS (all)		rients	MIS	SC.		Contract of the last	psun	<u>n</u>		Coal		Flyash		Oil					
	□ Fe	□ Se	DO:	THE RESERVE OF THE PARTY OF THE	☐ BTEX ☐ Naphtha	lene	0	Wallbo	ard sum(a	,,	0	Ultimate		Ammonia		ns. Oil					
□ As □	⊃ K	□ Sn	D TP/	TPO4	□ THM/H/			belo	w)			☐ % Moist		LOI % Carbon	□ C	6Moist olor	ne				
□ B □	□ Li	□ Sr	□ NH.	1-N	□ VOC □ Oil & Gr	ease		D AI				□ Sulfur		Mineral		cidity	Strength				
□ Ba □	□Mg	□ Ti	□ F □ Cl		□ E. Coli			□ Tot	al meta			☐ BTUs ☐ Volatile	Matter	Analysis Sieve	B 11	T					
□ Be □	Mn	□ T1	□ NO	2	☐ Total Co ☐ pH				uble Mo			□ CHN		% Moisture		ed Oil	d Gases				
□ Ca □	□ Mo	□ V	□ Br	THE RESERVE OF THE PERSON NAMED IN	☐ Dissolve ☐ Dissolve			□%1	Moistur		The state of the s	ther Tests:				lashpoi					
□ Cd □	□ Na	□ Zn	□ NO:		□ Rad 226			□ Sul □ pH				XRF Scan HGI		NPDES	(4		r,Ni,Pb				
□ Co □	□Ni	☐ Hg	1-32-Ja 4-52-Ja		□ Rad 228 □ PCB				lorides	70	THE R. P. LEWIS CO., LANSING, MICH.	Fineness Particulate Ma	NOVE STATE OF	Oil & Grease As	D T	lg) X					
□ Cr □	□ Pb	☐ CrVI					1	☐ Particle Size ☐ Sulfur						□ TSS		FER					

Client:			SAMPLE RECEIPT & REVIEW FORM SDG/AR/COC/Work Order: 453147
Received By: Thyasia Tatum			Date Received:
Carrier and Tracking Number			FedEx Express FedEx Ground UPS Field Services Courier Other
Suspected Hazard Information	Yes	oN	*If Net Counts > 100cpm on samples not marked "radioactive", contact the Radiation Safety Group for further investigation.
A)Shipped as a DOT Hazardous?		V	Hazard Class Shipped: If UN2910. Is the Radioactive Shipment Survey Compliant? Yes No
B) Did the client designate the samples are to be received as radioactive?		V	COC notation or radioactive stickers on containers equal client designation.
C) Did the RSO classify the samples as radioactive?			Maximum Net Counts Observed* (Observed Counts - Area Background Counts):CPM / mR/Hr Classified as: Rad 1 Rad 2 Rad 3
D) Did the client designate samples are hazardous	?		COC notation or hazard labels on containers equal client designation.
E) Did the RSO identify possible hazards?		Y	or E is yes, select Hazards below. PCB's Flammable Foreign Soil RCRA Asbestos Beryllium Other:
Sample Receipt Criteria	Yes	YZ	
1 Shipping containers received intact and sealed?	V		Circle Applicable: Seals broken Damaged container Leaking container Other (describe)
2 Chain of custody documents included with shipment?	M		Circle Applicable: Client contacted and provided COC COC created upon receipt
Samples requiring cold preservation within $(0 \le 6 \text{ deg. C})$?*			Preservation Method: Wet Ice ce Packs Dry ice None Other: *all temperatures are recorded in Celsius TEMP: CONCM Temperature Device Serial #: IR2-23
4 Daily check performed and passed on IR temperature gun?		7	Temperature Device Serial #: IR2-23 Secondary Temperature Device Serial # (If Applicable):
5 Sample containers intact and sealed?	V		Circle Applicable: Scals broken Damaged container Leaking container Other (describe)
6 Samples requiring chemical preservation at proper pH?	1		Sample ID's and Containers Affected: If Preservation added, Lot#:
7 Do any samples require Volatile Analysis?			If Yes, are Encores or Soil Kits present for solids? Yes No NA (If yes, take to VOA Freezer) Donquid VOA vials contain acid preservation? Yes No NA (If unknown, select No) Are liquid VOA vials free of headspace? Yes No NA Sample IDs and containers affected:
8 Samples received within holding time?	L	7	ID's and tests affected:
9 Sample ID's on COC match ID's on bottles?	V		ID's and containers affected:
Date & time on COC match date & time on bottles?		1	Circle Applicable: No dates on containers No times on containers COC missing info Other (describe)
Number of containers received match number indicated on COC?	L		Circle Applicable; No container count on COC Other (describe)
Are sample containers identifiable as GEL provided by use of GEL labels? COC form is properly signed in	200	À	Circle Applicable: Not relinquished Other (describe)
relinquished/received sections? omments (Use Continuation Form if needed):	Y	# 100 m	Circle Applicable: Not relinquished Other (describe)

GL-CHL-SR-001 Rev 7

List of current GEL Certifications as of 23 February 2024

State	Certification
Alabama	42200
Alaska	17-018
Alaska Drinking Water	SC00012
Arkansas	88-00651
CLIA	42D0904046
California	2940
Colorado	SC00012
Connecticut	PH-0169
DoD ELAP/ ISO17025 A2LA	2567.01
Florida NELAP	E87156
Foreign Soils Permit	P330-15-00283, P330-15-00253
Georgia	SC00012
Georgia SDWA	967
Hawaii	SC00012
Idaho	SC00012 SC00012
Illinois NELAP	200029
Indiana	C-SC-01
Kansas NELAP	
	E-10332
Kentucky SDWA	KY90129
Kentucky Wastewater	KY90129
Louisiana Drinking Water	LA024
Louisiana NELAP	03046 (AI33904)
Maine	2023019
Maryland	270
Massachusetts	M-SC012
Massachusetts PFAS Approv	Letter
Michigan	9976
Mississippi	SC00012
Nebraska	NE-OS-26-13
Nevada	SC000122024-05
New Hampshire NELAP	2054
New Jersey NELAP	SC002
New Mexico	SC00012
New York NELAP	11501
North Carolina	233
North Carolina SDWA	45709
North Dakota	R-158
Oklahoma	2023-152
Pennsylvania NELAP	68-00485
Pucrto Rico	SC00012
S. Carolina Radiochem	10120002
Sanitation Districts of L	9255651
South Carolina Chemistry	10120001
Tennessee	TN 02934
Texas NELAP	T104704235-23-21
Utah NELAP	SC000122023-38
Vermont	VT87156
Virginia NELAP	460202
Washington	C780
·· asimigron	2.00

a member of The GEL Group INC

gel.com

February 08, 2024

Ms. Jeanette Gilmetti Santee Cooper P.O. Box 2946101 OCO3 Moncks Corner, South Carolina 29461

Re: ABS Lab Analytical Work Order: 652246

Dear Ms. Gilmetti:

GEL Laboratories, LLC (GEL) appreciates the opportunity to provide the enclosed analytical results for the sample(s) we received on January 19, 2024. This original data report has been prepared and reviewed in accordance with GEL's standard operating procedures.

The samples were delivered with proper chain of custody documentation and signatures. All sample containers arrived without any visible signs of tampering or breakage. There are no additional comments concerning sample receipt.

Test results for NELAP or ISO 17025 accredited tests are verified to meet the requirements of those standards, with any exceptions noted. The results reported relate only to the items tested and to the sample as received by the laboratory. These results may not be reproduced except as full reports without approval by the laboratory. Copies of GEL's accreditations and certifications can be found on our website at www.gel.com.

Our policy is to provide high quality, personalized analytical services to enable you to meet your analytical needs on time every time. We trust that you will find everything in order and to your satisfaction. If you have any questions, please do not hesitate to call me at (843) 556-8171, ext. 4289.

