2023 ANNUAL GROUNDWATER MONITORING AND CORRECTIVE ACTION REPORT SOUTH ASH POND WINYAH GENERATING STATION

by Santee Cooper Moncks Corner, South Carolina

January 31, 2024

Tab	le of Contents	Page
1. 2.	Annual Groundwater Monitoring Report Summary 40 CFR §257.90 Applicability	1 1
	2.1 40 CFR § 257.90(a) and (c)	1
	2.2 40 CFR § 257.90(e) – Summary	2
	2.2.1 Status of the Groundwater Monitoring Program	2
	2.2.2 Key Actions Completed	2
	2.2.3 Problems Encountered	3
	2.2.4 Actions to Resolve Problems	4
	2.2.5 Project Key Activities for Upcoming Year	4
	2.3 40 CFR § 257.90(e) – Information	5
	2.3.1 40 CFR § 257.90(e)(1)	5
	2.3.2 40 CFR § 257.90(e)(2)	5
	2.3.3 40 CFR § 257.90(e)(3)	6
	2.3.4 40 CFR § 257.90(e)(4)	6
	2.3.5 40 CFR § 257.90(e)(5)	7

Table No.Title1Summary of Analytical Results22023 Synoptic Water Levels for Groundwater Monitoring Wells

Figure No.	Title
1	Location of South Ash Pond Groundwater Monitoring Wells for CCR Compliance
2	Potentiometric Map February 2023
3	Potentiometric Map May 2023
4	Potentiometric Map July 2023
5	Potentiometric Map November 2023

Appendix A – Statistical Analyses

Appendix B – Laboratory Analytical Reports

Appendix C – Well Construction Record

Annual Groundwater Monitoring Report Summary

The South Carolina Public Service Authority (Santee Cooper) has prepared this 2023 Annual Groundwater Monitoring Corrective Action Report for the South Ash Pond at the Winyah Generating Station (WGS). This 2023 Annual Report was prepared to comply with the United States Environmental Protection Agency (EPA) Hazardous and Solid Waste Management System; Disposal of Coal Combustion Residuals (CCR) from Electric Utilities, Title 40 Code of Federal Regulations (40 CFR) Part 257, Subpart D dated 17 April 2015 (CCR Rule), specifically subsection § 257.90(e)(1) through (6).

In accordance with § 257.90(e)(6), an overview of the current status of the groundwater monitoring and corrective action programs for the CCR unit is provided below:

At the start of the current annual reporting period (January 1, 2023), the WGS South Ash Pond continued to operate under an assessment monitoring program in accordance with § 257.95, which was initiated on July 16, 2018. Statistically significant levels (SSLs) of Appendix IV constituents above the groundwater protection standards (GWPS) were not identified in any of the wells to date, including both the February-March and June-July 2023 sampling events. At the end of the current annual reporting period (December 31, 2023), the South Ash Pond remained in the assessment monitoring program. Because SSLs of Appendix IV constituents have not been identified, initiating, and completing an assessment of corrective measures, holding a public meeting, selecting a remedy, and initiating remedial activities were not required.

To report on the activities conducted during the prior calendar year and document progress complying with the CCR Rule, the specific requirements listed in § 257.90(e)(1) through (5) are provided in the next section in bold/italic type followed by a short narrative stating how that specific requirement was met.

2. 40 CFR § 257.90 Applicability

2.1 40 CFR § 257.90(a) and (c)

All CCR landfills, CCR surface impoundments, and lateral expansions of CCR units are subject to the groundwater monitoring and corrective action requirements under § 257.90 through § 257.98.

Once a groundwater monitoring system and groundwater monitoring program has been established at the CCR unit as required by this subpart, the owner or operator must conduct groundwater monitoring and, if necessary, corrective action through the active life and post-closure care period of the CCR unit.

The South Ash Pond at WGS is an existing surface impoundment which is no longer receiving CCR or non-CCR waste streams and is undergoing closure by removal. As such, it is subject to the groundwater monitoring and corrective action requirements set forth by the EPA in 40 CFR § 257.90 through § 257.98. This document satisfies the requirement under § 257.90(e) which requires the CCR Unit Owner/Operator to prepare an Annual Groundwater Monitoring and Corrective Action Report.

2.2 40 CFR § 257.90(e) - SUMMARY

Annual groundwater monitoring and corrective action report. For existing CCR landfills and existing CCR surface impoundments, no later than January 31, 2018, and annually thereafter, the owner or operator must prepare an annual groundwater monitoring and corrective action report. For the preceding calendar year, the annual report must document the status of the groundwater monitoring and corrective action program for the CCR unit, summarize key actions completed, describe any problems encountered, discuss actions to resolve the problems, and project key activities for the upcoming year. For purposes of this section, the owner or operator has prepared the annual report when the report is placed in the facility's operating record as required by § 257.105(h)(1).

This Annual Report documents the activities completed in 2023 for the WGS South Ash Pond as required by the subject regulations. Groundwater sampling and analysis was conducted per the requirements of § 257.93, and the status of the groundwater monitoring program, set forth in § 257.95, is provided in this report.

2.2.1 Status of the Groundwater Monitoring and Corrective Action Program

Statistically significant increases (SSI) of Appendix III constituents were identified downgradient of South Ash Pond, and the notification was provided on January 15, 2018. As a result, an Assessment Monitoring program was initiated as required by § 257.94(e)(2). The notification was placed in the facility's operating record as required by 257.106(h)(4).

As required by § 257.93(h)(2), a statistical evaluation of the detected Appendix IV constituents was conducted. The results of this evaluation determined that the detected Appendix IV constituents were not present at statistically significant levels (SSLs) above the GWPS. Therefore, this unit remained in assessment monitoring.

For the assessment monitoring in 2023, results from the two sampling events are consistent with prior sampling results and confirm that SSLs of the detected Appendix IV constituents above GWPS are not present for this unit, so the unit remains in assessment monitoring.

2.2.2 Key Actions Completed

The following key actions were completed in 2023:

- Prepared 2022 Annual Report including:
 - The Annual Report was placed in the facility's operating record pursuant to § 257.105(h)(1);
 - Pursuant to § 257.106(h)(1), the notification was sent to the relevant State Director within 30 days of the Annual Report being placed in the facility's operating record [§ 257.106(d)];

- Pursuant to § 257.107(h)(1), the Annual Report was posted to the CCR Website within 30 days of the Annual Report being placed in the facility's operating record [§ 257.107(d)];
- Collected and analyzed two rounds of groundwater samples (February-March and June-July) in accordance with § 257.95(b) and § 257.95(d)(1) and recorded the concentrations in the facility's operating record as required by § 257.95(d)(1). Groundwater monitoring results are summarized in Table 1 and laboratory analytical results are provided in Appendix B;
- Completed statistical evaluations to determine if SSLs above GWPS were present for detected Appendix IV constituents in accordance with § 257.93(h)(2) (Appendix A);
- Continued baseline sampling for WAP-28, collecting five of the six remaining independent samples to establish a statistically representative dataset prior to including in the statistical evaluations. WAP-28 will be added to the compliance groundwater monitoring network after collecting eight samples which will coincide with the first sampling event of 2024;
- Improved the potentiometric surface characterization of the uppermost aquifer given changing site conditions by:
 - Collecting site-wide synoptic rounds of water levels within a 48-hour period prior to initiating semi-annual sampling of the groundwater monitoring wells. Groundwater elevation measurements continued to be collected in each well immediately prior to collecting the sample;
 - The water surface elevations of unlined ponds were surveyed at approximately the same time as the semi-annual monitoring events. Unlined ponds are sources of hydraulic head and groundwater recharge; therefore, it is appropriate to include pond surface water elevations in the potentiometric interpretation of the uppermost aquifer;
 - Collecting site-wide synoptic water levels quarterly to better understand temporal changes in groundwater elevation; this required two additional events collected independently of groundwater sampling;
- Evaluated turbidity, oxidation-reduction potential, and well screen submersion trends in sitewide wells and identified wells to be redeveloped by a certified well driller to remove buildup of sediment fines and suspected biofouling on the well screens. A submersible camera was used to investigate wells with unsubmerged screens prior to redevelopment. Camera investigation and well redevelopment were completed in November 2023. Success of redevelopment will be monitored during 2024 sampling events;
- Two groundwater monitoring wells were installed adjacent to WAP-2 and WAP-28 in December 2023 to enhance the groundwater monitoring program. If needed based on further evaluation, these new wells would be suitable replacement wells for WAP-2 and WAP-28 as they are immediately adjacent and screened in the same zones, and;
- Both the Sampling and Analysis Plan and the Groundwater Monitoring Plan for Winyah Generating Station were updated to reflect changes in site conditions and procedures on August 18th, 2023, and October 2nd, 2023, respectively.

2.2.3 Problems Encountered

The ongoing changes to the groundwater flow and quality characteristics from closure activities, both from dewatering the CCR units and from dewatering associated with obtaining on-site borrow materials,

produced what is interpreted to be short-term inconsistencies in the concentration of Appendix III and IV constituents.

For example, dewatering of the South Pond altered the groundwater flow field of the South Pond shifting flow to the west. As a result, WAP-12 is no longer located in a downgradient position requiring a new downgradient well (WAP-28) to be installed. Even though WAP-12 remained consistently upgradient during 2023, it was still evaluated for SSLs.

Uncharacteristic groundwater results were identified at two monitoring wells during this year's sampling events. Monitoring well screens that were fully submerged below the water table have become exposed to atmospheric air introducing a new variable to the sampling and analytical process. Monitoring wells with consistently high levels of turbidity (suspended solids) have also been identified adding another potential source of error. For example, elevated arsenic levels were detected for monitoring well WAP-2 in both sampling events and in a third confirmation sample in August 2023. These results did not trigger SSLs according to the interwell statistical evaluation (Appendix A). Additionally, monitoring well WAP-28 has shown consistently elevated cobalt throughout the five baseline samples collected in 2023. As baseline sampling for WAP-28 was still in progress for 2023, the well has not yet been added to the statistical evaluation.

2.2.4 Actions to Resolve Problems

Due to WAP-12 becoming upgradient to the pond, baseline monitoring for WAP-28 has been ongoing and will be added to the monitoring network at the beginning of 2024.

Because of the uncharacteristic groundwater results, a submersible camera was used to investigate wells with unsubmerged screens pre- and post-redevelopment to evaluate success. During the post-redevelopment investigation, the submersible camera was used to investigate the well screen of WAP-2 below the water surface. Significant amounts of biological material were discovered throughout the water column. WAP-2 retained a substantial amount of accumulation after completion of well redevelopment. This supports the conclusion of biofouling affecting the recent analytical fluctuations of WAP-2 results. Further evaluation is underway in 2024.

The submersible camera investigation found minimal accumulation of any kind within the recently installed WAP-28. However, due to the uncharacteristic results from the baseline sampling events, it was determined it was likely that the well was compromised during installation.

Well redevelopment is a standard quality control procedure to remove sediment fines and/or biofouling from the well screen which could be the cause of atypical results. Several wells at the site were redeveloped in November 2023 with a focus on wells with identified elevated turbidity or analytical issues. Both monitoring wells WAP-2 and WAP-28 were redeveloped. In addition to redevelopment, two additional monitoring wells were installed adjacent to WAP-2 and WAP-28 to evaluate the legitimacy of their recent uncharacteristic analytical results. These new wells will potentially replace the existing wells in 2024 after evaluation of the results from the upcoming February 2024 sampling event.

2.2.5 Project Key Activities for Upcoming Year

Key activities to be completed in 2024 include the following:

- Prepare the 2023 annual report; place it in the record as required by § 257.105(h)(1), notify the state [§ 257.106(d)]; and post to website [§ 257.107(d)].
- Conduct semi-annual groundwater monitoring as required by § 257.95.
- Complete semi-annual statistical analysis of Assessment Monitoring analytical data to determine if SSLs of the detected Appendix IV constituents are present above GWPS.
- Based on the findings of the statistical analysis, conduct an evaluation of alternate sources of Appendix IV parameters, determine the nature and extent of any SSLs identified, and prepare an assessment of corrective measures, if necessary and appropriate, as provided in § 257.95(g)(1) and § 257.95(g)(3).
- WAP-28 will be added to the compliance groundwater monitoring network and statistical evaluations.
- Further evaluate existing monitoring wells WAP-2 and WAP-28 to determine their status and suitability for continued use for groundwater monitoring.
- Conduct sampling on the new groundwater monitoring wells installed adjacent to WAP-2 and WAP-28.
- Continue improving the potentiometric surface characterization of the uppermost aquifer given changing site conditions by:
 - Continuing the sitewide synoptic water level measurements on a quarterly basis and in conjunction with the semi-annual groundwater monitoring events.
 - Continue collecting surface water elevations from unlined ponds, also on the same quarterly basis as the sitewide synoptic water level measurements.

2.3 40 CFR § 257.90(e) - INFORMATION

At a minimum, the annual groundwater monitoring and corrective action report must contain the following information, to the extent available:

2.3.1 40 CFR § 257.90(e)(1)

A map, aerial image, or diagram showing the CCR unit and all background (or upgradient) and downgradient monitoring wells, to include the well identification numbers, that are part of the groundwater monitoring program for the CCR unit;

As required by § 257.90(e)(1), a map showing the location of the CCR unit and associated upgradient and downgradient monitoring wells for South Ash Pond is presented as Figure 1.

2.3.2 40 CFR § 257.90(e)(2)

Identification of any monitoring wells that were installed or decommissioned during the preceding year, along with a narrative description of why those actions were taken;

Two additional monitoring wells were installed in December 2023 to evaluate the legitimacy of the uncharacteristic analytical results for WAP-2 and WAP-28 discussed above. These newly installed wells

are suitable for replacement to the existing monitoring wells if further evaluation determines that is warranted. No groundwater monitoring wells were decommissioned in 2023.

2.3.3 40 CFR § 257.90(e)(3)

In addition to all the monitoring data obtained under § 257.90 through § 257.98, a summary including the number of groundwater samples that were collected for analysis for each background and downgradient well, the dates the samples were collected, and whether the sample was required by the detection monitoring or assessment monitoring programs;

In accordance with § 257.95(b) and § 257.95(d)(1), two independent samples from each background and downgradient monitoring well were collected and analyzed. A summary table including the sample names, dates of sample collection, reason for sample collection (detection or assessment), and monitoring data obtained for the groundwater monitoring program for South Ash Pond is presented in Table 1 of this report. In addition, in accordance with § 257.95(d)(3), Table 1 includes the groundwater protection standards established under § 257.95(d)(2). Laboratory analytical data reports, along with field sampling forms, are provided in Appendix B to this report.

2.3.4 40 CFR § 257.90(e)(4)

A narrative discussion of any transition between monitoring programs (e.g., the date and circumstances for transitioning from detection monitoring to assessment monitoring in addition to identifying the constituent(s) detected at a statistically significant increase over background levels); and

As required by § 257.93(h) a statistical analysis of the Appendix III constituents was completed January 15, 2018. Baseline analytical data collected from background monitoring wells WBW-1 and WAP-1 were combined to develop Upper Tolerance Limits (UTLs). The UTLs for each Appendix III constituent were compared to the analytical results for the downgradient monitoring wells (WAP-2, WAP-3, WAP-12, and WAP-13). Constituents with analytical results exceeding the UTLs were identified as SSIs over background for the respective Appendix III constituent. This statistical analysis determined that SSIs of boron, calcium, chloride, fluoride, pH, sulfate, and total dissolved solids were present downgradient of South Ash Pond. An evaluation of alternate sources was initiated and completed on April 16, 2018, as provided in § 257.94(e)(2). A source causing the SSI over background levels was not identified at that time, and to meet the requirements of 40 CFR § 257.95, an Assessment Monitoring program was initiated on July 16, 2018.

In assessment monitoring the sample concentrations from the downgradient wells for each of the detected Appendix IV constituents from the monitoring events in 2023 were compared to their respective GWPS (Appendix A). A sample concentration greater than the GWPS is considered to represent an SSL. Based on previous compliance sampling events and statistical evaluations, interwell comparisons were utilized for all downgradient wells and constituents. As required by § 257.93(h)(2), the statistical evaluation of the detected Appendix IV constituents determined that SSLs above the GWPS were not present at the South Ash Pond, consistent with previous results. Therefore, this unit will remain in assessment monitoring in 2024.

2.3.5 40 CFR § 257.90(e)(5)

Other information required to be included in the annual report as specified in § 257.90 through § 257.98.

This Annual Report documents activities conducted to comply with Sections § 257.90 through § 257.95 of the Rule. There are no applicable requirements from Sections § 257.96 through § 257.98.

Although the Rule does not contemplate a scenario in which additional monitoring wells are added to the compliance monitoring network for an existing surface impoundment, obtaining a baseline understanding of the groundwater elevations and constituent concentrations will follow a similar protocol to baseline sampling for background wells. Seven of eight independent baseline samples have been collected from WAP-28 on an approximately bimonthly schedule and will be analyzed for all Appendix III and Appendix IV constituents. At the conclusion of the eight bimonthly baseline sampling events, the data will be included in the statistical evaluations moving forward and will then be measured on a semiannual basis thereafter.

Groundwater flow rate and direction are provided as Figures 2, 3, 4, and 5 for each synoptic water level event as specified in § 257.93(c).

As the number of groundwater monitoring wells and associated samples have increased considerably across the site since the promulgation of the CCR Rule in 2015, turnaround times for labs have increased compared to historical expectations. Average turnaround times were approximately 60 days in 2023. Additionally, expansion of the groundwater monitoring networks (i.e., wells and samples) has contributed to a significant increase in data volume and complexity.

TABLES

Table 1 - Summary of Analytical Results
Winyah Generating Station South Ash Pond Assessment Monitoring 2023

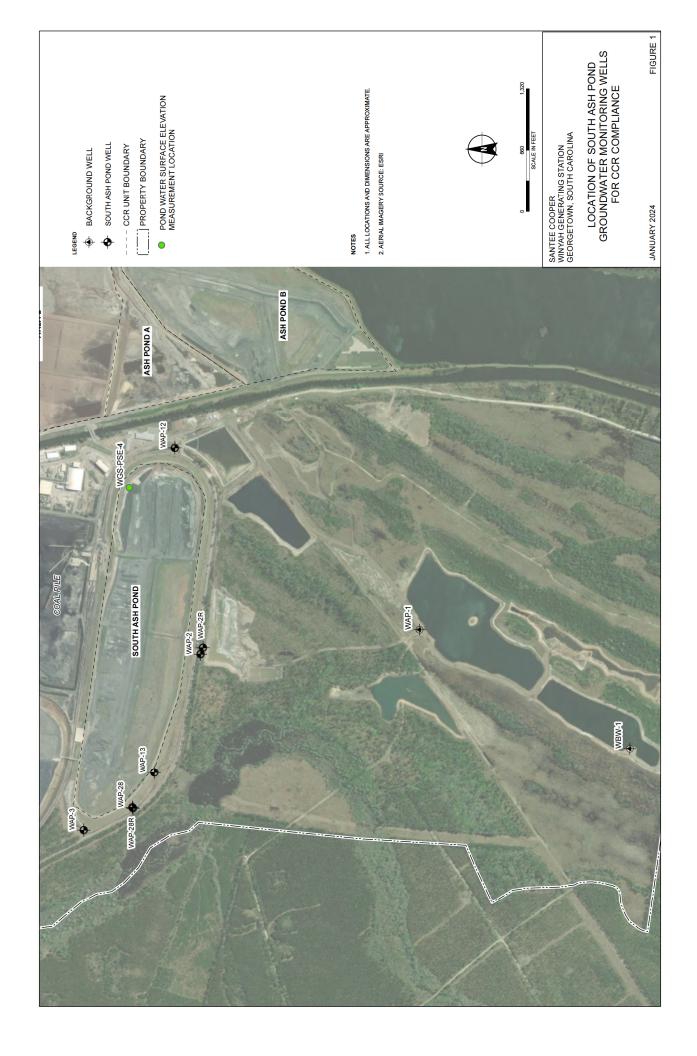
	<u> </u>		poratory	å											_	_	_	Fluorida	_								_				-			
Part	- - 2 -		Umber	3		Calcium	Chloride		Sulfate	Total Dissolved Solids			8									n n	m 226 Radiur					Depth to Gro			activity	Reduction	on Turbidity lon	fy Dissolved Oxygen
			Unit	H	H	H	mg/L	mg/L	mg/L	mg/L	-	-	n	_	Т		ng/L			Н	L			П		Г	Ug/L	Feet			Sr	ATTI	NTU	wdd
Particular Par			Metho	-	-		_	EPA 300.0	EPA 300.0	SM 2540C	8	_	EPA		_	_			_	_	-	6010D EPA	903.1 EPA S		_	EPA 6020B	EPA 6020B					SM2580	06	
Particulary			GWPS. US EPA			1	1	4.00	1	ı	1		"			100	900	4.00								90.00	2.00	1				-	1	1
			MCL/R2	, I	+	\int		1	Ţ		\dagger	+	1	1	$\frac{1}{1}$	\downarrow	1	1	+	$\frac{1}{1}$	1	+	1	+	+	†	\dagger	1	1	1	1	+	+	+
		Sillew Duno		1							1			1			ı	ı																
Particular Par		2014/2023	F-56394	+					33.6	B	4.43	45.XI	<5.00						OT IS	<5.00	<0.200	<5.00					<1.00	6.36	23.1	4.43	136	210	60.0	0
Mathematical Control of the contro		6/27/2023	£68711	4	41.0	8.49	l		31.1	800	4.51	<5.00	8.50	_		١	١	1	<2.50	<5.00	<0.200	<5.00				0.	<1.00	6.83	22.5	4.51	103	30.4		0.100
This continue This continu	+			1	2	1 2	*	2 2	2	2	2	2	2	2	2	2	2 2	2	2	2	2	2	2	2	2	2 1	2	2	2	2	2	2	2	2
Particular Par	H			_																														
		2/14/2023	F56431	L		179	9.90	L	9.92		3.92	<5.00	<3.00	L				<0.100	<2.50	<5.00		<10.0	0.668		1.84	<20.0	<1.00	9.04	22.9	3.92	98.0	20.1	181	16.5
Marie Mari	H	6/27/2023	F68748		53.1	3.26			14.4		3.94	<5.00	<3.00					40.100	<2.50	<5.00		<5.00	0.388			0	<1.00	9.13	22.8	3.94	73.0	265	331	0
Marie Mari	ľ				2			2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2		2	2	2	2	2	2	2	2
Mathematical Mathe	Г			L																														
Mathematical Math	South Ast	Pond Wells		-						l																								L
Continue		2/15/2023	F56395	-					804		5.86	<5.00	15.4					0.280	4.00	13.7		<5.00	0.531				<1.00	8.62	15.1	5.86	2340	20.7	115	16.6
Mathematical Mat	t	6282023	F68712	L	3870	212			347		6.33	<5.00	45.7					0.110	<2.50	202		<5.00	1.83			0	<1.00	9.01	14.7	6.33	1600	27.7	-29.0	51.3
Mathematical Horizontal Lange 1	t	8/24/2023	276177	-									71.2																					-
Meltining STOCO Market STOCO Ma	-	н			2	1 2	2	2	2	2	2	2	8	2	2	2	2	2	2	2	2	2	2	2	2	-	2	2	2	2	2	2	2	2
Mathement 20020 March				L							l										-						l							
Maintained 1470-201 Main		2/15/2023	F56396						110		6.27	<6.30	<5.00					0.120	<1.00	11.2		<5.00	1.18				<1.00	6.79	12.6	6.27	1170	233	6.00	273
Mail	Г	629/2023	F68713		1570	266			174		6.35	<6.30	<3.00					0.100	<2.50	22.9		<6.00	1.25			0	<1.00	8.26	11.2	6.35	1620	26.8	43.0	20.0
Hatting National Anticolor and the state of the control of the con		40			2	1 2		2 2	2	2	2	2	2	2	2	2	2 2	2	2	2	2	2	2	2	2	2 1	2	2	2	2	2	2	2	2
Marie Mari				H							-	L			Ш				H		Ш			_										
Mathematic National Part Mathematic National	Н	3/9/2023	F56408		1580	203			409		4.75	<5.30	<3.00						<2.50	<5.00		<10.0				0	<1.00	10.2	20.6	4.75	1030	213	123	0
Mathematic mathemati	Н		F56407	L	1630	207		Ш	431			<5.00	<3.00		Ш		Ш	Ш	<2.50	<5.00	Ш	<10.0	Ш			0	<1.00							
Mail analysis 717220 Methods 717220 Methods 71722 Methods 717220 Method		7/17/2023	F68723	Ц	1780	139			330		4.49	<5.00	<3.00						<2.50	<5.00		<5.00				0	<1.00	10.6	20.2	4.49	970	32.5	101	0
Mail and part Mail and par			F68724		1830	139			338			<5.30	<3.00						<2.50	<5.00		<5.00				0.	<1.00							
Mathematical Suggraphy Mathematical Suggra					4	0	4	4	4	7	2	4	7	4	7	4	4	4	4	4	*	4	4	*	4	0	*	2	2	2	2	2	2	2
Mathematical Mat	+		1	4		1					1		1					1	1	1						1	1						1	+
Mail Annial Mail	+	3,8/2023	F56408	-	4210	416			134		639	€ 30	<3.00					0.130	2.50	14.2		<10.0				0.	<1.00	7.08	14.9	6.39	2830	20.1	-90.0	11.9
Marie Mari	1	7/18/2023	F68725	4	3970	400			147		6.46	45.X0	<3.00				١	0.120	2.50	8.63	<0.200	<5.00	1.78			0.	<1.00	7.88	14.0	6.46	3060	248	-101	۰
		9			2	0 2		2 2	2	2	2	2	2	2	2	2	2 2	2	2	2	2	2	2	2	2	0	2	2	2	2	2	2	2	2
Emission Control Methods	+	-	266420	+	2630	7.01			26.0		4.62	5	2300					0 300	3 40	607	00000	0.01					00 1	101	12.3	4 60	1400	308	427	0 0 0
Basine 777000 MF7874 280 280 620 <t< td=""><td>t</td><td></td><td>160687</td><td>+</td><td></td><td></td><td></td><td></td><td>79.7</td><td></td><td>450</td><td>\$ 30</td><td><3.00</td><td></td><td></td><td></td><td></td><td>0.440</td><td>3.09</td><td><5.00</td><td><0.200</td><td><5.00</td><td></td><td></td><td></td><td></td><td><1.00</td><td>10.7</td><td>12.4</td><td>4.50</td><td>1070</td><td>200</td><td>198</td><td>0 0.420</td></t<>	t		160687	+					79.7		450	\$ 30	<3.00					0.440	3.09	<5.00	<0.200	<5.00					<1.00	10.7	12.4	4.50	1070	200	198	0 0.420
Marcial Marc	H		F68746	L					23.1		5.17	<5.00	<3.00					0.250	<2.50	5.50	<0.200	<5.00					<1.00	11.3	11.8	5,17	1520	244	108	0.750
Paper Pape	H		F75784	L		8.8	354		86.8		4.89	<5.00	<5.00					0.230	2.00	6.10	<0.200	<5.00			3.55	<10.0	<1.00	11.3	11.8	4.89	1310	25.4	105	1.00
Market W77000 W7800 W8 W8 W8 W8 W8 W8 W8	H		F75785	L		6.9	326		0.96			<5.00	<5.00					0.240	2.20	5.97	<0.200	<5.00			1.44	<10.0	<1.00							
Debug 17/10/20 APRICA 20 20 20 20 20 20 20 2	H		F79065			6.5	341		84.5		4.55	<6.30	<5.00					0.263	2.10	6.03	<0.200	<5.00			129	<10.0	<1.00	11.0	12.1	4.55	1260	233	134	16.4
Deleges 17/10/201 MB/REXA 788 R.B. 789 78 78 78 480 470 470 110	Н		F79066	Н		9.3	345		96.4	606		<5.30	<5.00					0.300	2.10	6.46	<0.200	<5.00	1.42		244	<10.0	<1.00							
Dupleme 1271/0203 MF82A 289 628 389 0240 753 806 450 177 4050 4050 150 0240 18 556 4270 450 177 139 3.19 410	Н		F85223			0.0	38:		79.1	763	4.96	<5.00	<5.00					0.250	3.40	6.05	<0.200	<5.00	2.58		3.52	<10.0	<1.00	11.4	11.7	4.96	1390	20.7	106	4.10
			F85224			12.8	351		75.3	808		<5.00	<5.00					0.240	3.80	5.55	<0.200	<5.00	1.79		3.18	<10.0	<1.00							
Ī	WAP-28 total sample				7	5 2		7	7	7	20		7	7	7	7	7	1	7	7	7		7	7	7	2	7	10	2	2	2	10	2	10
	Notes: 1. All arc	 All groundwater samples collected from the monitoring wells were analyzed by South Carolina Certified laboratories; Santee Cooper Analy 	uples collected	d from th	ne monitorina	g wells were	3 analyzec	d by South	Sarolina C	Sertified lab.	oratories: \$	Santee Coc	per Analys	ical Service.	s (Certifica	ion # 0855	32), GEL La	boratories.	LLC (Certif.	fication # 1.	0120), Eur	ofins Sav	annah (Cel	tification #	98001), Ro	gers & Callo	of, Inc. (Ce	ertification #	23105001)	and Pace	Analytical		Services LL	ritical Services (Certification # 2310502), GEL Laboratories, LLC (Certification # 10120). Eurofins Savannah (Certification # 98001), Rocers & Calcot, Inc. (Certification # 23105001), and Pace Analytical Services LLC (Certification

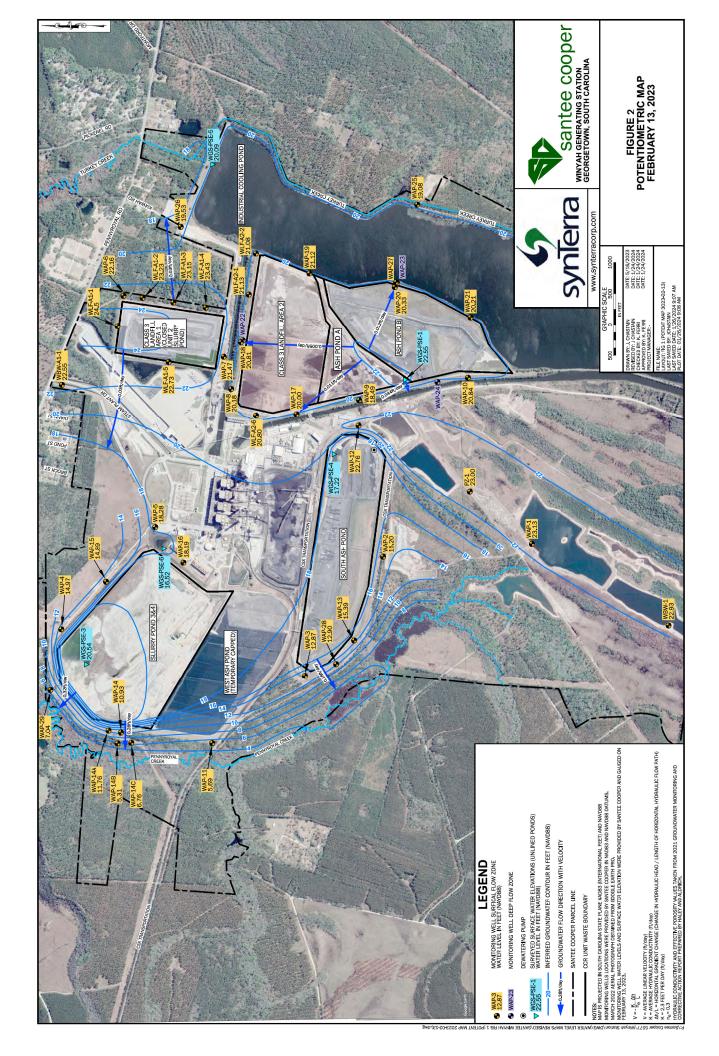
1. All groundwater samples collected from the monitoring wells were analyzed by South Carolification & Certification & Cooper Analytical Services (Certification # 18552), GEL Laboratories, LLC (Certification # 10120), Eurofins Savannah (Certification # 98001), Rogers & Calcot, Inc. (Certification # 23105001), and Pace Analytical Services LLC (Certification # 10120), Eurofins Savannah (Certification # 98001), Rogers & Calcot, Inc. (Certification # 23105001), and Pace Analytical Services LLC (Certification # 10120).

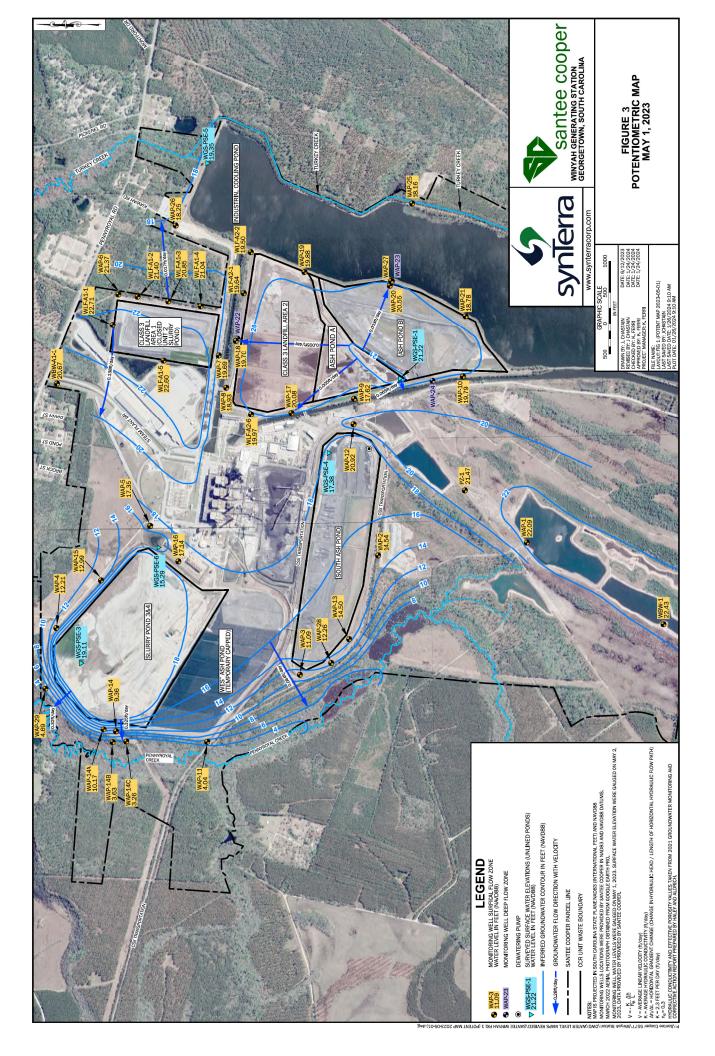
2. All Background & Assessment Monitoring compliance wells have been sampled to meet §257.94 and §257.95.

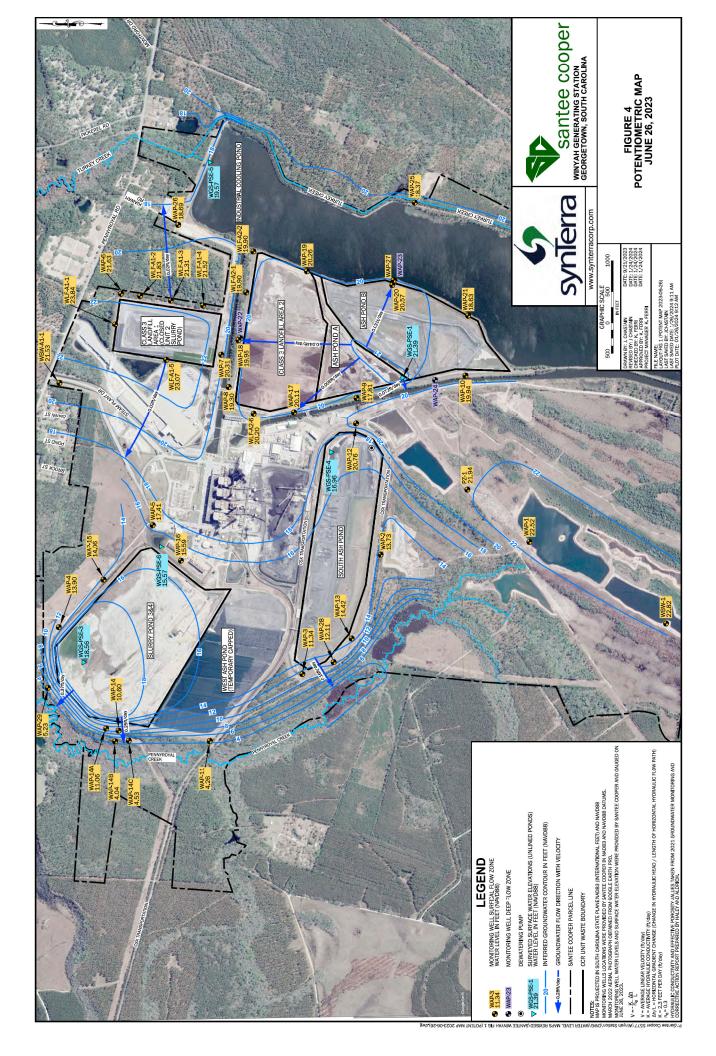
3. Due to challenges with laboratory debys, all groundwater samples were not analyzed by a single laboratory. This accounts for the majority of the reporting limit variability, Matrix interference also contributed to variable RLs.

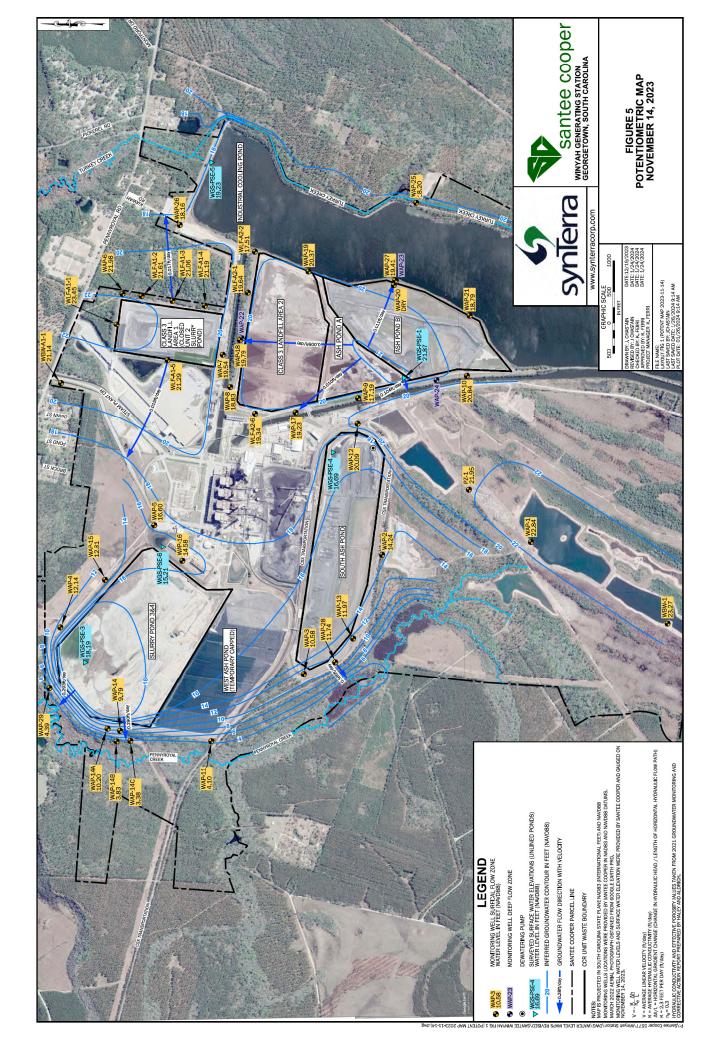
4. Depth to groundwater is measured below the top of the casing (btoc) to the water surface. Elevation is shown relative to mean sea level (msl).


Table 2
Winyah Generating Station
2023 Synoptic Water Levels for Groundwater Monitoring Wells


		1st Event	2/13/2023		r Groundwater N - 5/8/2023		7/19/2023	4th Event - :	11/1//2023
	Top of Casing	Depth to	Groundwater	Depth to	Groundwater	Depth to	Groundwater	Depth to	Groundwater
Mall Name	Elevation	Groundwater	Elevation	Groundwater	Elevation	Groundwater	Elevation	Groundwater	Elevation
Well Name					(ft msl) ²		l	_	l
)4/D)4/ 4	(ft msl) ²	(ft btoc) ²	(ft msl) ²	(ft btoc) ²		(ft btoc) ²	(ft msl) ²	(ft btoc) ²	(ft msl) ²
WBW-1 PZ-1	31.97 31.25	9.04 8.25	22.93 23.00	9.54 9.78	22.43 21.47	9.15 9.31	22.82 21.94	8.70 9.30	23.27 21.95
WAP-1	29.44	6.31	23.13	7.35	22.09	6.92	22.52	6.60	22.84
WAP-2	23.69	8.49	15.20	9.15	14.54	9.96	13.73	9.45	14.24
WAP-3	14.56	6.56	8.00	8.34	6.22	8.09	6.47	8.85	10.58
WAP-3	20.34	5.37	14.97	8.13	12.21	6.44	13.90	8.20	12.14
WAP-5 ¹	26.25	7.97	18.28	8.90	17.35	8.84	17.41	9.65	16.60
WAP-6 ¹				9.61					
WAP-6	30.98 29.94	8.82 8.47	22.16 21.47	10.25	21.37 19.69	9.35 9.63	21.63 20.31	9.00	21.98 19.54
WAP-7									
WAP-8	30.38 28.04	10.20 9.55	20.18 18.49	11.45 10.42	18.93 17.62	11.08 10.23	19.30 17.81	11.55 10.85	18.83 17.19
WAP-9 WAP-10	26.11		20.84	6.32			19.94		
		5.27			19.79	6.17		6.85	19.26
WAP-11 ¹	9.55	3.86	5.69	5.51	4.04	5.29	4.26	5.45	4.10
WAP-12	30.84	8.08	22.76	9.92	20.92	10.08	20.76	10.75	20.09
WAP-13 WAP-14	21.97 14.69	6.58 3.76	15.39 10.93	7.47 5.33	14.50 9.36	7.55 4.09	14.42 10.60	10.00 4.90	11.97 9.79
WAP-14 WAP-14A	13.95	2.19	11.76	3.78	10.17	2.89		3.75	10.20
WAP-14A WAP-14B	9.23	3.92	5.31	5.60	3.63	5.19	11.06 4.04	5.40	3.83
WAP-146 WAP-14C	13.88	7.12	6.76	10.62	3.26	9.35	4.04	10.50	3.38
WAP-14C	20.41	5.52	14.89	7.42	12.99	6.35	14.06	7.60	12.81
WAP-16	25.08	6.89	18.19	7.94	17.14	9.49	15.59	10.50	14.58
WAP-17	26.88	6.88	20.00	6.80	20.08	6.77	20.11	7.65	19.23
WAP-18	31.04	10.23	20.81	11.34	19.70	11.09	19.95	11.25	19.79
WAP-19	43.39	22.27	21.12	23.51	19.88	23.13	20.26	23.02	20.37
WAP-20 ⁴	43.08	22.75	20.33	22.53	20.55	22.51	20.57	-	
WAP-21	43.06	22.85	20.21	24.28	18.78	24.43	18.63	24.27	18.79
WAP-22	30.48	9.61	20.87	12.08	18.40	10.37	20.11	10.75	19.57
WAP-23	43.23	22.78	20.45	24.71	18.52	24.01	19.22	24.33	18.90
WAP-24	28.77	8.24	20.53	9.02	19.75	8.91	19.86	9.45	19.32
WAP-25	27.10	8.02	19.08	8.94	18.16	8.73	18.37	8.90	18.20
WAP-26	27.56	8.03	19.53	9.31	18.25	8.87	18.69	9.40	18.16
WAP-27	43.25	22.40	20.85	24.24	19.01	23.66	19.59	23.77	19.41
WAP-28	23.09	10.19	12.90	10.83	12.26	10.98	12.11	11.35	11.74
WAP-29	12.34	5.30	7.04	7.65	4.69	7.11	5.23	7.95	4.39
WBW-A1-1	28.14	5.59	22.55	7.47	20.67	6.61	21.53	7.00	21.14
WLF-A1-1	41.35	16.85	24.50	18.64	22.71	17.51	23.84	17.90	23.45
WLF-A1-2	29.21	5.98	23.23	7.81	21.40	7.38	21.83	7.60	21.61
WLF-A1-3	28.31	5.16	23.15	7.46	20.85	7.00	21.31	7.25	21.06
WLF-A1-4	28.24	4.81	23.43	7.20	21.04	6.72	21.52	7.05	21.19
WLF-A1-5	37.64	14.91	22.73	15.04	22.60	14.57	23.07	16.35	21.29
WLF-A2-1	30.04	8.91	21.13	10.40	19.64	10.14	19.90	10.40	19.64
WLF-A2-2	27.56	6.48	21.08	8.06	19.50	7.66	19.90	10.05	17.51
WLF-A2-6	35.14	14.34	20.80	15.17	19.97	14.94	20.20	15.80	19.34
WGS-PSE-1 ³	-	-	22.55	-	21.22	-	21.43	-	21.87
WGS-PSE-2 ³	-	-	33.01	-	32.74	-	32.71	-	32.76
WGS-PSE-3 ³	-	-	20.54	-	19.11	-	17.93	-	18.19
WGS-PSE-4 ³	-	-	17.22	-	17.38	-	15.84	-	16.69
WGS-PSE-5 ³	-	-	20.09	-	19.35	-	19.27	-	19.23
WGS-PSE-6 ³	-	-	16.52	-	15.29	-	NA	-	15.21
	•								


Notes:


- 1. Additional groundwater monitoring wells used for development of potentiometric maps. These wells monitor groundwater constituent concentration under the SC DHEC Industrial Wastewater Permit #SC0022471 and are not used for CCR constituent concentrations.
- 2. Depth to Groundwater is measured below the top of the casing (btoc) to the water surface. The Top of Casing Elevation and GW Elevation are shown relative to mean sea level (msl).
- 3. Pond surface elevations (PSE) were collected ot aid in the potentiometric surface interpretation. No surface water present at PSE-6 during 3rd event, so unable to collect surface water elevation.
- 4. Unable to collect groundwater data during November event due to the monitoring well going dry.


FIGURES

HALEY & ALDRICH, INC. 400 Augusta Street Suite 100 Greenville, SC 29601 864.214.8750

TECHNICAL MEMORANDUM

August 27, 2023

File No. 132892-100-008-02

SUBJECT: Statistical Evaluation of the February 2023 Semiannual Groundwater Assessment

Monitoring Data, Winyah Generating Station, South Ash Pond

Pursuant to Title 40 Code of Federal Regulations (40 CFR) §257.93 and §257.95 (Rule), this memorandum summarizes the statistical evaluation of the groundwater analytical results obtained for the February 2023 semiannual assessment monitoring event for the Winyah Generating Station (WGS) South Ash Pond. Data for this groundwater sampling event were validated on May 30, 2023 by Santee Cooper.

BACKGROUND

The WGS South Ash Pond ceased receipt of all coal combustion residual (CCR) and non-CCR wastewater inflows prior to April 11, 2021. Closure by excavation and removal of CCR is currently underway.

Recent analytical testing results were evaluated to determine if statistically significant levels (SSLs) exist above Groundwater Protection Standards (GWPS) of Appendix IV groundwater monitoring constituents. Using interwell evaluations, data from the semiannual sampling event for downgradient monitoring wells were compared to the GWPS established from background well data.

STATISTICAL EVALUATION

The Rule provides four specific options to statistically evaluate whether water quality downgradient of the CCR Unit (§257.93(f) (1-4)) represents a SSL of Appendix IV parameters above the GWPS. The selected statistical method used for these evaluations is the tolerance limit (TL). This statistical method was certified by Haley & Aldrich, Inc. on October 14, 2017.

An interwell evaluation was used for statistical analysis, which compares the most recent values from downgradient compliance wells against a background dataset composed of upgradient well data. The TL method was used to evaluate potential SSLs above GWPS. The GWPS for each of the Appendix IV constituents has been set equal to the highest value of the maximum contaminant level, regional screening level (RSL), or site background concentration. Compliance well data from the most recent groundwater sampling event were compared to the corresponding GWPS to determine if a SSL existed. Statistical analysis results are presented in Table I.

As part of the TL procedure, a concentration limit for each constituent is established from the distribution of the background data with a minimum 95 percent confidence level. The upper endpoint of a tolerance interval is called the upper tolerance limit (UTL). Depending on the assumed distribution of

South Carolina Public Service Authority (Santee Cooper) August 27, 2023 Page 2

background data, parametric or non-parametric procedures were used to develop the UTL. Parametric procedures use assumed distributions of the sample background data to development the limits, whereas non-parametric limits use order statistics or bootstrap methods. If all background data are non-detect, a maximum reporting limit may serve as an appropriate UTL.

If an Appendix IV constituent concentration from the event was above the GWPS, the lower confidence limit (LCL) for the downgradient well constituent was used to evaluate the presence of a SSL. The LCL is the lower end of the confidence interval range, which is an estimated concentration range intended to contain the true mean or median of the population from which the sample is drawn. The confidence interval range is designed to locate the true population mean or median with a high degree of statistical confidence.

After testing for outliers, the UTLs were calculated from the background dataset to evaluate whether removal of data was necessary based on sampling or measurement discrepancies. Both visual and statistical outlier tests for the background data were performed.¹ A visual inspection of the data was performed using distribution plots for the downgradient sample data. Based on our review, no sample data were identified as outliers that warranted removal from the dataset.

The background well (WAP-1 and WBW-1) analytical results from previous events were combined to calculate the UTL for each detected Appendix IV constituent. Variability and distribution of the pooled dataset were reviewed to establish the method for UTL calculation.

Per the document Statistical Analysis of Groundwater Monitoring Data at RCRA Facilities, Unified Guidance, March 2009 (the Unified Guidance), background concentrations were based on statistical evaluation of analytical results collected through February 2023 and updated in the Chemstat output. The background dataset will be updated in Table 1 again after four additional data points are collected (second semiannual event of 2023) in accordance with the Unified Guidance.

TREND ANALYSIS

Mann-Kendall trend analyses were performed on datasets of sufficient sample size. Results of the trend analysis are included on Table I. In summary, compliance wells with trends analyzed are identified as stable or decreasing. It is important to note that increasing trends are not part of the comparison criteria for triggering a SSL. Trend analysis will continue to be used to monitor and evaluate concentrations in the context of overall site conditions.

RESULTS OF APPENDIX IV DOWNGRADIENT STATISTICAL COMPARISONS

As stated, Appendix IV constituent detections from downgradient well samples were compared to their respective GWPS (Table I). Based on previous compliance sampling data and statistical evaluations, interwell comparisons were used. Consistent with previous results, SSLs were not identified.

¹ Visual and statistical outlier tests for background data were performed using Chemstat 6.3.0.0 and U.S. Environmental Protection Agency's ProUCL 5.1 software.

South Carolina Public Service Authority (Santee Cooper) August 27, 2023 Page 3

Because arsenic and cobalt were identified above the GWPS in WAP-02, the LCL was calculated for each, and the resulting concentrations were not SSLs. The concentrations are attributed to the closure-by-removal construction activities currently underway. Concentrations should decrease once closure is complete and groundwater equilibrium is restored. The expected date for completing CCR removal for the South Ash Pond is 2025. Groundwater trends will continue to be monitored during future sampling events.

Enclosures:

Table I – WGS South Ash Pond February 2023 Semiannual Assessment Monitoring Data

https://haleyaldrich.sharepoint.com/sites/SanteeCooper2/Shared Documents/0132892.Santee Cooper CCR Consulting Service/0_Winyah Generating Station/Statistical Analysis/2023-01/South Ash Pond/client draft/2023-0827_HAI_WGS_South Ash Pond_Assessment Monitoring Stats_F.docx

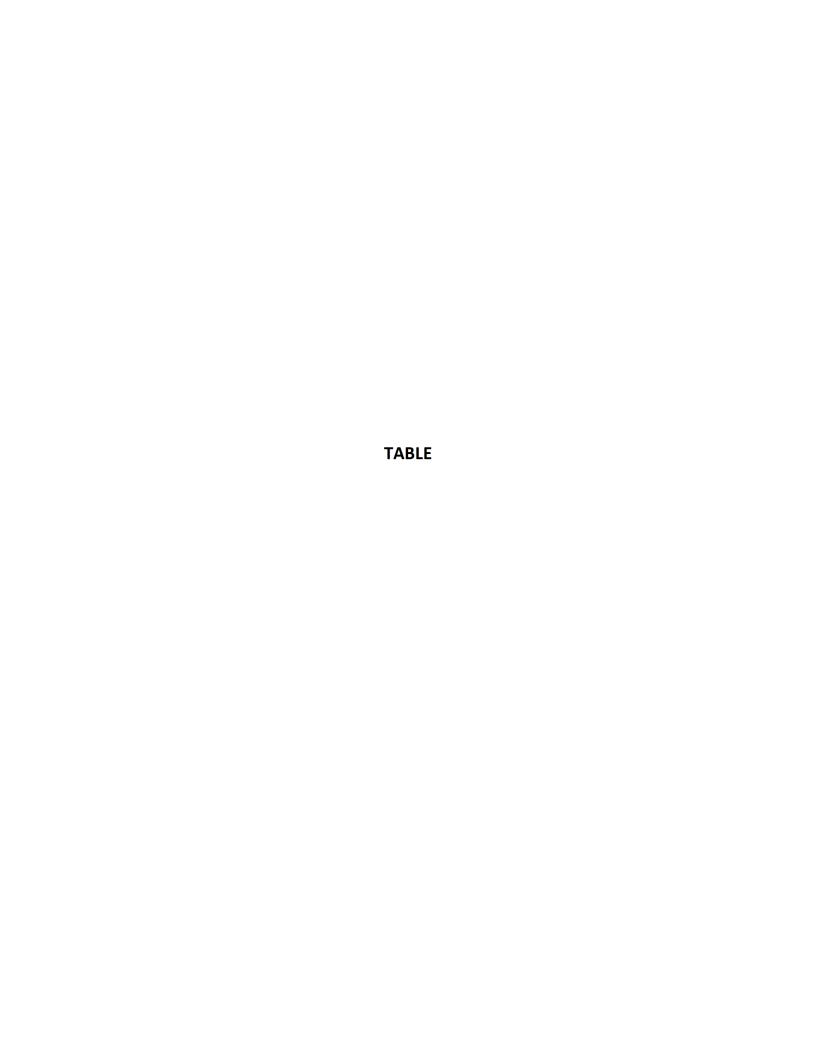


TABLE I WGS SOUTH ASH POND FEBRUARY 2023 SEMIANNUAL ASSESSMENT MONITORING DATA

	12				ON ON	2 %	No			į	0 N	2 <u>9</u>	N _O				9	9 :	9	9			No	No	No	No.				0	0	9	2			No	9 9	Q. Q.				9 :	9 9	No.			2	2 4	9	9				o,	No.	No
GWPS	Exceedance above GWPS at Individual Well				z	z	Z				2 2	z	N				Z	z	2 2	z			z	z	N	N				z	2 2	2 2				N	2 2	2				2 2	2 2	z			2	2 2	2	z				z	2 2	Z
	GWPS (Higher of Exceedance above MCL/RS) or GWPS at Background Individual Well Limit)		0.025						0.010						2.000							0.004						0.005						0000	0.100					800.0	9000					4.00						0.015				
	SS				z z	z	z			>	- 2	2	z				-	> :	2 >	-			>	z	N	N				2 2	2 2	2 2				z	z z	2				> :	2 2	z			>	- 2	2	z				2 2	2 2	z
	Upper Tolerance Limk		0.03						0.008						0.094							0.0005						0.0005						0.000	0.000					0.001	1000					0.140						0.0100				
Inter-well Analysis	101 %56									1000	0.003																															0.0005														
Inter-w	Detect?				2 2	2	Z				- 2	z					>	> 3	> ;					Z						2	2	2 2				Z	2 2	2				> ;	2 >	>				- >	- 2	-				2	2 2	2
	February 2023 Concentration			2000	0.005	0.005	0.005				0.015	0.003	0.003				0.144	0.139	0.036	0.305			0.0017	0.0005	0.0005	0.0005				0.0005	0.0005	0.0005	60000			0.005	0.005	0.005				0.0175	0.000	90000			0.00	0.20	010	0.13				0.001	0.001	0.003
	Distribution		ΑN						Non-parametric						Non-parametric							NA						NA							NOII-parametric					Monagana						Non-parametric						Non-parametric				
	Trend		NA	NA	NA	NA	NA		NA	NA	NA	Stable	Stable		Stable	Increasing	Stable	Stable	Decreasing	Stable	NΔ	NA	NA	NA	NA	NA		NA	NA	NA	MA	MA		NA	NA	NA	NA	NA		NA	NA	NA	Stable	Stable		NA	NA	Stable	Stable	Stable		NA	Stable	NA	NA	NA
	Outlier		NA	NA	NA NA	NA NA	NA		NA	No	NO NA	No	No		No	No	No	No	NO I	NO	ΔN	NA	NA	NA	No	NA		NA	NA	NA	NA	MA		No	NA	NA	AN AN	NA		No	No	NA	No No	No		No	No No	No.	No No	No		NA	No	NA	NA NA	NA
	Outlier		NA	NA	NA NA	NA	NA		NA	Yes	Yes	Yes	Yes		Yes	No	Yes	No	NO			NA	NA	NA	No	NA		NA	NA	NA.	NA	MA		No	NA	NA	NA NA	NA		Yes	No	NA	Yes	Yes		No	No	No.	No	No		NA	Yes	NA	NA NA	NA
	Number of Non-Detection Exceedances		1				1		0	0	0 0		0		0	0	0	0 0	0 0	Þ	c	0	0	0	1	0		0	0	0 0	0 0	0	,	0	0	0	0 0	0		0	0	0 0	0 0	0		0	0 0	0	0 0	0		0	0	0	- 0	0
	Number of Detection Exceedances		0	0	0	0	0		0	0 6	7 0	0	1		0	0	0	0	0 0	>	•	0	0	0	0	0		0	0	0 0	0 0	0 0	,	0	0	0	0 0	0		1	0	0	0 0	0		0	0 0	0	0	0		0	0	0		0
	Detect on Exceedances (Y/N)		z	z	zz	z	z		z	z >	- 2	z	>		z	z	z	z	z :	z	z	z	z	z	z	z		z	z	z	2 2	2 2		z	z	z	z 2	2		>	z	> 2	zz	z		z	z 2	2 2	2	z		z	z	z	zz	z
	Report Result Unit		mg/L	mg/L	mg/L	mg/L	mg/L		mg/L	mg/L	J/Su me/l	mg/L	mg/L		mg/L	mg/L	mg/L	mg/L	Ja 1	100	l/au	mg/L	mg/L	mg/L	mg/L	mg/L		mg/L	mg/L	J. Ser	T/S	To Mark	à	mg/L	mg/L	mg/L	mg/L	mg/l	5	mg/L	J/8m	mg/L	J/Sul	mg/L		mg/L	J/Su	100	me/L	mg/L	,	n@/L	mg/L	mg/L	mg/l	ng/L
	CCR MCL/RSL		9000	9000	0.006	0000	9000		0.01	0.01	100	0.01	0.01		2	2	2	2 0	7 (7	0 00	0.004	0.004	0.004	0.004	0.004		0.005	0.005	0.005	500.0	5000	2000	0.1	0.1	0.1	0.1	10		9000	9000	0.006	9000	9000		4	4 -	, .	- 4	4		0.015	0.015	0.015	0.015	0.015
	Coefficient of Variance		0.7854	0.825	0.8602	0.8602	0.8602		0.2023	0.2143	0.7184	0.9748	0.3536		0.5423	0.6851	0.3257	0.4458	0.3431	0.1209	c	0	0.5342	0	1.432	0		0	0	0.5833	1,338	0.6316	0.000	1.129E-08	0	0.213	0.213	0.2353		1.568	0.5558	2.72	1.158	0.2626		1.209E-08	0.1053	0.306	0.1303	0.2925		1.225	1.053	0.4669	1813	1.118
	Standard Devistion	(mg/L)	0.004851	0.00495	0.005276	0.005276	0.005276	mg/t)	0.0009048	0.001087	0.008208	0.005384	0.00173	mg/l)	0.008899	0.0257	0.09574	0.03788	0.01308	0.03369	0		0.0003098	0	0.00116	0	(mg/L)	0	0	0.0003354	0.0003354	0.001162	(mg/L)	5.647E-11	0	0.001118	0.001118	0.00125	ng/ti	0.001886	0.0003981	0.00425	0.0003679	0.0001574	(7)	1.209E-09	0.01089	0.0000	0.01342	0.03393	(1/8 _L	0.002859	0.002098	0.0006304	0.0006304	0.002236
	Variance	CCR Appendix-IV: Antimony, Total (mg/L)	0.00002353	0.0000245	+	+	0.00002784	Total		0.000001181	+	10	0.000002994	otal (0.0006605	0.009166	0.001435	0.0001/11	0.034 O.001149 U.0038	o o	0	0.000000096		0.000001345	0	CCR Appendix-IV: Cadmium, Total (mg/L)	0	+	+	1.125e-07	+	Tota	3.189E-21			0.00000125	0.000001562	IV: Cobalt, Total (r	0.00838 0.000003557 0.0018	1.585E-07		3.228E-07	╄	de (m	-	0.0001187	0.001002	0.00018	H	otal (n	0.000008176	2	+	3.9/4E-0/	Ш
	Maximum Detect	R Appendix-IV			İ	İ		CR Appendix-		0.0083	0.021	0.0082	0.0103	CR Appendix-	0.044	0.094	0.436	0.16	0.062/	D Annough II	- Appendix v	İ	0.0017	Н	0.00065		R Appendix-II		İ		İ	İ	R Appendix-IV	0.005			İ	ľ	CR Appendix-	0.00838	0.0016	0.0175	t	+	CCR Append	0.1	0.14	07.0	0.16	0.21	8		0.00456	Ì	İ	П
	95th Percentile	_ 8	0.009	0.009	0.011	0.011	Н		0.005	0.0072	0.005	0.01365	0.007075		0.03293	0.081	0.417	0.157	0.05568		SOUR	0.000	0.00086	0.0000				0.0000	0.0005	0.000035	0.0000	0.00000		0.005	0.005	0.00525	0.00525	0.00625			Н	0.00475	+	⊹		0.1	0.1305	0.2100	0.103	0.2005		Н	A .	0.0025	0.0025	0.004375
	50th Percentile (Median)		0.005	0.005	0.005	0.005	0.005		0.005	0.005	0.005	0.005	0.005		0.015	0.0399	0.31	0.078	0.036	0.27	00000	0.0005	0.0005	r		П		0.0005	0.0005	0.0005	0.000	0,000	2000.0	0.005	0.005	0.005	0.005	0.005		0.0005	0.0005	0.0005	0.0005	S		0.1	0.1	100	0.1	0.1		П	1	0.001	0001	0.001
	Mean		0.00618	0.006	0.00613	0.00613	0.00613		0.00447	0.00507	0.00602	0.00655	0.00489		0.0164	0.0375	0.294	0.085	0.0381	0.20/	00005	0.000	0.00058	0.0005	0.00081	0.0005		0.0005	0.0005	0.000575	0.000575	0.00000	- COOO	9000	0.005	0.00525	0.00525	0.00531		0.0012	0.000716	0.00156	0.000010	900000		0.1	0.104	0.130	0.103	0.116		0.00233	0.00199	0.00135	0.00135	0.002
	Range of Non- Detect			0.002-0.025	+	H	Н		4	0.003-0.005	+	-						+	+		50005-00005					0.0005-0.0005				4	0.0005-0.002			0.005-0.005			0.005-0.01	H		0.0005-0.0005		0.0005-0.0005				0.1-0.1	0.1-0.1	H	H	H		0.001-0.01			0.001-0.0025	Ш
	Percent Ran			100% 0.0	Ť	Ť	П		100% 0.0	Ť	100%	T			%0	%0	%0	%0	%0 0%	Š		100% 0.00			93% 0.00			100% 0.00			Ť	100%			100% 0.0		100% 0.0	t		79% 0.00			26% 000			95%		t	t	75%		П	T	100% 0.0	T	П
	Frequency of P. Detection Non			0/17	+		Н		-	+		5/16			19/19	17/21	17/21	21/21	19/19	19/19		ŀ	ŀ	ŀ	1/15				0/20	-	+	+					0/20			4/19	6/19	1/16	H			-	+	+	H	5/20		H	-	0/20	-	H
				+	+	H	Н					+				+	+	+	+			ŀ	ŀ						1	+	+											+	ł			-			ł			H		-	+	H
	Location Id		WBW-1	WAP-01	WAS	WAP	WAP-13		WBW-1	WAP-01	WAP-UZ	WAP	WAP		WBI	WAP-01	WAP-02	WAP-03	WAP-12	WAP-13	WRW-1	WAP-01	WAP-02	WAP-03	WAP-12	WAF		WBW-1	WAP-01	WAP-02	WAP-US	WAP-12		WBW-1	WAP-01	WAP-02	WAP-03	WAP-13		WBW-1	WAP-01	WAP-02	WAP-US	WAP-13		WBW-1	WAP-01	MAPOS	WAP	WAP-13		WBW-1	WAP-01	WAP-02	WAP-US	WAP-13

TABLE I WGS SOUTH ASH POND FEBRUARY 2023 SEMIANNUAL ASSESSMENT MONITORING DATA

_		_		_		_	_	_	_	_	_	_	_	_	_	_	_		_	_	_	_	_	_	_	_	_	_	_	_		_	_	_	_	_	_	_	_	_	_	_	_
	ซี				9	No	No	o,				o,	No	Q.	No				No	No	No	No				No	No.	No	No				No	No	o,	9				No.	No	No	No
GWPS	GWPS (Higher of Exceedance above MCL/RSL or GWPS at Background Individual Well Limit)				Z	Z	Z	Z				Z	Z	z	Z				z	Z	Z	Z				Z	Z	Z	Z				N	z	Z	z				Z	z	Z	z
	GWPS (Higher of MCL/RSL or Background Limit)		0.040	200						00000							0	0.10						0.9	20						0000	200						0000	0.002				
	8				>	Z	z	>				Z	>	z	z				z	z	z	Z				Z	Z	Z	Z				N	Z	Z	z				z	Z	z	z
	Upper Tolerance Limk		0.012	100						0.0000							000	0.030						10 2	5						0.00	200							0.001				
Inter-well Analysis	וכר %36																																										
Inter-v	Detect?				>	>-							>	z	z											>		>-					N	z									Z
	February 2023 Concentration				0.014	0.011	0.005	0.014				0.0002	0.0003	0.0002	0.0002				0.005	0.005	0.010	0.010				3.150	2.510	1.810	1.840				0.010	0.010	0.020	0.020				0.001	0.001	0.001	0.001
	Distribution		Non-parametric							dN							111	NA						Mon-parametric	NOT PRINCIPLE						MA	C.							MA				
	Trend		NA	NA	Stable	Stable	NA	Decreasing		NA	NA	NA	NA	NA	NA		NA	NA	NA	NA	NA	NA		Stable	Stable	Stable	Decreasing	Decreasing	Decreasing		NA	NA	NA	NA	NA	NA		NA	NA	NA	NA	NA	NA
	Outlier		NA	No	No	No	NA	No		NA	NA	NA	NA	NA	NA		NA	NA	NA	NA	NA	NA		No	No	No	No	No	No		NA	NA	NA	NA	NA	NA		NA	NA	NA	NA	NA	NA
	Outlier		NA	Yes	Yes	Yes	NA	Yes		NA	NA	NA	NA	NA	NA		NA	NA	NA	NA	NA	NA		No	No	Yes	No	No	No		NA	NA	NA	NA	NA	NA		NA	NA	NA	NA	NA	NA
	Number of Non-Detection Exceedances		0	0	0	0		0		0	0	0	0	0	0		0	0	0	0	0	0		0	0	0	0	0	0		0	0	0	0	0	0		0	0	0	0	1	0
	Number of Detection Exceedances		0	0	0	0	0	2		0	0	0	0	0	0		0	0	0	0	0	0		0	4	17	1	7	e		0	0	0	0	0	0		0	0	0	0	0	0
	Detecton Exceedances (Y/N)		z	z	z	z	z	>		z	z	z	z	z	z		z	z	z	z	z	z		z	>	>	>	٠	>		z	z	z	z	z	z		z	z	z	z	z	z
	Report Result Unit		mg/L	mg/L	mg/L	mg/L	mg/L	mg/L		mg/L	mg/L	mg/L	mg/L	mg/L	mg/L		mg/L	mg/L	mg/L	mg/L	mg/L	mg/L		pCi/L	pCi/L	pCi/L	pCi/L	pCi/L	pCi/L		mg/L	mg/L	mg/L	mg/L	mg/L	mg/L		mg/L	mg/L	mg/L	mg/L	mg/L	mg/L
	CCR MCL/RSL		0.04	0.04	0.04	0.04	0.04	0.04		0.002	0.002	0.002	0.002	0.002	0.002		0.1	0.1	0.1	0.1	0.1	0.1		5	S	2	5	s	S		0.05	0.05	0.05	0.05	0.05	0.05		0.002	0.002	0.002	0.002	0.002	0.002
	Coefficient of Variance		0.1664	0.1724	0.1842	0.1544	0.868	1.528		0	0	0	0.0747	0	0		0.7863	0.1664	0.1885	0.1885	0.1336	0.1336		0.5207	0.4707	0.3259	0.4248	0.3476	0.2935		0.4219	0.369	0.3963	0.3963	0.4769	0.4769		0	0.2305	0	0	1.452	0
	Standard	tal (mg/l)	0.001577	0.001647	0.001981	0.001536	0.01031	0.04422	tal (mg/l)	0	0	0	0.00001523	0	0	Total (mg/L)	0.009311	0.001577	0.001759	0.001759	0.001291	0.001291	5 228 (pcj/L)	1.537	1.613	2.062	1.451	1.563	1.175	otal (mg/L)	0.004629	0.003828	0.004013	0.004013	0.005141	0.005141	rtal (mg/L)	0	0.0002183	0	0	0.002324	0
	Variance	CCR Appendix-IV: Lithium, Total (mg/l)	0.000002485	0.000002714	0.000003923	0.00000236	0.0001063	0.001955	CCR Appendix-IV: Mercury, Total (mg/L)	0	0	0	2.321E-10	0	0	CCR Appendix-IV: Molybdenum, Total (mg/L)	0.0000867	0.000002485	0.000003095	0.000003095	0.000001667	0.000001667	CCR Appendix-IV: Radium-226 & 228 (pG/L)	2.362	2.602	4.252	2.106	2.443	1.38	CCR Appendix-IV: Selenium, Total (mg/L)	0.00002143	0.00001465	0.0000161	0.0000161	0.00002643	0.00002643	CCR Appendix-IV: Thallium, Total (mg/L)	0	4.765E-08	0	0	0.0000054	0
	Maximum Detect	CCR Append		0.0116	0.016	0.013		0.151	CCR Append	0.0002			0.000259			R Appendix-							CR Appendix	4.39	2.97	12.1	95'9	6.71	6.35	CCR Appendi							CCR Append						
	95th Percentie		0.01	0.01016	0.01428	0.01165	0.02	0.136		0.0002	0.0002	0.0002	0.0002177	0.0002	0.0002	8	0.014	0.01	0.01	10.0	10.0	10.0	٥	4.336	5.763	8.5	4.832	6.521	6.026		0.02	0.02	0.02	0.02	0.02	0.02		0.001	0.001	0.001	0.001	0.0037	0.001
	50th Percentile (Median)		0.01	0.01	0.01	0.01	0.01	0.01095		0.0002	0.0002	0.0002	0.0002	0.0002	0.0002		0.01	0.01	0.01	0.01	0.01	0.01		4	4	6.15	4	4.4	4		0.01	0.01	0.01	0.01	0.01	0.01		0.001	0.001	0.001	0.001	0.001	0.001
	Mean		0.00947	0.00956	0.0108	0.00995	0.0119	0.0289		0.0002	0.0002	0.0002	0.000204	0.0002	0.0002		0.0118	0.00947	0.00933	0.00933	0.00967	0.00967		2.95	3.43	6.33	3.42	4.5	4		0.011	0.0104	0.0101	0.0101	0.0108	0.0108		0.001	0.000947	0.001	0.001	0.0016	0.001
	Range of Non- Detect		0.005-0.01	0.005-0.01	0.01-0.01	0.005-0.01	0.005-0.05	0.01-0.01		0.0002-0.0002	0.0002-0.0002	0.0002-0.0002	0.0002-0.0002	0.0002-0.0002	0.0002-0.0002		0.005-0.05	0.005-0.01	0.005-0.01	0.005-0.01	0.005-0.01	0.005-0.01		0-4	4-4	4-4	4-4		4-4		0.0025-0.02	0.0025-0.02	0.0025-0.02	0.0025-0.02	0.0025-0.02	0.0025-0.02		0.001-0.001	0.0001-0.001	0.001-0.001	0.001-0.001	0.001-0.01	0.001-0.001
	Percent Non-Detects		100%	856	26%	88%	100%	20%		94%	100%	100%	93%	100%	100%		100%	100%	100%	100%	100%	100%		37%	26%	2%	21%	%0	16%		100%	100%	100%	100%	100%	100%		100%	100%	100%	100%	100%	100%
	Frequency of Detection		0/19	1/19	7/16	2/16	0/16	8/16		1/17	0/17	0/15	1/15	0/15	0/15		0/19	0/19	0/15	0/15	0/15	0/15		12/19	14/19	20/21	15/19	19/19	16/19		0/18	0/20	0/20	0/20	0/16	0/16		0/17	0/17	0/15	0/15	0/15	0/15
	Location Id		WBW-1	WAP-01	WAP-02	WAP-03	WAP-12	WAP-13		WBW-1	WAP-01	WAP-02	WAP-03	WAP-12	WAP-13		WBW-1	WAP-01	WAP-02	WAP-03	WAP-12	WAP-13		WBW-1	WAP-01	WAP-02	WAP-03	WAP-12	WAP-13		WBW-1	WAP-01	WAP-02	WAP-03	WAP-12	WAP-13		WBW-1	WAP-01	WAP-02	WAP-03	WAP-12	WAP-13

AUGUST 2023

HALEY & ALDRICH, INC. 400 Augusta Street Suite 100 Greenville, SC 29601 864.214.8750

TECHNICAL MEMORANDUM

December 19, 2023

File No. 132892-100-008-02

SUBJECT: Statistical Evaluation of the July 2023 Semiannual Groundwater Assessment Monitoring

Data, Winyah Generating Station, South Ash Pond

Pursuant to Title 40 Code of Federal Regulations (40 CFR) §257.93 and §257.95 (Rule), this memorandum summarizes the statistical evaluation of the groundwater analytical results obtained for the July 2023 semiannual assessment monitoring event for the Winyah Generating Station (WGS) South Ash Pond. Data for this groundwater sampling event were validated on September 20, 2023 by Santee Cooper.

BACKGROUND

The WGS South Ash Pond ceased receipt of coal combustion residual (CCR) and non-CCR wastewater inflows prior to April 11, 2021. The unit continues in assessment monitoring and closure by excavation and removal of CCR is underway.

Recent analytical testing results were evaluated to determine if statistically significant levels (SSLs) exist above Groundwater Protection Standards (GWPS) of Appendix IV groundwater monitoring constituents. Using interwell evaluations, data from the semiannual sampling event for downgradient monitoring wells were compared to the GWPS established from background well data.

STATISTICAL EVALUATION

The Rule provides four specific options to statistically evaluate whether water quality downgradient of the CCR Unit (§257.93(f) (1-4)) represents a SSL of Appendix IV parameters above the GWPS. The selected statistical method used for these evaluations is the tolerance limit (TL). This statistical method was certified by Haley & Aldrich, Inc. on October 14, 2017.

An interwell evaluation was used for statistical analysis, which compares the most recent values from downgradient compliance wells against a background dataset composed of upgradient well data. The TL method was used to evaluate potential SSLs above GWPS. The GWPS for each of the Appendix IV constituents has been set equal to the highest value of the maximum contaminant level, regional screening level (RSL), or site background concentration. Compliance well data from the most recent groundwater sampling event were compared to the corresponding GWPS to determine if a SSL existed. Statistical analysis results are presented in Table I.

As part of the TL procedure, a concentration limit for each constituent is established from the distribution of the background data with a minimum 95 percent confidence level. The upper endpoint of

South Carolina Public Service Authority (Santee Cooper) December 19, 2023 Page 2

a tolerance interval is called the upper tolerance limit (UTL). Depending on the assumed distribution of background data, parametric or non-parametric procedures were used to develop the UTL. Parametric procedures use assumed distributions of the sample background data to development the limits, whereas non-parametric limits use order statistics or bootstrap methods. If all background data are non-detect, a maximum reporting limit may serve as an appropriate UTL.

If an Appendix IV constituent concentration from the event was above the GWPS, the lower confidence limit (LCL) for the downgradient well constituent was used to evaluate the presence of a SSL. The LCL is the lower end of the confidence interval range, which is an estimated concentration range intended to contain the true mean or median of the population from which the sample is drawn. The confidence interval range is designed to locate the true population mean or median with a high degree of statistical confidence.

After testing for outliers, the UTLs were calculated from the background dataset to evaluate whether removal of data was necessary based on sampling or measurement discrepancies. Both visual and statistical outlier tests for the background data were performed.¹ A visual inspection of the data was performed using distribution plots for the downgradient sample data. Based on our review, no sample data were identified as outliers that warranted removal from the dataset.

The background well (WAP-1 and WBW-1) analytical results from previous events were combined to calculate the UTL for each detected Appendix IV constituent. Variability and distribution of the pooled dataset were reviewed to establish the method for UTL calculation.

Per the document Statistical Analysis of Groundwater Monitoring Data at RCRA Facilities, Unified Guidance, March 2009 (the Unified Guidance), background concentrations were based on statistical evaluation of analytical results collected through July 2023 and updated in the Chemstat output. The background dataset will be updated in Table 1 again after four additional data points are collected (second semiannual event of 2025) in accordance with the Unified Guidance.

TREND ANALYSIS

Mann-Kendall trend analyses were performed on datasets of sufficient sample size. Results of the trend analysis are included on Table I. In summary, compliance wells with trends analyzed are identified as stable or decreasing. It is important to note that increasing trends are not part of the comparison criteria for triggering a SSL. Trend analysis will continue to be used to monitor and evaluate concentrations in the context of overall site conditions.

RESULTS OF APPENDIX IV DOWNGRADIENT STATISTICAL COMPARISONS

¹ Visual and statistical outlier tests for background data were performed using Chemstat 6.3.0.0 and U.S. Environmental Protection Agency's ProUCL 5.1 software.

South Carolina Public Service Authority (Santee Cooper) December 19, 2023 Page 3

As stated, Appendix IV constituent detections from downgradient well samples were compared to their respective GWPS (Table I). Based on previous compliance sampling data and statistical evaluations, interwell comparisons were used. Consistent with previous results, SSLs were not identified. Because arsenic and cobalt were identified above the GWPS in WAP-02, the LCL was calculated for each, and the resulting concentrations were not SSLs. Potential reasons for arsenic and cobalt results were evaluated, including investigating the condition of groundwater sampling wells. The concentrations may be attributed the groundwater wells and/or dewatering activities and site conditions resulting from ongoing closure-by-removal construction activities. Concentrations should decrease once closure is complete and groundwater equilibrium is restored. The expected date for completing CCR removal for the South Ash Pond is 2025. Groundwater trends will continue to be monitored during future sampling events.

Enclosures:

Table I – WGS South Ash Pond July 2023 Semiannual Assessment Monitoring Data

https://haleyaldrich.sharepoint.com/sites/SanteeCooper2/Shared Documents/0132892.Santee Cooper CCR Consulting Service/0_Winyah Generating Station/Statistical Analysis/2023-10/South Ash Pond/client final/2023-1219_HAI_WGS_South Ash Pond_Assessment Monitoring Stats_F.docx

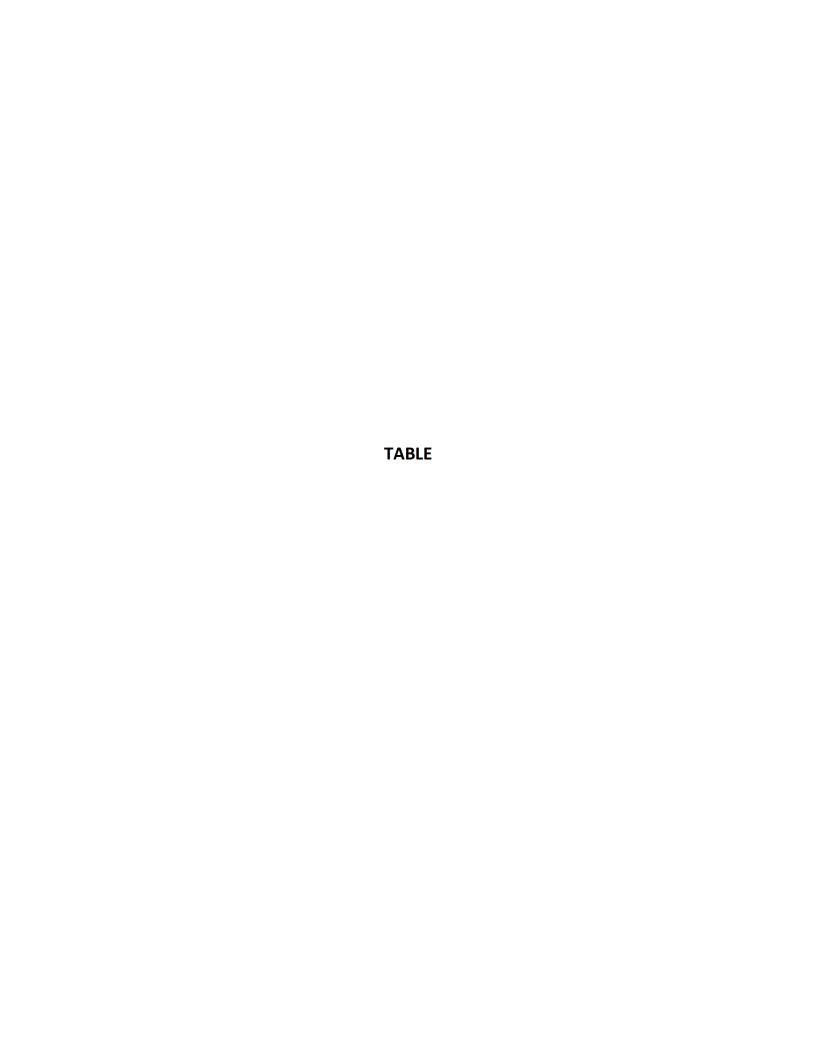


TABLE I WGS SOUTH ASH POND JULY 2023 SEMIANNUAL ASSESSMENT MONITORING DATA

	155			No	No	No	No				No :	S S	No.				No	No	No	No				No	No	§ :	S S			No	No	No	No			No.	. S	No	No			No	No	oN I	Ē			No	No	No	No			No.	o N	No.	No
	Exceedance above Background at Individual Well			z	z	N	Z				z	zz	: z				z	Z	z	Z				Z	z	2	z			z	Z	Z	N			2	. z	z	Z			Z	N	2 2	A			Z	Z	Z	Z			2	2 2	Z	Z
	GWPS (Higher of MCJ/RSL or Background Limit)		0.025						0.010							2.000						7000	1000						0.005						0.100						0.008					8	4.00						0.015				
Inter-well Analysis	SS			z	z	z	z				> :	zz	2				>	>	z	>				>	z	z	z			z	z	Z	z				z	z	z			z	z	2 2	N			z	z	z	z			2	zz	z	z
Inter	Upper Tolerance Limit		0.025						0.0085							0.094						20000	0.000						0.0005						0.0050						0.0084					0140	0.140						0.0100				
	ij										0.005		Ī																															I						I					T		
	Detect?			z	z	z	z				>	2 2	2				>	>-	>	>-				>-	z	z	z			2	z	z	z				2 2	z	z			>-	z	> 3	-			>	>	z	>			2	zz	z	z
	July 2023 Concentration			0.005	0.005	0.005	0.005				0.071	0.003	0.003	6000			0.179	0.200	0.022	0.270				9000'0	0.0005	0.0000	0.0005			00002	0.0005	0.0005	0.0005			1000	0.005	0.005	0.005			0.0047	0.0005	60000	conno			0.11	0.10	0.10	0.12			0000	0.003	0.003	0.003
	Distribution		NA						Non-parametric							Non-parametric						***	MA						NA						Non-parametric						Non-parametric					o special control	Non-parametric						Non-parametric				
	Trend		AN AN	NA	NA	NA	NA		NA	NA	NA	Stable	Stable		Stable	Increasing	Stable	Increasing	Decreasing	Stable		NA	NA	NA	NA	NA	NA	ΔN	NA	NA	NA	NA	NA		NA	NA NA	NA	NA			Increasing	NA	Stable	Stable	Stable	NA	NA	NA	Stable	NA	NA		NA	NA	NA NA	NA	NA
	Outlier Removed		NA NA	NA NA	NA	NA	NA		NA	No	No.	No No	No		No	No	No	No	No	No		NA	NA	NA	NA	No :	NA		MA	NA	NA	NA	NA		No	NA NA	NA	NA	NA		No No	NA	No	No No	DAI	No	No	No	No	No	No		NA .	NO	NA NA	NA	NA
	Outlier Presence		NA NA	NA NA	NA	NA	NA		NA	Yes	Yes	Yes	Yes			No	Yes	No	No	Yes		NA	NA	NA	NA	No.	MA		MA	MA	NA	NA	MA		No	NA NA	NA	NA	NA		No No	NA	Yes	Yes	T _{C3}	No	No	Yes	No	No	No		NA	Yes	NA NA	NA	NA
	Number of Non-Detection Exceedances				-	1	1		0	0	0	0 -	. 0		0	0	0	0	0	0		0	0	0	0	-	0	c	0	0	0	0	0		0	0 0	0	0	0		0 0	0	0	0 0	Þ	0	0	0	0	0	0		0 0	0 0	0		0
	Number of Detection Biceedances		0 0		0	0	0		0	0	4 (0 0	,		0	0	0	0	0	0		0	0	0	0	0	0	c	0	0	0	0	0		0	0 0	0	0	0		1 0	1	0	0		0	0	0	0	0	0		0	5 0	0	0	0
	Detection N Exceedances (Y/N) Ba		2 2	z	z	z	z		z	z	> :	zz			z	z	z	z	z	z		z	z	z	z	z	z	z	z	z	z	z	z		z	z 2	: 2	z	z	,	- 2	>	z	z	E	z	z	z	z	z	z		2 :	zz	2 2	z	z
	Report Result Unit		mg/L	mg/L	mg/L	mg/L	mg/L		mg/L	√l/8m	mg/L	mg/L	me/L	à	mg/L	me/L	mg/L	mg/L	mg/L	mg/L		mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	me/l	me/L	mg/L	mg/L	mg/L	mg/L		mg/L	mg/L	mg/L	mg/L	T/8m	9	mg/L	T/8m	mg/L	mg/L	T/Su	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L		mg/L	mg/L	mg/L	T/8m	mg/L
	CCR MCL/RSL		90.00	0.00	9000	9000	900'0		0.01	10.0	0.01	100	100		2	2	2	2	2	2		0.004	0.004	0.004	0.004	0.004	0.004	0.005	0.005	0.005	0.005	0.005	0.005		0.1	0.1	0.1	0.1	0.1	0000	9000	9000	9000	9000	0,000	4	4	4	4	4	4		0.015	0.015	0.015	0.015	0.015
	Coefficient of Variance		0.7714	0.8421	0.8421	0.8421	0.8421		0.2137	0.2464	1.525	0.9844	0.3632		0.6559	0.6731	0.3345	0.4918	0.3555	0.1235		0	0	0.5167	0	1.421	0	c	0	0.5728	0.5728	1.323	0.6185		0	0 2002	0.2083	1.373	0.2291	107.	0.5469	2.395	0.6948	1.126	0.4333	1.178E-08	0.103	0.3581	0.3092	0.1273	0.2848		1.187	1.016	0.4725	1.785	1.069
	p 5	(mg/L)	0.004714	0.005105	0.005105	0.005105	0.005105	mg/L)	0.0009403	0.001288	0.01644	0.006241	0.001737	mg/L)	0.01198	0.02646	99600	0.04436	0.01325	0.03299	(mg/L)	0	0	0.0002993	0	0.001123	0	(mg/r)	0	0.0003273	0.0003273	0.001129	0.0003638	(mg/L)	0	0	0.001091	0.01091	0.001213	mg/L)	0.0003885	0.004185	0.0005553	0.001119	U.U.u.u.ouo	1.178E-09	0.01065	0.03974	0.04049	0.01309	0.03309	(1/84	0.002779	0.002048	0.0006637	0.005984	0.002168
	Variance	CCR Appendix-IV: Antimony, Total (mg/L)	0.00002222	0.00002606	0.00002606	0.00002606	0.00002606	CCR Appendix-IV: Arsenic, Total (mg/L)	8.842E-07	0.000001659	0.0002704	0.00003895	0.000003018	CCR Appendix-IV: Barium, Total (mg/L)	0.0001434	0.0007003	0.009331	0.001968	0.0001757	0.001089	CCR Appendix-IV: Beryllium, Total (mg/L)	0	0	8.961E-08	0	0.000001261	0	CCK Appendix-IV: Cadmium, Total (mg/L)	0	1.071E-07	1.071E-07	0.000001274	1.324E-07	CCR Appendix-IV: Chromium, Total (mg/L)	0	0	0.00000119	0.0001189	0.000001471	CCR Appendix-IV: Cobalt, Total (mg/L)	+	0.00001751	3.083E-07	0.000001252	de (m	1.388E-18	0.0001133	0.001579	0.001639	0.0001714	0.001095	CCR Appendix-IV: Lead, Total (mg/L)	0.000007724	0.000004194 A 405E-07	4.405E-07	0.00003581	0.000004702
	Maximum Detect	R Appendix-IV:	0 0	0	0	0	0	CR Appendix-IV		\forall	0.0712	0.0082	t	CR Appendix-IV	0.0534	H	H	H	_	H	R Appendix-IV:			0.0017		0.000065 0.		K Appendix-IV:				0		Appendix-IV:	0.005		0		0	CR Appendix-IV			Н	0.00505	CCR Appendix	0.1			0.22	+	0.21	CCR Appendix-I	+	0.00456 0.		0	0
	95th Percentile		9000	0.01	0.01	10.0	10:0		0.005	0.008245	0.04447	0.005	0.00686		0.04447	0.08081	0.4146	0.1599	0.05529	0.321	8	0.0005	0.0005	0.0008525	+		0.0005	50000	0.0005	0.0005	0.0005	0.0026	800000		0.005	0.005	0.005	0.018	9000		0.001505	0.00726	Н	0.002482		0.1	0.13	0.14	0.21	0.1	0.2		0.01	0.00456	0.0025	0.013	0.004
	50th Percentile (Median)		0.005	0.005	0.005	0.005	0.005				0.005	0.005	0.005		0.015	0.04165	0.3095	0.07975	0.035	0.27		0.0005			1		0.0005	00005	0.0005	0.0005	0.0005	0.0005	0.0005		0.005	0.005	0.005	0.005	0.005	20000	t	0.0005		0.0005		0.1	0.1	0.1	0.11	0.1	0.1		0.001	0.001	0.001	0.001	0.001
	Mean		0.00611	0.00606	0.00606	9090000	90900'0		0.0044	0.00523	0.0108	0.00452	0.00478		0.0183	0.0393	0.289	0.0902	0.0373	0.267		0.0005	0.0005	0.000579	0.0005	0.000791	0.0005	0.0005	0.0005	0.000571	0.000571	0.000853	0.000588		0.005	0.005	0.00524	0.00794	0.00529		0.00071	0.00175	0.000799	0.00093	0.00003**	0.1	0.103	0.111	0.131	0.103	0.116		0.00234	0.00202	0.0014	0.00335	0.00203
	Range of Non- Detect		0.005-0.025	+	╀	Н	0.002-0.025		_	4	4	0.003-0.003	١.		ŀ							0.0005-0.0005			_		0.0005-0.0005	0.0005-0.0005	0.0005-0.0005		₩		0.0005-0.002		0.005-0.005	0.005-0.005	H	0.005-0.05	0.005-0.01	0 0000				0.0005-0.0005		0.1-0.1	0.1-0.1	0.1-0.1	0.1-0.1	0.1-0.1	0.1-0.1		+	0.001-0.01	4		Ш
	Percent Non-Detects		100%	100%	100%	100%	100%		100%	82%	82%	71%	82%		860	%0	%0	%0	%0	%0					100%		100%	100%	Τ	Т	100%	100%	100%		%56	100%	100%	100%	100%		%2% 65%			53%		95%	%06	%98	38%	92%	71%		100%	81%	100%	100%	100%
	Frequency of Detection		0/18	0/16	0/16	0/16	0/16		0/20	4/22	4/22	0/21	3/17	artic.	20/20	22/22	22/22	22/22	20/20	20/20		0/18	0/18	2/16	0/16	1/16	0/16	0/18	12/0	0/21	0/21	0/17	0/17		1/19	0/21	0/21	0/17	0/17		2/20	2/17	71/7	8/17	11/11	1/27	2/21	3/21	13/21	1/21	6/21		0/19	4/21	0/21	0/17	0/17
	Location Id		WBW-1	WAP-02	WAP-03	WAP-12	WAP-13		WBW-1	WAP-01	WAP-02	WAP-03	WAP-13		WBW-1	WAP-01	WAP-02	WAP-03	WAP-12	WAP-13		WBW-1	WAP-01	WAP-02	WAP-03	WAP-12	WAP-13	WRW.1	WAP-01	WAP-02	WAP-03	WAP-12	WAP-13		WBW-1	WAP-01	WAP-03	WAP-12	WAP-13		WAP-01	WAP-02	WAP-03	WAP-12	CT-JWM,	WBW-1	WAP-01	WAP-02	WAP-03	WAP-12	WAP-13		WBW-1	WAP-01	WAP-02	WAP-12	WAP-13

Exceedance above Background at Individual Well GWPS (Higher of MCL/RSL or Background Limit) 0.040 0.10 6.0 0.050 > > Z Z SS Upper Tolerance Limit 0.012 0.0002 0.050 0.020 5.97 렃 July 2023 Concentration 0.0002 3.010 4.340 2.990 3.460 0.020 0.023 0.005 0.009 0.005 0.020 0.001 Distribution Trend Outlier Removed Outlier Presence Number of Non-Detection Exceedances Number of Detection Exceedances Detection Exceedances (Y/N) Report Result Unit 17 June 17 Jun CCR MCL/RSL Coefficient of Variance Standard Deviation Variance Maximum Detect 0.0116 0.0202 0.0229 0.151 CZR Appens 95th Percentile 0.001 0.001 0.001 0.001 0.001 0.002 0.002 0.001 0.001 0.001 0.001 0.001 0.001 0.001 50th Percentile (Median) 0.001 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.001 0.001 0.001 0.001 0.001 0.001 Mean 0.0015 0.00905 0.00906 0.00937 0.00937 0.00937 3.02 3.35 6.18 3.46 4.42 3.46 0.0106 0.0106 0.0106 TABLE I WGS SOUTH ASH POND JULY 2023 SEMIANNUAL ASSESSMENT MONITORING DATA Range of Non-Detect 2 4 4 4 · 4 Percent Non-Detects Frequency of Detection Location Id

2 2 2 2

2 2 2 2

SANTEE COOPER ANALYTICAL SERVICES

CERTIFICATE OF ANALYSIS

LAB CERTIFICATION #08552

Sample # AF56394 Location: GW Well WAP-1

Date: 02/14/2023

Sample Collector: ZDM/ML

Loc. Code WAP-1

Time:	12:33

2001 OOGC 11711 -1			11me: 12:33		
Analysis	Result	Units	Test Date	Analyst	Method
Aluminum	1.2	mg/L	03/16/2023	SJHATCHE	EPA 6020B
Aluminum - Dissolved	1.31	mg/L	03/20/2023	EUROFINS SAV	EPA 200.7
Arsenic	<5.0	ug/L	03/16/2023	SJHATCHE	EPA 6020B
Arsenic Dissolved	<5.0	ug/L	03/21/2023	SJHATCHE	EPA 6020B
Barium	74.6	ug/L	03/16/2023	SJHATCHE	EPA 6020B
Barium Dissolved	78.9	ug/L	03/21/2023	SJHATCHE	EPA 6020B
Beryllium	<0.50	ug/L	03/16/2023	SJHATCHE	EPA 6020B
Beryllium Dissolved	<0.5	ug/L	03/21/2023	SJHATCHE	EPA 6020B
Calcium	10.5	mg/L	03/16/2023	SJHATCHE	EPA 6020B
Calcium Dissolved	11.2	mg/L	03/21/2023	SJHATCHE	EPA 6020B
Cadmium	<0.5	ug/L	03/16/2023	SJHATCHE	EPA 6020B
Cadmium - Dissolved	<0.5	ug/L	03/20/2023	EUROFINS SAV	EPA 200.8
Cobalt	0.7	ug/L	03/16/2023	SJHATCHE	EPA 6020B
Cobalt Dissolved	0.70	ug/L	03/21/2023	SJHATCHE	EPA 6020B
Chromium	<5.0	ug/L	03/16/2023	SJHATCHE	EPA 6020B
Chromium - Dissolved	<5	ug/L	03/20/2023	EUROFINS SAV	EPA 200.8
Lead	<1.0	ug/L	03/16/2023	SJHATCHE	EPA 6020B
Lead - Dissolved	<2.5	ug/L	03/20/2023	EUROFINS SAV	EPA 200.8
Antimony	<5.0	ug/L	03/16/2023	SJHATCHE	EPA 6020B
Antimony - Dissolved	<5.0	ug/L	03/21/2023	SJHATCHE	EPA 200.8
Selenium	<10.0	ug/L	03/16/2023	SJHATCHE	EPA 6020B
Selenium - Dissolved	<20	ug/L	03/20/2023	EUROFINS SAV	EPA 200.8
Thallium	<1.0	ug/L	03/16/2023	SJHATCHE	EPA 6020B
Thallium - Dissolved	<5.0	ug/L	03/21/2023	SJHATCHE	EPA 200.8
Boron	37.1	ug/L	03/23/2023	SJHATCHE	EPA 6010D
Boron Dissolved	39.7	ug/L	03/23/2023	SJHATCHE	EPA 6010D
Lithium	<5.00	ug/L	03/23/2023	SJHATCHE	EPA 6010D
Lithium Dissolved	<5.00	ug/L	03/23/2023	SJHATCHE	EPA 6010D
Molybdenum	<5.00	ug/L	03/23/2023	SJHATCHE	EPA 6010D
Molybdenum Dissolved	<5.00	ug/L	03/23/2023	SJHATCHE	EPA 6010D
Mercury	<0.2	ug/L	03/20/2023	EUROFINS SAV	EPA 7470
Iron	2930	ug/L	03/16/2023	SJHATCHE	EPA 6020B
Iron - Dissolved	2940	ug/L	03/21/2023	SJHATCHE	EPA 6020B
Potassium	0.6	mg/L	03/16/2023	SJHATCHE	EPA 6020B
Potassium Dissolved	0.70	mg/L	03/21/2023	SJHATCHE	EPA 6020B
Sodium	5.5	mg/L	03/16/2023	SJHATCHE	EPA 6020B
Sodium Dissolved	5.65	mg/L	03/21/2023	EUROFINS SAV	EPA 6020B
Magnesium	1.0	mg/L	03/16/2023	SJHATCHE	EPA 6020B
Magnesium Dissolved	1.1	mg/L	03/21/2023	SJHATCHE	EPA 6020B
Manganese	26.0	ug/L	03/16/2023	SJHATCHE	EPA 6020B
Manganese Dissolved	25.7	ug/L	03/21/2023	SJHATCHE	EPA 6020B
Zinc	29.3	ug/L	03/16/2023	SJHATCHE	EPA 6020B
Zinc Dissolved	28.2	ug/L	03/21/2023	SJHATCHE	EPA 6020B
Copper	<5.0	ug/L	03/16/2023	SJHATCHE	EPA 6020B
Nickel	<0.5	ug/L	03/16/2023	SJHATCHE	EPA 6020B
Nickel - Dissolved	<0.5	ug/L	03/21/2023	SJHATCHE	EPA 200.8
Sulfide	<0.1	mg/L	02/20/2023	GEL	EPA 9034
Total Organic Carbon	1.30	mg/L	02/21/2023	GEL	SM 5310B
Dissoloved Organic Carbon	1.31	mg/L	02/22/2023	GEL	SM 5310B
9		9	JEILLILULU	ULL.	OIVI OO IVID

One Riverwood Drive P.O. Box 2946101 Moncks Corner, SC 29461-2901 (843) 761-8000

SANTEE COOPER ANALYTICAL SERVICES

CERTIFICATE OF ANALYSIS

LAB CERTIFICATION #08552

Sample # AF56394

Location: GW Well WAP-1

Date: 02/14/2023

Sample Collector: ZDM/ML

Loc. Code WAP-1 Time: 12:33

Result	Units	Test Date	Analyst	Method
<0.10	mg/L	02/16/2023	KCWELLS	EPA 300.0
<0.10	mg/L	02/16/2023	KCWELLS	EPA 300.0
33.6	mg/L	02/16/2023	KCWELLS	EPA 300.0
13.4	mg/L	02/16/2023	KCWELLS	EPA 300.0
<0.10	mg/L	02/16/2023	KCWELLS	EPA 300.0
100.0	mg/L	02/23/2023	SJBROWN	SM 2540C
0.0794	pCi/L	03/16/2023	GEL	EPA 903.1 Mod
1.40	pCI/L	03/14/2023	GEL	EPA 904.0
1.48	pCi/L	03/16/2023	GEL	EPA 903.1 Mod
<4	mg/kg	02/23/2023	GEL	SM2320B
<4	mg/L	02/23/2023	GEL	SM 2320B
<4	mg/L	02/23/2023	GEL	SM 2320B
<0.025	mg/L	02/22/2023	KCWELLS	EPA 365.1
6060	%	03/30/2023	EUROFINS SAV	ASTM D3682
6060	ug/L	03/30/2023	EUROFINS SAV	EPA 200.7
<1	ug/L	03/21/2023	EUROFINS SAV	EPA 6020B
<1	ug/L	03/21/2023	EUROFINS SAV	EPA 200.8
	<0.10 <0.10 33.6 13.4 <0.10 100.0 0.0794 1.40 1.48 <4 <4 <4 <0.025 6060 6060 <1	<0.10 mg/L <0.10 mg/L 33.6 mg/L 13.4 mg/L <0.10 mg/L 100.0 mg/L 100.0 pCi/L 1.40 pCi/L 1.48 pCi/L <4 mg/kg <4 mg/L <4 mg/L <0.025 mg/L 6060 % 6060 ug/L <1 ug/L	<0.10	<0.10 mg/L 02/16/2023 KCWELLS <0.10


Comments:

Independent Laboratory Results: "GEL" - GEL Laboratories LLC - Lab ID # 10120; "Test America" - TestAmerica Laboratories, Inc. - Lab ID# 98001; "DavisBrown"- Davis & Brown Lab ID # 21117; "Shealy"- Shealy Environmental Services, Inc.- Lab ID# 32010 "ROGERSCALLCO"-Rogers & Callcot, Inc.- Lab ID # 23105001

Analysis Validated:

Lindal Ellians

Validation date: 05/09/2023

SANTEE COOPER ANALYTICAL SERVICES

CERTIFICATE OF ANALYSIS

LAB CERTIFICATION #08552

Sample # AF56431 Location: GW Well WBW-1 Date: 02/14/2023 Sample Collector: ZDM/ML

Loc. Code WBW-1 Time: 13:51

Loc. Code VVBVV-1			Time: 13:51		
Analysis	Result	Units	Test Date	Analyst	Method
Aluminum	0.845	mg/L	03/21/2023	EUROFINS SAV	EPA 6020B
Aluminum - Dissolved	0.793	mg/L	03/20/2023	EUROFINS SAV	EPA 200.7
Arsenic	<3	ug/L	03/21/2023	EUROFINS SAV	EPA 6020B
Arsenic Dissolved	<3	ug/L	03/21/2023	EUROFINS SAV	EPA 6020B
Barium	31.7	ug/L	03/21/2023	EUROFINS SAV	EPA 6020B
Barium Dissolved	30.1	ug/L	03/21/2023	EUROFINS SAV	EPA 6020B
Beryllium	<0.5	ug/L	03/22/2023	EUROFINS SAV	EPA 6020B
Beryllium Dissolved	<0.5	ug/L	03/21/2023	EUROFINS SAV	EPA 6020B
Calcium	2.79	mg/L	03/21/2023	EUROFINS SAV	EPA 6020B
Calcium Dissolved	3.56	mg/L	03/21/2023	EUROFINS SAV	EPA 6020B
Cadmium	<0.5	ug/L	03/21/2023	EUROFINS SAV	EPA 6020B
Cadmium - Dissolved	<0.5	ug/L	03/20/2023	EUROFINS SAV	EPA 200.8
Cobalt	1.52	ug/L	03/21/2023	EUROFINS SAV	EPA 6020B
Cobalt Dissolved	1.6	ug/L	03/21/2023	EUROFINS SAV	EPA 6020B
Chromium	<5	ug/L	03/21/2023	EUROFINS SAV	EPA 6020B
Chromium - Dissolved	<5	ug/L	03/20/2023	EUROFINS SAV	EPA 200.8
Lead	<2.5	ug/L	03/21/2023	EUROFINS SAV	EPA 6020B
Lead - Dissolved	<2.5	ug/L	03/20/2023	EUROFINS SAV	EPA 200.8
Antimony	<5	ug/L	03/21/2023	EUROFINS SAV	EPA 6020B
Antimony - Dissolved	<5	ug/L	03/21/2023	EUROFINS SAV	EPA 200.8
Selenium	<20.0	ug/L	03/21/2023	EUROFINS SAV	EPA 6020B
Selenium - Dissolved	<20	ug/L	03/21/2023	EUROFINS SAV	EPA 200.8
Thallium	<1	ug/L	03/21/2023	EUROFINS SAV	EPA 6020B
Thallium - Dissolved	<1	ug/L	03/21/2023	EUROFINS SAV	EPA 200.8
Boron	54.7	ug/L	04/20/2023	LCWILLIA	EPA 6010D
Boron Dissolved	68	ug/L	03/24/2023	EUROFINS SAV	EPA 6010D
Lithium	<5	ug/L	04/20/2023	LCWILLIA	EPA 6010D
Lithium Dissolved	<5	ug/L	03/21/2023	LCWILLIA	EPA 6010D
Molybdenum	<10	ug/L	03/21/2023	EUROFINS SAV	EPA 6010D
Molybdenum Dissolved	<10	ug/L	03/20/2023	EUROFINS SAV	EPA 6010D
Mercury	0.200	ug/L	03/21/2023	EUROFINS SAV	EPA 7470
Iron	251	ug/L	03/21/2023	EUROFINS SAV	EPA 6020B
Iron - Dissolved	<100	ug/L	03/21/2023	EUROFINS SAV	EPA 6020B
Potassium	<1	mg/L	03/21/2023	EUROFINS SAV	EPA 6020B
Potassium Dissolved	<1	mg/L	03/21/2023	EUROFINS SAV	EPA 6020B
Sodium	2.67	mg/L	03/21/2023	EUROFINS SAV	EPA 6020B
Sodium Dissolved	2.72	mg/L	03/21/2023	EUROFINS SAV	EPA 6020B
Magnesium	0.902	mg/L	03/21/2023	EUROFINS SAV	EPA 6020B
Magnesium Dissolved	0.898	mg/L	03/21/2023	EUROFINS SAV	EPA 6020B
Manganese	44.6	ug/L	03/21/2023	EUROFINS SAV	EPA 6020B
Manganese Dissolved	41.0	ug/L	03/24/2023	EUROFINS SAV	EPA 6020B
Zinc	<20	ug/L	03/21/2023	EUROFINS SAV	EPA 6020B
Zinc Dissolved	<20	ug/L	03/21/2023	EUROFINS SAV	EPA 6020B
Copper	<5	ug/L	03/21/2023	EUROFINS SAV	EPA 6020B
Nickel	<5	ug/L	03/21/2023	EUROFINS SAV	EPA 6020B
Nickel - Dissolved	<5	ug/L	03/21/2023	EUROFINS SAV	EPA 200.8
Sulfide	<0.1	mg/L	02/20/2023	GEL	EPA 9034
Total Organic Carbon	<1	mg/L	02/21/2023	GEL	SM 5310B
Dissoloved Organic Carbon	1.01	mg/L	02/22/2023	GEL	SM 5310B

One Riverwood Drive P.O. Box 2946101 Moncks Corner, SC 29461-2901 (843) 761-8000

SANTEE COOPER ANALYTICAL SERVICES

CERTIFICATE OF ANALYSIS

LAB CERTIFICATION #08552

Sample # AF56431

Location: GW Well WBW-1

Date: 02/14/2023

Sample Collector: ZDM/ML

Loc. Code V	V	В	٧	٧	-	1	
-------------	---	---	---	---	---	---	--

Loc. Code WBW-1	Time: 13:51				
Analysis	Result	Units	Test Date	Analyst	Method
Nitrite	<0.10	mg/L	02/16/2023	KCWELLS	EPA 300.0
Nitrate	0.52	mg/L	02/16/2023	KCWELLS	EPA 300.0
Sulfate	9.92	mg/L	02/16/2023	KCWELLS	EPA 300.0
Chloride	6.60	mg/L	02/16/2023	KCWELLS	EPA 300.0
Fluoride	<0.10	mg/L	02/16/2023	KCWELLS	EPA 300.0
Total Dissolved Solids	87.50	mg/L	02/23/2023	SJBROWN	SM 2540C
Radium 226	0.668	pCi/L	03/16/2023	GEL	EPA 903.1 Mod
Radium 228	1.18	pCi/L	03/14/2023	GEL	EPA 904.0
Radium 226/228 Combined Calculation	1.84	pCi/L	03/16/2023	GEL	EPA 903.1 Mod
Alkalinity as CaCO3	<4	mg/kg	02/23/2023	GEL	SM2320B
Alkalinity	<4	mg/L	02/23/2023	GEL	SM 2320B
Bicarbonate Alkalinity	<4	mg/L	02/23/2023	GEL	SM 2320B
Total Phosphorus	<0.025	mg/L	02/22/2023	KCWELLS	EPA 365.1
SiO2	4650	%	03/30/2023	EUROFINS SAV	ASTM D3682
SiO2 Dissolved	4650	ug/L	03/30/2023	EUROFINS SAV	EPA 200.7
Silver	<1	ug/L	03/21/2023	EUROFINS SAV	EPA 6020B
Silver- Dissolved	<1	ug/L	03/21/2023	EUROFINS SAV	EPA 200.8

Comments:

Independent Laboratory Results: "GEL" - GEL Laboratories LLC - Lab ID # 10120; "Test America" - TestAmerica Laboratories, Inc. - Lab ID# 98001; "DavisBrown"- Davis & Brown Lab ID # 21117; "Shealy"- Shealy Environmental Services, Inc.- Lab ID# 32010 "ROGERSCALLCO"-Rogers & Callcot, Inc.- Lab ID # 23105001

Analysis Validated:

Kindal Wellen

Validation date: 05/08/2023

SANTEE COOPER ANALYTICAL SERVICES

CERTIFICATE OF ANALYSIS

LAB CERTIFICATION #08552

Sample # AF56395 Location: GW Well WAP-2 Date: 02/15/2023 Sample Collector: ZDM/ML

Loc. Code WAP-2 Time: 11:36

Loc. Code WAP-2	Time: 11:36					
Analysis	Result	Units	Test Date	Analyst	Method	
Aluminum	0.9	mg/L	03/16/2023	SJHATCHE	EPA 6020B	
Aluminum - Dissolved	0.190	mg/L	03/20/2023	EUROFINS SAV	EPA 200.7	
Arsenic	15.4	ug/L	03/16/2023	SJHATCHE	EPA 6020B	
Arsenic Dissolved	10.8	ug/L	03/21/2023	SJHATCHE	EPA 6020B	
Barium	144	ug/L	03/16/2023	SJHATCHE	EPA 6020B	
Barium Dissolved	151	ug/L	03/20/2023	EUROFINS SAV	EPA 6020B	
Beryllium	1.7	ug/L	03/16/2023	SJHATCHE	EPA 6020B	
Beryllium Dissolved	1.3	ug/L	03/21/2023	SJHATCHE	EPA 6020B	
Calcium	381	mg/L	03/16/2023	SJHATCHE	EPA 6020B	
Calcium Dissolved	355	mg/L	03/20/2023	EUROFINS SAV	EPA 6020B	
Cadmium	<0.5	ug/L	03/16/2023	SJHATCHE	EPA 6020B	
Cadmium - Dissolved	<0.5	ug/L	03/20/2023	EUROFINS SAV	EPA 200.8	
Cobalt	17.5	ug/L	03/16/2023	SJHATCHE	EPA 6020B	
Cobalt Dissolved	17.6	ug/L	03/21/2023	SJHATCHE	EPA 6020B	
Chromium	<5.0	ug/L	03/16/2023	SJHATCHE	EPA 6020B	
Chromium - Dissolved	<5	ug/L	03/20/2023	EUROFINS SAV	EPA 200.8	
Lead	<1.0	ug/L	03/16/2023	SJHATCHE	EPA 6020B	
Lead - Dissolved	<2.5	ug/L	03/20/2023	EUROFINS SAV	EPA 200.8	
Antimony	<5.0	ug/L	03/16/2023	SJHATCHE	EPA 6020B	
Antimony - Dissolved	<5	ug/L	03/20/2023	EUROFINS SAV	EPA 200.8	
Selenium	<10.0	ug/L	03/16/2023	SJHATCHE	EPA 6020B	
Selenium - Dissolved	<20	ug/L	03/20/2023	EUROFINS SAV	EPA 200.8	
Thallium	<1.0	ug/L	03/16/2023	SJHATCHE	EPA 6020B	
Thallium - Dissolved	<1	ug/L	03/20/2023	EUROFINS SAV	EPA 200.8	
Boron	5260	ug/L	03/23/2023	SJHATCHE	EPA 6010D	
Boron Dissolved	5090	ug/L	03/23/2023	EUROFINS SAV	EPA 6010D	
Lithium	13.7	ug/L	03/23/2023	SJHATCHE	EPA 6010D	
Lithium Dissolved	13.8	ug/L	03/23/2023	SJHATCHE	EPA 6010D	
Molybdenum	<5.00	ug/L	03/23/2023	SJHATCHE	EPA 6010D	
Molybdenum Dissolved	<10	ug/L	03/20/2023	EUROFINS SAV	EPA 6010D	
Mercury	<0.2	ug/L	03/21/2023	EUROFINS SAV	EPA 7470	
Iron	5330	ug/L	03/16/2023	SJHATCHE	EPA 6020B	
Iron - Dissolved	4330	ug/L	03/21/2023	SJHATCHE	EPA 6020B	
Potassium	9.7	mg/L	03/16/2023	SJHATCHE	EPA 6020B	
Potassium Dissolved	9.6	mg/L	03/20/2023	EUROFINS SAV	EPA 6020B	
Sodium	77.4	mg/L	03/16/2023	SJHATCHE	EPA 6020B	
Sodium Dissolved	71.8	mg/L	03/21/2023	EUROFINS SAV	EPA 6020B	
Magnesium	47.0	mg/L	03/16/2023	SJHATCHE	EPA 6020B	
Magnesium Dissolved	43.7	mg/L	03/20/2023	EUROFINS SAV	EPA 6020B	
Manganese	630	ug/L	03/20/2023	SJHATCHE		
Manganese Dissolved	625	ug/L	03/10/2023		EPA 6020B	
Zinc	<10.0	ug/L	03/21/2023	SJHATCHE SJHATCHE	EPA 6020B	
Zinc Dissolved	<20	ug/L	03/20/2023	EUROFINS SAV	EPA 6020B	
Copper	<5.0	ug/L	03/20/2023	SJHATCHE	EPA 6020B	
Nickel	10.5	ug/L			EPA 6020B	
Nickel - Dissolved	10.10	ug/L ug/L	03/16/2023	SJHATCHE	EPA 6020B	
Sulfide	<0.1	_	03/20/2023	EUROFINS SAV	EPA 200.8	
Total Organic Carbon	3.49	mg/L	02/20/2023	GEL	EPA 9034	
Dissoloved Organic Carbon	3.45	mg/L	02/21/2023	GEL	SM 5310B	
2.000i0100 Oiganic Calbuil	ა. 4 მ	mg/L	02/22/2023	GEL	SM 5310B	

SANTEE COOPER ANALYTICAL SERVICES

CERTIFICATE OF ANALYSIS

LAB CERTIFICATION #08552

Sample # AF56395

Location: GW Well WAP-2

Date: 02/15/2023

Sample Collector: ZDM/ML

Loc. Code WAP-2

Time: 11:36

			111101 11100		
Analysis	Result	Units	Test Date	Analyst	Method
Nitrate-Nitrite Cadmium Reduction	<0.2	mg/L	02/22/2023	GEL	EPA 353.2
Sulfate	804	mg/L	02/24/2023	KCWELLS	EPA 300.0
Chloride	250	mg/L	02/24/2023	KCWELLS	EPA 300.0
Fluoride	0.28	mg/L	02/24/2023	KCWELLS	EPA 300.0
Total Dissolved Solids	1751	mg/L	02/23/2023	SJBROWN	SM 2540C
Radium 226	0.531	pCi/L	03/16/2023	GEL	EPA 903.1 Mod
Radium 228	2.62	pCi/L	03/14/2023	GEL	EPA 904.0
Radium 226/228 Combined Calculation	3.15	pCi/L	03/16/2023	GEL	EPA 903.1 Mod
Alkalinity as CaCO3	<4	mg/kg	02/23/2023	GEL	SM2320B
Alkalinity	77.8	mg/L	02/23/2023	GEL	SM 2320B
Bicarbonate Alkalinity	77.8	mg/L	02/23/2023	GEL	SM 2320B
Silver	<1	ug/L	03/20/2023	EUROFINS SAV	EPA 6020B
Silver- Dissolved	<1	ug/L	03/20/2023	EUROFINS SAV	EPA 200.8
		-			

Comments:

Independent Laboratory Results: "GEL" - GEL Laboratories LLC - Lab ID # 10120; "Test America" - TestAmerica Laboratories, Inc. - Lab ID# 98001; "DavisBrown"- Davis & Brown Lab ID # 21117; "Shealy"- Shealy Environmental Services, Inc.- Lab ID# 32010 "ROGERSCALLCO"-Rogers & Callcot, Inc.- Lab ID # 23105001

Analysis Validated:

Linda Villars

Validation date: 05/08/2023

SANTEE COOPER ANALYTICAL SERVICES

CERTIFICATE OF ANALYSIS

LAB CERTIFICATION #08552

Sample # AF56396

Location: GW Well WAP-3

Date: 02/15/2023

Sample Collector: ZDM/ML

Loc. Code WAP-3

Time: 13:21

200. 00dc 11711 0	11me: 13.21						
Analysis	Result	Units	Test Date	Analyst	Method		
Aluminum Aluminum - Dissolved	<0.1	mg/L	03/16/2023	SJHATCHE	EPA 6020B		
	<0.1	mg/L	03/20/2023	EUROFINS SAV	EPA 200.7		
Arsenic	<5.0	ug/L	03/16/2023	SJHATCHE	EPA 6020B		
Arsenic Dissolved	<5.0	ug/L	03/21/2023	SJHATCHE	EPA 6020B		
Barium	139	ug/L	03/16/2023	SJHATCHE	EPA 6020B		
Barium Dissolved	149	ug/L	03/20/2023	EUROFINS SAV	EPA 6020B		
Beryllium	<0.50	ug/L	03/16/2023	SJHATCHE	EPA 6020B		
Beryllium Dissolved	<0.5	ug/L	03/21/2023	SJHATCHE	EPA 6020B		
Calcium	223	mg/L	03/16/2023	SJHATCHE	EPA 6020B		
Calcium Dissolved	226	mg/L	03/20/2023	EUROFINS SAV	EPA 6020B		
Cadmium	<0.5	ug/L	03/16/2023	SJHATCHE	EPA 6020B		
Cadmium - Dissolved	<0.5	ug/L	03/20/2023	EUROFINS SAV	EPA 200.8		
Cobalt	<0.5	ug/L	03/16/2023	SJHATCHE	EPA 6020B		
Cobalt Dissolved	0.60	ug/L	03/21/2023	SJHATCHE	EPA 6020B		
Chromium	<5.0	ug/L	03/16/2023	SJHATCHE	EPA 6020B		
Chromium - Dissolved	<5	ug/L	03/20/2023	EUROFINS SAV	EPA 200.8		
Lead	<1.0	ug/L	03/16/2023	SJHATCHE	EPA 6020B		
Lead - Dissolved	<2.5	ug/L	03/20/2023	EUROFINS SAV	EPA 200.8		
Antimony	<5.0	ug/L	03/16/2023	SJHATCHE	EPA 6020B		
Antimony - Dissolved	<5	ug/L	03/20/2023	EUROFINS SAV	EPA 200.8		
Selenium	<10.0	ug/L	03/16/2023	SJHATCHE	EPA 6020B		
Selenium - Dissolved	<20	ug/L	03/20/2023	EUROFINS SAV	EPA 200.8		
Thallium	<1.0	ug/L	03/16/2023	SJHATCHE	EPA 6020B		
Thallium - Dissolved	<1	ug/L	03/20/2023	EUROFINS SAV	EPA 200.8		
Boron	1300	ug/L	03/23/2023	SJHATCHE	EPA 6010D		
Boron Dissolved	1330	ug/L	03/23/2023	EUROFINS SAV	EPA 6010D		
Lithium	11.2	ug/L	03/23/2023	SJHATCHE	EPA 6010D		
Lithium Dissolved	11.3	ug/L	03/23/2023	SJHATCHE	EPA 6010D		
Molybdenum	<5.00	ug/L	03/23/2023	SJHATCHE	EPA 6010D		
Molybdenum Dissolved	<10	ug/L	03/20/2023	EUROFINS SAV	EPA 6010D		
Mercury	0.259	ug/L	03/21/2023	EUROFINS SAV	EPA 7470		
Iron	24600	ug/L	03/16/2023	SJHATCHE			
Iron - Dissolved	21700	ug/L	03/21/2023	SJHATCHE	EPA 6020B		
Potassium	2.0	mg/L	03/16/2023	SJHATCHE	EPA 6020B		
Potassium Dissolved	2.0	mg/L	03/20/2023		EPA 6020B		
Sodium	41.1	mg/L	03/16/2023	EUROFINS SAV	EPA 6020B		
Sodium Dissolved	42.4	_		SJHATCHE	EPA 6020B		
Magnesium	14.2	mg/L	03/21/2023	EUROFINS SAV	EPA 6020B		
Magnesium Dissolved	14.6	mg/L	03/16/2023	SJHATCHE	EPA 6020B		
Manganese	200	mg/L	03/20/2023	EUROFINS SAV	EPA 6020B		
Manganese Dissolved		ug/L	03/16/2023	SJHATCHE	EPA 6020B		
Zinc	191	ug/L	03/21/2023	SJHATCHE	EPA 6020B		
Zinc Dissolved	12.8	ug/L	03/16/2023	SJHATCHE	EPA 6020B		
	<20	ug/L	03/20/2023	EUROFINS SAV	EPA 6020B		
Copper	<5.0	ug/L	03/16/2023	SJHATCHE	EPA 6020B		
Nickel Disselved	<0.5	ug/L	03/16/2023	SJHATCHE	EPA 6020B		
Nickel - Dissolved	<5	ug/L	03/20/2023	EUROFINS SAV	EPA 200.8		
Sulfide	<0.1	mg/L	02/20/2023	GEL	EPA 9034		
Total Organic Carbon	6.69	mg/L	02/21/2023	GEL	SM 5310B		
Dissoloved Organic Carbon	5.85	mg/L	02/22/2023	GEL	SM 5310B		

SANTEE COOPER ANALYTICAL SERVICES

CERTIFICATE OF ANALYSIS

LAB CERTIFICATION #08552

Sample # AF56396

Location: GW Well WAP-3

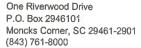
Date: 02/15/2023

Sample Collector: ZDM/ML

Loc. Code WAP-3 Time: 13:21

	711110: 10:21				
Analysis	Result	Units	Test Date	Analyst	Method
Nitrate-Nitrite Cadmium Reduction	<0.2	mg/L	02/22/2023	GEL	EPA 353.2
Sulfate	110	mg/L	02/24/2023	KCWELLS	EPA 300.0
Chloride	182	mg/L	02/24/2023	KCWELLS	EPA 300.0
Fluoride	0.12	mg/L	02/24/2023	KCWELLS	EPA 300.0
Total Dissolved Solids	1019	mg/L	02/23/2023	SJBROWN	SM 2540C
Radium 226	1.18	pCi/L	03/16/2023	GEL	EPA 903.1 Mod
Radium 228	1.33	pCi/L	03/14/2023	GEL	EPA 904.0
Radium 226/228 Combined Calculation	2.51	pCi/L	03/16/2023	GEL	EPA 903.1 Mod
Alkalinity as CaCO3	<4	mg/kg	02/23/2023	GEL	SM2320B
Alkalinity	309	mg/L	02/23/2023	GEL	SM 2320B
Bicarbonate Alkalinity	309	mg/L	02/23/2023	GEL	SM 2320B
Silver	<1	ug/L	03/20/2023	EUROFINS SAV	EPA 6020B
Silver- Dissolved	<1	ug/L	03/20/2023	EUROFINS SAV	EPA 200.8

Comments:


Independent Laboratory Results: "GEL" - GEL Laboratories LLC - Lab ID # 10120; "Test America" - TestAmerica Laboratories, Inc. - Lab ID# 98001; "DavisBrown"- Davis & Brown Lab ID # 21117; "Shealy"- Shealy Environmental Services, Inc.- Lab ID# 32010 "ROGERSCALLCO"-Rogers & Callcot, Inc.- Lab ID # 23105001

Analysis Validated:

Lindal Illians

Validation date: 05/08/2023

Linda Williams - Manager Analytical Services

SANTEE COOPER ANALYTICAL SERVICES

CERTIFICATE OF ANALYSIS

LAB CERTIFICATION #08552

Sample # AF56406 Location: GW Well WAP-12 Date: 03/09/2023 Sample Collector: ZDM/ML

Loc. Code WAP-12 Time: 10:29

Loc. Code WAP-12			Time: 10:29		
Analysis	Result	Units	Test Date	Analyst	Method
Aluminum	1.94	mg/L	03/21/2023	EUROFINS SAV	EPA 6020B
Aluminum - Dissolved	1.74	mg/L	03/20/2023	EUROFINS SAV	EPA 200.7
Arsenic	<3	ug/L	03/21/2023	EUROFINS SAV	EPA 6020B
Arsenic Dissolved	<3	ug/L	03/21/2023	EUROFINS SAV	EPA 6020B
Barium	36.4	ug/L	03/21/2023	EUROFINS SAV	EPA 6020B
Barium Dissolved	38.2	ug/L	03/20/2023	EUROFINS SAV	EPA 6020B
Beryllium	<0.5	ug/L	03/21/2023	EUROFINS SAV	EPA 6020B
Beryllium Dissolved	<0.5	ug/L	03/21/2023	EUROFINS SAV	EPA 6020B
Calcium	203.0	mg/L	03/20/2023	EUROFINS SAV	EPA 6010D
Calcium Dissolved	194	mg/L	03/20/2023	EUROFINS SAV	EPA 6020B
Cadmium	<0.5	ug/L	03/21/2023	EUROFINS SAV	EPA 6020B
Cadmium - Dissolved	<0.5	ug/L	03/20/2023	EUROFINS SAV	EPA 200.8
Cobalt	1.84	ug/L	03/21/2023	EUROFINS SAV	EPA 6020B
Cobalt Dissolved	1.8	ug/L	03/21/2023	EUROFINS SAV	EPA 6020B
Chromium	<5	ug/L	03/21/2023	EUROFINS SAV	EPA 6020B
Chromium - Dissolved	<5	ug/L	03/20/2023	EUROFINS SAV	EPA 200.8
Lead	<2.5	ug/L	03/21/2023	EUROFINS SAV	EPA 6020B
Lead - Dissolved	<2.5	ug/L	03/20/2023	EUROFINS SAV	EPA 200.8
Antimony	<5	ug/L	03/21/2023	EUROFINS SAV	EPA 6020B
Antimony - Dissolved	<5	ug/L	03/20/2023	EUROFINS SAV	EPA 200.8
Selenium	<20	ug/L	03/20/2023	EUROFINS SAV	EPA 6010D
Selenium - Dissolved	<20	ug/L	03/20/2023	EUROFINS SAV	EPA 200.8
Thallium	<1	ug/L	03/21/2023	EUROFINS SAV	EPA 6020B
Thallium - Dissolved	<1	ug/L	03/20/2023	EUROFINS SAV	EPA 200.8
Boron	1580	ug/L	04/24/2023	LCWILLIA	EPA 6010D
Boron Dissolved	1510	ug/L	03/23/2023	EUROFINS SAV	EPA 6010D
Lithium	<5	ug/L	04/20/2023	LCWILLIA	EPA 6010D
Lithium Dissolved	< 5	ug/L	04/19/2023	LCWILLIA	EPA 6010D
Molybdenum	<10	ug/L	03/21/2023	EUROFINS SAV	EPA 6010D
Molybdenum Dissolved	<10	ug/L	03/20/2023	EUROFINS SAV	EPA 6010D
Mercury	<0.2	ug/L	03/21/2023	EUROFINS SAV	EPA 7470
Iron	1450	ug/L	03/20/2023	EUROFINS SAV	EPA 6010D
Iron - Dissolved	1380	ug/L	03/21/2023	EUROFINS SAV	EPA 6020B
Potassium	4.99	mg/L	03/20/2023	EUROFINS SAV	EPA 6010D
Potassium Dissolved	4.6	mg/L	03/20/2023	EUROFINS SAV	EPA 6020B
Sodium	45.5	mg/L	03/20/2023	EUROFINS SAV	EPA 6010D
Sodium Dissolved	43.1	mg/L	03/21/2023	EUROFINS SAV	EPA 6020B
Magnesium	18.1	mg/L	03/20/2023	EUROFINS SAV	EPA 6010D
Magnesium Dissolved	17.0	mg/L	03/20/2023	EUROFINS SAV	EPA 6020B
Manganese	183	ug/L	03/21/2023	EUROFINS SAV	EPA 6020B
Manganese Dissolved	160	ug/L	03/25/2023	EUROFINS SAV	EPA 6020B
Zinc	45.6	ug/L	03/21/2023	EUROFINS SAV	EPA 6020B
Zinc Dissolved	40.6	ug/L	03/20/2023	EUROFINS SAV	EPA 6020B
Copper	<5	ug/L	03/21/2023	EUROFINS SAV	
Nickel	<5	ug/L	03/21/2023		EPA 6020B
Nickel - Dissolved	<5	ug/L ug/L	03/21/2023	EUROFINS SAV	EPA 6020B
Sulfide	<0.1	mg/L		EUROFINS SAV	EPA 200.8
Total Organic Carbon	7.15	mg/L	03/14/2023	SUB_GEL	EPA 9034
Dissoloved Organic Carbon	6.20	mg/L	03/21/2023 03/16/2023	SUB_GEL	SM 5310B
Organio Carbon	0.20	mg/L	03/10/2023	SUB_GEL	SM 5310B

SANTEE COOPER ANALYTICAL SERVICES

CERTIFICATE OF ANALYSIS

LAB CERTIFICATION #08552

Sample # AF56406 Location: GW Well WAP-12 Date: 03/09/2023 Sample Collector: ZDM/ML

Loc. Code WAP-12 Time: 10:29

	Tillig, 10.20				
Analysis	Result	Units	Test Date	Analyst	Method
Nitrite	<0.10	mg/L	03/17/2023	KCWELLS	EPA 300.0
Nitrate	<0.10	mg/L	03/17/2023	KCWELLS	EPA 300.0
Nitrate-Nitrite Cadmium Reduction	<0.2	mg/L	03/13/2023	GEL	EPA 353.2
Sulfate	409	mg/L	03/23/2023	KCWELLS	EPA 300.0
Chloride	165	mg/L	03/23/2023	KCWELLS	EPA 300.0
Fluoride	<0.10	mg/L	03/17/2023	KCWELLS	EPA 300.0
Total Dissolved Solids	852.5	mg/L	03/24/2023	KCWELLS	SM 2540C
Radium 226	1.06	pCi/L	04/11/2023	GEL	EPA 903.1 Mod
Radium 228	0.757	pCi/L	04/04/2023	GEL	EPA 904.0
Radium 226/228 Combined Calculation	1.81	pCi/L	04/11/2023	GEL	EPA 903.1 Mod
Alkalinity as CaCO3	<5.71	mg/kg	03/13/2023	SUB_GEL	SM2320B
Alkalinity	<5.71	mg/L	03/13/2023	SUB_GEL	SM 2320B
Bicarbonate Alkalinity	<5.71	mg/L	03/13/2023	SUB GEL	SM 2320B
Silver	<1	ug/L	03/20/2023	EUROFINS SAV	EPA 6020B
Silver- Dissolved	<1	ug/L	03/20/2023	EUROFINS SAV	EPA 200.8

Comments:

Independent Laboratory Results: "GEL" - GEL Laboratories LLC - Lab ID # 10120; "Test America" - TestAmerica Laboratories, Inc. - Lab ID# 98001; "DavisBrown"- Davis & Brown Lab ID # 21117; "Shealy"- Shealy Environmental Services, Inc.- Lab ID# 32010 "ROGERSCALLCO"-Rogers & Callcot, Inc.- Lab ID # 23105001

Analysis Validated:

Linda Williams - Manager Analytical Services

Validation date: 05/08/2023

SANTEE COOPER ANALYTICAL SERVICES

CERTIFICATE OF ANALYSIS

LAB CERTIFICATION #08552

Sample # AF56407 Location: GW Well WAP-12 Date: 03/09/2023 Sample Collector: ZDM/ML

Loc. Code **WAP-12** DUP Time: 10:34 **Analysis** Result **Units Test Date** Analyst Method Aluminum 2.09 ma/L 03/21/2023 **EUROFINS SAV EPA 6020B** Aluminum - Dissolved 1.59 mg/L 03/20/2023 **EUROFINS SAV** EPA 200.7 Arsenic <3 ug/L 03/21/2023 **EUROFINS SAV EPA 6020B** Arsenic Dissolved <3 03/21/2023 ug/L **EUROFINS SAV EPA 6020B** Barium 36.9 ug/L 03/21/2023 **EUROFINS SAV EPA 6020B Barium Dissolved** 38.7 03/20/2023 ug/L **EUROFINS SAV EPA 6020B** Beryllium < 0.5 ug/L 03/21/2023 **EUROFINS SAV EPA 6020B** Beryllium Dissolved < 0.5 ug/L 03/21/2023 **EUROFINS SAV EPA 6020B** Calcium 207.0 mg/L 03/20/2023 **EUROFINS SAV EPA 6010D** Calcium Dissolved 210 mg/L 03/20/2023 **EUROFINS SAV** EPA 6020B Cadmium < 0.5 ug/L 03/21/2023 **EUROFINS SAV EPA 6020B** Cadmium - Dissolved < 0.5 ug/L 03/20/2023 **EUROFINS SAV** EPA 200.8 Cobalt 1.65 ug/L 03/21/2023 **EUROFINS SAV EPA 6020B** Cobalt Dissolved 2.0 ug/L 03/21/2023 **EUROFINS SAV EPA 6020B** Chromium <5 ug/L 03/21/2023 **EUROFINS SAV EPA 6020B** Chromium - Dissolved <5 ug/L 03/20/2023 **EUROFINS SAV** EPA 200.8 Lead <2.5 ug/L 03/21/2023 **EUROFINS SAV EPA 6020B** Lead - Dissolved <2.5 ug/L 03/20/2023 **EUROFINS SAV** EPA 200.8 **Antimony** <5 ug/L 03/21/2023 **EUROFINS SAV EPA 6020B** Antimony - Dissolved <5 ug/L 03/20/2023 **EUROFINS SAV** EPA 200.8 Selenium <20 ug/L 03/20/2023 **EUROFINS SAV EPA 6010D** Selenium - Dissolved <20 ug/L 03/20/2023 **EUROFINS SAV** EPA 200.8 Thallium <1 ug/L 03/21/2023 **EUROFINS SAV EPA 6020B** Thallium - Dissolved <1 ug/L 03/20/2023 **EUROFINS SAV** EPA 200.8 Boron 1630 ug/L 04/24/2023 **LCWILLIA EPA 6010D Boron Dissolved** 1600 03/23/2023 ug/L **EUROFINS SAV EPA 6010D** Lithium <5 ug/L 04/20/2023 **LCWILLIA EPA 6010D** Lithium Dissolved <5 ug/L 04/19/2023 **LCWILLIA EPA 6010D** Molybdenum <10 ug/L 03/21/2023 **EUROFINS SAV EPA 6010D** Molybdenum Dissolved <10 ug/L 03/20/2023 **EUROFINS SAV EPA 6010D** Mercury < 0.2 ug/L 03/21/2023 **EUROFINS SAV** EPA 7470 1440 Iron ug/L 03/20/2023 **EUROFINS SAV EPA 6010D** Iron - Dissolved **EUROFINS SAV** 1430 ug/L 03/21/2023 **EPA 6020B** Potassium 5.15 mg/L 03/20/2023 **EUROFINS SAV EPA 6010D** Potassium Dissolved 5.2 mg/L 03/20/2023 **EUROFINS SAV EPA 6020B** Sodium 46.2 mg/L 03/20/2023 **EUROFINS SAV EPA 6010D** Sodium Dissolved 46.5 mg/L 03/21/2023 **EUROFINS SAV EPA 6020B** Magnesium 18.2 mg/L 03/20/2023 **EUROFINS SAV EPA 6010D** Magnesium Dissolved 18.5 mg/L 03/20/2023 **EUROFINS SAV EPA 6020B** Manganese 207 ug/L 03/21/2023 **EUROFINS SAV EPA 6020B** Manganese Dissolved 173 ug/L 03/25/2023 **EUROFINS SAV EPA 6020B** Zinc 29.1 ug/L 03/21/2023 **EUROFINS SAV EPA 6020B** Zinc Dissolved 28.0 ug/L 03/20/2023 **EUROFINS SAV EPA 6020B** Copper <5 ug/L 03/21/2023 **EUROFINS SAV EPA 6020B** Nickel <5 ug/L 03/21/2023 **EUROFINS SAV EPA 6020B** Nickel - Dissolved <5 ug/L 03/20/2023 **EUROFINS SAV** EPA 200.8 Sulfide < 0.1 mg/L 03/14/2023 SUB GEL **EPA 9034 Total Organic Carbon** 7.16 mg/L 03/21/2023 SUB_GEL SM 5310B Dissoloved Organic Carbon 6.25 mg/L 03/16/2023 SUB_GEL SM 5310B

SANTEE COOPER ANALYTICAL SERVICES

CERTIFICATE OF ANALYSIS

LAB CERTIFICATION #08552

Sample # AF56407

Location: GW Well WAP-12

Date: 03/09/2023

Sample Collector: ZDM/ML

DUP		Time: 10:34		
Result	Units	Test Date	Analyst	Method
<0.10	mg/L	03/17/2023	KCWELLS	EPA 300.0
<0.10	mg/L	03/17/2023	KCWELLS	EPA 300.0
<0.2	mg/L	03/13/2023	GEL	EPA 353.2
431	mg/L	03/23/2023	KCWELLS	EPA 300.0
170	mg/L	03/23/2023	KCWELLS	EPA 300.0
<0.10	mg/L	03/17/2023	KCWELLS	EPA 300.0
1011	mg/L	03/24/2023	KCWELLS	SM 2540C
1.29	pCi/L	04/11/2023	GEL	EPA 903.1 Mod
0.0962	pCi/L	04/04/2023	GEL	EPA 904.0
1.39	pCi/L	04/11/2023	GEL	EPA 903.1 Mod
<5.71	mg/kg	03/13/2023	SUB_GEL	SM2320B
7.14	mg/L	03/13/2023	SUB GEL	SM 2320B
7.14	mg/L	03/13/2023	SUB_GEL	SM 2320B
<1	ug/L	03/20/2023	EUROFINS SAV	EPA 6020B
<1	ug/L	03/20/2023	EUROFINS SAV	EPA 200.8
	Result <0.10 <0.10 <0.2 431 170 <0.10 1011 1.29 0.0962 1.39 <5.71 7.14 7.14 <1	Result Units <0.10	Result Units Test Date <0.10	Result Units Test Date Analyst <0.10

Comments:

Independent Laboratory Results: "GEL" - GEL Laboratories LLC - Lab ID # 10120; "Test America" - TestAmerica Laboratories, Inc. - Lab ID# 98001; "DavisBrown"- Davis & Brown Lab ID # 21117; "Shealy"- Shealy Environmental Services, Inc.- Lab ID# 32010 "ROGERSCALLCO"-Rogers & Callcot, Inc.- Lab ID # 23105001

Analysis Validated:

Tinda Cellian

Validation date: 05/08/2023

SANTEE COOPER ANALYTICAL SERVICES

CERTIFICATE OF ANALYSIS

LAB CERTIFICATION #08552

Sample # AF56408

Location: GW Well WAP-13

Date: 03/08/2023

Sample Collector: ZDM/ML

Loc. Code WAP-13

I	ime:	13:38

LOC. Code WAF-13	11me: 13:38						
Analysis	Result	Units	Test Date	Analyst	Method		
Aluminum	<0.1	mg/L	03/21/2023	EUROFINS SAV	EPA 6020B		
Aluminum - Dissolved	<0.1	mg/L	03/20/2023	EUROFINS SAV	EPA 200.7		
Arsenic	<3	ug/L	03/21/2023	EUROFINS SAV	EPA 6020B		
Arsenic Dissolved	<3	ug/L	03/21/2023	EUROFINS SAV	EPA 6020B		
Barium	305	ug/L	03/21/2023	EUROFINS SAV	EPA 6020B		
Barium Dissolved	251	ug/L	03/20/2023	EUROFINS SAV	EPA 6020B		
Beryllium	<0.5	ug/L	03/21/2023	EUROFINS SAV	EPA 6020B		
Beryllium Dissolved	<0.5	ug/L	03/21/2023	EUROFINS SAV	EPA 6020B		
Calcium	416.0	mg/L	03/20/2023	EUROFINS SAV	EPA 6010D		
Calcium Dissolved	21	mg/L	03/24/2023	EUROFINS SAV	EPA 6020B		
Cadmium	<0.5	ug/L	03/21/2023	EUROFINS SAV	EPA 6020B		
Cadmium - Dissolved	<0.5	ug/L	03/20/2023	EUROFINS SAV	EPA 200.8		
Cobalt	0.555	ug/L	03/21/2023	EUROFINS SAV	EPA 6020B		
Cobalt Dissolved	0.58	ug/L	03/21/2023	EUROFINS SAV	EPA 6020B		
Chromium	<5	ug/L	03/21/2023	EUROFINS SAV	EPA 6020B		
Chromium - Dissolved	40.5	ug/L	03/20/2023	EUROFINS SAV	EPA 200.8		
Lead	<2.5	ug/L	03/21/2023	EUROFINS SAV	EPA 6020B		
Lead - Dissolved	<2.5	ug/L	03/20/2023	EUROFINS SAV	EPA 200.8		
Antimony	<5	ug/L	03/21/2023	EUROFINS SAV	EPA 6020B		
Antimony - Dissolved	<5	ug/L	03/20/2023	EUROFINS SAV	EPA 200.8		
Selenium	<20	ug/L	03/20/2023	EUROFINS SAV	EPA 6010D		
Selenium - Dissolved	<20	ug/L	03/24/2023	EUROFINS SAV	EPA 200.8		
Thallium	<1	ug/L	03/21/2023	EUROFINS SAV	EPA 6020B		
Thallium - Dissolved	<1	ug/L	03/20/2023	EUROFINS SAV	EPA 200.8		
Boron	4210	ug/L	04/24/2023	LCWILLIA	EPA 6010D		
Boron Dissolved	3770	ug/L	03/23/2023	EUROFINS SAV	EPA 6010D		
Lithium	14.2	ug/L	04/20/2023	LCWILLIA	EPA 6010D		
Lithium Dissolved	13.8	ug/L	04/19/2023	LCWILLIA	EPA 6010D		
Molybdenum	<10	ug/L	03/21/2023	EUROFINS SAV	EPA 6010D		
Molybdenum Dissolved	<10	ug/L	03/24/2023	EUROFINS SAV			
Mercury	<0.2	ug/L	03/24/2023		EPA 6010D		
Iron	56000	ug/L		EUROFINS SAV	EPA 7470		
Iron - Dissolved	256	-	03/20/2023	EUROFINS SAV	EPA 6010D		
Potassium	2.78	ug/L	03/24/2023	EUROFINS SAV	EPA 6020B		
Potassium Dissolved	2.76 <1	mg/L	03/20/2023	EUROFINS SAV	EPA 6010D		
Sodium	127	mg/L	03/24/2023	EUROFINS SAV	EPA 6020B		
Sodium Dissolved	4.33	mg/L	03/20/2023	EUROFINS SAV	EPA 6010D		
		mg/L	03/21/2023	EUROFINS SAV	EPA 6020B		
Magnesium Disselved	30.4	mg/L	03/20/2023	EUROFINS SAV	EPA 6010D		
Magnesium Dissolved	1.65	mg/L	03/24/2023	EUROFINS SAV	EPA 6020B		
Manganese	694	ug/L 	03/21/2023	EUROFINS SAV	EPA 6020B		
Manganese Dissolved	629	ug/L	03/24/2023	EUROFINS SAV	EPA 6020B		
Zinc	136	ug/L	03/21/2023	EUROFINS SAV	EPA 6020B		
Zinc Dissolved	53.9	ug/L	03/20/2023	EUROFINS SAV	EPA 6020B		
Copper	< 5	ug/L	03/21/2023	EUROFINS SAV	EPA 6020B		
Nickel	<5	ug/L	03/21/2023	EUROFINS SAV	EPA 6020B		
Nickel - Dissolved	<5	ug/L	03/20/2023	EUROFINS SAV	EPA 200.8		
Sulfide	<0.1	mg/L	03/14/2023	GEL	EPA 9034		
Total Organic Carbon	9.05	mg/L	03/21/2023	GEL.	SM 5310B		
Dissoloved Organic Carbon	7.68	mg/L	03/20/2023	GEL	SM 5310B		

SANTEE COOPER ANALYTICAL SERVICES

CERTIFICATE OF ANALYSIS

LAB CERTIFICATION #08552

Sample # AF56408

Location: GW Well WAP-13

Date: 03/08/2023

Sample Collector: ZDM/ML

Loc. Code	WAP-13	Time: 13:38

U					
Analysis	Result	Units	Test Date	Analyst	Method
Nitrite	<0.10	mg/L	03/10/2023	KCWELLS	EPA 300.0
Nitrate	<0.10	mg/L	03/10/2023	KCWELLS	EPA 300.0
Sulfate	134	mg/L	03/10/2023	KCWELLS	EPA 300.0
Chloride	693	mg/L	03/10/2023	KCWELLS	EPA 300.0
Fluoride	0.13	mg/L	03/10/2023	KCWELLS	EPA 300.0
Total Dissolved Solids	1926	mg/L	03/15/2023	KCWELLS	SM 2540C
Radium 226	1.53	pCi/L	04/11/2023	GEL	EPA 903.1 Mod
Radium 228	0.311	pCi/L	04/04/2023	GEL	EPA 904.0
Radium 226/228 Combined Calculation	1.84	pCi/L	04/11/2023	GEL	EPA 903.1 Mod
Alkalinity as CaCO3	<5.71	mg/kg	03/13/2023	GEL	SM2320B
Alkalinity	481	mg/L	03/13/2023	GEL	SM 2320B
Bicarbonate Alkalinity	481	mg/L	03/13/2023	GEL	SM 2320B
Silver	<1	ug/L	03/20/2023	EUROFINS SAV	EPA 6020B
Silver- Dissolved	<1	ug/L	03/20/2023	EUROFINS SAV	EPA 200.8

Comments:

Independent Laboratory Results: "GEL" - GEL Laboratories LLC - Lab ID # 10120; "Test America" - TestAmerica Laboratories, Inc. - Lab ID# 98001; "DavisBrown"- Davis & Brown Lab ID # 21117; "Shealy"- Shealy Environmental Services, Inc.- Lab ID# 32010 "ROGERSCALLCO"-Rogers & Callcot, Inc.- Lab ID # 23105001

Analysis Validated:

Lindallellars

Validation date: 05/08/2023

SANTEE COOPER ANALYTICAL SERVICES

CERTIFICATE OF ANALYSIS

LAB CERTIFICATION #08552

Sample # AF56429 Location: GW Well WAP-28 Date: 03/08/2023 Sample Collector: ZDM/ML

Loc. Code WAP-28 Time: 12:12

Loc. Code WAP-28			Time: 12:12		
Analysis	Result	Units	Test Date	Analyst	Method
Aluminum	2.41	mg/L	03/21/2023	EUROFINS SAV	EPA 6020B
Aluminum - Dissolved	2.31	mg/L	03/20/2023	EUROFINS SAV	EPA 200.7
Arsenic	<3	ug/L	03/21/2023	EUROFINS SAV	EPA 6020B
Arsenic Dissolved	<3	ug/L	03/21/2023	EUROFINS SAV	EPA 6020B
Barium	258	ug/L	03/21/2023	EUROFINS SAV	EPA 6020B
Barium Dissolved	245	ug/L	03/20/2023	EUROFINS SAV	EPA 6020B
Beryllium	0.985	ug/L	03/21/2023	EUROFINS SAV	EPA 6020B
Beryllium Dissolved	0.97	ug/L	03/21/2023	EUROFINS SAV	EPA 6020B
Calcium	73.10	mg/L	03/20/2023	EUROFINS SAV	EPA 6010D
Calcium Dissolved	74	mg/L	03/20/2023	EUROFINS SAV	EPA 6020B
Cadmium	<0.5	ug/L	03/21/2023	EUROFINS SAV	EPA 6020B
Cadmium - Dissolved	<0.5	ug/L	03/20/2023	EUROFINS SAV	EPA 200.8
Cobalt	18.6	ug/L	03/21/2023	EUROFINS SAV	EPA 6020B
Cobalt Dissolved	19.1	ug/L	03/21/2023	EUROFINS SAV	EPA 6020B
Chromium	<5	ug/L	03/21/2023	EUROFINS SAV	EPA 6020B
Chromium - Dissolved	<5	ug/L	03/20/2023	EUROFINS SAV	EPA 200.8
Lead	3.19	ug/L	03/21/2023	EUROFINS SAV	EPA 6020B
Lead - Dissolved	2.54	ug/L	03/20/2023	EUROFINS SAV	EPA 200.8
Antimony	<5	ug/L	03/21/2023	EUROFINS SAV	EPA 6020B
Antimony - Dissolved	<5	ug/L	03/20/2023	EUROFINS SAV	EPA 200.8
Selenium	<20	ug/L	03/20/2023	EUROFINS SAV	EPA 6010D
Selenium - Dissolved	<20	ug/L	03/20/2023	EUROFINS SAV	EPA 200.8
Thallium	<1	ug/L	03/21/2023	EUROFINS SAV	EPA 6020B
Thallium - Dissolved	<1	ug/L	03/20/2023	EUROFINS SAV	EPA 200.8
Boron	2620	ug/L	04/24/2023	LCWILLIA	EPA 6010D
Boron Dissolved	4920	ug/L	03/23/2023	EUROFINS SAV	EPA 6010D
Lithium	5.07	ug/L	04/20/2023	LCWILLIA	EPA 6010D
Lithium Dissolved	5.1	ug/L	04/19/2023	LCWILLIA	EPA 6010D
Molybdenum	<10	ug/L	03/21/2023	EUROFINS SAV	EPA 6010D
Molybdenum Dissolved	<10	ug/L	03/20/2023	EUROFINS SAV	EPA 6010D
Mercury	<0.2	ug/L	03/21/2023	EUROFINS SAV	EPA 7470
Iron	94400	ug/L	03/20/2023	EUROFINS SAV	EPA 6010D
Iron - Dissolved	92900	ug/L	03/21/2023	EUROFINS SAV	EPA 6020B
Potassium	<1	mg/L	03/20/2023	EUROFINS SAV	EPA 6010D
Potassium Dissolved	<1	mg/L	03/20/2023	EUROFINS SAV	EPA 6020B
Sodium	82.2	mg/L	03/20/2023	EUROFINS SAV	EPA 6010D
Sodium Dissolved	82.9	mg/L	03/21/2023	EUROFINS SAV	EPA 6020B
Magnesium	26.0	mg/L	03/20/2023	EUROFINS SAV	EPA 6010D
Magnesium Dissolved	26.0	mg/L	03/20/2023	EUROFINS SAV	EPA 6020B
Manganese	1540	ug/L	03/21/2023	EUROFINS SAV	EPA 6020B
Manganese Dissolved	1380	ug/L	03/24/2023	EUROFINS SAV	EPA 6020B
Zinc	<20	ug/L	03/21/2023	EUROFINS SAV	EPA 6020B
Zinc Dissolved	<20	ug/L	03/20/2023	EUROFINS SAV	EPA 6020B
Copper	<5	ug/L	03/21/2023	EUROFINS SAV	EPA 6020B
Nickel	<5	ug/L	03/21/2023	EUROFINS SAV	EPA 6020B
Nickel - Dissolved	5.89	ug/L	03/20/2023	EUROFINS SAV	EPA 200.8
Sulfide	<0.1	mg/L	03/14/2023	SUB_GEL	EPA 9034
Total Organic Carbon	2.31	mg/L	03/21/2023	SUB_GEL	SM 5310B
Dissoloved Organic Carbon	2.22	mg/L	03/16/2023	SUB_GEL	SM 5310B
-		J		<u>-</u>	00.00

SANTEE COOPER ANALYTICAL SERVICES

CERTIFICATE OF ANALYSIS

LAB CERTIFICATION #08552

Sample # AF56429 Location: GW Well WAP-28 Date: 03/08/2023 Sample Collector: ZDM/ML

Loc. Code WAP-28 Time: 12:12

	11110, 12.12				
Analysis	Result	Units	Test Date	Analyst	Method
Nitrite	<0.10	mg/L	03/10/2023	KCWELLS	EPA 300.0
Nitrate	<0.10	mg/L	03/10/2023	KCWELLS	EPA 300.0
Sulfate	76.0	mg/L	03/10/2023	KCWELLS	EPA 300.0
Chloride	418	mg/L	03/10/2023	KCWELLS	EPA 300.0
Fluoride	0.30	mg/L	03/10/2023	KCWELLS	EPA 300.0
Total Dissolved Solids	780.0	mg/L	03/15/2023	KCWELLS	SM 2540C
Radium 226	0.578	pCi/L	04/11/2023	GEL	EPA 903.1 Mod
Radium 228	3.39	pCi/L	04/04/2023	GEL	EPA 904.0
Radium 226/228 Combined Calculation	3.97	pCi/L	04/11/2023	GEL	EPA 903.1 Mod
Alkalinity as CaCO3	<5.71	mg/kg	03/13/2023	SUB_GEL	SM2320B
Alkalinity	13.1	mg/L	03/13/2023	SUB_GEL	SM 2320B
Bicarbonate Alkalinity	13.1	mg/L	03/13/2023	SUB_GEL	SM 2320B
Silver	<1	ug/L	03/20/2023	EUROFINS SAV	EPA 6020B
Silver- Dissolved	<1	ug/L	03/20/2023	EUROFINS SAV	EPA 200.8

Comments:

Independent Laboratory Results: "GEL" - GEL Laboratories LLC - Lab ID # 10120; "Test America" - TestAmerica Laboratories, Inc. - Lab ID# 98001; "DavisBrown"- Davis & Brown Lab ID # 21117; "Shealy"- Shealy Environmental Services, Inc.- Lab ID# 32010 "ROGERSCALLCO"-Rogers & Callcot, Inc.- Lab ID # 23105001

Analysis Validated:

Validation date: 05/08/2023

SANTEE COOPER ANALYTICAL SERVICES CERTIFICATE OF ANALYSIS LAB CERTIFICATION #08552

Sample # AF60587

Location: GW Well WAP-28

Date: 04/10/2023

Sample Collector: ZDM/BWM

Loc. Code WAP-28

Time: 09:58

Analysis	Result	Units	Test Date	Analyst	Method
Arsenic	<3	ug/l	04/20/2023	EUROFINS SAV	EPA 6020E
Barium	229	ug/L	04/20/2023	EUROFINS SAV	EPA 6020E
Beryllium	1.00	ug/l	04/20/2023	EUROFINS SAV	EPA 6020
Boron	2690	ug/L	04/24/2023	LCWILLIA	EPA 6010
Calcium	75.2	mg/l	04/20/2023	EUROFINS SAV	EPA 6020
Cadmium	<0.5	ug/L	04/20/2023	EUROFINS SAV	EPA 60201
Cobalt	17.7	ug/L	04/20/2023	EUROFINS SAV	EPA 60201
Chromium	<5	ug/L	04/20/2023	EUROFINS SAV	EPA 60201
Mercury	<0.2	ug/L	04/21/2023	EUROFINS SAV	EPA 7470
Lithium	<5	ug/L	04/24/2023	LCWILLIA	EPA 60101
Molybdenum	<5	ug/L	04/24/2023	LCWILLIA	EPA 6010
Lead	3.09	ug/L	04/20/2023	EUROFINS SAV	EPA 6020
Antimony	<5	ug/L	04/20/2023	EUROFINS SAV	EPA 6020
Selenium	<2.5	ug/L	04/20/2023	EUROFINS SAV	EPA 6020
Thallium	<1	ug/L	04/20/2023	EUROFINS SAV	EPA 6020
Radium 226	4.15	pCi/L	04/20/2023	GEL	EPA 903.1 N
Radium 228	2.95	pCi/L	05/08/2023	GEL	EPA 904.
Radium 226/228 Combined Calculation	7.10	pCi/L	05/12/2023	GEL	EPA 903.1 N
Chloride	412	mg/L	04/18/2023	KCWELLS	EPA 300.0
Fluoride	0.44	mg/L	04/18/2023	KCWELLS	EPA 300.0
Sulfate	79.7	mg/L	04/18/2023	KCWELLS	EPA 300.0
Total Dissolved Solids	978.8	mg/L	04/19/2023	KCWELLS	SM 25400
рН	4.50	SU	04/10/2023	ZDM/BWM	
Spec. Cond.	1070	uS	04/10/2023	ZDM/BWM	
Dissolved Oxygen	0.420	ppm	04/10/2023	ZDM/BWM	
Oxidation Reduction Potential	198	mv	04/10/2023	ZDM/BWM	SM2580
Temp	20.04	С	04/10/2023	ZDM/BWM	
Turbidity	0	NTU	04/10/2023	ZDM/BWM	
Depth	10.71	Feet	04/10/2023	ZDM/BWM	
Elevation	12.38	Feet	04/11/2023	ZDMCHENR	

Comments:

Independent Laboratory Results: "GEL" - GEL Laboratories LLC - Lab ID # 10120; "Test America" - TestAmerica Laboratories, Inc. - Lab ID# 98001; "DavisBrown"- Davis & Brown Lab ID # 21117; "Shealy"- Shealy Environmental Services, Inc.- Lab ID# 32010 "ROGERSCALLCO"-Rogers & Callcot, Inc.- Lab ID # 23105001

Analysis Validated:

Linda Willians

One Riverwood Drive P.O. Box 2946101 Moncks Corner, SC 29461-2901

(843) 761-8000

SANTEE COOPER ANALYTICAL SERVICES

CERTIFICATE OF ANALYSIS

LAB CERTIFICATION #08552

Sample # AF68711

Location: GW Well WAP-1

Date: 06/27/2023

Sample Collector: WJK/ML

Loc. Code WAP-1 Time: 11:26

Loc. Code WAP-1			Time: 11:26		
Analysis	Result	Units	Test Date	Analyst	Method
Aluminum	1.14	mg/L	08/08/2023	EUROFINS SAV	EPA 6020B
Arsenic	8.50	ug/L	08/08/2023	EUROFINS SAV	EPA 6020B
Barium	77.1	ug/L	08/08/2023	EUROFINS SAV	EPA 6020B
Beryllium	<0.5	ug/L	08/08/2023	EUROFINS SAV	EPA 6020B
Calcium	8.49	ug/L	08/03/2023	EUROFINS SAV	EPA 6010D
Cadmium	<0.5	ug/L	08/08/2023	EUROFINS SAV	EPA 6020B
Cobalt	0.595	ug/L	08/08/2023	EUROFINS SAV	EPA 6020B
Chromium	<5	ug/L	08/08/2023	EUROFINS SAV	EPA 6020B
Iron	2200	ug/L	08/08/2023	EUROFINS SAV	EPA 6020B
Magnesium	0.733	mg/L	08/08/2023	EUROFINS SAV	EPA 6020B
Lead	<2.5	ug/L	08/08/2023	EUROFINS SAV	EPA 6020B
Antimony	<5	ug/L	08/08/2023	EUROFINS SAV	EPA 6020B
Selenium	<20	ug/L	08/03/2023	EUROFINS SAV	EPA 6010D
Thallium	<1	ug/L	08/08/2023	EUROFINS SAV	EPA 6020B
Boron	41.0	ug/L	08/21/2023	SKJACOBS	EPA 6010D
Lithium	<5.0	ug/L	08/21/2023	SKJACOBS	EPA 6010D
Molybdenum	<5.0	ug/L	08/21/2023	SKJACOBS	EPA 6010D
Mercury	<0.2	ug/L	07/11/2023	EUROFINS SAV	EPA 7470
Zinc	<20	ug/L	08/08/2023	EUROFINS SAV	EPA 6020B
Copper	<5	ug/L	08/08/2023	EUROFINS SAV	EPA 6020B
Nickel	<5	ug/L	08/08/2023	EUROFINS SAV	EPA 6020B
Fluoride	< 0.10	mg/L	07/07/2023	KCWELLS	EPA 300.0
Chloride	10.5	mg/L	07/07/2023	KCWELLS	EPA 300.0
Sulfate	31.1	mg/L	07/07/2023	KCWELLS	EPA 300.0
Total Dissolved Solids	90.00	mg/L	07/05/2023	NTCHIN	SM 2540C
Radium 226	1.85	pCi/L	07/24/2023	GEL	EPA 903.1 Mod
Radium 228	-0.145	pCi/L	07/17/2023	GEL	EPA 904.0
Radium 226/228 Combined Calculation	1.85	pCi/L	07/24/2023	GEL	EPA 903.1 Mod
pH	4.51	SU	06/27/2023	WJK/ML	
-					

Comments:

Independent Laboratory Results: "GEL" - GEL Laboratories LLC - Lab ID # 10120; "Test America" - TestAmerica Laboratories, Inc. - Lab ID# 98001; "DavisBrown"- Davis & Brown Lab ID # 21117; "Shealy"- Shealy Environmental Services, Inc.- Lab ID# 32010 "ROGERSCALLCO"-

Rogers & Callcot, Inc.- Lab ID # 23105001

Analysis Validated:

Linda Williams - Manager Analytical Services

Validation date:

SANTEE COOPER ANALYTICAL SERVICES

CERTIFICATE OF ANALYSIS

LAB CERTIFICATION #08552

Sample # AF68748 Location: GW Well WBW-1 Date: 06/27/2023 Sample Collector: WJK/ML

Loc. Code WBW-1 Time: 10:15

Loc. Code VVBVV-1	Time: 10:15				
Analysis Aluminum	Result 0.938	Units mg/L	Test Date 08/07/2023	Analyst EUROFINS SAV	Method
Arsenic	0.930 <3	ug/L	08/07/2023	EUROFINS SAV	EPA 6020B
Barium	53.4	ug/L	08/07/2023	EUROFINS SAV	EPA 6020B
Beryllium	<0.5	ug/L	08/07/2023	EUROFINS SAV	EPA 6020B
Calcium	3260	ug/L ug/L	08/03/2023	EUROFINS SAV	EPA 6020B
Cadmium	<0.5	ug/L	08/07/2023	EUROFINS SAV	EPA 6010D
Cobalt	2.00	_			EPA 6020B
Chromium	2.00 <5	ug/L ug/L	08/07/2023 08/07/2023	EUROFINS SAV EUROFINS SAV	EPA 6020B
Iron	<100	ug/L	08/07/2023		EPA 6020B
Magnesium	1.28	_	08/07/2023	EUROFINS SAV	EPA 6020B
Lead	<2.5	mg/L ug/L	08/07/2023	EUROFINS SAV	EPA 6020B
Antimony	<5	•		EUROFINS SAV	EPA 6020B
Selenium	<20	ug/L	08/07/2023	EUROFINS SAV	EPA 6020B
Thallium	<1	ug/L	08/03/2023	EUROFINS SAV	EPA 6010D
Boron	53.1	ug/L	08/07/2023	EUROFINS SAV	EPA 6020B
Lithium	<5.0	ug/L	08/23/2023	SKJACOBS	EPA 6010D
Molybdenum	<5.0 <5.0	ug/L	08/23/2023	SKJACOBS	EPA 6010D
Mercury	<0.2	ug/L	08/23/2023	SKJACOBS	EPA 6010D
Zinc		ug/L	07/11/2023	EUROFINS SAV	EPA 7470
	<20	ug/L	08/07/2023	EUROFINS SAV	EPA 6020B
Copper Nickel	<5 <5	ug/L	08/07/2023	EUROFINS SAV	EPA 6020B
Fluoride		ug/L	08/07/2023	EUROFINS SAV	EPA 6020B
	<0.10	mg/L	07/07/2023	KCWELLS	EPA 300.0
Chloride Sulfate	7.58	mg/L	07/07/2023	KCWELLS	EPA 300.0
Total Dissolved Solids	14.4	mg/L	07/07/2023	KCWELLS	EPA 300.0
	42.50	mg/L	07/05/2023	NTCHIN	SM 2540C
Radium 226	0.388	pCi/L	07/24/2023	GEL	EPA 903.1 Mod
Radium 228	3.93	pCi/L	07/19/2023	GEL	EPA 904.0
Radium 226/228 Combined Calculation	4.32	pCi/L	07/24/2023	GEL	EPA 903.1 Mod
pH	3.94	SU	06/27/2023	WJK/ML	

Comments:

Independent Laboratory Results: "GEL" - GEL Laboratories LLC - Lab ID # 10120; "Test America" - TestAmerica Laboratories, Inc. - Lab ID# 98001; "DavisBrown"- Davis & Brown Lab ID # 21117; "Shealy"- Shealy Environmental Services, Inc.- Lab ID# 32010 "ROGERSCALLCO"-Rogers & Callcot, Inc.- Lab ID # 23105001

Analysis Validated:

Linda Williams - Manager Analytical Services

Validation date:

SANTEE COOPER ANALYTICAL SERVICES

CERTIFICATE OF ANALYSIS

LAB CERTIFICATION #08552

Sample # AF68712 Location: GW Well WAP-2 Date: 06/28/2023 Sample Collector: WJK/ML

Loc. Code WAP-2 Time: 15:20

Loc. Code WAP-2	Time: 15:20					
Analysis Aluminum	Result 0.103	Units	Test Date 08/08/2023	Analyst	Method	
Arsenic	45.7	mg/L ug/L	08/08/2023	EUROFINS SAV	EPA 6020B	
Barium	179	ug/L ug/L	08/08/2023	EUROFINS SAV	EPA 6020B	
Beryllium	0.570	_		EUROFINS SAV	EPA 6020B	
Calcium	212	ug/L	08/08/2023	EUROFINS SAV	EPA 6020B	
Cadmium	<0.5	ug/L	08/03/2023	EUROFINS SAV	EPA 6010D	
Cobalt		ug/L	08/08/2023	EUROFINS SAV	EPA 6020B	
	4.70	ug/L	08/08/2023	EUROFINS SAV	EPA 6020B	
Chromium	<5	ug/L 	08/08/2023	EUROFINS SAV	EPA 6020B	
Iron	17800	ug/L	08/08/2023	EUROFINS SAV	EPA 6020B	
Magnesium	26.9	mg/L	08/08/2023	EUROFINS SAV	EPA 6020B	
Lead	<2.5	ug/L	08/08/2023	EUROFINS SAV	EPA 6020B	
Antimony	<5	ug/L	08/08/2023	EUROFINS SAV	EPA 6020B	
Selenium	<20	ug/L	08/03/2023	EUROFINS SAV	EPA 6010D	
Thallium	<1	ug/L	08/08/2023	EUROFINS SAV	EPA 6020B	
Boron	3870	ug/L	08/21/2023	SKJACOBS	EPA 6010D	
Lithium	20.2	ug/L	08/21/2023	SKJACOBS	EPA 6010D	
Molybdenum	<5.0	ug/L	08/21/2023	SKJACOBS	EPA 6010D	
Mercury	<0.2	ug/L	07/11/2023	EUROFINS SAV	EPA 7470	
Zinc	<20	ug/L	08/08/2023	EUROFINS SAV	EPA 6020B	
Copper	<5	ug/L	08/08/2023	EUROFINS SAV	EPA 6020B	
Fluoride	0.11	mg/L	07/07/2023	KCWELLS	EPA 300.0	
Chloride	188	mg/L	07/07/2023	KCWELLS	EPA 300.0	
Sulfate	347	mg/L	07/07/2023	KCWELLS	EPA 300.0	
Total Dissolved Solids	1082	mg/L	07/05/2023	NTCHIN	SM 2540C	
Radium 226	1.83	pCi/L	07/24/2023	GEL	EPA 903.1 Mod	
Radium 228	1.17	pCi/L	07/17/2023	GEL	EPA 904.0	
Radium 226/228 Combined Calculation	3.01	pCi/L	07/24/2023	GEL	EPA 903.1 Mod	
рН	6.33	SU	06/28/2023	WJK/ML		

Comments:

Independent Laboratory Results: "GEL" - GEL Laboratories LLC - Lab ID # 10120; "Test America" - TestAmerica Laboratories, Inc. - Lab ID# 98001; "DavisBrown"- Davis & Brown Lab ID # 21117; "Shealy"- Shealy Environmental Services, Inc.- Lab ID# 32010 "ROGERSCALLCO"-Rogers & Callcot, Inc.- Lab ID# 23105001

Validation date:

Analysis Validated:

Linda Williams - Manager Analytical Services

SANTEE COOPER ANALYTICAL SERVICES

CERTIFICATE OF ANALYSIS

LAB CERTIFICATION #08552

Sample Collector: WJK/ML **Sample #** AF68713 Location: GW Well WAP-3 Date: 06/29/2023

Loc. Code WAP-3 Time: 13:51

Loc. Code WAP-3			Time: 13.31		
Analysis Aluminum	Result <0.1	Units mg/L	Test Date 08/07/2023	Analyst EUROFINS SAV	Method EPA 6020B
Arsenic	<3	-	08/07/2023	EUROFINS SAV	
		ug/L			EPA 6020B
Barium	200 <0.5	ug/L	08/07/2023	EUROFINS SAV	EPA 6020B
Beryllium		ug/L	08/07/2023	EUROFINS SAV	EPA 6020B
Calcium	266	ug/L	08/03/2023	EUROFINS SAV	EPA 6010D
Cadmium	<0.5	ug/L	08/07/2023	EUROFINS SAV	EPA 6020B
Cobalt	<0.5	ug/L	08/07/2023	EUROFINS SAV	EPA 6020B
Chromium	<5	ug/L	08/07/2023	EUROFINS SAV	EPA 6020B
Iron	18600	ug/L	08/07/2023	EUROFINS SAV	EPA 6020B
Magnesium	13.8	mg/L	08/07/2023	EUROFINS SAV	EPA 6020B
Lead	<2.5	ug/L	08/07/2023	EUROFINS SAV	EPA 6020B
Antimony	<5	ug/L	08/07/2023	EUROFINS SAV	EPA 6020B
Selenium	<20	ug/L	08/03/2023	EUROFINS SAV	EPA 6010D
Thallium	<1	ug/L	08/07/2023	EUROFINS SAV	EPA 6020B
Boron	1570	ug/L	08/21/2023	SKJACOBS	EPA 6010D
Lithium	22.9	ug/L	08/21/2023	SKJACOBS	EPA 6010D
Molybdenum	<5.0	ug/L	08/21/2023	SKJACOBS	EPA 6010D
Mercury	<0.2	ug/L	07/11/2023	EUROFINS SAV	EPA 7470
Zinc	<20	ug/L	08/07/2023	EUROFINS SAV	EPA 6020B
Copper	<5	ug/L	08/07/2023	EUROFINS SAV	EPA 6020B
Fluoride	0.1	mg/L	07/07/2023	KCWELLS	EPA 300.0
Chloride	239	mg/L	07/16/2023	KCWELLS	EPA 300.0
Sulfate	174	mg/L	07/16/2023	KCWELLS	EPA 300.0
Total Dissolved Solids	1308	mg/L	07/07/2023	NTCHIN	SM 2540C
Radium 226	1.25	pCi/L	07/24/2023	GEL	EPA 903.1 Mod
Radium 228	3.09	pCi/L	07/17/2023	GEL	EPA 904.0
Radium 226/228 Combined Calculation	4.34	pCi/L	07/24/2023	GEL	EPA 903.1 Mod
рН	6.35	su	06/29/2023	WJK/ML	

Comments:

Independent Laboratory Results: "GEL" - GEL Laboratories LLC - Lab ID# 10120; "Test America" - TestAmerica Laboratories, Inc. - Lab ID# 98001; "DavisBrown"- Davis & Brown Lab ID # 21117; "Shealy"- Shealy Environmental Services, Inc.- Lab ID# 32010 "ROGERSCALLCO"-Rogers & Callcot, Inc.- Lab ID # 23105001

Analysis Validated:

Linda Williams - Manager Analytical Services

Validation date:

One Riverwood Drive P.O. Box 2946101 Moncks Corner, SC 29461-2901

(843) 761-8000

SANTEE COOPER ANALYTICAL SERVICES

CERTIFICATE OF ANALYSIS

LAB CERTIFICATION #08552

Sample # AF68723 Location: GW Well WAP-12 Date: 07/17/2023 Sample Collector: WJK/ML

Loc. Code WAP-12 Time: 13:00

Time, 10.00				
Result	Units	Test Date	Analyst	Method EPA 6020B
_	_			EPA 6020B
	-			
	-			EPA 6020B
	_			EPA 6010D
<0.5	ug/L	08/24/2023	EUROFINS SAV	EPA 6020B
0.925	ug/L	08/24/2023	EUROFINS SAV	EPA 6020B
<5	ug/L	08/24/2023	EUROFINS SAV	EPA 6020B
<2.5	ug/L	08/24/2023	EUROFINS SAV	EPA 6020B
<5	ug/L	08/24/2023	EUROFINS SAV	EPA 6020B
<20	ug/L	08/24/2023	EUROFINS SAV	EPA 6010D
<1	ug/L	08/24/2023	EUROFINS SAV	EPA 6020B
1780	ug/L	08/25/2023	SKJACOBS	EPA 6010D
<5.0	ug/L	08/25/2023	SKJACOBS	EPA 6010D
<5.0	ug/L	08/25/2023	SKJACOBS	EPA 6010D
<0.2	ug/L	07/21/2023	EUROFINS SAV	EPA 7470
<0.10	mg/L	07/26/2023	KCWELLS	EPA 300.0
106	mg/L	07/26/2023	KCWELLS	EPA 300.0
330	mg/L	07/26/2023	KCWELLS	EPA 300.0
711.2	mg/L	07/21/2023	NTCHIN	SM 2540C
0.688	pCi/L	08/17/2023	GEL	EPA 903.1 Mod
2.31	pCi/L	08/09/2023	GEL	EPA 904.0
2.99	pCi/L	08/17/2023	GEL	EPA 903.1 Mod
4.49	SU	07/17/2023	WJK/ML	
	<3 21.6 <0.5 139000 <0.5 0.925 <5 <2.5 <5 <20 <1 1780 <5.0 <5.0 <0.2 <0.10 106 330 711.2 0.688 2.31 2.99	<3	<3	<3

Comments:

Independent Laboratory Results: "GEL" - GEL Laboratories LLC - Lab ID# 10120; "Test America" - TestAmerica Laboratories, Inc. - Lab ID# 98001; "DavisBrown"- Davis & Brown Lab ID # 21117; "Shealy"- Shealy Environmental Services, Inc.- Lab ID# 32010 "ROGERSCALLCO"-Rogers & Callcot, Inc.- Lab ID # 23105001

Analysis Validated:

Validation date:

Linda Williams - Manager Analytical Services

Radium 226/228 Combined Calculation

One Riverwood Drive P.O. Box 2946101 Moncks Corner, SC 29461-2901 (843) 761-8000

SANTEE COOPER ANALYTICAL SERVICES

CERTIFICATE OF ANALYSIS

LAB CERTIFICATION #08552

Sample # AF68724 Location: GW Well WAP-12 Date: 07/17/2023 Sample Collector: WJK/ML

Loc. Code	WAP-12	DUP		Time: 13:05		
Analysis		Result	Units	Test Date	Analyst	Method
Arsenic		<3	ug/L	08/24/2023	EUROFINS SAV	EPA 6020B
Barium		22.9	ug/L	08/24/2023	EUROFINS SAV	EPA 6020B
Beryllium		<0.5	ug/L	08/24/2023	EUROFINS SAV	EPA 6020B
Calcium		139000	ug/L	08/24/2023	EUROFINS SAV	EPA 6010D
Cadmium		<0.5	ug/L	08/24/2023	EUROFINS SAV	EPA 6020B
Cobalt		0.975	ug/L	08/24/2023	EUROFINS SAV	EPA 6020B
Chromium		<5	ug/L	08/24/2023	EUROFINS SAV	EPA 6020B
Lead		<2.5	ug/L	08/24/2023	EUROFINS SAV	EPA 6020B
Antimony		<5	ug/L	08/24/2023	EUROFINS SAV	EPA 6020B
Selenium		<20	ug/L	08/24/2023	EUROFINS SAV	EPA 6010D
Thallium		<1	ug/L	08/24/2023	EUROFINS SAV	EPA 6020B
Boron		1830	ug/L	08/25/2023	SKJACOBS	EPA 6010D
Lithium		<5.0	ug/L	08/25/2023	SKJACOBS	EPA 6010D
Molybdenum		<5.0	ug/L	08/25/2023	SKJACOBS	EPA 6010D
Mercury		<0.2	ug/L	07/21/2023	EUROFINS SAV	EPA 7470
Fluoride		<0.10	mg/L	07/26/2023	KCWELLS	EPA 300.0
Chloride		105	mg/L	07/26/2023	KCWELLS	EPA 300.0
Sulfate		338	mg/L	07/26/2023	KCWELLS	EPA 300.0
Total Dissolve	d Solids	740.0	mg/L	07/21/2023	NTCHIN	SM 2540C
Radium 226		0.856	pCi/L	08/17/2023	GEL	EPA 903.1 Mod
Radium 228		0.607	pCi/L	08/09/2023	GEL	EPA 904.0

pCi/L

08/17/2023

GEL

EPA 903.1 Mod

Comments:

Independent Laboratory Results: "GEL" - GEL Laboratories LLC - Lab ID # 10120; "Test America" - TestAmerica Laboratories, Inc. - Lab ID# 98001; "DavisBrown"- Davis & Brown Lab ID # 21117; "Shealy"- Shealy Environmental Services, Inc.- Lab ID# 32010 "ROGERSCALLCO"-Rogers & Callcot, Inc.- Lab ID # 23105001

Analysis Validated:

Linda Williams - Manager Analytical Services

1.46

Validation date:

SANTEE COOPER ANALYTICAL SERVICES

CERTIFICATE OF ANALYSIS

LAB CERTIFICATION #08552

Sample # AF68725 Location: GW Well WAP-13

Date: 07/18/2023

Sample Collector: WJK/ML

Loc. Code WAP-13

Time: 11:49

Loc. Code WAI 10	Time. 11.45					
Analysis	Result	Units	Test Date	Analyst	Method	
Arsenic	<3	ug/L	08/24/2023	EUROFINS SAV	EPA 6020B	
Barium	270	ug/L	08/24/2023	EUROFINS SAV	EPA 6020B	
Beryllium	<0.5	ug/L	08/24/2023	EUROFINS SAV	EPA 6020B	
Calcium	400000	ug/L	08/24/2023	EUROFINS SAV	EPA 6010D	
Cadmium	<0.5	ug/L	08/24/2023	EUROFINS SAV	EPA 6020B	
Cobalt	0.500	ug/L	08/24/2023	EUROFINS SAV	EPA 6020B	
Chromium	<5	ug/L	08/24/2023	EUROFINS SAV	EPA 6020B	
Lead	<2.5	ug/L	08/24/2023	EUROFINS SAV	EPA 6020B	
Antimony	<5	ug/L	08/24/2023	EUROFINS SAV	EPA 6020B	
Selenium	<20	ug/L	08/24/2023	EUROFINS SAV	EPA 6010D	
Thallium	<1	ug/L	08/24/2023	EUROFINS SAV	EPA 6020B	
Boron	3970	ug/L	08/25/2023	SKJACOBS	EPA 6010D	
Lithium	8.63	ug/L	08/25/2023	SKJACOBS	EPA 6010D	
Molybdenum	<5.0	ug/L	08/25/2023	SKJACOBS	EPA 6010D	
Mercury	<0.2	ug/L	07/26/2023	EUROFINS SAV	EPA 7470	
Fluoride	0.12	mg/L	07/26/2023	KCWELLS	EPA 300.0	
Chloride	624	mg/L	07/26/2023	KCWELLS	EPA 300.0	
Sulfate	147	mg/L	07/26/2023	KCWELLS	EPA 300.0	
Total Dissolved Solids	2335	mg/L	07/24/2023	NTCHIN	SM 2540C	
Radium 226	1.76	pCi/L	08/17/2023	GEL	EPA 903.1 Mod	
Radium 228	1.69	pCi/L	08/09/2023	GEL	EPA 904.0	
Radium 226/228 Combined Calculation	3.46	pCi/L	08/17/2023	GEL	EPA 903.1 Mod	
pH	6.46	SU	07/18/2023	WJK/ML		