Sincerely,

Julie Robinson Project Manager

Purchase Order: 125915/JM02.09.601.1/36500

Enclosures

2040 Savage Road Charleston SC 29407 - (843) 556-8171 - www.gel.com

Certificate of Analysis Report for

SOOP001 Santee Cooper

Client SDG: 652246 GEL Work Order: 652246

The Qualifiers in this report are defined as follows:

- * A quality control analyte recovery is outside of specified acceptance criteria
- ** Analyte is a Tracer compound
- ** Analyte is a surrogate compound
- U Analyte was analyzed for, but not detected above the MDL, MDA, MDC or LOD.

Where the analytical method has been performed under NELAP certification, the analysis has met all of the requirements of the NELAC standard unless qualified on the Certificate of Analysis.

The designation ND, if present, appears in the result column when the analyte concentration is not detected above the limit as defined in the 'U' qualifier above.

This data report has been prepared and reviewed in accordance with GEL Laboratories LLC standard operating procedures. Please direct any questions to your Project Manager, Julie Robinson.

	Julio Rne	
Reviewed by		

Page 2 of 24 SDG: 652246

2040 Savage Road Charleston SC 29407 - (843) 556-8171 - www.gel.com

Certificate of Analysis

Project:

Client ID:

Report Date: February 8, 2024

SOOP00119

SOOP001

Company: Santee Cooper Address: P.O. Box 2946101

OCO3

Moncks Corner, South Carolina 29461

Contact: Ms. Jeanette Gilmetti Project: ABS Lab Analytical

Client Sample ID: AF87763 Sample ID: 652246001

Matrix: GW

Collect Date: 11-JAN-24 12:02 Receive Date: 19-JAN-24 Collector: Client

Parameter	Qualifier	Result	Uncertainty	MDC	RL	Units	PF	DF Analy	yst Date	Time Batch	Method	
Rad Gas Flow Propor	tional Counting											
GFPC, Ra228, Liquid	l "As Received"											
Radium-228	U	1.31	+/-1.15	1.86	3.00	pCi/L		JE1	01/31/24	0952 2556729	1	
Rad Radium-226												
Lucas Cell, Ra226, Li	iquid "As Recei	ved"										
Radium-226		0.804	+/-0.508	0.555	1.00	pCi/L		LXP1	01/31/24	0913 2556270	2	
The following Analy	The following Analytical Methods were performed:											
Method	Description						Analys	st Comment	S			

EPA 904.0/SW846 9320 Modified

2 EPA 903.1 Modified

Surrogate/Tracer Recovery Test Result Nominal Recovery% Acceptable Limits Barium-133 Tracer GFPC, Ra228, Liquid "As Received" (15%-125%) 73.5

Notes:

Counting Uncertainty is calculated at the 95% confidence level (1.96-sigma).

Column headers are defined as follows:

DF: Dilution Factor Lc/LC: Critical Level DL: Detection Limit PF: Prep Factor MDA: Minimum Detectable Activity **RL**: Reporting Limit

MDC: Minimum Detectable Concentration SQL: Sample Quantitation Limit

Page 3 of 24 SDG: 652246

2040 Savage Road Charleston SC 29407 - (843) 556-8171 - www.gel.com

Certificate of Analysis

Report Date: February 8, 2024

SOOP00119

SOOP001

Project:

Client ID:

Company: Santee Cooper Address: P.O. Box 2946101

OCO3

Moncks Corner, South Carolina 29461

Contact: Ms. Jeanette Gilmetti Project: ABS Lab Analytical

Client Sample ID: AF87761 Sample ID: 652246002

Matrix: GW

Collect Date: 11-JAN-24 13:23
Receive Date: 19-JAN-24
Collector: Client

Parameter	Qualifier	Result	Uncertainty	MDC	RL	Units	PF	DF Anal	yst Date	Time Batch	Method
Rad Gas Flow Propos	rtional Counting	5									
GFPC, Ra228, Liquio	d "As Received"	1									
Radium-228		6.84	+/-1.68	1.86	3.00	pCi/L		JE1	02/02/24	1003 2556729	1
Rad Radium-226											
Lucas Cell, Ra226, L	iquid "As Recei	ved"									
Radium-226	U	0.306	+/-0.370	0.610	1.00	pCi/L		LXP1	01/31/24	0913 2556270	2
The following Analy	tical Methods w	ere perfo	ormed:								
Method	Description						Analys	st Commen	S		

EPA 904.0/SW846 9320 Modified EPA 903.1 Modified	C D	T	D 14	NT11	D 0/	A 4 - 1-1 - T !!
1 EPA 904.0/SW846 9320 Modified	2	EPA 903.1 Modified				
	1	EPA 904.0/SW846 9320 Modified		-		

Surrogate/Tracer Recovery Test Result Nominal Recovery% Acceptable Limits

Barium-133 Tracer GFPC, Ra228, Liquid "As Received"

75.2 (15%-125%)

Notes:

Counting Uncertainty is calculated at the 95% confidence level (1.96-sigma).

Column headers are defined as follows:

DF: Dilution Factor Lc/LC: Critical Level
DL: Detection Limit PF: Prep Factor
MDA: Minimum Detectable Activity RL: Reporting Limit

MDC: Minimum Detectable Concentration SQL: Sample Quantitation Limit

Page 4 of 24 SDG: 652246

2040 Savage Road Charleston SC 29407 - (843) 556-8171 - www.gel.com

Certificate of Analysis

Report Date: February 8, 2024

Company: Santee Cooper Address: P.O. Box 2946101

OCO3

Moncks Corner, South Carolina 29461

Contact: Ms. Jeanette Gilmetti Project: ABS Lab Analytical

Client Sample ID: AF87762 Sample ID: 652246003

Matrix: GW

Collect Date: 11-JAN-24 13:28 Receive Date: 19-JAN-24 Collector: Client Project: SOOP00119 Client ID: SOOP001

Parameter	Qualifier	Result	Uncertainty	MDC	RL	Units	PF	DF Analy	st Date	Time Batch	Method	
Rad Gas Flow Proportion	onal Counting											
GFPC, Ra228, Liquid "A	GFPC, Ra228, Liquid "As Received"											
Radium-228		5.45	+/-1.48	1.71	3.00	pCi/L		JE1	02/02/24	1003 2556729	1	
Rad Radium-226												
Lucas Cell, Ra226, Liqu	iid "As Recei	ved"										
Radium-226		0.634	+/-0.423	0.479	1.00	pCi/L		LXP1	01/31/24	0913 2556270	2	
The following Analytic	al Methods w	ere perfo	ormed:									
Method	Description					F	Analys	st Comments	5			
1	EPA 904.0/SW	7846 9320 I	Modified									
2	EPA 903.1 Mo	dified										

Result

Nominal

Recovery%

75.3

Acceptable Limits

(15%-125%)

Barium-133 Tracer

Notes:

Surrogate/Tracer Recovery

Counting Uncertainty is calculated at the 95% confidence level (1.96-sigma).

GFPC, Ra228, Liquid "As Received"

Column headers are defined as follows:

DF: Dilution Factor Lc/LC: Critical Level
DL: Detection Limit PF: Prep Factor
MDA: Minimum Detectable Activity RL: Reporting Limit

Test

MDC: Minimum Detectable Concentration SQL: Sample Quantitation Limit

Page 5 of 24 SDG: 652246

2040 Savage Road Charleston SC 29407 - (843) 556-8171 - www.gel.com

Certificate of Analysis

Project:

Client ID:

Report Date: February 8, 2024

SOOP00119

78.1

(15%-125%)

SOOP001

Company: Santee Cooper Address: P.O. Box 2946101

OCO3

Moncks Corner, South Carolina 29461

Contact: Ms. Jeanette Gilmetti Project: ABS Lab Analytical

Client Sample ID: AF88958 Sample ID: 652246004

Matrix: GW

Collect Date: 11-JAN-24 14:39
Receive Date: 19-JAN-24
Collector: Client

Parameter	Qualifier	Result	Uncertainty	MDC	RL	Units	PF	DF Analy	yst Date	Time Batch	Method	
Rad Gas Flow Proportional Counting												
GFPC, Ra228, Liquid	"As Received"	1										
Radium-228		1.79	+/-0.914	1.24	3.00	pCi/L		JE1	01/31/24	0952 2556729	1	
Rad Radium-226												
Lucas Cell, Ra226, Lie	quid "As Recei	ved"										
Radium-226	U	0.304	+/-0.345	0.537	1.00	pCi/L		LXP1	01/31/24	0913 2556270	2	
The following Analyt	ical Methods v	vere perfo	ormed:									
Method	Description						Analy	st Comment	S			
1	EPA 904 0/SV	7846 9320	Modified									

1	EPA 904.0/SW846 9320 Modified				
2	EPA 903.1 Modified				
Surrogate/Tracer Recov	erv Test	Result	Nominal 1	Recovery%	Acceptable Limits

Notes:

Barium-133 Tracer

Counting Uncertainty is calculated at the 95% confidence level (1.96-sigma).

GFPC, Ra228, Liquid "As Received"

Column headers are defined as follows:

DF: Dilution Factor Lc/LC: Critical Level
DL: Detection Limit PF: Prep Factor
MDA: Minimum Detectable Activity RL: Reporting Limit

MDC: Minimum Detectable Concentration SQL: Sample Quantitation Limit

Page 6 of 24 SDG: 652246

2040 Savage Road Charleston SC 29407 - (843) 556-8171 - www.gel.com

Certificate of Analysis

Report Date: February 8, 2024

SOOP00119

SOOP001

Project:

Client ID:

Company: Santee Cooper Address: P.O. Box 2946101

OCO3

Moncks Corner, South Carolina 29461

Contact: Ms. Jeanette Gilmetti Project: ABS Lab Analytical

Client Sample ID: AF87760 Sample ID: 652246005

Matrix: GW

Collect Date: 16-JAN-24 09:17
Receive Date: 19-JAN-24
Collector: Client

Parameter	Qualifier	Result	Uncertainty	MDC	RL	Units	PF	DF Anal	yst Date	Time Batch	Method
Rad Gas Flow Propor	rtional Counting	;									
GFPC, Ra228, Liquid	d "As Received"	1									
Radium-228		4.23	+/-1.27	1.34	3.00	pCi/L		JE1	01/31/24	0952 2556729	1
Rad Radium-226											
Lucas Cell, Ra226, L	iquid "As Recei	ved"									
Radium-226		1.10	+/-0.559	0.414	1.00	pCi/L		LXP1	01/31/24	0913 2556270	2
The following Analy	rtical Methods w	vere perfo	ormed:								
Method	Description						Analy	st Commen	ts		
1	EDA OOA O/CII	7046 0220	N 1 1 C 1				_				

1	EPA 904.0/SW846 9320 Modified	•	
2	EPA 903.1 Modified		

Surrogate/Tracer Recovery Test Result Nominal Recovery% Acceptable Limits

Barium-133 Tracer GFPC, Ra228, Liquid "As Received"

78.3 (15%-125%)

Notes:

Counting Uncertainty is calculated at the 95% confidence level (1.96-sigma).

Column headers are defined as follows:

DF: Dilution Factor Lc/LC: Critical Level
DL: Detection Limit PF: Prep Factor
MDA: Minimum Detectable Activity RL: Reporting Limit

MDC: Minimum Detectable Concentration SQL: Sample Quantitation Limit

Page 7 of 24 SDG: 652246

2040 Savage Road Charleston SC 29407 - (843) 556-8171 - www.gel.com

Certificate of Analysis

Project:

Client ID:

Report Date: February 8, 2024

SOOP00119

SOOP001

Company: Santee Cooper Address: P.O. Box 2946101

OCO3

Moncks Corner, South Carolina 29461

Contact: Ms. Jeanette Gilmetti Project: ABS Lab Analytical

Client Sample ID: AF87759 Sample ID: 652246006

Matrix: GW

Collect Date: 16-JAN-24 10:22 Receive Date: 19-JAN-24 Collector: Client

Parameter	Qualifier	Result	Uncertainty	MDC	RL	Units	PF	DF Analy	yst Date	Time Batch	Method
Rad Gas Flow Propo	rtional Counting										
GFPC, Ra228, Liquio	d "As Received"										
Radium-228		3.70	+/-1.30	1.61	3.00	pCi/L		JE1	01/31/24	0952 2556729	1
Rad Radium-226											
Lucas Cell, Ra226, L	iquid "As Recei	ved"									
Radium-226		1.50	+/-0.635	0.506	1.00	pCi/L		LXP1	01/31/24	0949 2556270	2
The following Analy	tical Methods w	ere perfo	rmed:								
Method	Description					1	Analys	st Comment	S		

Method	Description	Analyst Comments
1	EPA 904.0/SW846 9320 Modified	.

2 EPA 903.1 Modified

Surrogate/Tracer Recovery Test Result Nominal Recovery% Acceptable Limits Barium-133 Tracer GFPC, Ra228, Liquid "As Received" (15%-125%) 75.2

Notes:

Counting Uncertainty is calculated at the 95% confidence level (1.96-sigma).

Column headers are defined as follows:

DF: Dilution Factor Lc/LC: Critical Level DL: Detection Limit PF: Prep Factor MDA: Minimum Detectable Activity **RL**: Reporting Limit

MDC: Minimum Detectable Concentration SQL: Sample Quantitation Limit

Page 8 of 24 SDG: 652246

2040 Savage Road Charleston SC 29407 - (843) 556-8171 - www.gel.com

Certificate of Analysis

Project:

Client ID:

Report Date: February 8, 2024

SOOP00119

SOOP001

Company: Santee Cooper Address: P.O. Box 2946101

OCO3

Moncks Corner, South Carolina 29461

Contact: Ms. Jeanette Gilmetti Project: ABS Lab Analytical

Client Sample ID: AF87758 Sample ID: 652246007

Matrix: GW

Collect Date: 16-JAN-24 11:08
Receive Date: 19-JAN-24
Collector: Client

Parameter	Qualifier	Result	Uncertainty	MDC	RL	Units	PF	DF Analy	yst Date	Time Batch	Method
Rad Gas Flow Proporti	onal Counting	,									
GFPC, Ra228, Liquid	"As Received"	1									
Radium-228		10.6	+/-1.79	1.38	3.00	pCi/L		JE1	01/31/24	0952 2556729	1
Rad Radium-226											
Lucas Cell, Ra226, Lic	juid "As Recei	ved"									
Radium-226		3.54	+/-0.890	0.337	1.00	pCi/L		LXP1	01/31/24	0949 2556270	2
The following Analyti	cal Methods w	ere perfo	ormed:								
Method	Description						Analy	st Comment	S		
1	EPA 904.0/SW	/846 9320 I	Modified				_				

2 EPA	A 903.1 Modified				
Surrogate/Tracer Recovery	Test	Result	Nominal	Recovery%	Acceptable Limits
Barium-133 Tracer	GFPC, Ra228, Liquid "As Received"			74.1	(15%-125%)

Notes:

Counting Uncertainty is calculated at the 95% confidence level (1.96-sigma).