Comments:

Independent Laboratory Results: "GEL" - GEL Laboratories LLC - Lab ID # 10120; "Test America" - TestAmerica Laboratories, Inc. - Lab ID# 98001; "DavisBrown"- Davis & Brown Lab ID # 21117; "Shealy"- Shealy Environmental Services, Inc.- Lab ID# 32010 "ROGERSCALLCO"-Rogers & Callcot, Inc.- Lab ID # 23105001

Analysis Validated:

Validation date:

Linda Williams - Manager Analytical Services

SANTEE COOPER ANALYTICAL SERVICES

CERTIFICATE OF ANALYSIS

LAB CERTIFICATION #08552

Sample # AF68746

Location: GW Well WAP-28

Date: 07/17/2023

Sample Collector: WJK/ML

l oc	Code	WAP-28
LUU.	ooue	* * * / \\ - Z U

Time:	: 14	:24
-------	------	-----

		Time: 14:24		
Result	Units	Test Date	Analyst	Method
<3	ug/L	08/24/2023	EUROFINS SAV	EPA 6020B
191	ug/L	08/24/2023	EUROFINS SAV	EPA 6020B
0.695	ug/L	08/24/2023	EUROFINS SAV	EPA 6020B
97500	ug/L	08/24/2023	EUROFINS SAV	EPA 6010D
<0.5	ug/L	08/24/2023	EUROFINS SAV	EPA 6020B
18.8	ug/L	08/24/2023	EUROFINS SAV	EPA 6020B
<5	ug/L	08/24/2023	EUROFINS SAV	EPA 6020B
<2.5	ug/L	08/24/2023	EUROFINS SAV	EPA 6020B
<5	ug/L	08/24/2023	EUROFINS SAV	EPA 6020B
<20	ug/L	08/24/2023	EUROFINS SAV	EPA 6010D
<1	ug/L	08/24/2023	EUROFINS SAV	EPA 6020B
2800	ug/L	08/25/2023	SKJACOBS	EPA 6010D
5.50	ug/L	08/25/2023	SKJACOBS	EPA 6010D
<5.0	ug/L	08/25/2023	SKJACOBS	EPA 6010D
<0.2	ug/L	08/03/2023	EUROFINS SAV	EPA 7470
0.25	mg/L	07/26/2023	KCWELLS	EPA 300.0
392	mg/L	07/26/2023	KCWELLS	EPA 300.0
23.1	mg/L	07/26/2023	KCWELLS	EPA 300.0
1101	mg/L	07/21/2023	NTCHIN	SM 2540C
4.73	pCi/L	08/17/2023	GEL	EPA 903.1 Mod
1.92	pCi/L	08/09/2023	GEL	EPA 904.0
6.65	pCi/L	08/17/2023	GEL	EPA 903.1 Mod
5.17	SU	07/17/2023	WJK/ML	
	<3 191 0.695 97500 <0.5 18.8 <5 <2.5 <5 <20 <1 2800 5.50 <5.0 <0.2 0.25 392 23.1 1101 4.73 1.92 6.65	<3	Result Units Test Date <3	Result Units Test Date Analyst <3

Comments:

Independent Laboratory Results: "GEL" - GEL Laboratories LLC - Lab ID # 10120; "Test America" - TestAmerica Laboratories, Inc. - Lab ID# 98001; "DavisBrown"- Davis & Brown Lab ID # 21117; "Shealy"- Shealy Environmental Services, Inc.- Lab ID# 32010 "ROGERSCALLCO"-Rogers & Callcot, Inc.- Lab ID # 23105001

Analysis Validated:

Validation date:
Linda Williams - Manager Analytical Services

inda Trinianio indiagon Antalytical Corvicto

SANTEE COOPER ANALYTICAL SERVICES

CERTIFICATE OF ANALYSIS

LAB CERTIFICATION #08552

Sample # AF75784

Location: GW Well WAP-28

Date: 08/23/2023

Sample Collector: ZDM/BSB

Time: 11:09

		Tillie. 11.09							
Analysis	Result	Units	Test Date	Analyst	Method				
Arsenic	<5.0	ug/L	09/18/2023	SKJACOBS	EPA 6020B				
Barium	178	ug/L	09/07/2023	SKJACOBS	EPA 6020B				
Beryllium	0.54	ug/L	09/18/2023	SKJACOBS	EPA 6020B				
Calcium	98.8	mg/L	09/07/2023	SKJACOBS	EPA 6020B				
Cadmium	<0.5	ug/L	09/18/2023	SKJACOBS	EPA 6020B				
Cobalt	16.4	ug/L	09/18/2023	SKJACOBS	EPA 6020B				
Chromium	<5.0	ug/L	09/18/2023	SKJACOBS	EPA 6020B				
Lead	2.0	ug/L	09/18/2023	SKJACOBS	EPA 6020B				
Antimony	<5.0	ug/L	09/18/2023	SKJACOBS	EPA 6020B				
Selenium	<10.0	ug/L	09/18/2023	SKJACOBS	EPA 6020B				
Thallium	<1.0	ug/L	09/18/2023	SKJACOBS	EPA 6020B				
Boron	2880	ug/L	09/07/2023	SKJACOBS	EPA 6010D				
Lithium	6.10	ug/L	09/07/2023	SKJACOBS	EPA 6010D				
Molybdenum	<5.0	ug/L	09/07/2023	SKJACOBS	EPA 6010D				
Mercury	<0.2	ug/L	09/12/2023	EUROFINS SAV	EPA 7470				
Fluoride	0.23	mg/L	09/02/2023	GEL	EPA 300.0				
Chloride	354	mg/L	09/03/2023	GEL	EPA 300.0				
Sulfate	99.8	mg/L	09/03/2023	GEL	EPA 300.0				
Total Dissolved Solids	1148	mg/L	08/31/2023	SJBROWN	SM 2540C				
Radium 226	1.72	pCi/L	09/20/2023	GEL	EPA 903.1 Mod				
Radium 228	1.83	pCi/L	09/21/2023	GEL	EPA 904.0				
Radium 226/228 Combined Calculation	3.55	pCi/L	09/21/2023	GEL	EPA 903.1 Mod				
pH	4.89	SU	08/23/2023	ZDM/BSB	/ . 000/ . MOd				
Ferric Iron	+++	mg/L	08/23/2023	ZDM/BSB					
Ferrous Iron	+++	mg/L	08/23/2023	ZDM/BSB					
		5							

Comments:

Independent Laboratory Results: "GEL" - GEL Laboratories LLC - Lab ID # 10120; "Test America" - TestAmerica Laboratories, Inc. - Lab ID# 98001; "DavisBrown"- Davis & Brown Lab ID # 21117; "Shealy"- Shealy Environmental Services, Inc. - Lab ID# 32010 "ROGERSCALLCO"-Rogers & Callcot, Inc.- Lab ID #23105001

Analysis Validated:

Linda Williams - Manager Analytical Services

Validation date:

SANTEE COOPER ANALYTICAL SERVICES

CERTIFICATE OF ANALYSIS

LAB CERTIFICATION #08552

Sample # AF75785 Location: GW Well WAP-28 Date: 08/23/2023 Sample Collector: ZDM/BSB

Loc. Code WAP-28	DUP		Time: 11:14	Time: 11:14					
Analysis	Result	Units	Test Date	Analyst	Method				
Arsenic	<5.0	ug/L	09/18/2023	SKJACOBS	EPA 6020B				
Barium	179	ug/L	09/07/2023	SKJACOBS	EPA 6020B				
Beryllium	0.55	ug/L	09/18/2023	SKJACOBS	EPA 6020B				
Calcium	98.9	mg/L	09/07/2023	SKJACOBS	EPA 6020B				
Cadmium	<0.5	ug/L	09/18/2023	SKJACOBS	EPA 6020B				
Cobalt	16.2	ug/L	09/18/2023	SKJACOBS	EPA 6020B				
Chromium	<5.0	ug/L	09/18/2023	SKJACOBS	EPA 6020B				
Lead	2.2	ug/L	09/18/2023	SKJACOBS	EPA 6020B				
Antimony	<5.0	ug/L	09/18/2023	SKJACOBS	EPA 6020B				
Selenium	<10.0	ug/L	09/18/2023	SKJACOBS	EPA 6020B				
Thallium	<1.0	ug/L	09/18/2023	SKJACOBS	EPA 6020B				
Boron	2920	ug/L	09/07/2023	SKJACOBS	EPA 6010D				
Lithium	5.97	ug/L	09/07/2023	SKJACOBS	EPA 6010D				
Molybdenum	<5.0	ug/L	09/07/2023	SKJACOBS	EPA 6010D				
Mercury	<0.2	ug/L	09/12/2023	EUROFINS SAV	EPA 7470				
Fluoride	0.24	mg/L	09/02/2023	GEL	EPA 300.0				
Chloride	325	mg/L	09/03/2023	GEL	EPA 300.0				
Sulfate	96.0	mg/L	09/03/2023	GEL	EPA 300.0				
Total Dissolved Solids	1165	mg/L	08/31/2023	SJBROWN	SM 2540C				
Radium 226	2.74	pCi/L	09/20/2023	GEL	EPA 903.1 Mod				
Radium 228	1.70	pCi/L	09/21/2023	GEL	EPA 904.0				
Radium 226/228 Combined Calculation	4.44	pCi/L	09/21/2023	GEL	EPA 904.0 EPA 903.1 Mod				
		L 3"=	00.2 1/2020	OLL.	FLW 903.1 MO0				

Comments:

Independent Laboratory Results: "GEL" - GEL Laboratories LLC - Lab ID # 10120; "Test America" - TestAmerica Laboratories, Inc. - Lab ID# 98001; "DavisBrown"- Davis & Brown Lab ID # 21117; "Shealy"- Shealy Environmental Services, Inc.- Lab ID# 32010 "ROGERSCALLCO"-Rogers & Callcot, Inc.- Lab ID # 23105001

Analysis Validated:

Validation date:

SANTEE COOPER ANALYTICAL SERVICES

CERTIFICATE OF ANALYSIS

LAB CERTIFICATION #08552

Sample # AF79065

Location: GW Well WAP-28

Date: 09/27/2023

Sample Collector: ZDM/BSB

Loc. Code WAP-28

Time: 10:49

LOC. COde WAF-20		1 ime: 10.49							
Analysis	Result	Units	Test Date	Analyst	Method				
Arsenic	<5.0	ug/L	10/03/2023	SKJACOBS	EPA 6020B				
Barium	180	ug/L	10/03/2023	SKJACOBS	EPA 6020B				
Beryllium	0.5	ug/L	10/06/2023	SKJACOBS	EPA 6020B				
Calcium	96.5	mg/L	10/03/2023	SKJACOBS	EPA 6020B				
Cadmium	<0.5	ug/L	10/03/2023	SKJACOBS	EPA 6020B				
Cobalt	15.1	ug/L	10/03/2023	SKJACOBS	EPA 6020B				
Chromium	<5.0	ug/L	10/03/2023	SKJACOBS	EPA 6020B				
Lead	2.1	ug/L	10/03/2023	SKJACOBS	EPA 6020B				
Antimony	<5.0	ug/L	10/03/2023	SKJACOBS	EPA 6020B				
Selenium	<10.0	ug/Ŀ	10/06/2023	SKJACOBS	EPA 6020B				
Thallium	<1.0	ug/L	10/03/2023	SKJACOBS	EPA 6020B				
Boron	2970	ug/L	10/12/2023	SKJACOBS	EPA 6010D				
Lithium	6.03	ug/L	10/12/2023	SKJACOBS	EPA 6010D				
Molybdenum	<5.0	ug/L	10/12/2023	SKJACOBS	EPA 6010D				
Mercury	<0.2	ug/L	10/03/2023	EUROFINS SAV	EPA 7470				
Fluoride	0.263	mg/L	09/30/2023	GEL	EPA 300.0				
Chloride	342	mg/L	10/10/2023	GEL	EPA 300.0				
Sulfate	84.5	mg/L	10/10/2023	GEL	EPA 300.0				
Total Dissolved Solids	868.8	mg/L	10/04/2023	KCWELLS	SM 2540C				
Radium 226	3.34	pCi/L	10/26/2023	GEL	EPA 903.1 Mod				
Radium 228	0.944	pCi/L	10/10/2023	GEL	EPA 904.0				
Radium 226/228 Combined Calculation	4.29	pCi/L	10/26/2023	GEL	EPA 903.1 Mod				
рН	4.55	SU	09/27/2023	ZDM/BSB					

Comments:

Independent Laboratory Results: "GEL" - GEL Laboratories LLC - Lab ID # 10120; "Test America" - TestAmerica Laboratories, Inc. - Lab ID# 98001; "DavisBrown"- Davis & Brown Lab ID # 21117; "Shealy"- Shealy Environmental Services, Inc.- Lab ID# 32010 "ROGERSCALLCO"-Rogers & Callcot, Inc.- Lab ID # 23105001

Analysis Validated:

Linda Williams - Manager Analytical Services

Validation date: /2/18/23 Rev

SANTEE COOPER ANALYTICAL SERVICES

CERTIFICATE OF ANALYSIS

LAB CERTIFICATION #08552

Sample # AF79066

Location: GW Well WAP-28

Date: 09/27/2023

Sample Collector: ZDM/BSB

Loc. Code WAP-28 DUP Time: 10:54

Loc. Code WAP-28	DUP		Time: 10:54		
Analysis	Result	Units	Test Date	Analyst	Method
Arsenic	<5.0	ug/L	10/03/2023	SKJACOBS	EPA 6020B
Barium	182	ug/L	10/03/2023	SKJACOBS	EPA 6020B
Beryllium	0.5	ug/L	10/06/2023	SKJACOBS	EPA 6020B
Calcium	99.3	mg/L	10/03/2023	SKJACOBS	EPA 6020B
Cadmium	<0.5	ug/L	10/03/2023	SKJACOBS	EPA 6020B
Cobalt	15.3	ug/L	10/03/2023	SKJACOBS	EPA 6020B
Chromium	<5.0	ug/L	10/03/2023	SKJACOBS	EPA 6020B
Lead	2.1	ug/L	10/03/2023	SKJACOBS	EPA 6020B
Antimony	<5.0	ug/L	10/03/2023	SKJACOBS	EPA 6020B
Selenium	<10.0	ug/L	10/06/2023	SKJACOBS	EPA 6020B
Thallium	<1.0	ug/L	10/03/2023	SKJACOBS	EPA 6020B
Boron	2910	ug/L	10/12/2023	SKJACOBS	EPA 6010D
Lithium	6.46	ug/L	10/12/2023	SKJACOBS	EPA 6010D
Molybdenum	<5.0	ug/L	10/12/2023	SKJACOBS	EPA 6010D
Mercury	<0.2	ug/L	10/03/2023	EUROFINS SAV	EPA 7470
Fluoride	0.300	mg/L	09/30/2023	GEL	EPA 300.0
Chloride	345	mg/L	10/10/2023	GEL	EPA 300.0
Sulfate	96.4	mg/L	10/10/2023	GEL	EPA 300.0
Total Dissolved Solids	908.8	mg/L	10/04/2023	KCWELLS	SM 2540C
Radium 226	1.42	pCi/L	10/26/2023	GEL	EPA 903.1 Mod
Radium 228	1.02	pCi/L	10/10/2023	GEL	EPA 904.0
Radium 226/228 Combined Calculation	2.44	pCi/L	10/26/2023	GEL.	EPA 903.1 Mod

Comments:

Independent Laboratory Results: "GEL" - GEL Laboratories LLC - Lab ID # 10120; "Test America" - TestAmerica Laboratories, Inc. - Lab ID# 98001; "DavisBrown"- Davis & Brown Lab ID # 21117; "Shealy"- Shealy Environmental Services, Inc.- Lab ID# 32010 "ROGERSCALLCO"-Rogers & Callcot, Inc.- Lab ID # 23105001

Analysis Validated

Linda Williams - Manager Analytical Services

SANTEE COOPER ANALYTICAL SERVICES

CERTIFICATE OF ANALYSIS

LAB CERTIFICATION #08552

Sample # AF76177

76177 Location

Location: GW Well WAP-2

Date: 08/24/2023

Sample Collector: ZDM/BSB

Loc. Code WAP-2

Recollect

Time: 12:02

Analysis	Result	Units	Test Date	Analyst	Method
Arsenic	71.2	ug/L	09/07/2023	SKJACOBS	EPA 6020B

Comments:

Independent Laboratory Results: "GEL" - GEL Laboratories LLC - Lab ID # 10120; "Test America" - TestAmerica Laboratories, Inc. - Lab ID# 98001; "DavisBrown"- Davis & Brown Lab ID # 21117; "Shealy"- Shealy Environmental Services, Inc.- Lab ID# 32010 "ROGERSCALLCO"-Rogers & Callcot, Inc.- Lab ID # 23105001

Analysis Validated:

Validation date:
Linda Williams - Manager Analytical Services

SANTEE COOPER ANALYTICAL SERVICES

CERTIFICATE OF ANALYSIS

LAB CERTIFICATION #08552

Sample # AF85223

Location: GW Well WAP-28

Date: 12/11/2023

Sample Collector: ZM/ML

Loc. Code WAP-28

Time: 10:24

LUC. Code WAF-20						
Analysis	Result	Units	Test Date	Analyst	Method	
Arsenic	<5.0	ug/L	12/14/2023	SKJACOBS	EPA 6020B	
Barium	173	ug/L	12/14/2023	SKJACOBS	EPA 6020B	
Beryllium	<0.5	ug/L	12/14/2023	SKJACOBS	EPA 6020B	
Calcium	90.0	mg/L	12/14/2023	SKJACOBS	EPA 6020B	
Cadmium	<0.5	ug/L	12/14/2023	SKJACOBS	EPA 6020B	
Cobalt	13.4	ug/L	12/14/2023	SKJACOBS	EPA 6020B	
Chromium	<5.0	ug/L	12/14/2023	SKJACOBS	EPA 6020B	
Lead	3.4	ug/L	12/14/2023	SKJACOBS	EPA 6020B	
Antimony	<5.0	ug/L	12/14/2023	SKJACOBS	EPA 6020B	
Selenium	<10.0	ug/L	12/14/2023	SKJACOBS	EPA 6020B	
Thallium	<1.0	ug/L	12/14/2023	SKJACOBS	EPA 6020B	
Boron	2880	ug/L	12/20/2023	SKJACOBS	EPA 6010D	
Lithium	6.05	ug/L	12/20/2023	SKJACOBS	EPA 6010D	
Molybdenum	<5.0	ug/L	12/20/2023	SKJACOBS	EPA 6010D	
Mercury	<0.2	ug/L	12/15/2023	EUROFINS SAV	EPA 7470	
Fluoride	0.25	mg/L	12/12/2023	KCWELLS	EPA 300.0	
Chloride	393	mg/L	12/12/2023	KCWELLS	EPA 300.0	
Sulfate	79.1	mg/L	12/12/2023	KCWELLS	EPA 300.0	
Total Dissolved Solids	762.5	mg/L	12/19/2023	KCWELLS	SM 2540C	
Radium 226	2.58	pCi/L	01/10/2024	GEL	EPA 903.1 Mod	
Radium 228	0.944	pCi/L	12/29/2023	GEL	EPA 904.0	
Radium 226/228 Combined Calculation	3.52	pCi/L	01/11/2024	GEL	EPA 903.1 Mod	
pH	4.96	SU	12/11/2023	ZM/ML		

Comments:

Independent Laboratory Results: "GEL" - GEL Laboratories LLC - Lab ID # 10120; "Test America " - TestAmerica Laboratories, Inc. - Lab ID# 98001; "DavisBrown"- Davis & Brown Lab ID # 21117; "Shealy"- Shealy Environmental Services, Inc.- Lab ID# 32010 "ROGERSCALLCO"-Rogers & Callcot, Inc.- Lab ID # 23105001

Analysis Validated:

Linda Williams - Manager Analytical Services

Validation date: (

SANTEE COOPER ANALYTICAL SERVICES

CERTIFICATE OF ANALYSIS

LAB CERTIFICATION #08552

Sample # AF85224

Location: GW Well WAP-28

Date: 12/11/2023

Sample Collector: ZM/ML

Loc. Code	WAP-28	DUP	Time: 10:29
-----------	--------	-----	-------------

Loc. Code WAP-28			Time: 10:29		
Analysis	Result	Units	Test Date	Analyst	Method
Arsenic	<5.0	ug/L	12/14/2023	SKJACOBS	EPA 6020B
Barium	173	ug/L	12/14/2023	SKJACOBS	EPA 6020B
Beryllium	<0.5	ug/L	12/14/2023	SKJACOBS	EPA 6020B
Calcium	82.8	mg/L	12/14/2023	SKJACOBS	EPA 6020B
Cadmium	<0.5	ug/L	12/14/2023	SKJACOBS	EPA 6020B
Cobalt	13.0	ug/L	12/14/2023	SKJACOBS	EPA 6020B
Chromium	<5.0	ug/L	12/14/2023	SKJACOBS	EPA 6020B
Lead	3.8	ug/L	12/14/2023	SKJACOBS	EPA 6020B
Antimony	<5.0	ug/L	12/14/2023	SKJACOBS	EPA 6020B
Selenium	<10.0	ug/L	12/14/2023	SKJACOBS	EPA 6020B
Thallium	<1.0	ug/L	12/14/2023	SKJACOBS	EPA 6020B
Boron	2890	ug/L	12/20/2023	SKJACOBS	EPA 6010D
Lithium	5.55	ug/L	12/20/2023	SKJACOBS	EPA 6010D
Molybdenum	<5.0	ug/L	12/20/2023	SKJACOBS	EPA 6010D
Mercury	<0.2	ug/L	12/15/2023	EUROFINS SAV	EPA 7470
Fluoride	0.24	mg/L	12/12/2023	KCWELLS	EPA 300.0
Chloride	358	mg/L	12/12/2023	KCWELLS	EPA 300.0
Sulfate	75.3	mg/L	12/12/2023	KCWELLS	EPA 300.0
Total Dissolved Solids	805.0	mg/L	12/19/2023	KCWELLS	SM 2540C
Radium 226	1.79	pCi/L	01/10/2024	GEL	EPA 903.1 Mod
Radium 228	1.39	pCi/L	12/29/2023	GEL	EPA 904.0
Radium 226/228 Combined Calculation	3.18	pCi/L	01/11/2024	GEL	EPA 903.1 Mod

Comments:

Independent Laboratory Results: "GEL" - GEL Laboratories LLC - Lab ID # 10120; "Test America" - TestAmerica Laboratories, Inc. - Lab ID# 98001; "DavisBrown"- Davis & Brown Lab ID # 21117; "Shealy"- Shealy Environmental Services, Inc.- Lab ID# 32010 "ROGERSCALLCO"-Rogers & Callcot, Inc.- Lab ID # 23105001

Analysis Validated:

Linda Williams - Manager Analytical Services

Validation date:

gel.com

February 24, 2023

Ms. Jeanette Gilmetti Santee Cooper P.O. Box 2946101 OCO3 Moncks Corner, South Carolina 29461

Re: ABS Lab Analytical Work Order: 611426

Dear Ms. Gilmetti:

GEL Laboratories, LLC (GEL) appreciates the opportunity to provide the enclosed analytical results for the sample(s) we received on February 17, 2023. This original data report has been prepared and reviewed in accordance with GEL's standard operating procedures.

The samples were delivered with proper chain of custody documentation and signatures. All sample containers arrived without any visible signs of tampering or breakage.

Test results for NELAP or ISO 17025 accredited tests are verified to meet the requirements of those standards, with any exceptions noted. The results reported relate only to the items tested and to the sample as received by the laboratory. These results may not be reproduced except as full reports without approval by the laboratory. Copies of GEL's accreditations and certifications can be found on our website at www.gel.com.

Our policy is to provide high quality, personalized analytical services to enable you to meet your analytical needs on time every time. We trust that you will find everything in order and to your satisfaction. If you have any questions, please do not hesitate to call me at (843) 556-8171, ext. 4289.


Sincerely,

Julie Robinson Project Manager

Indie Roberson

Purchase Order: 398684

Enclosures

2040 Savage Road Charleston SC 29407 - (843) 556-8171 - www.gel.com

Certificate of Analysis Report for

SOOP001 Santee Cooper

Client SDG: 611426 GEL Work Order: 611426

The Qualifiers in this report are defined as follows:

- * A quality control analyte recovery is outside of specified acceptance criteria
- ** Analyte is a Tracer compound
- ** Analyte is a surrogate compound
- J Value is estimated
- U Analyte was analyzed for, but not detected above the MDL, MDA, MDC or LOD.

Where the analytical method has been performed under NELAP certification, the analysis has met all of the requirements of the NELAC standard unless qualified on the Certificate of Analysis.

The designation ND, if present, appears in the result column when the analyte concentration is not detected above the limit as defined in the 'U' qualifier above.

This data report has been prepared and reviewed in accordance with GEL Laboratories LLC standard operating procedures. Please direct any questions to your Project Manager, Julie Robinson.

	Irlie	Robinson
Reviewed by		

Page 2 of 31 SDG: 611426

2040 Savage Road Charleston SC 29407 - (843) 556-8171 - www.gel.com

Certificate of Analysis

Report Date: February 24, 2023

Company: Santee Cooper Address: P.O. Box 2946101

OCO3

Moncks Corner, South Carolina 29461

Contact: Ms. Jeanette Gilmetti Project: ABS Lab Analytical

Client Sample ID: AF56397
Sample ID: 611426001
Matrix: Ground Water
Collect Date: 16-FEB-23 10:53
Receive Date: 17-FEB-23

Client

Collector:

Client ID: SOOP001

SOOP00119

Project:

Parameter	Qualifier	Result	DL	RL	Units	PF	DF	Analy	st Date	Time Batch	Method
Carbon Analysis											
SM 5310 B Total Organ	ic Carbon "A	As Received"									
Total Organic Carbon Average		0.639	0.330	1.00	mg/L		1	TSM	02/21/23	1803 2386521	1
Nutrient Analysis											
EPA 353.2 Nitrogen, Ni	trate/Nitrite '	"As Received"									
Nitrogen, Nitrate/Nitrite	U	ND	0.0700	0.200	mg/L		10	KLP1	02/22/23	1059 2387499	2
Spectrometric Analysis											
SM 4500-S(2-) D Sulfid	le "As Receiv	ved"									
Total Sulfide	U	ND	0.0330	0.100	mg/L		1	HH2	02/20/23	1110 2386621	3
Titration and Ion Analys	sis										
SM 2320B Total Alkalin	nity "As Reco	eived"									
Alkalinity, Total as CaCO3		91.2	1.45	4.00	mg/L			MS3	02/23/23	1738 2388218	4
Bicarbonate alkalinity (CaCO	,	91.2	1.45	4.00	mg/L						
Carbonate alkalinity (CaCO3)	U	ND	1.45	4.00	mg/L						
The following Analytic	al Methods v	vere performed:									
Method	Description				I	Analys	Method Description Analyst Comments				

 Method
 Description

 1
 SM 5310 B

 2
 EPA 353.2 Low Level

 3
 SM 4500-S (2-) D

 4
 SM 2320B

Notes:

Column headers are defined as follows:

DF: Dilution Factor Lc/LC: Critical Level
DL: Detection Limit PF: Prep Factor
MDA: Minimum Detectable Activity RL: Reporting Limit

2040 Savage Road Charleston SC 29407 - (843) 556-8171 - www.gel.com

Certificate of Analysis

Project:

Client ID:

Report Date: February 24, 2023

SOOP00119

SOOP001

Company: Santee Cooper Address: P.O. Box 2946101

OCO3

Moncks Corner, South Carolina 29461

Contact: Ms. Jeanette Gilmetti Project: ABS Lab Analytical

Client Sample ID: AF56397
Sample ID: 611426002
Matrix: Ground Water
Collect Date: 16-FEB-23 10:53

Receive Date: 17-FEB-23 Collector: Client

Parameter	Qualifier	Result	DL	RL	Units	PF I	DF .	Analyst Date	Time Batch	Method
Carbon Analysis										
SM 5310 B Dissol	ved Organic Carbo	n "As Received"								
Dissolved Organic Car	bon Average J	0.794	0.330	1.00	mg/L		1	TSM 02/24/23	1421 2387199	1
The following Pre	p Methods were pe	rformed:								
Method	Description	l	A	Analyst	Date	Ti	me	Prep Batch		
EPA 160	Laboratory Fil	tration - DOC	Т	ΓSM	02/21/23	08	45	2386518		
EPA 160	Laboratory Fil	tration - DOC	Т	ΓSM	02/23/23	08	48	2386518		
The following An	alytical Methods w	ere performed:								
Method	Description				A	Analyst (Com	ments		
1	SM 5310 B					•				

Notes:

Column headers are defined as follows:

DF: Dilution Factor Lc/LC: Critical Level
DL: Detection Limit PF: Prep Factor
MDA: Minimum Detectable Activity RL: Reporting Limit

2040 Savage Road Charleston SC 29407 - (843) 556-8171 - www.gel.com

Certificate of Analysis

Report Date: February 24, 2023

Company: Santee Cooper Address: P.O. Box 2946101

OCO3

Moncks Corner, South Carolina 29461

Contact: Ms. Jeanette Gilmetti Project: ABS Lab Analytical

Client Sample ID: AF56400
Sample ID: 611426003
Matrix: Ground Water
Collect Date: 16-FEB-23 12:55
Receive Date: 17-FEB-23

Client

Collector:

Project: SOOP00119 Client ID: SOOP001

Analyst Comments

Parameter	Qualifier	Result	DL	RL	Units	PF	DF	Analy	st Date	Time Batch	Method
Carbon Analysis											
SM 5310 B Total Organ	ic Carbon "A	As Received"									
Total Organic Carbon Averag	e	6.12	0.330	1.00	mg/L		1	TSM	02/21/23	1824 2386521	1
Nutrient Analysis											
EPA 353.2 Nitrogen, Nitrate/Nitrite "As Received"											
Nitrogen, Nitrate/Nitrite		10.2	0.0700	0.200	mg/L		10	KLP1	02/22/23	1043 2387499	2
Spectrometric Analysis											
SM 4500-S(2-) D Sulfic	le "As Receiv	ved"									
Total Sulfide	U	ND	0.0330	0.100	mg/L		1	HH2	02/20/23	1111 2386621	3
Titration and Ion Analys	sis										
SM 2320B Total Alkalii	nity "As Rec	eived"									
Alkalinity, Total as CaCO3		74.2	1.45	4.00	mg/L			MS3	02/23/23	1747 2388218	4
Bicarbonate alkalinity (CaCO	3)	74.2	1.45	4.00	mg/L						
Carbonate alkalinity (CaCO3)	U	ND	1.45	4.00	mg/L						
The following Analytic	al Methods v	vere performed	l:								

 Method
 Description

 1
 SM 5310 B

 2
 EPA 353.2 Low Level

 3
 SM 4500-S (2-) D

 4
 SM 2320B

Notes:

Column headers are defined as follows:

DF: Dilution Factor Lc/LC: Critical Level
DL: Detection Limit PF: Prep Factor
MDA: Minimum Detectable Activity RL: Reporting Limit

2040 Savage Road Charleston SC 29407 - (843) 556-8171 - www.gel.com

Certificate of Analysis

Project:

Client ID:

Report Date: February 24, 2023

SOOP00119

SOOP001

Company: Santee Cooper Address: P.O. Box 2946101

OCO3

Moncks Corner, South Carolina 29461

Contact: Ms. Jeanette Gilmetti Project: ABS Lab Analytical

Client Sample ID: AF56400
Sample ID: 611426004
Matrix: Ground Water
Collect Date: 16-FEB-23 12:55

Receive Date: 17-FEB-23 Collector: Client

Parameter	Qualifier	Result	DL	RL	Units	PF	DF	Analyst Date	Time Batch	Method
Carbon Analysis										
SM 5310 B Disso	lved Organic Carbo	on "As Received"								
Dissolved Organic Car	rbon Average	6.21	0.330	1.00	mg/L		1	TSM 02/22/23	1659 2387199	1
The following Pre	ep Methods were pe	erformed:								
Method	Description	n		Analyst	Date		Time	Prep Batch	1	
EPA 160	Laboratory Fi	iltration - DOC		TSM	02/21/23		0845	2386518		
TP1 C 11 ' A	1 2 136 4 1	C 1								

The following Analytical Methods were performed:

 Method
 Description
 Analyst Comments

 1
 SM 5310 B

Notes:

Column headers are defined as follows:

DF: Dilution Factor Lc/LC: Critical Level
DL: Detection Limit PF: Prep Factor
MDA: Minimum Detectable Activity RL: Reporting Limit

MDC: Minimum Detectable Concentration SQL: Sample Quantitation Limit

Page 6 of 31 SDG: 611426

2040 Savage Road Charleston SC 29407 - (843) 556-8171 - www.gel.com

Certificate of Analysis

Report Date: February 24, 2023

Company: Santee Cooper Address: P.O. Box 2946101

OCO3

Client

Moncks Corner, South Carolina 29461

Contact: Ms. Jeanette Gilmetti Project: ABS Lab Analytical

Client Sample ID: AF56442
Sample ID: 611426005
Matrix: Ground Water
Collect Date: 16-FEB-23 14:07
Receive Date: 17-FEB-23

Collector:

Client ID: SOOP001

Analyst Comments

SOOP00119

Project:

Parameter	Qualifier	Result	DL	RL	Units	PF	DF	Analy	st Date	Time Batch	Method
Carbon Analysis											
SM 5310 B Total Organ	ic Carbon "A	As Received"									
Total Organic Carbon Average	e	15.9	0.330	1.00	mg/L		1	TSM	02/21/23	1906 2386521	1
Nutrient Analysis											
EPA 353.2 Nitrogen, Ni	trate/Nitrite	"As Received"									
Nitrogen, Nitrate/Nitrite	U	ND	0.0700	0.200	mg/L		10	KLP1	02/22/23	1100 2387499	2
Spectrometric Analysis											
SM 4500-S(2-) D Sulfid	e "As Receiv	ved"									
Total Sulfide	U	ND	0.0330	0.100	mg/L		1	HH2	02/20/23	1111 2386621	3
Titration and Ion Analys	sis										
SM 2320B Total Alkalir	nity "As Rec	eived"									
Alkalinity, Total as CaCO3	•	268	1.45	4.00	mg/L			MS3	02/23/23	1749 2388218	4
Bicarbonate alkalinity (CaCO3	3)	268	1.45	4.00	mg/L						
Carbonate alkalinity (CaCO3)	U	ND	1.45	4.00	mg/L						
The following Analytics	al Methods v	vere performed	:								

 Method
 Description

 1
 SM 5310 B

 2
 EPA 353.2 Low Level

 3
 SM 4500-S (2-) D

 4
 SM 2320B

Notes:

Column headers are defined as follows:

DF: Dilution Factor Lc/LC: Critical Level
DL: Detection Limit PF: Prep Factor
MDA: Minimum Detectable Activity RL: Reporting Limit

2040 Savage Road Charleston SC 29407 - (843) 556-8171 - www.gel.com

Certificate of Analysis

Report Date: February 24, 2023

Company: Santee Cooper Address: P.O. Box 2946101

OCO3

Moncks Corner, South Carolina 29461

Contact: Ms. Jeanette Gilmetti Project: ABS Lab Analytical

Client Sample ID: AF56442
Sample ID: 611426006
Matrix: Ground Water
Collect Date: 16-FEB-23 14:07
Receive Date: 17-FEB-23

Client

Client ID: SOOP001

SOOP00119

Project:

Parameter	Qualifier	Result	DL	RL	Units	PF	DF Analy	st Date	Time Batch	Method
Carbon Analysis										
SM 5310 B Dissolv	ed Organic Carbo	on "As Received"								
Dissolved Organic Carbo	on Average	15.9	0.330	1.00	mg/L		1 TSM	02/22/23	1720 2387199	1

Dissolved Organic Carbon Average 15.9 0.330 1.00 mg/L 1 TSM 02/22/23 1720 2387199

The following Prep Methods were performed:

Collector:

MethodDescriptionAnalystDateTimePrep BatchEPA 160Laboratory Filtration - DOCTSM02/21/2308452386518

The following Analytical Methods were performed:

 Method
 Description
 Analyst Comments

 1
 SM 5310 B

Notes:

Column headers are defined as follows:

DF: Dilution Factor Lc/LC: Critical Level
DL: Detection Limit PF: Prep Factor
MDA: Minimum Detectable Activity RL: Reporting Limit

MDC: Minimum Detectable Concentration SQL: Sample Quantitation Limit

Page 8 of 31 SDG: 611426

2040 Savage Road Charleston SC 29407 - (843) 556-8171 - www.gel.com

Certificate of Analysis

Report Date: February 24, 2023

Company: Santee Cooper Address: P.O. Box 2946101

OCO3

Client

Moncks Corner, South Carolina 29461

Contact: Ms. Jeanette Gilmetti Project: ABS Lab Analytical

Client Sample ID: AF56443 Sample ID: 611426007 Matrix: Ground Water Collect Date: 16-FEB-23 14:12 Receive Date: 17-FEB-23

Collector:

Project: Client ID: SOOP001

SOOP00119

Parameter	Qualifier	Result	DL	RL	Units	PF	DF A	nalyst Date	Time Batch	Method
Carbon Analysis										
SM 5310 B Total Orga	anic Carbon "A	As Received"								
Total Organic Carbon Avera	age	15.7	0.330	1.00	mg/L		1 T	SM 02/21/23	2006 2386521	1
Nutrient Analysis										
EPA 353.2 Nitrogen, N	Nitrate/Nitrite	"As Received"								
Nitrogen, Nitrate/Nitrite	U	ND	0.0700	0.200	mg/L		10 K	LP1 02/22/23	1101 2387499	2
Spectrometric Analysi	S									
SM 4500-S(2-) D Sulf	ide "As Recei	ved"								
Total Sulfide	U	ND	0.0330	0.100	mg/L		1 H	H2 02/20/23	1112 2386621	3
Titration and Ion Anal	ysis									
SM 2320B Total Alka	linity "As Rec	eived"								
Alkalinity, Total as CaCO3		271	1.45	4.00	mg/L		M	S3 02/23/23	1750 2388218	4
Bicarbonate alkalinity (CaC	O3)	271	1.45	4.00	mg/L					
Carbonate alkalinity (CaCO	3) U	ND	1.45	4.00	mg/L					
The following Analyt	ical Methods v	were performed	:							
Method	Description	1			1	Analys	st Comn	nents		

Method Description SM 5310 B 2 EPA 353.2 Low Level SM 4500-S (2-) D SM 2320B

Notes:

Column headers are defined as follows:

DF: Dilution Factor Lc/LC: Critical Level DL: Detection Limit PF: Prep Factor MDA: Minimum Detectable Activity RL: Reporting Limit

MDC: Minimum Detectable Concentration SQL: Sample Quantitation Limit

2040 Savage Road Charleston SC 29407 - (843) 556-8171 - www.gel.com

Certificate of Analysis

Project:

Client ID:

Report Date: February 24, 2023

SOOP00119

SOOP001

Company: Santee Cooper Address: P.O. Box 2946101

OCO3

Moncks Corner, South Carolina 29461

Contact: Ms. Jeanette Gilmetti Project: ABS Lab Analytical

Client Sample ID: AF56443
Sample ID: 611426008
Matrix: Ground Water
Collect Date: 16-FEB-23 14:12
Receive Date: 17-FEB-23

Collector: Client

Parameter	Qualifier	Result	DL	RL	Units	PF	DF	Analy	yst Date	Time Batch	Method
Carbon Analysis											
SM 5310 B Dissolved C	Organic Carbo	on "As Received"									
Dissolved Organic Carbon Av	erage	15.6	0.330	1.00	mg/L		1	TSM	02/22/23	1800 2387199	1
The following Prep Met	thods were pe	rformed:									
Method	Description	1		Analyst	Date		Time	e Pi	rep Batch		
EPA 160	Laboratory Fi	Itration - DOC		TSM	02/21/23		0845	23	86518		

The following Analytical Methods were performed:

Method Description Analyst Comments

SM 5310 B

Analyst Comments

Notes:

Column headers are defined as follows:

DF: Dilution Factor Lc/LC: Critical Level
DL: Detection Limit PF: Prep Factor
MDA: Minimum Detectable Activity RL: Reporting Limit

MDC: Minimum Detectable Concentration SQL: Sample Quantitation Limit

Page 10 of 31 SDG: 611426

2040 Savage Road Charleston SC 29407 - (843) 556-8171 - www.gel.com

Certificate of Analysis

Report Date: February 24, 2023

Company: Santee Cooper Address: P.O. Box 2946101

OCO3

Moncks Corner, South Carolina 29461

Contact: Ms. Jeanette Gilmetti Project: ABS Lab Analytical

Client Sample ID: AF56395
Sample ID: 611426009
Matrix: Ground Water
Collect Date: 15-FEB-23 11:36
Receive Date: 17-FEB-23

Client

Collector:

Project: SOOP00119 Client ID: SOOP001

Analyst Comments

Parameter Qual	ifier	Result	DL	RL	Units	PF	DF	Analy	st Date	Time Batch	Method
Carbon Analysis											
SM 5310 B Total Organic Carl	bon "A	As Received"									
Total Organic Carbon Average		3.49	0.330	1.00	mg/L		1	TSM	02/21/23	2026 2386521	1
Nutrient Analysis											
EPA 353.2 Nitrogen, Nitrate/N	litrite	"As Received"									
Nitrogen, Nitrate/Nitrite	U	ND	0.0700	0.200	mg/L		10	KLP1	02/22/23	1102 2387499	2
Spectrometric Analysis											
SM 4500-S(2-) D Sulfide "As	Receiv	ved"									
Total Sulfide	U	ND	0.0330	0.100	mg/L		1	HH2	02/20/23	1112 2386621	3
Titration and Ion Analysis											
SM 2320B Total Alkalinity "A	s Rec	eived"									
Alkalinity, Total as CaCO3		77.8	1.45	4.00	mg/L			MS3	02/23/23	1752 2388218	4
Bicarbonate alkalinity (CaCO3)		77.8	1.45	4.00	mg/L						
Carbonate alkalinity (CaCO3)	U	ND	1.45	4.00	mg/L						
The following Analytical Met	hods v	vere performed:									

 Method
 Description

 1
 SM 5310 B

 2
 EPA 353.2 Low Level

 3
 SM 4500-S (2-) D

 4
 SM 2320B

Notes:

Column headers are defined as follows:

DF: Dilution Factor Lc/LC: Critical Level
DL: Detection Limit PF: Prep Factor
MDA: Minimum Detectable Activity RL: Reporting Limit

MDC: Minimum Detectable Concentration SQL: Sample Quantitation Limit

Page 11 of 31 SDG: 611426

2040 Savage Road Charleston SC 29407 - (843) 556-8171 - www.gel.com

Certificate of Analysis

Project:

Client ID:

Report Date: February 24, 2023

SOOP00119

SOOP001

Company: Santee Cooper Address: P.O. Box 2946101

OCO3

Moncks Corner, South Carolina 29461

Contact: Ms. Jeanette Gilmetti ABS Lab Analytical Project:

Client Sample ID: AF56395 Sample ID: 611426010 Matrix: Ground Water Collect Date: 15-FEB-23 11:36

Receive Date: 17-FEB-23 Collector: Client

Parameter	Oualifier	Result	DL	RL	Units	PF	DE	Analyst Date	Time Datch	Method
1 arameter	Quanner	Result	DL	KL	Omis	1 1	DI.	Analyst Date	Time Batch	Wictilou
Carbon Analysis										
SM 5310 B Dissolv	ed Organic Carbo	on "As Received"								
Dissolved Organic Carbo	on Average	3.45	0.330	1.00	mg/L		1	TSM 02/22/23	1821 2387199	1
The following Prep	Methods were pe	erformed:								
Method	Description	1		Analyst	Date		Time	Prep Batch		
EPA 160	Laboratory Fi	ltration - DOC		TSM	02/21/23		0845	2386518		
The following Analytical Methods were performed:										

Method Description **Analyst Comments** SM 5310 B

Notes:

Column headers are defined as follows:

DF: Dilution Factor Lc/LC: Critical Level DL: Detection Limit PF: Prep Factor MDA: Minimum Detectable Activity RL: Reporting Limit

MDC: Minimum Detectable Concentration SQL: Sample Quantitation Limit

Page 12 of 31 SDG: 611426

2040 Savage Road Charleston SC 29407 - (843) 556-8171 - www.gel.com

Certificate of Analysis

Report Date: February 24, 2023

Company: Santee Cooper Address: P.O. Box 2946101

OCO3

Client

Moncks Corner, South Carolina 29461

Contact: Ms. Jeanette Gilmetti Project: ABS Lab Analytical

Client Sample ID: AF56396
Sample ID: 611426011
Matrix: Ground Water
Collect Date: 15-FEB-23 13:21
Receive Date: 17-FEB-23

Collector:

Project: SOOP00119 Client ID: SOOP001

Analyst Comments

Parameter	Qualifier	Result	DL	RL	Units	PF	DF	Analy	st Date	Time Batch	Method
Carbon Analysis											
SM 5310 B Total Organ	nic Carbon "A	As Received"									
Total Organic Carbon Averag	e	6.69	0.330	1.00	mg/L		1	TSM	02/21/23	2046 2386521	1
Nutrient Analysis											
EPA 353.2 Nitrogen, Ni	itrate/Nitrite	"As Received"	1								
Nitrogen, Nitrate/Nitrite	U	ND	0.0700	0.200	mg/L		10	KLP1	02/22/23	1106 2387499	2
Spectrometric Analysis											
SM 4500-S(2-) D Sulfic	de "As Receiv	ved"									
Total Sulfide	U	ND	0.0330	0.100	mg/L		1	HH2	02/20/23	1113 2386621	3
Titration and Ion Analys	sis										
SM 2320B Total Alkali	nity "As Rec	eived"									
Alkalinity, Total as CaCO3		309	1.45	4.00	mg/L			MS3	02/23/23	1754 2388218	4
Bicarbonate alkalinity (CaCO	3)	309	1.45	4.00	mg/L						
Carbonate alkalinity (CaCO3)) U	ND	1.45	4.00	mg/L						
The following Analytic	al Methods v	vere performed	1:								

 Method
 Description

 1
 SM 5310 B

 2
 EPA 353.2 Low Level

 3
 SM 4500-S (2-) D

 4
 SM 2320B

Notes:

Column headers are defined as follows:

DF: Dilution Factor Lc/LC: Critical Level
DL: Detection Limit PF: Prep Factor
MDA: Minimum Detectable Activity RL: Reporting Limit

MDC: Minimum Detectable Concentration SQL: Sample Quantitation Limit

Page 13 of 31 SDG: 611426

2040 Savage Road Charleston SC 29407 - (843) 556-8171 - www.gel.com

Certificate of Analysis

Project:

Client ID:

Report Date: February 24, 2023

SOOP00119

SOOP001

Company: Santee Cooper Address: P.O. Box 2946101

OCO3

Moncks Corner, South Carolina 29461

Contact: Ms. Jeanette Gilmetti Project: ABS Lab Analytical

Client Sample ID: AF56396
Sample ID: 611426012
Matrix: Ground Water
Collect Date: 15-FEB-23 13:21

Receive Date: 17-FEB-23 Collector: Client

Parameter	Qualifier	Result	DL	RL	Units	PF	DF	Analy	st Date	Time Batch	Method
Carbon Analysis											
SM 5310 B Dissol	lved Organic Carbo	on "As Received"									
Dissolved Organic Car	bon Average	5.85	0.330	1.00	mg/L		1	TSM	02/22/23	1841 2387199	1
The following Pre	p Methods were pe	erformed:									
Method	Description	n		Analyst	Date		Time	Pr	ep Batch		
EPA 160	Laboratory Fi	iltration - DOC		TSM	02/21/23		0845	23	86518		
TEL C 11 ' A	1 4 137 4 1	C 1									

The following Analytical Methods were performed:

MethodDescriptionAnalyst Comments1SM 5310 B

Notes:

Column headers are defined as follows:

DF: Dilution Factor Lc/LC: Critical Level
DL: Detection Limit PF: Prep Factor
MDA: Minimum Detectable Activity RL: Reporting Limit

MDC: Minimum Detectable Concentration SQL: Sample Quantitation Limit

Page 14 of 31 SDG: 611426

2040 Savage Road Charleston SC 29407 - (843) 556-8171 - www.gel.com

Certificate of Analysis

Report Date: February 24, 2023

Company: Santee Cooper Address: P.O. Box 2946101

OCO3

Client

Moncks Corner, South Carolina 29461

Contact: Ms. Jeanette Gilmetti Project: ABS Lab Analytical

Client Sample ID: AF56394
Sample ID: 611426013
Matrix: Ground Water
Collect Date: 14-FEB-23 12:33
Receive Date: 17-FEB-23

Project: SOOP00119 Client ID: SOOP001

Parameter	Qualifier	Result	DL	RL	Units	PF	DF	Analy	st Date	Time	e Batch	Method
Carbon Analysis												
SM 5310 B Total Organ	nic Carbon "A	As Received"										
Total Organic Carbon Averag	ge	1.30	0.330	1.00	mg/L		1	TSM	02/21/23	2106	2386521	1
Spectrometric Analysis												
SM 4500-S(2-) D Sulfic	de "As Recei	ved"										
Total Sulfide	U	ND	0.0330	0.100	mg/L		1	HH2	02/20/23	1114	2386621	2
Titration and Ion Analy	sis											
SM 2320B Total Alkali	nity "As Rec	eived"										
Alkalinity, Total as CaCO3	J	2.40	1.45	4.00	mg/L			MS3	02/23/23	1756	2388218	3
Bicarbonate alkalinity (CaCC	J J	2.40	1.45	4.00	mg/L							
Carbonate alkalinity (CaCO3) U	ND	1.45	4.00	mg/L							
The following Analytic	cal Methods v	were performed:										
Method	Description	l			A	Analys	st Co	nment	S			

1 SM 5310 B 2 SM 4500-S (2-) D 3 SM 2320B

Collector:

Notes:

Column headers are defined as follows:

DF: Dilution Factor Lc/LC: Critical Level
DL: Detection Limit PF: Prep Factor
MDA: Minimum Detectable Activity RL: Reporting Limit

MDC: Minimum Detectable Concentration SQL: Sample Quantitation Limit

Page 15 of 31 SDG: 611426

2040 Savage Road Charleston SC 29407 - (843) 556-8171 - www.gel.com

Certificate of Analysis

Project:

Client ID:

Report Date: February 24, 2023

SOOP00119

SOOP001

Company: Santee Cooper Address: P.O. Box 2946101

OCO3

Moncks Corner, South Carolina 29461

Contact: Ms. Jeanette Gilmetti Project: ABS Lab Analytical

Client Sample ID: AF56394
Sample ID: 611426014
Matrix: Ground Water
Collect Date: 14-FEB-23 12:33
Receive Date: 17-FEB-23

Collector: Client

Parameter	Oualifier	Result	DL	RL	Units	PF	DF	Analy	st Date	Time Batch	Method
	Quantici	Result	DL	KL	Omts	11	DI	Amary	st Date	Time Baten	Wicthou
Carbon Analysis											
SM 5310 B Dissolv	ved Organic Carbo	on "As Received"									
Dissolved Organic Carb	on Average	1.31	0.330	1.00	mg/L		1	TSM	02/22/23	1901 2387199	1
The following Prep	Methods were po	erformed:									
Method	Description	n		Analyst	Date		Time	e Pr	ep Batch		
EPA 160	Laboratory F	iltration - DOC		TSM	02/21/23		0845	23	86518		
The following Ana	Avtical Methods v	vere performed:									

The following Analytical Methods were performed:

Method Description Analyst Comments

SM 5310 B

Analyst Comments

Notes:

Column headers are defined as follows:

DF: Dilution Factor Lc/LC: Critical Level
DL: Detection Limit PF: Prep Factor
MDA: Minimum Detectable Activity RL: Reporting Limit

MDC: Minimum Detectable Concentration SQL: Sample Quantitation Limit

Page 16 of 31 SDG: 611426

2040 Savage Road Charleston SC 29407 - (843) 556-8171 - www.gel.com

Certificate of Analysis

Project:

Client ID:

Report Date: February 24, 2023

SOOP00119

SOOP001

Company: Santee Cooper Address: P.O. Box 2946101

OCO3

Moncks Corner, South Carolina 29461

Contact: Ms. Jeanette Gilmetti Project: ABS Lab Analytical

Client Sample ID: AF56431
Sample ID: 611426015
Matrix: Ground Water
Collect Date: 14-FEB-23 13:51
Receive Date: 17-FEB-23

Collector: Client

Parameter	Qualifier	Result	DL	RL	Units	PF	DF	Analy	st Date	Time Batch	Method
Carbon Analysis											
SM 5310 B Total Organi	ic Carbon "A	As Received"									
Total Organic Carbon Average	y J	0.928	0.330	1.00	mg/L		1	TSM	02/21/23	2125 238652	1 1
Spectrometric Analysis											
SM 4500-S(2-) D Sulfide	e "As Receiv	ved"									
Total Sulfide	U	ND	0.0330	0.100	mg/L		1	HH2	02/20/23	1114 238662	1 2
Titration and Ion Analys	is										
SM 2320B Total Alkalin	ity "As Rec	eived"									
Alkalinity, Total as CaCO3	U	ND	1.45	4.00	mg/L			MS3	02/23/23	1757 238821	3
Bicarbonate alkalinity (CaCO3	3) U	ND	1.45	4.00	mg/L						
Carbonate alkalinity (CaCO3)	U	ND	1.45	4.00	mg/L						
The following Analytica	al Methods v	vere performed:									
Method	Description				1	Analys	st Co	mment	s		

1 SM 5310 B 2 SM 4500-S (2-) D 3 SM 2320B

Notes:

Column headers are defined as follows:

DF: Dilution Factor Lc/LC: Critical Level
DL: Detection Limit PF: Prep Factor
MDA: Minimum Detectable Activity RL: Reporting Limit

MDC: Minimum Detectable Concentration SQL: Sample Quantitation Limit

Page 17 of 31 SDG: 611426

2040 Savage Road Charleston SC 29407 - (843) 556-8171 - www.gel.com

Certificate of Analysis

Project:

Client ID:

Report Date: February 24, 2023

SOOP00119

SOOP001

Company: Santee Cooper Address: P.O. Box 2946101

OCO3

Moncks Corner, South Carolina 29461

Contact: Ms. Jeanette Gilmetti Project: ABS Lab Analytical

Client Sample ID: AF56431
Sample ID: 611426016
Matrix: Ground Water
Collect Date: 14-FEB-23 13:51
Receive Date: 17-FEB-23

Collector: Client

Parameter	Qualifier	Result	DL	RL	Units	PF	DF	Analy	st Date	Time Batch	Method
Carbon Analysis											
SM 5310 B Dissol	lved Organic Carbo	on "As Received"									
Dissolved Organic Car	bon Average	1.01	0.330	1.00	mg/L		1	TSM	02/22/23	1922 2387199	1
The following Pre	p Methods were pe	erformed:									
Method	Description	1		Analyst	Date		Time	Pr	ep Batch		
EPA 160	Laboratory Fi	ltration - DOC		TSM	02/21/23		0845	23	86518		
The Callernia A		C									

The following Analytical Methods were performed:

 Method
 Description
 Analyst Comments

 1
 SM 5310 B

Notes:

Column headers are defined as follows:

DF: Dilution Factor

DL: Detection Limit

MDA: Minimum Detectable Activity

Lc/LC: Critical Level

PF: Prep Factor

RL: Reporting Limit

MDC: Minimum Detectable Concentration SQL: Sample Quantitation Limit

Page 18 of 31 SDG: 611426

2040 Savage Road Charleston SC 29407 - (843) 556-8171 - www.gel.com

Certificate of Analysis

Report Date: February 24, 2023

Company: Santee Cooper Address: P.O. Box 2946101

OCO3

Client

Moncks Corner, South Carolina 29461

Contact: Ms. Jeanette Gilmetti Project: ABS Lab Analytical

Client Sample ID: AF56432
Sample ID: 611426017
Matrix: Ground Water
Collect Date: 14-FEB-23 15:22
Receive Date: 17-FEB-23

Collector:

56432 Project: SOOP00119 426017 Client ID: SOOP001

Parameter	Qualifier	Result	DL	RL	Units	PF	DF	Analy	yst Date	Time	Batch	Method
Carbon Analysis												
SM 5310 B Total Organi	c Carbon "A	as Received"										
Total Organic Carbon Average		3.16	0.330	1.00	mg/L		1	TSM	02/21/23	2145	2386521	1
Spectrometric Analysis												
SM 4500-S(2-) D Sulfide	e "As Receiv	/ed"										
Total Sulfide	U	ND	0.0330	0.100	mg/L		1	HH2	02/20/23	1115	2386621	2
Titration and Ion Analys	is											
SM 2320B Total Alkalin	ity "As Rece	eived"										
Alkalinity, Total as CaCO3	J	2.20	1.45	4.00	mg/L			MS3	02/23/23	1758	2388218	3
Bicarbonate alkalinity (CaCO3) J	2.20	1.45	4.00	mg/L							
Carbonate alkalinity (CaCO3)	U	ND	1.45	4.00	mg/L							
The following Analytica	ıl Methods v	vere performed	1:									

Analyst Comments

 Method
 Description

 1
 SM 5310 B

 2
 SM 4500-S (2-) D

 3
 SM 2320B

Notes:

Column headers are defined as follows:

DF: Dilution Factor Lc/LC: Critical Level
DL: Detection Limit PF: Prep Factor
MDA: Minimum Detectable Activity RL: Reporting Limit

MDC: Minimum Detectable Concentration SQL: Sample Quantitation Limit

Page 19 of 31 SDG: 611426

2040 Savage Road Charleston SC 29407 - (843) 556-8171 - www.gel.com

Certificate of Analysis

Project:

Client ID:

Report Date: February 24, 2023

SOOP00119

SOOP001

Company: Santee Cooper Address: P.O. Box 2946101

OCO3

Moncks Corner, South Carolina 29461

Contact: Ms. Jeanette Gilmetti Project: ABS Lab Analytical

Client Sample ID: AF56432
Sample ID: 611426018
Matrix: Ground Water
Collect Date: 14-FEB-23 15:22
Receive Date: 17-FEB-23

Collector: Client

Parameter	Qualifier	Result	DL	RL	Units	PF	DF	Analy	yst Date	Time Batch	Method
Carbon Analysis											
SM 5310 B Dissolv	ved Organic Carbo	on "As Received"									
Dissolved Organic Carb	on Average	3.19	0.330	1.00	mg/L		1	TSM	02/22/23	1942 2387199	1
The following Prep	Methods were pe	erformed:									
Method	Description	ı		Analyst	Date		Time	e Pi	rep Batch		
EPA 160	Laboratory Fi	ltration - DOC		TSM	02/21/23		0845	23	86518		

The following Analytical Methods were performed:

 Method
 Description
 Analyst Comments

 1
 SM 5310 B

Notes:

Column headers are defined as follows:

DF: Dilution Factor Lc/LC: Critical Level
DL: Detection Limit PF: Prep Factor
MDA: Minimum Detectable Activity RL: Reporting Limit

MDC: Minimum Detectable Concentration SQL: Sample Quantitation Limit

Page 20 of 31 SDG: 611426

2040 Savage Road Charleston, SC 29407 - (843) 556-8171 - www.gel.com

QC Summary

Report Date: February 24, 2023

Page 1 of 4

Santee Cooper P.O. Box 2946101

OCO3

Moncks Corner, South Carolina

Contact: Ms. Jeanette Gilmetti

Workorder: 611426

Parmname	NOM	Sample	Qual	QC	Units	RPD%	REC%	Range	Anlst	Date Time
Carbon Analysis										
Batch 2386521 ——										
QC1205325283 611426005 DUP Total Organic Carbon Average		15.9		15.8	mg/L	1.1		(0%-20%)	TSM	02/21/23 19:26
QC1205325282 LCS										
Total Organic Carbon Average	10.0			9.56	mg/L		95.6	(80%-120%)		02/21/23 15:46
QC1205325281 MB Total Organic Carbon Average			U	ND	mg/L					02/21/23 15:36
Total Organic Carbon Average			O	ND	mg/L					02/21/25 15.50
QC1205325285 611426005 PS										
Total Organic Carbon Average	10.0	15.9		24.0	mg/L		81.1	(65%-120%)		02/21/23 19:46
Batch 2387199 —										
QC1205325262 611426002 DUP	J	0.794	J	0.777	/T	2.16 ^		(1/1.00)	TOM	00/04/02 14 41
Dissolved Organic Carbon Average	J	0.794	J	0.777	mg/L	2.16		(+/-1.00)	151/1	02/24/23 14:41
OC1205325261 FLTB										
QC1205325261 FLTB Dissolved Organic Carbon Average			J	0.372	mg/L					02/24/23 14:10
Dissolved Organic Carbon Average			U	ND	mg/L					02/22/23 14:17
QC1205326621 LCS	10.0			0.50	/1		07.0	(900/ 1200/)		00/00/00 14 07
Dissolved Organic Carbon Average	10.0			9.58	mg/L		95.8	(80%-120%)		02/22/23 14:27
OC1205226620 ND										
QC1205326620 MB Dissolved Organic Carbon Average			U	ND	mg/L					02/22/23 14:07
QC1205325263 611426002 PS										
Dissolved Organic Carbon Average	10.0 J	0.794		11.0	mg/L		102	(65%-120%)		02/24/23 15:01

2040 Savage Road Charleston, SC 29407 - (843) 556-8171 - www.gel.com

QC Summary

Workorder: 611426 Page 2 of 4 **Parmname NOM** Sample Qual QC Units RPD% REC% Range Anlst Date Time **Nutrient Analysis** 2387499 Batch QC1205327254 611426009 DUP U ND U ND mg/L KLP1 02/22/23 11:03 Nitrogen, Nitrate/Nitrite N/A QC1205327253 LCS 0.943 Nitrogen, Nitrate/Nitrite 1.00 mg/L 94.3 (90%-110%) 02/22/23 10:41 QC1205327252 MB U ND 02/22/23 10:40 mg/L Nitrogen, Nitrate/Nitrite QC1205327255 611426009 PS ND Nitrogen, Nitrate/Nitrite 1.00 U 1.23 mg/L 123* (90%-110%) 02/22/23 11:05 Spectrometric Analysis QC1205325529 LCS 0.410 Total Sulfide 0.400 mg/L 103 (85%-115%) HH2 02/20/23 11:08 QC1205325528 MB U ND Total Sulfide mg/L 02/20/23 11:08 QC1205325530 611426001 PS Total Sulfide ND 0.374 0.400 U mg/L 93.5 (75%-125%) 02/20/23 11:10 QC1205325531 611426001 PSD 0.400 U ND 02/20/23 11:11 Total Sulfide 0.386 3.06 96.4 (0%-15%)mg/L Titration and Ion Analysis 2388218 QC1205328367 611426001 DUP Alkalinity, Total as CaCO3 91.2 92.2 mg/L 1.09 (0%-20%)MS3 02/23/23 17:40 91.2 92.2 (0%-20%)Bicarbonate alkalinity (CaCO3) mg/L 1.09 Carbonate alkalinity (CaCO3) U ND U ND mg/L N/A

2040 Savage Road Charleston, SC 29407 - (843) 556-8171 - www.gel.com

QC Summary

Workorder: 611426 Page 3 of 4 **Parmname NOM** Sample Qual QC Units RPD% REC% Range Anlst Date Time Titration and Ion Analysis Batch 2388218 QC1205328366 LCS 103 103 100 mg/L (90%-110%) MS3 02/23/23 17:36 Alkalinity, Total as CaCO3 QC1205328368 611426001 MS 91.2 198 (80%-120%) Alkalinity, Total as CaCO3 100 mg/L 107 02/23/23 17:44

Notes:

The Qualifiers in this report are defined as follows:

- U Analyte was analyzed for, but not detected above the MDL, MDA, MDC or LOD.
- J Value is estimated
- X Consult Case Narrative, Data Summary package, or Project Manager concerning this qualifier
- H Analytical holding time was exceeded
- < Result is less than value reported
- > Result is greater than value reported
- h Preparation or preservation holding time was exceeded
- R Sample results are rejected
- Z Paint Filter Test--Particulates passed through the filter, however no free liquids were observed.
- d 5-day BOD--The 2:1 depletion requirement was not met for this sample
- ^ RPD of sample and duplicate evaluated using +/-RL. Concentrations are <5X the RL. Qualifier Not Applicable for Radiochemistry.
- N/A RPD or %Recovery limits do not apply.
- ND Analyte concentration is not detected above the detection limit
- NJ Consult Case Narrative, Data Summary package, or Project Manager concerning this qualifier
- E General Chemistry--Concentration of the target analyte exceeds the instrument calibration range
- Q One or more quality control criteria have not been met. Refer to the applicable narrative or DER.
- N1 See case narrative
- R Per section 9.3.4.1 of Method 1664 Revision B, due to matrix spike recovery issues, this result may not be reported or used for regulatory compliance purposes.
- B The target analyte was detected in the associated blank.
- e 5-day BOD--Test replicates show more than 30% difference between high and low values. The data is qualified per the method and can be used for reporting purposes
- J See case narrative for an explanation

Page 23 of 31 SDG: 611426

2040 Savage Road Charleston, SC 29407 - (843) 556-8171 - www.gel.com

QC Summary

611426 Page 4 of 4 Parmname **NOM** Sample Qual QC Units RPD% REC% Range **Anlst** Date Time

N/A indicates that spike recovery limits do not apply when sample concentration exceeds spike conc. by a factor of 4 or more or %RPD not applicable.

Workorder:

For PS, PSD, and SDILT results, the values listed are the measured amounts, not final concentrations.

Where the analytical method has been performed under NELAP certification, the analysis has met all of the requirements of the NELAC standard unless qualified on the QC Summary.

Page 24 of 31 SDG: 611426

[^] The Relative Percent Difference (RPD) obtained from the sample duplicate (DUP) is evaluated against the acceptance criteria when the sample is greater than five times (5X) the contract required detection limit (RL). In cases where either the sample or duplicate value is less than 5X the RL, a control limit of +/- the RL is used to evaluate the DUP result.

^{*} Indicates that a Quality Control parameter was not within specifications.

General Chemistry Technical Case Narrative Santee Cooper SDG #: 611426

Product: Carbon, Total Organic Analytical Method: SM 5310 B

Analytical Procedure: GL-GC-E-093 REV# 21

Analytical Batch: 2386521

The following samples were analyzed using the above methods and analytical procedure(s).

CEL Comple ID#	Client Comple Identification
GEL Sample ID#	Client Sample Identification
611426001	AF56397
611426003	AF56400
611426005	AF56442
611426007	AF56443
611426009	AF56395
611426011	AF56396
611426013	AF56394
611426015	AF56431
611426017	AF56432
1205325281	Method Blank (MB)
1205325282	Laboratory Control Sample (LCS)
1205325283	611426005(AF56442) Sample Duplicate (DUP)
1205325285	611426005(AF56442) Post Spike (PS)

The samples in this SDG were analyzed on an "as received" basis.

Data Summary:

There are no exceptions, anomalies or deviations from the specified methods. All sample data provided in this report met the acceptance criteria specified in the analytical methods and procedures for initial calibration, continuing calibration, instrument controls and process controls where applicable.

Product: Carbon, Dissolved Organic Analytical Method: SM 5310 B

Analytical Procedure: GL-GC-E-093 REV# 21

Analytical Batch: 2387199

Filtration Method: EPA 160

Filtration Procedure: GL-LB-E-034 REV# 4

Filtration Batch: 2386518

The following samples were analyzed using the above methods and analytical procedure(s).

GEL Sample ID#	Client Sample Identification
611426002	AF56397
611426004	AF56400
611426006	AF56442
611426008	AF56443

Page 25 of 31 SDG: 611426

611426010	AF56395
611426012	AF56396
611426014	AF56394
611426016	AF56431
611426018	AF56432
1205325261	Filtration Blank (FLTB)
1205325262	611426002(AF56397) Sample Duplicate (DUP)
1205325263	611426002(AF56397) Post Spike (PS)
1205326620	Method Blank (MB)
1205326621	Laboratory Control Sample (LCS)

The samples in this SDG were analyzed on an "as received" basis.

Data Summary:

All sample data provided in this report met the acceptance criteria specified in the analytical methods and procedures for initial calibration, continuing calibration, instrument controls and process controls where applicable, with the following exceptions.

Technical Information

Sample Re-analysis

Samples 1205325262 (AF56397DUP) and 611426002 (AF56397) were reanalyzed due to PS failure. The reanalysis data was reported.

<u>Product:</u> Nitrate/Nitrite Cad Redux Low Level <u>Analytical Method:</u> EPA 353.2 Low Level <u>Analytical Procedure:</u> GL-GC-E-128 REV# 11

Analytical Batch: 2387499

The following samples were analyzed using the above methods and analytical procedure(s).

GEL Sample ID#	Client Sample Identification
611426001	AF56397
611426003	AF56400
611426005	AF56442
611426007	AF56443
611426009	AF56395
611426011	AF56396
1205327252	Method Blank (MB)
1205327253	Laboratory Control Sample (LCS)
1205327254	611426009(AF56395) Sample Duplicate (DUP)
1205327255	611426009(AF56395) Post Spike (PS)

The samples in this SDG were analyzed on an "as received" basis.

Data Summary:

All sample data provided in this report met the acceptance criteria specified in the analytical methods and procedures for initial calibration, continuing calibration, instrument controls and process controls where applicable, with the following exceptions.

Quality Control (QC) Information

Matrix Spike (MS)/Post Spike (PS) Recovery Statement

Page 26 of 31 SDG: 611426

The percent recoveries (%R) obtained from the spike analyses are evaluated when the sample concentration is less than four times (4X) the spike concentration added. The matrix spike recovered outside of the established acceptance limits due to matrix interference and/or non-homogeneity.

Analyte	Sample	Value
Nitrogen, Nitrate/Nitrite	1205327255 (AF56395PS)	123* (90%-110%)

Technical Information

Sample Dilutions

The following sample 611426003 (AF56400) was diluted because target analyte concentrations exceeded the calibration range. The following samples 1205327254 (AF56395DUP), 1205327255 (AF56395PS), 611426001 (AF56397), 611426005 (AF56442), 611426007 (AF56443), 611426009 (AF56395) and 611426011 (AF56396) in this sample group were diluted due to matrix interference. Dilutions may be required for many reasons, including to minimize matrix interferences or to bring over range target analyte concentrations into the linear calibration range.

A = 1= 4 =		611426								
Analyte	001	003	005	007	009	011				
Nitrogen, Nitrate/Nitrite	10X	10X	10X	10X	10X	10X				

Product: Sulfide, Total

Analytical Method: SM 4500-S (2-) D

Analytical Procedure: GL-GC-E-052 REV# 12

Analytical Batch: 2386621

The following samples were analyzed using the above methods and analytical procedure(s).

GEL Sample ID#	Client Sample Identification
611426001	AF56397
611426003	AF56400
611426005	AF56442
611426007	AF56443
611426009	AF56395
611426011	AF56396
611426013	AF56394
611426015	AF56431
611426017	AF56432
1205325528	Method Blank (MB)
1205325529	Laboratory Control Sample (LCS)
1205325530	611426001(AF56397) Post Spike (PS)
1205325531	611426001(AF56397) Post Spike Duplicate (PSD)

The samples in this SDG were analyzed on an "as received" basis.

Data Summary:

There are no exceptions, anomalies or deviations from the specified methods. All sample data provided in this report met the acceptance criteria specified in the analytical methods and procedures for initial calibration, continuing calibration, instrument controls and process controls where applicable.

Page 27 of 31 SDG: 611426

Product: Alkalinity

Analytical Method: SM 2320B

Analytical Procedure: GL-GC-E-033 REV# 14

Analytical Batch: 2388218

The following samples were analyzed using the above methods and analytical procedure(s).

GEL Sample ID#	Client Sample Identification
611426001	AF56397
611426003	AF56400
611426005	AF56442
611426007	AF56443
611426009	AF56395
611426011	AF56396
611426013	AF56394
611426015	AF56431
611426017	AF56432
1205328366	Laboratory Control Sample (LCS)
1205328367	611426001(AF56397) Sample Duplicate (DUP)
1205328368	611426001(AF56397) Matrix Spike (MS)

The samples in this SDG were analyzed on an "as received" basis.

Data Summary:

There are no exceptions, anomalies or deviations from the specified methods. All sample data provided in this report met the acceptance criteria specified in the analytical methods and procedures for initial calibration, continuing calibration, instrument controls and process controls where applicable.

Certification Statement

Where the analytical method has been performed under NELAP certification, the analysis has met all of the requirements of the NELAC standard unless otherwise noted in the analytical case narrative.

Page 28 of 31 SDG: 611426

Chain of Custody

Date Results Needed by:

Project/Task/Unit #:

Rerun request for any flagged QC

□ TSS

GOFER

LCWILLIA	@santeeco						125	715	JJM	02.0	9. GØI.I J	36500 Yes		Analysi	s Grou	<u>ıp</u>
Labworks ID # (Internal use only)	Sample Location Description	V	Collection Date	Collection Time	Sample Collector	Total # of containers	Botyle type: (Glass-G/Plastic-P)	Grab (G) or Composite (C)	Matrix(see below)	Preservative (see	Metho Report Misc. Any of	Comments d # ting limit sample info ther notes	T0c/D0c	ALK BIGARB, GARB	SUFFIDE	RAD 226/228
AP56397	WAP-4		2/16/23	1023	ZDM MDG	7	P#	6	GW	*	* SULF	IDE HAS SHORTHO	D. 2	1	1	2
400	WAP-7			1255			1						1			
442	WLF- 42-6			1407							* PRESE					
443	WLF-A-2-6	. DUP	1	1412	1	1	1	1	1	1	TOC HZ SULFIDE	SO4 ZINC ACEDATE, NOOH	1		1	1
AF 56395	WAP-2		2/15/23	1136	ZDM ML	1		1			RAD HNO3				1	1
96	WAP 3		1	1321	1	Ī	1	1	1	1				I	1	1
AF56394	WAP-1		2/14/23	1233		6	1	1	1	1	ALKAL-TOTAL BICARB, CARB			1	1	2
431	WBW-1			1351		1					RAD - INCLUDE TOTAL CALCULATION		Luor		1	
432	WBW-AI-I		1	1522	1	1	1	1	Ī	1			1	1	1	1
Relinquished by	Employee#	Date	Time	Receiv	ed by:	7/21	Employee	#	Date		Time	Sample Receiving (International TEMP (°C):				
Symour	35594	2/17/23	0950	14	red by:		GEL		2/17/2 Date		750 Time		No			
Relinquished by:	Employee#	Date	Time	MA A	ned by:	1	Employee	*	NC	22	10010	Preservative Lot#:				
Relinquished by:	Employee#	7-17-13 Date	Time	Receiv	red by:	_	Employee	#	Date	CK)	Time					
												Date/Time/Init for prese	rvative			
□ M □ Ag □ C □ Al □ F □ As □ K □ B □ L □ Ba □ M □ Ca □ M □ Cd □ N □ Co □ N	Sc Sc Sn Sn Sr Ti Tl to V ta Zn	□ TO □ DO	C TPO4 3-N 2	□ BTEX □ Napthal □ THM/H □ VOC □ Oil & G □ E. Coli □ Total Co □ pH □ Dissolve	Napthalene THM/HAA VOC Oil & Grease E. Coli Total Coliform pH Dissolved As Dissolved Fe Rad 226		Wallbergyr belo	okum (a oku) IM OC otal met oluble N urity (Ca Moistu ilfites	als Actals aSO4)	(Coal Ultimate Moistur Ash Sulfur BTUs CHN CHN Other Tests: XRF Scan HGI Fineness	% Carbon Mineral Analysis Sieve % Moisture NPDES Öil & Grease	000000000000000000000000000000000000000	ans. O %Moi Color Acidity Dielectr IFT Dissol- sed O Flashp Metals (As,Co Hg)	sture sture sture se Stren ved Ga il oint in oil	ngth ases

☐ Sulfur

□ Pb

□ CrVI

Clien	Annual Street			SDC	SAMPLE RECEIPT & REVIEW FORM,) GAR/COC/Work Order: 0 1420 (01428
Recei	ved By:MVH			Dat	e Received
c	arrier and Tracking Number			C	FedEx Express FedEx Ground UPS Field Services Courier Other (V) P () - (8) C
Suspec	ted Hazard Information	Yes	ž	*If I	Net Counts > 100cpm on samples not marked "radioactive", contact the Radiation Safety Group for further investigation.
A)Ship	ped as a DOT Hazardous?		V	Haza	ard Class Shipped: UN#: If UN2910, Is the Radioactive Shipment Survey Compliant? YesNo
	the client designate the samples are to be d as radioactive?		√	coc	C notation or radioactive stickers on containers equal client designation.
C) Did	the RSO classify the samples as tive?		/	Max	rimum Net Counts Observed* (Observed Counts - Area Background Counts): CPM\ mR/Hr Classified as: Rad 1 Rad 2 Rad 3
D) Did	the client designate samples are hazardous		\checkmark		notation or hazard labels on containers equal client designation.
E) Did	the RSO identify possible hazards?		V	עזו	or E is yes, select Hazards below. PCB's Flammable Foreign Soil RCRA Asbestos Beryllium Other:
	Sample Receipt Criteria	Yes	¥	No	Comments/Qualifiers (Required for Non-Conforming Items)
	hipping containers received intact and aled?	1			Circle Applicable: Seals broken Damaged container Leaking container Other (describe)
	hain of custody documents included ith shipment?	V			Circle Applicable: Client contacted and provided COC COC created upon receipt
3 S	amples requiring cold preservation ithin $(0 \le 6 \text{ deg. C})$?*	V			Preservation Method: Wet Lee Ice Packs Dry ice None Other: *all temperatures are recorded in Celsius TEMP:
	aily check performed and passed on IR mperature gun?	٧			Temperature Device Serial #: JR2-21 Secondary Temperature Device Serial # (If Applicable):
5 S	ample containers intact and sealed?	V			Circle Applicable: Seals broken Damaged container Leaking container Other (describe)
	amples requiring chemical preservation proper pH?	√			Sample ID's and Containers Affected: If Preservation added, Lot#:
7	Do any samples require Volatile Analysis?				If Yes, are Encores or Soil Kits present for solids? Yes No NA (If yes, take to VOA Freezer) Do liquid VOA vials contain acid preservation? Yes No NA (If unknown, select No) Are liquid VOA vials free of headspace? Yes No NA Sample ID's and containers affected:
8 S	amples received within holding time?	V			TD's and tests affected:
u ı	ample ID's on COC match ID's on ottles?	V			ID's and containers affected:
	ate & time on COC match date & time n bottles?	V			Circle Applicable: No dates on containers No times on containers COC missing info Other (describe)
11 ni	umber of containers received match umber indicated on COC?			\	Circle Applicable: No container count on COC Other (describe)
12 G	re sample containers identifiable as EL provided by use of GEL labels? OC form is properly signed in	V			Circle Applicable: Not relinquished Other (describe)
re	dinquished/received sections? ents (Use Continuation Form if needed):	T 4			

List of current GEL Certifications as of 24 February 2023

State	Certification
Alabama	42200
Alaska	17-018
Alaska Drinking Water	SC00012
Arkansas	88-0651
CLIA	42D0904046
California	2940
Colorado	SC00012
Connecticut	PH-0169
DoD ELAP/ ISO17025 A2LA	2567.01
Florida NELAP	E87156
Foreign Soils Permit	P330-15-00283, P330-15-00253
Georgia	SC00012
Georgia SDWA	967
Hawaii	SC00012
Idaho	SC00012 SC00012
Illinois NELAP	200012
Indiana	C-SC-01
Kansas NELAP	E-10332
Kentucky SDWA	90129
Kentucky Wastewater	90129
Louisiana Drinking Water	LA024
Louisiana NELAP	03046 (AI33904)
Maine	2019020
Maryland	270
Massachusetts	M-SC012
Massachusetts PFAS Approv	Letter
Michigan	9976
Mississippi	SC00012
Nebraska	NE-OS-26-13
Nevada	SC000122023-4
New Hampshire NELAP	2054
New Jersey NELAP	SC002
New Mexico	SC00012
New York NELAP	11501
North Carolina	233
North Carolina SDWA	45709
North Dakota	R-158
Oklahoma	2022-160
Pennsylvania NELAP	68-00485
Puerto Rico	SC00012
S. Carolina Radiochem	10120002
Sanitation Districts of L	9255651
South Carolina Chemistry	10120001
Tennessee	TN 02934
Texas NELAP	T104704235-22-20
Utah NELAP	SC000122022-37
Vermont	VT87156
Virginia NELAP	460202
Washington	C780
	1

gel.com

March 16, 2023

Ms. Jeanette Gilmetti Santee Cooper P.O. Box 2946101 OCO3 Moncks Corner, South Carolina 29461

Re: ABS Lab Analytical Work Order: 611428

Dear Ms. Gilmetti:

GEL Laboratories, LLC (GEL) appreciates the opportunity to provide the enclosed analytical results for the sample(s) we received on February 17, 2023. This original data report has been prepared and reviewed in accordance with GEL's standard operating procedures.

The samples were delivered with proper chain of custody documentation and signatures. All sample containers arrived without any visible signs of tampering or breakage. There are no additional comments concerning sample receipt.

Test results for NELAP or ISO 17025 accredited tests are verified to meet the requirements of those standards, with any exceptions noted. The results reported relate only to the items tested and to the sample as received by the laboratory. These results may not be reproduced except as full reports without approval by the laboratory. Copies of GEL's accreditations and certifications can be found on our website at www.gel.com.


Our policy is to provide high quality, personalized analytical services to enable you to meet your analytical needs on time every time. We trust that you will find everything in order and to your satisfaction. If you have any questions, please do not hesitate to call me at (843) 556-8171, ext. 4289.

Sincerely,

Heather Millar for Julie Robinson Project Manager

Purchase Order: 398684

Enclosures

2040 Savage Road Charleston SC 29407 - (843) 556-8171 - www.gel.com

Certificate of Analysis Report for

SOOP001 Santee Cooper

Client SDG: 611428 GEL Work Order: 611428

The Qualifiers in this report are defined as follows:

- * A quality control analyte recovery is outside of specified acceptance criteria
- ** Analyte is a Tracer compound
- ** Analyte is a surrogate compound
- U Analyte was analyzed for, but not detected above the MDL, MDA, MDC or LOD.

Where the analytical method has been performed under NELAP certification, the analysis has met all of the requirements of the NELAC standard unless qualified on the Certificate of Analysis.

The designation ND, if present, appears in the result column when the analyte concentration is not detected above the limit as defined in the 'U' qualifier above.

This data report has been prepared and reviewed in accordance with GEL Laboratories LLC standard operating procedures. Please direct any questions to your Project Manager, Julie Robinson.

Reviewed by

2040 Savage Road Charleston SC 29407 - (843) 556-8171 - www.gel.com

Certificate of Analysis

Report Date: March 16, 2023

Company: Santee Cooper P.O. Box 2946101 Address:

OCO3

Moncks Corner, South Carolina 29461

Contact: Ms. Jeanette Gilmetti Project: ABS Lab Analytical

Client Sample ID: AF56397 Sample ID: 611428001 Matrix: Ground Water Collect Date: 16-FEB-23 10:53 Receive Date: 17-FEB-23

Client

Project: Client ID: SOOP001

SOOP00119

Parameter	Qualifier	Result	Uncertainty	MDC	RL	Units	PF	DF Analy	st Date	Time Batch	Method
Rad Gas Flow Proporti	onal Counting	5									
GFPC, Ra228, Liquid '	'As Received'	'									
Radium-228	U	1.13	+/-1.35	2.28	3.00	pCi/L		JE1	03/14/23	1216 2390110	1
Radium-226+Radium-2	228 Calculation	on "See Pa	arent Products"								
Radium-226+228 Sum		1.80	+/-1.38			pCi/L		NXL1	03/16/23	1404 2394229	2
Rad Radium-226											
Lucas Cell, Ra226, Liq	uid "As Recei	ived"									
Radium-226		0.677	+/-0.308	0.295	1.00	pCi/L		LXP1	03/16/23	1008 2390103	3
The following Analytical Methods were performed:											
Method	Description		Analyst Comments								

1	EPA 904.0/SW846 9320 Modified		•							
2	Calculation									
3	PA 903.1 Modified									
Surrogate/Tracer Recove	ery Test	Result	Nominal	Recovery%	Acceptable Limits					

Barium-133 Tracer 78.7 GFPC, Ra228, Liquid "As Received" (15%-125%)

Notes:

Counting Uncertainty is calculated at the 95% confidence level (1.96-sigma).

Column headers are defined as follows:

Collector:

DF: Dilution Factor Lc/LC: Critical Level PF: Prep Factor DL: Detection Limit MDA: Minimum Detectable Activity **RL**: Reporting Limit

MDC: Minimum Detectable Concentration SQL: Sample Quantitation Limit

Page 3 of 18 SDG: 611428

2040 Savage Road Charleston SC 29407 - (843) 556-8171 - www.gel.com

Certificate of Analysis

Project:

Client ID:

Report Date: March 16, 2023

SOOP00119

SOOP001

Company: Santee Cooper P.O. Box 2946101 Address:

OCO3

Client

Moncks Corner, South Carolina 29461

Contact: Ms. Jeanette Gilmetti Project: ABS Lab Analytical

Client Sample ID: AF56400 Sample ID: 611428002 Matrix: Ground Water Collect Date: 16-FEB-23 12:55 Receive Date:

17-FEB-23

Parameter	Qualifier	Result	Uncertainty	MDC	RL	Units	PF	DF Anal	yst Date	Time Batch	Method
Rad Gas Flow Proportion	onal Counting										
GFPC, Ra228, Liquid "A	As Received"										
Radium-228	U	1.71	+/-1.23	1.92	3.00	pCi/L		JE1	03/14/23	1216 2390110	1
Radium-226+Radium-228 Calculation "See Parent Products"											
Radium-226+228 Sum		2.55	+/-1.28			pCi/L		NXL1	03/16/23	1404 2394229	2
Rad Radium-226											
Lucas Cell, Ra226, Liqu	uid "As Recei	ved"									
Radium-226		0.835	+/-0.332	0.350	1.00	pCi/L		LXP1	03/16/23	0935 2390103	3
The following Analytical Methods were performed:											

Method	Description		Analyst Comments						
1	EPA 904.0/SW846 9320 Modified								
2	Calculation								
3	EPA 903.1 Modified								
Curro coto/Tro cor 1	Pagayamy Tagt	D agult	Naminal	Dagarram v0/	A acceptable I insite				

Recovery% Surrogate/Tracer Recovery Result Nominal Acceptable Limits Test Barium-133 Tracer GFPC, Ra228, Liquid "As Received" 67.3 (15%-125%)

Notes:

Counting Uncertainty is calculated at the 95% confidence level (1.96-sigma).

Column headers are defined as follows:

Collector:

DF: Dilution Factor Lc/LC: Critical Level PF: Prep Factor DL: Detection Limit MDA: Minimum Detectable Activity **RL**: Reporting Limit

MDC: Minimum Detectable Concentration SQL: Sample Quantitation Limit

Page 4 of 18 SDG: 611428

2040 Savage Road Charleston SC 29407 - (843) 556-8171 - www.gel.com

Certificate of Analysis

Report Date: March 16, 2023

SOOP00119

SOOP001

Company: Santee Cooper Address: P.O. Box 2946101

OCO3

Client

Moncks Corner, South Carolina 29461

Contact: Ms. Jeanette Gilmetti Project: ABS Lab Analytical

Client Sample ID: AF56442
Sample ID: 611428003
Matrix: Ground Water
Collect Date: 16-FEB-23 14:07
Receive Date: 17-FEB-23

d Water

Project:

Client ID:

Analyst Comments

Parameter	Qualifier	Result	Uncertainty	MDC	RL	Units	PF	DF Analy	yst Date	Time Batch	Method
Rad Gas Flow Proportio	nal Counting										
GFPC, Ra228, Liquid "A	As Received"										
Radium-228	U	1.77	+/-1.23	1.95	3.00	pCi/L		JE1	03/14/23	1216 2390110	1
Radium-226+Radium-22	28 Calculation	n "See Pa	arent Products"								
Radium-226+228 Sum		1.98	+/-1.24			pCi/L		NXL1	03/16/23	1404 2394229	2
Rad Radium-226											
Lucas Cell, Ra226, Liqu	id "As Receiv	ved"									
Radium-226	U	0.206	+/-0.173	0.225	1.00	pCi/L		LXP1	03/16/23	0935 2390103	3
The following Analytic	al Methods w	ere perfo	ormed:								

1	EPA 904.0/SW846 9320 Modified		•		
2	Calculation				
3	EPA 903.1 Modified				
Surrogate/Tracer Recov	ery Test	Result	Nominal	Recovery%	Acceptable Limits

Barium-133 Tracer GFPC, Ra228, Liquid "As Received" Result Normal Recovery Acceptable Limit Recovery 88.2 (15%-125%)

Notes:

Method

Counting Uncertainty is calculated at the 95% confidence level (1.96-sigma).

Column headers are defined as follows:

Collector:

DF: Dilution Factor Lc/LC: Critical Level
DL: Detection Limit PF: Prep Factor
MDA: Minimum Detectable Activity RL: Reporting Limit

Description

MDC: Minimum Detectable Concentration SQL: Sample Quantitation Limit

Page 5 of 18 SDG: 611428

2040 Savage Road Charleston SC 29407 - (843) 556-8171 - www.gel.com

Certificate of Analysis

Report Date: March 16, 2023

Company: Santee Cooper Address: P.O. Box 2946101

OCO3

Client

Moncks Corner, South Carolina 29461

Contact: Ms. Jeanette Gilmetti Project: ABS Lab Analytical

Client Sample ID: AF56443
Sample ID: 611428004
Matrix: Ground Water
Collect Date: 16-FEB-23 14:12
Receive Date: 17-FEB-23

Description

Client ID: SOOP001

Analyst Comments

SOOP00119

Project:

Parameter	Qualifier	Result	Uncertainty	MDC	RL	Units	PF	DF Analy	st Date	Time Batch	Method
Rad Gas Flow Proportio	nal Counting										
GFPC, Ra228, Liquid "A	As Received"										
Radium-228	U	0.313	+/-0.845	1.53	3.00	pCi/L		JE1	03/14/23	1216 2390110	1
Radium-226+Radium-228 Calculation "See Parent Products"											
Radium-226+228 Sum		0.644	+/-0.892			pCi/L		NXL1	03/16/23	1404 2394229	2
Rad Radium-226											
Lucas Cell, Ra226, Liqu	iid "As Recei	ved"									
Radium-226	U	0.331	+/-0.286	0.446	1.00	pCi/L		LXP1	03/16/23	1008 2390103	3
The following Analytical Methods were performed:											

1	EPA 904.0/SW 846 9320 Modified				
2	Calculation				
3	EPA 903.1 Modified				
Surrogate/Tracer Recove	ery Test	Result	Nominal	Recovery%	Acceptable Limits

Barium-133 Tracer GFPC, Ra228, Liquid "As Received" 87 (15%-125%)

Notes:

Method

Counting Uncertainty is calculated at the 95% confidence level (1.96-sigma).