Column headers are defined as follows:

DF: Dilution Factor Lc/LC: Critical Level
DL: Detection Limit PF: Prep Factor
MDA: Minimum Detectable Activity RL: Reporting Limit

MDC: Minimum Detectable Concentration SQL: Sample Quantitation Limit

Page 9 of 24 SDG: 652246

2040 Savage Road Charleston SC 29407 - (843) 556-8171 - www.gel.com

Certificate of Analysis

Report Date: February 8, 2024

SOOP00119

76.8

(15%-125%)

Project:

Company: Santee Cooper Address: P.O. Box 2946101

OCO3

Moncks Corner, South Carolina 29461

Contact: Ms. Jeanette Gilmetti Project: ABS Lab Analytical

Client Sample ID: AF87757 Sample ID: 652246008

Matrix: GW

Collect Date: 16-JAN-24 12:19
Receive Date: 19-JAN-24
Collector: Client

652246008 Client ID: SOOP001

Parameter	Qualifier	Result	Uncertainty	MDC	RL	Units	PF	DF Analy	st Date	Time Batch	Method
Rad Gas Flow Proportion	onal Counting										
GFPC, Ra228, Liquid ".	As Received"										
Radium-228	U	0.625	+/-0.941	1.63	3.00	pCi/L		JE1	01/31/24	0952 2556729	1
Rad Radium-226											
Lucas Cell, Ra226, Liquid "As Received"											
Radium-226		1.43	+/-0.629	0.407	1.00	pCi/L		LXP1	01/31/24	0949 2556270	2
The following Analytic	al Methods w	ere perfo	ormed:								
Method	Description						Analyst	Comment	S		
1	EPA 904.0/SW	846 9320 I	Modified								
2	EPA 903.1 Mo	dified									
Surrogate/Tracer Recov	urrogate/Tracer Recovery Test Result Nominal Recovery% Acceptable Limits										

Notes:

Barium-133 Tracer

Counting Uncertainty is calculated at the 95% confidence level (1.96-sigma).

GFPC, Ra228, Liquid "As Received"

Column headers are defined as follows:

DF: Dilution Factor Lc/LC: Critical Level
DL: Detection Limit PF: Prep Factor
MDA: Minimum Detectable Activity RL: Reporting Limit

MDC: Minimum Detectable Concentration SQL: Sample Quantitation Limit

Page 10 of 24 SDG: 652246

2040 Savage Road Charleston SC 29407 - (843) 556-8171 - www.gel.com

Certificate of Analysis

Project:

Client ID:

Analyst Comments

Report Date: February 8, 2024

SOOP00119

SOOP001

Company: Santee Cooper Address: P.O. Box 2946101

OCO3

Moncks Corner, South Carolina 29461

Contact: Ms. Jeanette Gilmetti Project: ABS Lab Analytical

Client Sample ID: AF87756 Sample ID: 652246009

Matrix: GW

Collect Date: 16-JAN-24 13:46
Receive Date: 19-JAN-24
Collector: Client

Parameter **Oualifier** Result Uncertainty **MDC** RLUnits PF DF Analyst Date Time Batch Method Rad Gas Flow Proportional Counting GFPC, Ra228, Liquid "As Received" Radium-228 1.21 +/-1.412.38 3.00 pCi/L JE1 01/31/24 0952 2556729 1 Rad Radium-226 Lucas Cell, Ra226, Liquid "As Received" Radium-226 +/-0.431 0.643 1.00 pCi/L LXP1 01/31/24 0949 2556270

The following Analytical Methods were performed:

Description

1 EPA 904.0/SW846 9320 Modified 2 EPA 903.1 Modified

Surrogate/Tracer Recovery Test Result Nominal Recovery% Acceptable Limits

Barium-133 Tracer GFPC, Ra228, Liquid "As Received"

72.1 (15%-125%)

Notes:

Method

Counting Uncertainty is calculated at the 95% confidence level (1.96-sigma).

Column headers are defined as follows:

DF: Dilution Factor Lc/LC: Critical Level
DL: Detection Limit PF: Prep Factor
MDA: Minimum Detectable Activity RL: Reporting Limit

MDC: Minimum Detectable Concentration SQL: Sample Quantitation Limit

Page 11 of 24 SDG: 652246

2040 Savage Road Charleston SC 29407 - (843) 556-8171 - www.gel.com

Certificate of Analysis

Project:

Client ID:

Report Date: February 8, 2024

SOOP00119

SOOP001

Company: Santee Cooper Address: P.O. Box 2946101

OCO3

Moncks Corner, South Carolina 29461

Contact: Ms. Jeanette Gilmetti Project: ABS Lab Analytical

Client Sample ID: AF87766 Sample ID: 652246010

Matrix: GW

Collect Date: 17-JAN-24 10:43
Receive Date: 19-JAN-24
Collector: Client

Parameter **Oualifier** Result Uncertainty **MDC** RLUnits PF DF Analyst Date Time Batch Method Rad Gas Flow Proportional Counting GFPC, Ra228, Liquid "As Received" Radium-228 1.84 +/-1.04 1.51 3.00 pCi/L JE1 01/31/24 0952 2556729 1 Rad Radium-226 Lucas Cell, Ra226, Liquid "As Received" Radium-226 0.769 +/-0.444 0.497 1.00 pCi/L LXP1 01/31/24 0949 2556270 The following Analytical Methods were performed:

MethodDescriptionAnalyst Comments1EPA 904.0/SW846 9320 Modified

EPA 903.1 Modified

Surrogate/Tracer Recovery Test Result Nominal Recovery% Acceptable Limits

Barium-133 Tracer GFPC, Ra228, Liquid "As Received"

76.8 (15%-125%)

Notes:

Counting Uncertainty is calculated at the 95% confidence level (1.96-sigma).

Column headers are defined as follows:

DF: Dilution Factor Lc/LC: Critical Level
DL: Detection Limit PF: Prep Factor
MDA: Minimum Detectable Activity RL: Reporting Limit

MDC: Minimum Detectable Concentration SQL: Sample Quantitation Limit

Page 12 of 24 SDG: 652246

2040 Savage Road Charleston SC 29407 - (843) 556-8171 - www.gel.com

Certificate of Analysis

Report Date: February 8, 2024

SOOP00119

SOOP001

Project:

Client ID:

Company: Santee Cooper Address: P.O. Box 2946101

OCO3

Moncks Corner, South Carolina 29461

Contact: Ms. Jeanette Gilmetti Project: ABS Lab Analytical

Client Sample ID: AF87772 Sample ID: 652246011 Matrix: GW

Collect Date: 17-1

Collect Date: 17-JAN-24 12:26 Receive Date: 19-JAN-24 Collector: Client

Parameter	Qualifier	Result	Uncertainty	MDC	RL	Units	PF	DF Anal	yst Date	Time Batch	Method
Rad Gas Flow Proport	ional Counting	;									
GFPC, Ra228, Liquid	"As Received"	1									
Radium-228	U	1.68	+/-1.22	1.92	3.00	pCi/L		JE1	01/31/24	0953 2556729	1
Rad Radium-226											
Lucas Cell, Ra226, Lie	quid "As Recei	ved"									
Radium-226		0.688	+/-0.393	0.322	1.00	pCi/L		LXP1	01/31/24	0949 2556270	2
The following Analyt	ical Methods w	vere perfo	ormed:								
Method	Description						Analy	st Commen	ts		
1	EDA 004 0/SW	7946 0220	Modified								

~	. /25	-	_	_		 -	0.7	
2			EPA 903.1 Modified					
1			EPA 904.0/SW846 9320 Modified					

Surrogate/Tracer Recovery Test Result Nominal Recovery% Acceptable Limits

Barium-133 Tracer GFPC, Ra228, Liquid "As Received"

75.9 (15%-125%)

Notes:

Counting Uncertainty is calculated at the 95% confidence level (1.96-sigma).