Column headers are defined as follows:

Collector:

DF: Dilution Factor Lc/LC: Critical Level
DL: Detection Limit PF: Prep Factor
MDA: Minimum Detectable Activity RL: Reporting Limit

MDC: Minimum Detectable Concentration SQL: Sample Quantitation Limit

Page 6 of 18 SDG: 611428

2040 Savage Road Charleston SC 29407 - (843) 556-8171 - www.gel.com

Certificate of Analysis

Report Date: March 16, 2023

Company: Santee Cooper Address: P.O. Box 2946101

OCO3

Client

Moncks Corner, South Carolina 29461

Contact: Ms. Jeanette Gilmetti Project: ABS Lab Analytical

Client Sample ID: AF56395
Sample ID: 611428005
Matrix: Ground Water
Collect Date: 15-FEB-23 11:36
Receive Date: 17-FEB-23

Client ID: SOOP001

SOOP00119

Project:

Parameter	Qualifier	Result	Uncertainty	MDC	RL	Units	PF	DF Analyst Da	e '	Time Batch	Method
Rad Gas Flow Proportion	onal Counting										
GFPC, Ra228, Liquid "	As Received"										
Radium-228		2.62	+/-1.33	1.88	3.00	pCi/L		JE1 03/14	23	1216 2390110	1
Radium-226+Radium-2	28 Calculatio	n "See Pa	arent Products"								
Radium-226+228 Sum		3.15	+/-1.37			pCi/L		NXL1 03/16	23	1404 2394229	2
Rad Radium-226											
Lucas Cell, Ra226, Liqu	uid "As Recei	ved"									
Radium-226		0.531	+/-0.317	0.425	1.00	pCi/L		LXP1 03/16	23	1008 2390103	3
The following Analytic	cal Methods w	ere perfo	ormed:								
Method	Description		Analyst Comments								

I EPA	A 904.0/SW 846 9320 Modified				
2 Calc	culation				
3 EPA	A 903.1 Modified				
Surrogate/Tracer Recovery	Test	Result	Nominal	Recovery%	Acceptable Limits
Barium-133 Tracer	GFPC, Ra228, Liquid "As Received"			69.4	(15%-125%)

Notes

Counting Uncertainty is calculated at the 95% confidence level (1.96-sigma).

Column headers are defined as follows:

Collector:

DF: Dilution Factor Lc/LC: Critical Level
DL: Detection Limit PF: Prep Factor
MDA: Minimum Detectable Activity RL: Reporting Limit

MDC: Minimum Detectable Concentration SQL: Sample Quantitation Limit

Page 7 of 18 SDG: 611428

2040 Savage Road Charleston SC 29407 - (843) 556-8171 - www.gel.com

Certificate of Analysis

Report Date: March 16, 2023

Company: Santee Cooper Address: P.O. Box 2946101

OCO3

Client

Moncks Corner, South Carolina 29461

Contact: Ms. Jeanette Gilmetti Project: ABS Lab Analytical

Client Sample ID: AF56396
Sample ID: 611428006
Matrix: Ground Water
Collect Date: 15-FEB-23 13:21
Receive Date: 17-FEB-23

Client ID: SOOP001

Analyst Comments

SOOP00119

Project:

Parameter	Qualifier	Result	Uncertainty	MDC	RL	Units	PF	DF Analy	yst Date	Time Batch	Method
Rad Gas Flow Proportion	onal Counting										
GFPC, Ra228, Liquid "A	As Received"										
Radium-228	U	1.33	+/-0.985	1.53	3.00	pCi/L		JE1	03/14/23	1216 2390110	1
Radium-226+Radium-2	28 Calculatio	arent Products"									
Radium-226+228 Sum		2.51	+/-1.06			pCi/L		NXL1	03/16/23	1404 2394229	2
Rad Radium-226											
Lucas Cell, Ra226, Liqu	uid "As Recei	ved"									
Radium-226		1.18	+/-0.396	0.298	1.00	pCi/L		LXP1	03/16/23	1008 2390103	3
The following Analytic	al Methods w	ere perfo	ormed:								

Method Description

1 EPA 904.0/SW846 9320 Modified

2 Calculation 3 EPA 903.1 Modified

Collector:

Surrogate/Tracer Recovery Test Result Nominal Recovery% Acceptable Limits

Barium-133 Tracer GFPC, Ra228, Liquid "As Received"

78 (15%-125%)

Notes:

Counting Uncertainty is calculated at the 95% confidence level (1.96-sigma).

Column headers are defined as follows:

DF: Dilution Factor Lc/LC: Critical Level
DL: Detection Limit PF: Prep Factor
MDA: Minimum Detectable Activity RL: Reporting Limit

MDC: Minimum Detectable Concentration SQL: Sample Quantitation Limit

Page 8 of 18 SDG: 611428

2040 Savage Road Charleston SC 29407 - (843) 556-8171 - www.gel.com

Certificate of Analysis

Project:

Client ID:

Report Date: March 16, 2023

SOOP00119

SOOP001

Company: Santee Cooper Address: P.O. Box 2946101

OCO3

Moncks Corner, South Carolina 29461

Contact: Ms. Jeanette Gilmetti Project: ABS Lab Analytical

Client Sample ID: AF56394
Sample ID: 611428007
Matrix: Ground Water
Collect Date: 14-FEB-23 12:33
Receive Date: 17-FEB-23

EB-23 12:33

Collector: Client

Parameter	Qualifier	Result	Uncertainty	MDC	RL	Units	PF	DF Anal	yst Date	Time Batch	Method
Rad Gas Flow Proportion	onal Counting										
GFPC, Ra228, Liquid ".	As Received"										
Radium-228	U	1.40	+/-1.44	2.39	3.00	pCi/L		JE1	03/14/23	1216 2390110	1
Radium-226+Radium-228 Calculation "See Parent Products"											
Radium-226+228 Sum		1.48	+/-1.44			pCi/L		NXL1	03/16/23	1404 2394229	2
Rad Radium-226											
Lucas Cell, Ra226, Liqu	uid "As Recei	ved"									
Radium-226	U	0.0794	+/-0.137	0.254	1.00	pCi/L		LXP1	03/16/23	1008 2390103	3
The following Analytical Methods were performed:											

Method	Description	Analyst Comments
1	EPA 904 0/SW846 9320 Modified	•

2 Calculation

Surrogate/Tracer Recovery Test Result Nominal Recovery% Acceptable Limits

Barium-133 Tracer GFPC, Ra228, Liquid "As Received" 70.8 (15%-125%)

Notes:

Counting Uncertainty is calculated at the 95% confidence level (1.96-sigma).

Column headers are defined as follows:

DF: Dilution Factor Lc/LC: Critical Level
DL: Detection Limit PF: Prep Factor
MDA: Minimum Detectable Activity RL: Reporting Limit

EPA 903.1 Modified

MDC: Minimum Detectable Concentration SQL: Sample Quantitation Limit

Page 9 of 18 SDG: 611428

2040 Savage Road Charleston SC 29407 - (843) 556-8171 - www.gel.com

Certificate of Analysis

Report Date: March 16, 2023

Company: Santee Cooper Address: P.O. Box 2946101

OCO3

Client

Moncks Corner, South Carolina 29461

Contact: Ms. Jeanette Gilmetti Project: ABS Lab Analytical

Client Sample ID: AF56431
Sample ID: 611428008
Matrix: Ground Water
Collect Date: 14-FEB-23 13:51
Receive Date: 17-FEB-23

Client ID: SOOP001

SOOP00119

Project:

Parameter	Qualifier	Result	Uncertainty	MDC	RL	Units	PF	DF Analy	yst Date	Time Batch	Method
Rad Gas Flow Proportio	nal Counting										
GFPC, Ra228, Liquid "A	As Received"										
Radium-228	U	1.18	+/-0.939	1.47	3.00	pCi/L		JE1	03/14/23	1217 2390110	1
Radium-226+Radium-22	28 Calculation	n "See Pa	arent Products"								
Radium-226+228 Sum		1.84	+/-0.982			pCi/L		NXL1	03/16/23	1404 2394229	2
Rad Radium-226											
Lucas Cell, Ra226, Liqu	iid "As Recei	ved"									
Radium-226		0.668	+/-0.289	0.267	1.00	pCi/L		LXP1	03/16/23	1008 2390103	3
The following Analytic	al Methods w	ere perfo	ormed:								

Method Description Analyst Comments

EPA 904.0/SW846 9320 Modified
Calculation

2 Calculation 3 EPA 903.1 Modified

Collector:

Surrogate/Tracer RecoveryTestResultNominalRecovery%Acceptable LimitsBarium-133 TracerGFPC, Ra228, Liquid "As Received"74.2(15%-125%)

Notes:

Counting Uncertainty is calculated at the 95% confidence level (1.96-sigma).

Column headers are defined as follows:

DF: Dilution Factor Lc/LC: Critical Level
DL: Detection Limit PF: Prep Factor
MDA: Minimum Detectable Activity RL: Reporting Limit

MDC: Minimum Detectable Concentration SQL: Sample Quantitation Limit

Page 10 of 18 SDG: 611428

2040 Savage Road Charleston SC 29407 - (843) 556-8171 - www.gel.com

Certificate of Analysis

Report Date: March 16, 2023

Company: Santee Cooper Address: P.O. Box 2946101

OCO3

Client

Moncks Corner, South Carolina 29461

Contact: Ms. Jeanette Gilmetti Project: ABS Lab Analytical

Client Sample ID: AF56432
Sample ID: 611428009
Matrix: Ground Water
Collect Date: 14-FEB-23 15:22
Receive Date: 17-FEB-23

Project: SOOP00119
Client ID: SOOP001

Analyst Comments

Parameter	Qualifier	Result	Uncertainty	MDC	RL	Units	PF	DF Analy	st Date	Time Batch	Method
Rad Gas Flow Proportio	nal Counting										
GFPC, Ra228, Liquid "A	As Received"										
Radium-228		1.80	+/-1.13	1.70	3.00	pCi/L		JE1	03/14/23	1217 2390110	1
Radium-226+Radium-22	28 Calculation	n "See Pa	arent Products"								
Radium-226+228 Sum		3.51	+/-1.24			pCi/L		NXL1	03/16/23	1404 2394229	2
Rad Radium-226											
Lucas Cell, Ra226, Liqu	id "As Recei	ved"									
Radium-226		1.71	+/-0.498	0.477	1.00	pCi/L		LXP1	03/16/23	1008 2390103	3
The following Analytic	al Methods w	ere perfo	ormed:								

1	EPA 904.0/SW846 9320 Modified		•		
2	Calculation				
3	EPA 903.1 Modified				
Surrogate/Tracer Recov	ery Test	Result	Nominal	Recovery%	Acceptable Limits

Barium-133 Tracer GFPC, Ra228, Liquid "As Received" 72 (15%-125%)

Notes:

Method

Counting Uncertainty is calculated at the 95% confidence level (1.96-sigma).

Column headers are defined as follows:

Collector:

DF: Dilution Factor Lc/LC: Critical Level
DL: Detection Limit PF: Prep Factor
MDA: Minimum Detectable Activity RL: Reporting Limit

Description

MDC: Minimum Detectable Concentration SQL: Sample Quantitation Limit

Page 11 of 18 SDG: 611428

2040 Savage Road Charleston, SC 29407 - (843) 556-8171 - www.gel.com

QC Summary

Report Date: March 16, 2023

Santee Cooper P.O. Box 2946101

OCO3

Moncks Corner, South Carolina

Contact: Ms. Jeanette Gilmetti

Workorder: 611428

Parmname	NOM	Sample Q	ual QC	Units	RPD%	REC%	Range Anlst	Date Time
Rad Gas Flow								
Batch 2390110 —								
QC1205331121 611428001 DUP								
Radium-228	U	1.13	U 0.494	pCi/L	N/A		N/A JE1	03/14/23 12:15
	Uncertainty	+/-1.35	+/-0.911					
QC1205331122 LCS								
Radium-228	62.8		64.6	pCi/L		103	(75%-125%)	03/14/23 12:15
	Uncertainty		+/-4.30					
QC1205331120 MB								
Radium-228		1	U 1.16	pCi/L				03/14/23 12:15
	Uncertainty		+/-1.36					
Rad Ra-226 Batch 2390103								
QC1205331090 611428001 DUP								
Radium-226		0.677	0.445	pCi/L	41.4		(0% - 100%) LXP1	03/16/23 10:40
	Uncertainty	+/-0.308	+/-0.291					
QC1205331092 LCS								
Radium-226	26.5		23.0	pCi/L		86.6	(75%-125%)	03/16/23 10:40
	Uncertainty		+/-1.52					
QC1205331089 MB								
Radium-226		1	U 0.264	pCi/L				03/16/23 10:08
	Uncertainty		+/-0.216					
QC1205331091 611428001 MS								
Radium-226	260	0.677	213	pCi/L		81.6	(75%-125%)	03/16/23 10:40
	Uncertainty	+/-0.308	+/-9.99					

Notes:

Counting Uncertainty is calculated at the 95% confidence level (1.96-sigma).

The Qualifiers in this report are defined as follows:

U Analyte was analyzed for, but not detected above the MDL, MDA, MDC or LOD.

J Value is estimated

X Consult Case Narrative, Data Summary package, or Project Manager concerning this qualifier

H Analytical holding time was exceeded

< Result is less than value reported

Page 12 of 18 SDG: 611428

Page 1 of 2

2040 Savage Road Charleston, SC 29407 - (843) 556-8171 - www.gel.com

QC Summary

Workorder: 611428

Parmname

NOM Sample Qual QC Units RPD% REC% Range AnIst Date Time

>	Result	is oreater	than val	ue reported

- UI Gamma Spectroscopy--Uncertain identification
- BD Results are either below the MDC or tracer recovery is low
- h Preparation or preservation holding time was exceeded
- R Sample results are rejected
- ^ RPD of sample and duplicate evaluated using +/-RL. Concentrations are <5X the RL. Qualifier Not Applicable for Radiochemistry.
- N/A RPD or %Recovery limits do not apply.
- ND Analyte concentration is not detected above the detection limit
- M if above MDC and less than LLD
- NJ Consult Case Narrative, Data Summary package, or Project Manager concerning this qualifier
- FA Failed analysis.
- UJ Gamma Spectroscopy--Uncertain identification
- Q One or more quality control criteria have not been met. Refer to the applicable narrative or DER.
- K Analyte present. Reported value may be biased high. Actual value is expected to be lower.
- UL Not considered detected. The associated number is the reported concentration, which may be inaccurate due to a low bias.
- L Analyte present. Reported value may be biased low. Actual value is expected to be higher.
- N1 See case narrative
- Y Other specific qualifiers were required to properly define the results. Consult case narrative.
- ** Analyte is a Tracer compound
- M REMP Result > MDC/CL and < RDL
- J See case narrative for an explanation

N/A indicates that spike recovery limits do not apply when sample concentration exceeds spike conc. by a factor of 4 or more or %RPD not applicable.

- ^ The Relative Percent Difference (RPD) obtained from the sample duplicate (DUP) is evaluated against the acceptance criteria when the sample is greater than five times (5X) the contract required detection limit (RL). In cases where either the sample or duplicate value is less than 5X the RL, a control limit of +/- the RL is used to evaluate the DUP result.
- * Indicates that a Quality Control parameter was not within specifications.

For PS, PSD, and SDILT results, the values listed are the measured amounts, not final concentrations.

Where the analytical method has been performed under NELAP certification, the analysis has met all of the requirements of the NELAC standard unless qualified on the QC Summary.

Page 13 of 18 SDG: 611428

Radiochemistry Technical Case Narrative Santee Cooper SDG #: 611428

Product: GFPC, Ra228, Liquid

<u>Analytical Method:</u> EPA 904.0/SW846 9320 Modified <u>Analytical Procedure:</u> GL-RAD-A-063 REV# 5

Analytical Batch: 2390110

The following samples were analyzed using the above methods and analytical procedure(s).

GEL Sample ID#	Client Sample Identification
611428001	AF56397
611428002	AF56400
611428003	AF56442
611428004	AF56443
611428005	AF56395
611428006	AF56396
611428007	AF56394
611428008	AF56431
611428009	AF56432
1205331120	Method Blank (MB)
1205331121	611428001(AF56397) Sample Duplicate (DUP)
1205331122	Laboratory Control Sample (LCS)

The samples in this SDG were analyzed on an "as received" basis.

Data Summary:

There are no exceptions, anomalies or deviations from the specified methods. All sample data provided in this report met the acceptance criteria specified in the analytical methods and procedures for initial calibration, continuing calibration, instrument controls and process controls where applicable.

Product: Lucas Cell, Ra226, Liquid **Analytical Method:** EPA 903.1 Modified

Analytical Procedure: GL-RAD-A-008 REV# 15

Analytical Batch: 2390103

The following samples were analyzed using the above methods and analytical procedure(s).

Client Sample Identification
AF56397
AF56400
AF56442
AF56443
AF56395
AF56396
AF56394

Page 14 of 18 SDG: 611428

611428008	AF56431
611428009	AF56432
1205331089	Method Blank (MB)
1205331090	611428001(AF56397) Sample Duplicate (DUP)
1205331091	611428001(AF56397) Matrix Spike (MS)
1205331092	Laboratory Control Sample (LCS)

The samples in this SDG were analyzed on an "as received" basis.

Data Summary:

All sample data provided in this report met the acceptance criteria specified in the analytical methods and procedures for initial calibration, continuing calibration, instrument controls and process controls where applicable, with the following exceptions.

Miscellaneous Information

Additional Comments

The matrix spike, 1205331091 (AF56397MS), aliquot was reduced to conserve sample volume.

Certification Statement

Where the analytical method has been performed under NELAP certification, the analysis has met all of the requirements of the NELAC standard unless otherwise noted in the analytical case narrative.

Page 15 of 18 SDG: 611428

Chain of Custody

Santee Cooper One Riverwood Drive Moneks Corner, SC 29461 e: (843)761-8000 Ext. 5148 Fax: (843)761-4175

Date Results Needed by:

Project/Task/Unit #:

Rerun request for any flagged QC

LCWILLIA 125915 / JMO2.09. GOI.1 / 36500 Yes No @santeecooper.com **Analysis Group** Labworks ID# Sample Location/ Comments Collection Time Matrix(see below Collection Date (Glass Method # (Internal use Description Sample Collecto Total # of contail only) Preservative (below) Reporting limit Bottle type: (G/Plastic-P) (0) (G) or RAD 224 Misc. sample info Any other notes Grab (ATK ZDM 2 2/16/23 2 1053 6 GW * SULFIDE HAS SHORT HOW. WAP-4 AP56397 G MDG 1255 400 WAP-7 * PRESERVATIVES WLF- 42-6 1407 442 TOC HZSO4 WLF-A2-6 DUP 443 1412 SULFIDE ZINC ACEDITE, NOOH RAD HUO3 ZDM 2/15/23 1136 24 °C ML AF 56395 WAP-2 1321 96 WAP 3 2 2 2/14/23 1233 6 ALKAL-TOTAL BICARB, CARB WAP-1 AF56394 431 WBW-1 1351 RAD - INCLUPE TOTAL CALCULATION WBW - A-1-1 1522 432 Sample Receiving (Internal Use Only) Time Received by: Employee # Date Time Relinquished by: Employee# Date TEMP (°C):_____ Initial:_ 4/17/23 0950 0950 Symoun 35594 2/17/23 GEL Correct pH: Yes Relinquished by: Employee# Date Time eceived by: Employee # Date Time Preservative Lot#: Employee# Relinquished by: Received by: Employee # Date Date/Time/Init for preservative: ☐ METALS (all) **Nutrients** Gypsum Coal Oil MISC. **Flyash** □ Sb □ Ag □ Cu Trans. Oil Qual. □ Wallboard TOC □ BTEX □ Ultimate □ Ammonia □ A1 □ Fe □ Se ☐ Napthalene Gypsum(all %Moisture DOC □ % Moisture □ LOI ☐ THM/HAA Color □ As OK □ Sn below) TP/TPO4 ☐ Ash □ % Carbon Acidity □ VOC □ AIM NH3-N □ Sulfur ☐ Mineral $\Box B$ □ Li □ Sr Dielectric Strength □ Oil & Grease □ TOC □ BTUs Analysis IFT E. Coli ☐ Total metals □ Ba □ Mg □ Ti CI ☐ Volatile Matter ☐ Sieve Dissolved Gases ☐ Total Coliform ☐ Soluble Metals □ Be □ Mn □ T1 NO₂ □ CHN ☐ % Moisture Used Oil □pH ☐ Purity (CaSO4) Flashpoint Other Tests: Br ☐ Dissolved As ☐ % Moisture $\Box V$ □ Ca □ Mo ☐ Dissolved Fe ☐ XRF Scan Metals in oil NO₃ □ Sulfites **NPDES** (As,Cd,Cr,Ni,Pb □ HGI □ Cd □ Na □ Zn ☐ Rad 226 □рН **SO4** □ Oil & Grease Hg) ☐ Rad 228 Chlorides. □ Fineness □ Ni □Hg □ Co □ PCB ☐ Particulate Matter □ As GOFER □ Particle Size □ TSS □ Cr □ Pb □ CrVI Sulfur

	GEL	Laboratories LLC				SAMPLE RECEIPT & REVIEW FORM,
Cli	en E	30			SDe	G/AR/COC/Work Order: 0 1 4 2 0 / (01 1 4 2 8
Rec	eived By: MV	/H				te Received.
	erved by:				,	Circle AppBeable;
						FedEx Express FedEx Ground UPS Field Services Courier Other
	Carrier and	Tracking Number			(Oner 2-6.c
					X	(M)021 19.0
	······································		1	Т.	<u>\</u>	Q)(/ 1-10)
Sus	pected Hazard I	Information	Yes	ž	*If	Net Counts > 100cpm on samples not marked "radioactive", contact the Radiation Safety Group for further investigation.
				3	Haz	ard Class Shipped: UN#:
A)S	hipped as a DOT	Hazardous?	4		<u> </u>	If UN2910, Is the Radioactive Shipment Survey Compliant? YesNo
		signate the samples are to be		1	CO	C notation or radioactive stickers on containers equal client designation.
rece	ived as radioactiv	ve?		•	-	
		sify the samples as			Maz	cimum Net Counts Observed* (Observed Counts - Area Background Counts): CPM\mR/Hr Classified as: Rad 1 Rad 2 Rad 3
radi	Dactive?		+	V	,	
D) I	Did the client des	signate samples are bazardous?		V	CO	Constation or hazard labels on containers equal client designation.
				1	If D	or E is yes, select Hazards below. PCB's Flammable Foreign Soil RCRA Asbestos Beryllium Other
E) I	oid the RSO iden	tify possible hazards?	<u> </u>	¥	<u> </u>	PCB's Flammable Foreign Soil RCRA Asbestos Beryllium Other:
		Reccipt Criteria	×	ž	ŝ	Comments/Qualifiers (Required for Non-Conforming Items)
1	Shipping conti sealed?	ainers received intact and	1			Circle Applicable: Seals broken Damaged container Leaking container Other (describe)
_		ody documents included	<u> </u>			Circle Applicable: Client contacted and provided COC COC created upon receipt
2	with shipment		V			
3	Samples requi	ring cold preservation		ľ		Preservation Method: Wet Ice Ice Packs Dry ice None Other: *all temperatures are recorded in Celsius TEMP:
_	within $(0 \le 6)$	deg. C)?*		_		
4	Daily check po temperature gr	erformed and passed on IR	V	, Hilling		Temperature Device Serial #:IR2-21 Secondary Temperature Device Serial # (If Applicable):
	temperature gi	щт				Circle Applicable: Seals broken Damaged container Leaking container Other (describe)
5	Sample contai	iners intact and sealed?	\ \			
,	Samples requi	ring chemical preservation	1./	1		Sample ID's and Containers Affected:
6	at proper pH?		ľ			If Preservation added, Lot#:
						If Yes, are Encores or Soil Kits present for solids? YesNoNA (If yes, take to YOA Freezer) Do liquid VOA vials contain acid preservation? YesNoNA (If unknown, select No)
7	Do any sa	mples require Volatile Analysis?			٧	Are liquid VOA vials free of headspace? Yes No NA
		•				Sample ID's and containers affected:
8	Sampler rocei	ved within holding time?	7			ID's and tests affected:
			Y			
9	Sample ID's or bottles?	n COC match ID's on	W			ID's and containers affected:
		on COC match date & time	-			Circle Applicable: No dates on containers No times on containers COC missing info Other (describe)
10	on bottles?	of COC finalett date & time	$ \vee $			The same of the sa
11	Number of co	ntainers received match	\top			Circle Applicable: No container count on COC Other (describe)
11	number indica				V	Wid not receive ATECO 131 ATECO 39-1, AFOCH S
12		ontainers identifiable as I by use of GEL labels?	V			,
13	COC form is p	properly signed in	1			Circle Applicable: Not relinquished Other (describe)
		eceived sections?	ــــــــــــــــــــــــــــــــــــــ		<u> </u>	
-011						
		DLC . The				ials 3000 Date 2/20/23Page of
		PM (or PM	A) re	view:	: Init	Date U W Page of

List of current GEL Certifications as of 16 March 2023

State	Certification
Alabama	42200
Alaska	17-018
Alaska Drinking Water	SC00012
Arkansas	88-0651
CLIA	42D0904046
California	2940
Colorado	SC00012
Connecticut	PH-0169
DoD ELAP/ ISO17025 A2LA	2567.01
Florida NELAP	E87156
Foreign Soils Permit	P330-15-00283, P330-15-00253
Georgia	SC00012
Georgia SDWA	967
Hawaii	SC00012
Idaho	SC00012 SC00012
Illinois NELAP	200029
Indiana	C-SC-01
Kansas NELAP	E-10332
Kentucky SDWA	90129
Kentucky Wastewater	90129
Louisiana Drinking Water	LA024
Louisiana NELAP	03046 (AI33904)
Maine	2019020
	2019020
Maryland Massachusetts	M-SC012
Massachusetts PFAS Approv	Letter
Michigan Michigan	9976
Mississippi	SC00012
Nebraska	NE-OS-26-13
Nevada	SC000122023-4
New Hampshire NELAP	2054
_	
New Jersey NELAP New Mexico	SC002
New York NELAP	SC00012 11501
North Carolina	233
North Carolina SDWA	
	45709
North Dakota	R-158
Oklahoma	2022-160
Pennsylvania NELAP	68-00485
Puerto Rico	SC00012
S. Carolina Radiochem	10120002
Sanitation Districts of L	9255651
South Carolina Chemistry	10120001
Tennessee	TN 02934
Texas NELAP	T104704235-22-20
Utah NELAP	SC000122022-37
Vermont	VT87156
Virginia NELAP	460202
Washington	C780

gel.com

March 14, 2023

Ms. Jeanette Gilmetti Santee Cooper P.O. Box 2946101 OCO3 Moncks Corner, South Carolina 29461

Re: ABS Lab Analytical Work Order: 612999

Dear Ms. Gilmetti:

GEL Laboratories, LLC (GEL) appreciates the opportunity to provide the enclosed analytical results for the sample(s) we received on March 03, 2023. This original data report has been prepared and reviewed in accordance with GEL's standard operating procedures.

The samples were delivered with proper chain of custody documentation and signatures. All sample containers arrived without any visible signs of tampering or breakage. There are no additional comments concerning sample receipt.

Test results for NELAP or ISO 17025 accredited tests are verified to meet the requirements of those standards, with any exceptions noted. The results reported relate only to the items tested and to the sample as received by the laboratory. These results may not be reproduced except as full reports without approval by the laboratory. Copies of GEL's accreditations and certifications can be found on our website at www.gel.com.

Our policy is to provide high quality, personalized analytical services to enable you to meet your analytical needs on time every time. We trust that you will find everything in order and to your satisfaction. If you have any questions, please do not hesitate to call me at (843) 556-8171, ext. 4289.

Sincerely,

Heather Millar fo Julie Robinson Project Manager

Purchase Order: 398684

Enclosures

2040 Savage Road Charleston SC 29407 - (843) 556-8171 - www.gel.com

Certificate of Analysis Report for

SOOP001 Santee Cooper

Client SDG: 612999 GEL Work Order: 612999

The Qualifiers in this report are defined as follows:

- * A quality control analyte recovery is outside of specified acceptance criteria
- ** Analyte is a Tracer compound
- ** Analyte is a surrogate compound
- U Analyte was analyzed for, but not detected above the MDL, MDA, MDC or LOD.

Where the analytical method has been performed under NELAP certification, the analysis has met all of the requirements of the NELAC standard unless qualified on the Certificate of Analysis.

The designation ND, if present, appears in the result column when the analyte concentration is not detected above the limit as defined in the 'U' qualifier above.

This data report has been prepared and reviewed in accordance with GEL Laboratories LLC standard operating procedures. Please direct any questions to your Project Manager, Julie Robinson.

Reviewed by

Page 2 of 47 SDG: 612999

2040 Savage Road Charleston SC 29407 - (843) 556-8171 - www.gel.com

Certificate of Analysis

Project:

Client ID:

Report Date: March 14, 2023

SOOP00119

SOOP001

Company: Santee Cooper Address: P.O. Box 2946101

OCO3

Moncks Corner, South Carolina 29461

Contact: Ms. Jeanette Gilmetti Project: ABS Lab Analytical

Client Sample ID: AF56433 Sample ID: 612999001

Matrix: GW

Collect Date: 28-FEB-23 12:58
Receive Date: 03-MAR-23
Collector: Client

Parameter	Qualifier	Result	DL	RL	Units	PF	DF Ana	lyst Date	Time Batch	Method
Carbon Analysis										
SM 5310 B Total Organ	ic Carbon "A	As Received"								
Total Organic Carbon Average	;	13.0	0.330	1.00	mg/L		1 TSM	03/11/23	0321 2394332	1
Spectrometric Analysis										
SM 4500-S(2-) D Sulfid	e "As Receiv	ved"								
Total Sulfide	U	ND	0.0330	0.100	mg/L		1 HH2	03/07/23	1510 2394295	2
Titration and Ion Analys	is									
SM 2320B Total Alkalin	ity "As Rec	eived"								
Alkalinity, Total as CaCO3	•	322	2.42	6.67	mg/L		MS3	03/09/23	1341 2393625	3
Bicarbonate alkalinity (CaCO3	5)	322	2.42	6.67	mg/L					
Carbonate alkalinity (CaCO3)	U	ND	2.42	6.67	mg/L					

MethodDescriptionAnalyst Comments1SM 5310 B

2 SM 4500-S (2-) D

3 SM 2320B

Notes:

Column headers are defined as follows:

DF: Dilution Factor Lc/LC: Critical Level
DL: Detection Limit PF: Prep Factor
MDA: Minimum Detectable Activity RL: Reporting Limit

MDC: Minimum Detectable Concentration SQL: Sample Quantitation Limit

Page 3 of 47 SDG: 612999

2040 Savage Road Charleston SC 29407 - (843) 556-8171 - www.gel.com

Certificate of Analysis

Project:

Client ID:

Report Date: March 14, 2023

SOOP00119

SOOP001

Company: Santee Cooper Address: P.O. Box 2946101

OCO3

Moncks Corner, South Carolina 29461

Contact: Ms. Jeanette Gilmetti Project: ABS Lab Analytical

Client Sample ID: AF56433 Sample ID: 612999002

Matrix: GW

Collect Date: 28-FEB-23 12:58 Receive Date: 03-MAR-23 Collector: Client

Parameter	Qualifier	Result	DL	RL	Units	PF	DF	Anal	yst Date	Time Batch	Method
Carbon Analysis											
SM 5310 B Dissolved O	Organic Carbo	n "As Received"									
Dissolved Organic Carbon Av	verage	12.4	0.330	1.00	mg/L		1	TSM	03/10/23	1641 2394833	1
The following Prep Me	thods were pe	rformed:									

Method Date Prep Batch Description Analyst Time EPA 160 Laboratory Filtration - DOC **TSM** 03/07/23 1150 2394325

The following Analytical Methods were performed:

Method Description **Analyst Comments** SM 5310 B

Notes:

Column headers are defined as follows:

DF: Dilution Factor Lc/LC: Critical Level DL: Detection Limit PF: Prep Factor MDA: Minimum Detectable Activity **RL**: Reporting Limit

MDC: Minimum Detectable Concentration SQL: Sample Quantitation Limit

Page 4 of 47 SDG: 612999

2040 Savage Road Charleston SC 29407 - (843) 556-8171 - www.gel.com

Certificate of Analysis

Project:

Client ID:

Analyst Comments

Report Date: March 14, 2023

SOOP00119

SOOP001

Company: Santee Cooper Address: P.O. Box 2946101

OCO3

Moncks Corner, South Carolina 29461

Contact: Ms. Jeanette Gilmetti Project: ABS Lab Analytical

Client Sample ID: AF56435 Sample ID: 612999003

Matrix: GW

Collect Date: 28-FEB-23 11:44 Receive Date: 03-MAR-23 Collector: Client

Parameter	Qualifier	Result	DL	RL	Units	PF	DF	Anal	yst Date	Time Batch	Method
Carbon Analysis											
SM 5310 B Total Organi	c Carbon "A	As Received"									
Total Organic Carbon Average		1.14	0.330	1.00	mg/L		1	TSM	03/11/23	0341 2394332	1
Spectrometric Analysis											
SM 4500-S(2-) D Sulfide	e "As Receiv	ved"									
Total Sulfide	U	ND	0.0330	0.100	mg/L		1	HH2	03/07/23	1510 2394295	2
Titration and Ion Analysi	S										
SM 2320B Total Alkalin	ity "As Rece	eived"									
Alkalinity, Total as CaCO3	U	ND	1.45	4.00	mg/L			MS3	03/09/23	1351 2393625	3
Bicarbonate alkalinity (CaCO3)) U	ND	1.45	4.00	mg/L						
Carbonate alkalinity (CaCO3)	U	ND	1.45	4.00	mg/L						
The following Analytica	l Methods v	vere performed:									

Method Description SM 5310 B SM 4500-S (2-) D 2

SM 2320B

Notes:

Column headers are defined as follows:

DF: Dilution Factor Lc/LC: Critical Level DL: Detection Limit PF: Prep Factor MDA: Minimum Detectable Activity **RL**: Reporting Limit

MDC: Minimum Detectable Concentration SQL: Sample Quantitation Limit

Page 5 of 47 SDG: 612999

2040 Savage Road Charleston SC 29407 - (843) 556-8171 - www.gel.com

Certificate of Analysis

Project:

Client ID:

Report Date: March 14, 2023

SOOP00119

SOOP001

Company: Santee Cooper Address: P.O. Box 2946101

OCO3

Moncks Corner, South Carolina 29461

Contact: Ms. Jeanette Gilmetti Project: ABS Lab Analytical

Client Sample ID: AF56435 Sample ID: 612999004

Matrix: GW

Collect Date: 28-FEB-23 11:44
Receive Date: 03-MAR-23
Collector: Client

Parameter	Qualifier	Result	DL	RL	Units	PF	DF	Analy	yst Date	Time Batch	Method
Carbon Analysis											
SM 5310 B Dissolved O	rganic Carbo	n "As Received"									
Dissolved Organic Carbon Av	erage	1.92	0.330	1.00	mg/L		1	TSM	03/10/23	1740 2394833	1
The following Prep Met	hods were pe	rformed:									
Method	Description	l		Analyst	Date		Time	e Pi	rep Batch		
EPA 160	Laboratory Fil	tration - DOC		TSM	03/07/23		1150	23	94325		

The following Analytical Methods were performed:

MethodDescriptionAnalyst Comments1SM 5310 B

Notes:

Column headers are defined as follows:

DF: Dilution Factor

DL: Detection Limit

MDA: Minimum Detectable Activity

Lc/LC: Critical Level

PF: Prep Factor

RL: Reporting Limit

MDC: Minimum Detectable Concentration SQL: Sample Quantitation Limit

Page 6 of 47 SDG: 612999

2040 Savage Road Charleston SC 29407 - (843) 556-8171 - www.gel.com

Certificate of Analysis

Project:

Client ID:

Report Date: March 14, 2023

SOOP00119

SOOP001

Company: Santee Cooper Address: P.O. Box 2946101

OCO3

Moncks Corner, South Carolina 29461

Contact: Ms. Jeanette Gilmetti Project: ABS Lab Analytical

Client Sample ID: AF56436 Sample ID: 612999005

Matrix: GW

Collect Date: 28-FEB-23 10:19
Receive Date: 03-MAR-23
Collector: Client

Parameter	Qualifier	Result	DL	RL	Units	PF	DF	Analy	st Date	Time Batch	Method
Carbon Analysis											
SM 5310 B Total Organi	ic Carbon "A	As Received"									
Total Organic Carbon Average	;	9.67	0.330	1.00	mg/L		1	TSM	03/11/23	0423 2394332	1
Spectrometric Analysis											
SM 4500-S(2-) D Sulfide	e "As Receiv	ved"									
Total Sulfide	U	ND	0.0330	0.100	mg/L		1	HH2	03/07/23	1511 2394295	2
Titration and Ion Analys	is										
SM 2320B Total Alkalin	ity "As Rece	eived"									
Alkalinity, Total as CaCO3	•	118	1.45	4.00	mg/L			MS3	03/09/23	1355 2393625	3
Bicarbonate alkalinity (CaCO3	5)	118	1.45	4.00	mg/L						
Carbonate alkalinity (CaCO3)	U	ND	1.45	4.00	mg/L						
The following Analytica	al Methods v	vere performed:									
Method	Description	L			1	Analys	st Co	mment	S		

 Method
 Description

 1
 SM 5310 B

 2
 SM 4500-S (2-) D

 3
 SM 2320B

Notes:

Column headers are defined as follows:

DF: Dilution Factor Lc/LC: Critical Level
DL: Detection Limit PF: Prep Factor
MDA: Minimum Detectable Activity RL: Reporting Limit

MDC: Minimum Detectable Concentration SQL: Sample Quantitation Limit

Page 7 of 47 SDG: 612999

2040 Savage Road Charleston SC 29407 - (843) 556-8171 - www.gel.com

Certificate of Analysis

Project:

Client ID:

Report Date: March 14, 2023

SOOP00119

SOOP001

Company: Santee Cooper Address: P.O. Box 2946101

OCO3

Moncks Corner, South Carolina 29461

Contact: Ms. Jeanette Gilmetti Project: ABS Lab Analytical

Client Sample ID: AF56436 Sample ID: 612999006

Matrix: GW

Collect Date: 28-FEB-23 10:19
Receive Date: 03-MAR-23
Collector: Client

Parameter	Qualifier	Result	DL	RL	Units	PF	DF	Analy	st Date	Time Batch	Method
Carbon Analysis											
SM 5310 B Dissolved O	rganic Carbo	n "As Received"									
Dissolved Organic Carbon Av	erage	10.1	0.330	1.00	mg/L		1	TSM	03/10/23	1800 2394833	1
The following Prep Met	hods were pe	rformed:									
Method	Description	l		Analyst	Date		Time	e Pi	ep Batch		
EPA 160	Laboratory Fil	tration - DOC		TSM	03/07/23		1150	23	94325		

The following Analytical Methods were performed:

 Method
 Description
 Analyst Comments

 1
 SM 5310 B

Notes:

Column headers are defined as follows:

DF: Dilution Factor Lc/LC: Critical Level
DL: Detection Limit PF: Prep Factor
MDA: Minimum Detectable Activity RL: Reporting Limit

MDC: Minimum Detectable Concentration SQL: Sample Quantitation Limit

Page 8 of 47 SDG: 612999

2040 Savage Road Charleston SC 29407 - (843) 556-8171 - www.gel.com

Certificate of Analysis

Report Date: March 14, 2023

Company: Santee Cooper Address: P.O. Box 2946101

OCO3

Moncks Corner, South Carolina 29461

Contact: Ms. Jeanette Gilmetti Project: ABS Lab Analytical

Client Sample ID: AF56437 Sample ID: 612999007

Matrix: GW

Collect Date: 28-FEB-23 10:24
Receive Date: 03-MAR-23
Collector: Client

Project: SOOP00119 Client ID: SOOP001

Parameter	Qualifier	Result	DL	RL	Units	PF	DF	Analy	yst Date	Time Batch	Method
Carbon Analysis											
SM 5310 B Total Organi	ic Carbon "A	As Received"									
Total Organic Carbon Average	,	10.2	0.330	1.00	mg/L		1	TSM	03/11/23	0443 2394332	1
Spectrometric Analysis											
SM 4500-S(2-) D Sulfide	e "As Receiv	ved"									
Total Sulfide	U	ND	0.0330	0.100	mg/L		1	HH2	03/07/23	1511 2394295	2
Titration and Ion Analys	is										
SM 2320B Total Alkalin	ity "As Rec	eived"									
Alkalinity, Total as CaCO3	•	126	1.45	4.00	mg/L			MS3	03/09/23	1358 2393625	3
Bicarbonate alkalinity (CaCO3	5)	126	1.45	4.00	mg/L						
Carbonate alkalinity (CaCO3)	U	ND	1.45	4.00	mg/L						
The following Analytica	al Methods v	vere performed:									
Method	Description				,	Analys	st Co	mment	S		

1 SM 5310 B 2 SM 4500-S (2-) D 3 SM 2320B

Notes:

Column headers are defined as follows:

DF: Dilution Factor Lc/LC: Critical Level
DL: Detection Limit PF: Prep Factor
MDA: Minimum Detectable Activity RL: Reporting Limit

MDC: Minimum Detectable Concentration SQL: Sample Quantitation Limit

Page 9 of 47 SDG: 612999

2040 Savage Road Charleston SC 29407 - (843) 556-8171 - www.gel.com

Certificate of Analysis

Project:

Client ID:

Report Date: March 14, 2023

SOOP00119

SOOP001

Company: Santee Cooper Address: P.O. Box 2946101

OCO3

Moncks Corner, South Carolina 29461

Contact: Ms. Jeanette Gilmetti Project: ABS Lab Analytical

Client Sample ID: AF56437 Sample ID: 612999008

Matrix: GW

Collect Date: 28-FEB-23 10:24
Receive Date: 03-MAR-23
Collector: Client

Parameter	Qualifier	Result	DL	RL	Units	PF	DF	Analy	yst Date	Time Batch	Method
Carbon Analysis											
SM 5310 B Dissolved Dissolved Organic Carbo	•	on "As Received" 10.5	0.330	1.00	mg/L		1	TSM	03/10/23	1820 2394833	1
The following Prep	Methods were per	rformed:									
Method	Description	ı		Analyst	Date		Time	e Pi	rep Batch		
EPA 160	Laboratory Fil	tration - DOC		TSM	03/07/23		1150	23	94325		

The following Analytical Methods were performed:

MethodDescriptionAnalyst Comments1SM 5310 B

Notes:

Column headers are defined as follows:

DF: Dilution Factor Lc/LC: Critical Level
DL: Detection Limit PF: Prep Factor
MDA: Minimum Detectable Activity RL: Reporting Limit

MDC: Minimum Detectable Concentration SQL: Sample Quantitation Limit

Page 10 of 47 SDG: 612999

2040 Savage Road Charleston SC 29407 - (843) 556-8171 - www.gel.com

Certificate of Analysis

Report Date: March 14, 2023

Company: Santee Cooper Address: P.O. Box 2946101

OCO3

Moncks Corner, South Carolina 29461

Contact: Ms. Jeanette Gilmetti Project: ABS Lab Analytical

Client Sample ID: AF56438 Sample ID: 612999009

Matrix: GW

Collect Date: 28-FEB-23 14:31
Receive Date: 03-MAR-23
Collector: Client

Project: SOOP00119 Client ID: SOOP001

Parameter	Qualifier	Result	DL	RL	Units	PF	DF Anal	yst Date	Time Batch	Method
Carbon Analysis										
SM 5310 B Total O	rganic Carbon "A	As Received"								
Total Organic Carbon Av	verage	7.51	0.330	1.00	mg/L		1 TSM	03/11/23	0503 2394332	1
Spectrometric Analy	ysis									
SM 4500-S(2-) D St	ulfide "As Recei	ved"								
Total Sulfide	U	ND	0.0330	0.100	mg/L		1 HH2	03/07/23	1512 2394295	2
Titration and Ion Ar	nalysis									
SM 2320B Total Al	kalinity "As Rec	eived"								
Alkalinity, Total as CaCo	•	209	1.45	4.00	mg/L		MS3	03/09/23	1401 2393625	3
Bicarbonate alkalinity (C	CaCO3)	209	1.45	4.00	mg/L					
Carbonate alkalinity (Ca	CO3) U	ND	1.45	4.00	mg/L					
The following Anal	lytical Methods	were performed:								
Method	Description	1			1	Analys	st Commen	ts		

1 SM 5310 B 2 SM 4500-S (2-) D 3 SM 2320B

Notes:

Column headers are defined as follows:

DF: Dilution Factor Lc/LC: Critical Level
DL: Detection Limit PF: Prep Factor
MDA: Minimum Detectable Activity RL: Reporting Limit

MDC: Minimum Detectable Concentration SQL: Sample Quantitation Limit

Page 11 of 47 SDG: 612999

2040 Savage Road Charleston SC 29407 - (843) 556-8171 - www.gel.com

Certificate of Analysis

Project:

Client ID:

Report Date: March 14, 2023

SOOP00119

SOOP001

Company: Santee Cooper Address: P.O. Box 2946101

OCO₃

Moncks Corner, South Carolina 29461

Contact: Ms. Jeanette Gilmetti Project: ABS Lab Analytical

Client Sample ID: AF56438 Sample ID: 612999010

GWMatrix:

Collect Date: 28-FEB-23 14:31 03-MAR-23 Receive Date: Collector: Client

Parameter	Qualifier	Result	D	L RL	Units	PF	DF Analyst Date	Time Batch	Method
Carbon Analysis									
SM 5310 B Disso	lved Organic Carbo	on "As Received"							

Dissolved Organic Carbon Average 7.98 0.330 1.00 mg/L TSM 03/10/23 1840 2394833

The following Prep Methods were performed:

Method Date Prep Batch Description Analyst Time EPA 160 Laboratory Filtration - DOC **TSM** 03/07/23 1150 2394325

The following Analytical Methods were performed:

Method Description **Analyst Comments** SM 5310 B

Notes:

Column headers are defined as follows:

DF: Dilution Factor Lc/LC: Critical Level DL: Detection Limit PF: Prep Factor MDA: Minimum Detectable Activity **RL**: Reporting Limit

MDC: Minimum Detectable Concentration SQL: Sample Quantitation Limit

Page 12 of 47 SDG: 612999

2040 Savage Road Charleston SC 29407 - (843) 556-8171 - www.gel.com

Certificate of Analysis

Report Date: March 14, 2023

Company: Santee Cooper Address: P.O. Box 2946101

OCO3

Moncks Corner, South Carolina 29461

Contact: Ms. Jeanette Gilmetti Project: ABS Lab Analytical

Client Sample ID: AF56402 Sample ID: 612999011

Matrix: GW

Collect Date: 27-FEB-23 12:47
Receive Date: 03-MAR-23
Collector: Client

Project: SOOP00119 Client ID: SOOP001

Parameter	Qualifier	Result	DL	RL	Units	PF	DF	Analy	st Date	Time Batch	Method
Carbon Analysis											
SM 5310 B Total Orga	nic Carbon "A	As Received"									
Total Organic Carbon Avera	ige	15.3	0.330	1.00	mg/L		1	TSM	03/11/23	0523 2394332	1
Spectrometric Analysis	S										
SM 4500-S(2-) D Sulf	ide "As Recei	ved"									
Total Sulfide	U	ND	0.0330	0.100	mg/L		1	HH2	03/06/23	1808 2394245	2
Titration and Ion Anal	ysis										
SM 2320B Total Alkal	linity "As Rec	eived"									
Alkalinity, Total as CaCO3	•	208	1.45	4.00	mg/L			MS3	03/09/23	1404 2393625	3
Bicarbonate alkalinity (CaC	O3)	208	1.45	4.00	mg/L						
Carbonate alkalinity (CaCO	3) U	ND	1.45	4.00	mg/L						
The following Analyti	ical Methods v	were performed:									
Method	Description	1			1	Analys	st Con	nment	S		

1 SM 5310 B 2 SM 4500-S (2-) D 3 SM 2320B

Notes:

Column headers are defined as follows:

DF: Dilution Factor Lc/LC: Critical Level
DL: Detection Limit PF: Prep Factor
MDA: Minimum Detectable Activity RL: Reporting Limit

MDC: Minimum Detectable Concentration SQL: Sample Quantitation Limit

Page 13 of 47 SDG: 612999

2040 Savage Road Charleston SC 29407 - (843) 556-8171 - www.gel.com

Certificate of Analysis

Project:

Client ID:

Report Date: March 14, 2023

SOOP00119

SOOP001

Company: Santee Cooper Address: P.O. Box 2946101

OCO3

Moncks Corner, South Carolina 29461

Contact: Ms. Jeanette Gilmetti Project: ABS Lab Analytical

Client Sample ID: AF56402 Sample ID: 612999012

Matrix: GW

Collect Date: 27-FEB-23 12:47
Receive Date: 03-MAR-23
Collector: Client

Parameter	Qualifier	Result	DL	RL	Units	PF	DF	Analyst Date	Time Batch	Method
Carbon Analysis										
SM 5310 B Dissolv	ved Organic Carbo	on "As Received"								
Dissolved Organic Carl	oon Average	15.8	0.330	1.00	mg/L		1	TSM 03/10/23	1923 2394833	1
The following Prep	Methods were pe	erformed:								
Method	Description	1		Analyst	Date		Time	e Prep Batch	1	
EPA 160	Laboratory Fi	ltration - DOC		TSM	03/07/23		1150	2394325		

The following Analytical Methods were performed:

Method Description Analyst Comments

SM 5310 B

Analyst Comments

Notes:

Column headers are defined as follows:

DF: Dilution Factor

DL: Detection Limit

MDA: Minimum Detectable Activity

Lc/LC: Critical Level

PF: Prep Factor

RL: Reporting Limit

MDC: Minimum Detectable Concentration SQL: Sample Quantitation Limit

Page 14 of 47 SDG: 612999

2040 Savage Road Charleston SC 29407 - (843) 556-8171 - www.gel.com

Certificate of Analysis

Project:

Client ID:

Report Date: March 14, 2023

SOOP00119

SOOP001

Company: Santee Cooper Address: P.O. Box 2946101

OCO3

Moncks Corner, South Carolina 29461

Contact: Ms. Jeanette Gilmetti Project: ABS Lab Analytical

Client Sample ID: AF56403 Sample ID: 612999013

Matrix: GW

Collect Date: 27-FEB-23 09:57
Receive Date: 03-MAR-23
Collector: Client

Parameter	Qualifier	Result	DL	RL	Units	PF	DF	Analy	st Date	Time	Batch	Method
Carbon Analysis												
SM 5310 B Total Organ	ic Carbon "A	As Received"										
Total Organic Carbon Average	e	1.81	0.330	1.00	mg/L		1	TSM	03/11/23	0543	2394332	1
Spectrometric Analysis												
SM 4500-S(2-) D Sulfid	le "As Receiv	ved"										
Total Sulfide	U	ND	0.0330	0.100	mg/L		1	HH2	03/06/23	1808	2394245	2
Titration and Ion Analys	sis											
SM 2320B Total Alkalin	nity "As Rec	eived"										
Alkalinity, Total as CaCO3		227	1.45	4.00	mg/L			MS3	03/09/23	1407	2393625	3
Bicarbonate alkalinity (CaCO	3)	227	1.45	4.00	mg/L							
Carbonate alkalinity (CaCO3)	U	ND	1.45	4.00	mg/L							
The following Analytic	al Methods v	vere performed:										
Method	Description	l			1	Analys	st Co	mment	S			

 Method
 Description

 1
 SM 5310 B

 2
 SM 4500-S (2-) D

 3
 SM 2320B

Notes:

Column headers are defined as follows:

DF: Dilution Factor Lc/LC: Critical Level
DL: Detection Limit PF: Prep Factor
MDA: Minimum Detectable Activity RL: Reporting Limit

MDC: Minimum Detectable Concentration SQL: Sample Quantitation Limit

Page 15 of 47 SDG: 612999

2040 Savage Road Charleston SC 29407 - (843) 556-8171 - www.gel.com

Certificate of Analysis

Project:

Client ID:

Report Date: March 14, 2023

SOOP00119

SOOP001

Company: Santee Cooper Address: P.O. Box 2946101

OCO3

Moncks Corner, South Carolina 29461

Contact: Ms. Jeanette Gilmetti Project: ABS Lab Analytical

Client Sample ID: AF56403 Sample ID: 612999014

Matrix: GW

Collect Date: 27-FEB-23 09:57
Receive Date: 03-MAR-23
Collector: Client

Parameter	Qualifier	Result	DL	RL	Units	PF	DF	Analyst Date	Time Batch	Method
Carbon Analysis	-							-		
SM 5310 B Disso	lved Organic Carbo	on "As Received"								
Dissolved Organic Car	rbon Average	2.08	0.330	1.00	mg/L		1	TSM 03/10/23	1942 2394833	1
The following Pre	ep Methods were pe	erformed:								
Method	Description	1		Analyst	Date		Time	Prep Batch		
EPA 160	Laboratory Fi	ltration - DOC		TSM	03/07/23		1150	2394325		

The following Analytical Methods were performed:

Method Description Analyst Comments

SM 5310 B

Analyst Comments

Notes:

Column headers are defined as follows:

DF: Dilution Factor Lc/LC: Critical Level
DL: Detection Limit PF: Prep Factor
MDA: Minimum Detectable Activity RL: Reporting Limit

MDC: Minimum Detectable Concentration SQL: Sample Quantitation Limit

Page 16 of 47 SDG: 612999

2040 Savage Road Charleston SC 29407 - (843) 556-8171 - www.gel.com

Certificate of Analysis

Project:

Client ID:

Report Date: March 14, 2023

SOOP00119

SOOP001

Company: Santee Cooper Address: P.O. Box 2946101

OCO3

Moncks Corner, South Carolina 29461

Contact: Ms. Jeanette Gilmetti Project: ABS Lab Analytical

Client Sample ID: AF56404 Sample ID: 612999015

Matrix: GW

Collect Date: 27-FEB-23 10:02
Receive Date: 03-MAR-23
Collector: Client

Parameter	Qualifier	Result	DL	RL	Units	PF	DF	Anal	yst Date	Time	Batch	Method
Carbon Analysis												
SM 5310 B Total Organi	c Carbon "A	s Received"										
Total Organic Carbon Average		1.79	0.330	1.00	mg/L		1	TSM	03/11/23	0605	2394332	1
Spectrometric Analysis												
SM 4500-S(2-) D Sulfide	e "As Receiv	ved"										
Total Sulfide	U	ND	0.0330	0.100	mg/L		1	HH2	03/06/23	1808	2394245	2
Titration and Ion Analysis	is											
SM 2320B Total Alkalin	ity "As Rece	eived"										
Alkalinity, Total as CaCO3	•	232	1.45	4.00	mg/L			MS3	03/09/23	1410	2393625	3
Bicarbonate alkalinity (CaCO3)	232	1.45	4.00	mg/L							
Carbonate alkalinity (CaCO3)	U	ND	1.45	4.00	mg/L							
The following Analytica	ıl Methods w	vere performed:										

MethodDescriptionAnalyst Comments1SM 5310 B

2 SM 4500-S (2-) D

SM 2320B

Notes:

Column headers are defined as follows:

DF: Dilution Factor Lc/LC: Critical Level
DL: Detection Limit PF: Prep Factor
MDA: Minimum Detectable Activity RL: Reporting Limit

MDC: Minimum Detectable Concentration SQL: Sample Quantitation Limit

Page 17 of 47 SDG: 612999

2040 Savage Road Charleston SC 29407 - (843) 556-8171 - www.gel.com

Certificate of Analysis

Project:

Client ID:

Report Date: March 14, 2023

SOOP00119

SOOP001

Company: Santee Cooper Address: P.O. Box 2946101

OCO3

Moncks Corner, South Carolina 29461

Contact: Ms. Jeanette Gilmetti Project: ABS Lab Analytical

Client Sample ID: AF56404 Sample ID: 612999016

Matrix: GW

Collect Date: 27-FEB-23 10:02
Receive Date: 03-MAR-23
Collector: Client

Parameter Qualifier DL RL Units PF DF Analyst Date Time Batch Method Result Carbon Analysis SM 5310 B Dissolved Organic Carbon "As Received" Dissolved Organic Carbon Average 0.330 1.00 mg/L **TSM** 03/10/23 2004 2394833 The following Prep Methods were performed: Method Date Prep Batch Description Analyst Time 03/07/23 EPA 160 Laboratory Filtration - DOC **TSM** 1150 2394325

The following Analytical Methods were performed:

Method Description Analyst Comments

SM 5310 B

Analyst Comments

Notes:

Column headers are defined as follows:

DF: Dilution Factor Lc/LC: Critical Level
DL: Detection Limit PF: Prep Factor
MDA: Minimum Detectable Activity RL: Reporting Limit

MDC: Minimum Detectable Concentration SQL: Sample Quantitation Limit

Page 18 of 47 SDG: 612999

2040 Savage Road Charleston SC 29407 - (843) 556-8171 - www.gel.com

Certificate of Analysis

Project:

Client ID:

Report Date: March 14, 2023

SOOP00119

SOOP001

Company: Santee Cooper P.O. Box 2946101 Address:

OCO3

Moncks Corner, South Carolina 29461

Contact: Ms. Jeanette Gilmetti Project: ABS Lab Analytical

Client Sample ID: AF56434 Sample ID: 612999017

GWMatrix:

Collect Date: 27-FEB-23 15:44 Receive Date: 03-MAR-23 Collector: Client

Parameter	Qualifier	Result	DL	RL	Units	PF	DF	Analy	yst Date	Time Bate	h Method
Carbon Analysis											
SM 5310 B Total Organ	nic Carbon "A	As Received"									
Total Organic Carbon Averag	ge	1.41	0.330	1.00	mg/L		1	TSM	03/11/23	0627 23943	32 1
Spectrometric Analysis											
SM 4500-S(2-) D Sulfic	de "As Receiv	ved"									
Total Sulfide	II	ND	0.0330	0.100	mg/I		1	HH2	03/06/23	1808 23942	45 2

4.00

4.00

mg/L mg/L

Analyst Comments

Titration and Ion Analysis SM 2320B Total Alkalinity "As Received" Alkalinity, Total as CaCO3 8.00 1.45 4.00 mg/L MS3 03/09/23 1416 2393625

1.45

1.45

Carbonate alkalinity (CaCO3) ND The following Analytical Methods were performed:

Method	Description	
1	SM 5310 B	
2	SM 4500-S (2-) D	
_		

SM 2320B

Bicarbonate alkalinity (CaCO3)

Notes:

Column headers are defined as follows:

Lc/LC: Critical Level DF: Dilution Factor DL: Detection Limit PF: Prep Factor MDA: Minimum Detectable Activity **RL**: Reporting Limit

MDC: Minimum Detectable Concentration SQL: Sample Quantitation Limit

8.00

Page 19 of 47 SDG: 612999

2040 Savage Road Charleston SC 29407 - (843) 556-8171 - www.gel.com

Certificate of Analysis

Project:

Client ID:

Report Date: March 14, 2023

SOOP00119

SOOP001

Company: Santee Cooper Address: P.O. Box 2946101

OCO3

Moncks Corner, South Carolina 29461

Contact: Ms. Jeanette Gilmetti Project: ABS Lab Analytical

Client Sample ID: AF56434 Sample ID: 612999018

Matrix: GW

Collect Date: 27-FEB-23 15:44
Receive Date: 03-MAR-23
Collector: Client

Parameter	Qualifier	Result	DL	RL	Units	PF	DF	Analyst Date	Time Batch	Method
Carbon Analysis										
SM 5310 B Disso	lved Organic Carbo	on "As Received"								
Dissolved Organic Car	rbon Average	2.30	0.330	1.00	mg/L		1	TSM 03/10/23	3 2026 2394833	1
The following Pre	ep Methods were pe	erformed:								
Method	Description	n		Analyst	Date		Time	Prep Batc	h	
EPA 160	Laboratory Fi	iltration - DOC		TSM	03/07/23		1150	2394325		
TP1 C 11 ' A	1 2 136 4 1	C 1								

The following Analytical Methods were performed:

MethodDescriptionAnalyst Comments1SM 5310 B

Notes:

Column headers are defined as follows:

DF: Dilution Factor Lc/LC: Critical Level
DL: Detection Limit PF: Prep Factor
MDA: Minimum Detectable Activity RL: Reporting Limit

MDC: Minimum Detectable Concentration SQL: Sample Quantitation Limit

Page 20 of 47 SDG: 612999

2040 Savage Road Charleston SC 29407 - (843) 556-8171 - www.gel.com

Certificate of Analysis

Project:

mg/L

4.00

Client ID:

Report Date: March 14, 2023

SOOP00119

SOOP001

Company: Santee Cooper Address: P.O. Box 2946101

OCO3

Moncks Corner, South Carolina 29461

Contact: Ms. Jeanette Gilmetti Project: ABS Lab Analytical

Client Sample ID: AF56414 Sample ID: 612999019

Matrix: GW

Collect Date: 02-MAR-23 12:46
Receive Date: 03-MAR-23
Collector: Client

Parameter	Qualifier	Result	DL	RL	Units	PF	DF	Analy	yst Date	Time	e Batch	Method
Carbon Analysis												
SM 5310 B Total Or	ganic Carbon "A	As Received"										
Total Organic Carbon Ave	erage	2.07	0.330	1.00	mg/L		1	TSM	03/11/23	0646	2394332	1
Spectrometric Analy	sis											
SM 4500-S(2-) D Su	ılfide "As Receiv	ved"										
Total Sulfide	U	ND	0.0330	0.100	mg/L		1	HH2	03/07/23	1513	2394295	2
Titration and Ion An	alysis											
SM 2320B Total Alk	calinity "As Reco	eived"										
Alkalinity, Total as CaCO	•	75.0	1.45	4.00	mg/L			MS3	03/09/23	1418	2393625	3
Bicarbonate alkalinity (Ca	aCO3)	75.0	1.45	4.00	mg/L							

1.45

Method Description Analyst Comments

1 SM 5310 B 2 SM 4500-S (2-) D 3 SM 2320B

The following Analytical Methods were performed:

Carbonate alkalinity (CaCO3)

Notes:

Column headers are defined as follows:

DF: Dilution Factor Lc/LC: Critical Level
DL: Detection Limit PF: Prep Factor
MDA: Minimum Detectable Activity RL: Reporting Limit

MDC: Minimum Detectable Concentration SQL: Sample Quantitation Limit

ND

Page 21 of 47 SDG: 612999

2040 Savage Road Charleston SC 29407 - (843) 556-8171 - www.gel.com

Certificate of Analysis

Report Date: March 14, 2023

SOOP00119

SOOP001

Company: Santee Cooper Address: P.O. Box 2946101

OCO3

Moncks Corner, South Carolina 29461

Contact: Ms. Jeanette Gilmetti Project: ABS Lab Analytical

Client Sample ID: AF56414 Sample ID: 612999020

Matrix: GW

Collect Date: 02-MAR-23 12:46
Receive Date: 03-MAR-23
Collector: Client

Client

Project:

Client ID:

Parameter Qualifier Result DL RL Units PF DF Analyst Date Time Batch Method Carbon Analysis

SM 5210 P Dissolved Openie Carbon "As Received"

SM 5310 B Dissolved Organic Carbon "As Received"

Dissolved Organic Carbon Average 1.48 0.330 1.00 mg/L 1 RM3 03/14/23 1542 2394833 1

The following Prep Methods were performed:

Method Date Prep Batch Description Analyst Time EPA 160 Laboratory Filtration - DOC **TSM** 03/13/23 2394325 0830 Laboratory Filtration - DOC **EPA 160 TSM** 03/07/23 1150 2394325

The following Analytical Methods were performed:

Method Description Analyst Comments

SM 5310 B

Notes:

Column headers are defined as follows:

DF: Dilution Factor Lc/LC: Critical Level
DL: Detection Limit PF: Prep Factor
MDA: Minimum Detectable Activity RL: Reporting Limit

MDC: Minimum Detectable Concentration SQL: Sample Quantitation Limit

Page 22 of 47 SDG: 612999

2040 Savage Road Charleston SC 29407 - (843) 556-8171 - www.gel.com

Certificate of Analysis

Project:

Client ID:

Report Date: March 14, 2023

SOOP00119

SOOP001

Company: Santee Cooper Address: P.O. Box 2946101

OCO3

Moncks Corner, South Carolina 29461

Contact: Ms. Jeanette Gilmetti Project: ABS Lab Analytical

Client Sample ID: AF56423 Sample ID: 612999021

Matrix: GW

Collect Date: 02-MAR-23 09:52
Receive Date: 03-MAR-23
Collector: Client

Parameter	Qualifier	Result	DL	RL	Units	PF	DF	Analy	st Date	Time Batch	Method
Carbon Analysis											
SM 5310 B Total Organi	ic Carbon "A	As Received"									
Total Organic Carbon Average	•	3.29	0.330	1.00	mg/L		1	TSM	03/11/23	0814 239433	2 1
Spectrometric Analysis											
SM 4500-S(2-) D Sulfide	e "As Receiv	ved"									
Total Sulfide	U	ND	0.0330	0.100	mg/L		1	HH2	03/07/23	1513 239429	5 2
Titration and Ion Analys	is										
SM 2320B Total Alkalin	ity "As Rece	eived"									
Alkalinity, Total as CaCO3	•	280	2.42	6.67	mg/L			MS3	03/09/23	1424 239362	5 3
Bicarbonate alkalinity (CaCO3	3)	280	2.42	6.67	mg/L						
Carbonate alkalinity (CaCO3)	U	ND	2.42	6.67	mg/L						
The following Analytica	al Methods v	vere performed:									
Method	Description			I	Analys	st Co	mment	S			

1 SM 5310 B 2 SM 4500-S (2-) D 3 SM 2320B

Notes:

Column headers are defined as follows:

DF: Dilution Factor Lc/LC: Critical Level
DL: Detection Limit PF: Prep Factor
MDA: Minimum Detectable Activity RL: Reporting Limit

MDC: Minimum Detectable Concentration SQL: Sample Quantitation Limit

Page 23 of 47 SDG: 612999

2040 Savage Road Charleston SC 29407 - (843) 556-8171 - www.gel.com

Certificate of Analysis

Project:

Client ID:

Report Date: March 14, 2023

SOOP00119

SOOP001

Company: Santee Cooper Address: P.O. Box 2946101

OCO3

Moncks Corner, South Carolina 29461

Contact: Ms. Jeanette Gilmetti Project: ABS Lab Analytical

Client Sample ID: AF56423 Sample ID: 612999022

Matrix: GW

Collect Date: 02-MAR-23 09:52
Receive Date: 03-MAR-23
Collector: Client

Parameter	Qualifier	Result	DL	RL	Units	PF	DF Analyst Date	Time Batch Method
Carbon Analysis								

SM 5310 B Dissolved Organic Carbon "As Received"

Dissolved Organic Carbon Average 3.83 0.330 1.00 mg/L 1 TSM 03/10/23 2153 2394833 1

The following Prep Methods were performed:

MethodDescriptionAnalystDateTimePrep BatchEPA 160Laboratory Filtration - DOCTSM03/07/2311502394325

The following Analytical Methods were performed:

Method Description Analyst Comments

SM 5310 B

Analyst Comments

Notes:

Column headers are defined as follows:

DF: Dilution Factor Lc/LC: Critical Level
DL: Detection Limit PF: Prep Factor
MDA: Minimum Detectable Activity RL: Reporting Limit

MDC: Minimum Detectable Concentration SQL: Sample Quantitation Limit

Page 24 of 47 SDG: 612999

2040 Savage Road Charleston SC 29407 - (843) 556-8171 - www.gel.com

Certificate of Analysis

Project:

Client ID:

Report Date: March 14, 2023

SOOP00119

SOOP001

Company: Santee Cooper Address: P.O. Box 2946101

OCO3

Moncks Corner, South Carolina 29461

Contact: Ms. Jeanette Gilmetti Project: ABS Lab Analytical

Client Sample ID: AF56428 Sample ID: 612999023

Matrix: GW

Collect Date: 02-MAR-23 10:56
Receive Date: 03-MAR-23
Collector: Client

Parameter	Qualifier	Result	DL	RL	Units	PF	DF	Analy	st Date	Time Ba	ch Method
Carbon Analysis											
SM 5310 B Total Organ	ic Carbon "A	As Received"									
Total Organic Carbon Average	e	11.1	0.330	1.00	mg/L		1	TSM	03/11/23	0835 2394	332 1
Spectrometric Analysis											
SM 4500-S(2-) D Sulfid	e "As Receiv	ved"									
Total Sulfide	U	ND	0.0330	0.100	mg/L		1	HH2	03/07/23	1514 2394	295 2
Titration and Ion Analys	sis										
SM 2320B Total Alkalir	nity "As Rec	eived"									
Alkalinity, Total as CaCO3	-	190	1.45	4.00	mg/L			MS3	03/09/23	1428 2393	625 3
Bicarbonate alkalinity (CaCO3	3)	190	1.45	4.00	mg/L						
Carbonate alkalinity (CaCO3)	U	ND	1.45	4.00	mg/L						
The following Analytics	al Methods v	vere performed:									
Method	Description	Analyst Comments									

 Method
 Description

 1
 SM 5310 B

 2
 SM 4500-S (2-) D

 3
 SM 2320B

Notes:

Column headers are defined as follows:

DF: Dilution Factor Lc/LC: Critical Level
DL: Detection Limit PF: Prep Factor
MDA: Minimum Detectable Activity RL: Reporting Limit

MDC: Minimum Detectable Concentration SQL: Sample Quantitation Limit

Page 25 of 47 SDG: 612999

2040 Savage Road Charleston SC 29407 - (843) 556-8171 - www.gel.com

Certificate of Analysis

Report Date: March 14, 2023

Company: Santee Cooper Address: P.O. Box 2946101

OCO3

Moncks Corner, South Carolina 29461

Contact: Ms. Jeanette Gilmetti Project: ABS Lab Analytical

Client Sample ID: AF56428 Sample ID: 612999024

Matrix: GW

Collect Date: 02-MAR-23 10:56 Receive Date: 03-MAR-23 Collector: Client

Project: SOOP00119 Client ID: SOOP001

Parameter	Qualifier	Result	DL	RL	Units	PF	DF .	Analyst Date	Time Batch	Method
Carbon Analysis										
SM 5310 B Dissolved	l Organic Carbo	on "As Received"								
Dissolved Organic Carbon	Average	11.4	0.330	1.00	mg/L		1	TSM 03/10/23	2214 2394833	1
The following Prep M	lethods were pe	rformed:								
Method	Description	1		Analyst	Date		Time	Prep Batch		
EPA 160	Laboratory Fil	Itration - DOC		TSM	03/07/23		1150	2394325		
The following Analy	tical Methods w	vere performed:								

Method Description **Analyst Comments** SM 5310 B

Notes:

Column headers are defined as follows:

DF: Dilution Factor Lc/LC: Critical Level DL: Detection Limit PF: Prep Factor MDA: Minimum Detectable Activity RL: Reporting Limit

MDC: Minimum Detectable Concentration SQL: Sample Quantitation Limit

Page 26 of 47 SDG: 612999

2040 Savage Road Charleston SC 29407 - (843) 556-8171 - www.gel.com

Certificate of Analysis

Report Date: March 14, 2023

03/09/23 1430 2393625

3

SOOP00119

SOOP001

MS3

Analyst Comments

Company: Santee Cooper P.O. Box 2946101 Address:

OCO₃

Moncks Corner, South Carolina 29461

Contact: Ms. Jeanette Gilmetti Project: ABS Lab Analytical

Client Sample ID: AF56421 Sample ID: 612999025

GW Matrix:

Collect Date: 01-MAR-23 14:41 Receive Date: 03-MAR-23 Collector: Client

Cone	ctor. Che	711t								
Parameter	Qualifier	Result	DL	RL	Units	PF	DF Ana	lyst Date	Time Batch	Method
Carbon Analysis										
SM 5310 B Total	Organic Carbon "A	As Received"								
Total Organic Carbon	•	10.8	0.330	1.00	mg/L		1 TSM	03/11/23	0855 2394332	1

Project:

Client ID:

Spectrometric Analysis SM 4500-S(2-) D Sulfide "As Received" Total Sulfide ND 0.0330 0.100 mg/L HH2 03/07/23 1514 2394295 Titration and Ion Analysis

SM 2320B Total Alkalinity "As Received" Alkalinity, Total as CaCO3 251

1.45 4.00 mg/L Bicarbonate alkalinity (CaCO3) 251 1.45 4.00 mg/L Carbonate alkalinity (CaCO3) U ND 1.45 4.00 mg/L The following Analytical Methods were performed:

Method Description

1	SM 5310 B
2	SM 4500-S (2-) D
3	SM 2320B

Notes:

Column headers are defined as follows:

Lc/LC: Critical Level DF: Dilution Factor DL: Detection Limit PF: Prep Factor MDA: Minimum Detectable Activity **RL**: Reporting Limit

MDC: Minimum Detectable Concentration **SQL**: Sample Quantitation Limit

Page 27 of 47 SDG: 612999

2040 Savage Road Charleston SC 29407 - (843) 556-8171 - www.gel.com

Certificate of Analysis

Project:

Client ID:

Report Date: March 14, 2023

SOOP00119

SOOP001

Company: Santee Cooper Address: P.O. Box 2946101

OCO3

Moncks Corner, South Carolina 29461

Contact: Ms. Jeanette Gilmetti Project: ABS Lab Analytical

Client Sample ID: AF56421 Sample ID: 612999026

Matrix: GW

Collect Date: 02-MAR-23 14:41
Receive Date: 03-MAR-23
Collector: Client

Parameter	Qualifier	Result	DL	RL	Units	PF	DF	Analyst Date	Time Batch	Method
Carbon Analysis										
SM 5310 B Dissol	ved Organic Carbo	on "As Received"								
Dissolved Organic Carl	bon Average	11.7	0.330	1.00	mg/L		1	TSM 03/10/23	2235 2394833	1
The following Prep	p Methods were pe	erformed:								
Method	Description	1		Analyst	Date		Time	Prep Batch	ı	
EPA 160	Laboratory Fi	ltration - DOC		TSM	03/07/23		1150	2394325		

The following Analytical Methods were performed:

MethodDescriptionAnalyst Comments1SM 5310 B

Notes:

Column headers are defined as follows:

DF: Dilution Factor

DL: Detection Limit

MDA: Minimum Detectable Activity

Lc/LC: Critical Level

PF: Prep Factor

RL: Reporting Limit

MDC: Minimum Detectable Concentration SQL: Sample Quantitation Limit

Page 28 of 47 SDG: 612999

2040 Savage Road Charleston SC 29407 - (843) 556-8171 - www.gel.com

Certificate of Analysis

Report Date: March 14, 2023

Company: Santee Cooper Address: P.O. Box 2946101

OCO3

Moncks Corner, South Carolina 29461

Contact: Ms. Jeanette Gilmetti Project: ABS Lab Analytical

Client Sample ID: AF56424 Sample ID: 612999027

Matrix: GW

Collect Date: 02-MAR-23 13:37
Receive Date: 03-MAR-23
Collector: Client

Project: SOOP00119 Client ID: SOOP001

Parameter	Qualifier	Result	DL	RL	Units	PF	DF	Analy	yst Date	Time Batch	Method
Carbon Analysis											
SM 5310 B Total Or	rganic Carbon "A	As Received"									
Total Organic Carbon Av	verage	2.24	0.330	1.00	mg/L		1	TSM	03/11/23	0914 2394332	1
Spectrometric Analy	/sis										
SM 4500-S(2-) D St	ılfide "As Recei	ved"									
Total Sulfide	U	ND	0.0330	0.100	mg/L		1	HH2	03/07/23	1514 2394295	2
Titration and Ion An	nalysis										
SM 2320B Total All	kalinity "As Rec	eived"									
Alkalinity, Total as CaCO	O3	277	1.45	4.00	mg/L			MS3	03/09/23	1432 2393625	3
Bicarbonate alkalinity (C	aCO3)	277	1.45	4.00	mg/L						
Carbonate alkalinity (CaC	CO3) U	ND	1.45	4.00	mg/L						
The following Anal	ytical Methods v	were performed:									
Method	Description	l			1	Analys	st Co	mment	S		

1 SM 5310 B 2 SM 4500-S (2-) D 3 SM 2320B

Notes:

Column headers are defined as follows:

DF: Dilution Factor Lc/LC: Critical Level
DL: Detection Limit PF: Prep Factor
MDA: Minimum Detectable Activity RL: Reporting Limit

MDC: Minimum Detectable Concentration SQL: Sample Quantitation Limit

Page 29 of 47 SDG: 612999

2040 Savage Road Charleston SC 29407 - (843) 556-8171 - www.gel.com

Certificate of Analysis

Project:

Client ID:

Report Date: March 14, 2023

SOOP00119

SOOP001

Company: Santee Cooper Address: P.O. Box 2946101

OCO3

Moncks Corner, South Carolina 29461

Contact: Ms. Jeanette Gilmetti Project: ABS Lab Analytical

Client Sample ID: AF56424 Sample ID: 612999028

Matrix: GW

Collect Date: 02-MAR-23 13:37
Receive Date: 03-MAR-23
Collector: Client

Parameter	Qualifier	Result	DL	RL	Units	PF	DF	Analy	yst Date	Time Batch	Method
Carbon Analysis											
SM 5310 B Dissolved C	-		0.220	1.00			1	TCM	02/10/22	2317 2394833	
Dissolved Organic Carbon Av The following Prep Met	· ·	2.90	0.330	1.00	mg/L		1	TSM	03/10/23	2317 2394833	1
The following I tep Met	nous were pe	i i o i i i cu.									
Method	Description	1		Analyst	Date		Time	e Pi	rep Batch		
EPA 160	Laboratory Fil	ltration - DOC		TSM	03/07/23		1150	23	94325		

The following Analytical Methods were performed:

 Method
 Description
 Analyst Comments

 1
 SM 5310 B

Notes:

Column headers are defined as follows:

DF: Dilution Factor

DL: Detection Limit

MDA: Minimum Detectable Activity

Lc/LC: Critical Level

PF: Prep Factor

RL: Reporting Limit

MDC: Minimum Detectable Concentration SQL: Sample Quantitation Limit

Page 30 of 47 SDG: 612999

2040 Savage Road Charleston SC 29407 - (843) 556-8171 - www.gel.com

Certificate of Analysis

Report Date: March 14, 2023

Company: Santee Cooper Address: P.O. Box 2946101

OCO3

Moncks Corner, South Carolina 29461

Contact: Ms. Jeanette Gilmetti Project: ABS Lab Analytical

Client Sample ID: AF56439 Sample ID: 612999029

Matrix: GW

Collect Date: 02-MAR-23 10:22
Receive Date: 03-MAR-23
Collector: Client

Project: SOOP00119 Client ID: SOOP001

Parameter	Qualifier	Result	DL	RL	Units	PF	DF Anal	yst Date	Time Batch	Method
Carbon Analysis										
SM 5310 B Total Organ	ic Carbon "A	As Received"								
Total Organic Carbon Average	e	5.31	0.330	1.00	mg/L		1 TSM	03/11/23	0934 2394332	1
Spectrometric Analysis										
SM 4500-S(2-) D Sulfid	e "As Recei	ved"								
Total Sulfide	U	ND	0.0330	0.100	mg/L		1 HH2	03/07/23	1516 2394295	2
Titration and Ion Analys	is									
SM 2320B Total Alkalir	nity "As Rec	eived"								
Alkalinity, Total as CaCO3	•	12.2	1.45	4.00	mg/L		MS3	03/09/23	1434 2393625	3
Bicarbonate alkalinity (CaCO3	3)	12.2	1.45	4.00	mg/L					
Carbonate alkalinity (CaCO3)	U	ND	1.45	4.00	mg/L					
The following Analytic	al Methods v	vere performed:								
Method Description Analyst Comments								ts		

1 SM 5310 B 2 SM 4500-S (2-) D 3 SM 2320B

Notes:

Column headers are defined as follows:

DF: Dilution Factor Lc/LC: Critical Level
DL: Detection Limit PF: Prep Factor
MDA: Minimum Detectable Activity RL: Reporting Limit

MDC: Minimum Detectable Concentration SQL: Sample Quantitation Limit

Page 31 of 47 SDG: 612999

2040 Savage Road Charleston SC 29407 - (843) 556-8171 - www.gel.com

Certificate of Analysis

Report Date: March 14, 2023

SOOP00119

Company: Santee Cooper Address: P.O. Box 2946101

OCO3

Moncks Corner, South Carolina 29461

Contact: Ms. Jeanette Gilmetti ABS Lab Analytical Project:

Client Sample ID: AF56439 Sample ID: 612999030

Matrix: GW

Collect Date: 02-MAR-23 10:22 Receive Date: 03-MAR-23 Collector: Client

Client ID: SOOP001

Project:

Parameter	Qualifier	Result	DL	RL	Units	PF	DF	Analyst Date	Time Batch	Method
Carbon Analysis										
SM 5310 B Dissolv	ved Organic Carbo	on "As Received"								
Dissolved Organic Carb	oon Average	5.75	0.330	1.00	mg/L		1	TSM 03/10/23	2338 2394833	1
The following Prep	Methods were pe	erformed:								
Method	Description	1		Analyst	Date		Time	Prep Batch	l	
EPA 160	Laboratory Fi	ltration - DOC		TSM	03/07/23		1150	2394325		
The following Ana	alytical Methods w	vere performed:								

Method Description **Analyst Comments** SM 5310 B

Notes:

Column headers are defined as follows:

DF: Dilution Factor Lc/LC: Critical Level DL: Detection Limit PF: Prep Factor MDA: Minimum Detectable Activity RL: Reporting Limit

MDC: Minimum Detectable Concentration SQL: Sample Quantitation Limit

Page 32 of 47 SDG: 612999

2040 Savage Road Charleston SC 29407 - (843) 556-8171 - www.gel.com

Certificate of Analysis

Project:

Client ID:

Analyst Comments

Report Date: March 14, 2023

SOOP00119

SOOP001

Company: Santee Cooper Address: P.O. Box 2946101

OCO3

Moncks Corner, South Carolina 29461

Contact: Ms. Jeanette Gilmetti Project: ABS Lab Analytical

Client Sample ID: AF56441 Sample ID: 612999031

Matrix: GW

Collect Date: 02-MAR-23 11:45
Receive Date: 03-MAR-23
Collector: Client

Parameter	Qualifier	Result	DL	RL	Units	PF	DF	Anal	yst Date	Time Batch	Method
Carbon Analysis											
SM 5310 B Total Organi	c Carbon "A	s Received"									
Total Organic Carbon Average		9.35	0.330	1.00	mg/L		1	TSM	03/11/23	0954 2394332	1
Spectrometric Analysis											
SM 4500-S(2-) D Sulfide	e "As Receiv	/ed"									
Total Sulfide	U	ND	0.0330	0.100	mg/L		1	HH2	03/07/23	1516 2394295	2
Titration and Ion Analysi	is										
SM 2320B Total Alkalin	ity "As Rece	eived"									
Alkalinity, Total as CaCO3		62.8	1.45	4.00	mg/L			MS3	03/09/23	1438 2393625	3
Bicarbonate alkalinity (CaCO3))	62.8	1.45	4.00	mg/L						
Carbonate alkalinity (CaCO3)	U	ND	1.45	4.00	mg/L						
The following Analytica	l Methods v	vere performed:									

 Method
 Description

 1
 SM 5310 B

 2
 SM 4500-S (2-) D

 3
 SM 2320B

Notes:

Column headers are defined as follows:

DF: Dilution Factor Lc/LC: Critical Level
DL: Detection Limit PF: Prep Factor
MDA: Minimum Detectable Activity RL: Reporting Limit

MDC: Minimum Detectable Concentration SQL: Sample Quantitation Limit

Page 33 of 47 SDG: 612999

2040 Savage Road Charleston SC 29407 - (843) 556-8171 - www.gel.com

Certificate of Analysis

Project:

Client ID:

Report Date: March 14, 2023

SOOP00119

SOOP001

Company: Santee Cooper Address: P.O. Box 2946101

OCO3

Moncks Corner, South Carolina 29461

Contact: Ms. Jeanette Gilmetti Project: ABS Lab Analytical

Client Sample ID: AF56441 Sample ID: 612999032

Matrix: GW

Collect Date: 02-MAR-23 11:45
Receive Date: 03-MAR-23
Collector: Client

Parameter	Qualifier	Result	DL	RL	Units	PF	DF	Analy	yst Date	Time Batch	Method
Carbon Analysis											
SM 5310 B Dissolv	ed Organic Carbo	on "As Received"									
Dissolved Organic Carb	on Average	10.2	0.330	1.00	mg/L		1	TSM	03/10/23	2358 2394833	1
The following Prep	Methods were pe	rformed:									
Method	Description	1		Analyst	Date		Time	e Pi	rep Batch		
EPA 160	Laboratory Fi	Itration - DOC		TSM	03/07/23		1150	23	94325		

The following Analytical Methods were performed:

 Method
 Description
 Analyst Comments

 1
 SM 5310 B

Notes:

Column headers are defined as follows:

DF: Dilution Factor

DL: Detection Limit

MDA: Minimum Detectable Activity

Lc/LC: Critical Level

PF: Prep Factor

RL: Reporting Limit

MDC: Minimum Detectable Concentration SQL: Sample Quantitation Limit

Page 34 of 47 SDG: 612999

2040 Savage Road Charleston, SC 29407 - (843) 556-8171 - www.gel.com

QC Summary

Report Date: March 14, 2023

Page 1 of 4

Santee Cooper P.O. Box 2946101

OCO3

Moncks Corner, South Carolina

Contact: Ms. Jeanette Gilmetti

Workorder: 612999

Parmname	NOM	Sample Qual	QC	Units	RPD%	REC%	Range A	nlst	Date Time
Carbon Analysis Batch 2394332									
QC1205338198 612999019 DUP Total Organic Carbon Average		2.07	2.05	mg/L	0.924 ^		(+/-1.00)	TSM	03/11/23 07:08
QC1205338197 LCS Total Organic Carbon Average	10.0		9.71	mg/L		97.1	(80%-120%)		03/11/23 00:50
QC1205338196 MB Total Organic Carbon Average		U	ND	mg/L					03/11/23 00:40
QC1205338200 612999019 PS Total Organic Carbon Average	10.0	2.07	11.1	mg/L		90.1	(65%-120%)		03/11/23 07:30
Batch 2394833 ———————————————————————————————————		12.4	12.0	mg/L	2.86		(0%-20%)	TSM	03/10/23 17:01
QC1205338177 612999020 DUP Dissolved Organic Carbon Average		1.48	1.43	mg/L	3.37 ^		(+/-1.00)	RM3	03/14/23 16:04
QC1205338175 FLTB Dissolved Organic Carbon Average		U	ND	mg/L					03/14/23 15:21
QC1205339108 LCS Dissolved Organic Carbon Average	10.0		10.1	mg/L		101	(80%-120%)	TSM	03/10/23 16:28
QC1205339107 MB Dissolved Organic Carbon Average		U	ND	mg/L					03/10/23 16:09
QC1205338178 612999002 PS Dissolved Organic Carbon Average	10.0	12.4	21.2	mg/L		88.2	(65%-120%)		03/10/23 17:20

2040 Savage Road Charleston, SC 29407 - (843) 556-8171 - www.gel.com

QC Summary

Workorder: 612999 Page 2 of 4 **Parmname NOM** Sample Qual QC Units RPD% REC% Range Anlst Date Time Carbon Analysis 2394833 Batch QC1205338179 612999020 PS Dissolved Organic Carbon Average 1.48 95.9 (65%-120%) RM3 03/14/23 16:26 10.0 11.1 mg/L Spectrometric Analysis 2394245 Batch QC1205338011 LCS Total Sulfide 0.400 0.404 101 (85%-115%) HH2 03/06/23 18:08 mg/L OC1205338010 MB Total Sulfide U ND mg/L 03/06/23 18:07 QC1205338012 612999011 PS 0.400 U ND 0.241 Total Sulfide mg/L 59.3 * (75%-125%) 03/06/23 18:08 QC1205338013 612999011 PSD 0.400 U ND 0.246 03/06/23 18:08 Total Sulfide mg/L 1.8 60.4* (0%-15%)Batch 2394295 QC1205338101 LCS Total Sulfide 0.400 0.403 mg/L 101 (85%-115%) HH2 03/07/23 15:09 QC1205338100 MB U ND 03/07/23 15:09 Total Sulfide mg/L QC1205338104 612999027 PS ND Total Sulfide 0.400 U 0.102 mg/L 25.2* (75%-125%) 03/07/23 15:15 QC1205338105 612999027 PSD ND 0.104 0.400 U 25.8* 03/07/23 15:15 Total Sulfide mg/L 2.38 (0%-15%)Titration and Ion Analysis 2393625 QC1205336863 612999001 DUP Alkalinity, Total as CaCO3 322 327 mg/L 1.44 (0%-20%)MS3 03/09/23 13:46

Page 36 of 47 SDG: 612999

2040 Savage Road Charleston, SC 29407 - (843) 556-8171 - www.gel.com

QC Summary

Workorder: 612999 Page 3 of 4 **Parmname NOM** Sample Qual QC Units RPD% REC% Range Anlst Date Time Titration and Ion Analysis 2393625 Batch Bicarbonate alkalinity (CaCO3) 322 327 mg/L 1.44 (0%-20%)MS3 03/09/23 13:46 U Carbonate alkalinity (CaCO3) ND U ND mg/L N/A QC1205336865 612999021 DUP 280 279 03/09/23 14:25 Alkalinity, Total as CaCO3 mg/L 0.357 (0%-20%)Bicarbonate alkalinity (CaCO3) 280 279 mg/L 0.357 (0%-20%)Carbonate alkalinity (CaCO3) U ND U ND mg/L N/A QC1205336862 LCS 100 105 03/09/23 13:35 105 (90%-110%) Alkalinity, Total as CaCO3 mg/L QC1205336864 612999001 MS Alkalinity, Total as CaCO3 167 322 495 mg/L 104 (80%-120%) 03/09/23 13:48 QC1205336866 612999021 MS 167 280 451 103 (80%-120%) 03/09/23 14:26 Alkalinity, Total as CaCO3 mg/L

Notes:

The Qualifiers in this report are defined as follows:

- U Analyte was analyzed for, but not detected above the MDL, MDA, MDC or LOD.
- J Value is estimated
- X Consult Case Narrative, Data Summary package, or Project Manager concerning this qualifier
- H Analytical holding time was exceeded
- < Result is less than value reported
- > Result is greater than value reported
- h Preparation or preservation holding time was exceeded
- R Sample results are rejected
- Z Paint Filter Test--Particulates passed through the filter, however no free liquids were observed.
- d 5-day BOD--The 2:1 depletion requirement was not met for this sample
- ^ RPD of sample and duplicate evaluated using +/-RL. Concentrations are <5X the RL. Qualifier Not Applicable for Radiochemistry.