Column headers are defined as follows:

DF: Dilution Factor Lc/LC: Critical Level
DL: Detection Limit PF: Prep Factor
MDA: Minimum Detectable Activity RL: Reporting Limit

MDC: Minimum Detectable Concentration SQL: Sample Quantitation Limit

Page 13 of 24 SDG: 652246

2040 Savage Road Charleston SC 29407 - (843) 556-8171 - www.gel.com

Certificate of Analysis

Project:

Client ID:

Report Date: February 8, 2024

SOOP00119

SOOP001

Company: Santee Cooper Address: P.O. Box 2946101

OCO3

Moncks Corner, South Carolina 29461

Contact: Ms. Jeanette Gilmetti Project: ABS Lab Analytical

Client Sample ID: AF87773 Sample ID: 652246012

Matrix: GW

Collect Date: 17-JAN-24 12:31
Receive Date: 19-JAN-24
Collector: Client

Parameter	Qualifier	Result	Uncertainty	MDC	RL	Units	PF	DF Anal	yst Date	Time Batch	Method
Rad Gas Flow Propor	tional Counting	5									
GFPC, Ra228, Liquid	"As Received"	1									
Radium-228	U	1.08	+/-0.855	1.33	3.00	pCi/L		JE1	01/31/24	0953 2556729	1
Rad Radium-226											
Lucas Cell, Ra226, Li	quid "As Recei	ved"									
Radium-226		0.680	+/-0.452	0.478	1.00	pCi/L		LXP1	01/31/24	0949 2556270	2
The following Analys	tical Methods w	ere perfe	ormed:								
Method	Description						Analy	st Commen	ts		
1	EDA 004 0/8W	7946 0220	Madified				-				

Surrogate/Trac	cor Docovery Test	Decult	Nominal	Dacovary0/	Acceptable Limi
2	EPA 903.1 Modified				
1	EPA 904.0/SW 846 9320 Modified				

Surrogate/Tracer Recovery Test Result Nominal Recovery% Acceptable Limits

Barium-133 Tracer GFPC, Ra228, Liquid "As Received"

73.3 (15%-125%)

Notes:

Counting Uncertainty is calculated at the 95% confidence level (1.96-sigma).

Column headers are defined as follows:

DF: Dilution Factor Lc/LC: Critical Level
DL: Detection Limit PF: Prep Factor
MDA: Minimum Detectable Activity RL: Reporting Limit

MDC: Minimum Detectable Concentration SQL: Sample Quantitation Limit

Page 14 of 24 SDG: 652246

2040 Savage Road Charleston SC 29407 - (843) 556-8171 - www.gel.com

Certificate of Analysis

Report Date: February 8, 2024

SOOP00119

SOOP001

Project:

Client ID:

Company: Santee Cooper Address: P.O. Box 2946101

OCO3

Moncks Corner, South Carolina 29461

Contact: Ms. Jeanette Gilmetti Project: ABS Lab Analytical

Client Sample ID: AF87774 Sample ID: 652246013

Matrix: GW

Collect Date: 17-JAN-24 14:04
Receive Date: 19-JAN-24
Collector: Client

Parameter	Qualifier	Result	Uncertainty	MDC	RL	Units	PF	DF Analy	yst Date	Time Batch	Method
Rad Gas Flow Propor	tional Counting	;									
GFPC, Ra228, Liquid	l "As Received"										
Radium-228		2.05	+/-0.908	1.13	3.00	pCi/L		JE1	01/31/24	0953 2556729	1
Rad Radium-226											
Lucas Cell, Ra226, Li	iquid "As Recei	ved"									
Radium-226		0.998	+/-0.547	0.432	1.00	pCi/L		LXP1	01/31/24	0949 2556270	2
The following Analy	tical Methods w	ere perfo	ormed:								
Method	Description						Analys	st Comment	S		

Michiga	Description	Analyst Comments
1	EPA 904.0/SW846 9320 Modified	•
2	EPA 903.1 Modified	

Surrogate/Tracer RecoveryTestResultNominalRecovery%Acceptable LimitsBarium-133 TracerGFPC, Ra228, Liquid "As Received"76.2(15%-125%)

Notes:

Counting Uncertainty is calculated at the 95% confidence level (1.96-sigma).

Column headers are defined as follows:

DF: Dilution Factor Lc/LC: Critical Level
DL: Detection Limit PF: Prep Factor
MDA: Minimum Detectable Activity RL: Reporting Limit

MDC: Minimum Detectable Concentration SQL: Sample Quantitation Limit

Page 15 of 24 SDG: 652246

2040 Savage Road Charleston SC 29407 - (843) 556-8171 - www.gel.com

Certificate of Analysis

Report Date: February 8, 2024

SOOP00119

SOOP001

Project:

Client ID:

Company: Santee Cooper Address: P.O. Box 2946101

OCO3

Moncks Corner, South Carolina 29461

Contact: Ms. Jeanette Gilmetti Project: ABS Lab Analytical

Client Sample ID: AF87775 Sample ID: 652246014

Matrix: GW

Collect Date: 17-JAN-24 15:20 Receive Date: 19-JAN-24 Collector: Client

Parameter	Qualifier	Result	Uncertainty	MDC	RL	Units	PF	DF Anal	yst Date	Time Batch	Method
Rad Gas Flow Propo	ortional Counting	;									
GFPC, Ra228, Liqui	id "As Received"										
Radium-228		3.56	+/-1.19	1.40	3.00	pCi/L		JE1	01/31/24	0953 2556729	1
Rad Radium-226											
Lucas Cell, Ra226, 1	Liquid "As Recei	ved"									
Radium-226		1.14	+/-0.552	0.490	1.00	pCi/L		LXP1	01/31/24	1024 2556270	2
The following Anal	lytical Methods w	ere perfo	ormed:								
Method	Description					1	Analys	st Commen	ts		

Memod	Description	Analyst Comments
1	EPA 904.0/SW846 9320 Modified	·
2	EPA 903.1 Modified	

Surrogate/Tracer Recovery Test Result Nominal Recovery% Acceptable Limits

Barium-133 Tracer GFPC, Ra228, Liquid "As Received"

77.7 (15%-125%)

Notes:

Counting Uncertainty is calculated at the 95% confidence level (1.96-sigma).

Column headers are defined as follows:

DF: Dilution Factor Lc/LC: Critical Level
DL: Detection Limit PF: Prep Factor
MDA: Minimum Detectable Activity RL: Reporting Limit

MDC: Minimum Detectable Concentration SQL: Sample Quantitation Limit

Page 16 of 24 SDG: 652246

2040 Savage Road Charleston, SC 29407 - (843) 556-8171 - www.gel.com

QC Summary

Report Date: February 8, 2024

Santee Cooper P.O. Box 2946101

OCO3

Moncks Corner, South Carolina

Contact: Ms. Jeanette Gilmetti

Workorder: 652246

Parmname	NOM	Sample	Qual	QC	Units	RPD%	REC%	Range Anlst	Date Time
Rad Gas Flow									
Batch 2556729 ———									
QC1205628819 652246001 DUP									
Radium-228	U	1.31		2.04	pCi/L	44		(0% - 100%) JJ	E1 01/31/24 09:52
	Uncertainty	+/-1.15		+/-1.09					
QC1205628820 LCS									
Radium-228	76.0			76.7	pCi/L		101	(75%-125%)	01/31/24 09:52
	Uncertainty			+/-4.37					
QC1205628818 MB									
Radium-228			\mathbf{U}	1.28	pCi/L				01/31/24 09:52
	Uncertainty			+/-1.03					
Rad Ra-226									
Batch 2556270 ———									
QC1205627969 652246001 DUP									
Radium-226		0.804		1.17	pCi/L	37		(0% - 100%) LX	21 01/31/24 10:24
	Uncertainty	+/-0.508		+/-0.646					
QC1205627971 LCS									
Radium-226	26.8			27.1	pCi/L		101	(75%-125%)	01/31/24 10:24
	Uncertainty			+/-2.80					
QC1205627968 MB									
Radium-226			U	0.419	pCi/L				01/31/24 10:24
	Uncertainty			+/-0.373					
QC1205627970 652246001 MS									
Radium-226	130	0.804		136	pCi/L		104	(75%-125%)	01/31/24 10:24
	Uncertainty	+/-0.508		+/-13.4					

Notes:

Counting Uncertainty is calculated at the 95% confidence level (1.96-sigma).

The Qualifiers in this report are defined as follows:

U Analyte was analyzed for, but not detected above the MDL, MDA, MDC or LOD.