Page 37 of 47 SDG: 612999

2040 Savage Road Charleston, SC 29407 - (843) 556-8171 - www.gel.com

QC Summary

Workorder: 612999

Parmname

NOM Sample Qual QC Units RPD% REC% Range Anlst Date Time

'armname	NOM	Sample	Qual	QC	Units	KPD%	REC%	Kange	Anist	Date	Time

- N/A RPD or %Recovery limits do not apply.
- ND Analyte concentration is not detected above the detection limit
- NJ Consult Case Narrative, Data Summary package, or Project Manager concerning this qualifier
- E General Chemistry--Concentration of the target analyte exceeds the instrument calibration range
- Q One or more quality control criteria have not been met. Refer to the applicable narrative or DER.
- N1 See case narrative
- R Per section 9.3.4.1 of Method 1664 Revision B, due to matrix spike recovery issues, this result may not be reported or used for regulatory compliance purposes.
- B The target analyte was detected in the associated blank.
- e 5-day BOD--Test replicates show more than 30% difference between high and low values. The data is qualified per the method and can be used for reporting purposes
- J See case narrative for an explanation

N/A indicates that spike recovery limits do not apply when sample concentration exceeds spike conc. by a factor of 4 or more or %RPD not applicable.

- ^ The Relative Percent Difference (RPD) obtained from the sample duplicate (DUP) is evaluated against the acceptance criteria when the sample is greater than five times (5X) the contract required detection limit (RL). In cases where either the sample or duplicate value is less than 5X the RL, a control limit of +/- the RL is used to evaluate the DUP result.
- * Indicates that a Quality Control parameter was not within specifications.

For PS, PSD, and SDILT results, the values listed are the measured amounts, not final concentrations.

Where the analytical method has been performed under NELAP certification, the analysis has met all of the requirements of the NELAC standard unless qualified on the QC Summary.

Page 38 of 47 SDG: 612999

General Chemistry Technical Case Narrative Santee Cooper SDG #: 612999

Product: Carbon, Total Organic Analytical Method: SM 5310 B

Analytical Procedure: GL-GC-E-093 REV# 21

Analytical Batch: 2394332

The following samples were analyzed using the above methods and analytical procedure(s).

GEL Sample ID#	Client Sample Identification
612999001	AF56433
612999003	AF56435
612999005	AF56436
612999007	AF56437
612999009	AF56438
612999011	AF56402
612999013	AF56403
612999015	AF56404
612999017	AF56434
612999019	AF56414
612999021	AF56423
612999023	AF56428
612999025	AF56421
612999027	AF56424
612999029	AF56439
612999031	ΛF56441
1205338196	Method Blank (MB)
1205338197	Laboratory Control Sample (LCS)
1205338198	612999019(AF56414) Sample Duplicate (DUP)
1205338200	612999019(AF56414) Post Spike (PS)

The samples in this SDG were analyzed on an "as received" basis.

Data Summary:

There are no exceptions, anomalies or deviations from the specified methods. All sample data provided in this report met the acceptance criteria specified in the analytical methods and procedures for initial calibration, continuing calibration, instrument controls and process controls where applicable.

Product: Carbon, Dissolved Organic **Analytical Method:** SM 5310 B

Analytical Procedure: GL-GC-E-093 REV# 21

Analytical Batch: 2394833

Filtration Method: EPA 160

Filtration Procedure: GL-LB-E-034 REV# 4

Filtration Batch: 2394325

Page 39 of 47 SDG: 612999

The following samples were analyzed using the above methods and analytical procedure(s).

GEL Sample ID#	Client Sample Identification
612999002	AF56433
612999004	AF56435
612999006	AF56436
612999008	AF56437
612999010	AF56438
612999012	AF56402
612999014	AF56403
612999016	AF56404
612999018	AF56434
612999020	AF56414
612999022	AF56423
612999024	AF56428
612999026	AF56421
612999028	AF56424
612999030	AF56439
612999032	AF56441
1205338175	Filtration Blank (FLTB)
1205338176	612999002(AF56433) Sample Duplicate (DUP)
1205338177	612999020(AF56414) Sample Duplicate (DUP)
1205338178	612999002(AF56433) Post Spike (PS)
1205338179	612999020(AF56414) Post Spike (PS)
1205339107	Method Blank (MB)
1205339108	Laboratory Control Sample (LCS)

The samples in this SDG were analyzed on an "as received" basis.

Data Summary:

All sample data provided in this report met the acceptance criteria specified in the analytical methods and procedures for initial calibration, continuing calibration, instrument controls and process controls where applicable, with the following exceptions.

Technical Information

Sample Re-analysis

Samples 1205338177 (AF56414DUP), 1205338179 (AF56414PS) and 612999020 (AF56414) were reanalyzed due to PS failure. The reanalysis data was reported. Sample was re-analyzed to verify the result. The reanalysis data with passing instrument QC was reported. 1205338175 (FLTB).

Product: Sulfide, Total

Analytical Method: SM 4500-S (2-) D

Analytical Procedure: GL-GC-E-052 REV# 12

Analytical Batch: 2394245

The following samples were analyzed using the above methods and analytical procedure(s).

<u>lient Sample Identification</u>
F56402
F56403
F56404
F56434
ethod Blank (MB)

1205338011	Laboratory Control Sample (LCS)
1205338012	612999011(AF56402) Post Spike (PS)
1205338013	612999011(AF56402) Post Spike Duplicate (PSD)

The samples in this SDG were analyzed on an "as received" basis.

Data Summary:

All sample data provided in this report met the acceptance criteria specified in the analytical methods and procedures for initial calibration, continuing calibration, instrument controls and process controls where applicable, with the following exceptions.

Quality Control (QC) Information

Matrix Spike (MS)/Post Spike (PS) Recovery Statement

The percent recoveries (%R) obtained from the spike analyses are evaluated when the sample concentration is less than four times (4X) the spike concentration added. The matrix spike recovered outside of the established acceptance limits due to matrix interference and/or non-homogeneity.

Analyte	Sample	Value
Total Sulfide	1205338012 (AF56402PS)	59.3* (75%-125%)
	1205338013 (AF56402PSD)	60.4* (75%-125%)

Product: Sulfide, Total

Analytical Method: SM 4500-S (2-) D

Analytical Procedure: GL-GC-E-052 REV# 12

Analytical Batch: 2394295

The following samples were analyzed using the above methods and analytical procedure(s).

GEL Sample ID#	Client Sample Identification
612999001	AF56433
612999003	AF56435
612999005	AF56436
612999007	AF56437
612999009	AF56438
612999019	AF56414
612999021	AF56423
612999023	AF56428
612999025	AF56421
612999027	AF56424
612999029	AF56439
612999031	AF56441
1205338100	Method Blank (MB)
1205338101	Laboratory Control Sample (LCS)
1205338104	612999027(AF56424) Post Spike (PS)
1205338105	612999027(AF56424) Post Spike Duplicate (PSD)

The samples in this SDG were analyzed on an "as received" basis.

Data Summary:

All sample data provided in this report met the acceptance criteria specified in the analytical methods and procedures for initial calibration, continuing calibration, instrument controls and process controls where applicable, with the following exceptions.

Quality Control (QC) Information

Matrix Spike (MS)/Post Spike (PS) Recovery Statement

The percent recoveries (%R) obtained from the spike analyses are evaluated when the sample concentration is less than four times (4X) the spike concentration added. The matrix spike recovered outside of the established acceptance limits due to matrix interference and/or non-homogeneity.

Analyte	Sample	Value
Total Sulfide	1205338104 (AF56424PS)	25.2* (75%-125%)
	1205338105 (AF56424PSD)	25.8* (75%-125%)

Product: Alkalinity

Analytical Method: SM 2320B

Analytical Procedure: GL-GC-E-033 REV# 14

Analytical Batch: 2393625

The following samples were analyzed using the above methods and analytical procedure(s).

Client Sample Identification
AF56433
AF56435
AF56436
AF56437
AF56438
AF56402
AF56403
AF56404
AF56434
AF56414
AF56423
AF56428
AF56421
AF56424
AF56439
AF56441
Laboratory Control Sample (LCS)
612999001(AF56433) Sample Duplicate (DUP)
612999001(AF56433) Matrix Spike (MS)
612999021(AF56423) Sample Duplicate (DUP)
612999021(AF56423) Matrix Spike (MS)

The samples in this SDG were analyzed on an "as received" basis.

Page 42 of 47 SDG: 612999

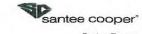
Data Summary:

There are no exceptions, anomalies or deviations from the specified methods. All sample data provided in this report met the acceptance criteria specified in the analytical methods and procedures for initial calibration, continuing calibration, instrument controls and process controls where applicable.

Certification Statement

Where the analytical method has been performed under NELAP certification, the analysis has met all of the requirements of the NELAC standard unless otherwise noted in the analytical case narrative.

Page 43 of 47 SDG: 612999


santee cooper°

Chain of Custody

Santee Cooper One Riverwood Drive Moncks Corner, SC 29461 Phone: (843)761-8000 Ext. 5148 Fax: (843)761-4175

Customer Email	/Report Recipient:	Date Re	esults Nee	ded by	:		Pr	oject/	Task/l	Jnit #:	Rerun request	for ar	y fla	gged	QC
LCWILLIA	@santeecooper.com					125	715	1 JM	02.0	9.601.1/3650	Yes	NO			
												A	nalysi	s Grou	шр
Labworks ID # (Internal use only)	Sample Location/ Description	Collection Date	Collection Time	Sample Collector	Total # of containers	Bottle type: (Glass-G/Plastic-P)	Grab (G) or Composite (C)	Matrix(see below)	Preservative (see below)	Method # Reporting limit Misc. sample ir Any other note:	nfo	ALKALINITY	Suchbe	TOC/POC	RAD 226/228
YE 2 6433	WLF - 41-1	2/28/23	1258	ML	6	Pla	G	GIN	本	* SUUFIDE HAS	SHORT HOLD	4.	1	2	2
35	WLF-AI-3		1144	1	1		1	1				1	T		11
36	WLF-A1-4		1019							* PRESERVAT	IVES		T		
37	WLF - A1 - 4D		1024							TOC- H2SO4 SULFIDE-FINC	ACETATE, NOUTH				
_ 38	WLF-A-5	1	1431	1	1	1	1	1		RAD-HNO3			T		
AF56402	WAP-9	2/21/28		ME	1	1	1	(1						П
) 03	WAP-10	1	0957	1	1					ALK - TOTAL, B	ICARB, CARB				П
04	WAP-10D		1062	\Box	1	\Box		T			15 1110/	T			П
434	WLF-A1-2		1244	1	1	\Box	1		1	DOC-NOT FIELD	DAUTERED	1	1		\parallel
				-											_
6 K (15 - 15	Employee# Date	Time	Received	J box	1 -	mployee	# 1	Date			Receiving (Internal				
Relinquished by:	35594 3/3/23	Pilo)	Die	1		SEL.		3/3/2		TEMP		Initia	l:		-
Relinquished by:	Employee# Date	Time	Received	d by:	E	mployee	#	Date		Time	t pH: Yes No vative Lot#:				
Relinquished by:	Employee# Date	Stiffe	Received	i by:	E	mployee	#	509 Date	Ch	Time					
								DESEMB		Date/Ti	ime/Init for preserv	ative:			
MI	So	C TPO4 3-N 2	MISC BTEX Naphthaler THM/HAA VOC Oil & Gree E. Coli Total Colif pH Dissolved Dissolved Rad 226 Rad 228 PCB	ne A ase form		Wallbe Gyp belo A C T C C T T C C C T C C C C C C C C C	isum (a w) IM OC tal met luble M rity (Ca Moistu lfites l	als fetals aSO4) re	000000000000000000000000000000000000000	Coal Ultimate % Moisture Ash Sulfur BTUs Volatile Matter CHN ther Tests: XRF Scan HGI Fineness Particulate Matter	Flyash Ammonia LOI Carbon Mineral Analysis Sieve Moisture NPDES Oil & Grease As TSS	D VS	ons. O Moi Color Acidity Dissolved OF lashpe Metals (As, Co Hg) FX	il Qui sture c Strer red Gi il oint in oil I,Cr.N	ngth ases

Chain of Custody

Santee Cooper One Riverwood Drive Moncks Comer, SC 29461 Phone: (843)761-8000 Ext. 5148 Fax: (843)761-4175

Custor	ner Email,	/Report Recipie	ent:	Date R	esults Ne	eded b	y:		Pr	oject/	Task/l	Init #:	Rerun request i	for an	y fla	gged	QC
LCWI	LLA	@santeec	ooper.com					125	915	J_JN	102.0	09.601.1/3650	∞ Yes	No			
														<u>A</u>	nalysi	s Grou	_
Labwo (Intern only)	rks ID # al use	Sample Locatio Description	n/	Collection Date	Collection Time	Sample Collector	Total # of containers	Bottle type: (Glass-G/Plastic-P)	Grab (G) or Composite (C)	Matrix(see below)	Preservative (see	Comm Method # Reporting limit Misc. sample in Any other notes	ıfo	ALICALINITY	SULFIPE	TDC/DOC	RAD 226/228
AF5	6414	WAP-15		3/2/23	1246	ZDM	6	P/G	6	GN	*	4 SULFIDE H	AS SHORT HOLD	4	1	2	2
1	23	WAP - 23			0952		1		1							1	
1	28	WAP - 27			1056	Ī	I		I	Ī	I	* PRESERVA	LIVES				
AF5	6421	WAP-21		3/1/23	1441	1	i	1	1	1	1	TOC- H2504 SULFIDE - ZINC	ACETATE NOOH				
1	24	1 24		1	1337			T	\top			RAD-HNO3	7				
	39				1022			H	+	1	1	27 0		T	\dagger	1	H
1	4-1	WLF-A2-				1	1	+	1	+	1		Internal defenda	1	1	+	1
	71	WLF-A2-3	2		1145	-	-	-	-		<u> </u>	ALKAL- TOTAL,	BICARB, GORB	-	-	1	
												DOC-NOT FIELD	FILERED				
Relin	quished by:	Employee#	Date	Time	Receiv	red by:	E	mploye	e#	Date	e		Receiving (Internal (°C):				
sgnz	uoun	35594	3/3/23 Date	OG40 Time	Receiv	ed by:		GEL Employe		3/3/2 Date	-	mus	t pH: Yes No				
D	nquished by:	1660	3-3-2 3 Date	Mille	Receiv	ved by:	G	Employee	e#	Date	B	Time	vative Lot#: ime/Init for preserv	rative:			
	□М	ETALS (all)	Nut	rients	5/1	cc.		6	ypsu	m		Coal			0	il	
□ Ag		u □ Sb	□ТО	C	MI BTEX		1	□ Wallt	board		E	Ultimate	Flyash Ammonia		ans. C	il Qu	
□ As	□ K	SUMMER SERVICE	O DO	C TPO4	☐ Naphtha ☐ THM/H		46	10.10	psum(all	-	☐ % Moisture ☐ Ash	□ LOl □ % Carbon	15	Color		
□В	OL	i 🗆 Sr	□ NH		□ VOC □ Oil & G	rease			AIM OC		9	□ Sulfur	☐ Mineral		Acidit Dielecti	y ic Strer	ngth
□Ba				333	□ E. Coli			DT	otal met			☐ BTUs ☐ Volatile Matter	Analysis ☐ Sieve		IFT Disco	ved G	900
□ Be)2	☐ Total Co	oliform			oluble Nurity (C			□ CHN	☐ % Moisture		sed O		uses
□ Ca	TEN FOR		□ Br		□ Dissolve			□%	Moist		0.000	other Tests:			Flash	oint in oil	
□ Cd					☐ Dissolve		1		ulfites H			XRF Scan HGI	NPDES			d,Cr,N	
1, 1200 100	23000		130		☐ Rad 228		100	DC	hlorides		// E	Fineness	☐ Oil & Grease ☐ As		Hg) TX		
☐ Co		The second secon			□ PCB		-	□ Pa	article S	size		Particulate Matter	□ TSS		OFER		

GEL Laboratories LLC			SAMPLE RECEIPT & REVIEW FORM	
Client:			SDG/AR/COC/Work Order: 612999/613005	
Received By: MVH			Date Received 5 6 5	
Carrier and Tracking Number			FedEx Express FedEx Ground UPS Field Services Courier Other	
Suspected Hazard Information	Yes	ŝ	*If Net Counts > 100cpm on samples not marked "radioactive", contact the Radiation Safety Group for further investigation.	
A)Shipped as a DOT Hazardous?		V	Hazard Class Shipped: UN#: 17 UN2910, Is the Radioactive Shipment Survey Compliant? YesNo	
B) Did the client designate the samples are to be received as radioactive?		\vee	COC notation or radioactive stickers on containers equal client designation.	
C) Did the RSO classify the samples as radioactive?		V	Maximum Net Counts Observed* (Observed Counts - Area Background Counts): CPMy mR/Hr Classifled as: Rad 1 Rad 2 Rad 3	
D) Did the client designate samples are hazardous?			COC notation or hazard labels on containers equal client designation.	
E) Did the RSO identify possible hazards?		Ľ	ff D or E is yes, select Hazards below. PCB's Flammable Foreign Soil RCRA Asbestos Beryllium Other:	
Sample Receipt Criteria	Yes	ž		
Shipping containers received intact and scaled?	V		Circle Applicable: Seals broken Damaged container Leaking container Other (describe)	
2 Chain of custody documents included with shipment?	~		Circle Applicable: Client contacted and provided COC COC created upon receipt	
3 Samples requiring cold preservation within (0 ≤ 6 deg. C)?*	/	,	Preservation Method: Wet Ice lice Packs Dry ice None Other: *all temperatures are recogned in Celsius TEMP:	
Daily check performed and passed on IR temperature gun?	\checkmark		Temperature Device Serial #: IR2-21 Secondary Temperature Device Serial # (If Applicable):	
5 Sample containers intact and sealed?	~		Circle Applicable: Seals broken Damagod container Leaking container Other (describe)	
Samples requiring chemical preservation at proper pH? WVH63. Co.23	\downarrow	/	Sample ID's and Containers Affected 500128, AF50421, AF50403, AF50402, If Preservation added, Latt. 23-11-13	79 F5G
Do any samples require Volatile Analysis?			If Yes, are Encores or Soil Kits present for solids? Yes No NA (If yes, take to VOA Freezer) Do liquid VOA vials contain acid preservation? Yes No NA (If unknown, select No) Are liquid VOA vials free of headspace? Yes No NA Sample ID's and containers affected:	
8 Samples received within holding time?	V		ID's and tests affected:	
9 Sample ID's on COC match ID's on bottles?	V		ID's and containers affected:	
10 Date & time on COC match date & time on bottles?			Circle Applicable: No dates on containers No times on containers COC missing info Other (describe) Thus for Sendes F757692, Cnd F757693, Ore Such	Mr.
Number of containers received match number indicated on COC?	~		Circle Applicable: No container count on COC Other (describe)	-170
Are sample containers identifiable as GEL provided by use of GEL labels?	V	.•		
COC form is properly signed in relinquished/received sections? Comments (Use Continuation Form if needed):	V		Circle Applicable: Not relinquished Other (describe)	

List of current GEL Certifications as of 14 March 2023

State	Certification
Alabama	42200
Alaska	17-018
Alaska Drinking Water	SC00012
Arkansas	88-0651
CLIA	42D0904046
California	2940
Colorado	SC00012
Connecticut	PH-0169
DoD ELAP/ ISO17025 A2LA	2567.01
Florida NELAP	E87156
Foreign Soils Permit	P330-15-00283, P330-15-00253
Georgia	SC00012
Georgia SDWA	967
Hawaii	SC00012
Idaho	SC00012 SC00012
Illinois NELAP	200012
Indiana	C-SC-01
Kansas NELAP	E-10332
Kentucky SDWA	90129
Kentucky Wastewater	90129
Louisiana Drinking Water	LA024
Louisiana NELAP	03046 (AI33904)
Maine	2019020
Maryland	270
Massachusetts	M-SC012
Massachusetts PFAS Approv	Letter
Michigan	9976
Mississippi	SC00012
Nebraska	NE-OS-26-13
Nevada	SC000122023-4
New Hampshire NELAP	2054
New Jersey NELAP	SC002
New Mexico	SC00012
New York NELAP	11501
North Carolina	233
North Carolina SDWA	45709
North Dakota	R-158
Oklahoma	2022-160
Pennsylvania NELAP	68-00485
Puerto Rico	SC00012
S. Carolina Radiochem	10120002
Sanitation Districts of L	9255651
South Carolina Chemistry	10120001
Tennessee	TN 02934
Texas NELAP	T104704235-22-20
Utah NELAP	SC000122022-37
Vermont	VT87156
Virginia NELAP	460202
Washington	C780
	1

gel.com

April 03, 2023

Ms. Jeanette Gilmetti Santee Cooper P.O. Box 2946101 OCO3 Moncks Corner, South Carolina 29461

Re: ABS Lab Analytical Work Order: 613005

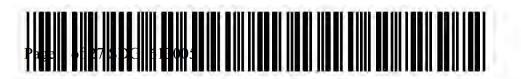
Dear Ms. Gilmetti:

GEL Laboratories, LLC (GEL) appreciates the opportunity to provide the enclosed analytical results for the sample(s) we received on March 03, 2023. This original data report has been prepared and reviewed in accordance with GEL's standard operating procedures.

The samples were delivered with proper chain of custody documentation and signatures. All sample containers arrived without any visible signs of tampering or breakage. There are no additional comments concerning sample receipt.

Test results for NELAP or ISO 17025 accredited tests are verified to meet the requirements of those standards, with any exceptions noted. The results reported relate only to the items tested and to the sample as received by the laboratory. These results may not be reproduced except as full reports without approval by the laboratory. Copies of GEL's accreditations and certifications can be found on our website at www.gel.com.

Our policy is to provide high quality, personalized analytical services to enable you to meet your analytical needs on time every time. We trust that you will find everything in order and to your satisfaction. If you have any questions, please do not hesitate to call me at (843) 556-8171, ext. 4289.


Sincerely,

Julie Robinson Project Manager

Indie Robinson

Purchase Order: 398684

Enclosures

2040 Savage Road Charleston SC 29407 - (843) 556-8171 - www.gel.com

Certificate of Analysis Report for

SOOP001 Santee Cooper

Client SDG: 613005 GEL Work Order: 613005

The Qualifiers in this report are defined as follows:

- * A quality control analyte recovery is outside of specified acceptance criteria
- ** Analyte is a Tracer compound
- ** Analyte is a surrogate compound
- U Analyte was analyzed for, but not detected above the MDL, MDA, MDC or LOD.

Where the analytical method has been performed under NELAP certification, the analysis has met all of the requirements of the NELAC standard unless qualified on the Certificate of Analysis.

The designation ND, if present, appears in the result column when the analyte concentration is not detected above the limit as defined in the 'U' qualifier above.

This data report has been prepared and reviewed in accordance with GEL Laboratories LLC standard operating procedures. Please direct any questions to your Project Manager, Julie Robinson.

	Irelie	Roberson
Reviewed by		

Page 2 of 27 SDG: 613005

2040 Savage Road Charleston SC 29407 - (843) 556-8171 - www.gel.com

Certificate of Analysis

Project:

Client ID:

Analyst Comments

Report Date: April 3, 2023

SOOP00119

SOOP001

Company: Santee Cooper Address: P.O. Box 2946101

OCO3

Moncks Corner, South Carolina 29461

Contact: Ms. Jeanette Gilmetti Project: ABS Lab Analytical

Client Sample ID: AF56433 Sample ID: 613005001

Matrix: GW

Collect Date: 28-FEB-23 12:58
Receive Date: 03-MAR-23
Collector: Client

Parameter	Qualifier	Result	Uncertainty	MDC	RL	Units	PF	DF	Analy	st Date	Time Batch	Method
Rad Gas Flow Proportion	onal Counting	5	-									
GFPC, Ra228, Liquid ".	As Received"	,										
Radium-228	U	-0.249	+/-0.781	1.56	3.00	pCi/L			JE1	03/29/23	1353 2397799	1
Radium-226+Radium-2	28 Calculatio	n "See Pa	rent Products"									
Radium-226+228 Sum		0.644	+/-0.904			pCi/L		1	NXL1	04/03/23	1450 2397798	2
Rad Radium-226												
Lucas Cell, Ra226, Liqu	uid "As Recei	ved"										
Radium-226		0.644	+/-0.455	0.560	1.00	pCi/L			LXP1	04/03/23	0839 2397388	3

The following Analytical Methods were performed:

Description

1	EPA 904.0/SW 846 9320 Modified				
2	Calculation				
3	EPA 903.1 Modified				
Surrogate/Tracer Recove	ery Test	Result	Nominal	Recovery%	Acceptable Limits

Barium-133 Tracer GFPC, Ra228, Liquid "As Received" 89.8 (15%-125%)

Notes:

Counting Uncertainty is calculated at the 95% confidence level (1.96-sigma).

Column headers are defined as follows:

DF: Dilution Factor Lc/LC: Critical Level
DL: Detection Limit PF: Prep Factor
MDA: Minimum Detectable Activity RL: Reporting Limit

MDC: Minimum Detectable Concentration SQL: Sample Quantitation Limit

Page 3 of 27 SDG: 613005

2040 Savage Road Charleston SC 29407 - (843) 556-8171 - www.gel.com

Certificate of Analysis

Project:

Client ID:

Analyst Comments

Report Date: April 3, 2023

SOOP00119

SOOP001

Company: Santee Cooper Address: P.O. Box 2946101

OCO3

Moncks Corner, South Carolina 29461

Contact: Ms. Jeanette Gilmetti Project: ABS Lab Analytical

Client Sample ID: AF56435 Sample ID: 613005002

Matrix: GW

Collect Date: 28-FEB-23 11:44
Receive Date: 03-MAR-23
Collector: Client

Parameter	Qualifier	Result	Uncertainty	MDC	RL	Units	PF	DF A1	alyst Date	Time Batch	Method
Rad Gas Flow Propor	tional Counting										
GFPC, Ra228, Liquid	"As Received"										
Radium-228	U	1.77	+/-1.29	2.03	3.00	pCi/L		JE	03/29/23	1353 2397799	1
Radium-226+Radium	-228 Calculatio	n "See Pa	rent Products"								
Radium-226+228 Sum		3.09	+/-1.47			pCi/L		1 N2	L1 04/03/23	1450 2397798	2
Rad Radium-226											
Lucas Cell, Ra226, Li	quid "As Recei	ved"									
Radium-226		1.32	+/-0.707	0.797	1.00	pCi/L		LX	P1 04/03/23	0839 2397388	3
The following Analyt	tical Methods w	zere perfoi	rmed·								

The following Analytical Methods were performed:

Description

1	EPA 904.0/SW846 9320 Modified		•		
2	Calculation				
3	EPA 903.1 Modified				
Surrogate/Tracer Recov	ery Test	Result	Nominal	Recovery%	Acceptable Limits

Barium-133 Tracer GFPC, Ra228, Liquid "As Received" 73.8 (15%-125%)

Notes:

Method

Counting Uncertainty is calculated at the 95% confidence level (1.96-sigma).

Column headers are defined as follows:

DF: Dilution Factor Lc/LC: Critical Level
DL: Detection Limit PF: Prep Factor
MDA: Minimum Detectable Activity RL: Reporting Limit

MDC: Minimum Detectable Concentration SQL: Sample Quantitation Limit

Page 4 of 27 SDG: 613005

2040 Savage Road Charleston SC 29407 - (843) 556-8171 - www.gel.com

Certificate of Analysis

Project:

Client ID:

Analyst Comments

Report Date: April 3, 2023

SOOP00119

SOOP001

Company: Santee Cooper Address: P.O. Box 2946101

OCO₃

Moncks Corner, South Carolina 29461

Contact: Ms. Jeanette Gilmetti Project: ABS Lab Analytical

Client Sample ID: AF56436 Sample ID: 613005003

Matrix: GW

Collect Date: 28-FEB-23 10:19
Receive Date: 03-MAR-23
Collector: Client

Parameter **Oualifier** Result Uncertainty **MDC** RL Units PF DF Analyst Date Time Batch Method Rad Gas Flow Proportional Counting GFPC, Ra228, Liquid "As Received" Radium-228 -0.0291 03/29/23 1353 2397799 +/-0.690 1.35 3.00 pCi/L JE1 1 Radium-226+Radium-228 Calculation "See Parent Products" Radium-226+228 Sum 0.482 +/-0.837pCi/L NXL1 04/03/23 1450 2397798 2 Rad Radium-226 Lucas Cell, Ra226, Liquid "As Received" Radium-226 0.482 1.00 +/-0.473 0.699 pCi/L LXP1 04/03/23 0839 2397388 3

The following Analytical Methods were performed:

Description

2 Calculation
3 EPA 903.1 Modified

Surrogate/Tracer Recovery Test Result Nominal Recovery% Acceptable Limits

Barium-133 Tracer GFPC, Ra228, Liquid "As Received"

93.3 (15%-125%)

Notes:

Method

Counting Uncertainty is calculated at the 95% confidence level (1.96-sigma).

EPA 904.0/SW846 9320 Modified

Column headers are defined as follows:

DF: Dilution Factor Lc/LC: Critical Level
DL: Detection Limit PF: Prep Factor
MDA: Minimum Detectable Activity RL: Reporting Limit

MDC: Minimum Detectable Concentration SQL: Sample Quantitation Limit

Page 5 of 27 SDG: 613005

2040 Savage Road Charleston SC 29407 - (843) 556-8171 - www.gel.com

Certificate of Analysis

Report Date: April 3, 2023

Company: Santee Cooper Address: P.O. Box 2946101

OCO3

Moncks Corner, South Carolina 29461

Contact: Ms. Jeanette Gilmetti Project: ABS Lab Analytical

Client Sample ID: AF56437 Sample ID: 613005004

Matrix: GW

Collect Date: 28-FEB-23 10:24
Receive Date: 03-MAR-23
Collector: Client

Project: SOOP00119 Client ID: SOOP001

Parameter	Qualifier	Result	Uncertainty	MDC	RL	Units	PF	DF	Analy	st Date	Time	e Batch	Method
Rad Gas Flow Proportion	onal Counting												
GFPC, Ra228, Liquid ".	As Received"												
Radium-228	U	-0.766	+/-0.835	1.75	3.00	pCi/L			JE1	03/29/23	1353	2397799	1
Radium-226+Radium-2	28 Calculatio	n "See Pa	arent Products"										
Radium-226+228 Sum		0.569	+/-0.926			pCi/L		1	NXL1	04/03/23	1450	2397798	2
Rad Radium-226													
Lucas Cell, Ra226, Liqu	uid "As Recei	ved"											
Radium-226		0.569	+/-0.399	0.392	1.00	pCi/L			LXP1	04/03/23	0839	2397388	3
The following Analytic	al Methods w	ere perfo	ormed:										
Method	Description					A	Analys	st Co	mment	s			
1	EPA 904.0/SW	846 9320 1	Modified										

3	EPA 903.1 Modified				
Surrogate/Tracer Recove	ery Test	Result	Nominal	Recovery%	Acceptable Limits

Barium-133 Tracer GFPC, Ra228, Liquid "As Received" 91.5 (15%-125%)

Notes:

Counting Uncertainty is calculated at the 95% confidence level (1.96-sigma).

Column headers are defined as follows:

DF: Dilution Factor Lc/LC: Critical Level
DL: Detection Limit PF: Prep Factor
MDA: Minimum Detectable Activity RL: Reporting Limit

MDC: Minimum Detectable Concentration SQL: Sample Quantitation Limit

Page 6 of 27 SDG: 613005

2040 Savage Road Charleston SC 29407 - (843) 556-8171 - www.gel.com

Certificate of Analysis

Project:

Client ID:

Report Date: April 3, 2023

SOOP00119

SOOP001

Santee Cooper Company: P.O. Box 2946101 Address:

OCO₃

Moncks Corner, South Carolina 29461

Contact: Ms. Jeanette Gilmetti Project: ABS Lab Analytical

Client Sample ID: AF56438 Sample ID: 613005005

Matrix: GW

Collect Date: 28-FEB-23 14:31 Receive Date: 03-MAR-23 Collector: Client

Parameter **Oualifier** Result Uncertainty **MDC** RL Units PF DF Analyst Date Time Batch Method Rad Gas Flow Proportional Counting GFPC, Ra228, Liquid "As Received" Radium-228 03/29/23 1353 2397799 2.60 +/-1.20 1.68 3.00 pCi/L JE1 1 Radium-226+Radium-228 Calculation "See Parent Products" Radium-226+228 Sum 3.92 +/-1.36 pCi/L NXL1 04/03/23 1450 2397798 2

Rad Radium-226

Lucas Cell, Ra226, Liquid "As Received"

Radium-226 1.32 +/-0.639 1.00 0.633 pCi/L LXP1 04/03/23 0839 2397388 3

The following Analytical Methods were performed:

Method Description **Analyst Comments** EPA 904.0/SW846 9320 Modified

2 Calculation EPA 903.1 Modified

Surrogate/Tracer Recovery Test Result Nominal Recovery% Acceptable Limits

Barium-133 Tracer GFPC, Ra228, Liquid "As Received" 87 (15%-125%)

Notes:

Counting Uncertainty is calculated at the 95% confidence level (1.96-sigma).

Column headers are defined as follows:

Lc/LC: Critical Level DF: Dilution Factor DL: Detection Limit PF: Prep Factor MDA: Minimum Detectable Activity **RL**: Reporting Limit

MDC: Minimum Detectable Concentration SQL: Sample Quantitation Limit

Page 7 of 27 SDG: 613005

2040 Savage Road Charleston SC 29407 - (843) 556-8171 - www.gel.com

Certificate of Analysis

Project:

Client ID:

Analyst Comments

Report Date: April 3, 2023

SOOP00119

SOOP001

Company: Santee Cooper Address: P.O. Box 2946101

OCO3

Moncks Corner, South Carolina 29461

Contact: Ms. Jeanette Gilmetti Project: ABS Lab Analytical

Client Sample ID: AF56402 Sample ID: 613005006

Matrix: GW

Collect Date: 27-FEB-23 12:47
Receive Date: 03-MAR-23
Collector: Client

Parameter	Qualifier	Result	Uncertainty	MDC	RL	Units	PF	DF Analyst Date		st Date Time Batch	
Rad Gas Flow Proportion	onal Counting										
GFPC, Ra228, Liquid "	'As Received"										
Radium-228	U	1.51	+/-1.11	1.75	3.00	pCi/L		JE	03/29/23	1353 2397799	1
Radium-226+Radium-2	228 Calculation	n "See Pa	arent Products"								
Radium-226+228 Sum		2.78	+/-1.28			pCi/L		1 NX	L1 04/03/23	1450 2397798	2
Rad Radium-226											
Lucas Cell, Ra226, Liq	uid "As Recei	ved"									
Radium-226		1.26	+/-0.631	0.611	1.00	pCi/L		LX	P1 04/03/23	0839 2397388	3
The following Analytic	cal Methods w	zere nerfo	ormed:								

The following Analytical Methods were performed:

Description

1	EPA 904.0/SW846 9320 Modified		•		
2	Calculation				
3	EPA 903.1 Modified				
Surrogate/Tracer Recove	erv Test	Result	Nominal	Recovery%	Acceptable Limits

Barium-133 Tracer GFPC, Ra228, Liquid "As Received"

93.2 (15%-125%)

Notes:

Method

Counting Uncertainty is calculated at the 95% confidence level (1.96-sigma).

Column headers are defined as follows:

DF: Dilution Factor Lc/LC: Critical Level
DL: Detection Limit PF: Prep Factor
MDA: Minimum Detectable Activity RL: Reporting Limit

MDC: Minimum Detectable Concentration SQL: Sample Quantitation Limit

Page 8 of 27 SDG: 613005

2040 Savage Road Charleston SC 29407 - (843) 556-8171 - www.gel.com

Certificate of Analysis

Report Date: April 3, 2023

SOOP00119

Company: Santee Cooper Address: P.O. Box 2946101

OCO3

Moncks Corner, South Carolina 29461

Contact: Ms. Jeanette Gilmetti Project: ABS Lab Analytical

Client Sample ID: AF56403 Sample ID: 613005007

Matrix: GW

Collect Date: 27-FEB-23 09:57
Receive Date: 03-MAR-23
Collector: Client

3005007 Client ID: SOOP001

Project:

Parameter	Qualifier	Result	Uncertainty	MDC	RL	Units	PF	DF	Analy	st Date	Time	e Batch	Method
Rad Gas Flow Proportio	nal Counting												
GFPC, Ra228, Liquid "A	As Received"												
Radium-228	U	-0.163	+/-1.41	2.61	3.00	pCi/L			JE1	03/29/23	1353	2397799	1
Radium-226+Radium-22	28 Calculation	n "See Pa	arent Products"										
Radium-226+228 Sum		1.55	+/-1.56			pCi/L		1	NXL1	04/03/23	1450	2397798	2
Rad Radium-226													
Lucas Cell, Ra226, Liqu	id "As Recei	ved"											
Radium-226		1.55	+/-0.668	0.494	1.00	pCi/L			LXP1	04/03/23	0839	2397388	3
The following Analytic	al Methods w	ere perfo	ormed:										
Method	Description					A	Analys	t Co	mment	s			
1	EPA 904.0/SW	846 9320 1	Modified										

2	Calculation				
3	EPA 903.1 Modified				
Surrogate/Tracer Recove	ery Test	Result	Nominal	Recovery%	Acceptable Limits

Barium-133 Tracer GFPC, Ra228, Liquid "As Received" 74 (15%-125%)

Notes:

Counting Uncertainty is calculated at the 95% confidence level (1.96-sigma).

Column headers are defined as follows:

DF: Dilution Factor Lc/LC: Critical Level
DL: Detection Limit PF: Prep Factor
MDA: Minimum Detectable Activity RL: Reporting Limit

MDC: Minimum Detectable Concentration SQL: Sample Quantitation Limit

Page 9 of 27 SDG: 613005

2040 Savage Road Charleston SC 29407 - (843) 556-8171 - www.gel.com

Certificate of Analysis

Project:

Client ID:

Analyst Comments

Report Date: April 3, 2023

SOOP00119

SOOP001

Company: Santee Cooper Address: P.O. Box 2946101

OCO3

Moncks Corner, South Carolina 29461

Contact: Ms. Jeanette Gilmetti Project: ABS Lab Analytical

Client Sample ID: AF56404 Sample ID: 613005008

Matrix: GW

Collect Date: 27-FEB-23 10:02
Receive Date: 03-MAR-23
Collector: Client

Parameter **Oualifier** Result Uncertainty **MDC** RL Units PF DF Analyst Date Time Batch Method Rad Gas Flow Proportional Counting GFPC, Ra228, Liquid "As Received" Radium-228 03/29/23 1353 2397799 1.00 +/-1.16 1.94 3.00 pCi/L JE1 1 Radium-226+Radium-228 Calculation "See Parent Products" Radium-226+228 Sum 3.12 +/-1.42pCi/L NXL1 04/03/23 1450 2397798 2 Rad Radium-226 Lucas Cell, Ra226, Liquid "As Received" Radium-226 2.11 +/-0.816 1.00 0.467 pCi/L LXP1 04/03/23 0913 2397388 3

The following Analytical Methods were performed:

Description

1 EPA 904.0/SW846 9320 Modified
2 Calculation
3 EPA 903.1 Modified

Surrogate/Tracer Recovery Test Result Nominal Recovery% Acceptable Limits

Barium-133 Tracer GFPC, Ra228, Liquid "As Received"

Result Nominal Recovery Acceptable Lim

74.3 (15%-125%)

Notes:

Method

Counting Uncertainty is calculated at the 95% confidence level (1.96-sigma).

Column headers are defined as follows:

DF: Dilution Factor Lc/LC: Critical Level
DL: Detection Limit PF: Prep Factor
MDA: Minimum Detectable Activity RL: Reporting Limit

MDC: Minimum Detectable Concentration SQL: Sample Quantitation Limit

Page 10 of 27 SDG: 613005

2040 Savage Road Charleston SC 29407 - (843) 556-8171 - www.gel.com

Certificate of Analysis

Report Date: April 3, 2023

SOOP00119

Company: Santee Cooper Address: P.O. Box 2946101

OCO3

Moncks Corner, South Carolina 29461

Contact: Ms. Jeanette Gilmetti Project: ABS Lab Analytical

Client Sample ID: AF56434 Sample ID: 613005009

Matrix: GW

Collect Date: 27-FEB-23 15:44
Receive Date: 03-MAR-23
Collector: Client

3005009 Client ID: SOOP001

Project:

Parameter	Qualifier	Result	Uncertainty	MDC	RL	Units	PF	DF	Analy	st Date	Time	Batch	Method
Rad Gas Flow Proportion	onal Counting												
GFPC, Ra228, Liquid ".	As Received"												
Radium-228		2.28	+/-1.34	2.01	3.00	pCi/L			JE1	03/29/23	1353	2397799	1
Radium-226+Radium-2	28 Calculatio	n "See Pa	arent Products"										
Radium-226+228 Sum		3.38	+/-1.47			pCi/L		1	NXL1	04/03/23	1450	2397798	2
Rad Radium-226													
Lucas Cell, Ra226, Liqu	uid "As Recei	ved"											
Radium-226		1.11	+/-0.592	0.650	1.00	pCi/L			LXP1	04/03/23	0913	2397388	3
The following Analytic	The following Analytical Methods were performed:												
Method	Description					1	Analys	st Co	mment	S			

1	EPA 904.0/SW 846 9320 Modified				
2	Calculation				
3	EPA 903.1 Modified				
Surrogate/Tracer Recove	ery Test	Result	Nominal	Recovery%	Acceptable Limits

Barium-133 Tracer GFPC, Ra228, Liquid "As Received" 70 (15%-125%)

Notes:

Counting Uncertainty is calculated at the 95% confidence level (1.96-sigma).

Column headers are defined as follows:

DF: Dilution Factor Lc/LC: Critical Level
DL: Detection Limit PF: Prep Factor
MDA: Minimum Detectable Activity RL: Reporting Limit

MDC: Minimum Detectable Concentration SQL: Sample Quantitation Limit

Page 11 of 27 SDG: 613005

2040 Savage Road Charleston SC 29407 - (843) 556-8171 - www.gel.com

Certificate of Analysis

Project:

Client ID:

Report Date: April 3, 2023

SOOP00119

SOOP001

Company: Santee Cooper Address: P.O. Box 2946101

OCO3

Moncks Corner, South Carolina 29461

Contact: Ms. Jeanette Gilmetti Project: ABS Lab Analytical

Client Sample ID: AF56414 Sample ID: 613005010

Matrix: GW

Collect Date: 02-MAR-23 12:46
Receive Date: 03-MAR-23
Collector: Client

Parameter	Qualifier	Result U	Jncertainty	MDC	RL	Units	PF	DF Analyst Date		st Date	st Date Time Batch	
Rad Gas Flow Proport	tional Counting	y										
GFPC, Ra228, Liquid	"As Received'	•										
Radium-228	U	1.86	+/-1.32	2.04	3.00	pCi/L			JE1	03/29/23	1353 2397799	1
Radium-226+Radium-	-228 Calculatio											
Radium-226+228 Sum		3.89	+/-1.53			pCi/L		1	NXL1	04/03/23	1450 2397798	2
Rad Radium-226												
Lucas Cell, Ra226, Li	quid "As Recei	ived"										
Radium-226		2.03	+/-0.775	0.608	1.00	pCi/L			LXP1	04/03/23	0913 2397388	3
The following Analyt	ical Methods v	vere perforr	ned:									

Method	Description	Analyst Comments
1	EDA 004 0/SW846 0320 Modified	•

EPA 904.0/SW846 9320 Modified
Calculation

2 Calculation 3 EPA 903.1 Modified

Surrogate/Tracer Recovery	Test	Result	Nommai	Recovery%	Acceptable Limits
Barium-133 Tracer	GFPC, Ra228, Liquid "As Received"			64.8	(15%-125%)

Notes:

Counting Uncertainty is calculated at the 95% confidence level (1.96-sigma).

Column headers are defined as follows:

DF: Dilution Factor Lc/LC: Critical Level
DL: Detection Limit PF: Prep Factor
MDA: Minimum Detectable Activity RL: Reporting Limit

MDC: Minimum Detectable Concentration SQL: Sample Quantitation Limit

Page 12 of 27 SDG: 613005

2040 Savage Road Charleston SC 29407 - (843) 556-8171 - www.gel.com

Certificate of Analysis

Project:

Client ID:

Analyst Comments

Report Date: April 3, 2023

SOOP00119

SOOP001

Company: Santee Cooper P.O. Box 2946101 Address:

OCO3

Moncks Corner, South Carolina 29461

Contact: Ms. Jeanette Gilmetti Project: ABS Lab Analytical

Client Sample ID: AF56423 Sample ID: 613005011 GWMatrix:

Collect Date:

02-MAR-23 09:52 Receive Date: 03-MAR-23 Collector: Client

Parameter	Qualifier	Result	Uncertainty	MDC	RL	Units	PF	F DF Analyst Date		yst Date Time Batch	
Rad Gas Flow Proportion	onal Counting										
GFPC, Ra228, Liquid ".	As Received"										
Radium-228		2.86	+/-1.55	2.31	3.00	pCi/L		J	E1 03/29/23	1353 2397799	1
Radium-226+Radium-228 Calculation "See Parent Products"											
Radium-226+228 Sum		5.59	+/-1.83			pCi/L		1 N	XL1 04/03/23	1450 2397798	2
Rad Radium-226											
Lucas Cell, Ra226, Liqu	uid "As Recei	ved"									
Radium-226		2.72	+/-0.971	0.718	1.00	pCi/L		L	XP1 04/03/23	0913 2397388	3
The following Analytic	al Methods w	ere perfo	ormed:								

Method	Description	
	-	

EPA 904.0/SW846 9320 Modified Calculation

EPA 903.1 Modified

Surrogate/Tracer Recovery Nominal Recovery% Acceptable Limits Test Result Barium-133 Tracer GFPC, Ra228, Liquid "As Received" 67.2 (15%-125%)

Notes:

Counting Uncertainty is calculated at the 95% confidence level (1.96-sigma).

Column headers are defined as follows:

DF: Dilution Factor Lc/LC: Critical Level PF: Prep Factor DL: Detection Limit MDA: Minimum Detectable Activity **RL**: Reporting Limit

MDC: Minimum Detectable Concentration SQL: Sample Quantitation Limit

Page 13 of 27 SDG: 613005

2040 Savage Road Charleston SC 29407 - (843) 556-8171 - www.gel.com

Certificate of Analysis

Project:

Report Date: April 3, 2023

SOOP00119

Company: Santee Cooper Address: P.O. Box 2946101

OCO3

Moncks Corner, South Carolina 29461

Contact: Ms. Jeanette Gilmetti Project: ABS Lab Analytical

Client Sample ID: AF56428 Sample ID: 613005012

Matrix:

Collect Date: 02-MAR-23 10:56 Receive Date: 03-MAR-23 Collector: Client

Client ID: SOOP001 GW

Parameter	Qualifier	Result	Uncertainty	MDC	RL	Units	PF	DF	Analy	st Date	Tim	e Batch	Method
Rad Gas Flow Propor	tional Counting												
GFPC, Ra228, Liquid	"As Received"												
Radium-228	U	1.86	+/-1.30	2.02	3.00	pCi/L			JE1	03/29/23	1353	2397799	1
Radium-226+Radium	-228 Calculatio	n "See P	arent Products"										
Radium-226+228 Sum		3.02	+/-1.43			pCi/L		1	NXL1	04/03/23	1450	2397798	2
Rad Radium-226													
Lucas Cell, Ra226, Li	quid "As Recei	ved"											
Radium-226		1.16	+/-0.597	0.592	1.00	pCi/L			LXP1	04/03/23	0913	2397388	3
The following Analyt	tical Methods w	ere perfo	ormed:										
Method	Description					F	Analys	t Co	mments	S			
1	EPA 904.0/SW	846 9320	Modified										
2	Calculation												

1	EPA 904.0/SW846 9320 Modified
2	Calculation
3	EPA 903.1 Modified

Surrogate/Tracer Recovery	Test	Result	Nominal	Recovery%	Acceptable Limits
Barium-133 Tracer	GEPC Ra228 Liquid "As Received"			74	(15%-125%)

Counting Uncertainty is calculated at the 95% confidence level (1.96-sigma).

Column headers are defined as follows:

DF: Dilution Factor Lc/LC: Critical Level DL: Detection Limit PF: Prep Factor MDA: Minimum Detectable Activity **RL**: Reporting Limit

MDC: Minimum Detectable Concentration SQL: Sample Quantitation Limit

Page 14 of 27 SDG: 613005

2040 Savage Road Charleston SC 29407 - (843) 556-8171 - www.gel.com

Certificate of Analysis

Project:

Client ID:

Report Date: April 3, 2023

SOOP00119

SOOP001

Company: Santee Cooper Address: P.O. Box 2946101

OCO3

Moncks Corner, South Carolina 29461

Contact: Ms. Jeanette Gilmetti Project: ABS Lab Analytical

Client Sample ID: AF56421 Sample ID: 613005013

Matrix: GW

Collect Date: 01-MAR-23 14:41
Receive Date: 03-MAR-23
Collector: Client

Parameter	Qualifier	Result U	Jncertainty	MDC	RL	Units	PF	DF A	Analy	st Date	Time Batch	Method
Rad Gas Flow Propo	rtional Counting	<u> </u>										
GFPC, Ra228, Liqui	d "As Received"	•										
Radium-228	U	1.24	+/-0.981	1.55	3.00	pCi/L		J	IE1	03/29/23	1354 2397799	1
Radium-226+Radiun	n-228 Calculatio	on "See Pare	ent Products"									
Radium-226+228 Sum		1.94	+/-1.10			pCi/L		1 1	NXL1	04/03/23	1450 2397798	2
Rad Radium-226												
Lucas Cell, Ra226, L	iquid "As Recei	ived"										
Radium-226		0.704	+/-0.496	0.628	1.00	pCi/L		I	LXP1	04/03/23	0913 2397388	3
The following Analy	rtical Methods v	vere nerforn	med:									

The following Analytical Methods were performed:

MethodDescriptionAnalyst Comments1EPA 904.0/SW846 9320 Modified2Calculation

3 EPA 903.1 Modified

Surrogate/Tracer Recovery Test Result Nominal Recovery% Acceptable Limits

Barium-133 Tracer GFPC, Ra228, Liquid "As Received"

87.2 (15%-125%)

Notes:

Counting Uncertainty is calculated at the 95% confidence level (1.96-sigma).

Column headers are defined as follows:

DF: Dilution Factor Lc/LC: Critical Level
DL: Detection Limit PF: Prep Factor
MDA: Minimum Detectable Activity RL: Reporting Limit

MDC: Minimum Detectable Concentration SQL: Sample Quantitation Limit

Page 15 of 27 SDG: 613005

2040 Savage Road Charleston SC 29407 - (843) 556-8171 - www.gel.com

Certificate of Analysis

Project:

Client ID:

Report Date: April 3, 2023

SOOP00119

SOOP001

Company: Santee Cooper Address: P.O. Box 2946101

OCO3

Moncks Corner, South Carolina 29461

Contact: Ms. Jeanette Gilmetti Project: ABS Lab Analytical

Client Sample ID: AF56424 Sample ID: 613005014

Matrix: GW

Collect Date: 01-MAR-23 13:37
Receive Date: 03-MAR-23
Collector: Client

Parameter	Qualifier	Result	Uncertainty	MDC	RL	Units	PF	DF	Analy	st Date	Time Batch	Method
Rad Gas Flow Proportion	onal Counting	,										
GFPC, Ra228, Liquid ".	As Received"											
Radium-228	U	0.794	+/-1.11	1.91	3.00	pCi/L			JE1	03/29/23	1354 2397799	1
Radium-226+Radium-228 Calculation "See Parent Products"												
Radium-226+228 Sum		1.98	+/-1.28			pCi/L		1	NXL1	04/03/23	1450 2397798	2
Rad Radium-226												
Lucas Cell, Ra226, Liqu	uid "As Recei	ved"										
Radium-226		1.18	+/-0.630	0.605	1.00	pCi/L			LXP1	04/03/23	0913 2397388	3
The following Analytic	eal Methods w	ere perfo	rmed:									

The following	g Analytical Methods were performed.
N f - 41 1	Danasis dian

Method	Description	Analyst Comments
1	EPA 904.0/SW846 9320 Modified	•
2		

2 Calculation 3 EPA 903.1 Modified

Surrogate/Tracer Recovery Test Result Nominal Recovery% Acceptable Limits

Barium-133 Tracer GFPC, Ra228, Liquid "As Received"

66.8 (15%-125%)

Notes:

Counting Uncertainty is calculated at the 95% confidence level (1.96-sigma).

Column headers are defined as follows:

DF: Dilution Factor Lc/LC: Critical Level
DL: Detection Limit PF: Prep Factor
MDA: Minimum Detectable Activity RL: Reporting Limit

MDC: Minimum Detectable Concentration SQL: Sample Quantitation Limit

Page 16 of 27 SDG: 613005

2040 Savage Road Charleston SC 29407 - (843) 556-8171 - www.gel.com

Certificate of Analysis

Project:

Client ID:

Report Date: April 3, 2023

SOOP00119

SOOP001

Company: Santee Cooper Address: P.O. Box 2946101

OCO3

Moncks Corner, South Carolina 29461

Contact: Ms. Jeanette Gilmetti Project: ABS Lab Analytical

Client Sample ID: AF56439 Sample ID: 613005015

Matrix: GW

Collect Date: 01-MAR-23 10:22
Receive Date: 03-MAR-23
Collector: Client

Parameter **Oualifier** Result Uncertainty **MDC** RL Units PF DF Analyst Date Time Batch Method Rad Gas Flow Proportional Counting GFPC, Ra228, Liquid "As Received" Radium-228 0.580 +/-0.976 1.72 3.00 pCi/L JE1 03/29/23 1354 2397799 1 Radium-226+Radium-228 Calculation "See Parent Products" Radium-226+228 Sum 0.994 +/-1.03pCi/L NXL1 04/03/23 1450 2397798 2 Rad Radium-226 Lucas Cell, Ra226, Liquid "As Received" +/-0.336 1.00 Radium-226 0.373 pCi/L LXP1 04/03/23 0913 2397388 3

The following Analytical Methods were performed:

MethodDescriptionAnalyst Comments1EPA 904.0/SW846 9320 Modified2Calculation

2 Calculation 3 EPA 903.1 Modified

Surrogate/Tracer Recovery Test Result Nominal Recovery% Acceptable Limits

Barium-133 Tracer GFPC, Ra228, Liquid "As Received"

69.6 (15%-125%)

Notes:

Counting Uncertainty is calculated at the 95% confidence level (1.96-sigma).

Column headers are defined as follows:

DF: Dilution Factor Lc/LC: Critical Level
DL: Detection Limit PF: Prep Factor
MDA: Minimum Detectable Activity RL: Reporting Limit

MDC: Minimum Detectable Concentration SQL: Sample Quantitation Limit

Page 17 of 27 SDG: 613005

2040 Savage Road Charleston SC 29407 - (843) 556-8171 - www.gel.com

Certificate of Analysis

Project:

Client ID:

Report Date: April 3, 2023

SOOP00119

SOOP001

Company: Santee Cooper Address: P.O. Box 2946101

OCO3

Moncks Corner, South Carolina 29461

Contact: Ms. Jeanette Gilmetti Project: ABS Lab Analytical

Client Sample ID: AF56441 Sample ID: 613005016

Matrix: GW

Collect Date: 01-MAR-23 11:45
Receive Date: 03-MAR-23
Collector: Client

Parameter	Qualifier	Result	Uncertainty	MDC	RL	Units	PF	DF	Analy	st Date	Time Batch	Method
Rad Gas Flow Proportion	onal Counting	•										
GFPC, Ra228, Liquid "	As Received"											
Radium-228	U	0.269	+/-0.783	1.43	3.00	pCi/L			JE1	03/29/23	1354 2397799	1
Radium-226+Radium-2												
Radium-226+228 Sum		1.02	+/-0.912			pCi/L		1	NXL1	04/03/23	1450 2397798	2
Rad Radium-226												
Lucas Cell, Ra226, Liqu	uid "As Recei	ved"										
Radium-226		0.747	+/-0.468	0.416	1.00	pCi/L			LXP1	04/03/23	0931 2397388	3
The following Analytic	cal Methods w	ere perfo	ormed:									

Method	Description	Analyst Comments

EPA 904.0/SW846 9320 Modified

2 Calculation 3 EPA 903.1 Modified

Surrogate/Tracer Recovery Test Result Nominal Recovery% Acceptable Limits

Barium-133 Tracer GFPC, Ra228, Liquid "As Received"

91.4 (15%-125%)

Notes:

Counting Uncertainty is calculated at the 95% confidence level (1.96-sigma).

Column headers are defined as follows:

DF: Dilution Factor Lc/LC: Critical Level
DL: Detection Limit PF: Prep Factor
MDA: Minimum Detectable Activity RL: Reporting Limit

MDC: Minimum Detectable Concentration SQL: Sample Quantitation Limit

Page 18 of 27 SDG: 613005

2040 Savage Road Charleston, SC 29407 - (843) 556-8171 - www.gel.com

QC Summary

Report Date: April 3, 2023

Santee Cooper P.O. Box 2946101

OCO3

Moncks Corner, South Carolina

Contact: Ms. Jeanette Gilmetti

Workorder: 613005

Parmname	NOM	Sample	Qual	QC	Units	RPD%	REC%	Range A	Anlst	Date Time	e
Rad Gas Flow											
Batch 2397799											_
QC1205344410 613005001 I	DUP										
Radium-228	U	-0.249		1.56	pCi/L	276*		(0% - 100%)	JE1	03/29/23 13:	.53
	Uncertainty	+/-0.781		+/-1.00							
QC1205344411 LCS											
Radium-228	62.2			70.2	pCi/L		113	(75%-125%)		03/29/23 13:	53
	Uncertainty			+/-4.54	1						
	•										
QC1205344409 MB											
Radium-228			U	0.121	pCi/L					03/29/23 13:	53
	Uncertainty			+/-1.00	•						
	•										
Rad Ra-226											
Batch 2397388	-										_
QC1205343453 613005001 1	DIID										
Radium-226	DOI	0.644		1.16	pCi/L	57.3		(0% - 100%)	LXP1	04/03/23 09:	48
Radiani 220	Uncertainty	+/-0.455		+/-0.620	репц	27.5		(070 10070)	LIII I	0 1, 02, 22 09.	
	Checkumity	., 0.155		7 0.020							
QC1205343455 LCS											
Radium-226	26.5			30.7	pCi/L		116	(75%-125%)		04/03/23 09:	48
	Uncertainty			+/-2.99	r			()			
QC1205343452 MB											
Radium-226			U	0.167	pCi/L					04/03/23 09:	48
	Uncertainty			+/-0.305	•						
	•										
QC1205343454 613005001 I	MS										
Radium-226	132	0.644		101	pCi/L		75.5	(75%-125%)		04/03/23 09:	48
	Uncertainty	+/-0.455		+/-11.8	•			,			
	,										

Notes:

Counting Uncertainty is calculated at the 95% confidence level (1.96-sigma).

The Qualifiers in this report are defined as follows:

U Analyte was analyzed for, but not detected above the MDL, MDA, MDC or LOD.

J Value is estimated

X Consult Case Narrative, Data Summary package, or Project Manager concerning this qualifier

H Analytical holding time was exceeded

< Result is less than value reported

Page 19 of 27 SDG: 613005

Page 1 of 2

2040 Savage Road Charleston, SC 29407 - (843) 556-8171 - www.gel.com

QC Summary

Workorder: 613005

Page 2 of 2

Parmage

NOM Sample Qual OC Units RPD% REC% Range And Date Time

Parmname	NOM	Sample	Qual	QC	Units	RPD%	REC%	Range	Anlst	Date	Time

- Result is greater than value reported
- UI Gamma Spectroscopy--Uncertain identification
- BD Results are either below the MDC or tracer recovery is low
- h Preparation or preservation holding time was exceeded
- R Sample results are rejected
- ^ RPD of sample and duplicate evaluated using +/-RL. Concentrations are <5X the RL. Qualifier Not Applicable for Radiochemistry.
- N/A RPD or %Recovery limits do not apply.
- ND Analyte concentration is not detected above the detection limit
- M if above MDC and less than LLD
- NJ Consult Case Narrative, Data Summary package, or Project Manager concerning this qualifier
- FA Failed analysis.
- UJ Gamma Spectroscopy--Uncertain identification
- Q One or more quality control criteria have not been met. Refer to the applicable narrative or DER.
- K Analyte present. Reported value may be biased high. Actual value is expected to be lower.
- UL Not considered detected. The associated number is the reported concentration, which may be inaccurate due to a low bias.
- L Analyte present. Reported value may be biased low. Actual value is expected to be higher.
- N1 See case narrative
- Y Other specific qualifiers were required to properly define the results. Consult case narrative.
- ** Analyte is a Tracer compound
- M REMP Result > MDC/CL and < RDL
- J See case narrative for an explanation

N/A indicates that spike recovery limits do not apply when sample concentration exceeds spike conc. by a factor of 4 or more or %RPD not applicable.

- ^ The Relative Percent Difference (RPD) obtained from the sample duplicate (DUP) is evaluated against the acceptance criteria when the sample is greater than five times (5X) the contract required detection limit (RL). In cases where either the sample or duplicate value is less than 5X the RL, a control limit of +/- the RL is used to evaluate the DUP result.
- * Indicates that a Quality Control parameter was not within specifications.

For PS, PSD, and SDILT results, the values listed are the measured amounts, not final concentrations.

Where the analytical method has been performed under NELAP certification, the analysis has met all of the requirements of the NELAC standard unless qualified on the QC Summary.

Page 20 of 27 SDG: 613005

Radiochemistry Technical Case Narrative Santee Cooper SDG #: 613005

Product: Radium-226+Radium-228 Calculation

Analytical Method: Calculation

Analytical Procedure: GL-RAD-D-003 REV# 45

Analytical Batch: 2397798

The following samples were analyzed using the above methods and analytical procedure(s).

GEL Sample ID#	Client Sample Identification
613005001	AF56433
613005002	AF56435
613005003	AF56436
613005004	AF56437
613005005	AF56438
613005006	AF56402
613005007	AF56403
613005008	AF56404
613005009	AF56434
613005010	AF56414
613005011	AF56423
613005012	AF56428
613005013	AF56421
613005014	AF56424
613005015	AF56439
613005016	ΛF56441

The samples in this SDG were analyzed on an "as received" basis.

Data Summary:

There are no exceptions, anomalies or deviations from the specified methods. All sample data provided in this report met the acceptance criteria specified in the analytical methods and procedures for initial calibration, continuing calibration, instrument controls and process controls where applicable.

Product: GFPC, Ra228, Liquid

<u>Analytical Method:</u> EPA 904.0/SW846 9320 Modified <u>Analytical Procedure:</u> GL-RAD-A-063 REV# 5

Analytical Batch: 2397799

The following samples were analyzed using the above methods and analytical procedure(s).

GEL Sample ID#	Client Sample Identification
613005001	AF56433
613005002	AF56435
613005003	AF56436

Page 21 of 27 SDG: 613005

613005004	AF56437
613005005	AF56438
613005006	AF56402
613005007	AF56403
613005008	AF56404
613005009	AF56434
613005010	AF56414
613005011	AF56423
613005012	AF56428
613005013	AF56421
613005014	AF56424
613005015	AF56439
613005016	AF56441
1205344409	Method Blank (MB)
1205344410	613005001(AF56433) Sample Duplicate (DUP)
1205344411	Laboratory Control Sample (LCS)

The samples in this SDG were analyzed on an "as received" basis.

Data Summary:

All sample data provided in this report met the acceptance criteria specified in the analytical methods and procedures for initial calibration, continuing calibration, instrument controls and process controls where applicable, with the following exceptions.

Quality Control (QC) Information

Duplication Criteria between QC Sample and Duplicate Sample

The Sample and the Duplicate, (See Below), did not meet the relative percent difference requirement; however, they do meet the relative error ratio requirement with the value listed below.

Sample	Analyte	Value
1205344410 (AF56433DUP)	Radium-228	RPD 276* (0.0%-100.0%) RER 2.65 (0-3)

<u>Product:</u> Lucas Cell, Ra226, Liquid <u>Analytical Method:</u> EPA 903.1 Modified

Analytical Procedure: GL-RAD-A-008 REV# 15

Analytical Batch: 2397388

The following samples were analyzed using the above methods and analytical procedure(s).

GEL Sample ID#	Client Sample Identification
613005001	AF56433
613005002	AF56435
613005003	AF56436
613005004	AF56437
613005005	AF56438
613005006	AF56402
613005007	AF56403

Page 22 of 27 SDG: 613005

6	513005008	AF56404
6	513005009	AF56434
6	513005010	AF56414
6	513005011	AF56423
6	513005012	AF56428
6	513005013	AF56421
6	513005014	AF56424
6	513005015	AF56439
6	513005016	AF56441
1	1205343452	Method Blank (MB)
1	1205343453	613005001(AF56433) Sample Duplicate (DUP)
1	1205343454	613005001(AF56433) Matrix Spike (MS)
1	1205343455	Laboratory Control Sample (LCS)

The samples in this SDG were analyzed on an "as received" basis.

Data Summary:

All sample data provided in this report met the acceptance criteria specified in the analytical methods and procedures for initial calibration, continuing calibration, instrument controls and process controls where applicable, with the following exceptions.

Miscellaneous Information

Additional Comments

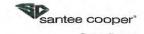
The matrix spike, 1205343454 (AF56433MS), aliquot was reduced to conserve sample volume.

Certification Statement

Where the analytical method has been performed under NELAP certification, the analysis has met all of the requirements of the NELAC standard unless otherwise noted in the analytical case narrative.

Page 23 of 27 SDG: 613005

Send report to |cwillia@santeecooper.com & sibrown@santeecooper.com


Chain of Custody

Santee Cooper One Riverwood Drive Moncks Comer, SC 29461 Phone: (843)761-8000 Ext. 5148 Fax: (843)761-4175

Customer Email	/Report Recipient:	Date R	esults Ne	eded b	y:		Pr	oject/	Task/	Unit #:	Rerun reques	t for a	ny fla	gged	JQC
LCWILLIA	@santeecooper	.com				125	715	/ JM	62.0	9.601.1/369	SOO Yes	No			
												4	Analys	is Gro	up
Labworks ID # (Internal use only)	Sample Location/ Description	Collection Date	Collection Time	Sample Collector	Total # of containers	Bottle type: (Glass-G/Plastic-P)	100 C 100 C	Matrix(see below)	Preservative (see	Method # Reporting lin Misc. sample	info	ALICATIVILA	Suchbe	Toc/poc	RAD 226/228
YE 2 6433	WLF-AI-1	2/23/23	1258	ML	6	Pla	G	GUV	米	* SUUFIDE H	KS SHOTH HOU	1	1	2	2
35	WLF - AI - 3		1144	1				1				1	1	1	1
36	WLF-A1-4		1019							* PRESERV	TIVES				
37	WLF-A1-40		1024							TOC- H2SO4 SULFIDE-ZIN	CACETATE, NOU	4			
_ 33	WLF-AI-5	1	1431	Ī	1	1	1	1		RAD-HNO3 C4°C			I		
AF 56402	WAP-9	2/21/28	1247	ZDM	1		1	1	1				T		
03	WAT-10		0957	1						ALK - TOTAL,	BICARB, CARB			IT	
04	WAP-10D		1062		1										
1 434	WLE-AI-2	1	1544	1	1	1	1	1	1	DOC - NOT FIE	LD FILTERED	1	Ī	1	1
Relinquished by:	Employee# Da	te Time	Receiv	ved by:	E	mployee	#	Date			le Receiving (Interna P (°C):	Use O			
89moun	35594 3/3,	15/7//	1	red by:		SEL		3/3/2 Date		201	ect pH: Yes N		_		
Relinquished by:	Employee# Da	21 1 1	\ \ \ \	led by:	JV.	imployee 4	()	309			ervative Lot#:				
Relinquished by:	- C WWW	/ 1/2 1/1	Receiv	red by:		mployee	#	Date	1/-/	Time					
										Date	Time/Init for preser	vative:			
□ MI □ Ag □ Ci □ Al □ Fe □ As □ K □ B □ Li □ Ba □ M □ Be □ M □ Ca □ M □ Cd □ Na □ Co □ Na	Nutrients □ TOC □ DOC □ TP/TPO4 □ NH3-N □ F □ C1 □ NO2 □ Br □ NO3 □ SO4	MISC. BTEX Naphthalene THM/HAA VOC Oil & Grease E. Coli Total Coliform pH Dissolved As Dissolved Fe Rad 226 Rad 228			Wallbb Gyp belo A B TC D To D So D Pu D % D Su D PH D Ch	osum(a iw) IM OC stal metaluble Marity (Ca Moisturalfites	alls letals SO4)	0	Coal Ultimate Moisture Ash Sulfur BTUs CHN CHN CHN CHR CHN CHR CHN CHR CHR CHN CHR CHR CHR CHR CHR CHR CHR CHR CHR CHR	Flyash Ammonia LOI % Carbon Mineral Analysis Sieve % Moisture NPDES Oil & Grease As	monia Carbon peral Analysis Moisture Dissolved Used Oil Plashpoin Metals in (As,Cd,C			ngth ases	

Chain of Custody

Santee Cooper One Riverwood Drive Moneks Comer, SC 29461 Phone: (843)761-8000 Ext. 5148 Fax: (843)761-4175

Custo	mer Email	Report Recipie	nt:	Date Ro	esults Ne	eded b	y:		Pr	oject/	Task/L	Jnit #:	Rerun request	for ar	y fla	gged	QC								
LCW	ILLIA	@santeec	ooper.com					125	915	JUN	102.0	09. GOI. 1/36	Sec Yes	No											
	147													A	nalysi	s Grou	1D								
	orks ID # nal use	Sample Location Description	n/	Collection Date	Collection Time	Sample Collector	Total # of containers	Bottle type: (Glass-G/Plastic-P)	Grab (G) or Composite (C)	Matrix(see below)	Preservative (see	Method # Reporting I Misc. samp Any other r	ole info	ALKALINTY	SULFIPE	TDC/DOC	RAD 226/228								
AF5	6414	WAP-15		3/2/23	1246	ML	6	P/G	G	GW	*	# SULFIDE	HAS SHORT HOLD	1	I	2	2								
1	23	WAP - 23			0952		1	1	1						1	1	1								
1	28	WAP-27		1	1056	Ī	1	1	I	1	1	* PRESER	VATIVES												
AF5	6421	WAP-21		3/1/23	1441	1	1	1	1	1	1	TOC- H2SO	H NCACETATE, NAOH												
1	24	1 24		1	1337			T	T		1	RAD-HNOT					\parallel								
-	39							H	+		H	24-0		T	\dagger	T	\dagger								
\dashv	-	WLF-A2-1		+	1022	\vdash	1	+	+	+	+			+	+	+	1								
-	4-1	WLF-A2-2	!	上	1145	7	1	1	7	-	1	ALKAL- TOTA	AL, BICARB, CARB	1	-	1	-								
												DOC-NOT FI	ELD FILTERED												
pali	nquished by:	Employee#	Date	Time	Racei	ved by:	900 61	Employe	e #	Date			mple Receiving (Internal												
	USUM	25594	3/3/23	OGy	D	80		GEL		3/3/2		au a	MP (°C):		d:	+	-								
	nquished by:	Employee#	Date	Time	Recei	red by:	-	Employe	e#	Date	<u></u>	Time	rrect pH: Yes No eservative Lot#:												
Reli	nquished by:	Employee# Date		Mine	Recei	red by:		Employe	e#	Date	d5	Time	eser value dour.												
8.7038.71.6			100000000000000000000000000000000000000									Dat	te/Time/Init for preserv	ative:											
□ Ag	□C	TOTAL PROPERTY PLANET CONTRACTOR	Nut	rients	MI BTEX	SC.		<u>G</u> Wallt	ypsu	m_		<u>Coal</u> Ultimate	Flyash	II Tr	O ans. C	il on Qu	al.								
		STATISTICS SHOWING	□ DO		☐ Naphtha ☐ THM/H				psum(i	all		☐ % Moisture ☐ Ash	□ LOI □ % Carbon	-51	Color										
□В	ΟL		□NH		□ VOC □ Oil & G	rease			AIM OC		1	□ Sulfur	☐ Mineral	0.1		y ric Stree	ngth								
□Ba	□ M	lg 🛮 Ti	Ti		Ti F CI NO2		☐ E. Coli ☐ Total C		1	DT	otal met		A VIE	☐ BTUs ☐ Volatile Matte	Analysis		IFT Dissol	ved G	ases						
□ Be		In 🗆 Tl					□ pH			O P	oluble N urity (C	aSO4)		□ CHN	□ % Moisture	T U	sed O	il							
□ Ca	□N	lo 🗆 V					□ V □ Br		□ V □ Br		□ Br		□ V □ Br		□ V □ Br		☐ Dissolv ☐ Dissolv				Moistu ulfites	ire	100	Other Tests: XRF Scan	NPDES
□ Cd	□N	a □ Zn	□so		□ Rad 226	j		□ pl	H		E	HGI Fineness	□ Oil & Grease		(As,C Hg)	d,Cr,N	vi,Pb								
□Со				1	□ PCB			□P	hlorides article S			Particulate Matter	□ As □ TSS		TX										
□ Cr	□Р	b 🗆 CrVI	18/	and the second	43.54	1000		□ Sulfu	r	11/1-			L 155	G	OFER										

Matrix codes: GW-groundwater, DW-drinking water, SW-surface water, WW-waste water, BW-boiler water, L-limestone, Oil-oil, S-Soil, SL-solid, C-coal, G-gypsum, FA-flyash, BA-bottom ash, M-misc (describe in comment section)
Preservative code- 1=<4°C 2=HNO₃ 3=H₂SO₄ 4-HCl 5=Na₂S₂O₃ 6-Other (Specify)
Page 25 of 27 SDG: 613005

CEL Laboratories LLC			SAMPLE RECEIPT & REVIEW FORM	
Client:			SDG/AR/COC/Work Order: 612999/613005	
Received By: MVH			Date Received 7 7 7 7	
Carrier and Tracking Number			Circle Applicable: FedEx Express FedEx Ground UPS Field Services Courier Other	
Suspected Hazard Information	Yes	ž	*If Net Counts > 100cpm on samples not marked "radioactive", contact the Radiation Safety Group for further investigation.	
A)Shipped as a DOT Hazardous?		~	Hazard Class Shipped: UN#: If UN2910, Is the Radioactive Shipment Survey Compliant? Yes No	
B) Did the client designate the samples are to be received as radioactive?		V	COC notation or radioactive stickers on containers equal client designation.	
C) Did the RSO classify the samples as radioactive?		V	Maximum Net Counts Observed* (Observed Counts - Area Background Counts): Classified as: Rad 1 Rad 2 Rad 3	
D) Did the client designate samples are hazardous?		V	COC notation or hazard labels on containers equal client designation.	
E) Did the RSO identify possible hazards?		V	f D or E is yes, select Hazards below. PCB's Flammable Foreign Soil RCRA Asbestos Beryllium Other:	
Sample Receipt Criteria	Yes	¥.	Z Comments/Qualifiers (Required for Non-Conforming Items)	
Shipping containers received intact and sealed?	V		Circle Applicable: Seals broken Damaged container Leaking container Other (describe)	
2 Chain of custody documents included with shipment?	\ \		Circle Applicable: Client contacted and provided COC COC created upon receipt	
3 Samples requiring cold preservation within (0 ≤ 6 deg. C)?*	\checkmark	_	Preservation Method: Wet Ice Cacks Dry ice None Other: *all temperatures are recorded in Celsius TEMP:	
4 Daily check performed and passed on IR temperature gun?	\vee		Temperature Device Serial #: IR2-21 Secondary Temperature Device Serial # (If Applicable):	
5 Sample containers intact and sealed?	\		Circle Applicable: Seals broken Damaged container Leaking container Other (describe)	
6 Samples requiring chemical preservation at proper pH? WU+63-66-33	V		Sample ID's and Containers Affected 500428, AF56421, AF56403, AF56402, If Preservation added, Loth 13-14-13	77 F56L
7 Do any samples require Volatile Analysis?			If Yes, are Encores or Soil Kits present for solids? YesNoNA(If yes, take to VOA Freezer) Do liquid VOA vials contain acid preservation? YesNoNA(If unknown, select No) Are liquid VOA vials free of headspace? YesNoNA Sample ID's and containers affected:	
8 Samples received within holding time?	V		ID's and tests affected:	
9 Sample ID's on COC match ID's on bottles?	V		ID's and containers affected:	
Date & time on COC match date & time on bottles?			Pircle Applicable: No dates on containers No times on containers COC missing info Other (describe) The Service Applicable: No dates on containers No times on containers COC missing info Other (describe) The Service Applicable: No dates on containers No times on containers COC missing info Other (describe)	atha
Number of containers received match number indicated on COC?	~		Circle Applicable: No container edunt on COC Other (describe)	- 140 C
12 Are sample containers identifiable as GEL provided by use of GEL labels?				
COC form is properly signed in relinquished/received sections?	V		Circle Applicable: Not relinquished Other (describe)	
Comments (Use Continuation Form if needed):				
PM (or PM	A) rev	view;	nitials Date 3-7-23 Page Lof L	

List of current GEL Certifications as of 03 April 2023

State	Certification
Alabama	42200
Alaska	17-018
Alaska Drinking Water	SC00012
Arkansas	88-0651
CLIA	42D0904046
California	2940
Colorado	SC00012
Connecticut	PH-0169
DoD ELAP/ ISO17025 A2LA	2567.01
Florida NELAP	E87156
Foreign Soils Permit	P330-15-00283, P330-15-00253
Georgia	SC00012
Georgia SDWA	967
Hawaii	SC00012
Idaho	SC00012 SC00012
Illinois NELAP	200029
Indiana	C-SC-01
Kansas NELAP	E-10332
Kentucky SDWA	90129
Kentucky Wastewater	90129
Louisiana Drinking Water	LA024
Louisiana NELAP	03046 (AI33904)
Maine	2019020
	2019020
Maryland Massachusetts	M-SC012
Massachusetts PFAS Approv	Letter
Michigan Michigan	9976
Mississippi	SC00012
Nebraska	NE-OS-26-13
Nevada	SC000122023-4
New Hampshire NELAP	2054
_	
New Jersey NELAP New Mexico	SC002
New York NELAP	SC00012 11501
North Carolina	233
North Carolina SDWA	
	45709
North Dakota	R-158
Oklahoma	2022-160
Pennsylvania NELAP	68-00485
Puerto Rico	SC00012
S. Carolina Radiochem	10120002
Sanitation Districts of L	9255651
South Carolina Chemistry	10120001
Tennessee	TN 02934
Texas NELAP	T104704235-22-20
Utah NELAP	SC000122022-37
Vermont	VT87156
Virginia NELAP	460202
Washington	C780

gel.com

March 20, 2023

Ms. Jeanette Gilmetti Santee Cooper P.O. Box 2946101 OCO3 Moncks Corner, South Carolina 29461

Re: ABS Lab Analytical Work Order: 613953

Dear Ms. Gilmetti:

GEL Laboratories, LLC (GEL) appreciates the opportunity to provide the enclosed analytical results for the sample(s) we received on March 10, 2023. This original data report has been prepared and reviewed in accordance with GEL's standard operating procedures.

The samples were delivered with proper chain of custody documentation and signatures. All sample containers arrived without any visible signs of tampering or breakage. There are no additional comments concerning sample receipt.

Test results for NELAP or ISO 17025 accredited tests are verified to meet the requirements of those standards, with any exceptions noted. The results reported relate only to the items tested and to the sample as received by the laboratory. These results may not be reproduced except as full reports without approval by the laboratory. Copies of GEL's accreditations and certifications can be found on our website at www.gel.com.

Our policy is to provide high quality, personalized analytical services to enable you to meet your analytical needs on time every time. We trust that you will find everything in order and to your satisfaction. If you have any questions, please do not hesitate to call me at (843) 556-8171, ext. 4289.

Sincerely,

Heather Millar for Julie Robinson Project Manager

Purchase Order: 398684

Enclosures

2040 Savage Road Charleston SC 29407 - (843) 556-8171 - www.gel.com

Certificate of Analysis Report for

SOOP001 Santee Cooper

Client SDG: 613953 GEL Work Order: 613953

The Qualifiers in this report are defined as follows:

- * A quality control analyte recovery is outside of specified acceptance criteria
- ** Analyte is a Tracer compound
- ** Analyte is a surrogate compound
- U Analyte was analyzed for, but not detected above the MDL, MDA, MDC or LOD.

Where the analytical method has been performed under NELAP certification, the analysis has met all of the requirements of the NELAC standard unless qualified on the Certificate of Analysis.

The designation ND, if present, appears in the result column when the analyte concentration is not detected above the limit as defined in the 'U' qualifier above.

This data report has been prepared and reviewed in accordance with GEL Laboratories LLC standard operating procedures. Please direct any questions to your Project Manager, Julie Robinson.

Reviewed by

Page 2 of 16 SDG: 613953

2040 Savage Road Charleston SC 29407 - (843) 556-8171 - www.gel.com

Certificate of Analysis

Project:

Client ID:

Report Date: March 20, 2023

SOOP00119

SOOP001

Company: Santee Cooper Address: P.O. Box 2946101

OCO3

Moncks Corner, South Carolina 29461

Contact: Ms. Jeanette Gilmetti Project: ABS Lab Analytical

Client Sample ID: AF56414
Sample ID: 613953001
Matrix: Ground Water
Collect Date: 02-MAR-23 12:46
Receive Date: 10-MAR-23

Client

Parameter Qualifier Result DL RL Units PF DF Analyst Date Time Batch Method

Nutrient Analysis

EPA 353.2 Nitrogen, Nitrate/Nitrite "As Received"

Nitrogen, Nitrate/Nitrite U ND 0.0700 0.200 mg/L 10 AXH3 03/13/23 0951 2395701 1

The following Analytical Methods were performed:

Method Description Analyst Comments

EPA 353.2 Low Level

Collector:

Notes:

Column headers are defined as follows:

DF: Dilution Factor Lc/LC: Critical Level
DL: Detection Limit PF: Prep Factor
MDA: Minimum Detectable Activity RL: Reporting Limit

MDC: Minimum Detectable Concentration SQL: Sample Quantitation Limit

2040 Savage Road Charleston SC 29407 - (843) 556-8171 - www.gel.com

Certificate of Analysis

Project:

Client ID:

Report Date: March 20, 2023

SOOP00119

SOOP001

Company: Santee Cooper Address: P.O. Box 2946101

OCO3

Moncks Corner, South Carolina 29461

Contact: Ms. Jeanette Gilmetti Project: ABS Lab Analytical

Client Sample ID: AF56423
Sample ID: 613953002
Matrix: Ground Water
Collect Date: 02-MAR-23 09:52

Receive Date: 10-MAR-23 Collector: Client

Parameter	Qualifier	Result	DL	RL	Units	PF	DF Analyst Date	Time Batch	Method
Nutrient Analysis									
EPA 353.2 Nitrogen	n, Nitrate/Nitrite	"As Received"							
Nitrogen, Nitrate/Nitrite	U	ND	0.0700	0.200	mg/L		10 AXH3 03/13/23	0957 2395701	1
The following Anal	lytical Methods v	vere performed:							
Mathad	Dagamintian					A 1	-+ C		

Method Description Analyst Comments

EPA 353.2 Low Level

Notes:

Column headers are defined as follows:

DF: Dilution Factor Lc/LC: Critical Level
DL: Detection Limit PF: Prep Factor
MDA: Minimum Detectable Activity RL: Reporting Limit

MDC: Minimum Detectable Concentration SQL: Sample Quantitation Limit

Page 4 of 16 SDG: 613953

2040 Savage Road Charleston SC 29407 - (843) 556-8171 - www.gel.com

Certificate of Analysis

Project:

Client ID:

Report Date: March 20, 2023

SOOP00119

SOOP001

Company: Santee Cooper Address: P.O. Box 2946101

OCO3

Moncks Corner, South Carolina 29461

Contact: Ms. Jeanette Gilmetti Project: ABS Lab Analytical

Client Sample ID: AF56428
Sample ID: 613953003
Matrix: Ground Water
Collect Date: 02-MAR-23 10:56
Receive Date: 10-MAR-23

Client

Parameter	Qualifier	Result	DL	RL	Units	PF	DF Analyst Date	Time Batch Method
Nutrient Analysis								

Nutrient Analysis

EPA 353.2 Nitrogen, Nitrate/Nitrite "As Received"

Nitrogen, Nitrate/Nitrite U ND 0.0700 0.200 mg/L 10 AXH3 03/13/23 0958 2395701 1

The following Analytical Methods were performed:

Method Description Analyst Comments

EPA 353.2 Low Level

Collector:

Notes:

Column headers are defined as follows:

DF: Dilution Factor Lc/LC: Critical Level
DL: Detection Limit PF: Prep Factor
MDA: Minimum Detectable Activity RL: Reporting Limit

MDC: Minimum Detectable Concentration SQL: Sample Quantitation Limit

2040 Savage Road Charleston SC 29407 - (843) 556-8171 - www.gel.com

Certificate of Analysis

Report Date: March 20, 2023

SOOP00119

SOOP001

Company: Santee Cooper Address: P.O. Box 2946101

OCO3

Moncks Corner, South Carolina 29461

Contact: Ms. Jeanette Gilmetti Project: ABS Lab Analytical

Client Sample ID: AF56406
Sample ID: 613953004
Matrix: Ground Water
Collect Date: 09-MAR-23 10:29
Receive Date: 10-MAR-23

Client

Qualifier Result DL RL Units PF DF Analyst Date Time Batch Method

Project:

Client ID:

Nutrient Analysis

Parameter

EPA 353.2 Nitrogen, Nitrate/Nitrite "As Received"

Nitrogen, Nitrate/Nitrite U ND 0.0700 0.200 mg/L 10 AXH3 03/13/23 0959 2395701 1

The following Analytical Methods were performed:

Method Description Analyst Comments

EPA 353.2 Low Level

Collector:

Notes:

Column headers are defined as follows:

DF: Dilution Factor Lc/LC: Critical Level
DL: Detection Limit PF: Prep Factor
MDA: Minimum Detectable Activity RL: Reporting Limit

MDC: Minimum Detectable Concentration SQL: Sample Quantitation Limit

Page 6 of 16 SDG: 613953

2040 Savage Road Charleston SC 29407 - (843) 556-8171 - www.gel.com

Certificate of Analysis

Project:

Client ID:

Report Date: March 20, 2023

SOOP00119

SOOP001

Company: Santee Cooper Address: P.O. Box 2946101

OCO3

Moncks Corner, South Carolina 29461

Contact: Ms. Jeanette Gilmetti Project: ABS Lab Analytical

Client Sample ID: AF56407
Sample ID: 613953005
Matrix: Ground Water
Collect Date: 09-MAR-23 10:34
Receive Date: 10-MAR-23

Client

Parameter Qualifier Result DL RL Units PF DF Analyst Date Time Batch Method

Nutrient Analysis

EPA 353.2 Nitrogen, Nitrate/Nitrite "As Received"

Nitrogen, Nitrate/Nitrite U ND 0.0700 0.200 mg/L 10 AXH3 03/13/23 1001 2395701 1

The following Analytical Methods were performed:

Method Description Analyst Comments

EPA 353.2 Low Level

Collector:

Notes:

Column headers are defined as follows:

DF: Dilution Factor Lc/LC: Critical Level
DL: Detection Limit PF: Prep Factor
MDA: Minimum Detectable Activity RL: Reporting Limit

MDC: Minimum Detectable Concentration SQL: Sample Quantitation Limit

2040 Savage Road Charleston SC 29407 - (843) 556-8171 - www.gel.com

Certificate of Analysis

Project:

Client ID:

Report Date: March 20, 2023

SOOP00119

SOOP001

Company: Santee Cooper Address: P.O. Box 2946101

OCO3

Moncks Corner, South Carolina 29461

Contact: Ms. Jeanette Gilmetti Project: ABS Lab Analytical

Client Sample ID: AF56418
Sample ID: 613953006
Matrix: Ground Water
Collect Date: 09-MAR-23 12:07
Receive Date: 10-MAR-23

Collector: Client

Parameter	Qualifier	Result	DL	RL	Units	PF	DF Analyst Dat	e Time Batch	Method
Nutrient Analysis									
EPA 353.2 Nitroge	n, Nitrate/Nitrite '	'As Received"							
Nitrogen, Nitrate/Nitrite	e U	ND	0.0700	0.200	mg/L		10 AXH3 03/13/	23 1002 2395701	1
The following Ana	alytical Methods w	vere performed:							
The following Alla	aryticar iviculous v	vere periorinea.							