J Value is estimated

X Consult Case Narrative, Data Summary package, or Project Manager concerning this qualifier

H Analytical holding time was exceeded

< Result is less than value reported

Page 17 of 24 SDG: 652246

Page 1 of 2

2040 Savage Road Charleston, SC 29407 - (843) 556-8171 - www.gel.com

QC Summary

Workorder: 652246

Parmname NOM Sample Qual QC Units RPD% REC% Range Anlst Date Time

< D	locult.	ia araa	tor than	1701110	reported

- UI Gamma Spectroscopy--Uncertain identification
- BD Results are either below the MDC or tracer recovery is low
- h Preparation or preservation holding time was exceeded
- R Sample results are rejected
- ^ RPD of sample and duplicate evaluated using +/-RL. Concentrations are <5X the RL. Qualifier Not Applicable for Radiochemistry.
- N/A RPD or %Recovery limits do not apply.
- ND Analyte concentration is not detected above the detection limit
- M if above MDC and less than LLD
- NJ Consult Case Narrative, Data Summary package, or Project Manager concerning this qualifier
- FA Failed analysis.
- UJ Gamma Spectroscopy--Uncertain identification
- Q One or more quality control criteria have not been met. Refer to the applicable narrative or DER.
- K Analyte present. Reported value may be biased high. Actual value is expected to be lower.
- UL Not considered detected. The associated number is the reported concentration, which may be inaccurate due to a low bias.
- L Analyte present. Reported value may be biased low. Actual value is expected to be higher.
- N1 See case narrative
- Y Other specific qualifiers were required to properly define the results. Consult case narrative.
- ** Analyte is a Tracer compound
- M REMP Result > MDC/CL and < RDL
- J See case narrative for an explanation

N/A indicates that spike recovery limits do not apply when sample concentration exceeds spike conc. by a factor of 4 or more or %RPD not applicable.

- ^ The Relative Percent Difference (RPD) obtained from the sample duplicate (DUP) is evaluated against the acceptance criteria when the sample is greater than five times (5X) the contract required detection limit (RL). In cases where either the sample or duplicate value is less than 5X the RL, a control limit of +/- the RL is used to evaluate the DUP result.
- * Indicates that a Quality Control parameter was not within specifications.

For PS, PSD, and SDILT results, the values listed are the measured amounts, not final concentrations.

Where the analytical method has been performed under NELAP certification, the analysis has met all of the requirements of the NELAC standard unless qualified on the QC Summary.

Page 18 of 24 SDG: 652246

Technical Case Narrative Santee Cooper SDG #: 652246

Radiochemistry

Product: GFPC, Ra228, Liquid

Analytical Method: EPA 904.0/SW846 9320 Modified Analytical Procedure: GL-RAD-A-063 REV# 5

Analytical Batch: 2556729

The following samples were analyzed using the above methods and analytical procedure(s).

GEL Sample ID#	Client Sample Identification
652246001	AF87763
652246002	AF87761
652246003	AF87762
652246004	AF88958
652246005	AF87760
652246006	AF87759
652246007	AF87758
652246008	AF87757
652246009	AF87756
652246010	AF87766
652246011	AF87772
652246012	AF87773
652246013	AF87774
652246014	AF87775
1205628818	Method Blank (MB)
1205628819	652246001(AF87763) Sample Duplicate (DUP)
1205628820	Laboratory Control Sample (LCS)

The samples in this SDG were analyzed on an "as received" basis.

Data Summary:

All sample data provided in this report met the acceptance criteria specified in the analytical methods and procedures for initial calibration, continuing calibration, instrument controls and process controls where applicable, with the following exceptions.

Technical Information

Recounts

Samples 652246002 (AF87761) and 652246003 (AF87762) were re-eluted and recounted to verify sample results. The recounts are reported.

<u>Product:</u> Lucas Cell, Ra226, Liquid <u>Analytical Method:</u> EPA 903.1 Modified

Page 19 of 24 SDG: 652246

Analytical Procedure: GL-RAD-A-008 REV# 15

Analytical Batch: 2556270

The following samples were analyzed using the above methods and analytical procedure(s).

GEL Sample ID#	Client Sample Identification
652246001	AF87763
652246002	AF87761
652246003	AF87762
652246004	AF88958
652246005	AF87760
652246006	AF87759
652246007	AF87758
652246008	AF87757
652246009	AF87756
652246010	AF87766
652246011	AF87772
652246012	AF87773
652246013	AF87774
652246014	AF87775
1205627968	Method Blank (MB)
1205627969	652246001(AF87763) Sample Duplicate (DUP)
1205627970	652246001(AF87763) Matrix Spike (MS)
1205627971	Laboratory Control Sample (LCS)

The samples in this SDG were analyzed on an "as received" basis.

Data Summary:

All sample data provided in this report met the acceptance criteria specified in the analytical methods and procedures for initial calibration, continuing calibration, instrument controls and process controls where applicable, with the following exceptions.

Miscellaneous Information

Additional Comments

The matrix spike, 1205627970 (AF87763MS), aliquot was reduced to conserve sample volume.

Certification Statement

Where the analytical method has been performed under NELAP certification, the analysis has met all of the requirements of the NELAC standard unless otherwise noted in the analytical case narrative.

Page 20 of 24 SDG: 652246

□ Cr

□ Pb

□ CrVI

Chain of Custody

652246 Santee cooper

□ TSS

GOFER

Santee Cooper Santee Cooper One Riverwood Drive Moneks Comer, SC 29461 Phone: (843)761-8000 Ext. 5148 Fax: (843)761-4175

Customer Email/Report Recipient: Date Results Needed by: Project/Task/Unit #: Rerun request for any flagged QC 1 JM02.08.602.31 36500 (Yes) No **Analysis Group** Labworks ID# Sample Location/ Comments Matrix(see below) Collection Date Collection Time (Internal use Description (Glass Method # Collecto 228 only) Total # of contai Grab (G) or Composite (C) Preservative (below) 226 Reporting limit Bottle type: (r G/Plastic-P) Misc. sample info 改多 RAD Any other notes MJK 2 X CAP-10 1/11/24 1202 X AF87763 CW 61 CAP-9 1323 62 CAP-9 DUP 1328 CAP-8 AF 88958 1439 1/16/24 AF 87760 CAP-7 6917 59 CAP-6. 1022 58 CAP-5. 1168 57 CAP-4. 1219 56 CAP-3 . 1346 1/17/24 AF 87766 CAP-13 1043-Sample Receiving (Internal Use Only) Refinquished by: Employee# Date Time Received by: Time Employee # Date TEMP (°C):_____ Initial:_ 36851 0936 1/19/24 1/19/24 GEL 0936 Correct pH: Yes Relinquished by: Employee# Date Time eceived by: Date Employee # Time Preservative Lot#: GEL 1635 4.19.24 Relinquished by: Employee# Received by: Employee # Time Date/Time/Init for preservative: ☐ METALS (all) **Nutrients** MISC. Gypsum Coal Oil Flyash □ Ag □ Cu □ Sb TOC □ BTEX ☐ Wallboard □ Ultimate Trans. Oil Qual. □ Ammonia O Al □ Fe □ Se □ Naphthalene □ DOC Gypsum(all □ % Moisture %Moisture □ LOI □ THM/HAA □ As $\Box K$ □ Sn below) Color □ TP/TPO4 □ Ash ☐ % Carbon □ VOC □ AIM Acidity □ NH3-N \Box B □ Li ☐ Sulfur □ Sr ☐ Mineral □ Oil & Grease Dielectric Strength □ TOC DF □ BTUs Analysis □ E. Coli IFT □ Ba □ Mg □ Ti ☐ Total metals ☐ Volatile Matter □ Sieve ☐ Total Coliform Dissolved Gases ☐ Soluble Metals □Ве □ Mn □ T1 □ NO2 □pH □ CHN ☐ % Moisture Used Oil □ Purity (CaSO4) □ Br ☐ Dissolved As Other Tests: □ % Moisture □ Ca □ Mo DV Flashpoint □ Dissolved Fe □ NO3 ☐ XRF Scan □ Sulfites Metals in oil **NPDES** □ Cd □ Na □ Zn ☐ Rad 226 □ HGI (As,Cd,Cr,Ni,Pb ☐ SO4 □pH ☐ Rad 228 □ Oil & Grease □ Chlorides Hg) ☐ Fineness □ Co □ Ni □ Hg □ As □ PCB ☐ Particle Size ☐ Particulate Matter TX