Method Description Analyst Comments

EPA 353.2 Low Level

Notes:

Column headers are defined as follows:

DF: Dilution Factor Lc/LC: Critical Level
DL: Detection Limit PF: Prep Factor
MDA: Minimum Detectable Activity RL: Reporting Limit

MDC: Minimum Detectable Concentration SQL: Sample Quantitation Limit

Page 8 of 16 SDG: 613953

2040 Savage Road Charleston SC 29407 - (843) 556-8171 - www.gel.com

Certificate of Analysis

Project:

Client ID:

Report Date: March 20, 2023

SOOP00119

SOOP001

Company: Santee Cooper Address: P.O. Box 2946101

OCO3

Moncks Corner, South Carolina 29461

Contact: Ms. Jeanette Gilmetti Project: ABS Lab Analytical

Client Sample ID: AF56422
Sample ID: 613953007
Matrix: Ground Water
Collect Date: 09-MAR-23 13:19
Receive Date: 10-MAR-23

Collector: Client

Parameter	Qualifier	Result	DL	RL	Units	PF	DF Analyst Date Ti	ime Batch	Method
Nutrient Analysis									
EPA 353.2 Nitrogen,	Nitrate/Nitrite '	'As Received"							
Nitrogen, Nitrate/Nitrite	U	ND	0.0700	0.200	mg/L		10 AXH3 03/13/23 10	003 2395701	1
The following Analy	rtical Methods w	vere performed:							
Method	Description					Analy	et Comments		

Method Description Analyst Comments

EPA 353.2 Low Level

Notes:

Column headers are defined as follows:

DF: Dilution Factor Lc/LC: Critical Level
DL: Detection Limit PF: Prep Factor
MDA: Minimum Detectable Activity RL: Reporting Limit

MDC: Minimum Detectable Concentration SQL: Sample Quantitation Limit

Page 9 of 16 SDG: 613953

2040 Savage Road Charleston, SC 29407 - (843) 556-8171 - www.gel.com

QC Summary

Report Date: March 20, 2023

Santee Cooper P.O. Box 2946101

OCO3

Moncks Corner, South Carolina

Contact: Ms. Jeanette Gilmetti

Workorder: 613953

Parmname	NOM	Sample Qual	QC	Units	RPD%	REC%	Range Anlst	Date Time
Nutrient Analysis Batch 2395701								
QC1205340398 613378004 DUP Nitrogen, Nitrate/Nitrite		3.24	3.16	mg/L	2.5		(0%-20%) AXH3	03/13/23 09:29
QC1205340397 LCS Nitrogen, Nitrate/Nitrite	1.00		1.07	mg/L		107	(90%-110%)	03/13/23 09:25
QC1205340396 MB Nitrogen, Nitrate/Nitrite		U	ND	mg/L				03/13/23 09:24
QC1205340399 613378004 PS Nitrogen, Nitrate/Nitrite	1.00	0.324	1.32	mg/L		99.6	(90%-110%)	03/13/23 09:30

Notes:

The Qualifiers in this report are defined as follows:

- U Analyte was analyzed for, but not detected above the MDL, MDA, MDC or LOD.
- J Value is estimated
- X Consult Case Narrative, Data Summary package, or Project Manager concerning this qualifier
- H Analytical holding time was exceeded
- < Result is less than value reported
- > Result is greater than value reported
- h Preparation or preservation holding time was exceeded
- R Sample results are rejected
- Z Paint Filter Test--Particulates passed through the filter, however no free liquids were observed.
- d 5-day BOD--The 2:1 depletion requirement was not met for this sample
- ^ RPD of sample and duplicate evaluated using +/-RL. Concentrations are <5X the RL. Qualifier Not Applicable for Radiochemistry.
- N/A RPD or %Recovery limits do not apply.
- ND Analyte concentration is not detected above the detection limit
- NJ Consult Case Narrative, Data Summary package, or Project Manager concerning this qualifier
- E General Chemistry--Concentration of the target analyte exceeds the instrument calibration range
- Q One or more quality control criteria have not been met. Refer to the applicable narrative or DER.

Page 10 of 16 SDG: 613953

Page 1 of 2

2040 Savage Road Charleston, SC 29407 - (843) 556-8171 - www.gel.com

QC Summary

Workorder: 613953

Page 2 of 2

Parmname

NOM Sample Qual QC Units RPD% REC% Range AnIst Date Time

- N1 See case narrative
- R Per section 9.3.4.1 of Method 1664 Revision B, due to matrix spike recovery issues, this result may not be reported or used for regulatory compliance purposes.
- B The target analyte was detected in the associated blank.
- e 5-day BOD--Test replicates show more than 30% difference between high and low values. The data is qualified per the method and can be used for reporting purposes
- J See case narrative for an explanation

N/A indicates that spike recovery limits do not apply when sample concentration exceeds spike conc. by a factor of 4 or more or %RPD not applicable.

- ^ The Relative Percent Difference (RPD) obtained from the sample duplicate (DUP) is evaluated against the acceptance criteria when the sample is greater than five times (5X) the contract required detection limit (RL). In cases where either the sample or duplicate value is less than 5X the RL, a control limit of +/- the RL is used to evaluate the DUP result.
- * Indicates that a Quality Control parameter was not within specifications.

For PS, PSD, and SDILT results, the values listed are the measured amounts, not final concentrations.

Where the analytical method has been performed under NELAP certification, the analysis has met all of the requirements of the NELAC standard unless qualified on the QC Summary.

Page 11 of 16 SDG: 613953

Technical Case Narrative Santee Cooper SDG #: 613953

General Chemistry

<u>Product:</u> Nitrate/Nitrite Cad Redux Low Level <u>Analytical Method:</u> EPA 353.2 Low Level <u>Analytical Procedure:</u> GL-GC-E-128 REV# 11

Analytical Batch: 2395701

The following samples were analyzed using the above methods and analytical procedure(s).

GEL Sample ID#	Client Sample Identification
613953001	AF56414
613953002	AF56423
613953003	AF56428
613953004	AF56406
613953005	AF56407
613953006	AF56418
613953007	AF56422
1205340396	Method Blank (MB)
1205340397	Laboratory Control Sample (LCS)
1205340398	613378004(NonSDG) Sample Duplicate (DUP)
1205340399	613378004(NonSDG) Post Spike (PS)

The samples in this SDG were analyzed on an "as received" basis.

Data Summary:

All sample data provided in this report met the acceptance criteria specified in the analytical methods and procedures for initial calibration, continuing calibration, instrument controls and process controls where applicable, with the following exceptions.

Technical Information

Sample Dilutions

The following samples 1205340398 (Non SDG 613378004DUP) and 1205340399 (Non SDG 613378004PS) were diluted because target analyte concentrations exceeded the calibration range. The following samples 613953001 (AF56414), 613953002 (AF56423), 613953003 (AF56428), 613953004 (AF56406), 613953005 (AF56407), 613953006 (AF56418) and 613953007 (AF56422) in this sample group were diluted due to matrix interference. Dilutions may be required for many reasons, including to minimize matrix interferences or to bring over range target analyte concentrations into the linear calibration range.

		613953										
Analyte	001	002	003	004	005	006	007					
Nitrogen, Nitrate/Nitrite	10X	10X	10X	10X	10X	10X	10X					

Certification Statement

Page 12 of 16 SDG: 613953

Where the analytical method has been performed under NELAP certification, the analysis has met all of the requirements of the NELAC standard unless otherwise noted in the analytical case narrative.

Page 13 of 16 SDG: 613953

Chain of Custody

Santee Cooper One Riverwood Drive Moneks Corner, SC 29461 Phone: (843)761-8000 Ext. 5148 Fax: (843)761-4175

Custom	ner Emai	l/Report Recip	oient:	Date F	Results N	eeded i	y:		P	roject/	Task/	Unit #:	Rerun re	quest for a	ny flagged Qo
LCWI	LLA	@santee	ecooper.com	,				125	915	JJA	102.	o9. Ge	11/36500	Yes No	
															Analysis Group
Labwor (Interno only)		Sample Locat Description	ion/	Collection Date	Collection Time	Sample Collector	Total # of containers	Bottle type: (Glass-G/Plastic-P)	Grab (G) or Composite (C)	Matrix(see below)	Preservative (see below)	• M • Re • M • Ar	Comments ethod # eporting limit isc. sample info ey other notes	NOs/Nos	
AF56	414	WAP-15		3/2/23	1246	2DM ML	ı	P	G	ew	3/		4	×	
1	23	WAP-23			0752	1			1	1	1				
1	28	WAP-27	1	1	1056	1	1	Ī	Ī	1	1				
	06	WAP-12		3/9/23	1029	1	1	1			1				
	07	WAP - 120)		1034										
	18	WAP-18			1207										
1	22	WAP-22		1	1319	1	_			1	Ī			1	
Relinqu	ished by:	Employee#	Date	Time	Receive	d by:	Em	ployee #		Date		Time	Sample Receiving (Inte	ernal Use Onl	y)
Sgrau	oun	35574	3/10/23	1100	M.A	~		EL		10/2	3	1100	TEMP (°C):	Initial:	
Relinqu	ished by:	Employee#	Date	Time	Receive		Em	ployee #		Date		Time	Correct pH: Yes	No	
m. An	~	GEL	3.10.23	1620 .	AN	al	4	62	12	10/2	3	620	Preservative Lot#:		
Relinqui	ished by:	Employee#	Date	Time	Receive	d by:	Em	ployee #	-	Date		Time			
. 47	□ ME	TALS (all)			5,2195,3	7-01	No.		1				Date/Time/Init for pre	servative:	
□Ag	□ Cu	□ Sb	CONTRACTOR OF THE PARTY OF THE	ients	MIS	<u>c.</u>	200	Gyp	sum			Coal	Flyash	以	Oil
□ AI	□ Fe	□ Se	D TOO		BTEX Naphthale	ne	0)	Vallboa	rd im(all		100000000000000000000000000000000000000	Itimate	Ammonia		. Of Qual.
□ As	□K	□ Sn	☐ TP/1	ГРО4	THM/HA		501	below)			100000	3 % Moist 3 Ash	□ LOI □ % Carbon	- D Co	Moisture lor
□В	□Li	□ Sr	□ NH3		VOC Oil & Grea	ase		LI AIM		加特	COLUMN TO SECURE	Sulfur	☐ % Carbon ☐ Mineral	D'Ac	
□ Ba	□ Mg	□ Ti	© CI	E	E. Coli			□ Total	metals		CONTRACTOR OF THE PARTY OF THE	BTUs	Analysis	DIE	100
□Be	□ Mn	□ TI	□ NO2		Total Coli pH	iorin	1	☐ Solub ☐ Purity				Volatile CHN	Matter ☐ Sieve ☐ % Moisture	U Dis	solved Gases
□ Ca	□Мо	□V	□ Br □ NO3		Dissolved Dissolved			□% Mo	oisture		Oth	er Tests:	El 70 Iviolattue		shpoint
□ Cd	□ Na	□ Zn	□ S04		Rad 226	re		□ Sulfit □ pH	es	37		F Scan	NPDES	D Me	mls in oil Cd.Cr.Ni,Pb
l Co	□Ni	□ Hg	196		Rad 228 PCB		1.50	□ Chlor		15.7	□Fin	eness	□ Oil & Grease	Hg	1 4 6 5 5 5
] Cr	□ Pb	□ CrVI			.00		EIS	☐ Partic	le Size		□ Par	ticulate Ma	ner DAs	GOF	

Date Received By: Date Received: Date Received: PedEx Express FedEx Ground UPS Field Services Courier Other	Cli	ent: SOP			SE	SAMPLE RECEIPT & REVIEW FORM DG/AR/COC/Work Order: 6 13952
FodEx Express FedEx Ground UPS Field Services Other Carrier and Tracking Number	Re	ceived By:			1	2 1 - 122
Alshipped as a DOT Hazardous? Hazard Class Shipped: IUN4:		Carrier and Tracking Number				F-JP-F- F- F- F- F- F- F- F- F- F- F- F- F-
Ashipped as a DOT Hazardous? If UN2910, Is the Radioactive Shipment Survey Compliant? Yes_No_ COC notation or radioactive attickers on containers equal client designation. COC notation or radioactive attickers on containers equal client designation. COC notation or radioactive attickers on containers equal client designation. COC notation or radioactive attickers on containers equal client designation. COC notation or hazard labels on containers equal client designation. (COC notation or hazard labels on containers equal client designation. (If D or E is yes, select Hazards below. PCB's Flammable Foreign Soil RCRA Abestos Berytlium Other: Sample Receipt Criteria Shipping containers received intact and sealed? Chain of custody documents included with shipment? Simples requiring cold preservation within (0 ≤ 6 deg C)?* Daily check performed and passed on IR temperature burice Serial #: LEXIP CAPPICABLE Secondary Temperature Device Serial #: LEXIP CAPPICABLE	Sus	pected Hazard Information	Yes	No	*11	Net Counts > 100cpm on samples not marked "radioactive", contact the Radiation Safety Group for further investigation.
Cock Applicable Classified as a recorded and provided COC Cock	A)8	hipped as a DOT Hazardous?		1	Ha	zard Class Shipped: UN#: If UN2910, Is the Radioactive Shipment Survey Compliant? YesNo
Classified as: Rad 1 Rad 2 Rad 3 Did the client designate samples are hazardous? CCO notation or hazard labels on containers equal client designation. If D or E is yes, select Hazards below. PCB's Flammable Foreign Soil RCRA Asbestos Beryllium Other: Sample Receipt Criteria				1	cc	C notation or radioactive stickers on containers equal client designation.
Sample Receipt Criteria Sample Receipt Criteria Sample Receipt Criteria Sample Receipt Criteria Sample Receipt Criteria Sample Receipt Criteria Sample Receipt Criteria Sample Receipt Criteria Sample Receipt Criteria Sample Receipt Criteria Sample Receipt Criteria Sample Receipt Criteria Sample Receipt Criteria Sample Receipt Criteria Sample Receipt Criteria Sample Receipt Criteria Sample Receipt Criteria Sample Sala broken Damaged containers Leaking container Other (describe)				1	Mi	uximum Net Counts Observed* (Observed Counts - Area Background Counts): CPM mR/Hr Classified as: Rad 1 Rad 2 Rad 3
Sample Receipt Criteria 3 2 2 Comments/Qualifiers (Required for Non-Conforming Items)	D)	Did the client designate samples are hazardous?		/	11	
Shipping containers received intact and sealed? Circle Applicable: Seals broken Damaged container Leaking container Other (describe) Circle Applicable: Client contacted and provided COC COC created upon receipt Circle Applicable: Client contacted and provided COC COC created upon receipt Circle Applicable: Client contacted and provided COC COC created upon receipt TEMP:	E) I	Did the RSO identify possible hazards?		1		DCPS FILE II F C C C C
Circle Applicable: Seals broken Damaged container Leaking container Other (describe) Chain of custody documents included with shipment? Samples requiring cold preservation within (0 ≤ 6 deg. C)?* Temperature sure recorded in Celsius Secondary Temperature sure recorded in Celsius Secondary Temperature sure recorded in Celsius Secondary Temperature sure recorded in Celsius Secondary Temperature sure recorded in Celsius Secondary Temperature sure recorded in Celsius Secondary Temperature sure recorded in Celsius Secondary Temperature sure recorded in Celsius Secondary Temperature sure recorded in Celsius Secondary Temperature sure recorded in Celsius Secondary Temperature sure recorded in Celsius Secondary Temperature sure recorded in Celsius Secondary Temperature sure recorded in Celsius Sample ID's and Containers offected: If Yes, are Encores or Soil Kits present for solids? Yes No No No No No No No No No No No No No		Sample Receipt Criteria	Yes	A.	No.	Comments/Qualifiers (Required for Non-Conforming Itanya)
with shipment? Samples requiring cold preservation within (0 ≤ 6 deg. C)?* Daily check performed and passed on IR comperature gun? Sample containers intact and sealed? Sample requiring chemical preservation at proper pH? Do any samples require Volatile Analysis? Samples received within holding time? Samples received within holding time? Sample ID's and containers affected: ID's and containe	1		,			
*all temperatures are recorded in Celsius *all temperature same recorded in Celsius *all temperature same recorded in Celsius *all temperature same recorded in Celsius TEMP: *all temperature same recorded in Celsius TEMP: *all temperature same recorded in Celsius TEMP: *all temperature same recorded in Celsius TEMP: *all temperature same recorded in Celsius TEMP: *all temperature same recorded in Celsius TEMP: *all temperature same recorded in Celsius TEMP: *all temperature same recorded in Celsius TEMP: *all temperature same recorded in Celsius TEMP: *all temperature same recorded in Celsius TEMP: *all temperature same recorded in Celsius TEMP: *all temperatures are recorded in Celsius TEMP: *all temperatures are recorded in Celsius TEMP: *all temperatures are recorded in Celsius TEMP: *all temperatures are recorded in Celsius TEMP: *all temperatures are recorded in Celsius TEMP: *all temperatures are recorded in Celsius TEMP: *all temperatures are recorded in Celsius TEMP: *all temperatures are recorded in Celsius TEMP: *all temperatures are recorded in Celsius TEMP: *all temperatures are recorded in Celsius *all temperatures are recorded in Celsius Temperature same recorded in Celsius *all temperatures are recorded in Celsius *all temperatures are recorded in Celsius *all temperatures are recorded in Celsius *all temperatures same recorded in Celsius *all temperatures same recorded in Celsius *all temperatures same recorded in Celsius *all temperatures same recorded in Celsius *all temperatures same recorded in Celsius *all temperatures same recorded in Celsius *all temperatures same recorded in Celsius *all temperatures same recorded in Celsius *all temperatures same recorded in Celsius *all temperatures same recorded in Celsius *all temperature same recorded in Celsius *all temperature same recorded in Celsius *all temperature same recorded in Celsius *all temperature same recorded in Celsius *all temperature same recorded in Celsius *all temp	2		1		Comment	
temperature gun? Secondary Temperature Device Scrial # (If Applicable): Circle Applicable: Seals broken Damaged container Leaking container Other (describe) Sample containers intact and sealed? Sample requiring chemical preservation at proper pH? Do any samples require Volatile Analysis? Sample ID's and Containers affected: If Preservation added, Lot#: If Yes, are Encores or Soil Kits present for solids? Yes_No_NA_(If yes, take to VOA Freezer) Do liquid VOA vials free of headspace? Yes_No_NA_(If unknown, select No) Are liquid VOA vials free of headspace? Yes_No_NA_ Sample ID's and containers affected: ID's and containers affected: ID's and containers affected: ID's and containers affected: Circle Applicable: No dates on containers No times on containers COC missing info Other (describe) Circle Applicable: No container count on COC Other (describe) Are sample containers identifiable as	3		/	1		Preservation Method: Wet Ice Ice Packs Dry ice None Other: *all temperatures are recorded in Celsius TEMP: 7
Samples requiring chemical preservation at proper pH? Sample ID's and Containers Affected: If Preservation at proper pH? If Preservation added, Lot#: If Yes, are Encores or Soil Kits present for solids? Yes_No_NA_(If yes, take to VOA Freezer) Do lany samples require Volatile Analysis? If Yes, are Encores or Soil Kits present for solids? Yes_No_NA_(If unknown, select No) Are liquid VOA vials contain acid preservation? Yes_No_NA_(If unknown, select No) Are liquid VOA vials free of headspace? Yes_No_NA_(If unknown, select No) Are liquid VOA vials free of headspace? Yes_No_NA_(If unknown, select No) ID's and containers affected: ID's and containers affected: ID's and containers affected: ID's and containers affected: ID's and containers affected: ID's and containers affected: ID's and containers No times on containers COC missing info Other (describe) ID's and containers count on COC Other (describe) ID's an	4	Daily check performed and passed on IR temperature gun?	/			Secondary Temperature Device Scrial # (If Applicable):
at proper pH? If Preservation added, Lot#: If Yes, are Encores or Soil Kits present for solids? YesNoNA(If yes, take to VOA Freezer) Do any samples require Volatile Analysis? Do any samples require Volatile Analysis? Samples received within holding time? Sample ID's and containers affected: ID's and tests affected: ID's and containers affected: Circle Applicable: No dates on containers No times on containers COC missing info Other (describe) Circle Applicable: No container count on COC Other (describe) Circle Applicable: No container count on COC Other (describe)	5		/			
Do any samples require Volatile Analysis? Do liquid VOA vials contain acid preservation? YesNoNA(If unknown, select No) Are liquid VOA vials free of headspace? YesNoNA Sample ID's and containers affected: ID's and tests affected: Sample ID's on COC match ID's on bottles? Date & time on COC match date & time on bottles? Number of containers received match number indicated on COC? Are sample containers identifiable as Do liquid VOA vials contain acid preservation? YesNoNA(If unknown, select No) Are liquid VOA vials free of headspace? YesNoNA(If unknown, select No) Are liquid VOA vials free of headspace? YesNoNA(If unknown, select No) Are liquid VOA vials free of headspace? YesNoNA(If unknown, select No) Are liquid VOA vials free of headspace? YesNoNA(If unknown, select No) Are liquid VOA vials contain exidence in the liquid voa vials free of headspace? YesNoNA(If unknown, select No) Are liquid VOA vials contain exidence in the liquid voa vials free of headspace? YesNoNA(If unknown, select No) Are liquid VOA vials free of headspace? YesNoNA(If unknown, select No) Are liquid VOA vials free of headspace? YesNoNA(If unknown, select No) Are liquid VOA vials free of headspace? YesNoNA(If unknown, select No) Are liquid VOA vials free of headspace? YesNoNA(If unknown, select No) Are liquid VOA vials free of headspace? YesNoNA(If unknown, select No) Are liquid VOA vials free of headspace? YesNoNA(If unknown, select No) Are liquid VOA vials free of headspace? YesNoNA(If unknown, select No) Are liquid VOA vials free of headspace? YesNoNA(If unknown, select No) Are liquid VOA vials free of headspace? Are liquid VOA vials free of headspace? Are liquid VOA vials free of headspace? Are liquid VOA vials free of headspace? Are liquid VOA vials free of headspace? Are liquid VOA vials free of headspace? Are liquid VOA vials free of headspace? Are liquid VOA vials free of headspace? Are liqui	6			2.041		If Preservation added, Lot#:
8 Samples received within holding time? 9 Sample ID's on COC match ID's on bottles? 10 Date & time on COC match date & time on bottles? 11 Number of containers received match number indicated on COC? 12 Are sample containers identifiable as	7				1	Do liquid VOA vials contain acid preservation? Yes No NA(If unknown, select No) Are liquid VOA vials free of headspace? Yes No NA
bottles? Date & time on COC match date & time on bottles? Circle Applicable: No dates on containers No times on containers COC missing info Other (describe) on bottles? Number of containers received match number indicated on COC? Are sample containers identifiable as	8	Samples received within holding time?	/			1D's and tests affected:
Date & time on COC match date & time on bottles? Circle Applicable: No dates on containers No times on containers COC missing info Other (describe) Circle Applicable: No container count on COC Other (describe) Circle Applicable: No container count on COC Other (describe)	9		/			ID's and containers affected:
number indicated on COC? Are sample containers identifiable as	10		/			Circle Applicable: No dates on containers No times on containers COC missing info Other (describe)
	11	number indicated on COC?	1	有品品		Circle Applicable: No container count on COC Other (describe)
	12		1			
COC form is properly signed in relinquished/received sections? Circle Applicable: Not relinquished Other (describe)	13		1	港門		Circle Applicable: Not relinquished Other (describe)

M (or PMA) review: Initials Date 3/13/23 Page of

List of current GEL Certifications as of 20 March 2023

State	Certification
Alabama	42200
Alaska	17-018
Alaska Drinking Water	SC00012
Arkansas	88-0651
CLIA	42D0904046
California	2940
Colorado	SC00012
Connecticut	PH-0169
DoD ELAP/ ISO17025 A2LA	2567.01
Florida NELAP	E87156
Foreign Soils Permit	P330-15-00283, P330-15-00253
Georgia	SC00012
Georgia SDWA	967
Hawaii	SC00012
Idaho	SC00012 SC00012
Illinois NELAP	200029
Indiana	C-SC-01
Kansas NELAP	E-10332
Kentucky SDWA	90129
Kentucky Wastewater	90129
Louisiana Drinking Water	LA024
Louisiana NELAP	03046 (AI33904)
Maine	2019020
	2019020
Maryland Massachusetts	M-SC012
Massachusetts PFAS Approv	Letter
Michigan Michigan	9976
Mississippi	SC00012
Nebraska	NE-OS-26-13
Nevada	SC000122023-4
New Hampshire NELAP	2054
_	
New Jersey NELAP New Mexico	SC002
New York NELAP	SC00012 11501
North Carolina	233
North Carolina SDWA	
	45709
North Dakota	R-158
Oklahoma	2022-160
Pennsylvania NELAP	68-00485
Puerto Rico	SC00012
S. Carolina Radiochem	10120002
Sanitation Districts of L	9255651
South Carolina Chemistry	10120001
Tennessee	TN 02934
Texas NELAP	T104704235-22-20
Utah NELAP	SC000122022-37
Vermont	VT87156
Virginia NELAP	460202
Washington	C780

gel.com

March 21, 2023

Ms. Jeanette Gilmetti Santee Cooper P.O. Box 2946101 OCO3 Moncks Corner, South Carolina 29461

Re: ABS Lab Analytical Work Order: 613959

Dear Ms. Gilmetti:

GEL Laboratories, LLC (GEL) appreciates the opportunity to provide the enclosed analytical results for the sample(s) we received on March 10, 2023. This original data report has been prepared and reviewed in accordance with GEL's standard operating procedures.

The samples were delivered with proper chain of custody documentation and signatures. All sample containers arrived without any visible signs of tampering or breakage. There are no additional comments concerning sample receipt.

Test results for NELAP or ISO 17025 accredited tests are verified to meet the requirements of those standards, with any exceptions noted. The results reported relate only to the items tested and to the sample as received by the laboratory. These results may not be reproduced except as full reports without approval by the laboratory. Copies of GEL's accreditations and certifications can be found on our website at www.gel.com.

Our policy is to provide high quality, personalized analytical services to enable you to meet your analytical needs on time every time. We trust that you will find everything in order and to your satisfaction. If you have any questions, please do not hesitate to call me at (843) 556-8171, ext. 4289.

Sincerely,

Heather Millar for Julie Robinson Project Manager

Purchase Order: 398684

Enclosures

2040 Savage Road Charleston SC 29407 - (843) 556-8171 - www.gel.com

Certificate of Analysis Report for

SOOP001 Santee Cooper

Client SDG: 613959 GEL Work Order: 613959

The Qualifiers in this report are defined as follows:

- * A quality control analyte recovery is outside of specified acceptance criteria
- ** Analyte is a Tracer compound
- ** Analyte is a surrogate compound
- H Analytical holding time was exceeded
- J Value is estimated
- U Analyte was analyzed for, but not detected above the MDL, MDA, MDC or LOD.

Where the analytical method has been performed under NELAP certification, the analysis has met all of the requirements of the NELAC standard unless qualified on the Certificate of Analysis.

The designation ND, if present, appears in the result column when the analyte concentration is not detected above the limit as defined in the 'U' qualifier above.

This data report has been prepared and reviewed in accordance with GEL Laboratories LLC standard operating procedures. Please direct any questions to your Project Manager, Julie Robinson.

Reviewed by

Page 2 of 55 SDG: 613959

2040 Savage Road Charleston SC 29407 - (843) 556-8171 - www.gel.com

Certificate of Analysis

Report Date: March 21, 2023

Company: Santee Cooper Address: P.O. Box 2946101

OCO3

Client

Moncks Corner, South Carolina 29461

Contact: Ms. Jeanette Gilmetti Project: ABS Lab Analytical

Client Sample ID: AF56409
Sample ID: 613959001
Matrix: Ground Water
Collect Date: 06-MAR-23 12:14
Receive Date: 10-MAR-23

Collector:

Client ID: SOOP001

SOOP00119

Project:

Parameter	Qualifier	Result	DL	RL	Units	PF	DF	Analy	yst Date	Time Batch	Method
Carbon Analysis											
SM 5310 B Total Organ	ic Carbon "A	As Received"									
Total Organic Carbon Average	e	8.36	0.660	2.00	mg/L		2	TSM	03/21/23	0112 2397544	1
Spectrometric Analysis											
SM 4500-S(2-) D Sulfid	e "As Receiv	ved"									
Total Sulfide	Н	198	13.2	40.0	mg/L		400	HH2	03/14/23	1759 2397596	2
Titration and Ion Analys	sis										
SM 2320B Total Alkalir	nity "As Rece	eived"									
Alkalinity, Total as CaCO3	•	344	2.42	6.67	mg/L			EK1	03/13/23	1409 2397768	3
Bicarbonate alkalinity (CaCO3	3)	344	2.42	6.67	mg/L						
Carbonate alkalinity (CaCO3)	U	ND	2.42	6.67	mg/L						
The following Analytics	al Methods v	vere performed:									
Method	Description	Į.			P	Analys	t Cor	nment	S		

 Method
 Description

 1
 SM 5310 B

 2
 SM 4500-S (2-) D

 3
 SM 2320B

Notes:

Column headers are defined as follows:

DF: Dilution Factor Lc/LC: Critical Level
DL: Detection Limit PF: Prep Factor
MDA: Minimum Detectable Activity RL: Reporting Limit

MDC: Minimum Detectable Concentration SQL: Sample Quantitation Limit

Page 3 of 55 SDG: 613959

2040 Savage Road Charleston SC 29407 - (843) 556-8171 - www.gel.com

Certificate of Analysis

Project:

Client ID:

Report Date: March 21, 2023

SOOP00119

SOOP001

Company: Santee Cooper Address: P.O. Box 2946101

OCO3

Moncks Corner, South Carolina 29461

Contact: Ms. Jeanette Gilmetti Project: ABS Lab Analytical

Client Sample ID: AF56409
Sample ID: 613959002
Matrix: Ground Water
Collect Date: 06-MAR-23 12:14
Receive Date: 10-MAR-23

Client

Parameter	Qualifier	Result	DL	RL	Units	PF	DF Analyst Date	Time Batch	Method
Carbon Analysis									
CM 5210 D D:1-	and Onesais Carl	!! A D							

SM 5310 B Dissolved Organic Carbon "As Received"

Dissolved Organic Carbon Average 8.18 0.660 2.00 mg/L 2 TSM 03/20/23 1639 2399632 1

The following Prep Methods were performed:

Method	Description	Analyst	Date	Time	Prep Batch
EPA 160	Laboratory Filtration - DOC	TSM	03/17/23	1237	2397540
EPA 160	Laboratory Filtration - DOC	TSM	03/15/23	1135	2397540

The following Analytical Methods were performed:

 Method
 Description
 Analyst Comments

 1
 SM 5310 B

5101 5510 1

Collector:

Notes:

Column headers are defined as follows:

DF: Dilution Factor Lc/LC: Critical Level
DL: Detection Limit PF: Prep Factor
MDA: Minimum Detectable Activity RL: Reporting Limit

MDC: Minimum Detectable Concentration SQL: Sample Quantitation Limit

Page 4 of 55 SDG: 613959

2040 Savage Road Charleston SC 29407 - (843) 556-8171 - www.gel.com

Certificate of Analysis

Project:

Client ID:

Report Date: March 21, 2023

SOOP00119

SOOP001

Company: Santee Cooper Address: P.O. Box 2946101

OCO3

Moncks Corner, South Carolina 29461

Contact: Ms. Jeanette Gilmetti Project: ABS Lab Analytical

Client Sample ID: AF56410
Sample ID: 613959003
Matrix: Ground Water
Collect Date: 06-MAR-23 12:19
Receive Date: 10-MAR-23

Collector: Client

Parameter	Qualifier	Result	DL	RL	Units	PF	DF	Analy	st Date	Time	Batch	Method
Carbon Analysis												
SM 5310 B Total Organi	ic Carbon "A	as Received"										
Total Organic Carbon Average		8.00	0.660	2.00	mg/L		2	TSM	03/21/23	0217 2	2397544	1
Spectrometric Analysis												
SM 4500-S(2-) D Sulfide	e "As Receiv	/ed"										
Total Sulfide	Н	69.6	6.60	20.0	mg/L		200	HH2	03/14/23	1759 2	2397596	2
Titration and Ion Analys	is											
SM 2320B Total Alkalin	ity "As Rece	eived"										
Alkalinity, Total as CaCO3		339	2.07	5.71	mg/L			EK1	03/13/23	1420 2	2397768	3
Bicarbonate alkalinity (CaCO3)	339	2.07	5.71	mg/L							
Carbonate alkalinity (CaCO3)	U	ND	2.07	5.71	mg/L							
The following Analytica	al Methods w	vere performed:										
Method	Description				1	Analys	st Coı	nment	S			

1 SM 5310 B 2 SM 4500-S (2-) D 3 SM 2320B

Notes:

Column headers are defined as follows:

DF: Dilution Factor Lc/LC: Critical Level
DL: Detection Limit PF: Prep Factor
MDA: Minimum Detectable Activity RL: Reporting Limit

MDC: Minimum Detectable Concentration SQL: Sample Quantitation Limit

Page 5 of 55 SDG: 613959

2040 Savage Road Charleston SC 29407 - (843) 556-8171 - www.gel.com

Certificate of Analysis

Project:

Client ID:

Report Date: March 21, 2023

SOOP00119

SOOP001

Company: Santee Cooper Address: P.O. Box 2946101

OCO3

Moncks Corner, South Carolina 29461

Contact: Ms. Jeanette Gilmetti Project: ABS Lab Analytical

Client Sample ID: AF56410
Sample ID: 613959004
Matrix: Ground Water
Collect Date: 06-MAR-23 12:19

Receive Date: 10-MAR-23 Collector: Client

Parameter	Qualifier	Result	DL	RL	Units	PF	DF	Analyst Date	Time Batch	Method
Carbon Analysis										
SM 5310 B Dissol	ved Organic Carbo	on "As Received"								
Dissolved Organic Car	bon Average	10.7	1.65	5.00	mg/L		5	TSM 03/16/23	1637 2399632	1
The following Pre	p Methods were pe	erformed:								
Method	Description	1		Analyst	Date		Time	Prep Batch	l	
EPA 160	Laboratory Fi	ltration - DOC		TSM	03/15/23		1135	2397540		
The fellowing Am	alvitical Mathada v									

The following Analytical Methods were performed:

 Method
 Description
 Analyst Comments

 1
 SM 5310 B

Notes:

Column headers are defined as follows:

DF: Dilution Factor Lc/LC: Critical Level
DL: Detection Limit PF: Prep Factor
MDA: Minimum Detectable Activity RL: Reporting Limit

MDC: Minimum Detectable Concentration SQL: Sample Quantitation Limit

Page 6 of 55 SDG: 613959

2040 Savage Road Charleston SC 29407 - (843) 556-8171 - www.gel.com

Certificate of Analysis

Project:

Client ID:

Report Date: March 21, 2023

SOOP00119

SOOP001

Company: Santee Cooper Address: P.O. Box 2946101

OCO3

Moncks Corner, South Carolina 29461

Contact: Ms. Jeanette Gilmetti Project: ABS Lab Analytical

Client Sample ID: AF56411
Sample ID: 613959005
Matrix: Ground Water
Collect Date: 06-MAR-23 11:08
Receive Date: 10-MAR-23

Collector: Client

Parameter	Qualifier	Result	DL	RL	Units	PF	DF	Analy	st Date	Time Bat	ch Method
Carbon Analysis											
SM 5310 B Total Organi	ic Carbon "A	As Received"									
Total Organic Carbon Average	:	4.17	0.330	1.00	mg/L		1	TSM	03/21/23	0239 2397	544 1
Spectrometric Analysis											
SM 4500-S(2-) D Sulfide	e "As Receiv	ved"									
Total Sulfide	Н	59.2	3.30	10.0	mg/L		100	HH2	03/14/23	1759 2397	596 2
Titration and Ion Analys	is										
SM 2320B Total Alkalin	ity "As Rec	eived"									
Alkalinity, Total as CaCO3	•	221	2.07	5.71	mg/L			EK1	03/13/23	1426 2397	768 3
Bicarbonate alkalinity (CaCO3	3)	221	2.07	5.71	mg/L						
Carbonate alkalinity (CaCO3)	U	ND	2.07	5.71	mg/L						
The following Analytica	al Methods v	vere performed:									
Method Description Analyst Comments											

 Method
 Description

 1
 SM 5310 B

 2
 SM 4500-S (2-) D

 3
 SM 2320B

Notes:

Column headers are defined as follows:

DF: Dilution Factor Lc/LC: Critical Level
DL: Detection Limit PF: Prep Factor
MDA: Minimum Detectable Activity RL: Reporting Limit

MDC: Minimum Detectable Concentration SQL: Sample Quantitation Limit

Page 7 of 55 SDG: 613959

2040 Savage Road Charleston SC 29407 - (843) 556-8171 - www.gel.com

Certificate of Analysis

Report Date: March 21, 2023

SOOP00119

Company: Santee Cooper Address: P.O. Box 2946101

OCO₃

Moncks Corner, South Carolina 29461

Contact: Ms. Jeanette Gilmetti Project: ABS Lab Analytical

Client Sample ID: AF56411 Sample ID: 613959006 Matrix: Ground Water Collect Date: 06-MAR-23 11:08 Receive Date: 10-MAR-23

Client

Project: Client ID: SOOP001

Parameter	Qualifier	Result	DL	RL	Units	PF	DF Analy	st Date	Time Batch	Method
Carbon Analysis										
SM 5310 B Dissolv	ed Organic Carbo	on "As Received"								
Dissolved Organic Carbo	on Average	6.08	1.65	5.00	mg/L		5 TSM	03/16/23	1658 2399632	. 1

The following Prep Methods were performed:

Collector:

Method Date Prep Batch Description Analyst Time EPA 160 Laboratory Filtration - DOC TSM 03/15/23 1135 2397540

The following Analytical Methods were performed:

Method Description **Analyst Comments** SM 5310 B

Notes:

Column headers are defined as follows:

DF: Dilution Factor Lc/LC: Critical Level DL: Detection Limit PF: Prep Factor MDA: Minimum Detectable Activity **RL**: Reporting Limit

MDC: Minimum Detectable Concentration SQL: Sample Quantitation Limit

Page 8 of 55 SDG: 613959

2040 Savage Road Charleston SC 29407 - (843) 556-8171 - www.gel.com

Certificate of Analysis

Report Date: March 21, 2023

Company: Santee Cooper Address: P.O. Box 2946101

OCO3

Moncks Corner, South Carolina 29461

Contact: Ms. Jeanette Gilmetti Project: ABS Lab Analytical

Client Sample ID: AF56412 Sample ID: 613959007 Matrix: Ground Water Collect Date: 06-MAR-23 15:15 Receive Date: 10-MAR-23

Client

Project: Client ID: SOOP001

SOOP00119

Parameter	Qualifier	Result	DL	RL	Units	PF	DF	Analy	st Date	Time Batch	Method
Carbon Analysis											
SM 5310 B Total Organi	ic Carbon "A	s Received"									
Total Organic Carbon Average	;	2.81	0.330	1.00	mg/L		1	TSM	03/21/23	0301 2397544	1
Spectrometric Analysis											
SM 4500-S(2-) D Sulfide	e "As Receiv	ved"									
Total Sulfide	UH	ND	0.825	2.50	mg/L		25	HH2	03/14/23	1759 2397596	2
Titration and Ion Analys	is										
SM 2320B Total Alkalin	ity "As Rece	eived"									
Alkalinity, Total as CaCO3	•	157	2.07	5.71	mg/L			EK1	03/13/23	1431 2397768	3
Bicarbonate alkalinity (CaCO3)	157	2.07	5.71	mg/L						
Carbonate alkalinity (CaCO3)	U	ND	2.07	5.71	mg/L						
The following Analytica	al Methods v	vere performed:									
Method	Description				A	Analys	st Co	mment	S		

SM 5310 B 2 SM 4500-S (2-) D SM 2320B

Collector:

Notes:

Column headers are defined as follows:

DF: Dilution Factor Lc/LC: Critical Level DL: Detection Limit PF: Prep Factor MDA: Minimum Detectable Activity **RL**: Reporting Limit

MDC: Minimum Detectable Concentration SQL: Sample Quantitation Limit

Page 9 of 55 SDG: 613959

2040 Savage Road Charleston SC 29407 - (843) 556-8171 - www.gel.com

Certificate of Analysis

Project:

Client ID:

Report Date: March 21, 2023

SOOP00119

SOOP001

Company: Santee Cooper Address: P.O. Box 2946101

OCO3

Moncks Corner, South Carolina 29461

Contact: Ms. Jeanette Gilmetti Project: ABS Lab Analytical

Client Sample ID: AF56412
Sample ID: 613959008
Matrix: Ground Water
Collect Date: 06-MAR-23 15:15

Receive Date: 10-MAR-23 Collector: Client

Parameter	Qualifier	Result	DL	RL	Units	PF	DF	Analy	st Date	Time Batcl	n Method
Carbon Analysis											
SM 5310 B Dissolv	ved Organic Carbo	on "As Received"									
Dissolved Organic Carb	on Average	3.44	0.330	1.00	mg/L		1	TSM	03/20/23	1744 239963	32 1
The following Prep	Methods were pe										
Method	Description	1		Analyst	Date	,	Time	Pı	ep Batch		
EPA 160	Laboratory Fi	ltration - DOC		TSM	03/15/23		1135	23	97540		
EPA 160	Laboratory Fi	ltration - DOC		TSM	03/17/23		1237	23	97540		
The following Ana	alytical Methods w	vere performed:									
Method	Description				A	Analyst	t Con	nment	s		
1	SM 5310 B										

Notes:

Column headers are defined as follows:

DF: Dilution Factor Lc/LC: Critical Level
DL: Detection Limit PF: Prep Factor
MDA: Minimum Detectable Activity RL: Reporting Limit

MDC: Minimum Detectable Concentration SQL: Sample Quantitation Limit

Page 10 of 55 SDG: 613959

2040 Savage Road Charleston SC 29407 - (843) 556-8171 - www.gel.com

Certificate of Analysis

Report Date: March 21, 2023

SOOP00119

Project:

Company: Santee Cooper Address: P.O. Box 2946101

OCO3

Moncks Corner, South Carolina 29461

Contact: Ms. Jeanette Gilmetti Project: ABS Lab Analytical

Client Sample ID: AF56413
Sample ID: 613959009
Matrix: Ground Water
Collect Date: 06-MAR-23 13:41
Receive Date: 10-MAR-23

Collector: Client

13959009	Client ID:	SOOP001
round Water		

Parameter	Qualifier	Result	DL	RL	Units	PF	DF	Analy	st Date	Time Batch	Method
Carbon Analysis											
SM 5310 B Total Organ	nic Carbon "A	As Received"									
Total Organic Carbon Averag	je J	0.895	0.330	1.00	mg/L		1	TSM	03/21/23	0323 2397544	1
Spectrometric Analysis											
SM 4500-S(2-) D Sulfic	de "As Receiv	ved"									
Total Sulfide	U	ND	0.0330	0.100	mg/L		1	HH2	03/13/23	1924 2396527	2
Titration and Ion Analy	sis										
SM 2320B Total Alkali	nity "As Rec	eived"									
Alkalinity, Total as CaCO3		104	2.07	5.71	mg/L			EK1	03/13/23	1434 2397768	3
Bicarbonate alkalinity (CaCO	3)	104	2.07	5.71	mg/L						
Carbonate alkalinity (CaCO3)	U	ND	2.07	5.71	mg/L						
The following Analytic	al Methods v	vere performed:									
Spectrometric Analysis SM 4500-S(2-) D Sulfide "As Received" Total Sulfide U ND 0.0330 0.100 mg/L 1 HH2 03/13/23 1924 2396527 Titration and Ion Analysis SM 2320B Total Alkalinity "As Received" Alkalinity, Total as CaCO3 104 2.07 5.71 mg/L EK1 03/13/23 1434 2397768 Bicarbonate alkalinity (CaCO3) 104 2.07 5.71 mg/L EK1 03/13/23 1434 2397768											

 Method
 Description

 1
 SM 5310 B

 2
 SM 4500-S (2-) D

 3
 SM 2320B

Notes:

Column headers are defined as follows:

DF: Dilution Factor Lc/LC: Critical Level
DL: Detection Limit PF: Prep Factor
MDA: Minimum Detectable Activity RL: Reporting Limit

MDC: Minimum Detectable Concentration SQL: Sample Quantitation Limit

Page 11 of 55 SDG: 613959

2040 Savage Road Charleston SC 29407 - (843) 556-8171 - www.gel.com

Certificate of Analysis

Report Date: March 21, 2023

SOOP00119

SOOP001

Company: Santee Cooper Address: P.O. Box 2946101

OCO3

Moncks Corner, South Carolina 29461

Contact: Ms. Jeanette Gilmetti Project: ABS Lab Analytical

Client Sample ID: AF56413
Sample ID: 613959010
Matrix: Ground Water
Collect Date: 06-MAR-23 13:41
Receive Date: 10-MAR-23

Client

Qualifier Result DL RL Units PF DF Analyst Date Time Batch Method

Project:

Client ID:

Carbon Analysis

Parameter

SM 5310 B Dissolved Organic Carbon "As Received"

Dissolved Organic Carbon Average 1.61 0.330 1.00 mg/L 1 TSM 03/16/23 1740 2399632 1

The following Prep Methods were performed:

Collector:

MethodDescriptionAnalystDateTimePrep BatchEPA 160Laboratory Filtration - DOCTSM03/15/2311352397540

The following Analytical Methods were performed:

Method Description Analyst Comments

SM 5310 B

Analyst Comments

Notes:

Column headers are defined as follows:

DF: Dilution Factor Lc/LC: Critical Level
DL: Detection Limit PF: Prep Factor
MDA: Minimum Detectable Activity RL: Reporting Limit

MDC: Minimum Detectable Concentration SQL: Sample Quantitation Limit

Page 12 of 55 SDG: 613959

2040 Savage Road Charleston SC 29407 - (843) 556-8171 - www.gel.com

Certificate of Analysis

Report Date: March 21, 2023

Company: Santee Cooper Address: P.O. Box 2946101

OCO3

Client

Moncks Corner, South Carolina 29461

Contact: Ms. Jeanette Gilmetti Project: ABS Lab Analytical

Client Sample ID: AF56430
Sample ID: 613959011
Matrix: Ground Water
Collect Date: 06-MAR-23 10:10
Receive Date: 10-MAR-23

Client ID: SOOP001

SOOP00119

Project:

Parameter	Qualifier	Result	DL	RL	Units	PF	DF	Analy	yst Date	Time Batch	Method
Carbon Analysis											
SM 5310 B Total Organ	ic Carbon "A	s Received"									
Total Organic Carbon Average	e	3.76	0.330	1.00	mg/L		1	TSM	03/21/23	0405 2397544	1
Spectrometric Analysis											
SM 4500-S(2-) D Sulfid	e "As Receiv	ved"									
Total Sulfide	U	ND	0.0330	0.100	mg/L		1	HH2	03/13/23	1924 2396527	2
Titration and Ion Analys	is										
SM 2320B Total Alkalin	nity "As Rece	eived"									
Alkalinity, Total as CaCO3		126	2.07	5.71	mg/L			EK1	03/13/23	1439 2397768	3
Bicarbonate alkalinity (CaCO3	3)	126	2.07	5.71	mg/L						
Carbonate alkalinity (CaCO3)	U	ND	2.07	5.71	mg/L						
The following Analytica	al Methods v	vere performed:									
Method	Description				1	Analys	st Co	mment	S		

1 SM 5310 B 2 SM 4500-S (2-) D 3 SM 2320B

Collector:

Notes:

Column headers are defined as follows:

DF: Dilution Factor Lc/LC: Critical Level
DL: Detection Limit PF: Prep Factor
MDA: Minimum Detectable Activity RL: Reporting Limit

MDC: Minimum Detectable Concentration SQL: Sample Quantitation Limit

Page 13 of 55 SDG: 613959

2040 Savage Road Charleston SC 29407 - (843) 556-8171 - www.gel.com

Certificate of Analysis

Project:

Client ID:

Report Date: March 21, 2023

SOOP00119

SOOP001

Company: Santee Cooper Address: P.O. Box 2946101

OCO3

Moncks Corner, South Carolina 29461

Contact: Ms. Jeanette Gilmetti Project: ABS Lab Analytical

Client Sample ID: AF56430
Sample ID: 613959012
Matrix: Ground Water
Collect Date: 06-MAR-23 10:10
Receive Date: 10-MAR-23

10-MAR-23 Client

Parameter	Qualifier	Result	DL	RL	Units	PF	DF	Analy	st Date	Time Batch	Method
Carbon Analysis											
SM 5310 B Dissolv	ed Organic Carbo	on "As Received"									
Dissolved Organic Carbo	on Average	4.42	0.330	1.00	mg/L		1	TSM	03/16/23	1824 2399632	1
The following Prep	Methods were pe	erformed:									
Method	Description	1		Analyst	Date		Time	e Pr	ep Batch		
EPA 160	Laboratory Fi	ltration - DOC		TSM	03/15/23		1135	23	97540		
The following Ana	lytical Methods v	vara parformad:									

The following Analytical Methods were performed:

 Method
 Description
 Analyst Comments

 1
 SM 5310 B

Notes:

Column headers are defined as follows:

Collector:

DF: Dilution Factor Lc/LC: Critical Level
DL: Detection Limit PF: Prep Factor
MDA: Minimum Detectable Activity RL: Reporting Limit

MDC: Minimum Detectable Concentration SQL: Sample Quantitation Limit

Page 14 of 55 SDG: 613959

2040 Savage Road Charleston SC 29407 - (843) 556-8171 - www.gel.com

Certificate of Analysis

Project:

Client ID:

Report Date: March 21, 2023

SOOP00119

SOOP001

Company: Santee Cooper Address: P.O. Box 2946101

OCO3

Moncks Corner, South Carolina 29461

Contact: Ms. Jeanette Gilmetti Project: ABS Lab Analytical

Client Sample ID: AF56419
Sample ID: 613959013
Matrix: Ground Water
Collect Date: 07-MAR-23 14:51
Receive Date: 10-MAR-23

Collector: Client

Parameter	Qualifier	Result	DL	RL	Units	PF	DF	Analy	yst Date	Time	Batch	Method
Carbon Analysis												
SM 5310 B Total Organi	ic Carbon "A	s Received"										
Total Organic Carbon Average	;	10.6	0.330	1.00	mg/L		1	TSM	03/21/23	0427	2397544	1
Spectrometric Analysis												
SM 4500-S(2-) D Sulfide	e "As Receiv	/ed"										
Total Sulfide	U	ND	0.0330	0.100	mg/L		1	HH2	03/13/23	1925	2396527	2
Titration and Ion Analys	is											
SM 2320B Total Alkalin	ity "As Rece	eived"										
Alkalinity, Total as CaCO3	•	222	2.07	5.71	mg/L			EK1	03/13/23	1441	2397768	3
Bicarbonate alkalinity (CaCO3	5)	222	2.07	5.71	mg/L							
Carbonate alkalinity (CaCO3)	U	ND	2.07	5.71	mg/L							
The following Analytica	al Methods v	vere performed:										
Method			1	Analys	st Co	mment	S					

 Method
 Description

 1
 SM 5310 B

 2
 SM 4500-S (2-) D

 3
 SM 2320B

Notes:

Column headers are defined as follows:

DF: Dilution Factor Lc/LC: Critical Level
DL: Detection Limit PF: Prep Factor
MDA: Minimum Detectable Activity RL: Reporting Limit

MDC: Minimum Detectable Concentration SQL: Sample Quantitation Limit

Page 15 of 55 SDG: 613959

2040 Savage Road Charleston SC 29407 - (843) 556-8171 - www.gel.com

Certificate of Analysis

Project:

Client ID:

Report Date: March 21, 2023

SOOP00119

SOOP001

Company: Santee Cooper Address: P.O. Box 2946101

OCO3

Moncks Corner, South Carolina 29461

Contact: Ms. Jeanette Gilmetti Project: ABS Lab Analytical

Client Sample ID: AF56419
Sample ID: 613959014
Matrix: Ground Water
Collect Date: 07-MAR-23 14:51
Receive Date: 10-MAR-23

Collector: Client

Parameter	Qualifier	Result	DL	RL	Units	PF	DF	Analyst Date	Time Batch	Method
Carbon Analysis										
SM 5310 B Disso	lved Organic Carbo	on "As Received"								
Dissolved Organic Car	rbon Average	8.47	0.330	1.00	mg/L		1	TSM 03/16/23	1846 2399632	1
The following Pre	p Methods were pe	erformed:								
Method	Description	n		Analyst	Date		Time	Prep Batch		
EPA 160	Laboratory Fi	iltration - DOC		TSM	03/15/23		1135	2397540		
FF1 0.11 1 1	1 136 1	0 1								

The following Analytical Methods were performed:

 Method
 Description
 Analyst Comments

 1
 SM 5310 B

Notes:

Column headers are defined as follows:

DF: Dilution Factor Lc/LC: Critical Level
DL: Detection Limit PF: Prep Factor
MDA: Minimum Detectable Activity RL: Reporting Limit

MDC: Minimum Detectable Concentration SQL: Sample Quantitation Limit

Page 16 of 55 SDG: 613959

2040 Savage Road Charleston SC 29407 - (843) 556-8171 - www.gel.com

Certificate of Analysis

Report Date: March 21, 2023

SOOP00119

SOOP001

Company: Santee Cooper Address: P.O. Box 2946101

OCO3

Moncks Corner, South Carolina 29461

Contact: Ms. Jeanette Gilmetti Project: ABS Lab Analytical

Client Sample ID: AF56425
Sample ID: 613959015
Matrix: Ground Water
Collect Date: 07-MAR-23 12:49
Receive Date: 10-MAR-23

Client

l Water

Project:

Client ID:

Parameter Qualifier DL RL Units PF DF Analyst Date Time Batch Method Result Carbon Analysis SM 5310 B Total Organic Carbon "As Received" Total Organic Carbon Average 0.330 1.00 mg/L **TSM** 03/21/23 0447 2397544 1 Spectrometric Analysis SM 4500-S(2-) D Sulfide "As Received" Total Sulfide ND 0.0330 0.100 mg/L HH2 03/13/23 1907 2395803 Titration and Ion Analysis SM 2320B Total Alkalinity "As Received" Alkalinity, Total as CaCO3 183 2.07 5.71 mg/L EK1 03/13/23 1444 2397768 3 Bicarbonate alkalinity (CaCO3) 183 2.07 5.71 mg/L Carbonate alkalinity (CaCO3) U ND 5.71 mg/L 2.07

MethodDescriptionAnalyst Comments1SM 5310 B

2 SM 4500-S (2-) D 3 SM 2320B

The following Analytical Methods were performed:

Collector:

Notes:

Column headers are defined as follows:

DF: Dilution Factor Lc/LC: Critical Level
DL: Detection Limit PF: Prep Factor
MDA: Minimum Detectable Activity RL: Reporting Limit

MDC: Minimum Detectable Concentration SQL: Sample Quantitation Limit

Page 17 of 55 SDG: 613959

2040 Savage Road Charleston SC 29407 - (843) 556-8171 - www.gel.com

Certificate of Analysis

Project:

Client ID:

Report Date: March 21, 2023

SOOP00119

SOOP001

Company: Santee Cooper Address: P.O. Box 2946101

OCO3

Moncks Corner, South Carolina 29461

Contact: Ms. Jeanette Gilmetti Project: ABS Lab Analytical

Client Sample ID: AF56425
Sample ID: 613959016
Matrix: Ground Water
Collect Date: 07-MAR-23 12:49
Receive Date: 10-MAR-23

Collector: Client

Parameter	Qualifier	Result	DL	RL	Units	PF	DF	Analy	st Date	Time Batch	Method
Carbon Analysis											
SM 5310 B Dissol	ved Organic Carbo	on "As Received"									
Dissolved Organic Carl	bon Average	3.09	0.330	1.00	mg/L		1	TSM	03/16/23	1906 2399632	1
The following Prep	p Methods were pe	erformed:									
Method	Description	1		Analyst	Date		Time	e Pr	ep Batch		
EPA 160	Laboratory Fi	ltration - DOC		TSM	03/15/23		1135	23	97540		

The following Analytical Methods were performed:

Method Description Analyst Comments

SM 5310 B

Analyst Comments

Notes:

Column headers are defined as follows:

DF: Dilution Factor Lc/LC: Critical Level
DL: Detection Limit PF: Prep Factor
MDA: Minimum Detectable Activity RL: Reporting Limit

MDC: Minimum Detectable Concentration SQL: Sample Quantitation Limit

Page 18 of 55 SDG: 613959

2040 Savage Road Charleston SC 29407 - (843) 556-8171 - www.gel.com

Certificate of Analysis

Project:

Client ID:

Report Date: March 21, 2023

SOOP00119

SOOP001

Company: Santee Cooper Address: P.O. Box 2946101

OCO3

Moncks Corner, South Carolina 29461

Contact: Ms. Jeanette Gilmetti Project: ABS Lab Analytical

Client Sample ID: AF56426
Sample ID: 613959017
Matrix: Ground Water
Collect Date: 07-MAR-23 10:22
Receive Date: 10-MAR-23

Collector: Client

Parameter	Qualifier	Result	DL	RL	Units	PF	DF	Analy	st Date	Time	Batch	Method
Carbon Analysis												
SM 5310 B Total Organi	ic Carbon "A	s Received"										
Total Organic Carbon Average	;	1.05	0.330	1.00	mg/L		1	TSM	03/21/23	0507	2397544	1
Spectrometric Analysis												
SM 4500-S(2-) D Sulfide	e "As Receiv	/ed"										
Total Sulfide	U	ND	0.0330	0.100	mg/L		1	HH2	03/13/23	1907	2395803	2
Titration and Ion Analys	is											
SM 2320B Total Alkalin	ity "As Rece	eived"										
Alkalinity, Total as CaCO3	•	7.14	2.07	5.71	mg/L			EK1	03/13/23	1447	2397768	3
Bicarbonate alkalinity (CaCO3	5)	7.14	2.07	5.71	mg/L							
Carbonate alkalinity (CaCO3)	U	ND	2.07	5.71	mg/L							
The following Analytica	al Methods v	vere performed:										
Method	Analyst Comments											

 Method
 Description

 1
 SM 5310 B

 2
 SM 4500-S (2-) D

 3
 SM 2320B

Notes:

Column headers are defined as follows:

DF: Dilution Factor Lc/LC: Critical Level
DL: Detection Limit PF: Prep Factor
MDA: Minimum Detectable Activity RL: Reporting Limit

MDC: Minimum Detectable Concentration SQL: Sample Quantitation Limit

Page 19 of 55 SDG: 613959

2040 Savage Road Charleston SC 29407 - (843) 556-8171 - www.gel.com

Certificate of Analysis

Report Date: March 21, 2023

SOOP00119

SOOP001

Company: Santee Cooper P.O. Box 2946101 Address:

OCO₃

Moncks Corner, South Carolina 29461

Contact: Ms. Jeanette Gilmetti Project: ABS Lab Analytical

Client Sample ID: AF56426 Sample ID: 613959018 Matrix: Ground Water Collect Date: 07-MAR-23 10:22 Receive Date: 10-MAR-23

Client

Project:

Client ID:

Parameter Qualifier DL RL Units PF DF Analyst Date Time Batch Method Result Carbon Analysis SM 5310 B Dissolved Organic Carbon "As Received" 0.330 1.00 TSM 03/16/23 1926 2399632

Dissolved Organic Carbon Average mg/L

The following Prep Methods were performed: Method Date Prep Batch Description Analyst Time EPA 160 Laboratory Filtration - DOC **TSM** 03/15/23 1135 2397540

The following Analytical Methods were performed:

Method Description Analyst Comments

SM 5310 B

Collector:

Notes:

Column headers are defined as follows:

DF: Dilution Factor Lc/LC: Critical Level DL: Detection Limit PF: Prep Factor MDA: Minimum Detectable Activity **RL**: Reporting Limit

MDC: Minimum Detectable Concentration SQL: Sample Quantitation Limit

Page 20 of 55 SDG: 613959

2040 Savage Road Charleston SC 29407 - (843) 556-8171 - www.gel.com

Certificate of Analysis

Project:

Client ID:

Report Date: March 21, 2023

SOOP00119

SOOP001

Company: Santee Cooper Address: P.O. Box 2946101

OCO3

Moncks Corner, South Carolina 29461

Contact: Ms. Jeanette Gilmetti Project: ABS Lab Analytical

Client Sample ID: AF56427
Sample ID: 613959019
Matrix: Ground Water
Collect Date: 07-MAR-23 10:27
Receive Date: 10-MAR-23

Collector: Client

Parameter	Qualifier	Result	DL	RL	Units	PF	DF	Analy	st Date	Time	Batch	Method
Carbon Analysis												
SM 5310 B Total Organi	c Carbon "A	As Received"										
Total Organic Carbon Average	J	0.730	0.330	1.00	mg/L		1	TSM	03/21/23	0526	2397544	1
Spectrometric Analysis												
SM 4500-S(2-) D Sulfide	e "As Receiv	ved"										
Total Sulfide	J	0.0420	0.0330	0.100	mg/L		1	HH2	03/14/23	1759	2397596	2
Titration and Ion Analys	is											
SM 2320B Total Alkalin	ity "As Rece	eived"										
Alkalinity, Total as CaCO3	•	10.3	2.07	5.71	mg/L			EK1	03/13/23	1450	2397768	3
Bicarbonate alkalinity (CaCO3)	10.3	2.07	5.71	mg/L							
Carbonate alkalinity (CaCO3)	U	ND	2.07	5.71	mg/L							
The following Analytica	ıl Methods v	vere performed:										
Method			1	Analys	st Co	mment	S					

 Method
 Description

 1
 SM 5310 B

 2
 SM 4500-S (2-) D

 3
 SM 2320B

Notes:

Column headers are defined as follows:

DF: Dilution Factor Lc/LC: Critical Level
DL: Detection Limit PF: Prep Factor
MDA: Minimum Detectable Activity RL: Reporting Limit

MDC: Minimum Detectable Concentration SQL: Sample Quantitation Limit

Page 21 of 55 SDG: 613959

2040 Savage Road Charleston SC 29407 - (843) 556-8171 - www.gel.com

Certificate of Analysis

Project:

Client ID:

Report Date: March 21, 2023

SOOP00119

SOOP001

Company: Santee Cooper Address: P.O. Box 2946101

OCO3

Moncks Corner, South Carolina 29461

Contact: Ms. Jeanette Gilmetti Project: ABS Lab Analytical

Client Sample ID: AF56427
Sample ID: 613959020
Matrix: Ground Water
Collect Date: 07-MAR-23 10:27
Receive Date: 10-MAR-23

Collector: Client

Parameter	Qualifier	Result	DL	RL	Units	PF	DF	Anal	yst Date	Time Batch	Method
Carbon Analysis											
SM 5310 B Dissolved	Organic Carbo	on "As Received"									
Dissolved Organic Carbon A	Average J	0.950	0.330	1.00	mg/L		1	TSM	03/16/23	1947 2399632	1
The following Prep M	ethods were pe	erformed:									
Method	Description	1		Analyst	Date		Time	e P	rep Batch		
EPA 160	Laboratory Fi	ltration - DOC		TSM	03/15/23		1135	23	397540		
The following Analyt	ical Methods v	vere performed:									

MethodDescriptionAnalyst Comments1SM 5310 B

Notes:

Column headers are defined as follows:

DF: Dilution Factor

DL: Detection Limit

MDA: Minimum Detectable Activity

Lc/LC: Critical Level

PF: Prep Factor

RL: Reporting Limit

MDC: Minimum Detectable Concentration SQL: Sample Quantitation Limit

Page 22 of 55 SDG: 613959

2040 Savage Road Charleston SC 29407 - (843) 556-8171 - www.gel.com

Certificate of Analysis

Report Date: March 21, 2023

Company: Santee Cooper Address: P.O. Box 2946101

OCO3

Moncks Corner, South Carolina 29461

Contact: Ms. Jeanette Gilmetti Project: ABS Lab Analytical

Client Sample ID: AF56408
Sample ID: 613959021
Matrix: Ground Water
Collect Date: 08-MAR-23 13:38
Receive Date: 10-MAR-23

Client

Project: SOOP00119 Client ID: SOOP001

Parameter	Qualifier	Result	DL	RL	Units	PF	DF	Analy	st Date	Time Batch	Method
Carbon Analysis											
SM 5310 B Total Organ	nic Carbon "A	As Received"									
Total Organic Carbon Averag	ge	9.05	0.330	1.00	mg/L		1	TSM	03/21/23	0546 2397544	1
Spectrometric Analysis											
SM 4500-S(2-) D Sulfic	de "As Receiv	ved"									
Total Sulfide	U	ND	0.0330	0.100	mg/L		1	HH2	03/14/23	1759 2397596	2
Titration and Ion Analys	sis										
SM 2320B Total Alkali	nity "As Rec	eived"									
Alkalinity, Total as CaCO3	-	481	2.07	5.71	mg/L			EK1	03/13/23	1456 2397768	3
Bicarbonate alkalinity (CaCO	(3)	481	2.07	5.71	mg/L						
Carbonate alkalinity (CaCO3)	U	ND	2.07	5.71	mg/L						
The following Analytic	al Methods v	vere performed:									
Method Description Analyst Comments											

1 SM 5310 B 2 SM 4500-S (2-) D 3 SM 2320B

Collector:

Notes:

Column headers are defined as follows:

DF: Dilution Factor Lc/LC: Critical Level
DL: Detection Limit PF: Prep Factor
MDA: Minimum Detectable Activity RL: Reporting Limit

MDC: Minimum Detectable Concentration SQL: Sample Quantitation Limit

Page 23 of 55 SDG: 613959

2040 Savage Road Charleston SC 29407 - (843) 556-8171 - www.gel.com

Certificate of Analysis

Report Date: March 21, 2023

SOOP00119

Company: Santee Cooper Address: P.O. Box 2946101

OCO3

Moncks Corner, South Carolina 29461

Contact: Ms. Jeanette Gilmetti Project: ABS Lab Analytical

Client Sample ID: AF56408
Sample ID: 613959022
Matrix: Ground Water
Collect Date: 08-MAR-23 13:38
Receive Date: 10-MAR-23

Client

59022 Client ID: SOOP001 and Water

Project:

Parameter Qualifier DL RL Units PF DF Analyst Date Time Batch Method Result Carbon Analysis SM 5310 B Dissolved Organic Carbon "As Received" Dissolved Organic Carbon Average 7.68 0.330 1.00 mg/L TSM 03/20/23 1806 2399632 1 The following Prep Methods were performed: Method Date Prep Batch Description Analyst Time EPA 160 Laboratory Filtration - DOC **TSM** 03/15/23 2397540 1135 Laboratory Filtration - DOC **EPA 160 TSM** 03/17/23 1237 2397540 The following Analytical Methods were performed:

Method Description Analyst Comments

SM 5310 B

Collector:

Notes:

Column headers are defined as follows:

DF: Dilution Factor Lc/LC: Critical Level
DL: Detection Limit PF: Prep Factor
MDA: Minimum Detectable Activity RL: Reporting Limit

MDC: Minimum Detectable Concentration SQL: Sample Quantitation Limit

Page 24 of 55 SDG: 613959

2040 Savage Road Charleston SC 29407 - (843) 556-8171 - www.gel.com

Certificate of Analysis

Project:

Client ID:

Report Date: March 21, 2023

SOOP00119

SOOP001

Company: Santee Cooper Address: P.O. Box 2946101

OCO3

Moncks Corner, South Carolina 29461

Contact: Ms. Jeanette Gilmetti Project: ABS Lab Analytical

Client Sample ID: AF56415
Sample ID: 613959023
Matrix: Ground Water
Collect Date: 08-MAR-23 15:13
Receive Date: 10-MAR-23

Collector: Client

Parameter	Qualifier	Result	DL	RL	Units	PF	DF	Analy	st Date	Time	Batch	Method
Carbon Analysis												
SM 5310 B Total Organi	ic Carbon "A	As Received"										
Total Organic Carbon Average		21.1	0.660	2.00	mg/L		2	TSM	03/21/23	0608	2397544	1
Spectrometric Analysis												
SM 4500-S(2-) D Sulfide	e "As Receiv	ved"										
Total Sulfide	U	ND	0.0330	0.100	mg/L		1	HH2	03/14/23	1759	2397596	2
Titration and Ion Analys	is											
SM 2320B Total Alkalin	ity "As Rece	eived"										
Alkalinity, Total as CaCO3		322	2.07	5.71	mg/L			EK1	03/13/23	1507	2397768	3
Bicarbonate alkalinity (CaCO3)	322	2.07	5.71	mg/L							
Carbonate alkalinity (CaCO3)	U	ND	2.07	5.71	mg/L							
The following Analytica	al Methods v	vere performed:										
Method			1	Analys	st Co	mment	S					

 Method
 Description

 1
 SM 5310 B

 2
 SM 4500-S (2-) D

 3
 SM 2320B

Notes:

Column headers are defined as follows:

DF: Dilution Factor Lc/LC: Critical Level
DL: Detection Limit PF: Prep Factor
MDA: Minimum Detectable Activity RL: Reporting Limit

MDC: Minimum Detectable Concentration SQL: Sample Quantitation Limit

Page 25 of 55 SDG: 613959

2040 Savage Road Charleston SC 29407 - (843) 556-8171 - www.gel.com

Certificate of Analysis

Project:

Client ID:

Report Date: March 21, 2023

SOOP00119

SOOP001

Company: Santee Cooper Address: P.O. Box 2946101

OCO₃

Moncks Corner, South Carolina 29461

Contact: Ms. Jeanette Gilmetti Project: ABS Lab Analytical

Client Sample ID: AF56415 Sample ID: 613959024 Matrix: Ground Water Collect Date: 08-MAR-23 15:13 10-MAR-23 Receive Date:

Client

Parameter	Qualifier	Result	D	L RI	U	Jnits	PF	DF Analyst Date	Time Batch	Method
Carbon Analysis										
SM 5310 B Dissolv	ved Organic Carbo	on "As Received"								

Dissolved Organic Carbon Average 19.2 0.330 1.00 mg/L TSM 03/16/23 2114 2399632

The following Prep Methods were performed:

Collector:

Method Date Prep Batch Description Analyst Time EPA 160 Laboratory Filtration - DOC **TSM** 03/15/23 1135 2397540

The following Analytical Methods were performed:

Method Description **Analyst Comments** SM 5310 B

Notes:

Column headers are defined as follows:

DF: Dilution Factor Lc/LC: Critical Level DL: Detection Limit PF: Prep Factor MDA: Minimum Detectable Activity **RL**: Reporting Limit

MDC: Minimum Detectable Concentration SQL: Sample Quantitation Limit

Page 26 of 55 SDG: 613959

2040 Savage Road Charleston SC 29407 - (843) 556-8171 - www.gel.com

Certificate of Analysis

Project:

Client ID:

Report Date: March 21, 2023

SOOP00119

SOOP001

Company: Santee Cooper Address: P.O. Box 2946101

OCO3

Moncks Corner, South Carolina 29461

Contact: Ms. Jeanette Gilmetti Project: ABS Lab Analytical

Client Sample ID: AF56416
Sample ID: 613959025
Matrix: Ground Water
Collect Date: 08-MAR-23 10:09
Receive Date: 10-MAR-23

Collector: Client

Parameter	Qualifier	Result	DL	RL	Units	PF	DF	Analy	st Date	Time Ba	ch Method
Carbon Analysis											
SM 5310 B Total Organi	ic Carbon "A	As Received"									
Total Organic Carbon Average	2	10.1	0.330	1.00	mg/L		1	TSM	03/21/23	0708 239	544 1
Spectrometric Analysis											
SM 4500-S(2-) D Sulfide	e "As Receiv	ved"									
Total Sulfide	J	0.0396	0.0330	0.100	mg/L		1	HH2	03/14/23	1759 239	596 2
Titration and Ion Analys	is										
SM 2320B Total Alkalin	ity "As Rec	eived"									
Alkalinity, Total as CaCO3	•	67.4	2.07	5.71	mg/L			EK1	03/13/23	1511 239	768 3
Bicarbonate alkalinity (CaCO3	3)	67.4	2.07	5.71	mg/L						
Carbonate alkalinity (CaCO3)	U	ND	2.07	5.71	mg/L						
The following Analytica	al Methods v	vere performed:									
Method	Method Description				1	Analys	st Co	mment	S		

 Method
 Description

 1
 SM 5310 B

 2
 SM 4500-S (2-) D

 3
 SM 2320B

Notes:

Column headers are defined as follows:

DF: Dilution Factor Lc/LC: Critical Level
DL: Detection Limit PF: Prep Factor
MDA: Minimum Detectable Activity RL: Reporting Limit

MDC: Minimum Detectable Concentration SQL: Sample Quantitation Limit

Page 27 of 55 SDG: 613959

2040 Savage Road Charleston SC 29407 - (843) 556-8171 - www.gel.com

Certificate of Analysis

Project:

Client ID:

Report Date: March 21, 2023

SOOP00119

SOOP001

Company: Santee Cooper Address: P.O. Box 2946101

OCO3

Moncks Corner, South Carolina 29461

Contact: Ms. Jeanette Gilmetti Project: ABS Lab Analytical

Client Sample ID: AF56416
Sample ID: 613959026
Matrix: Ground Water
Collect Date: 08-MAR-23 10:09
Receive Date: 10-MAR-23

Collector: Client

Parameter	Qualifier	Result	DL	RL	Units	PF	DF	Analyst Date	Time Batch	Method
Carbon Analysis										
SM 5310 B Dissolv	ed Organic Carbo	on "As Received"								
Dissolved Organic Carbo	on Average	10.1	0.330	1.00	mg/L		1	TSM 03/16/23	2134 2399632	1
The following Prep	Methods were pe	erformed:								
Method	Description	ı		Analyst	Date	,	Time	Prep Batch		
EPA 160	Laboratory Fi	ltration - DOC		TSM	03/15/23		1135	2397540		
The following Anal	lytical Methods w	vere performed:								

Matha d. Description

Method	Description	Analyst Comments
1	SM 5310 B	

Notes:

Column headers are defined as follows:

DF: Dilution Factor Lc/LC: Critical Level
DL: Detection Limit PF: Prep Factor
MDA: Minimum Detectable Activity RL: Reporting Limit

MDC: Minimum Detectable Concentration SQL: Sample Quantitation Limit

Page 28 of 55 SDG: 613959

2040 Savage Road Charleston SC 29407 - (843) 556-8171 - www.gel.com

Certificate of Analysis

Project:

Client ID:

Report Date: March 21, 2023

SOOP00119

SOOP001

Company: Santee Cooper Address: P.O. Box 2946101

OCO3

Moncks Corner, South Carolina 29461

Contact: Ms. Jeanette Gilmetti Project: ABS Lab Analytical

Client Sample ID: AF56417
Sample ID: 613959027
Matrix: Ground Water
Collect Date: 08-MAR-23 10:14
Receive Date: 10-MAR-23

Collector: Client

Parameter	Qualifier	Result	DL	RL	Units	PF	DF	Analy	st Date	Time Batch	Method
Carbon Analysis											
SM 5310 B Total Organ	ic Carbon "A	As Received"									
Total Organic Carbon Average	:	10.5	0.330	1.00	mg/L		1	TSM	03/21/23	0750 239754	4 1
Spectrometric Analysis											
SM 4500-S(2-) D Sulfid	e "As Receiv	ved"									
Total Sulfide	U	ND	0.0330	0.100	mg/L		1	HH2	03/14/23	1759 239759	6 2
Titration and Ion Analys	is										
SM 2320B Total Alkalin	ity "As Rec	eived"									
Alkalinity, Total as CaCO3	•	59.4	2.07	5.71	mg/L			EK1	03/13/23	1513 239776	8 3
Bicarbonate alkalinity (CaCO3	3)	59.4	2.07	5.71	mg/L						
Carbonate alkalinity (CaCO3)	U	ND	2.07	5.71	mg/L						
The following Analytica	al Methods v	were performed:									
Method	Description	l			1	Analys	st Co	mment	S		

 Method
 Description

 1
 SM 5310 B

 2
 SM 4500-S (2-) D

 3
 SM 2320B

Notes:

Column headers are defined as follows:

DF: Dilution Factor Lc/LC: Critical Level
DL: Detection Limit PF: Prep Factor
MDA: Minimum Detectable Activity RL: Reporting Limit

MDC: Minimum Detectable Concentration SQL: Sample Quantitation Limit

Page 29 of 55 SDG: 613959

2040 Savage Road Charleston SC 29407 - (843) 556-8171 - www.gel.com

Certificate of Analysis

Project:

Client ID:

Report Date: March 21, 2023

SOOP00119

SOOP001

Company: Santee Cooper Address: P.O. Box 2946101

OCO3

Moncks Corner, South Carolina 29461

Contact: Ms. Jeanette Gilmetti ABS Lab Analytical Project:

Client Sample ID: AF56417 Sample ID: 613959028 Matrix: Ground Water Collect Date: 08-MAR-23 10:14 Receive Date: 10-MAR-23

Collector: Client

Parameter	Qualifier	Result	DL	RL	Units	PF	DF	Analyst Date	Time Batch	Method
Carbon Analysis										
SM 5310 B Dissolv	ved Organic Carbo	on "As Received"								
Dissolved Organic Carb	on Average	10.7	0.330	1.00	mg/L		1	TSM 03/16/23	2216 2399632	1
The following Prep	Methods were pe	erformed:								
Method	Description	1		Analyst	Date		Time	Prep Batch		
EPA 160	Laboratory Fi	ltration - DOC		TSM	03/15/23		1135	2397540		
The following Ana	alytical Methods v	vere performed:								

Method Description **Analyst Comments** SM 5310 B

Notes:

Column headers are defined as follows:

DF: Dilution Factor Lc/LC: Critical Level DL: Detection Limit PF: Prep Factor MDA: Minimum Detectable Activity RL: Reporting Limit

MDC: Minimum Detectable Concentration SQL: Sample Quantitation Limit

Page 30 of 55 SDG: 613959

2040 Savage Road Charleston SC 29407 - (843) 556-8171 - www.gel.com

Certificate of Analysis

Report Date: March 21, 2023

Company: Santee Cooper Address: P.O. Box 2946101

OCO3

Moncks Corner, South Carolina 29461

Contact: Ms. Jeanette Gilmetti ABS Lab Analytical Project:

Client Sample ID: AF56429 Sample ID: 613959029 Matrix: Ground Water Collect Date: 08-MAR-23 12:12 Receive Date: 10-MAR-23

Client

Project: Client ID: SOOP001

SOOP00119

Parameter	Qualifier	Result	DL	RL	Units	PF	DF	Analy	st Date	Time Batch	Method
Carbon Analysis											
SM 5310 B Total Organi	ic Carbon "A	As Received"									
Total Organic Carbon Average	;	2.31	0.330	1.00	mg/L		1	TSM	03/21/23	0810 2397544	1
Spectrometric Analysis											
SM 4500-S(2-) D Sulfide	e "As Receiv	ved"									
Total Sulfide	U	ND	0.0330	0.100	mg/L		1	HH2	03/14/23	1759 2397596	2
Titration and Ion Analys	is										
SM 2320B Total Alkalin	ity "As Rec	eived"									
Alkalinity, Total as CaCO3	•	13.1	2.07	5.71	mg/L			EK1	03/13/23	1515 2397768	3
Bicarbonate alkalinity (CaCO3	5)	13.1	2.07	5.71	mg/L						
Carbonate alkalinity (CaCO3)	U	ND	2.07	5.71	mg/L						
The following Analytica	al Methods v	vere performed:									
Method	Description	Į.			I	Analys	st Co	mment	S		

SM 5310 B2 SM 4500-S (2-) D SM 2320B

Collector:

Notes:

Column headers are defined as follows:

DF: Dilution Factor Lc/LC: Critical Level DL: Detection Limit PF: Prep Factor MDA: Minimum Detectable Activity **RL**: Reporting Limit

MDC: Minimum Detectable Concentration SQL: Sample Quantitation Limit

Page 31 of 55 SDG: 613959

2040 Savage Road Charleston SC 29407 - (843) 556-8171 - www.gel.com

Certificate of Analysis

Project:

Client ID:

Report Date: March 21, 2023

SOOP00119

SOOP001

Company: Santee Cooper Address: P.O. Box 2946101

OCO3

Moncks Corner, South Carolina 29461

Contact: Ms. Jeanette Gilmetti Project: ABS Lab Analytical

Client Sample ID: AF56429
Sample ID: 613959030
Matrix: Ground Water
Collect Date: 08-MAR-23 12:12
Receive Date: 10-MAR-23

e: 10-MAR-23 Client

Parameter	Qualifier	Result	DL	RL	Units	PF	DF	Analyst Date	Time Batch	Method
Carbon Analysis										
SM 5310 B Dissol	lved Organic Carbo	on "As Received"								
Dissolved Organic Car	bon Average	2.22	0.330	1.00	mg/L		1	TSM 03/16/23	2236 2399632	1
The following Pre	p Methods were pe	erformed:								
Method	Description	1		Analyst	Date		Time	Prep Batch	ı	
EPA 160	Laboratory Fi	ltration - DOC		TSM	03/15/23		1135	2397540		
The Call assistant A.	-1-4:1 M-414	C								

The following Analytical Methods were performed:

 Method
 Description
 Analyst Comments

 1
 SM 5310 B

Notes:

Column headers are defined as follows:

Collector:

DF: Dilution Factor Lc/LC: Critical Level
DL: Detection Limit PF: Prep Factor
MDA: Minimum Detectable Activity RL: Reporting Limit

MDC: Minimum Detectable Concentration SQL: Sample Quantitation Limit

Page 32 of 55 SDG: 613959

2040 Savage Road Charleston SC 29407 - (843) 556-8171 - www.gel.com

Certificate of Analysis

Report Date: March 21, 2023

Company: Santee Cooper Address: P.O. Box 2946101

OCO3

Moncks Corner, South Carolina 29461

Contact: Ms. Jeanette Gilmetti Project: ABS Lab Analytical

Client Sample ID: AF56406
Sample ID: 613959031
Matrix: Ground Water
Collect Date: 09-MAR-23 10:29
Receive Date: 10-MAR-23

Client

Client ID: SOOP001

SOOP00119

Project:

Parameter	Qualifier	Result	DL	RL	Units	PF	DF	Analy	st Date	Time Batch	Method
Carbon Analysis											
SM 5310 B Total Organ	ic Carbon "A	As Received"									
Total Organic Carbon Average	e	7.15	0.330	1.00	mg/L		1	TSM	03/21/23	0830 2397544	1
Spectrometric Analysis											
SM 4500-S(2-) D Sulfid	le "As Receiv	ved"									
Total Sulfide	U	ND	0.0330	0.100	mg/L		1	HH2	03/14/23	1759 2397596	2
Titration and Ion Analys	sis										
SM 2320B Total Alkalii	nity "As Rec	eived"									
Alkalinity, Total as CaCO3	J	5.43	2.07	5.71	mg/L			EK1	03/13/23	1518 2397768	3
Bicarbonate alkalinity (CaCO	3) J	5.43	2.07	5.71	mg/L						
Carbonate alkalinity (CaCO3)	U	ND	2.07	5.71	mg/L						
The following Analytic	al Methods v	were performed:									
Method	Description	<u> </u>			1	Analys	st Con	nment	S		

 Method
 Description

 1
 SM 5310 B

 2
 SM 4500-S (2-) D

 3
 SM 2320B

Notes:

Column headers are defined as follows:

Collector:

DF: Dilution Factor Lc/LC: Critical Level
DL: Detection Limit PF: Prep Factor
MDA: Minimum Detectable Activity RL: Reporting Limit

MDC: Minimum Detectable Concentration SQL: Sample Quantitation Limit

Page 33 of 55 SDG: 613959

2040 Savage Road Charleston SC 29407 - (843) 556-8171 - www.gel.com

Certificate of Analysis

Report Date: March 21, 2023

Company: Santee Cooper Address: P.O. Box 2946101

OCO3

Moncks Corner, South Carolina 29461

Contact: Ms. Jeanette Gilmetti Project: ABS Lab Analytical

Client Sample ID: AF56406
Sample ID: 613959032
Matrix: Ground Water
Collect Date: 09-MAR-23 10:29
Receive Date: 10-MAR-23

Client

Client ID: SOOP001

SOOP00119

Project:

Parameter	Qualifier	Result	DL	RL	Units	PF	DF Analy	st Date	Time Batch	Method
Carbon Analysis										
SM 5310 B Dissolve	ed Organic Carbo	on "As Received"								
Dissolved Organic Carbo	n Average	6.20	0.330	1.00	mg/L		1 TSM	03/16/23	2257 2399632	1

Dissolved Organic Carbon Average 6.20 0.330 1.00 mg/L 1 TSM 03/16/23 2257 2399632 1

The following Prep Methods were performed:

Collector:

MethodDescriptionAnalystDateTimePrep BatchEPA 160Laboratory Filtration - DOCTSM03/15/2311352397540

The following Analytical Methods were performed:

 Method
 Description
 Analyst Comments

 1
 SM 5310 B

Notes:

Column headers are defined as follows:

DF: Dilution Factor Lc/LC: Critical Level
DL: Detection Limit PF: Prep Factor
MDA: Minimum Detectable Activity RL: Reporting Limit

MDC: Minimum Detectable Concentration SQL: Sample Quantitation Limit

Page 34 of 55 SDG: 613959

2040 Savage Road Charleston SC 29407 - (843) 556-8171 - www.gel.com

Certificate of Analysis

Project:

Client ID:

Report Date: March 21, 2023

SOOP00119

SOOP001

Company: Santee Cooper Address: P.O. Box 2946101

OCO3

Moncks Corner, South Carolina 29461

Contact: Ms. Jeanette Gilmetti Project: ABS Lab Analytical

Client Sample ID: AF56407
Sample ID: 613959033
Matrix: Ground Water
Collect Date: 09-MAR-23 10:34
Receive Date: 10-MAR-23

Collector: Client

Parameter	Qualifier	Result	DL	RL	Units	PF	DF	Analy	st Date	Time	Batch	Method
Carbon Analysis												
SM 5310 B Total Organi	ic Carbon "A	As Received"										
Total Organic Carbon Average	:	7.16	0.330	1.00	mg/L		1	TSM	03/21/23	0850 2	2397544	1
Spectrometric Analysis												
SM 4500-S(2-) D Sulfide	e "As Receiv	ved"										
Total Sulfide	U	ND	0.0330	0.100	mg/L		1	HH2	03/14/23	1759 2	2397596	2
Titration and Ion Analys	is											
SM 2320B Total Alkalin	ity "As Rec	eived"										
Alkalinity, Total as CaCO3	•	7.14	2.07	5.71	mg/L			EK1	03/13/23	1521 2	2397768	3
Bicarbonate alkalinity (CaCO3	3)	7.14	2.07	5.71	mg/L							
Carbonate alkalinity (CaCO3)	U	ND	2.07	5.71	mg/L							
The following Analytica	al Methods v	were performed:										
Method	Description	l			1	Analys	st Co	mment	s			

1 SM 5310 B 2 SM 4500-S (2-) D 3 SM 2320B

Notes:

Column headers are defined as follows:

DF: Dilution Factor Lc/LC: Critical Level
DL: Detection Limit PF: Prep Factor
MDA: Minimum Detectable Activity RL: Reporting Limit

MDC: Minimum Detectable Concentration SQL: Sample Quantitation Limit

Page 35 of 55 SDG: 613959

2040 Savage Road Charleston SC 29407 - (843) 556-8171 - www.gel.com

Certificate of Analysis

Project:

Client ID:

Report Date: March 21, 2023

SOOP00119

SOOP001

Company: Santee Cooper Address: P.O. Box 2946101

OCO3

Moncks Corner, South Carolina 29461

Contact: Ms. Jeanette Gilmetti Project: ABS Lab Analytical

Client Sample ID: AF56407 Sample ID: 613959034 Matrix: Ground Water Collect Date: 09-MAR-23 10:34 Receive Date: 10-MAR-23

Collector: Client

Parameter	Qualifier	Result	DL	RL	Units	PF	DF	Anal	yst Date	Time Batch	Method
Carbon Analysis											
SM 5310 B Dissolved	Organic Carbo	on "As Received"									
Dissolved Organic Carbon A	Average	6.25	0.330	1.00	mg/L		1	TSM	03/16/23	2317 2399632	1
The following Prep M	ethods were pe	erformed:									
Method	Description	1		Analyst	Date		Time	P	rep Batch		
EPA 160	Laboratory Fi	ltration - DOC		TSM	03/15/23		1135	23	397540		
The following Analyt	ical Methods v	vere performed:									

Method Description **Analyst Comments** SM 5310 B

Notes:

Column headers are defined as follows:

DF: Dilution Factor Lc/LC: Critical Level DL: Detection Limit PF: Prep Factor MDA: Minimum Detectable Activity RL: Reporting Limit

MDC: Minimum Detectable Concentration SQL: Sample Quantitation Limit

Page 36 of 55 SDG: 613959

2040 Savage Road Charleston SC 29407 - (843) 556-8171 - www.gel.com

Certificate of Analysis

Project:

Client ID:

Report Date: March 21, 2023

SOOP00119

SOOP001

Company: Santee Cooper Address: P.O. Box 2946101

OCO3

Moncks Corner, South Carolina 29461

Contact: Ms. Jeanette Gilmetti Project: ABS Lab Analytical

Client Sample ID: AF56418
Sample ID: 613959035
Matrix: Ground Water
Collect Date: 09-MAR-23 12:07
Receive Date: 10-MAR-23

10-MAR-23 Client

Parameter	Qualifier	Result	DL	RL	Units	PF	DF	Analy	st Date	Time Batch	Method
Carbon Analysis											
SM 5310 B Total Organi	ic Carbon "A	As Received"									
Total Organic Carbon Average		10.3	0.330	1.00	mg/L		1	TSM	03/21/23	0910 2397544	1
Spectrometric Analysis											
SM 4500-S(2-) D Sulfide	e "As Receiv	ved"									
Total Sulfide	U	ND	0.0330	0.100	mg/L		1	HH2	03/14/23	1759 2397596	2
Titration and Ion Analys	is										
SM 2320B Total Alkalin	ity "As Rec	eived"									
Alkalinity, Total as CaCO3	•	32.0	2.07	5.71	mg/L			EK1	03/13/23	1523 2397768	3
Bicarbonate alkalinity (CaCO3)	32.0	2.07	5.71	mg/L						
Carbonate alkalinity (CaCO3)	U	ND	2.07	5.71	mg/L						
The following Analytica	al Methods v	vere performed:									
Method	Description				I	Analys	st Co	mment	S		

SM 5310 B 2 SM 4500-S (2-) D 3 SM 2320B

Collector:

Notes:

Column headers are defined as follows:

DF: Dilution Factor Lc/LC: Critical Level
DL: Detection Limit PF: Prep Factor
MDA: Minimum Detectable Activity RL: Reporting Limit

MDC: Minimum Detectable Concentration SQL: Sample Quantitation Limit

Page 37 of 55 SDG: 613959

2040 Savage Road Charleston SC 29407 - (843) 556-8171 - www.gel.com

Certificate of Analysis

Project:

Client ID:

Analyst Comments

Report Date: March 21, 2023

SOOP00119

SOOP001

Company: Santee Cooper Address: P.O. Box 2946101

OCO3

Moncks Corner, South Carolina 29461

Contact: Ms. Jeanette Gilmetti Project: ABS Lab Analytical

Client Sample ID: AF56418
Sample ID: 613959036
Matrix: Ground Water
Collect Date: 09-MAR-23 12:07
Receive Date: 10-MAR-23

Collector: Client

Parameter	Qualifier	Result	DL	RL	Units	PF	DF	Anal	yst Date	Time Batch	Method
Carbon Analysis											
SM 5310 B Dissolved	Organic Carbo	on "As Received"									
Dissolved Organic Carbon A	Average	10.1	0.330	1.00	mg/L		1	TSM	03/16/23	2337 2399632	1
The following Prep Me	ethods were pe	erformed:									
Method	Description	1		Analyst	Date		Time	P	rep Batch		
EPA 160	Laboratory Fi	ltration - DOC		TSM	03/15/23		1135	23	397540		
The following Analyt	ical Methods v	vere performed:									

Method Description

SM 5310 B

Notes:

Column headers are defined as follows:

DF: Dilution Factor Lc/LC: Critical Level
DL: Detection Limit PF: Prep Factor
MDA: Minimum Detectable Activity RL: Reporting Limit

MDC: Minimum Detectable Concentration SQL: Sample Quantitation Limit

Page 38 of 55 SDG: 613959

2040 Savage Road Charleston SC 29407 - (843) 556-8171 - www.gel.com

Certificate of Analysis

Project:

Client ID:

Report Date: March 21, 2023

SOOP00119

SOOP001

Company: Santee Cooper Address: P.O. Box 2946101

OCO3

Moncks Corner, South Carolina 29461

Contact: Ms. Jeanette Gilmetti Project: ABS Lab Analytical

Client Sample ID: AF56422
Sample ID: 613959037
Matrix: Ground Water
Collect Date: 09-MAR-23 13:19
Receive Date: 10-MAR-23

Collector: Client

Parameter	Qualifier	Result	DL	RL	Units	PF	DF	Analy	st Date	Time	Batch	Method
Carbon Analysis												
SM 5310 B Total Organi	c Carbon "A	As Received"										
Total Organic Carbon Average		3.78	0.330	1.00	mg/L		1	TSM	03/21/23	0930	2397544	1
Spectrometric Analysis												
SM 4500-S(2-) D Sulfide	e "As Receiv	ved"										
Total Sulfide	U	ND	0.0330	0.100	mg/L		1	HH2	03/14/23	1759	2397596	2
Titration and Ion Analys	is											
SM 2320B Total Alkalin	ity "As Rece	eived"										
Alkalinity, Total as CaCO3		282	2.07	5.71	mg/L			EK1	03/13/23	1524	2397768	3
Bicarbonate alkalinity (CaCO3)	282	2.07	5.71	mg/L							
Carbonate alkalinity (CaCO3)	U	ND	2.07	5.71	mg/L							
The following Analytica	ıl Methods v	vere performed:										
Method	Description				1	Analys	st Co	mment	S			

1 SM 5310 B 2 SM 4500-S (2-) D 3 SM 2320B

Notes:

Column headers are defined as follows:

DF: Dilution Factor Lc/LC: Critical Level
DL: Detection Limit PF: Prep Factor
MDA: Minimum Detectable Activity RL: Reporting Limit

MDC: Minimum Detectable Concentration SQL: Sample Quantitation Limit

Page 39 of 55 SDG: 613959

2040 Savage Road Charleston SC 29407 - (843) 556-8171 - www.gel.com

Certificate of Analysis

Project:

Client ID:

Report Date: March 21, 2023

SOOP00119

SOOP001

Company: Santee Cooper Address: P.O. Box 2946101

OCO3

Moncks Corner, South Carolina 29461

Contact: Ms. Jeanette Gilmetti Project: ABS Lab Analytical

Client Sample ID: AF56422
Sample ID: 613959038
Matrix: Ground Water
Collect Date: 09-MAR-23 13:19
Receive Date: 10-MAR-23

Collector: Client

Parameter	Qualifier	Result	DL	RL	Units	PF	DF A	Analyst Date	Time Batch	Method
Carbon Analysis										
SM 5310 B Dissol	ved Organic Carbo	on "As Received"								
Dissolved Organic Carl	bon Average	2.90	0.330	1.00	mg/L		1	TSM 03/16/23	2357 2399632	1
The following Prep Methods were performed:										
Method	Description	1		Analyst	Date		Time	Prep Batch		
EPA 160	Laboratory Fi	ltration - DOC		TSM	03/15/23		1135	2397540		
The following An	alytical Methods w	vere performed:								

 Method
 Description
 Analyst Comments

 1
 SM 5310 B

Notes:

Column headers are defined as follows:

DF: Dilution Factor Lc/LC: Critical Level
DL: Detection Limit PF: Prep Factor
MDA: Minimum Detectable Activity RL: Reporting Limit

MDC: Minimum Detectable Concentration SQL: Sample Quantitation Limit

Page 40 of 55 SDG: 613959

GEL LABORATORIES LLC 2040 Savage Road Charleston, SC 29407 - (843) 556-8171 - www.gel.com

QC Summary

Report Date: March 21, 2023

Page 1 of 5

Santee Cooper P.O. Box 2946101

OCO3

Moncks Corner, South Carolina

Contact: Ms. Jeanette Gilmetti

Workorder: 613959

Parmname	NOM	Sample Qual	QC	Units	RPD%	REC%	Range Ai	nlst	Date Time
Carbon Analysis Batch 2397544									
QC1205343816 613959001 DUP Total Organic Carbon Average		8.36	8.18	mg/L	2.15 ^		(+/-2.00)	TSM	03/21/23 01:34
QC1205343817 613959023 DUP Total Organic Carbon Average		21.1	21.1	mg/L	0.104		(0%-20%)		03/21/23 06:28
QC1205343815 LCS Total Organic Carbon Average	10.0		9.96	mg/L		99.6	(80%-120%)		03/21/23 00:38
QC1205343814 MB Total Organic Carbon Average		U	ND	mg/L					03/21/23 00:28
QC1205343818 613959001 PS Total Organic Carbon Average	10.0	4.18	13.4	mg/L		92.5	(65%-120%)		03/21/23 01:56
QC1205343819 613959023 PS Total Organic Carbon Average	10.0	10.5	22.1	mg/L		116	(65%-120%)		03/21/23 06:48
Batch 2399632 ———									
QC1205343804 613959002 DUP Dissolved Organic Carbon Average		8.18	8.04	mg/L	1.78 ^		(+/-2.00)	TSM	03/20/23 17:01
QC1205343805 613959022 DUP Dissolved Organic Carbon Average		7.68	7.55	mg/L	1.75		(0%-20%)		03/20/23 18:29
QC1205343803 FB Dissolved Organic Carbon Average		U	ND	mg/L					03/16/23 15:12
Dissolved Organic Carbon Average		U	ND	mg/L					03/20/23 16:29

2040 Savage Road Charleston, SC 29407 - (843) 556-8171 - www.gel.com

QC Summary

613959 Page 2 of 5 **Parmname NOM** Sample Qual QC Units RPD% REC% Range Anlst Date Time Carbon Analysis 2399632 Batch QC1205347787 LCS 9.94 99.4 (80%-120%) TSM 03/16/23 15:23 Dissolved Organic Carbon Average 10.0 mg/L QC1205347786 MB U ND Dissolved Organic Carbon Average mg/L 03/16/23 15:02 QC1205343806 613959002 PS 4.09 4.49 3.98* (65%-120%) 03/20/23 17:23 10.0 mg/L Dissolved Organic Carbon Average QC1205343807 613959022 PS Dissolved Organic Carbon Average 10.0 7.68 12.2 mg/L 45.7* (65%-120%) 03/20/23 18:51 Spectrometric Analysis Batch QC1205340625 LCS 0.403 Total Sulfide 0.400 mg/L 101 (85%-115%) HH2 03/13/23 19:07 QC1205340624 MB U Total Sulfide ND mg/L 03/13/23 19:07 QC1205343956 613152021 PS ND 0.437 Total Sulfide 0.400 U mg/L 109 (75%-125%)03/13/23 19:07 QC1205343957 613152021 PSD Total Sulfide 0.400 U ND 109 03/13/23 19:07 0.438 0.266 (0%-15%)mg/L Batch 2396527 OC1205341655 LCS 0.403 Total Sulfide 0.400 mg/L 101 (85%-115%) HH2 03/13/23 19:24 QC1205341654 MB Total Sulfide U ND 03/13/23 19:24 mg/L

Workorder:

2040 Savage Road Charleston, SC 29407 - (843) 556-8171 - www.gel.com

QC Summary

Workorder: 613959 Page 3 of 5 **Parmname NOM** Sample Qual QC Units RPD% REC% Range Anlst Date Time Spectrometric Analysis 2396527 Batch QC1205344918 613959009 PS ND 0.400 U 0.403 100 (75%-125%) HH2 03/13/23 19:24 Total Sulfide mg/L QC1205344919 613959009 PSD ND Total Sulfide 0.400 U 0.402 mg/L 0.289 100 (0%-15%)03/13/23 19:25 Batch 2397596 QC1205343969 LCS Total Sulfide 0.400 0.404 101 (85%-115%) HH2 03/14/23 17:59 mg/L OC1205343968 MB U ND 03/14/23 17:59 Total Sulfide mg/L QC1205343970 613959019 PS Total Sulfide 0.400 J 0.0420 0.423 mg/L 95.2 (75% - 125%)03/14/23 17:59 QC1205345470 613959033 PS Total Sulfide 59.7* 0.400 U ND 0.247 mg/L (75%-125%)03/14/23 17:59 QC1205343971 613959019 PSD mg/L Total Sulfide 0.400 J 0.0420 0.425 0.549 95.8 (0%-15%)03/14/23 17:59 QC1205345471 613959033 PSD Total Sulfide 0.400 U ND 0.250 mg/L 1.4 60.5 * (0%-15%)03/14/23 17:59 **Titration and Ion Analysis** 2397768 Batch QC1205344345 613959001 DUP mg/L 344 Alkalinity, Total as CaCO3 344 0.0969 (0%-20%)EK1 03/13/23 14:11 344 344 Bicarbonate alkalinity (CaCO3) mg/L 0.0969 (0%-20%)ND ND mg/L Carbonate alkalinity (CaCO3) N/Λ

Page 43 of 55 SDG: 613959

2040 Savage Road Charleston, SC 29407 - (843) 556-8171 - www.gel.com

QC Summary

Workorder: 613959 Page 4 of 5 **Parmname NOM** Sample Qual QC Units RPD% REC% Range Anlst Date Time Titration and Ion Analysis Batch 2397768 QC1205344347 613959021 DUP 481 482 (0%-20%)EK1 03/13/23 15:00 Alkalinity, Total as CaCO3 mg/L 0.238 Bicarbonate alkalinity (CaCO3) 481 482 mg/L 0.238 (0%-20%)Carbonate alkalinity (CaCO3) U ND U ND mg/L N/A QC1205344344 LCS 100 106 Alkalinity, Total as CaCO3 mg/L 106 (90%-110%) 03/13/23 14:04 QC1205344346 613959001 MS Alkalinity, Total as CaCO3 167 344 513 mg/L 102 (80%-120%) 03/13/23 14:15 QC1205344348 613959021 MS 481 595 80.4 03/13/23 15:04 143 (80%-120%) Alkalinity, Total as CaCO3 mg/L

Notes:

The Qualifiers in this report are defined as follows:

- $U \qquad \text{Analyte was analyzed for, but not detected above the MDL, MDA, MDC or LOD.} \\$
- J Value is estimated
- X Consult Case Narrative, Data Summary package, or Project Manager concerning this qualifier
- H Analytical holding time was exceeded
- < Result is less than value reported
- > Result is greater than value reported
- h Preparation or preservation holding time was exceeded
- R Sample results are rejected
- Z Paint Filter Test--Particulates passed through the filter, however no free liquids were observed.
- d 5-day BOD--The 2:1 depletion requirement was not met for this sample
- ^ RPD of sample and duplicate evaluated using +/-RL. Concentrations are <5X the RL. Qualifier Not Applicable for Radiochemistry.
- N/A RPD or %Recovery limits do not apply.
- ND Analyte concentration is not detected above the detection limit
- NJ Consult Case Narrative, Data Summary package, or Project Manager concerning this qualifier
- E General Chemistry--Concentration of the target analyte exceeds the instrument calibration range
- Q One or more quality control criteria have not been met. Refer to the applicable narrative or DER.