□ Sulfur

Chain of Custody

Santee Cooper One Riverwood Drive Moncks Corner, SC 29461 Phone: (843)761-8000 Ext. 5148 Fax: (843)761-4175

Customer Email/Report Recipient: Date Results Needed by: Project/Task/Unit #: Rerun request for any flagged QC LINDA-WILLIAMS @santeecooper.com / JM 02.09. GOI. 1 , 36500 (Yes) No **Analysis Group** Labworks ID# Sample Location/ Comments Collection Date (Internal use Description Collection Time Matrix(see below (see (Glass Method # Collecto only) Preservative (9 below) Fotal # of contai Grab (G) or Composite (C) 228 Reporting limit 226 Bottle type: (G/Plastic-P) Misc. sample info KAD Any other notes WJK 2 CCM AP-4 AF87772 1226 P 2 1/17/24 GW X X 73 - 4 DUP 1231 74 1404 -5 -6 75 1520 Sample Receiving (Internal Use Only) Relinquished by: Employee# Date Time Received by: Employee # Date Time TEMP (°C):_____ Initial:_ 3685 1/19/24 0936 GEL 1/19/24 0936 Relinquished by: Correct pH: Yes Employee# Date Time Received by: Employee # Date Time Preservative Lot#: 19.24 SEL 635 Relinquished by: Received by: Employee # Date Time Date/Time/Init for preservative: ☐ METALS (all) **Nutrients** MISC. Gypsum Coal Flyash Oil □ Ag □ Cu □ Sb TOC BTEX ☐ Wallboard □ Ultimate ☐ Ammonia Trans. Oil Qual. □ A1 □ Fe □ Se □ Naphthalene □ DOC Gypsum(all ☐ % Moisture %Moisture □ LOI □ As $\Box K$ □ Sn □ THM/HAA ☐ TP/TPO4 below) Color □ Ash □ % Carbon □ VOC □ NH3-N □ AIM Acidity \square B □ Li □ Sr □ Sulfur ☐ Mineral □ Oil & Grease TTOC Dielectric Strength OF □ BTUs □ Ba □ Mg □ Ti □ E. Coli Analysis □ Total metals IFT CI ☐ Total Coliform ☐ Volatile Matter □ Sieve Dissolved Gases ☐ Soluble Metals □ Be □ T1 □ Mn NO₂ □pH □ CHN ☐ Purity (CaSO4) ☐ % Moisture Used Oil □ Br ☐ Dissolved As Other Tests: □ Ca Flashpoint □ Mo UV ☐ % Moisture ☐ Dissolved Fe □ NO3 □ Sulfites ☐ XRF Scan Metals in oil **NPDES** □ Cd □ Na □ Zn □ Rad 226 **□** SO4 □pH HGI (As,Cd,Cr,Ni,Pb □ Rad 228 □ Oil & Grease □ Chlorides ☐ Fineness Hg) □ Co □ Ni □ Hg □ PCB □ As ☐ Particulate Matter ☐ Particle Size TX □ Cr □ Pb □ CrVI □ TSS □ Sulfur GOFER

GEL Laboratories LLC SAMPLE RECEIPT & REVIEW FORM 652246 Client: SOUP Received By: ML Date Received: FedEx Express FedEx Ground UPS Field Services Courier Carrier and Tracking Number #In Not Counts > 100epm on samples not marked "radioactive", contact the Radiation Safety Group for further investigation Suspected Hazard Information • UN#: If UN2910, Is the Radioactive Shipment Survey Compliant? Yes___No___ A)Shipped as a DOT Hazardous? OC notation of radioactive stickers on containers equal client designation. B) Did the cliem designate the samples are to be received as radioactive? Maximum Net Counts Observed* (Observed Counts - Area Background Counts); _____(CPM/ mR/Hr C) Did the RSO classify the samples as Classified as: Rad 1 Rad 2 Rad 3 radioactive? COC notation or hazard labels on containers equal client designation. D) Did the client designate samples are hazardous? If D or E is yes, select Hazards below. Foreign Soil RCRA Asbestos Beryllium PCB's Flammable E) Did the RSO identify possible hazards? Yes NA No Sample Receipt Criteria Comments/Qualifiers (Required for Non-Conforming Items) Circle Applicable: Seals broken Damaged container Leaking container Other (describe) Shipping containers received intact and Circle Applicable: Client contacted and provided COC COC created upon receipt Chain of custody documents included with shipment? Preservation Method: Wet Ice Ice Packs Dry ice None, Other: TEMP: 20 Samples requiring cold preservation *all temperatures are recorded in Celsius within $(0 \le 6 \text{ deg. C})$?* Temperature Device Scrial #: 125-23 Daily check performed and passed on IR Secondary Temperature Device Serial # (If Applicable): temperature gun? Circle Applicable: Scals broken Damaged container Leaking container Other (describe) Sample containers intact and sealed? Sample ID's and Containers Affected: Samples requiring chemical preservation at proper pH? If Preservation added, Lot#: If Yes, are Encores or Soil Kits present for solids? Yes___No___NA__(If yes, take to VOA Freezer) Do liquid VOA vials contain acid preservation? Yes___ No___ NA___(If unknown, select No) Do any samples require Volatile 7 Are liquid VOA vials free of headspace? Yes____ No_ Analysis? Sample ID's and containers affected: ID's and tests affected: Samples received within holding time? ID's and containers affected: Sample ID's on COC match ID's on bottles? Circle Applicable: No dates on containers No times on containers COC missing info Other (describe) Date & time on COC match date & time on bottles? Circle Applicable: No container count on COC Other (describe) Number of containers received match number indicated on COC? Are sample containers identifiable as GEL provided by use of GEL labels? Circle Applicable: Not relinquished Other (describe) COC form is properly signed in relinquished/received sections? Comments (Use Continuation Form if needed):

GL-CHL-SR-001 Rev 7

List of current GEL Certifications as of 08 February 2024

State	Certification
Alabama	42200
Alaska	17-018
Alaska Drinking Water	SC00012
Arkansas	88-00651
CLIA	42D0904046
California	2940
Colorado	SC00012
Connecticut	PH-0169
DoD ELAP/ ISO17025 A2LA	2567.01
Florida NELAP	E87156
Foreign Soils Permit	P330-15-00283, P330-15-00253
Georgia	SC00012
Georgia SDWA	967
Hawaii	SC00012
Idaho	SC00012 SC00012
Illinois NELAP	200029
Indiana	C-SC-01
Kansas NELAP	
	E-10332
Kentucky SDWA	KY90129
Kentucky Wastewater	KY90129
Louisiana Drinking Water	LA024
Louisiana NELAP	03046 (AI33904)
Maine	2023019
Maryland	270
Massachusetts	M-SC012
Massachusetts PFAS Approv	Letter
Michigan	9976
Mississippi	SC00012
Nebraska	NE-OS-26-13
Nevada	SC000122024-05
New Hampshire NELAP	2054
New Jersey NELAP	SC002
New Mexico	SC00012
New York NELAP	11501
North Carolina	233
North Carolina SDWA	45709
North Dakota	R-158
Oklahoma	2023-152
Pennsylvania NELAP	68-00485
Puerto Rico	SC00012
S. Carolina Radiochem	10120002
Sanitation Districts of L	9255651
South Carolina Chemistry	10120001
Tennessee	TN 02934
Texas NELAP	T104704235-23-21
Utah NELAP	SC000122023-38
Vermont	VT87156
Virginia NELAP	460202
Washington	C780
	1

Water Well Record Bureau of Water

2600 Bull Street, Columbia, SC 29201-1708; (803) 898-4300

PROMOTE PROTECT PROSPER	2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1. WELL OWNER INFORMATION:	7. PERMIT NUMBER:
Name: SANTEE COOPER CROSS GENERATING STATIC	NO
(last) (first)	8. USE:
Address: 553 CROSS STATION ROAD	☐ Residential ☐ Public Supply ☐ Process
City: PINEVILLE State: SC Zip: 29468	☐ Irrigation ☐ Air Conditioning ☐ Emergency
City, PINEVILLE State, SC Zip. 29400	☐ Test Well ☐ Replacement
Telephone: Work: 843-761-8000 Home: 843-303-1	9. WELL DEPTH (completed) Date Started: 1-8-2024
2. LOCATION OF WELL: COUNTY: BERKELEY	Comment of the Commen
Name: Santee Cooper-Cross Generating Stat:	it. Date Completed.
Street Address: 553 Cross Station Rd.	
	Diam.: 2" Height: Above/€elow Type: ☒ PVC ☐ Galvanized Surface
City: Pineville Zip: 29468	
Take day	O Steel Other Weight — Ib./ft. O in. to 9 Ft. depth Drive Shoe? Yes 🗵 No
Latitude: Longitude:	in. toft. depth
A BURLIO OVOTEM NAME. BURLIO OVOTEM NUI	
3. PUBLIC SYSTEM NAME: PUBLIC SYSTEM NU PZ-4R	Type: PVC Diam.: 2"
F2-4K	Slot/Gauge:010
4. ABANDONMENT: ☐ Yes ☒ No	Set Between: 9 ft. and 19 ft. NOTE: MULTIPLE SCREENS
Give Details Below	ft. andft. USE SECOND SHEET
Grouted Depth: from ft. to	ft. Sieve Analysis □ Yes (please enclose) ☒ No
*Thickness De	
	tom of
	13. PUMPING LEVEL Below Land Surface.
BROWN SAND/CLAY 7 7	ft. after hrs. Pumping G.P.M. Pumping Test: ☐ Yes (please enclose) ☒ No
	Yield:
GRAY SILTYSAND 12 19	5.0
	14. WATER QUALITY
	Chemical Analysis ☐ Yes ☒No Bacterial Analysis ☐ Yes ☒ No
	Please enclose lab results.
	15. ARTIFICIAL FILTER (filter pack) ☑ Yes □ No
	Installed from 7 ft. to 19 ft.
	Effective size #2 Uniformity Coefficient SAND
	16. WELL GROUTED? Yes □ No
	■ Neat Cement □ Bentonite □ Bentonite/Cement □ Other □
	Depth: From 0 ft. to 5 ft.
	17. NEAREST SOURCE OF POSSIBLE CONTAMINATION: ft direction
	Well Disinfected ☐ Yes 🗵 No Type: Amount:
	18. PUMP: Date installed: Not installed 🗵
	Mfr. Name: Model No.:
	H.P. Volts Length of drop pipe ft. Capacity gpm
	TYPE: Submersible Jet (shallow) Turbine
	☐ Jet (deep) ☐ Reciprocating ☐ Centrifugal
WARRED ARE 101	19. WELL DRILLER: Rich Lemire CERT. NO.: 1423
WATER AT 10'	Address: (Print) Level: A B C D (circle one)
	SAEDACCO
	9088 Northfield Drive Fort Mill, SC 29707
*Indicate Water Bearing Zones	Telephone No.: (803) 548-2180 Fax No.: (803) 548-2181
630)	20. WATER WELL DRILLER'S CERTIFICATION: This well was drilled under
(Use a 2nd sheet if needed)	my direction and this report is true to the best of my knowledge and belief.
5. REMARKS:	
BENTONITE AT 5' TO 7'.	20.220
	Signed: Date: 1/11/2024
	Signed: Date: Date:
A TVDE CLUIC	THOIL DAINED
6. TYPE: ☐ Mud Rotary ☐ Jetted ☒ Bored	If D Level Driller, provide supervising driller's name:
☐ Dug ☐ Air Rotary ☐ Driver	
☐ Cable tool ☐ Other	

Water Well Record Bureau of Water

2600 Bull Street, Columbia, SC 29201-1708; (803) 898-4300

1. WELL OWNER INFORMATION:		7. PERMIT NUMBER:
Name: SANTEE COOPER CROSS GENERATING ST	TATION	
(last) (fire	st)	8. USE:
Address: 553 CROSS STATION ROAD		☐ Residential ☐ Public Supply ☐ Process
City DIMENTILE State CC 7in 2	0469	☐ Irrigation ☐ Air Conditioning ☐ Emergency
City: PINEVILLE State: SC Zip: 2	3400	☐ Test Well Replacement
Telephone: Work: 843-761-8000 Home: 843-3	303-1639	9. WELL DEPTH (completed) Date Started: 1-8-2024
2. LOCATION OF WELL: COUNTY: BER		ft. Date Completed: 1-8-2024
Name: Santee Cooper-Cross Generating	Station	10. CASING: ☑ Threaded ☐ Welded
Street Address: 553 Cross Station Rd.		Diam.: 2" Height: Above/Celow
City: Pineville Zip: 29468		Type: 🛛 PVC 🗆 Galvanized Surface ft.
		0 Steel □ Other Weight □ Ib./ft. Drive Shoe? □ Yes ☒ No
Latitude: Longitude:		
- 24		in. to ft. depth
3. PUBLIC SYSTEM NAME: PUBLIC SYSTE	M NUMBER:	11. SCREEN: Type: PVC Diam.: 2"
PZ-5R		Slot/Gauge: Diam.: Length:
4. ABANDONMENT: Yes No		Set Between: 6 ft. and 16 ft. NOTE: MULTIPLE SCREENS
Give Details Below		tt. andft. USE SECOND SHEET
Grouted Depth: from ft. to	ft.	Sieve Analysis ☐ Yes (please enclose) ☒ No
*Thickness		12. STATIC WATER LEVEL 10 ft. below land surface after 24 hours
Formation Description of	Bottom of	13. PUMPING LEVEL Below Land Surface.
BROWN SAND/CLAY 7	Stratum 7	ft. after hrs. Pumping G.P.M.
BROWN SAND/CLAY 7	'	Pumping Test: Yes (please enclose) X No
	1.5	Yield:
GRAY SILTY SAND 9	16	14. WATER QUALITY
		Chemical Analysis ☐ Yes ☒No Bacterial Analysis ☐ Yes ☒ No
		Please enclose lab results.
		15. ARTIFICIAL FILTER (filter pack) ☑ Yes □ No
		Installed from 5 ft. to 16 ft.
		Effective size #2 Uniformity Coefficient SAND
		16. WELL GROUTED? Yes □ No
		⊠ Neat Cement □ Bentonite □ Bentonite/Cement □ Other □
		Depth: From 0 ft. to 3 ft.
		17. NEAREST SOURCE OF POSSIBLE CONTAMINATION: ft direction
		Type
		Well Disinfected ☐ Yes ☒ No Type: Amount:
		18. PUMP: Date installed: Not installed 🗵
		Mfr. Name: Model No.:
		H.P Volts Length of drop pipe ft. Capacity gpm
		TYPE: Submersible Jet (shallow) Turbine
		☐ Jet (deep) ☐ Reciprocating ☐ Centrifugal
WATER AT 10'		19. WELL DRILLER: Rich Lemire CERT. NO: 1423
	1	Address: (Print) Level: A B C D (circle one)
		SAEDACCO 9088 Northfield Drive
*Indicate Water Bassing Zones		Fort Mill, SC 29707
*Indicate Water Bearing Zones		Telephone No.: (803) 548-2180 Fax No.: (803) 548-2181 20. WATER WELL DRILLER'S CERTIFICATION: This well was drilled under
(Use a 2nd sheet if needed)		my direction and this report is true to the best of my knowledge and belief.
5. REMARKS:		, salestion and this report is true to the best of my knowledge and belief.
BENTONITE AT 3' TO 5'.		20 20 -
		Kuly of Lemine
		Signed: Date: 1/11/2024
40000 MANAGEMENT - 10000 MANAGEM	1000	Well Driller
	Bored	If D Level Driller, provide supervising driller's name:
	Driven	
☐ Cable tool ☐ Other		