Page 44 of 55 SDG: 613959

2040 Savage Road Charleston, SC 29407 - (843) 556-8171 - www.gel.com

QC Summary

613959 Page 5 of 5 **Parmname NOM** Sample Qual QC Units RPD% REC% Range Anlst Date Time

N1See case narrative

Workorder:

- R Per section 9.3.4.1 of Method 1664 Revision B, due to matrix spike recovery issues, this result may not be reported or used for regulatory compliance
- В The target analyte was detected in the associated blank.
- 5-day BOD--Test replicates show more than 30% difference between high and low values. The data is qualified per the method and can be used for e reporting purposes
- J See case narrative for an explanation

N/A indicates that spike recovery limits do not apply when sample concentration exceeds spike conc. by a factor of 4 or more or %RPD not applicable.

- ^ The Relative Percent Difference (RPD) obtained from the sample duplicate (DUP) is evaluated against the acceptance criteria when the sample is greater than five times (5X) the contract required detection limit (RL). In cases where either the sample or duplicate value is less than 5X the RL, a control limit of +/- the RL is used to evaluate the DUP result.
- * Indicates that a Quality Control parameter was not within specifications.

For PS, PSD, and SDILT results, the values listed are the measured amounts, not final concentrations.

Where the analytical method has been performed under NELAP certification, the analysis has met all of the requirements of the NELAC standard unless qualified on the QC Summary.

Page 45 of 55 SDG: 613959

General Chemistry Technical Case Narrative Santee Cooper SDG #: 613959

Product: Carbon, Total Organic Analytical Method: SM 5310 B

Analytical Procedure: GL-GC-E-093 REV# 21

Analytical Batch: 2397544

The following samples were analyzed using the above methods and analytical procedure(s).

GEL Sample ID#	Client Sample Identification
613959001	AF56409
613959003	AF56410
613959005	AF56411
613959007	AF56412
613959009	AF56413
613959011	AF56430
613959013	AF56419
613959015	AF56425
613959017	AF56426
613959019	AF56427
613959021	AF56408
613959023	AF56415
613959025	AF56416
613959027	AF56417
613959029	AF56429
613959031	ΛF56406
613959033	AF56407
613959035	AF56418
613959037	AF56422
1205343814	Method Blank (MB)
1205343815	Laboratory Control Sample (LCS)
1205343816	613959001(AF56409) Sample Duplicate (DUP)
1205343817	613959023(AF56415) Sample Duplicate (DUP)
1205343818	613959001(AF56409) Post Spike (PS)
1205343819	613959023(AF56415) Post Spike (PS)

The samples in this SDG were analyzed on an "as received" basis.

Data Summary:

All sample data provided in this report met the acceptance criteria specified in the analytical methods and procedures for initial calibration, continuing calibration, instrument controls and process controls where applicable, with the following exceptions.

Technical Information

Sample Dilutions

The following samples 1205343817 (AF56415DUP), 1205343819 (AF56415PS) and 613959023 (AF56415) were diluted because target analyte concentrations exceeded the calibration range. The following samples 1205343816 (AF56409DUP), 1205343818 (AF56409PS), 613959001 (AF56409) and 613959003 (AF56410) in

Page 46 of 55 SDG: 613959

this sample group were diluted due to matrix interference. Dilutions may be required for many reasons, including to minimize matrix interferences or to bring over range target analyte concentrations into the linear calibration range.

A :: -14-		613959			
Analyte	001	003	023		
Total Organic Carbon Average	2X	2X	2X		

Product: Carbon, Dissolved Organic Analytical Method: SM 5310 B

Analytical Procedure: GL-GC-E-093 REV# 21

Analytical Batch: 2399632

Filtration Method: EPA 160

Filtration Procedure: GL-LB-E-034 REV# 4

Filtration Batch: 2397540

The following samples were analyzed using the above methods and analytical procedure(s).

GEL Sample ID#	Client Sample Identification
613959002	AF56409
613959004	AF56410
613959006	AF56411
613959008	AF56412
613959010	AF56413
613959012	AF56430
613959014	AF56419
613959016	AF56425
613959018	AF56426
613959020	AF56427
613959022	AF56408
613959024	AF56415
613959026	AF56416
613959028	AF56417
613959030	AF56429
613959032	AF56406
613959034	AF56407
613959036	AF56418
613959038	AF56422
1205343803	Foam Blank (FB)
1205343804	613959002(AF56409) Sample Duplicate (DUP)
1205343805	613959022(AF56408) Sample Duplicate (DUP)
1205343806	613959002(AF56409) Post Spike (PS)
1205343807	613959022(AF56408) Post Spike (PS)
1205347786	Method Blank (MB)
1205347787	Laboratory Control Sample (LCS)

The samples in this SDG were analyzed on an "as received" basis.

Data Summary:

All sample data provided in this report met the acceptance criteria specified in the analytical methods and

Page 47 of 55 SDG: 613959

procedures for initial calibration, continuing calibration, instrument controls and process controls where applicable, with the following exceptions.

Quality Control (QC) Information

Matrix Spike (MS)/Post Spike (PS) Recovery Statement

The percent recoveries (%R) obtained from the spike analyses are evaluated when the sample concentration is less than four times (4X) the spike concentration added. The matrix spike recovered outside of the established acceptance limits due to matrix interference and/or non-homogeneity.

Analyte	Sample	Value
Dissolved Organic Carbon Average	1205343806 (AF56409 PS)	3.98* (65%-120%)
	1205343807 (AF56408PS)	45.7* (65%-120%)

Both QC's was rerun to verify recoveries.

Sample	Analyte	Value
1205343806 (AF56409 PS)	Dissolved Organic Carbon Average	3.98* (65%-120%)
1205343807 (AF56408PS)	Dissolved Organic Carbon Average	45.7* (65%-120%)

Miscellaneous Information

Additional Comments

The following sample was reanalyzed neat. 613959008 (AF56412).

Product: Sulfide, Total

Analytical Method: SM 4500-S (2-) D

Analytical Procedure: GL-GC-E-052 REV# 12

Analytical Batch: 2395803

The following samples were analyzed using the above methods and analytical procedure(s).

GEL Sample ID#	Client Sample Identification
613959015	AF56425
613959017	AF56426
1205340624	Method Blank (MB)
1205340625	Laboratory Control Sample (LCS)
1205343956	613152021(NonSDG) Post Spike (PS)
1205343957	613152021(NonSDG) Post Spike Duplicate (PSD)

The samples in this SDG were analyzed on an "as received" basis.

Data Summary:

There are no exceptions, anomalies or deviations from the specified methods. All sample data provided in this report met the acceptance criteria specified in the analytical methods and procedures for initial calibration, continuing calibration, instrument controls and process controls where applicable.

Product: Sulfide, Total

Page 48 of 55 SDG: 613959

Analytical Method: SM 4500-S (2-) D

Analytical Procedure: GL-GC-E-052 REV# 12

Analytical Batch: 2396527

The following samples were analyzed using the above methods and analytical procedure(s).

GEL Sample ID#	Client Sample Identification
613959009	AF56413
613959011	AF56430
613959013	AF56419
1205341654	Method Blank (MB)
1205341655	Laboratory Control Sample (LCS)
1205344918	613959009(AF56413) Post Spike (PS)
1205344919	613959009(AF56413) Post Spike Duplicate (PSD)

The samples in this SDG were analyzed on an "as received" basis.

Data Summary:

There are no exceptions, anomalies or deviations from the specified methods. All sample data provided in this report met the acceptance criteria specified in the analytical methods and procedures for initial calibration, continuing calibration, instrument controls and process controls where applicable.

Product: Sulfide, Total

Analytical Method: SM 4500-S (2-) D

Analytical Procedure: GL-GC-E-052 REV# 12

Analytical Batch: 2397596

The following samples were analyzed using the above methods and analytical procedure(s).

GEL Sample ID#	Client Sample Identification
613959001	AF56409
613959003	AF56410
613959005	AF56411
613959007	AF56412
613959019	AF56427
613959021	AF56408
613959023	AF56415
613959025	AF56416
613959027	AF56417
613959029	AF56429
613959031	AF56406
613959033	AF56407
613959035	AF56418
613959037	AF56422
1205343968	Method Blank (MB)
1205343969	Laboratory Control Sample (LCS)
1205343970	613959019(AF56427) Post Spike (PS)
1205343971	613959019(AF56427) Post Spike Duplicate (PSD)
1205345470	613959033(AF56407) Post Spike (PS)
1205345471	613959033(AF56407) Post Spike Duplicate (PSD)

The samples in this SDG were analyzed on an "as received" basis.

Data Summary:

All sample data provided in this report met the acceptance criteria specified in the analytical methods and procedures for initial calibration, continuing calibration, instrument controls and process controls where applicable, with the following exceptions.

Quality Control (QC) Information

Matrix Spike (MS)/Post Spike (PS) Recovery Statement

The percent recoveries (%R) obtained from the spike analyses are evaluated when the sample concentration is less than four times (4X) the spike concentration added. The matrix spike recovered outside of the established acceptance limits due to matrix interference and/or non-homogeneity.

Analyte	Sample	Value
Total Sulfide	1205345470 (AF56407PS)	59.7* (75%-125%)
	1205345471 (AF56407PSD)	60.5* (75%-125%)

Technical Information

Holding Times

Samples 613959001 (AF56409), 613959003 (AF56410), 613959005 (AF56411) and 613959007 (AF56412) were initially analyzed within holding; however, the holding times had expired prior to reanalysis of diluted samples. The data is qualified.

Sample Dilutions

The following samples 613959001 (AF56409), 613959003 (AF56410) and 613959005 (AF56411) were diluted because target analyte concentrations exceeded the calibration range. The following sample 613959007 (AF56412) in this sample group was diluted due to matrix interference. Dilutions may be required for many reasons, including to minimize matrix interferences or to bring over range target analyte concentrations into the linear calibration range.

Amolesto		613959								
Analyte	001	003	005	007						
Total Sulfide	400X	200X	100X	25X						

Product: Alkalinity

Analytical Method: SM 2320B

Analytical Procedure: GL-GC-E-033 REV# 14

Analytical Batch: 2397768

The following samples were analyzed using the above methods and analytical procedure(s).

GEL Sample ID#	Client Sample Identification
613959001	AF56409
613959003	AF56410
613959005	AF56411
613959007	AF56412
613959009	AF56413
613959011	AF56430
613959013	AF56419
613959015	AF56425

Page 50 of 55 SDG: 613959

613959017	AF56426
613959019	AF56427
613959021	AF56408
613959023	AF56415
613959025	AF56416
613959027	AF56417
613959029	AF56429
613959031	AF56406
613959033	AF56407
613959035	AF56418
613959037	AF56422
1205344344	Laboratory Control Sample (LCS)
1205344345	613959001(AF56409) Sample Duplicate (DUP)
1205344346	613959001(AF56409) Matrix Spike (MS)
1205344347	613959021(AF56408) Sample Duplicate (DUP)
1205344348	613959021(AF56408) Matrix Spike (MS)

The samples in this SDG were analyzed on an "as received" basis.

Data Summary:

All sample data provided in this report met the acceptance criteria specified in the analytical methods and procedures for initial calibration, continuing calibration, instrument controls and process controls where applicable, with the following exceptions.

Miscellaneous Information

Additional Comments

35 mL aliquots were used due to sample concentration

Certification Statement

Where the analytical method has been performed under NELAP certification, the analysis has met all of the requirements of the NELAC standard unless otherwise noted in the analytical case narrative.

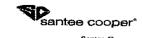
Page 51 of 55 SDG: 613959

613963/613959

Contract Lab Info: GEL

. Controct Lab Due Date (Lab Only):_

23 Send report to lewillia@santeecooper.com & sibrown@santeecooper.com & sibrown@sante


Chain of Custody

Santee Coeper One Riverwood Drive Moneks Corner, SC 29461 Phone: (843)761-8000 Ext. 5148 Fax: (843)761-4175

Customer Email/Report Recipient:			Da	Date Results Needed by:					P	roject/	Task/	Unit #:	Rerun request	for ar	ıy fla	ggeo	J QC		
L	CWILLIA	@santee	cooper.com	_		' <i>J</i> .			125	915	<u>J.JM</u>	02.0	ગ્ન ભ્યાં. I	<u>/ 365∞</u> Yes	(No				
															A	nalysi	is Grou	gu	
	works ID # ernal use y)	Sample Locat Description	ion/	Collection Date		Collection Time	Sample Collector	Total # of containers	Bottle type: (Glass-G/Plastic-P)	Grab (G) or	Matrix(see below)	Preservative (see	Met Rep Miss Any	Comments hod # forting limit b. sample info other notes	705/1055	ALKAUNTY	Suffee	825+ 422 GAN	Comment of the Comment
AT	:5640F	WAP-14		3/6	/23	1214	ZOM ML	6	P/G	6-	GW	*	券 SuLF	TOE HAS SHORT HOUD	2	1	ı	2	
) 10	WAP-14D			<u> </u>	1219)												ľ
	u	WAP - 14A	-			1108							* FRES	servatives					
	12	WAP-148				।जाज								HZSOU E EINCAESTATE, NAOH					
	(ਤ	WAP-140				1341							KAD HW	0 3		П]
	30	WAP-29				1010		1	1	Ī	1	1			Ţ	I	1		
AF	56419	WAP-19		3/7	1/2-3	1451	1						ALKAL-	TOTAL, BICARB, CARB	1				
	25	25)	1249							trad - 11	ICLUDE TOTAL CALC.					
	26	26				1022							bec-M	OT PLEID PLITERED					
	- 27	260	,	يًـ [1027		1	1	j	1					1	1	1	
SOS R	elinguished by:	Employeet	Date	Tim	e l	Recelv	ed by:	% (§1	mployee	第 图	Date		Time	Sample Receiving (Internal of TEMP (°C):	Use On Initial				
J.S.	noun	35594	3/10/23	110		M.A	<u></u>		GE		3/10/		1100	Correct pH: Yes No		·*		_	
R	elinguished by:	Employeet	Date	Tim	e :	Receiv	ed by:		mployee	#	Date	9	Time	Prescrvative Lot#:					
M	<u>. An</u>	GEL	3.10.23		20	a de la companya de la companya de la companya de la companya de la companya de la companya de la companya de	Europassa:		mployee	Sens 3		Secretary.	Time	110001144110 200,,					
R	elinquished by:	Employees	Date	Ţim	G	Receiv	ed by:		inployee				\$73.80. s	Date/Time/Init for preserve	ative:				
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Ag		ESTOREMENT OF THE PROPERTY OF	Jup 04		MIS DISTAY Naphthal THM/H/ VOC OIL & Gr E Coli Total Co pH Dissolve Dissolve Rad 228	enc AA case liform d As		- liele T	(2839) Grant Grant M. Grant Moren More	ll .		Coal Utimate Nosh Sufful Suf	Matter # Story Active		i i godin godin	Egy Station Shell She Shell Shell Shell Shell Shell Shell Shell Shell Shell Shell Sh		

Chain of Custody

Santee Cooper One Riverwood Drive Moneks Corner, SC 29461 Phone: (843)761-8000 Ext, 5148 Fax: (843)761-4175

125915 TM02.09.681.1 36500 Comment Internal use Only	Rerun request for any flagged QC				QC
(Internal use only) Description Descriptio	_ Yes	(Ño			
(Internal use only) Description Descriptio		í	<u>Analysi</u> :	ş Grou	D
AF56405 WAP-13 3/3/23 1338 ML 6 P 6 GN ** SULFIDE HAS S 15 16 15 16 16 16 17		Tec/20c	ALKAUNITY	Sulfide	Red 725 /228
16	HORT HOLD	2	1	ι	2
17 17D 1014 TOC #2504 SULFIDE ZINC ACE 29 28 1212 1 1 1 1 RAD HN103 24°C AF56406 WAP-12 3/9/23 1029 1 1 1 ALKAL - TOTAL, BIG 18 18 1207 1 RAO - INCLUDE 9878		1		\Box	1.
17 17 17 17 18 18 18 18 18 18 18 18 18 18 18 18 18		\parallel			\dagger
1 29 1 28 - 1212 - 1 1 1 - 24°C AF 56 406 WAP-12 3/A/23 1029	TATE, NA OH				\prod
07 -12D 1034 ALKAL - TOTAL, BIG 18 1207 RAD - INCLUDE FOR	K103			\prod	\prod
18 18 1207 RAD-INCLUDE 5018					\prod
10 10 100 100 100 100 100 100 100 100 1	HRE, CARE				
- 22 1 22 1319 - 1 1 DOC-NOT FIELD F	L CALC.				
	TUTERED	1	1	1	1
			<u> </u>		
	lving (Internal) •	<i>Use On</i> Initial			-
Sylgroun 35594 3/10/23 1100 M. Sr GEL 3/10/23 1100					
Reinfoldished by Employees Date lime Received by Employees Date lime					
M. D. GEL 3.16.23 1620 Preservative	≀ Lot#:				
Relinquished by: Employee# Date Time Received by: Employee# Date Time					ı
Date/Time/	Init for preserva	ative:			
DMETALS (all) Nutrients MISC. Gyosum Goal	Flvasli I		(0)		
产生产AL类型分离中心中国对自己的主义工程的对象,但是是一种企业的企业的企业,在1900年,1900年,1900年,1900年,1900年,1900年,1900年,1900年,1900年,1900年,1900年,1900年	CONTRACTOR STATE OF THE PARTY O	, i	(0.01)	e, i	
□ As □ K □ Sn □ TI/1PO4 □ THMHAA b o □ Vo Nostiture □ THMHAA b o □ Vo Nostiture □ THMHAA □ Vo C □ Vo Nostiture □ THMHAA □ Vo C □ Vo Nostiture □ THMHAA □ Vo C □ Vo Nostiture □ THMHAA □ Vo C □	1011	\$ (¢	alvieri G		
DAS DK DSi TUTEO4 DTHMHAA DVOC DOIL & Grase DECOMP	ineral and		ojulis Ligaroj	si, Te	
□ B □ Li □ St □ Oil & Grease □ Ba □ IMg □ □ Ti □ Coli □ Total Coliform □ Soluble Materix □ SVO Jarile Matters	minem O) Crison ineri Arribsi GC		e Is all Vi Voji Isaasia	, 4 . 6 .	
□ Be □ Mn □ Ti □ Coliform □ Solid Must □ COliform □ Co	Morare	3.1			
U.C.a Dissolved Fe Dissolved Fe DXRF Scan	NRDES			W.	
	ures Region			. W. T.	
□ Co □ DN □ Hg // □ PCB					
O Cr In Pb I d CrVI	La Cartina	10 (G)	M 13		

Client:	1+ 110	<u>,'b</u>	Ť		AR/COC/Work Order: (0139(03 / (01395)) Received: Mach 10, 2023
Receive	Annox Johnson		1	Date	Circle Applicable: FedEx Express FedEx Ground UPS Field Services Courier Other
Ca	arrier and Tracking Number				
Suspec	eted Hazard Information	Yes	Š	*If N	et Counts > 100cpm on samples not marked "radioactive", contact the Radiation Safety Group for further investigation.
ANGhim	oped as a DOT Hazardous?		/	Haza	rd Class Shipped: UN#: If UN2910, Is the Radioactive Shipment Survey Compliant? Yes No
B) Did	the client designate the samples are to be ed as radioactive?		/	l	notation or radioactive stickers on containers equal client designation,
$\overline{}$	I the RSO classify the samples as		/	Max	rnum Net Counts Observed* (Observed Counts - Area Background Counts):CPM / mR/Hr Classified as: Rad 1
	d the client designate samples are hazardous?		/	l	notation or hexard labels on containers equal client designation.
	I the RSO identify possible hazards?		/		or E is yes, select Hazards below. PGB's Flammable Foreign Soil RCRA Asbestos Beryllium Other:
	Sample Receipt Criteria	Yes	Ϋ́	2	Comments/Qualifiers (Required for Non-Conforming Items) Circle Applicable: Seals broken Damaged container Leaking container Other (describe)
Ls	Shipping containers received intact and sealed?	/		_	Circle Applicable: Seals broken Damaged container Leaking constainer Other (describe) Circle Applicable: Client contacted and provided COC COC created upon receipt
	Chain of custody documents included with shipment?	/		Min	Preservation Method: (Wet Ice Ice Packs Dry Ice None Other: 203
	Samples requiring cold preservation within (0 ≤ 6 deg. C)?*	1	1		Temperature Davice Seriel #:
4	Daily check performed and passed on IR temperature gun?	/			Secondary Temperature Device Serial # (If Applicable): Circle Applicable: Seals broken Damaged container Leaking container Other (describe)
5	Sample containers intact and sealed?	/			
	Samples requiring chemical preservation at proper pH?	/			Sample ID's and Containers Affected: If Preservation added, Loi#: If Yes, are Encores or Soil Kils present for solids? YesNoNA (If yes, take to VOA Freezer)
7	Do any samples require Volatile Analysis?			/	Do liquid VOA vials contain acid preservation? Yes No NA (If unknown, select No) Are liquid VOA vials free of headspace? Yes No NA Sample ID's and containers affected:
8	Samples received within holding time?	/			ID's and tests affected:
9	Sample ID's on COC match ID's on bottles?			Z	ID's and containers affected: Circle Applicable: No dates on containers No times on containers COC missing info Other (describe)
10	Date & time on COC match date & time on bottles?				Circle Applicable: No container count on COC Other (describe)
11	Number of containers received match number indicated on COC? Are sample containers identifiable as	/		東京等	
	GEL provided by use of GEL labels? COC form is properly signed in			Section Section	Circle Applicable: Not relinquished Other (describe)
Con	relinquished/received sections? ments (Use Continuation Form if needed): OC SOMS AF WAP COrrect (hand	-12 - 1	21	3.	container says WAP-8dates/times Hen sample ID)
	•				
					itials Date 3-13-23 Page Lof L

List of current GEL Certifications as of 21 March 2023

State	Certification
Alabama	42200
Alaska	17-018
Alaska Drinking Water	SC00012
Arkansas	88-0651
CLIA	42D0904046
California	2940
Colorado	SC00012
Connecticut	PH-0169
DoD ELAP/ ISO17025 A2LA	2567.01
Florida NELAP	E87156
Foreign Soils Permit	P330-15-00283, P330-15-00253
Georgia	SC00012
Georgia SDWA	967
Hawaii	SC00012
Idaho	SC00012 SC00012
Illinois NELAP	200012
Indiana	C-SC-01
Kansas NELAP	E-10332
Kentucky SDWA	90129
Kentucky Wastewater	90129
Louisiana Drinking Water	LA024
Louisiana NELAP	03046 (AI33904)
Maine	2019020
Maryland	270
Massachusetts	M-SC012
Massachusetts PFAS Approv	Letter
Michigan	9976
Mississippi	SC00012
Nebraska	NE-OS-26-13
Nevada	SC000122023-4
New Hampshire NELAP	2054
New Jersey NELAP	SC002
New Mexico	SC00012
New York NELAP	11501
North Carolina	233
North Carolina SDWA	45709
North Dakota	R-158
Oklahoma	2022-160
Pennsylvania NELAP	68-00485
Puerto Rico	SC00012
S. Carolina Radiochem	10120002
Sanitation Districts of L	9255651
South Carolina Chemistry	10120001
Tennessee	TN 02934
Texas NELAP	T104704235-22-20
Utah NELAP	SC000122022-37
Vermont	VT87156
Virginia NELAP	460202
Washington	C780
	1

gel.com

April 11, 2023

Ms. Jeanette Gilmetti Santee Cooper P.O. Box 2946101 OCO3 Moncks Corner, South Carolina 29461

Re: ABS Lab Analytical Work Order: 613963

Dear Ms. Gilmetti:

GEL Laboratories, LLC (GEL) appreciates the opportunity to provide the enclosed analytical results for the sample(s) we received on March 10, 2023. This original data report has been prepared and reviewed in accordance with GEL's standard operating procedures.

The samples were delivered with proper chain of custody documentation and signatures. All sample containers arrived without any visible signs of tampering or breakage. Sample ID on the container did not match the sample ID on the Chain of Custody. 613963015(AF56429).

Test results for NELAP or ISO 17025 accredited tests are verified to meet the requirements of those standards, with any exceptions noted. The results reported relate only to the items tested and to the sample as received by the laboratory. These results may not be reproduced except as full reports without approval by the laboratory. Copies of GEL's accreditations and certifications can be found on our website at www.gel.com.

Our policy is to provide high quality, personalized analytical services to enable you to meet your analytical needs on time every time. We trust that you will find everything in order and to your satisfaction. If you have any questions, please do not hesitate to call me at (843) 556-8171, ext. 4289.

Sincerely,

Heather Millar for Julie Robinson Project Manager

ther Millar

Purchase Order: 398684

Enclosures

2040 Savage Road Charleston SC 29407 - (843) 556-8171 - www.gel.com

Certificate of Analysis Report for

SOOP001 Santee Cooper

Client SDG: 613963 GEL Work Order: 613963

The Qualifiers in this report are defined as follows:

- * A quality control analyte recovery is outside of specified acceptance criteria
- ** Analyte is a Tracer compound
- ** Analyte is a surrogate compound
- U Analyte was analyzed for, but not detected above the MDL, MDA, MDC or LOD.

Where the analytical method has been performed under NELAP certification, the analysis has met all of the requirements of the NELAC standard unless qualified on the Certificate of Analysis.

The designation ND, if present, appears in the result column when the analyte concentration is not detected above the limit as defined in the 'U' qualifier above.

This data report has been prepared and reviewed in accordance with GEL Laboratories LLC standard operating procedures. Please direct any questions to your Project Manager, Julie Robinson.

Reviewed by Heather Millor

Page 2 of 32 SDG: 613963

2040 Savage Road Charleston SC 29407 - (843) 556-8171 - www.gel.com

Certificate of Analysis

Project:

Client ID:

Report Date: April 11, 2023

SOOP00119

SOOP001

Company: Santee Cooper Address: P.O. Box 2946101

OCO3

Moncks Corner, South Carolina 29461

Contact: Ms. Jeanette Gilmetti Project: ABS Lab Analytical

Client Sample ID: AF56409
Sample ID: 613963001
Matrix: Ground Water
Collect Date: 06-MAR-23 12:14
Receive Date: 10-MAR-23

Client

Parameter	Qualifier	Result	Uncertainty	MDC	RL	Units	PF	DF Anal	yst Date	Time Batch	Method
Rad Gas Flow Proportion	onal Counting	•									
GFPC, Ra228, Liquid "	As Received"										
Radium-228		2.18	+/-1.16	1.68	3.00	pCi/L		JE1	04/04/23	1245 2402066	1
Radium-226+Radium-228 Calculation "See Parent Products"											
Radium-226+228 Sum		3.15	+/-1.26			pCi/L		NXL1	04/11/23	1121 2402065	2
Rad Radium-226											
Lucas Cell, Ra226, Liq	uid "As Recei	ved"									
Radium-226		0.971	+/-0.495	0.366	1.00	pCi/L		LXP1	04/11/23	0819 2402018	3
The following Analytic	eal Methods w	ere perfo	ormed:								

Method Description Analyst Comments

EPA 904.0/SW846 9320 Modified

2 Calculation 3 EPA 903.1 Modified

Collector:

Surrogate/Tracer Recovery Test Result Nominal Recovery% Acceptable Limits

Barium-133 Tracer GFPC, Ra228, Liquid "As Received"

72.3 (15%-125%)

Notes:

Counting Uncertainty is calculated at the 95% confidence level (1.96-sigma).

Column headers are defined as follows:

DF: Dilution Factor Lc/LC: Critical Level
DL: Detection Limit PF: Prep Factor
MDA: Minimum Detectable Activity RL: Reporting Limit

MDC: Minimum Detectable Concentration SQL: Sample Quantitation Limit

Page 3 of 32 SDG: 613963

2040 Savage Road Charleston SC 29407 - (843) 556-8171 - www.gel.com

Certificate of Analysis

Project:

Client ID:

Report Date: April 11, 2023

SOOP00119

SOOP001

Company: Santee Cooper Address: P.O. Box 2946101

OCO3

Moncks Corner, South Carolina 29461

Contact: Ms. Jeanette Gilmetti Project: ABS Lab Analytical

Client Sample ID: AF56410 Sample ID: 613963002 Matrix: Ground Water Collect Date: 06-MAR-23 12:19 Receive Date:

10-MAR-23

Collector: Client

Parameter	Qualifier	Result	Uncertainty	MDC	RL	Units	PF	DF Analy	st Date	Time Batch	Method	
Rad Gas Flow Proportional Counting												
GFPC, Ra228, Liquid "A	As Received"											
Radium-228		1.73	+/-0.952	1.36	3.00	pCi/L		JE1	04/04/23	1245 2402066	1	
Radium-226+Radium-228 Calculation "See Parent Products"												
Radium-226+228 Sum		2.14	+/-1.01			pCi/L		NXL1	04/11/23	1121 2402065	2	
Rad Radium-226												
Lucas Cell, Ra226, Liqu	iid "As Recei	ved"										
Radium-226	U	0.405	+/-0.330	0.406	1.00	pCi/L		LXP1	04/11/23	0819 2402018	3	
The following Analytic	The following Analytical Methods were performed:											

Method	Description	Analyst Comments
1	EPA 904.0/SW846 9320 Modified	•

2 Calculation EPA 903.1 Modified

Surrogate/Tracer Recovery Result Nominal Recovery% Acceptable Limits Test Barium-133 Tracer GFPC, Ra228, Liquid "As Received" 82.7 (15%-125%)

Notes:

Counting Uncertainty is calculated at the 95% confidence level (1.96-sigma).

Column headers are defined as follows:

DF: Dilution Factor Lc/LC: Critical Level PF: Prep Factor DL: Detection Limit MDA: Minimum Detectable Activity **RL**: Reporting Limit

MDC: Minimum Detectable Concentration SQL: Sample Quantitation Limit

Page 4 of 32 SDG: 613963

2040 Savage Road Charleston SC 29407 - (843) 556-8171 - www.gel.com

Certificate of Analysis

Project:

Client ID:

Report Date: April 11, 2023

SOOP00119

SOOP001

Company: Santee Cooper Address: P.O. Box 2946101

OCO3

Moncks Corner, South Carolina 29461

Contact: Ms. Jeanette Gilmetti Project: ABS Lab Analytical

Client Sample ID: AF56411
Sample ID: 613963003
Matrix: Ground Water
Collect Date: 06-MAR-23 11:08
Receive Date: 10-MAR-23

Collector: Client

Parameter	Qualifier	Result	Uncertainty	MDC	RL	Units	PF	DF Analy	yst Date	Time Batch	Method
Rad Gas Flow Proportion	onal Counting										
GFPC, Ra228, Liquid ".	As Received"										
Radium-228	U	0.627	+/-1.16	2.05	3.00	pCi/L		JE1	04/04/23	1245 2402066	1
Radium-226+Radium-228 Calculation "See Parent Products"											
Radium-226+228 Sum		1.30	+/-1.23			pCi/L		NXL1	04/11/23	1121 2402065	2
Rad Radium-226											
Lucas Cell, Ra226, Liqu	uid "As Recei	ved"									
Radium-226		0.673	+/-0.404	0.395	1.00	pCi/L		LXP1	04/11/23	0819 2402018	3
The following Analytic	al Methods w	ere perfo	ormed:								

Method	Description	Analyst Comments
1	EDA 004 0/SW846 0320 Modified	•

EPA 904.0/SW846 9320 Modified
Calculation

3 EPA 903.1 Modified

Surrogate/Tracer Recovery	Test	Result	Nommai	Recovery%	Acceptable Limits
Barium-133 Tracer	GFPC, Ra228, Liquid "As Received"			64	(15%-125%)

Notes:

Counting Uncertainty is calculated at the 95% confidence level (1.96-sigma).

Column headers are defined as follows:

DF: Dilution Factor Lc/LC: Critical Level
DL: Detection Limit PF: Prep Factor
MDA: Minimum Detectable Activity RL: Reporting Limit

MDC: Minimum Detectable Concentration SQL: Sample Quantitation Limit

Page 5 of 32 SDG: 613963

2040 Savage Road Charleston SC 29407 - (843) 556-8171 - www.gel.com

Certificate of Analysis

Report Date: April 11, 2023

Company: Santee Cooper P.O. Box 2946101 Address:

OCO₃

Moncks Corner, South Carolina 29461

Contact: Ms. Jeanette Gilmetti Project: ABS Lab Analytical

Client Sample ID: AF56412 Sample ID: 613963004 Matrix: Ground Water Collect Date: 06-MAR-23 15:15 Receive Date: 10-MAR-23

Client

Client ID: SOOP001

Analyst Comments

SOOP00119

Project:

Parameter	Qualifier	Result	Uncertainty	MDC	RL	Units	PF	DF Anal	yst Date	Time Batch	Method
Rad Gas Flow Proporti	onal Counting										
GFPC, Ra228, Liquid "	As Received"										
Radium-228	U	1.54	+/-1.09	1.65	3.00	pCi/L		JE1	04/04/23	1246 2402066	1
Radium-226+Radium-2	228 Calculatio	n "See Pa	arent Products"								
Radium-226+228 Sum		5.48	+/-1.52			pCi/L		NXL1	04/11/23	1121 2402065	2
Rad Radium-226											
Lucas Cell, Ra226, Liq	uid "As Recei	ved"									
Radium-226		3.95	+/-1.06	0.613	1.00	pCi/L		LXP1	04/11/23	0819 2402018	3
T1 C-11 A 14:	1 1 1		1.								

The following Analytical Methods were performed:

Description

EPA 904.0/SW846 9320 Modified 2 Calculation EPA 903.1 Modified Surrogate/Tracer Recovery Nominal Recovery% Acceptable Limits Test Result

Barium-133 Tracer GFPC, Ra228, Liquid "As Received" 61.5 (15%-125%)

Notes:

Method

Counting Uncertainty is calculated at the 95% confidence level (1.96-sigma).

Column headers are defined as follows:

Collector:

DF: Dilution Factor Lc/LC: Critical Level PF: Prep Factor DL: Detection Limit MDA: Minimum Detectable Activity **RL**: Reporting Limit

MDC: Minimum Detectable Concentration SQL: Sample Quantitation Limit

Page 6 of 32 SDG: 613963

2040 Savage Road Charleston SC 29407 - (843) 556-8171 - www.gel.com

Certificate of Analysis

Project:

Client ID:

Report Date: April 11, 2023

SOOP00119

SOOP001

Comments

Company: Santee Cooper Address: P.O. Box 2946101

OCO3

Moncks Corner, South Carolina 29461

Contact: Ms. Jeanette Gilmetti Project: ABS Lab Analytical

Client Sample ID: AF56413
Sample ID: 613963005
Matrix: Ground Water
Collect Date: 06-MAR-23 13:41
Receive Date: 10-MAR-23

Collector: Client

Parameter	Qualifier	Result	Uncertainty	MDC	RL	Units	PF	DF Anal	yst Date	Time Batch	Method
Rad Gas Flow Proportion	onal Counting	5									
GFPC, Ra228, Liquid "	'As Received"	1									
Radium-228	U	1.35	+/-1.31	2.15	3.00	pCi/L		JE1	04/04/23	1246 2402066	1
Radium-226+Radium-2	228 Calculation	n "See Pa	rent Products"								
Radium-226+228 Sum		3.49	+/-1.49			pCi/L		NXL1	04/11/23	1121 2402065	2
Rad Radium-226											
Lucas Cell, Ra226, Liq	uid "As Recei	ved"									
Radium-226		2.14	+/-0.717	0.503	1.00	pCi/L		LXP1	04/11/23	0819 2402018	3
The following Analytic	cal Methods w	ere perfo	rmed:								

Method	Description	Analyst (

EPA 904.0/SW846 9320 Modified

2 Calculation 3 EPA 903.1 Modified

Surrogate/Tracer Recovery Test Result Nominal Recovery% Acceptable Limits

Barium-133 Tracer GFPC, Ra228, Liquid "As Received"

65.8 (15%-125%)

Notes:

Counting Uncertainty is calculated at the 95% confidence level (1.96-sigma).

Column headers are defined as follows:

DF: Dilution Factor Lc/LC: Critical Level
DL: Detection Limit PF: Prep Factor
MDA: Minimum Detectable Activity RL: Reporting Limit

MDC: Minimum Detectable Concentration SQL: Sample Quantitation Limit

Page 7 of 32 SDG: 613963

2040 Savage Road Charleston SC 29407 - (843) 556-8171 - www.gel.com

Certificate of Analysis

Project:

Client ID:

Analyst Comments

Report Date: April 11, 2023

SOOP00119

SOOP001

Company: Santee Cooper P.O. Box 2946101 Address:

OCO3

Moncks Corner, South Carolina 29461

Contact: Ms. Jeanette Gilmetti Project: ABS Lab Analytical

Client Sample ID: AF56430 Sample ID: 613963006 Matrix: Ground Water Collect Date: 06-MAR-23 10:10 10-MAR-23 Receive Date:

Client

Parameter	Qualifier	Result	Uncertainty	MDC	RL	Units	PF	DF Analy	yst Date	Time Batch	Method
Rad Gas Flow Proportion	onal Counting										
GFPC, Ra228, Liquid "A	As Received"										
Radium-228		2.88	+/-1.61	2.36	3.00	pCi/L		JE1	04/04/23	1246 2402066	1
Radium-226+Radium-2	28 Calculatio	n "See Pa	arent Products"								
Radium-226+228 Sum		3.38	+/-1.64			pCi/L		NXL1	04/11/23	1121 2402065	2
Rad Radium-226											
Lucas Cell, Ra226, Liqu	uid "As Recei	ved"									
Radium-226		0.499	+/-0.350	0.343	1.00	pCi/L		LXP1	04/11/23	0819 2402018	3
The following Analytic	al Methods w	ere perfo	ormed:								

1	EPA 904.0/SW846 9320 Modified		-		
2	Calculation				
3					
Surrogate/Tracer Recover	ry Test	Result	Nominal	Recovery%	Acceptable Limits
Barium-133 Tracer	GFPC, Ra228, Liquid "As Received"			55.3	(15%-125%)

Notes:

Method

Counting Uncertainty is calculated at the 95% confidence level (1.96-sigma).

Column headers are defined as follows:

Collector:

DF: Dilution Factor Lc/LC: Critical Level PF: Prep Factor DL: Detection Limit MDA: Minimum Detectable Activity **RL**: Reporting Limit

Description

MDC: Minimum Detectable Concentration SQL: Sample Quantitation Limit

Page 8 of 32 SDG: 613963

2040 Savage Road Charleston SC 29407 - (843) 556-8171 - www.gel.com

Certificate of Analysis

Report Date: April 11, 2023

Company: Santee Cooper P.O. Box 2946101 Address:

OCO3

Moncks Corner, South Carolina 29461

Contact: Ms. Jeanette Gilmetti Project: ABS Lab Analytical

Client Sample ID: AF56419 Sample ID: 613963007 Matrix: Ground Water Collect Date: 07-MAR-23 14:51 Receive Date: 10-MAR-23

Client

Project: Client ID: SOOP001

Analyst Comments

SOOP00119

Parameter	Qualifier	Result	Uncertainty	MDC	RL	Units	PF	DF Analy	st Date	Time Batch	Method
Rad Gas Flow Proportion	onal Counting										
GFPC, Ra228, Liquid "A	As Received"										
Radium-228		1.89	+/-1.13	1.72	3.00	pCi/L		JE1	04/04/23	1246 2402066	1
Radium-226+Radium-2	28 Calculatio	n "See Pa	arent Products"								
Radium-226+228 Sum		2.70	+/-1.24			pCi/L		NXL1	04/11/23	1121 2402065	2
Rad Radium-226											
Lucas Cell, Ra226, Liqu	uid "As Recei	ved"									
Radium-226		0.809	+/-0.511	0.606	1.00	pCi/L		LXP1	04/11/23	0819 2402018	3
The following Analytic	al Methods w	ere perfo	ormed:								

1	EPA 904.0/SW 846 9320 Modified				
2	Calculation				
3	EPA 903.1 Modified				
Surrogate/Tracer Recove	ery Test	Result	Nominal	Recovery%	Acceptable Limits

Barium-133 Tracer GFPC, Ra228, Liquid "As Received" 84.3 (15%-125%)

Notes:

Method

Counting Uncertainty is calculated at the 95% confidence level (1.96-sigma).

Column headers are defined as follows:

Collector:

DF: Dilution Factor Lc/LC: Critical Level PF: Prep Factor DL: Detection Limit MDA: Minimum Detectable Activity **RL**: Reporting Limit

Description

MDC: Minimum Detectable Concentration SQL: Sample Quantitation Limit

Page 9 of 32 SDG: 613963

2040 Savage Road Charleston SC 29407 - (843) 556-8171 - www.gel.com

Certificate of Analysis

Project:

Client ID:

Report Date: April 11, 2023

SOOP00119

SOOP001

Company: Santee Cooper Address: P.O. Box 2946101

OCO3

Moncks Corner, South Carolina 29461

Contact: Ms. Jeanette Gilmetti Project: ABS Lab Analytical

Client Sample ID: AF56425
Sample ID: 613963008
Matrix: Ground Water
Collect Date: 07-MAR-23 12:49
Receive Date: 10-MAR-23

Collector: Client

Parameter	Qualifier	Result	Uncertainty	MDC	RL	Units	PF	DF Analy	st Date	Time Batch	Method
Rad Gas Flow Proportion	onal Counting										
GFPC, Ra228, Liquid ".	As Received"										
Radium-228	U	-0.250	+/-0.593	1.24	3.00	pCi/L		JE1	04/04/23	1246 2402066	1
Radium-226+Radium-2	28 Calculatio	n "See Pa	arent Products"								
Radium-226+228 Sum		0.520	+/-0.729			pCi/L		NXL1	04/11/23	1121 2402065	2
Rad Radium-226											
Lucas Cell, Ra226, Liqu	uid "As Recei	ved"									
Radium-226	U	0.520	+/-0.424	0.550	1.00	pCi/L		LXP1	04/11/23	0819 2402018	3
The following Analytic	al Methods w	ere perfo	ormed:								

Method	Description	Analyst Comments
1	EPA 904 0/SW846 9320 Modified	•

2 Calculation 3 EPA 903.1 Modified

Surrogate/Tracer Recovery Test Result Nominal Recovery% Acceptable Limits

Barium-133 Tracer GFPC, Ra228, Liquid "As Received" 88.3 (15%-125%)

Notes:

Counting Uncertainty is calculated at the 95% confidence level (1.96-sigma).

Column headers are defined as follows:

DF: Dilution Factor Lc/LC: Critical Level
DL: Detection Limit PF: Prep Factor
MDA: Minimum Detectable Activity RL: Reporting Limit

MDC: Minimum Detectable Concentration SQL: Sample Quantitation Limit

Page 10 of 32 SDG: 613963

2040 Savage Road Charleston SC 29407 - (843) 556-8171 - www.gel.com

Certificate of Analysis

Report Date: April 11, 2023

SOOP00119

Company: Santee Cooper Address: P.O. Box 2946101

OCO3

Client

Moncks Corner, South Carolina 29461

Contact: Ms. Jeanette Gilmetti Project: ABS Lab Analytical

Client Sample ID: AF56426
Sample ID: 613963009
Matrix: Ground Water
Collect Date: 07-MAR-23 10:22
Receive Date: 10-MAR-23

Description

3009 Client ID: SOOP001 ad Water

Project:

Analyst Comments

Parameter	Qualifier	Result	Uncertainty	MDC	RL	Units	PF	DF Analy	st Date	Time Batch	Method
Rad Gas Flow Proportion	nal Counting										
GFPC, Ra228, Liquid "A	As Received"										
Radium-228	U	-1.31	+/-1.21	2.50	3.00	pCi/L		JE1	04/04/23	1246 2402066	1
Radium-226+Radium-22	28 Calculation	n "See Pa	arent Products"								
Radium-226+228 Sum		0.567	+/-1.28			pCi/L		NXL1	04/11/23	1121 2402065	2
Rad Radium-226											
Lucas Cell, Ra226, Liqu	id "As Recei	ved"									
Radium-226		0.567	+/-0.398	0.390	1.00	pCi/L		LXP1	04/11/23	0854 2402018	3
The following Analytica	al Methods w	ere perfo	rmed:								

Surrogate/Tracer Recove	ery Test	Result	Nominal	Recovery%	Acceptable Limits
3	EPA 903.1 Modified				
2	Calculation				
1	EPA 904.0/SW846 9320 Modified				

Barium-133 Tracer GFPC, Ra228, Liquid "As Received" 68.3 (15%-125%)

Notes:

Method

Counting Uncertainty is calculated at the 95% confidence level (1.96-sigma).

Column headers are defined as follows:

Collector:

DF: Dilution Factor Lc/LC: Critical Level
DL: Detection Limit PF: Prep Factor
MDA: Minimum Detectable Activity RL: Reporting Limit

MDC: Minimum Detectable Concentration SQL: Sample Quantitation Limit

Page 11 of 32 SDG: 613963

2040 Savage Road Charleston SC 29407 - (843) 556-8171 - www.gel.com

Certificate of Analysis

Report Date: April 11, 2023

Company: Santee Cooper Address: P.O. Box 2946101

OCO3

Moncks Corner, South Carolina 29461

Contact: Ms. Jeanette Gilmetti Project: ABS Lab Analytical

Client Sample ID: AF56427
Sample ID: 613963010
Matrix: Ground Water
Collect Date: 07-MAR-23 10:27
Receive Date: 10-MAR-23

Client

Client ID: SOOP001

Analyst Comments

SOOP00119

Project:

Parameter	Qualifier	Result	Uncertainty	MDC	RL	Units	PF	DF Analy	st Date	Time Batch	Method
Rad Gas Flow Proportion	onal Counting										
GFPC, Ra228, Liquid ".	As Received"										
Radium-228	U	0.0970	+/-0.674	1.31	3.00	pCi/L		JE1	04/04/23	1246 2402066	1
Radium-226+Radium-2	28 Calculatio	n "See Pa	arent Products"								
Radium-226+228 Sum		1.05	+/-0.832			pCi/L		NXL1	04/11/23	1121 2402065	2
Rad Radium-226											
Lucas Cell, Ra226, Liqu	uid "As Recei	ved"									
Radium-226		0.958	+/-0.488	0.361	1.00	pCi/L		LXP1	04/11/23	0854 2402018	3
The following Analytical Methods were performed:											

1	EPA 904.0/SW846 9320 Modified		•							
2	Calculation									
3	EPA 903.1 Modified	A 903.1 Modified								
Surrogate/Tracer Recove	ery Test	Result	Nominal	Recovery%	Acceptable Limits					

Barium-133 Tracer GFPC, Ra228, Liquid "As Received" 73.7 (15%-125%)

Notes:

Method

Counting Uncertainty is calculated at the 95% confidence level (1.96-sigma).

Column headers are defined as follows:

Collector:

DF: Dilution Factor Lc/LC: Critical Level
DL: Detection Limit PF: Prep Factor
MDA: Minimum Detectable Activity RL: Reporting Limit

Description

MDC: Minimum Detectable Concentration SQL: Sample Quantitation Limit

Page 12 of 32 SDG: 613963

2040 Savage Road Charleston SC 29407 - (843) 556-8171 - www.gel.com

Certificate of Analysis

Project:

Client ID:

Analyst Comments

Report Date: April 11, 2023

SOOP00119

SOOP001

Company: Santee Cooper Address: P.O. Box 2946101

OCO3

Moncks Corner, South Carolina 29461

Contact: Ms. Jeanette Gilmetti Project: ABS Lab Analytical

Client Sample ID: AF56408
Sample ID: 613963011
Matrix: Ground Water
Collect Date: 08-MAR-23 13:38
Receive Date: 10-MAR-23

Client

Parameter	Qualifier	Result	Uncertainty	MDC	RL	Units	PF	DF Analy	st Date	Time Batch	Method
Rad Gas Flow Proportion	onal Counting										
GFPC, Ra228, Liquid "A	As Received"										
Radium-228	U	0.311	+/-0.884	1.62	3.00	pCi/L		JE1	04/04/23	1246 2402066	1
Radium-226+Radium-2	28 Calculatio	n "See Pai	rent Products"								
Radium-226+228 Sum		1.84	+/-1.08			pCi/L		NXL1	04/11/23	1121 2402065	2
Rad Radium-226											
Lucas Cell, Ra226, Liqu	uid "As Recei	ved"									
Radium-226		1.53	+/-0.619	0.431	1.00	pCi/L		LXP1	04/11/23	0854 2402018	3

The following Analytical Methods were performed:

Description

1	EPA 904.0/SW846 9320 Modified		•							
2	Calculation									
3	EPA 903.1 Modified	A 903.1 Modified								
Surrogate/Tracer Recove	ery Test	Result	Nominal	Recovery%	Acceptable Limits					

Barium-133 Tracer GFPC, Ra228, Liquid "As Received" 70.7 (15%-125%)

Notes:

Method

Counting Uncertainty is calculated at the 95% confidence level (1.96-sigma).

Column headers are defined as follows:

Collector:

DF: Dilution Factor Lc/LC: Critical Level
DL: Detection Limit PF: Prep Factor
MDA: Minimum Detectable Activity RL: Reporting Limit

MDC: Minimum Detectable Concentration SQL: Sample Quantitation Limit

Page 13 of 32 SDG: 613963

2040 Savage Road Charleston SC 29407 - (843) 556-8171 - www.gel.com

Certificate of Analysis

Project:

Client ID:

Report Date: April 11, 2023

LXP1 04/11/23 0854 2402018

SOOP00119

SOOP001

Company: Santee Cooper Address: P.O. Box 2946101

OCO3

Moncks Corner, South Carolina 29461

Contact: Ms. Jeanette Gilmetti Project: ABS Lab Analytical

Client Sample ID: AF56415
Sample ID: 613963012
Matrix: Ground Water
Collect Date: 08-MAR-23 15:13
Receive Date: 10-MAR-23

Client

Parameter	Qualifier	Result	Uncertainty	MDC	RL	Units	PF	DF Analy	yst Date	Time Batch	Method
Rad Gas Flow Proportio	nal Counting										
GFPC, Ra228, Liquid "A	As Received"										
Radium-228	U	1.63	+/-1.08	1.65	3.00	pCi/L		JE1	04/04/23	1246 2402066	1
Radium-226+Radium-22	28 Calculatio	n "See Pa	arent Products"								
Radium-226+228 Sum		3.33	+/-1.29			pCi/L		NXL1	04/11/23	1121 2402065	2
Rad Radium-226											
Lucas Cell, Ra226, Liquid "As Received"											

1.00

pCi/L

Analyst Comments

The following Analytical Methods were performed:

Description

1	EPA 904.0/SW846 9320 Modified		•		
2	Calculation				
3	EPA 903.1 Modified				
Surrogate/Tracer Recov	ery Test	Result	Nominal	Recovery%	Acceptable Limits

Barium-133 Tracer GFPC, Ra228, Liquid "As Received"

Result Nonlinial Recovery Acceptable Lilli
84.8 (15%-125%)

0.572

Notes:

Radium-226

Counting Uncertainty is calculated at the 95% confidence level (1.96-sigma).

1.69

+/-0.717

Column headers are defined as follows:

Collector:

DF: Dilution Factor Lc/LC: Critical Level
DL: Detection Limit PF: Prep Factor
MDA: Minimum Detectable Activity RL: Reporting Limit

MDC: Minimum Detectable Concentration SQL: Sample Quantitation Limit

Page 14 of 32 SDG: 613963

2040 Savage Road Charleston SC 29407 - (843) 556-8171 - www.gel.com

Certificate of Analysis

Report Date: April 11, 2023

SOOP00119

Company: Santee Cooper Address: P.O. Box 2946101

OCO3

Moncks Corner, South Carolina 29461

Contact: Ms. Jeanette Gilmetti Project: ABS Lab Analytical

Client Sample ID: AF56416
Sample ID: 613963013
Matrix: Ground Water
Collect Date: 08-MAR-23 10:09
Receive Date: 10-MAR-23

Client

SP63013 Client ID: SOOP001 bund Water

Project:

Analyst Comments

Parameter	Qualifier	Result	Uncertainty	MDC	RL	Units	PF	DF Anal	yst Date	Time Batch	Method
Rad Gas Flow Proportio	nal Counting										
GFPC, Ra228, Liquid "A	As Received"										
Radium-228	U	0.331	+/-0.898	1.61	3.00	pCi/L		JE1	04/04/23	1246 2402066	1
Radium-226+Radium-22	28 Calculation	n "See Pa	arent Products"								
Radium-226+228 Sum		0.476	+/-0.942			pCi/L		NXL1	04/11/23	1121 2402065	2
Rad Radium-226											
Lucas Cell, Ra226, Liqu	id "As Recei	ved"									
Radium-226	U	0.145	+/-0.285	0.545	1.00	pCi/L		LXP1	04/11/23	0854 2402018	3
The following Analytic	al Methods w	ere perfo	ormed:								

1	EPA 904.0/SW846 9320 Modified				
2	Calculation				
3	EPA 903.1 Modified				
Surrogate/Tracer Recov	erv Test	Result	Nominal	Recoverv%	Acceptable Limits

Barium-133 Tracer GFPC, Ra228, Liquid "As Received" Result Normal Recovery Acceptable Lim

Notes:

Method

Counting Uncertainty is calculated at the 95% confidence level (1.96-sigma).

Column headers are defined as follows:

Collector:

DF: Dilution Factor Lc/LC: Critical Level
DL: Detection Limit PF: Prep Factor
MDA: Minimum Detectable Activity RL: Reporting Limit

Description

MDC: Minimum Detectable Concentration SQL: Sample Quantitation Limit

Page 15 of 32 SDG: 613963

2040 Savage Road Charleston SC 29407 - (843) 556-8171 - www.gel.com

Certificate of Analysis

Project:

Client ID:

Report Date: April 11, 2023

LXP1 04/11/23 0854 2402018

SOOP00119

SOOP001

Company: Santee Cooper Address: P.O. Box 2946101

OCO3

Moncks Corner, South Carolina 29461

Contact: Ms. Jeanette Gilmetti Project: ABS Lab Analytical

Client Sample ID: AF56417
Sample ID: 613963014
Matrix: Ground Water
Collect Date: 08-MAR-23 10:14
Receive Date: 10-MAR-23

Client

Parameter	Qualifier	Result	Uncertainty	MDC	RL	Units	PF	DF Analy	st Date	Time Batch	Method
Rad Gas Flow Prop	ortional Counting										
GFPC, Ra228, Liqu	iid "As Received"										
Radium-228		2.50	+/-1.09	1.51	3.00	pCi/L		JE1	04/04/23	1246 2402066	1
Radium-226+Radiu	ım-228 Calculatio	n "See Pa	arent Products"								
Radium-226+228 Sum		3.19	+/-1.18			pCi/L		NXL1	04/11/23	1121 2402065	2
Rad Radium-226											

1.00

pCi/L

Analyst Comments

Radium-226 0.690 +/-0.459 The following Analytical Methods were performed:

Description

Lucas Cell, Ra226, Liquid "As Received"

1	EPA 904.0/SW846 9320 Modified				
2	Calculation				
3	EPA 903.1 Modified				
Surrogate/Tracer Recove	ery Test	Result	Nominal	Recovery%	Acceptable Limits

Barium-133 Tracer GFPC, Ra228, Liquid "As Received" 89.6 (15%-125%)

0.562

Notes:

Method

Counting Uncertainty is calculated at the 95% confidence level (1.96-sigma).

Column headers are defined as follows:

Collector:

DF: Dilution Factor Lc/LC: Critical Level
DL: Detection Limit PF: Prep Factor
MDA: Minimum Detectable Activity RL: Reporting Limit

MDC: Minimum Detectable Concentration SQL: Sample Quantitation Limit

Page 16 of 32 SDG: 613963

2040 Savage Road Charleston SC 29407 - (843) 556-8171 - www.gel.com

Certificate of Analysis

Project:

Client ID:

Report Date: April 11, 2023

SOOP00119

SOOP001

Company: Santee Cooper Address: P.O. Box 2946101

OCO3

Moncks Corner, South Carolina 29461

Contact: Ms. Jeanette Gilmetti Project: ABS Lab Analytical

Client Sample ID: AF56429
Sample ID: 613963015
Matrix: Ground Water
Collect Date: 08-MAR-23 12:12
Receive Date: 10-MAR-23

Client

Parameter	Qualifier	Result	Uncertainty	MDC	RL	Units	PF	DF Anal	yst Date	Time Batch	Method
Rad Gas Flow Proportio	nal Counting										
GFPC, Ra228, Liquid "A	As Received"										
Radium-228		3.39	+/-1.22	1.54	3.00	pCi/L		JE1	04/04/23	1246 2402066	1
Radium-226+Radium-228 Calculation "See Parent Products"											
Radium-226+228 Sum		3.97	+/-1.29			pCi/L		NXL1	04/11/23	1121 2402065	2
Rad Radium-226											
Lucas Cell, Ra226, Liqu	iid "As Recei	ved"									
Radium-226		0.578	+/-0.409	0.483	1.00	pCi/L		LXP1	04/11/23	0854 2402018	3
The following Analytical Methods were performed:											

Method	Description	Analyst Comments
1	EPA 904.0/SW846 9320 Modified	
2	Calculation	
_		

3 EPA 903.1 Modified

Collector:

Surrogate/Tracer Recovery Test Result Nominal Recovery% Acceptable Limits

Barium-133 Tracer GFPC, Ra228, Liquid "As Received"

78.1 (15%-125%)

Notes:

Counting Uncertainty is calculated at the 95% confidence level (1.96-sigma).

Column headers are defined as follows:

DF: Dilution Factor Lc/LC: Critical Level
DL: Detection Limit PF: Prep Factor
MDA: Minimum Detectable Activity RL: Reporting Limit

MDC: Minimum Detectable Concentration SQL: Sample Quantitation Limit

Page 17 of 32 SDG: 613963

2040 Savage Road Charleston SC 29407 - (843) 556-8171 - www.gel.com

Certificate of Analysis

Report Date: April 11, 2023

Company: Santee Cooper Address: P.O. Box 2946101

OCO3

Moncks Corner, South Carolina 29461

Contact: Ms. Jeanette Gilmetti Project: ABS Lab Analytical

Client Sample ID: AF56406
Sample ID: 613963016
Matrix: Ground Water
Collect Date: 09-MAR-23 10:29
Receive Date: 10-MAR-23

Client

Client ID: SOOP001

SOOP00119

Project:

Parameter	Qualifier	Result	Uncertainty	MDC	RL	Units	PF	DF Analy	st Date	Time Batch	Method
Rad Gas Flow Proportion	nal Counting										
GFPC, Ra228, Liquid "A	As Received"										
Radium-228	U	0.757	+/-0.814	1.35	3.00	pCi/L		JE1	04/04/23	1246 2402066	1
Radium-226+Radium-22	28 Calculation	n "See Pa	arent Products"								
Radium-226+228 Sum		1.81	+/-0.979			pCi/L		NXL1	04/11/23	1121 2402065	2
Rad Radium-226											
Lucas Cell, Ra226, Liqu	iid "As Recei	ved"									
Radium-226		1.06	+/-0.544	0.508	1.00	pCi/L		LXP1	04/11/23	0854 2402018	3
The following Analytic	al Methods w	ere perfo	ormed:								
Method	Description					1	Analys	st Comment	s		

2 Ca	lculation				
3 EP	A 903.1 Modified				
Surrogate/Tracer Recovery	Test	Result	Nominal	Recovery%	Acceptable Limits
D : 100 F	GEDG D 220 I : 1111 D : 11			0.4.0	(150/ 1050/)

Barium-133 Tracer GFPC, Ra228, Liquid "As Received" 84.9 (15%-125%)

Notes:

Counting Uncertainty is calculated at the 95% confidence level (1.96-sigma).

EPA 904.0/SW846 9320 Modified

Column headers are defined as follows:

Collector:

DF: Dilution Factor Lc/LC: Critical Level
DL: Detection Limit PF: Prep Factor
MDA: Minimum Detectable Activity RL: Reporting Limit

MDC: Minimum Detectable Concentration SQL: Sample Quantitation Limit

Page 18 of 32 SDG: 613963

2040 Savage Road Charleston SC 29407 - (843) 556-8171 - www.gel.com

Certificate of Analysis

Project:

Client ID:

Analyst Comments

Report Date: April 11, 2023

SOOP00119

SOOP001

Company: Santee Cooper Address: P.O. Box 2946101

OCO3

Moncks Corner, South Carolina 29461

Contact: Ms. Jeanette Gilmetti Project: ABS Lab Analytical

Client Sample ID: AF56407
Sample ID: 613963017
Matrix: Ground Water
Collect Date: 09-MAR-23 10:34
Receive Date: 10-MAR-23

Description

Client

Parameter	Qualifier	Result	Uncertainty	MDC	RL	Units	PF	DF Analy	st Date	Time Batch	Method
Rad Gas Flow Proportio	nal Counting										
GFPC, Ra228, Liquid "A	As Received"										
Radium-228	U	0.0962	+/-1.20	2.19	3.00	pCi/L		JE1	04/04/23	1246 2402066	1
Radium-226+Radium-22	28 Calculation	n "See Pa	arent Products"								
Radium-226+228 Sum		1.39	+/-1.35			pCi/L		NXL1	04/11/23	1121 2402065	2
Rad Radium-226											
Lucas Cell, Ra226, Liqu	iid "As Recei	ved"									
Radium-226		1.29	+/-0.623	0.554	1.00	pCi/L		LXP1	04/11/23	0930 2402018	3
The following Analytic	al Methods w	ere perfo	ormed:								

Surrogate/Tracer Recove	erv Test	Result	Nominal	Recovery%	Acceptable Limits
3	EPA 903.1 Modified				
2	Calculation				
1	EPA 904.0/SW846 9320 Modified				

Surrogate/Tracer Recovery Test Result Nominal Recovery% Acceptable Limits

Barium-133 Tracer GFPC, Ra228, Liquid "As Received" 79.8 (15%-125%)

Notes:

Method

Counting Uncertainty is calculated at the 95% confidence level (1.96-sigma).

Column headers are defined as follows:

Collector:

DF: Dilution Factor Lc/LC: Critical Level
DL: Detection Limit PF: Prep Factor
MDA: Minimum Detectable Activity RL: Reporting Limit

MDC: Minimum Detectable Concentration SQL: Sample Quantitation Limit

Page 19 of 32 SDG: 613963

2040 Savage Road Charleston SC 29407 - (843) 556-8171 - www.gel.com

Certificate of Analysis

Project:

Client ID:

Report Date: April 11, 2023

SOOP00119

SOOP001

Company: Santee Cooper Address: P.O. Box 2946101

OCO₃

Moncks Corner, South Carolina 29461

Contact: Ms. Jeanette Gilmetti Project: ABS Lab Analytical

Client Sample ID: AF56418
Sample ID: 613963018
Matrix: Ground Water
Collect Date: 09-MAR-23 12:07
Receive Date: 10-MAR-23

Client

Parameter	Qualifier	Result	Uncertainty	MDC	RL	Units	PF	DF Analy	st Date	Time Batch	Method
Rad Gas Flow Proportio	nal Counting										
GFPC, Ra228, Liquid "A	As Received"										
Radium-228	U	0.0769	+/-0.950	1.77	3.00	pCi/L		JE1	04/04/23	1246 2402066	1
Radium-226+Radium-22	28 Calculatio	n "See Pa	arent Products"								
Radium-226+228 Sum		1.17	+/-1.09			pCi/L		NXL1	04/11/23	1121 2402065	2
Rad Radium-226											
Lucas Cell, Ra226, Liqu	iid "As Recei	ved"									
Radium-226		1.09	+/-0.528	0.499	1.00	pCi/L		LXP1	04/11/23	0930 2402018	3

The following Analytical Methods were performed:

Method Description Analyst Comments

EPA 904.0/SW846 9320 Modified

2 Calculation 3 EPA 903.1 Modified

Collector:

Surrogate/Tracer Recovery Test Result Nominal Recovery% Acceptable Limits

Barium-133 Tracer GFPC, Ra228, Liquid "As Received"

81.2 (15%-125%)

Notes:

Counting Uncertainty is calculated at the 95% confidence level (1.96-sigma).

Column headers are defined as follows:

DF: Dilution Factor Lc/LC: Critical Level
DL: Detection Limit PF: Prep Factor
MDA: Minimum Detectable Activity RL: Reporting Limit

MDC: Minimum Detectable Concentration SQL: Sample Quantitation Limit

Page 20 of 32 SDG: 613963

2040 Savage Road Charleston SC 29407 - (843) 556-8171 - www.gel.com

Certificate of Analysis

Project:

Client ID:

Report Date: April 11, 2023

SOOP00119

SOOP001

Company: Santee Cooper Address: P.O. Box 2946101

OCO3

Moncks Corner, South Carolina 29461

Contact: Ms. Jeanette Gilmetti Project: ABS Lab Analytical

Client Sample ID: AF56422
Sample ID: 613963019
Matrix: Ground Water
Collect Date: 09-MAR-23 13:19
Receive Date: 10-MAR-23

10-MAR-23 Client

Parameter	Qualifier	Result	Uncertainty	MDC	RL	Units	PF	DF Analy	yst Date	Time Batch	Method
Rad Gas Flow Proporti	ional Counting	5									
GFPC, Ra228, Liquid	"As Received"	'									
Radium-228	U	0.992	+/-0.901	1.45	3.00	pCi/L		JE1	04/04/23	1247 2402066	1
Radium-226+Radium-	228 Calculation	on "See P	arent Products"								
Radium-226+228 Sum		2.31	+/-1.07			pCi/L		NXL1	04/11/23	1121 2402065	2
Rad Radium-226											
Lucas Cell, Ra226, Lic	quid "As Rece	ived"									
Radium-226	_	1.32	+/-0.571	0.464	1.00	pCi/L		LXP1	04/11/23	0930 2402018	3
The following Analyti	cal Methods v	vere perfo	ormed:								
Method	Description						Analy	st Comment	S		

Michiou	Description		Allaryst Col	.mncms	
1	EPA 904.0/SW846 9320 Modified		•		
2	Calculation				
3	EPA 903.1 Modified				
Surrogate/Tracer Recove	erv Test	Result	Nominal	Recovery%	Acceptable Limits

Barium-133 Tracer GFPC, Ra228, Liquid "As Received" 69.8 (15%-125%)

Notes:

Counting Uncertainty is calculated at the 95% confidence level (1.96-sigma).

Column headers are defined as follows:

Collector:

DF: Dilution Factor Lc/LC: Critical Level
DL: Detection Limit PF: Prep Factor
MDA: Minimum Detectable Activity RL: Reporting Limit

MDC: Minimum Detectable Concentration SQL: Sample Quantitation Limit

Page 21 of 32 SDG: 613963

2040 Savage Road Charleston, SC 29407 - (843) 556-8171 - www.gel.com

QC Summary

Report Date: April 11, 2023

Santee Cooper P.O. Box 2946101

OCO3

Moncks Corner, South Carolina

Contact: Ms. Jeanette Gilmetti

Workorder: 613963

Parmname	NOM	Sample	Qual	QC	Units	RPD%	REC%	Range An	lst	Date Time
Rad Gas Flow Batch 2402066 ———										
QC1205352839 613963001 DUP Radium-228		2.18	U	1.38	pCi/L	45.2		(0% - 100%)	IF1	04/04/23 12:45
	Uncertainty	+/-1.16		+/-1.13	Pose			(670 10070)	V 21	0 11 0 11 20 121 10
QC1205352840 LCS										
Radium-228	81.6			77.8	pCi/L		95.3	(75%-125%)		04/04/23 12:45
	Uncertainty			+/-4.42						
QC1205352838 MB										
Radium-228			U	0.382	pCi/L					04/04/23 12:45
	Uncertainty			+/-0.779						
Rad Ra-226										
Batch 2402018 ———										
QC1205352737 613963001 DUP Radium-226		0.971		0.957	pCi/L	1.4		(0% - 100%) L	VD1	04/11/22 00:20
Radium-220	Uncertainty	+/-0.495		+/-0.511	pCI/L	1.4		(078 - 10078) L	AFI	04/11/23 09.30
QC1205352739 LCS Radium-226	26.4			22.4	pCi/L		84.9	(75%-125%)		04/11/23 09:30
Radium-226	Uncertainty			+/-2.39	pCI/L		84.9	(/3%-123%)		04/11/23 09:30
	Oncertainty			17-2.37						
QC1205352736 MB				0.050	G: /T					
Radium-226	Uncertainty		U	0.253 +/-0.405	pCi/L					04/11/23 09:30
	Oncertainty			+/-0.403						
QC1205352738 613963001 MS										
Radium-226	132	0.971		101	pCi/L		75.9	(75%-125%)		04/11/23 09:30
	Uncertainty	+/-0.495		+/-10.7						

Notes:

Counting Uncertainty is calculated at the 95% confidence level (1.96-sigma).

The Qualifiers in this report are defined as follows:

U Analyte was analyzed for, but not detected above the MDL, MDA, MDC or LOD.

J Value is estimated

X Consult Case Narrative, Data Summary package, or Project Manager concerning this qualifier

H Analytical holding time was exceeded

< Result is less than value reported

Page 22 of 32 SDG: 613963

Page 1 of 2

2040 Savage Road Charleston, SC 29407 - (843) 556-8171 - www.gel.com

QC Summary

Workorder: 613963 Page 2 of 2

Parmname	NOM	Sample Qual	QC	Units	RPD%	REC%	Range	Anlst	Date	Time

- Result is greater than value reported
- Gamma Spectroscopy--Uncertain identification UI
- BDResults are either below the MDC or tracer recovery is low
- h Preparation or preservation holding time was exceeded
- R Sample results are rejected
- RPD of sample and duplicate evaluated using +/-RL. Concentrations are <5X the RL. Qualifier Not Applicable for Radiochemistry.
- N/A RPD or %Recovery limits do not apply.
- ND Analyte concentration is not detected above the detection limit
- M M if above MDC and less than LLD
- NJ Consult Case Narrative, Data Summary package, or Project Manager concerning this qualifier
- FA Failed analysis.
- UJ Gamma Spectroscopy--Uncertain identification
- Q One or more quality control criteria have not been met. Refer to the applicable narrative or DER.
- K Analyte present. Reported value may be biased high. Actual value is expected to be lower.
- UL Not considered detected. The associated number is the reported concentration, which may be inaccurate due to a low bias.
- Analyte present. Reported value may be biased low. Actual value is expected to be higher. L
- See case narrative N1
- Y Other specific qualifiers were required to properly define the results. Consult case narrative.
- ** Analyte is a Tracer compound
- REMP Result > MDC/CL and < RDL M
- J See case narrative for an explanation

N/A indicates that spike recovery limits do not apply when sample concentration exceeds spike conc. by a factor of 4 or more or %RPD not applicable.

- ^ The Relative Percent Difference (RPD) obtained from the sample duplicate (DUP) is evaluated against the acceptance criteria when the sample is greater than five times (5X) the contract required detection limit (RL). In cases where either the sample or duplicate value is less than 5X the RL, a control limit of +/- the RL is used to evaluate the DUP result.
- * Indicates that a Quality Control parameter was not within specifications.

For PS, PSD, and SDILT results, the values listed are the measured amounts, not final concentrations.

Where the analytical method has been performed under NELAP certification, the analysis has met all of the requirements of the NELAC standard unless qualified on the QC Summary.

Page 23 of 32 SDG: 613963

Radiochemistry Technical Case Narrative Santee Cooper SDG #: 613963

Product: GFPC, Ra228, Liquid

<u>Analytical Method:</u> EPA 904.0/SW846 9320 Modified <u>Analytical Procedure:</u> GL-RAD-A-063 REV# 5

Analytical Batch: 2402066

The following samples were analyzed using the above methods and analytical procedure(s).

GEL Sample ID#	Client Sample Identification
613963001	AF56409
613963002	AF56410
613963003	AF56411
613963004	AF56412
613963005	AF56413
613963006	AF56430
613963007	AF56419
613963008	AF56425
613963009	AF56426
613963010	AF56427
613963011	AF56408
613963012	AF56415
613963013	AF56416
613963014	AF56417
613963015	AF56429
613963016	AF56406
613963017	AF56407
613963018	AF56418
613963019	AF56422
1205352838	Method Blank (MB)
1205352839	613963001(AF56409) Sample Duplicate (DUP)
1205352840	Laboratory Control Sample (LCS)

The samples in this SDG were analyzed on an "as received" basis.

Data Summary:

All sample data provided in this report met the acceptance criteria specified in the analytical methods and procedures for initial calibration, continuing calibration, instrument controls and process controls where applicable, with the following exceptions.

Preparation Information

Homogenous Matrix

Samples 613963012 (AF56415), 613963013 (AF56416), 613963014 (AF56417), 613963016 (AF56406), 613963017 (AF56407) and 613963018 (AF56418) were non-homogenous matrix. yellow tint 613963012 (AF56415), 613963013 (AF56416), 613963014 (AF56417), 613963016 (AF56406), 613963017 (AF56407) and 613963018 (AF56418).

Page 24 of 32 SDG: 613963

Product: Lucas Cell, Ra226, Liquid Analytical Method: EPA 903.1 Modified

Analytical Procedure: GL-RAD-A-008 REV# 15

Analytical Batch: 2402018

The following samples were analyzed using the above methods and analytical procedure(s).

GEL Sample ID#	Client Sample Identification
613963001	AF56409
613963002	AF56410
613963003	AF56411
613963004	AF56412
613963005	AF56413
613963006	AF56430
613963007	AF56419
613963008	AF56425
613963009	AF56426
613963010	AF56427
613963011	AF56408
613963012	AF56415
613963013	AF56416
613963014	AF56417
613963015	AF56429
613963016	AF56406
613963017	AF56407
613963018	AF56418
613963019	AF56422
1205352736	Method Blank (MB)
1205352737	613963001(AF56409) Sample Duplicate (DUP)
1205352738	613963001(AF56409) Matrix Spike (MS)
1205352739	Laboratory Control Sample (LCS)

The samples in this SDG were analyzed on an "as received" basis.

Data Summary:

All sample data provided in this report met the acceptance criteria specified in the analytical methods and procedures for initial calibration, continuing calibration, instrument controls and process controls where applicable, with the following exceptions.

Preparation Information

Homogenous Matrix

Samples 613963012 (AF56415), 613963013 (AF56416), 613963014 (AF56417), 613963017 (AF56407) and 613963018 (AF56418) were non-homogenous matrix.

Miscellaneous Information

Additional Comments

The matrix spike, 1205352738 (AF56409MS), aliquot was reduced to conserve sample volume.

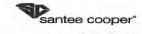
Page 25 of 32 SDG: 613963

Certification Statement

Where the analytical method has been performed under NELAP certification, the analysis has met all of the requirements of the NELAC standard unless otherwise noted in the analytical case narrative.

Page 26 of 32 SDG: 613963

Contract Lab Info: GEL


RAD - 4/17/23

Chain of Custody

santee cooper

Customer Email/Report Recipient:			nt:			esults Ne		y:	Project/Task/Unit #: Rerun request 1 125915 / JM02.09.66/1. / 36500 Yes								ggec	ı QC	
LCWIUJA	@st	anteeco	ooper.com	-					123	112	<u> </u>	02.0	1.691.1	Yes Yes		nalysi	s Grou	up	
Labworks ID # (Internal use only)	Sample Location/ Description					Collection Time	Sample Collector	Total # of containers	Bottle type: (Glass-G/Plastic-P)	Grab (G) or Composite (C)	Matrix(see below)	Preservative (see below)	Meth Repo Mise Any	Comments od # orting limit . sample info other notes	70C/10C	ALKALINITY	SWFIDE	RAD 226 +228	
AF56409	WAP-1	4		3/6	/23	1214	DOM ML	6	P/6	6	GW	*	* SULF	IDE HAS SHORT HOUD	2	1	1	2	
1 10	WAP -	14D				1219	1	1	11	1	1	1			1	1	1	1	
		ш. А.				1108							* PRES	SERVATIVES				\prod	
- 11	WAP - 14A			+		1100		+	+	-	+	+	TOC-	H2S04	1	\dagger	\dagger	+	
12				- 1		1515	-	-	1		1	-	SULFIDE RAD HN	BINCALETATE, NAOH	11	H	+	+	
[3	WAP-	140				1341							∠H °C	7.77		Ц		11	
30	WAP-	29				1010	1	1	1	Ī	1	1			1	1	1	7	
AF56419	WAP -19			3/7/23		145]	1	1	1	1	1	1	ALKAL-	TOTAL, BICARB, CARB	1	1	1	1	
1 25		25			1	1249							RAD - IN	CLUDE TOTAL CALC.					
26						1022							DOC-NOT FIELD FILTERED						
_ 27		26D				1027	1	Ī		Ī	1	1			1	1	1	1	
Relinquished b	v: Emr	oloyee#	Date	Tin	ne I	Recei	ved by:		Employee	2#	Dat	e	Time	Sample Receiving (Internal TEMP (°C):					
Sproun	35594 3/10		3/10/23	110	0	M. A	1		GE	L	3/10/	[23	1100						
Relinquished b			Date	Time			ved by:		Employee	100	Dat	,	Time	Correct pH: Yes No					
m. An	GE	-	3.10.23		20	The	Hel	_	<i>aeu</i>	-			162ª	Preservative Lot#:					
Relinquished b	y: Emp	oloyee#	Date	Tin	ne 4	Recei	ved by:		Employee	e #	Ďat	e	Time	Date/Time/Init for preserv	ative:				
ПХ	IETALS	(all)	- N-4	at a m		0.01	CC		G	ypsu			Coal	Flyash			11	5 14	
□Ag □	Cu	□ Sb	Nut □ TO	rien C	<u>ts</u>	D BTEX	SC.		□ Wallb		-	W E	Ultimate	☐ Ammonia		ans.	ou Qu		
		□ Se		C		□ Naphth			Gyj belo	psum(all		□ % Moist	nire □ LOI □ % Carbon		%Ma Color			
		□ Sr	2 NH			□ VOC			DA	IM			□ Sulfur	□ Mineral		Acidi Dielect		ength.	
DAMES A COMMENT		□ Ti	OF.		1	□ E. Coli			□ TOC □ Fotal metals			3	☐ BTUs Analysis ☐ Volatile Matter ☐ Sieve			Dissolved Gases			
	Mn TI NO					☐ Total Coliform ☐ pH				oluble N urity (C		A S	□ CHN	☐ % Moisture	E U	sed (10	177	
			Br		☐ Dissolved As ☐ Dissolved Fe			□%	Moisn		200	Other Tests: XRF Scan	CONTRACTOR OF THE PARTY OF THE		Flash Metal	s in o			
No. 10 Telephone Services		UN			19	□ Rad 220	□ Rad 226			1		il i	HG1	IGI				NLPb	
□ Co □	Ni	□ Hg	1 (A. S. A.)			□ Rad 228				hlorides article S		ALC: NO	Fineness Particulate M	atter D As		TX			
The State of the S		□ CrVI			37 3	1-10	The state of		L Sulfur				□ TSS			GOFER			

Chain of Custody

Santee Cooper One Riverwood Drive Moncks Corner, SC 29461 Phone: (843)761-8000 Ext. 5148 Fax: (843)761-4175

Customer Email/Report Recipient: LCWILLIA @santeecooper.com					Results No	eeded b	y:	1250		oject/	Rerun reque	-	or any flagged QC				
														4	Analysi	is Grou	<u>up</u>
1277	orks ID # nal use	Sample Lo Descriptio		Collection Date	Collection Time	Sample Collector	Total # of containers	Bottle type: (Glass-G/Plastic-P)	Grab (G) or Composite (C)	Matrix(see below)	Preservative (see	Rep Mis	Comments thod # porting limit sc. sample info y other notes	TOC/DOC	AUKAUNITY	SULFIDE	RAD 226 (228
AF5	6408	WAP-1	3	3/8/2	3 1338	ZDM ML	6	٢	G	ew	*-	*SULF	IDE HAS SHORT HOL	2	1	ı	2
	15) 1	6		1513		1	1	1	1	1			1	1	1	1
	16	1	7		1009							* PRES	ERVATIVES				
	17	1	70		1014							TOC H					\forall
							+			1	1	RAD H	LINC ACETATE, NEO!	-		H	H
_1	. 29	- 7	18	-	1212	-	7	-	•	-		<4°C			H		
AF5	6406	WAP-12		3/9/23	3 1029				1	1							
1	07	1 -12	D	11	1034							ALKAL -	TOTAL, BICARB, CAR	3			
	18	15	1		1207								CLUDE SOTAL CALC.				
	22	1 2	2		1319	1	1	1	1	1	1		T FIELD FILTERED	1	1	1	1
Reli	nguished by:	Employ	ee# Date	Time	Receiv	ed by:	E	mployee	#	Date		Time	Sample Receiving (Intern				
Stra	oun	3550	14 3/10/23	1100				GEL	1	3/10/2	3	1100	TEMP (°C):		1:		-
	nquished by:			Time		red by:	E	Employee #		Date		Time		lo			
M	An_	GEL	3.16.23	1620	1	al	16	EL	1	/ . / .	2.2	1620	Preservative Lot#:				
Reli	nquished by:	Employ	ee# Date	Time	Receiv	red by:	E	mployee	#	Date		Time	Date/Time/Init for prese	rvative:			
	ΠМ	ETALS (a	1)	100	A Carte and			-	333.4	res to		- (m. 51)	20000	L September 1	100		
□ Ag	The second second	THE RESERVE TO SHARE SHOWN	h	rients	MI	SC.			psun	n		Coal	CONTRACTOR OF THE PARTY OF THE		Oi		
□ Al	□Fe	□S	e O DO	the same of the same of	☐ BTEX ☐ Naphtha	lene		Wallbo Gyp	sum(a	11	D	Ultimate ☐ % Mois	ture		www.Oi	H Qual sture	S. William
□ As	□K	□S		/TPO4	□ THM/H. □ VOC	AA		belo	v)			□ Ash	□ % Carbon		Color Acidity		
□В	□Li	□S	D NI	13-N	□ Oil & G	rease		□ AI □ TO			100	Sulfur	□ Mineral	EL	Dielectric	è Streng	gth
□ Ba	□М	g D T	DCI		E. Coli	liform	100	L. Tot	al meta			□ BTUs □ Volatile	Analysis Matter Sieve		FI	ed Gas	SPS
□Ве	□М	n 🗆 T	NAME OF TAXABLE PARTY.		☐ Total Co	mom	01		uble M ity (Ca			□ CHN	□ % Moisture		ed Oi		
□ Ca	□М	0 🗆 V	□ Br	THE RESERVE OF THE PERSON NAMED IN	☐ Dissolve		100	1%1	Moistur			ther Tests:			lashpu		
□ Cd			- NC	The second secon	☐ Dissolve ☐ Rad 226			□ Sul □ pH	fites			XRF Scan HGI	NPDES	100		in oil Cr.Ni.	
□Со	□Ni			1	□ Rad 228 □ PCB			□ Chl	lorides			Fineness	□ Oil & Grease □ As	0.3	Hg)		
□ Cr	□ Pi		A STATE OF THE PARTY OF THE PAR	THE REAL PROPERTY.	HICD		B) (1)	☐ Par ☐ Sulfur	ticle Si	ze		Particulate M	TSS		DEER		

Date Received By: Date Received: PodEx Express FedEx Ground UPS Field Services Courted Other Carrier and Tracking Number Suspected Hazard Information \$\frac{2}{3} \times \t	Cli	ent: SCOP			SD	G/AR/COC/Work Order: 6 30,591613962
FedEx Express FedEx Ground UPS Field Services Courts Other Carrier and Tracking Number Supported Hazard Information \$\frac{2}{\times} \frac{2}{\times} \times \frac{1}{\times} e	ceived By: TW			Da	te Received: 3/10/23	
Hazard Class Slaped: LIN9		Carrier and Tracking Number				
Austhipped as a DOT Hazardous? COC notation or radioactive stuckers on containers equal client designation.	Sus	pected Hazard Information	Yes	No	*If	Net Counts > 100cpm on samples not marked "radioactive", contact the Radiation Safety Group for further investigation.
Maximum Net Counts Observed* (Observed Counts - Area Background Counts):	4)5	Shipped as a DOT Hazardous?		1	1	ard Class Shipped: UN#:
Coc notation or hazard labels on containers equal client designation. Coc notation or hazard labels on containers equal client designation.				1	1	
If D or E is yes, select Hazards below. PCB's Flammable Foreign Soil RCRA Asbestos Beryllium Other:				1	Ma	ximum Net Counts Observed* (Observed Counts - Area Background Counts): CPM) mR/Hr Classified as: Rad 1 Rad 2 Rad 3
PCB's Flammable Foreign Soil RCRA Asbestos Beryllium Other:	0) !	Did the client designate samples are hazardous?		/	1	
Supples requiring charact and sealed? Carcle Applicable: Client contacted and provided COC COC created upon receipt with shipment? Samples requiring cold preservation within (0 ≤ 6 deg. C)?* Daily check performed and passed on IR temperature pevice Serial #: If (If Applicable): Carcle Applicable: Client contacted and provided COC COC created upon receipt with shipment? TEMP:	E) [Did the RSO identify possible hazards?		/		
1 Shipping containers received intact and sealed? 2 Chain of custody documents included with shipment? 3 Samples requiring cold preservation within (0 ≤ 6 deg. C)?* 4 Daily check performed and passed on IR temperature gun? 5 Sample containers intact and sealed? 5 Samples requiring cold preservation at proper pH? 6 Samples requiring cold preservation at proper pH? 7 Do any samples require Volatile Analysis? 8 Samples received within holding time? 9 Samples received within holding time? 9 Samples received within holding time? 10 Date & time on COC match date & time on bottles? 11 Date & time on COC match date & time on bottles? 12 Gircle Applicable: No trelinquished Other (describe) 13 Circle Applicable: No trelinquished Other (describe) 15 Circle Applicable: No trelinquished Other (describe) 16 Circle Applicable: No trelinquished Other (describe) 17 Circle Applicable: No trelinquished Other (describe) 18 Sample ID's on COC match date & time on bottles? 19 Circle Applicable: No trelinquished Other (describe) 19 Circle Applicable: No trelinquished Other (describe) 20 Circle Applicable: Not relinquished Other (describe) 21 Circle Applicable: Not relinquished Other (describe) 22 Circle Applicable: Not relinquished Other (describe)		Sample Receipt Criteria	Yes	N.A.	ž	Comments/Qualifiers (Required for Non-Conforming Items)
with shipment? Samples requiring cold preservation within (0 ≤ 6 deg. C)?* Daily check performed and passed on IR temperature gun? Sample containers intact and sealed? Sample containers intact and sealed? Samples requiring chemical preservation at proper pH? Do any samples require Volatile Analysis? Samples received within holding time? Sample ID's and containers affected: If Yes, are Encores or Soil Kits present for solids? Yes_No_NA_(If yes, take to VOA Freezer) Do liquid VOA vials fire of headspace? Yes_No_NA_ ID's and containers affected: ID's and containers affected: ID's and containers affected: ID's and containers affected: ID's and containers affected: ID's and containers affected: Circle Applicable: No containers No times on containers COC missing info Other (describe) Circle Applicable: No container count on COC Other (describe) Circle Applicable: Not relinquished Other (describe)	1		1			Circle Applicable: Seals broken Damaged container Leaking container Other (describe)
*all temperatures are recorded in Celsius *all temperature gun? *all temperature Device Serial # (If Applicable): Temperature gun? Sample containers intact and sealed? Samples requiring chemical preservation at proper pH? Do any samples require Volatile Analysis? Samples received within holding time? Samples received within holding time? Sample ID's and containers affected: If Preservation added. Lot#: If Yes, are Encores or Soil Kits present for solids? YesNoNA(If unknown, select No) Are liquid VOA vials contain acid preservation? YesNoNA(If unknown, select No) Are liquid VOA vials free of heatspace? YesNoNA(If unknown, select No) ID's and tests affected: ID's and containers affected: ID's and containers affected: Circle Applicable: No dates on containers. No times on containers. COC missing info Other (describe) Circle Applicable: No container count on COC. Circle Applicable: No container count on COC. Circle Applicable: No container count on COC. Circle Applicable: No trelinquished. Circle Applicable: Not relinquished.	2		1			
4 temperature gun? Secondary Temperature Device Serial # (If Applicable): Sample containers intact and sealed? Circle Applicable: Seals broken Damaged container Leaking container Other (describe) Samples requiring chemical preservation at proper pH? Do any samples require Volatile Analysis? Do any samples require Volatile Analysis? Sample ID's and Containers Affected: If Preservation added. Lot#: If Yes, are Encores or Soil Kits present for solids? YesNoNA(If unknown, select No) Are liquid VOA vials containers affected: ID's and tests affected: ID's and containers affected: ID's and containers affected: Circle Applicable: No dates on containers No times on containers COC missing info Other (describe) Circle Applicable: No container count on COC Other (describe) Circle Applicable: Not relinquished Other (describe)	3		/			*all temperatures are recorded in Celsius TEMP:
Sample containers intact and sealed? Samples requiring chemical preservation at proper pH? Do any samples require Volatile Analysis? Samples received within holding time? Samples received within holding time? Samples received within holding time? Samples received within holding time? Date & time on COC match ID's on bottles? Date & time on COC match date & time on bottles? Number of containers received match number indicated on COC? Number of containers received match number indicated on COC? Are sample containers received match number indicated on COC? Circle Applicable: No container count on COC Other (describe) Circle Applicable: No trelinquished Other (describe) Circle Applicable: Not relinquished Other (describe)	4	Daily check performed and passed on IR temperature gun?	/			Secondary Temperature Device Serial # (If Applicable):
at proper pH? If Preservation added. Lot#: If Yes, are Encores or Soil Kits present for solids? YesNoNA(If yes, take to VOA Freezer) Do any samples require Volatile Analysis? If Yes, are Encores or Soil Kits present for solids? YesNoNA(If unknown, select No) Are liquid VOA vials contain acid preservation? YesNoNA(If unknown, select No) Are liquid VOA vials free of headspace? YesNoNA Sample ID's and containers affected: ID's and tests affected: ID's and containers affected: ID's and containers affected: Circle Applicable: No dates on containers No times on containers COC missing info Other (describe) The containers received match number of containers received match number indicated on COC? Are sample containers received match number indicated on COC? Are sample containers identifiable as GEL provided by use of GEL labels? Circle Applicable: Not relinquished Other (describe) Circle Applicable: Not relinquished Other (describe)	5	Sample containers intact and sealed?	/			
The servation added. Lote: If Yes, are Encores or Soil Kits present for solids? YesNoNA(If yes, take to VOA Freezer) Do any samples require Volatile Analysis? If Yes, are Encores or Soil Kits present for solids? YesNoNA(If unknown, select No) Are liquid VOA vials free of headspace? YesNoNA(If unknown, select No) Are liquid VOA vials free of headspace? YesNoNA(If unknown, select No) Are liquid VOA vials free of headspace? YesNoNA(If unknown, select No) Are liquid VOA vials free of headspace? YesNoNA(If unknown, select No) Are liquid VOA vials free of headspace? YesNoNA(If unknown, select No) Are liquid VOA vials free of headspace? YesNoNA(If unknown, select No) Are liquid VOA vials free of headspace? YesNoNA(If unknown, select No) Are liquid VOA vials free of headspace? YesNoNA(If unknown, select No) Are liquid VOA vials free of headspace? YesNoNA(If unknown, select No) Are liquid VOA vials free of headspace? YesNoNA(If unknown, select No) Are liquid VOA vials free of headspace? YesNoNA(If unknown, select No) Are liquid VOA vials free of headspace? YesNoNA(If unknown, select No) Are liquid VOA vials free of headspace? YesNoNA(If unknown, select No) Are liquid VOA vials free of headspace? YesNoNA(If unknown, select No	6		/			
Do any samples require Volatile Analysis? Do liquid VOA vials contain acid preservation? Yes No NA (If unknown, select No) Are liquid VOA vials free of headspace? Yes No NA Sample ID's and containers affected: ID's and tests affected: ID's and containers affected: Date & time on COC match ID's on bottles? Circle Applicable: No dates on containers No times on containers COC missing info Other (describe) Circle Applicable: No container count on COC Other (describe) Circle Applicable: No container count on COC Other (describe) Circle Applicable: No trelinquished/received sections? Circle Applicable: Not relinquished Other (describe)	-	at proper pre-				161/
Analysis? Are liquid VOA vials free of headspace? YesNoNA Sample ID's and containers affected: ID's and tests affected: ID's and containers affected: ID's and containers affected: ID's and containers affected: Circle Applicable: No dates on containers No times on containers COC missing info Other (describe) Number of containers received match number indicated on COC? Are sample containers identifiable as GEL provided by use of GEL labels? Circle Applicable: No container count on COC Other (describe) Circle Applicable: No relinquished Other (describe)	7	Do any samples require Volatile				Do liquid VOA vials contain acid preservation? YesNoNA (If unknown, select No.)
Sample ID's on COC match ID's on bottles? Date & time on COC match date & time on bottles? Number of containers received match number indicated on COC? Are sample containers identifiable as GEL provided by use of GEL labels? Circle Applicable: No container count on COC Other (describe) Circle Applicable: No container count on COC Other (describe) Circle Applicable: No container count on COC Other (describe) Circle Applicable: No container count on COC Other (describe) Circle Applicable: No trelinquished Other (describe)	/				/	Are liquid VOA vials free of headspace? Yes No NA
bottles? Date & time on COC match date & time on bottles? Number of containers received match number indicated on COC? Are sample containers identifiable as GEL provided by use of GEL labels? Circle Applicable: No container count on COC Other (describe) Circle Applicable: No container count on COC Other (describe) Circle Applicable: No container count on COC Other (describe) Circle Applicable: No container count on COC Other (describe) Circle Applicable: No relinquished Other (describe)	8	Samples received within holding time?	/			
on bottles? Number of containers received match number indicated on COC? Are sample containers identifiable as GEL provided by use of GEL labels? COC form is properly signed in relinquished/received sections? Circle Applicable: No container count on COC Other (describe) Circle Applicable: Not relinquished Other (describe)	9					ID's and containers affected:
number indicated on COC? Are sample containers identifiable as GEL provided by use of GEL labels? COC form is properly signed in relinquished/received sections? Circle Applicable: Not relinquished Other (describe)	10					
GEL provided by use of GEL labels? COC form is properly signed in relinquished/received sections? Circle Applicable: Not relinquished Other (describe)	11		1	有		Circle Applicable: No container count on COC Other (describe)
relinquished/received sections?	12	GEL provided by use of GEL labels?	1			Circle AV. II. W. W. W. W. W. W. W. W. W. W. W. W. W.
				1		Circle Applicable: Not relinquished Other (describe)

Page 29 of 32 SDG: 613963

Jordan Melton

From: Linda Williams < linda.williams@santeecooper.com>

Sent: Tuesday, March 14, 2023 8:08 AM

To: Jordan Melton

Cc: Jeanette Gilmetti; Courtney Ames Watkins; Sherri Brown

Subject: RE: Sample ID verification for "AF56429: WAP-28" 613963

[EXTERNAL EMAIL] DO NOT CLICK links or attachments unless you recognize the sender and know the content is safe.

Hello Jordan,

The sample should be WAP-28 id AF56429.

Thank you,

Linda Williams

Manager Analytical Services 843-761-8000 x5184

From: Jeanette Gilmetti < jeanette.gilmetti@santeecooper.com>

Sent: Tuesday, March 14, 2023 7:21 AM

To: Linda Williams < linda.williams@santeecooper.com>; Courtney Ames Watkins

<COURTNEY.AMESWATKINS@santeecooper.com>

Subject: FW: Sample ID verification for "AF56429: WAP-28" 613963

Please see note below and let me know if this has been resolved or if I can assist.

Jeanette Gilmetti

santee cooper Environmental Resources (843) 761-8000 ext. 4564

<u>jeanette.gilmetti@santeecooper.com</u>

From: Jordan Melton < <u>Jordan.Melton@gel.com</u>>

Sent: Monday, March 13, 2023 12:12 PM

To: Sherri Brown < sherri.brown@santeecooper.com >

Cc: Jeanette Gilmetti < <u>jeanette.gilmetti@santeecooper.com</u>>

Subject: [EXTERNAL SENDER] Sample ID verification for "AF56429: WAP-28" 613963

1

Good afternoon,

GEL received ground water samples for Rad 226 and Rad 228 analysis. Sample AF56429 was received with the ID "WAP-8" on the container. The chain of custody lists the sample ID as "WAP-28". Please confirm which sample ID should be used.

Thank you,

Jordan Melton

Project Manager Assistant

2040 Savage Road, Charleston, SC 29407 | P.O. Box 30712, Charleston, SC 29417

Office Main: 843.556.8171 | Office Fax: 843.769.7383 E-Mail: Jordan.Melton@gel.com | Website: www.gel.com

Follow us on LinkedIn

CONFIDENTIALITY NOTICE: This e-mail and any files transmitted with it are the property of The GEL Group, Inc. and its affiliates. All rights, including without limitation copyright, are reserved. The proprietary information contained in this e-mail message, and any files transmitted with it, is intended for the use of the recipient(s) named above. If the reader of this e-mail is not the intended recipient, you are hereby notified that you have received this e-mail in error and that any review, distribution or copying of this e-mail or any files transmitted with it is strictly prohibited. If you have received this e-mail in error, please notify the sender immediately and delete the original message and any files transmitted. The unauthorized use of this e-mail or any files transmitted with it is prohibited and disclaimed by The GEL Group, Inc. and its affiliates.

WARNING!

This e-mail message originated outside of Santee Cooper.

Do not click on any links or open any attachments unless you are confident it is from a trusted source.

If you have questions, please call the Technology Service Desk at Ext. 7777.

List of current GEL Certifications as of 11 April 2023

State	Certification						
Alabama	42200						
Alaska	17-018						
Alaska Drinking Water	SC00012						
Arkansas	88-0651						
CLIA	42D0904046						
California	2940						
Colorado	SC00012						
Connecticut	PH-0169						
DoD ELAP/ ISO17025 A2LA	2567.01						
Florida NELAP	E87156						
Foreign Soils Permit	P330-15-00283, P330-15-00253						
Georgia	SC00012						
Georgia SDWA	967						
Hawaii	SC00012						
Idaho	SC00012 SC00012						
Illinois NELAP	200029						
Indiana	C-SC-01						
Kansas NELAP	E-10332						
Kansas NELAI Kentucky SDWA	90129						
Kentucky Wastewater	90129						
Louisiana Drinking Water	LA024						
Louisiana NELAP	03046 (AI33904)						
Maine	2019020						
	270						
Maryland Massachusetts	M-SC012						
	Letter						
Massachusetts PFAS Approv	9976						
Michigan	SC00012						
Mississippi Nebraska	NE-OS-26-13						
Nevada	SC000122023-4 2054						
New Hampshire NELAP							
New Jersey NELAP New Mexico	SC002						
New York NELAP	SC00012						
New York NELAP North Carolina	11501						
North Carolina SDWA	233						
	45709						
North Dakota	R-158						
Oklahoma	2022-160						
Pennsylvania NELAP	68-00485						
Puerto Rico	SC00012						
S. Carolina Radiochem	10120002						
Sanitation Districts of L	9255651						
South Carolina Chemistry	10120001						
Tennessee	TN 02934						
Texas NELAP	T104704235-22-20						
Utah NELAP	SC000122022-37						
Vermont	VT87156						
Virginia NELAP	460202						
Washington	C780						

ANALYTICAL REPORT

PREPARED FOR

Attn: Linda Williams South Carolina Public Service Authority Santee Cooper PO BOX 2946101

Moncks Corner, South Carolina 29461-2901

Generated 3/28/2023 6:24:21 PM

JOB DESCRIPTION

125915/JM02.09.G01.1/36500

JOB NUMBER

680-232195-1

Eurofins Savannah 5102 LaRoche Avenue Savannah GA 31404

Eurofins Savannah

Job Notes

The test results in this report meet NELAP requirements for parameters for which accreditation is required or available. Any exceptions to the NELAP requirements are noted. Results pertain only to samples listed in this report. This report may not be reproduced, except in full, without the written approval of the laboratory. Questions should be directed to the person who signed this report.

The test results in this report relate only to the samples as received by the laboratory and will meet all requirements of the methodology, with any exceptions noted. This report shall not be reproduced except in full, without the express written approval of the laboratory. All questions should be directed to the Eurofins Environment Testing Southeast, LLC Project Manager.

Authorization

Generated 3/28/2023 6:24:21 PM

Authorized for release by Jerry Lanier, Project Manager I <u>Jerry.Lanier@et.eurofinsus.com</u> (912)250-0281

2

4

5

6

7

q

10

11

Table of Contents

Cover Page	1
Table of Contents	3
Case Narrative	4
Sample Summary	5
Method Summary	6
Definitions	7
Detection Summary	8
Client Sample Results	18
QC Sample Results	62
QC Association	69
Chronicle	77
Chain of Custody	89
Receipt Checklists	100
Cartification Summary	102

40

13

Case Narrative

Client: South Carolina Public Service Authority Project/Site: 125915/JM02.09.G01.1/36500

Job ID: 680-232195-1

Job ID: 680-232195-1

Laboratory: Eurofins Savannah

Narrative

Job Narrative 680-232195-1

Receipt

The samples were received on 3/17/2023 10:30 AM. Unless otherwise noted below, the samples arrived in good condition, and, where required, properly preserved and on ice. The temperature of the cooler at receipt time was 12.3°C

Metals

No additional analytical or quality issues were noted, other than those described above or in the Definitions/ Glossary page.

3

4

Ę

7

0

q

10

11

13

Sample Summary

Client: South Carolina Public Service Authority Project/Site: 125915/JM02.09.G01.1/36500

680-232195-44

AF56422

Job ID: 680-232195-1

Lab Sample ID	Client Sample ID	Matrix	Collected	Received
680-232195-1	AF56421	Water	03/01/23 14:41	03/17/23 10:30
680-232195-2	AF56424	Water	03/01/23 13:37	03/17/23 10:30
680-232195-3	AF56439	Water	03/01/23 10:22	03/17/23 10:30
680-232195-4	AF56441	Water	03/01/23 11:45	03/17/23 10:30
680-232195-5	AF56414	Water	03/02/23 12:46	03/17/23 10:30
680-232195-6	AF56423	Water	03/02/23 09:52	03/17/23 10:30
680-232195-7	AF56428	Water	03/02/23 10:56	03/17/23 10:30
680-232195-8	AF56419	Water	03/07/23 14:51	03/17/23 10:30
680-232195-9	AF56425	Water	03/07/23 12:49	03/17/23 10:30
680-232195-10	AF56426	Water	03/07/23 10:22	03/17/23 10:30
680-232195-11	AF56427	Water	03/07/23 10:27	03/17/23 10:30
680-232195-12	AF56408	Water	03/08/23 13:38	03/17/23 10:30
680-232195-13	AF56415	Water	03/08/23 15:13	03/17/23 10:30
680-232195-14	AF56416	Water	03/08/23 10:09	03/17/23 10:30
680-232195-15	AF56417	Water	03/08/23 10:14	03/17/23 10:30
680-232195-16	AF56429	Water	03/08/23 12:12	03/17/23 10:30
680-232195-17	AF56394	Water	02/14/23 12:33	03/17/23 10:30
680-232195-18	AF56331	Water	02/14/23 13:51	03/17/23 10:30
680-232195-19	AF56332	Water	02/14/23 15:22	03/17/23 10:30
680-232195-20	AF56395	Water	02/15/23 11:36	03/17/23 10:30
680-232195-21	AF56396	Water	02/15/23 13:21	03/17/23 10:30
680-232195-22	AF56397	Water	02/16/23 10:53	03/17/23 10:30
680-232195-23	AF56400	Water	02/16/23 12:55	03/17/23 10:30
680-232195-24	AF56442	Water	02/16/23 14:07	03/17/23 10:30
680-232195-25	AF56443	Water	02/16/23 14:12	03/17/23 10:30
680-232195-26	AF56402	Water	02/10/23 14:12	03/17/23 10:30
680-232195-27	AF56403	Water	02/27/23 12:47	03/17/23 10:30
680-232195-28	AF56404	Water	02/27/23 10:02	03/17/23 10:30
	AF56434			
680-232195-29 680-232195-30		Water	02/27/23 15:44	03/17/23 10:30
680-232195-30 680-232195-31	AF56433	Water	02/28/23 12:58	03/17/23 10:30
680-232195-31 680-232195-32	AF56435	Water	02/28/23 11:44	03/17/23 10:30
680-232195-32	AF56436	Water	02/28/23 10:19	03/17/23 10:30
680-232195-33	AF56437	Water	02/28/23 10:24	03/17/23 10:30
680-232195-34	AF56438	Water	02/28/23 14:31	03/17/23 10:30
680-232195-35	AF56409	Water	03/06/23 12:14	03/17/23 10:30
680-232195-36	AF56410	Water	03/06/23 12:19	03/17/23 10:30
680-232195-37	AF56411	Water	03/06/23 11:08	03/17/23 10:30
680-232195-38	AF56412	Water	03/06/23 15:15	03/17/23 10:30
680-232195-39	AF56413	Water	03/06/23 13:41	03/17/23 10:30
680-232195-40	AF56430	Water	03/06/23 10:10	03/17/23 10:30
680-232195-41	AF56406	Water	03/09/23 10:29	03/17/23 10:30
680-232195-42	AF56407	Water	03/09/23 10:34	03/17/23 10:30
680-232195-43	AF56418	Water	03/09/23 12:07	03/17/23 10:30

3

4

5

7

ŏ

4.0

12

13

14

Water

Method Summary

Client: South Carolina Public Service Authority Project/Site: 125915/JM02.09.G01.1/36500

Job ID: 680-232195-1

Method	Method Description	Protocol	Laboratory
6010D	Metals (ICP)	SW846	EET SAV
6010D	Metals (ICP)	SW846	EET SL
6020B	Metals (ICP/MS)	SW846	EET SAV
3005A	Preparation, Total Recoverable or Dissolved Metals	SW846	EET SAV
3010A	Preparation, Total Metals	SW846	EET SL

Protocol References:

SW846 = "Test Methods For Evaluating Solid Waste, Physical/Chemical Methods", Third Edition, November 1986 And Its Updates.

Laboratory References:

EET SAV = Eurofins Savannah, 5102 LaRoche Avenue, Savannah, GA 31404, TEL (912)354-7858 EET SL = Eurofins St. Louis, 13715 Rider Trail North, Earth City, MO 63045, TEL (314)298-8566

Definitions/Glossary

Client: South Carolina Public Service Authority

Project/Site: 125915/JM02.09.G01.1/36500

Job ID: 680-232195-1

Qualifiers

MQL

NC

ND

NEG

POS

PQL

QC

RL RPD

TEF

TEQ

TNTC

RER

PRES

Method Quantitation Limit

Practical Quantitation Limit

Relative Error Ratio (Radiochemistry)

Toxicity Equivalent Factor (Dioxin)

Too Numerous To Count

Toxicity Equivalent Quotient (Dioxin)

Reporting Limit or Requested Limit (Radiochemistry)

Relative Percent Difference, a measure of the relative difference between two points

Not Detected at the reporting limit (or MDL or EDL if shown)

Not Calculated

Negative / Absent

Positive / Present

Presumptive

Quality Control

Metals	
Qualifier	Qualifier Description
4	MS, MSD: The analyte present in the original sample is greater than 4 times the matrix spike concentration; therefore, control limits are not
	applicable.
U	Indicates the analyte was analyzed for but not detected

Glossary	
Abbreviation	These commonly used abbreviations may or may not be present in this report.
¤	Listed under the "D" column to designate that the result is reported on a dry weight basis
%R	Percent Recovery
CFL	Contains Free Liquid
CFU	Colony Forming Unit
CNF	Contains No Free Liquid
DER	Duplicate Error Ratio (normalized absolute difference)
Dil Fac	Dilution Factor
DL	Detection Limit (DoD/DOE)
DL, RA, RE, IN	Indicates a Dilution, Re-analysis, Re-extraction, or additional Initial metals/anion analysis of the sample
DLC	Decision Level Concentration (Radiochemistry)
EDL	Estimated Detection Limit (Dioxin)
LOD	Limit of Detection (DoD/DOE)
LOQ	Limit of Quantitation (DoD/DOE)
MCL	EPA recommended "Maximum Contaminant Level"
MDA	Minimum Detectable Activity (Radiochemistry)
MDC	Minimum Detectable Concentration (Radiochemistry)
MDL	Method Detection Limit
ML	Minimum Level (Dioxin)
MPN	Most Probable Number

Eurofins Savannah

Client: South Carolina Public Service Authority Project/Site: 125915/JM02.09.G01.1/36500

Job ID: 680-232195-1

Lab Sample ID: 680-232195-1

Analyte	Result Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type
Calcium	99400	500		ug/L	1	_	6010D	Dissolved
Iron	3540	100		ug/L	1		6010D	Dissolved
Magnesium	14600	500		ug/L	1		6010D	Dissolved
Potassium	9160	1000		ug/L	1		6010D	Dissolved
Sodium	19200	2000		ug/L	1		6010D	Dissolved
Aluminum	127	100		ug/L	1		6020B	Dissolved
Barium	33.3	5.00		ug/L	1		6020B	Dissolved

Client Sample ID: AF56424

Client Sample ID: AF56421

Lab Sample I	D: 680-232195-2
--------------	-----------------

Analyte	Result Qualifie	er RL	MDL	Unit	Dil Fac	D	Method	Prep Type
Calcium	175000	500		ug/L	1		6010D	Dissolved
Iron	269	100		ug/L	1		6010D	Dissolved
Magnesium	13100	500		ug/L	1		6010D	Dissolved
Potassium	5550	1000		ug/L	1		6010D	Dissolved
Sodium	34700	2000		ug/L	1		6010D	Dissolved
Barium	9.67	5.00		ug/L	1		6020B	Dissolved

Client Sample ID: AF56439

Lab Sample ID: 680-232195-3

Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type
Calcium	126000		500		ug/L	1		6010D	Dissolved
Iron	7900		100		ug/L	1		6010D	Dissolved
Magnesium	13000		500		ug/L	1		6010D	Dissolved
Potassium	6990		1000		ug/L	1		6010D	Dissolved
Sodium	35800		2000		ug/L	1		6010D	Dissolved
Aluminum	850		100		ug/L	1		6020B	Dissolved
Arsenic	40.1		3.00		ug/L	1		6020B	Dissolved
Barium	90.0		5.00		ug/L	1		6020B	Dissolved
Cobalt	6.59		0.500		ug/L	1		6020B	Dissolved
Zinc	43.1		20.0		ug/L	1		6020B	Dissolved

Client Sample ID: AF56441

Lab Sample ID: 680-232195-4

Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type
Lithium	140		50.0		ug/L	1		6010D	Dissolved
Calcium	174000		500		ug/L	1		6010D	Dissolved
Iron	4580		100		ug/L	1		6010D	Dissolved
Magnesium	9730		500		ug/L	1		6010D	Dissolved
Potassium	5050		1000		ug/L	1		6010D	Dissolved
Sodium	22900		2000		ug/L	1		6010D	Dissolved
Arsenic	177		3.00		ug/L	1		6020B	Dissolved
Barium	76.2		5.00		ug/L	1		6020B	Dissolved

Client Sample ID: AF56414

Lab Sample ID: 680-232195-5

Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type
Lithium	63.0		50.0		ug/L	1		6010D	Dissolved
Calcium	443000		500		ug/L	1		6010D	Dissolved
Iron	21800		100		ug/L	1		6010D	Dissolved
Magnesium	43600		500		ug/L	1		6010D	Dissolved
Potassium	6180		1000		ug/L	1		6010D	Dissolved
Sodium	94600		2000		ug/L	1		6010D	Dissolved

This Detection Summary does not include radiochemical test results.

Eurofins Savannah

Client: South Carolina Public Service Authority Project/Site: 125915/JM02.09.G01.1/36500

Client Sample ID: AF56414 (Continued)

Job ID: 680-232195-1

Lab Sample ID: 680-232195-5

Lab Sample ID: 680-232195-8

Lab Sample ID: 680-232195-9

Analyte	Result Qualifier	RL	MDL Unit	Dil Fac	D Method	Prep Type
Barium	367	5.00	ug/L	1	6020B	Dissolved

Client Sample ID: AF56423 Lab Sample ID: 680-232195-6

Analyte	Result Qu	alifier RL	MDL	Unit	Dil Fac	D	Method	Prep Type
Lithium	95.7	50.0		ug/L	1	_	6010D	Dissolved
Calcium	382000	500		ug/L	1		6010D	Dissolved
Iron	14000	100		ug/L	1		6010D	Dissolved
Magnesium	46400	500		ug/L	1		6010D	Dissolved
Potassium	11800	1000		ug/L	1		6010D	Dissolved
Sodium	85500	2000		ug/L	1		6010D	Dissolved
Arsenic	307	3.00		ug/L	1		6020B	Dissolved
Barium	214	5.00		ug/L	1		6020B	Dissolved

Client Sample ID: AF56428 Lab Sample ID: 680-232195-7

Analyte	Result Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type
Calcium	95200	500		ug/L	1		6010D	Dissolved
Iron	76100	100		ug/L	1		6010D	Dissolved
Magnesium	21000	500		ug/L	1		6010D	Dissolved
Potassium	9830	1000		ug/L	1		6010D	Dissolved
Sodium	35400	2000		ug/L	1		6010D	Dissolved
Arsenic	75.4	3.00		ug/L	1		6020B	Dissolved
Barium	108	5.00		ug/L	1		6020B	Dissolved
Cobalt	0.610	0.500		ug/L	1		6020B	Dissolved

Client Sample ID: AF56419

Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type
Lithium	223		50.0		ug/L	1		6010D	Dissolved
Calcium	535000		500		ug/L	1		6010D	Dissolved
Iron	1430		100		ug/L	1		6010D	Dissolved
Magnesium	78800		500		ug/L	1		6010D	Dissolved
Molybdenum	55.9		10.0		ug/L	1		6010D	Dissolved
Potassium	19700		1000		ug/L	1		6010D	Dissolved
Sodium	41700		2000		ug/L	1		6010D	Dissolved
Arsenic	103		3.00		ug/L	1		6020B	Dissolved
Barium	71.5		5.00		ug/L	1		6020B	Dissolved
Cobalt	1.26		0.500		ug/L	1		6020B	Dissolved

Client Sample ID: AF56425

Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type
Calcium	247000		500		ug/L	1	_	6010D	Dissolved
Iron	1290		100		ug/L	1		6010D	Dissolved
Magnesium	35800		500		ug/L	1		6010D	Dissolved
Molybdenum	19.3		10.0		ug/L	1		6010D	Dissolved
Potassium	13000		1000		ug/L	1		6010D	Dissolved
Sodium	68500		2000		ug/L	1		6010D	Dissolved
Barium	42.8		5.00		ug/L	1		6020B	Dissolved

This Detection Summary does not include radiochemical test results.

Eurofins Savannah

3

_

0

8

4.0

11

13

14

......

3/28/2023

Client: South Carolina Public Service Authority Project/Site: 125915/JM02.09.G01.1/36500

Job ID: 680-232195-1

Lab	Sample	ID:	680-232195-10)

Lab Sample ID: 680-232195-11

Lab Sample ID: 680-232195-12

Lab Sample ID: 680-232195-13

Lab Sample ID: 680-232195-14

6020B

Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type
Calcium	192000		500		ug/L	1		6010D	Dissolved
Iron	3230		100		ug/L	1		6010D	Dissolved
Magnesium	18700		500		ug/L	1		6010D	Dissolved
Potassium	11200		1000		ug/L	1		6010D	Dissolved
Sodium	127000		2000		ug/L	1		6010D	Dissolved
Aluminum	149		100		ug/L	1		6020B	Dissolved
Barium	35.1		5.00		ug/L	1		6020B	Dissolved

Client Sample ID: AF56427

Client Sample ID: AF56426

Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type
Calcium	382000		500		ug/L	1	_	6010D	Dissolved
Iron	41600		100		ug/L	1		6010D	Dissolved
Magnesium	27600		500		ug/L	1		6010D	Dissolved
Potassium	2620		1000		ug/L	1		6010D	Dissolved
Sodium	121000		2000		ug/L	1		6010D	Dissolved
Aluminum	156		100		ug/L	1		6020B	Dissolved

5.00

ug/L

35.8

Client Sample ID: AF56408

Barium

Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type
Calcium	21000		500		ug/L	1		6010D	Dissolved
Iron	256		100		ug/L	1		6010D	Dissolved
Magnesium	1650		500		ug/L	1		6010D	Dissolved
Sodium	4330		2000		ug/L	1		6010D	Dissolved
Barium	251		5.00		ug/L	1		6020B	Dissolved
Chromium	40.5		5.00		ug/L	1		6020B	Dissolved
Cobalt	0.575		0.500		ug/L	1		6020B	Dissolved
Zinc	53.9		20.0		ug/L	1		6020B	Dissolved

Client Sample ID: AF56415

Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type
Calcium	19600		500		ug/L	1		6010D	Dissolved
Iron	213		100		ug/L	1		6010D	Dissolved
Magnesium	1630		500		ug/L	1		6010D	Dissolved
Sodium	4310		2000		ug/L	1		6010D	Dissolved
Barium	76.3		5.00		ug/L	1		6020B	Dissolved
Zinc	30.6		20.0		ug/L	1		6020B	Dissolved

Client Sample ID: AF56416

Analyte	Result Qualifier	RL	MDL Unit	Dil Fac	D Method	Prep Type
Calcium	66800	500	ug/L	1	6010D	Dissolved
Iron	891	100	ug/L	1	6010D	Dissolved
Magnesium	2920	500	ug/L	1	6010D	Dissolved
Potassium	2190	1000	ug/L	1	6010D	Dissolved
Sodium	11100	2000	ug/L	1	6010D	Dissolved
Arsenic	74.8	3.00	ug/L	1	6020B	Dissolved
Barium	42.0	5.00	ug/L	1	6020B	Dissolved
Zinc	182	20.0	ug/L	1	6020B	Dissolved

This Detection Summary does not include radiochemical test results.

Dissolved

Client: South Carolina Public Service Authority Project/Site: 125915/JM02.09.G01.1/36500

Job ID: 680-232195-1

Lab Sample ID: 680-232195-15

Analyte	Result (Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type
Calcium	270000		500		ug/L	1	_	6010D	Dissolved
Iron	1940		100		ug/L	1		6010D	Dissolved
Magnesium	38900		500		ug/L	1		6010D	Dissolved
Molybdenum	21.2		10.0		ug/L	1		6010D	Dissolved
Potassium	14100		1000		ug/L	1		6010D	Dissolved
Sodium	72300		2000		ug/L	1		6010D	Dissolved
Arsenic	84.0		3.00		ug/L	1		6020B	Dissolved
Barium	50.0		5.00		ug/L	1		6020B	Dissolved

Client Sample ID: AF56429

Client Sample ID: AF56417

Lab S	ample I	D: 680	-232195-1	6

Analyte	Result C	Qualifier RL	MDL	Unit	Dil Fac	D	Method	Prep Type
Calcium	74200	500		ug/L	1		6010D	Dissolved
Iron	92900	100		ug/L	1		6010D	Dissolved
Magnesium	26000	500		ug/L	1		6010D	Dissolved
Sodium	82900	2000		ug/L	1		6010D	Dissolved
Aluminum	2310	100		ug/L	1		6020B	Dissolved
Barium	245	5.00		ug/L	1		6020B	Dissolved
Beryllium	0.965	0.500		ug/L	1		6020B	Dissolved
Cobalt	19.1	0.500		ug/L	1		6020B	Dissolved
Lead	2.54	2.50		ug/L	1		6020B	Dissolved
Nickel	5.89	5.00		ug/L	1		6020B	Dissolved

Client Sample ID: AF56394

Lab Sample ID: 680-232195-17

Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type
Calcium	11200		500		ug/L	1		6010D	Dissolved
Iron	3120		100		ug/L	1		6010D	Dissolved
Magnesium	1020		500		ug/L	1		6010D	Dissolved
Sodium	5650		2000		ug/L	1		6010D	Dissolved
Aluminum	1310		100		ug/L	1		6020B	Dissolved
Arsenic	5.22		3.00		ug/L	1		6020B	Dissolved
Barium	76.1		5.00		ug/L	1		6020B	Dissolved
Cobalt	0.765		0.500		ug/L	1		6020B	Dissolved
Zinc	23.6		20.0		ug/L	1		6020B	Dissolved

Client Sample ID: AF56331

Lab Sample ID: 680-232195-18

Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type
Calcium	3560		500		ug/L	1		6010D	Dissolved
Magnesium	898		500		ug/L	1		6010D	Dissolved
Sodium	2720		2000		ug/L	1		6010D	Dissolved
Aluminum	793		100		ug/L	1		6020B	Dissolved
Barium	30.1		5.00		ug/L	1		6020B	Dissolved
Cobalt	1.58		0.500		ug/L	1		6020B	Dissolved

Client Sample ID: AF56332

Lab Sample ID: 680-232195-19

Analyte	Result Qualifier	RL	MDL Unit	Dil Fac	Method	Prep Type
Calcium	87900	500	ug/L		6010D	Dissolved
Iron	5240	100	ug/L	1	6010D	Dissolved
Magnesium	2750	500	ug/L	1	6010D	Dissolved
Potassium	2150	1000	ug/L	1	6010D	Dissolved

This Detection Summary does not include radiochemical test results.

Eurofins Savannah

Client: South Carolina Public Service Authority Project/Site: 125915/JM02.09.G01.1/36500

Job ID: 680-232195-1

Client Sample ID: AF56332 (Continued)

Lab Sample ID: 680-232195-19

Analyte	Result	Qualifier	RL MDL	Unit	Dil Fac	D	Method	Prep Type
Sodium	11700	20	00	ug/L	1	_	6010D	Dissolved
Aluminum	1300	1	00	ug/L	1		6020B	Dissolved
Barium	102	5	00	ug/L	1		6020B	Dissolved

Client Sample ID: AF56395 Lab Sample ID: 680-232195-20

Analyte	Result	Qualifier RL	MDL	Unit	Dil Fac	D Method	Prep Type
Calcium	355000	500		ug/L	1	6010D	Dissolved
Iron	3970	100		ug/L	1	6010D	Dissolved
Magnesium	43700	500		ug/L	1	6010D	Dissolved
Potassium	9610	1000		ug/L	1	6010D	Dissolved
Sodium	71800	2000		ug/L	1	6010D	Dissolved
Aluminum	194	100		ug/L	1	6020B	Dissolved
Arsenic	11.5	3.00		ug/L	1	6020B	Dissolved
Barium	151	5.00		ug/L	1	6020B	Dissolved
Beryllium	1.46	0.500		ug/L	1	6020B	Dissolved
Cobalt	18.5	0.500		ug/L	1	6020B	Dissolved
Nickel	10.1	5.00		ug/L	1	6020B	Dissolved

Client Sample ID: AF56396 Lab Sample ID: 680-232195-21

Analyte	Result	Qualifier RI	MDL	Unit	Dil Fac	D	Method	Prep Type
Calcium	226000	500		ug/L	1		6010D	Dissolved
Iron	23400	100		ug/L	1		6010D	Dissolved
Magnesium	14600	500		ug/L	1		6010D	Dissolved
Potassium	2050	1000		ug/L	1		6010D	Dissolved
Sodium	42400	2000		ug/L	1		6010D	Dissolved
Barium	149	5.00		ug/L	1		6020B	Dissolved
Cobalt	0.565	0.500		ug/L	1		6020B	Dissolved

Client Sample ID: AF56397 Lab Sample ID: 680-232195-22

Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type
Calcium	54900		500		ug/L	1		6010D	Dissolved
Iron	102		100		ug/L	1		6010D	Dissolved
Magnesium	3940		500		ug/L	1		6010D	Dissolved
Potassium	1830		1000		ug/L	1		6010D	Dissolved
Sodium	17100		2000		ug/L	1		6010D	Dissolved
Barium	34.2		5.00		ug/L	1		6020B	Dissolved
Zinc	114		20.0		ua/L	1		6020B	Dissolved

Client Sample ID: AF56400 Lab Sample ID: 680-232195-23

Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type
Calcium	264000		500		ug/L	1		6010D	Dissolved
Iron	783		100		ug/L	1		6010D	Dissolved
Magnesium	3930		500		ug/L	1		6010D	Dissolved
Potassium	2390		1000		ug/L	1		6010D	Dissolved
Sodium	13900		2000		ug/L	1		6010D	Dissolved
Barium	46.4		5.00		ug/L	1		6020B	Dissolved

This Detection Summary does not include radiochemical test results.

Eurofins Savannah

3/28/2023

3

4

5

7

Q

10

12

1 '

Client: South Carolina Public Service Authority Project/Site: 125915/JM02.09.G01.1/36500

Job ID: 680-232195-1

Lab Sample ID: 680-232195-24

Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type
Calcium	162000		500		ug/L	1		6010D	Dissolved
Iron	286		100		ug/L	1		6010D	Dissolved
Magnesium	7610		500		ug/L	1		6010D	Dissolved
Potassium	4220		1000		ug/L	1		6010D	Dissolved
Sodium	21500		2000		ug/L	1		6010D	Dissolved
Arsenic	3.62		3.00		ug/L	1		6020B	Dissolved
Barium	34.7		5.00		ug/L	1		6020B	Dissolved

Client Sample ID: AF56443

Client Sample ID: AF56442

Lab Sample ID: 680	0-232195-25
--------------------	-------------

Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type
Calcium	166000		500		ug/L	1		6010D	Dissolved
Iron	359		100		ug/L	1		6010D	Dissolved
Magnesium	7850		500		ug/L	1		6010D	Dissolved
Potassium	4220		1000		ug/L	1		6010D	Dissolved
Sodium	21500		2000		ug/L	1		6010D	Dissolved
Aluminum	239		100		ug/L	1		6020B	Dissolved
Arsenic	4.54		3.00		ug/L	1		6020B	Dissolved
Barium	39.2		5.00		ug/L	1		6020B	Dissolved
Cobalt	0.715		0.500		ug/L	1		6020B	Dissolved

Client Sample ID: AF56402

Lab Sample ID: 680-232195-26

Analyte	Result Qualifie	er RL	MDL U	Init	Dil Fac	D	Method	Prep Type
Calcium	199000	500	uç	g/L	1		6010D	Dissolved
Iron	22900	100	uç	g/L	1		6010D	Dissolved
Magnesium	23600	500	uç	g/L	1		6010D	Dissolved
Potassium	11200	1000	uç	g/L	1		6010D	Dissolved
Sodium	34600	2000	uç	g/L	1		6010D	Dissolved
Aluminum	327	100	uç	g/L	1		6020B	Dissolved
Arsenic	31.0	3.00	uç	g/L	1		6020B	Dissolved
Barium	77.9	5.00	uç	g/L	1		6020B	Dissolved

Client Sample ID: AF56403

Lab Sample ID: 680-232195-27

Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type
Lithium	70.2		50.0		ug/L	1		6010D	Dissolved
Calcium	645000		500		ug/L	1		6010D	Dissolved
Iron	22000		100		ug/L	1		6010D	Dissolved
Magnesium	90500		500		ug/L	1		6010D	Dissolved
Potassium	28700		1000		ug/L	1		6010D	Dissolved
Sodium	156000		2000		ug/L	1		6010D	Dissolved
Barium	318		5.00		ug/L	1		6020B	Dissolved

Client Sample ID: AF56404

Lab Sample ID: 680-232195-28

Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type
Lithium	64.9		50.0		ug/L	1		6010D	Dissolved
Calcium	653000		500		ug/L	1		6010D	Dissolved
Iron	22200		100		ug/L	1		6010D	Dissolved
Magnesium	91700		500		ug/L	1		6010D	Dissolved
Potassium	28600		1000		ug/L	1		6010D	Dissolved
Sodium	158000		2000		ug/L	1		6010D	Dissolved

This Detection Summary does not include radiochemical test results.

Eurofins Savannah

3/28/2023

Client: South Carolina Public Service Authority Project/Site: 125915/JM02.09.G01.1/36500 Job ID: 680-232195-1

Client Sample ID: AF56404 (Continued)

Lab Sample ID: 680-232195-28

AnalyteResultQualifierRLMDLUnitDil FacDMethodPrep TypeBarium3135.00ug/L16020BDissolved

Client Sample ID: AF56434 Lab Sample ID: 680-232195-29

Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type
Calcium	60500		500		ug/L	1		6010D	Dissolved
Iron	2930		100		ug/L	1		6010D	Dissolved
Magnesium	1910		500		ug/L	1		6010D	Dissolved
Sodium	4740		2000		ug/L	1		6010D	Dissolved
Aluminum	929		100		ug/L	1		6020B	Dissolved
Barium	38.9		5.00		ug/L	1		6020B	Dissolved
Cobalt	2.41		0.500		ug/L	1		6020B	Dissolved
Zinc	68.5		20.0		ug/L	1		6020B	Dissolved

Client Sample ID: AF56433 Lab Sample ID: 680-232195-30

Analyte	Result Qualifier	RL	MDL Unit	Dil Fac D	Method	Prep Type
Calcium	448000	500	ug/L	1	6010D	Dissolved
Iron	16300	100	ug/L	1	6010D	Dissolved
Magnesium	12900	500	ug/L	1	6010D	Dissolved
Potassium	5750	1000	ug/L	1	6010D	Dissolved
Sodium	10800	2000	ug/L	1	6010D	Dissolved
Barium	53.8	5.00	ug/L	1	6020B	Dissolved

Client Sample ID: AF56435 Lab Sample ID: 680-232195-31

Analyte	Result	Qualifier F	L MDL	Unit	Dil Fac	D	Method	Prep Type
Calcium	21900	50	00	ug/L	1		6010D	Dissolved
Iron	880	10	00	ug/L	1		6010D	Dissolved
Magnesium	892	50	00	ug/L	1		6010D	Dissolved
Sodium	3260	200	00	ug/L	1		6010D	Dissolved
Aluminum	3790	10	00	ug/L	1		6020B	Dissolved
Arsenic	8.02	3.0	00	ug/L	1		6020B	Dissolved
Barium	34.7	5.0	00	ug/L	1		6020B	Dissolved
Cobalt	1.29	0.50	00	ug/L	1		6020B	Dissolved

Client Sample ID: AF56436 Lab Sample ID: 680-232195-32

Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type
Calcium	92200		500		ug/L	1		6010D	Dissolved
Iron	771		100		ug/L	1		6010D	Dissolved
Magnesium	2500		500		ug/L	1		6010D	Dissolved
Potassium	1580		1000		ug/L	1		6010D	Dissolved
Sodium	5430		2000		ug/L	1		6010D	Dissolved
Barium	37.2		5.00		ug/L	1		6020B	Dissolved
Zinc	42.9		20.0		ug/L	1		6020B	Dissolved

Client Sample ID: AF56437 Lab Sample ID: 680-232195-33

Analyte	Result Qualifier	RL	MDL Unit	Dil Fac	Method	Prep Type
Calcium	93200	500	ug/L	1	6010D	Dissolved
Iron	1200	100	ug/L	1	6010D	Dissolved
Magnesium	1750	500	ug/L	1	6010D	Dissolved

This Detection Summary does not include radiochemical test results.

Eurofins Savannah

3/28/2023

Page 14 of 102

1

3

H

6

8

9

11

12

13

М

Client: South Carolina Public Service Authority Project/Site: 125915/JM02.09.G01.1/36500

Client Sample ID: AF56437 (Continued)

Job ID: 680-232195-1

Lab Sample ID: 680-232195-33

Lab Sample ID: 680-232195-36

Lab Sample ID: 680-232195-37

Analyte	Result	Qualifier RL	MDL Unit	Dil Fac	D	Method	Prep Type
Potassium	1260	1000	ug/L	1		6010D	Dissolved
Sodium	3590	2000	ug/L	1		6010D	Dissolved
Barium	36.8	5.00	ug/L	1		6020B	Dissolved

Client Sample ID: AF56438 Lab Sample ID: 680-232195-34

Analyte	Result Qualifier	RL	MDL Unit	Dil Fac D	Method	Prep Type
Calcium	296000	500	ug/L		6010D	Dissolved
Iron	1040	100	ug/L	1	6010D	Dissolved
Magnesium	28800	500	ug/L	1	6010D	Dissolved
Potassium	6790	1000	ug/L	1	6010D	Dissolved
Sodium	18000	2000	ug/L	1	6010D	Dissolved
Barium	41.2	5.00	ug/L	1	6020B	Dissolved

Client Sample ID: AF56409 Lab Sample ID: 680-232195-35

Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type
Lithium	118		50.0		ug/L	1		6010D	Dissolved
Calcium	1140000		5000		ug/L	10		6010D	Dissolved
Magnesium	30500		500		ug/L	1		6010D	Dissolved
Potassium	15500		1000		ug/L	1		6010D	Dissolved
Sodium	139000		2000		ug/L	1		6010D	Dissolved
Arsenic	15.2		3.00		ug/L	1		6020B	Dissolved
Barium	54.6		5.00		ug/L	1		6020B	Dissolved
Chromium	13.2		5.00		ug/L	1		6020B	Dissolved

Client Sample ID: AF56410

Γ							_		
Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type
Lithium	109		50.0		ug/L	1		6010D	Dissolved
Calcium	1160000		5000		ug/L	10		6010D	Dissolved
Iron	113		100		ug/L	1		6010D	Dissolved
Magnesium	30800		500		ug/L	1		6010D	Dissolved
Potassium	15700		1000		ug/L	1		6010D	Dissolved
Sodium	140000		2000		ug/L	1		6010D	Dissolved
Arsenic	13.0		3.00		ug/L	1		6020B	Dissolved
Barium	56.5		5.00		ua/L	1		6020B	Dissolved

Client Sample ID: AF56411

Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type
Lithium	92.4		50.0		ug/L	1		6010D	Dissolved
Calcium	849000		5000		ug/L	10		6010D	Dissolved
Magnesium	42600		500		ug/L	1		6010D	Dissolved
Potassium	13800		1000		ug/L	1		6010D	Dissolved
Sodium	126000		2000		ug/L	1		6010D	Dissolved
Arsenic	7.06		3.00		ug/L	1		6020B	Dissolved
Barium	108		5.00		ug/L	1		6020B	Dissolved
Zinc	35.7		20.0		ug/L	1		6020B	Dissolved

This Detection Summary does not include radiochemical test results.

Eurofins Savannah

3/28/2023

-

_

8

9

11

12

. .

Client: South Carolina Public Service Authority Project/Site: 125915/JM02.09.G01.1/36500

Job ID: 680-232195-1

Lab Sample ID: 680-232195-38

Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type
Lithium	64.6		50.0		ug/L	1		6010D	Dissolved
Calcium	698000		500		ug/L	1		6010D	Dissolved
Iron	1420		100		ug/L	1		6010D	Dissolved
Magnesium	29900		500		ug/L	1		6010D	Dissolved
Potassium	7230		1000		ug/L	1		6010D	Dissolved
Sodium	107000		2000		ug/L	1		6010D	Dissolved
Arsenic	6.71		3.00		ug/L	1		6020B	Dissolved
Barium	158		5.00		ug/L	1		6020B	Dissolved

Client Sample ID: AF56413

Client Sample ID: AF56412

Lab Sample ID: 680-232	2195-39
------------------------	---------

Analyte	Result Qualifier	RL	MDL Unit	Dil Fac	Method	Prep Type
Calcium	161000	500	ug/L	1	6010D	Dissolved
Iron	7850	100	ug/L	1	6010D	Dissolved
Magnesium	11100	500	ug/L	1	6010D	Dissolved
Potassium	4680	1000	ug/L	1	6010D	Dissolved
Sodium	71500	2000	ug/L	1	6010D	Dissolved
Barium	85.5	5.00	ug/L	1	6020B	Dissolved
Cobalt	0.955	0.500	ug/L	1	6020B	Dissolved

Client Sample ID: AF56430

Lab Sample ID: 680-232195-40

Analyte	Result Qualifier	RL	MDL Unit	Dil Fac D	Method	Prep Type
Calcium	448000	500	ug/L		6010D	Dissolved
Iron	32200	100	ug/L	1	6010D	Dissolved
Magnesium	72300	500	ug/L	1	6010D	Dissolved
Potassium	6530	1000	ug/L	1	6010D	Dissolved
Sodium	87300	2000	ug/L	1	6010D	Dissolved
Barium	48.0	5.00	ug/L	1	6020B	Dissolved
Cobalt	6.15	0.500	ug/L	1	6020B	Dissolved

Client Sample ID: AF56406

Lab Sample ID: 680-232195-41

Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type
Calcium	194000		500		ug/L	1		6010D	Dissolved
Iron	1380		100		ug/L	1		6010D	Dissolved
Magnesium	17000		500		ug/L	1		6010D	Dissolved
Potassium	4650		1000		ug/L	1		6010D	Dissolved
Sodium	43100		2000		ug/L	1		6010D	Dissolved
Aluminum	1740		100		ug/L	1		6020B	Dissolved
Barium	38.2		5.00		ug/L	1		6020B	Dissolved
Cobalt	1.83		0.500		ug/L	1		6020B	Dissolved
Zinc	40.6		20.0		ug/L	1		6020B	Dissolved

Client Sample ID: AF56407

Lab Sample ID: 680-232195-42

_									
Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type
Calcium	210000		500		ug/L	1		6010D	Dissolved
Iron	1430		100		ug/L	1		6010D	Dissolved
Magnesium	18500		500		ug/L	1		6010D	Dissolved
Potassium	5200		1000		ug/L	1		6010D	Dissolved
Sodium	46500		2000		ug/L	1		6010D	Dissolved
Aluminum	1590		100		ug/L	1		6020B	Dissolved

This Detection Summary does not include radiochemical test results.

Client: South Carolina Public Service Authority Project/Site: 125915/JM02.09.G01.1/36500

Job ID: 680-232195-1

Lab Sample ID: 680-232195-42

Lab Sample ID: 680-232195-43

Lab Sample ID: 680-232195-44

6

3

4

6

8

10

12

14

Client Sample ID: AF56407 (Continued)

Analyte	Result Qualifier	RL	MDL Unit	Dil Fac) Method	Prep Type
Barium	38.7	5.00	ug/L	1	6020B	Dissolved
Cobalt	2.01	0.500	ug/L	1	6020B	Dissolved
Zinc	28.0	20.0	ug/L	1	6020B	Dissolved

Client Sample ID: AF56418

Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type
Lithium	87.9		50.0		ug/L	1	_	6010D	Dissolved
Calcium	95500		500		ug/L	1		6010D	Dissolved
Iron	788		100		ug/L	1		6010D	Dissolved
Magnesium	7530		500		ug/L	1		6010D	Dissolved
Molybdenum	92.0		10.0		ug/L	1		6010D	Dissolved
Potassium	7660		1000		ug/L	1		6010D	Dissolved
Sodium	25300		2000		ug/L	1		6010D	Dissolved
Aluminum	130		100		ug/L	1		6020B	Dissolved
Arsenic	229		3.00		ug/L	1		6020B	Dissolved
Barium	133		5.00		ug/L	1		6020B	Dissolved
Cobalt	2.16		0.500		ug/L	1		6020B	Dissolved

Client Sample ID: AF56422

Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D I	Method	Prep Type
Calcium	248000		500		ug/L	1		6010D	Dissolved
Iron	6050		100		ug/L	1		6010D	Dissolved
Magnesium	8900		500		ug/L	1		6010D	Dissolved
Potassium	3850		1000		ug/L	1		6010D	Dissolved
Sodium	73300		2000		ug/L	1		6010D	Dissolved
Arsenic	3.54		3.00		ug/L	1		6020B	Dissolved
Barium	104		5.00		ug/L	1		6020B	Dissolved
Zinc	48.0		20.0		ug/L	1		6020B	Dissolved

This Detection Summary does not include radiochemical test results.

Client: South Carolina Public Service Authority Project/Site: 125915/JM02.09.G01.1/36500

Job ID: 680-232195-1

Lab Sample ID: 680-232195-1

Matrix: Water

Client Sample ID: AF56421 Date Collected: 03/01/23 14:41

Date Received: 03/17/23 10:30

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Lithium	50.0	U	50.0		ug/L		03/23/23 14:17	03/24/23 20:16	1
Calcium	99400		500		ug/L		03/24/23 14:44	03/24/23 19:56	1
Iron	3540		100		ug/L		03/24/23 14:44	03/24/23 19:56	1
Magnesium	14600		500		ug/L		03/24/23 14:44	03/24/23 19:56	1
Molybdenum	10.0	U	10.0		ug/L		03/24/23 14:44	03/24/23 19:56	1
Potassium	9160		1000		ug/L		03/24/23 14:44	03/24/23 19:56	1
Selenium	20.0	U	20.0		ug/L		03/24/23 14:44	03/24/23 19:56	1
Sodium	19200		2000		ug/L		03/24/23 14:44	03/24/23 19:56	1

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Aluminum	127		100		ug/L		03/20/23 07:40	03/21/23 08:04	1
Antimony	5.00	U	5.00		ug/L		03/20/23 07:40	03/21/23 08:04	1
Arsenic	3.00	U	3.00		ug/L		03/20/23 07:40	03/21/23 08:04	1
Barium	33.3		5.00		ug/L		03/20/23 07:40	03/21/23 08:04	1
Beryllium	0.500	U	0.500		ug/L		03/20/23 07:40	03/21/23 08:04	1
Cadmium	0.500	U	0.500		ug/L		03/20/23 07:40	03/21/23 08:04	1
Chromium	5.00	U	5.00		ug/L		03/20/23 07:40	03/21/23 08:04	1
Cobalt	0.500	U	0.500		ug/L		03/20/23 07:40	03/21/23 08:04	1
Lead	2.50	U	2.50		ug/L		03/20/23 07:40	03/21/23 08:04	1
Nickel	5.00	U	5.00		ug/L		03/20/23 07:40	03/21/23 08:04	1
Silver	1.00	U	1.00		ug/L		03/20/23 07:40	03/21/23 08:04	1
Thallium	1.00	U	1.00		ug/L		03/20/23 07:40	03/21/23 08:04	1
Zinc	20.0	U	20.0		ug/L		03/20/23 07:40	03/21/23 08:04	1

Client: South Carolina Public Service Authority Project/Site: 125915/JM02.09.G01.1/36500

Job ID: 680-232195-1

Lab Sample ID: 680-232195-2

Matrix: Water

Client Sample ID: AF56424

Date Collected: 03/01/23 13:37 Date Received: 03/17/23 10:30

Analosta	Donale	O11:61	D.	MDI	11		Danie and	A lo	D:: F
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Lithium	50.0	U	50.0		ug/L		03/23/23 14:17	03/24/23 20:20	1
Calcium	175000		500		ug/L		03/24/23 14:44	03/24/23 20:00	1
Iron	269		100		ug/L		03/24/23 14:44	03/24/23 20:00	1
Magnesium	13100		500		ug/L		03/24/23 14:44	03/24/23 20:00	1
Molybdenum	10.0	U	10.0		ug/L		03/24/23 14:44	03/24/23 20:00	1
Potassium	5550		1000		ug/L		03/24/23 14:44	03/24/23 20:00	1
Selenium	20.0	U	20.0		ug/L		03/24/23 14:44	03/24/23 20:00	1
Sodium	34700		2000		ug/L		03/24/23 14:44	03/24/23 20:00	1

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Aluminum	100	U	100		ug/L		03/20/23 07:40	03/21/23 08:08	1
Antimony	5.00	U	5.00		ug/L		03/20/23 07:40	03/21/23 08:08	1
Arsenic	3.00	U	3.00		ug/L		03/20/23 07:40	03/21/23 08:08	1
Barium	9.67		5.00		ug/L		03/20/23 07:40	03/21/23 08:08	1
Beryllium	0.500	U	0.500		ug/L		03/20/23 07:40	03/21/23 08:08	1
Cadmium	0.500	U	0.500		ug/L		03/20/23 07:40	03/21/23 08:08	1
Chromium	5.00	U	5.00		ug/L		03/20/23 07:40	03/21/23 08:08	1
Cobalt	0.500	U	0.500		ug/L		03/20/23 07:40	03/21/23 08:08	1
Lead	2.50	U	2.50		ug/L		03/20/23 07:40	03/21/23 08:08	1
Nickel	5.00	U	5.00		ug/L		03/20/23 07:40	03/21/23 08:08	1
Silver	1.00	U	1.00		ug/L		03/20/23 07:40	03/21/23 08:08	1
Thallium	1.00	U	1.00		ug/L		03/20/23 07:40	03/21/23 08:08	1
Zinc	20.0	U	20.0		ug/L		03/20/23 07:40	03/21/23 08:08	1

2

3

_

6

8

11

11

13

Client: South Carolina Public Service Authority Project/Site: 125915/JM02.09.G01.1/36500

Job ID: 680-232195-1

Lab Sample ID: 680-232195-3

Matrix: Water

Client Sample ID: AF56439

Date Collected: 03/01/23 10:22 Date Received: 03/17/23 10:30

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Lithium	50.0	U	50.0		ug/L		03/23/23 14:17	03/24/23 20:25	1
Calcium	126000		500		ug/L		03/24/23 14:44	03/24/23 20:03	1
Iron	7900		100		ug/L		03/24/23 14:44	03/24/23 20:03	1
Magnesium	13000		500		ug/L		03/24/23 14:44	03/24/23 20:03	1
Molybdenum	10.0	U	10.0		ug/L		03/24/23 14:44	03/24/23 20:03	1
Potassium	6990		1000		ug/L		03/24/23 14:44	03/24/23 20:03	1
Selenium	20.0	U	20.0		ug/L		03/24/23 14:44	03/24/23 20:03	1
Sodium	35800		2000		ug/L		03/24/23 14:44	03/24/23 20:03	1

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Aluminum	850		100		ug/L		03/20/23 07:40	03/21/23 08:12	1
Antimony	5.00	U	5.00		ug/L		03/20/23 07:40	03/21/23 08:12	1
Arsenic	40.1		3.00		ug/L		03/20/23 07:40	03/21/23 08:12	1
Barium	90.0		5.00		ug/L		03/20/23 07:40	03/21/23 08:12	1
Beryllium	0.500	U	0.500		ug/L		03/20/23 07:40	03/21/23 08:12	1
Cadmium	0.500	U	0.500		ug/L		03/20/23 07:40	03/21/23 08:12	1
Chromium	5.00	U	5.00		ug/L		03/20/23 07:40	03/21/23 08:12	1
Cobalt	6.59		0.500		ug/L		03/20/23 07:40	03/21/23 08:12	1
Lead	2.50	U	2.50		ug/L		03/20/23 07:40	03/21/23 08:12	1
Nickel	5.00	U	5.00		ug/L		03/20/23 07:40	03/21/23 08:12	1
Silver	1.00	U	1.00		ug/L		03/20/23 07:40	03/21/23 08:12	1
Thallium	1.00	U	1.00		ug/L		03/20/23 07:40	03/21/23 08:12	1
Zinc	43.1		20.0		ug/L		03/20/23 07:40	03/21/23 08:12	1

4

5

8

9

10

12

13

Client: South Carolina Public Service Authority Project/Site: 125915/JM02.09.G01.1/36500

Job ID: 680-232195-1

Lab Sample ID: 680-232195-4

Matrix: Water

Client Sample ID: AF56441

Date Collected: 03/01/23 11:45 Date Received: 03/17/23 10:30

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Lithium	140		50.0		ug/L		03/23/23 14:17	03/24/23 20:30	1
Calcium	174000		500		ug/L		03/24/23 14:44	03/24/23 20:06	1
Iron	4580		100		ug/L		03/24/23 14:44	03/24/23 20:06	1
Magnesium	9730		500		ug/L		03/24/23 14:44	03/24/23 20:06	1
Molybdenum	10.0	U	10.0		ug/L		03/24/23 14:44	03/24/23 20:06	1
Potassium	5050		1000		ug/L		03/24/23 14:44	03/24/23 20:06	1
Selenium	20.0	U	20.0		ug/L		03/24/23 14:44	03/24/23 20:06	1
Sodium	22900		2000		ug/L		03/24/23 14:44	03/24/23 20:06	1

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Aluminum	100	U	100		ug/L		03/20/23 07:40	03/21/23 08:16	1
Antimony	5.00	U	5.00		ug/L		03/20/23 07:40	03/21/23 08:16	1
Arsenic	177		3.00		ug/L		03/20/23 07:40	03/21/23 08:16	1
Barium	76.2		5.00		ug/L		03/20/23 07:40	03/21/23 08:16	1
Beryllium	0.500	U	0.500		ug/L		03/20/23 07:40	03/21/23 08:16	1
Cadmium	0.500	U	0.500		ug/L		03/20/23 07:40	03/21/23 08:16	1
Chromium	5.00	U	5.00		ug/L		03/20/23 07:40	03/21/23 08:16	1
Cobalt	0.500	U	0.500		ug/L		03/20/23 07:40	03/21/23 08:16	1
Lead	2.50	U	2.50		ug/L		03/20/23 07:40	03/21/23 08:16	1
Nickel	5.00	U	5.00		ug/L		03/20/23 07:40	03/21/23 08:16	1
Silver	1.00	U	1.00		ug/L		03/20/23 07:40	03/21/23 08:16	1
Thallium	1.00	U	1.00		ug/L		03/20/23 07:40	03/21/23 08:16	1
Zinc	20.0	U	20.0		ug/L		03/20/23 07:40	03/21/23 08:16	1

2

3

6

8

9

11

12

LC

Client: South Carolina Public Service Authority Project/Site: 125915/JM02.09.G01.1/36500

Job ID: 680-232195-1

Lab Sample ID: 680-232195-5

Matrix: Water

Client Sample ID: AF56414

Date Collected: 03/02/23 12:46 Date Received: 03/17/23 10:30

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Lithium	63.0		50.0		ug/L		03/23/23 14:17	03/24/23 20:34	1
Calcium	443000		500		ug/L		03/24/23 14:44	03/24/23 20:09	1
Iron	21800		100		ug/L		03/24/23 14:44	03/24/23 20:09	1
Magnesium	43600		500		ug/L		03/24/23 14:44	03/24/23 20:09	1
Molybdenum	10.0	U	10.0		ug/L		03/24/23 14:44	03/24/23 20:09	1
Potassium	6180		1000		ug/L		03/24/23 14:44	03/24/23 20:09	1
Selenium	20.0	U	20.0		ug/L		03/24/23 14:44	03/24/23 20:09	1
Sodium	94600		2000		ug/L		03/24/23 14:44	03/24/23 20:09	1

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Aluminum	100	U	100		ug/L		03/20/23 07:40	03/21/23 08:20	1
Antimony	5.00	U	5.00		ug/L		03/20/23 07:40	03/21/23 08:20	1
Arsenic	3.00	U	3.00		ug/L		03/20/23 07:40	03/21/23 08:20	1
Barium	367		5.00		ug/L		03/20/23 07:40	03/21/23 08:20	1
Beryllium	0.500	U	0.500		ug/L		03/20/23 07:40	03/21/23 08:20	1
Cadmium	0.500	U	0.500		ug/L		03/20/23 07:40	03/21/23 08:20	1
Chromium	5.00	U	5.00		ug/L		03/20/23 07:40	03/21/23 08:20	1
Cobalt	0.500	U	0.500		ug/L		03/20/23 07:40	03/21/23 08:20	1
Lead	2.50	U	2.50		ug/L		03/20/23 07:40	03/21/23 08:20	1
Nickel	5.00	U	5.00		ug/L		03/20/23 07:40	03/21/23 08:20	1
Silver	1.00	U	1.00		ug/L		03/20/23 07:40	03/21/23 08:20	1
Thallium	1.00	U	1.00		ug/L		03/20/23 07:40	03/21/23 08:20	1
Zinc	20.0	U	20.0		ug/L		03/20/23 07:40	03/21/23 08:20	1

3

4

6

8

3

11

12

10

Client: South Carolina Public Service Authority Project/Site: 125915/JM02.09.G01.1/36500

Job ID: 680-232195-1

Lab Sample ID: 680-232195-6

Matrix: Water

Client Sample ID: AF56423

Date Collected: 03/02/23 09:52 Date Received: 03/17/23 10:30

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Lithium	95.7		50.0		ug/L		03/23/23 14:17	03/24/23 20:39	1
Calcium	382000		500		ug/L		03/24/23 14:44	03/24/23 20:19	1
Iron	14000		100		ug/L		03/24/23 14:44	03/24/23 20:19	1
Magnesium	46400		500		ug/L		03/24/23 14:44	03/24/23 20:19	1
Molybdenum	10.0	U	10.0		ug/L		03/24/23 14:44	03/24/23 20:19	1
Potassium	11800		1000		ug/L		03/24/23 14:44	03/24/23 20:19	1
Selenium	20.0	U	20.0		ug/L		03/24/23 14:44	03/24/23 20:19	1
Sodium	85500		2000		ug/L		03/24/23 14:44	03/24/23 20:19	1

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Aluminum	100	U	100		ug/L		03/20/23 07:40	03/21/23 08:24	1
Antimony	5.00	U	5.00		ug/L		03/20/23 07:40	03/21/23 08:24	1
Arsenic	307		3.00		ug/L		03/20/23 07:40	03/21/23 08:24	1
Barium	214		5.00		ug/L		03/20/23 07:40	03/21/23 08:24	1
Beryllium	0.500	U	0.500		ug/L		03/20/23 07:40	03/21/23 08:24	1
Cadmium	0.500	U	0.500		ug/L		03/20/23 07:40	03/21/23 08:24	1
Chromium	5.00	U	5.00		ug/L		03/20/23 07:40	03/21/23 08:24	1
Cobalt	0.500	U	0.500		ug/L		03/20/23 07:40	03/21/23 08:24	1
Lead	2.50	U	2.50		ug/L		03/20/23 07:40	03/21/23 08:24	1
Nickel	5.00	U	5.00		ug/L		03/20/23 07:40	03/21/23 08:24	1
Silver	1.00	U	1.00		ug/L		03/20/23 07:40	03/21/23 08:24	1
Thallium	1.00	U	1.00		ug/L		03/20/23 07:40	03/21/23 08:24	1
Zinc	20.0	U	20.0		ug/L		03/20/23 07:40	03/21/23 08:24	1

3/28/2023

Client: South Carolina Public Service Authority Project/Site: 125915/JM02.09.G01.1/36500

Job ID: 680-232195-1

Lab Sample ID: 680-232195-7

Matrix: Water

Client Sample ID: AF56428

Date Collected: 03/02/23 10:56 Date Received: 03/17/23 10:30

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Lithium	50.0	U	50.0		ug/L		03/23/23 14:17	03/24/23 20:44	1
Calcium	95200		500		ug/L		03/24/23 14:44	03/24/23 20:22	1
Iron	76100		100		ug/L		03/24/23 14:44	03/24/23 20:22	1
Magnesium	21000		500		ug/L		03/24/23 14:44	03/24/23 20:22	1
Molybdenum	10.0	U	10.0		ug/L		03/24/23 14:44	03/24/23 20:22	1
Potassium	9830		1000		ug/L		03/24/23 14:44	03/24/23 20:22	1
Selenium	20.0	U	20.0		ug/L		03/24/23 14:44	03/24/23 20:22	1
Sodium	35400		2000		ug/L		03/24/23 14:44	03/24/23 20:22	1

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Aluminum	100	U	100		ug/L		03/20/23 07:40	03/21/23 08:28	1
Antimony	5.00	U	5.00		ug/L		03/20/23 07:40	03/21/23 08:28	1
Arsenic	75.4		3.00		ug/L		03/20/23 07:40	03/21/23 08:28	1
Barium	108		5.00		ug/L		03/20/23 07:40	03/21/23 08:28	1
Beryllium	0.500	U	0.500		ug/L		03/20/23 07:40	03/21/23 08:28	1
Cadmium	0.500	U	0.500		ug/L		03/20/23 07:40	03/21/23 08:28	1
Chromium	5.00	U	5.00		ug/L		03/20/23 07:40	03/21/23 08:28	1
Cobalt	0.610		0.500		ug/L		03/20/23 07:40	03/21/23 08:28	1
Lead	2.50	U	2.50		ug/L		03/20/23 07:40	03/21/23 08:28	1
Nickel	5.00	U	5.00		ug/L		03/20/23 07:40	03/21/23 08:28	1
Silver	1.00	U	1.00		ug/L		03/20/23 07:40	03/21/23 08:28	1
Thallium	1.00	U	1.00		ug/L		03/20/23 07:40	03/21/23 08:28	1
Zinc	20.0	U	20.0		ug/L		03/20/23 07:40	03/21/23 08:28	1

3

6

8

11

40

Client: South Carolina Public Service Authority Project/Site: 125915/JM02.09.G01.1/36500

Job ID: 680-232195-1

Lab Sample ID: 680-232195-8

Matrix: Water

Client Sample ID: AF56419

Date Collected: 03/07/23 14:51 Date Received: 03/17/23 10:30

Analyte	Result Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Lithium	223	50.0		ug/L		03/23/23 14:17	03/24/23 20:48	1
Calcium	535000	500		ug/L		03/24/23 14:44	03/24/23 20:25	1
Iron	1430	100		ug/L		03/24/23 14:44	03/24/23 20:25	1
Magnesium	78800	500		ug/L		03/24/23 14:44	03/24/23 20:25	1
Molybdenum	55.9	10.0		ug/L		03/24/23 14:44	03/24/23 20:25	1
Potassium	19700	1000		ug/L		03/24/23 14:44	03/24/23 20:25	1
Selenium	20.0 U	20.0		ug/L		03/24/23 14:44	03/24/23 20:25	1
Sodium	41700	2000		ug/L		03/24/23 14:44	03/24/23 20:25	1

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Aluminum	100	U	100		ug/L		03/20/23 07:40	03/21/23 08:33	1
Antimony	5.00	U	5.00		ug/L		03/20/23 07:40	03/21/23 08:33	1
Arsenic	103		3.00		ug/L		03/20/23 07:40	03/21/23 08:33	1
Barium	71.5		5.00		ug/L		03/20/23 07:40	03/21/23 08:33	1
Beryllium	0.500	U	0.500		ug/L		03/20/23 07:40	03/21/23 08:33	1
Cadmium	0.500	U	0.500		ug/L		03/20/23 07:40	03/21/23 08:33	1
Chromium	5.00	U	5.00		ug/L		03/20/23 07:40	03/21/23 08:33	1
Cobalt	1.26		0.500		ug/L		03/20/23 07:40	03/21/23 08:33	1
Lead	2.50	U	2.50		ug/L		03/20/23 07:40	03/21/23 08:33	1
Nickel	5.00	U	5.00		ug/L		03/20/23 07:40	03/21/23 08:33	1
Silver	1.00	U	1.00		ug/L		03/20/23 07:40	03/21/23 08:33	1
Thallium	1.00	U	1.00		ug/L		03/20/23 07:40	03/21/23 08:33	1
Zinc	20.0	U	20.0		ug/L		03/20/23 07:40	03/21/23 08:33	1

Client: South Carolina Public Service Authority Project/Site: 125915/JM02.09.G01.1/36500

Job ID: 680-232195-1

Lab Sample ID: 680-232195-9

Matrix: Water

Client Sample ID: AF56425

Date Collected: 03/07/23 12:49 Date Received: 03/17/23 10:30

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Lithium	50.0	U	50.0		ug/L		03/23/23 14:17	03/24/23 20:53	1
Calcium	247000		500		ug/L		03/24/23 14:44	03/24/23 20:29	1
Iron	1290		100		ug/L		03/24/23 14:44	03/24/23 20:29	1
Magnesium	35800		500		ug/L		03/24/23 14:44	03/24/23 20:29	1
Molybdenum	19.3		10.0		ug/L		03/24/23 14:44	03/24/23 20:29	1
Potassium	13000		1000		ug/L		03/24/23 14:44	03/24/23 20:29	1
Selenium	20.0	U	20.0		ug/L		03/24/23 14:44	03/24/23 20:29	1
Sodium	68500		2000		ug/L		03/24/23 14:44	03/24/23 20:29	1

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Aluminum	100	U	100		ug/L		03/20/23 07:40	03/21/23 08:37	1
Antimony	5.00	U	5.00		ug/L		03/20/23 07:40	03/21/23 08:37	1
Arsenic	3.00	U	3.00		ug/L		03/20/23 07:40	03/21/23 08:37	1
Barium	42.8		5.00		ug/L		03/20/23 07:40	03/21/23 08:37	1
Beryllium	0.500	U	0.500		ug/L		03/20/23 07:40	03/21/23 08:37	1
Cadmium	0.500	U	0.500		ug/L		03/20/23 07:40	03/21/23 08:37	1
Chromium	5.00	U	5.00		ug/L		03/20/23 07:40	03/21/23 08:37	1
Cobalt	0.500	U	0.500		ug/L		03/20/23 07:40	03/21/23 08:37	1
Lead	2.50	U	2.50		ug/L		03/20/23 07:40	03/21/23 08:37	1
Nickel	5.00	U	5.00		ug/L		03/20/23 07:40	03/21/23 08:37	1
Silver	1.00	U	1.00		ug/L		03/20/23 07:40	03/21/23 08:37	1
Thallium	1.00	U	1.00		ug/L		03/20/23 07:40	03/21/23 08:37	1
Zinc	20.0	U	20.0		ug/L		03/20/23 07:40	03/21/23 08:37	1

5

6

8

46

11

Client: South Carolina Public Service Authority Project/Site: 125915/JM02.09.G01.1/36500

Job ID: 680-232195-1

Lab Sample ID: 680-232195-10

Matrix: Water

Client Sample ID: AF56426

Date Collected: 03/07/23 10:22 Date Received: 03/17/23 10:30

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Lithium	50.0	U	50.0		ug/L		03/23/23 14:17	03/24/23 21:12	1
Calcium	192000		500		ug/L		03/24/23 14:44	03/24/23 20:32	1
Iron	3230		100		ug/L		03/24/23 14:44	03/24/23 20:32	1
Magnesium	18700		500		ug/L		03/24/23 14:44	03/24/23 20:32	1
Molybdenum	10.0	U	10.0		ug/L		03/24/23 14:44	03/24/23 20:32	1
Potassium	11200		1000		ug/L		03/24/23 14:44	03/24/23 20:32	1
Selenium	20.0	U	20.0		ug/L		03/24/23 14:44	03/24/23 20:32	1
Sodium	127000		2000		ug/L		03/24/23 14:44	03/24/23 20:32	1

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Aluminum	149		100		ug/L		03/20/23 07:40	03/21/23 08:41	1
Antimony	5.00	U	5.00		ug/L		03/20/23 07:40	03/21/23 08:41	1
Arsenic	3.00	U	3.00		ug/L		03/20/23 07:40	03/21/23 08:41	1
Barium	35.1		5.00		ug/L		03/20/23 07:40	03/21/23 08:41	1
Beryllium	0.500	U	0.500		ug/L		03/20/23 07:40	03/21/23 08:41	1
Cadmium	0.500	U	0.500		ug/L		03/20/23 07:40	03/21/23 08:41	1
Chromium	5.00	U	5.00		ug/L		03/20/23 07:40	03/21/23 08:41	1
Cobalt	0.500	U	0.500		ug/L		03/20/23 07:40	03/21/23 08:41	1
Lead	2.50	U	2.50		ug/L		03/20/23 07:40	03/21/23 08:41	1
Nickel	5.00	U	5.00		ug/L		03/20/23 07:40	03/21/23 08:41	1
Silver	1.00	U	1.00		ug/L		03/20/23 07:40	03/21/23 08:41	1
Thallium	1.00	U	1.00		ug/L		03/20/23 07:40	03/21/23 08:41	1
Zinc	20.0	U	20.0		ug/L		03/20/23 07:40	03/21/23 08:41	1

2

3

6

8

9

11

12

Client: South Carolina Public Service Authority Project/Site: 125915/JM02.09.G01.1/36500

Job ID: 680-232195-1

Lab Sample ID: 680-232195-11

Matrix: Water

Client Sample ID: AF56427

Date Collected: 03/07/23 10:27 Date Received: 03/17/23 10:30

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Lithium	50.0	U	50.0		ug/L		03/23/23 14:17	03/24/23 21:16	1
Calcium	382000		500		ug/L		03/24/23 14:44	03/24/23 20:35	1
Iron	41600		100		ug/L		03/24/23 14:44	03/24/23 20:35	1
Magnesium	27600		500		ug/L		03/24/23 14:44	03/24/23 20:35	1
Molybdenum	10.0	U	10.0		ug/L		03/24/23 14:44	03/24/23 20:35	1
Potassium	2620		1000		ug/L		03/24/23 14:44	03/24/23 20:35	1
Selenium	20.0	U	20.0		ug/L		03/24/23 14:44	03/24/23 20:35	1
Sodium	121000		2000		ug/L		03/24/23 14:44	03/24/23 20:35	1

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Aluminum	156		100		ug/L		03/20/23 07:40	03/21/23 08:53	1
Antimony	5.00	U	5.00		ug/L		03/20/23 07:40	03/21/23 08:53	1
Arsenic	3.00	U	3.00		ug/L		03/20/23 07:40	03/21/23 08:53	1
Barium	35.8		5.00		ug/L		03/20/23 07:40	03/21/23 08:53	1
Beryllium	0.500	U	0.500		ug/L		03/20/23 07:40	03/21/23 08:53	1
Cadmium	0.500	U	0.500		ug/L		03/20/23 07:40	03/21/23 08:53	1
Chromium	5.00	U	5.00		ug/L		03/20/23 07:40	03/21/23 08:53	1
Cobalt	0.500	U	0.500		ug/L		03/20/23 07:40	03/21/23 08:53	1
Lead	2.50	U	2.50		ug/L		03/20/23 07:40	03/21/23 08:53	1
Nickel	5.00	U	5.00		ug/L		03/20/23 07:40	03/21/23 08:53	1
Silver	1.00	U	1.00		ug/L		03/20/23 07:40	03/21/23 08:53	1
Thallium	1.00	U	1.00		ug/L		03/20/23 07:40	03/21/23 08:53	1
Zinc	20.0	U	20.0		ug/L		03/20/23 07:40	03/21/23 08:53	1

2

5

7

^

10

12

13

Client: South Carolina Public Service Authority Project/Site: 125915/JM02.09.G01.1/36500

Job ID: 680-232195-1

Lab Sample ID: 680-232195-12

Matrix: Water

Client Sample ID: AF56408

Date Collected: 03/08/23 13:38 Date Received: 03/17/23 10:30

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Lithium	50.0	U	50.0		ug/L		03/23/23 14:17	03/24/23 21:21	1
Calcium	21000		500		ug/L		03/24/23 14:44	03/24/23 20:38	1
Iron	256		100		ug/L		03/24/23 14:44	03/24/23 20:38	1
Magnesium	1650		500		ug/L		03/24/23 14:44	03/24/23 20:38	1
Molybdenum	10.0	U	10.0		ug/L		03/24/23 14:44	03/24/23 20:38	1
Potassium	1000	U	1000		ug/L		03/24/23 14:44	03/24/23 20:38	1
Selenium	20.0	U	20.0		ug/L		03/24/23 14:44	03/24/23 20:38	1
Sodium	4330		2000		ug/L		03/24/23 14:44	03/24/23 20:38	1

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Aluminum	100	U	100		ug/L		03/20/23 07:40	03/21/23 08:57	1
Antimony	5.00	U	5.00		ug/L		03/20/23 07:40	03/21/23 08:57	1
Arsenic	3.00	U	3.00		ug/L		03/20/23 07:40	03/21/23 08:57	1
Barium	251		5.00		ug/L		03/20/23 07:40	03/21/23 08:57	1
Beryllium	0.500	U	0.500		ug/L		03/20/23 07:40	03/21/23 08:57	1
Cadmium	0.500	U	0.500		ug/L		03/20/23 07:40	03/21/23 08:57	1
Chromium	40.5		5.00		ug/L		03/20/23 07:40	03/21/23 08:57	1
Cobalt	0.575		0.500		ug/L		03/20/23 07:40	03/21/23 08:57	1
Lead	2.50	U	2.50		ug/L		03/20/23 07:40	03/21/23 08:57	1
Nickel	5.00	U	5.00		ug/L		03/20/23 07:40	03/21/23 08:57	1
Silver	1.00	U	1.00		ug/L		03/20/23 07:40	03/21/23 08:57	1
Thallium	1.00	U	1.00		ug/L		03/20/23 07:40	03/21/23 08:57	1
Zinc	53.9		20.0		ug/L		03/20/23 07:40	03/21/23 08:57	1

Client: South Carolina Public Service Authority Project/Site: 125915/JM02.09.G01.1/36500

Job ID: 680-232195-1

Lab Sample ID: 680-232195-13

Matrix: Water

Client Sample ID: AF56415

Date Collected: 03/08/23 15:13 Date Received: 03/17/23 10:30

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Lithium	50.0	U	50.0		ug/L		03/23/23 14:17	03/24/23 21:26	1
Calcium	19600		500		ug/L		03/24/23 14:44	03/24/23 20:42	1
Iron	213		100		ug/L		03/24/23 14:44	03/24/23 20:42	1
Magnesium	1630		500		ug/L		03/24/23 14:44	03/24/23 20:42	1
Molybdenum	10.0	U	10.0		ug/L		03/24/23 14:44	03/24/23 20:42	1
Potassium	1000	U	1000		ug/L		03/24/23 14:44	03/24/23 20:42	1
Selenium	20.0	U	20.0		ug/L		03/24/23 14:44	03/24/23 20:42	1
Sodium	4310		2000		ug/L		03/24/23 14:44	03/24/23 20:42	1

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Aluminum	100	U	100		ug/L		03/20/23 07:40	03/21/23 09:01	1
Antimony	5.00	U	5.00		ug/L		03/20/23 07:40	03/21/23 09:01	1
Arsenic	3.00	U	3.00		ug/L		03/20/23 07:40	03/21/23 09:01	1
Barium	76.3		5.00		ug/L		03/20/23 07:40	03/21/23 09:01	1
Beryllium	0.500	U	0.500		ug/L		03/20/23 07:40	03/21/23 09:01	1
Cadmium	0.500	U	0.500		ug/L		03/20/23 07:40	03/21/23 09:01	1
Chromium	5.00	U	5.00		ug/L		03/20/23 07:40	03/21/23 09:01	1
Cobalt	0.500	U	0.500		ug/L		03/20/23 07:40	03/21/23 09:01	1
Lead	2.50	U	2.50		ug/L		03/20/23 07:40	03/21/23 09:01	1
Nickel	5.00	U	5.00		ug/L		03/20/23 07:40	03/21/23 09:01	1
Silver	1.00	U	1.00		ug/L		03/20/23 07:40	03/21/23 09:01	1
Thallium	1.00	U	1.00		ug/L		03/20/23 07:40	03/21/23 09:01	1
Zinc	30.6		20.0		ug/L		03/20/23 07:40	03/21/23 09:01	1

3

6

8

9

11

12

13

Client: South Carolina Public Service Authority Project/Site: 125915/JM02.09.G01.1/36500

Job ID: 680-232195-1

Lab Sample ID: 680-232195-14

Matrix: Water

Client Sample ID: AF56416

Date Collected: 03/08/23 10:09 Date Received: 03/17/23 10:30

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Lithium	50.0	U	50.0		ug/L		03/23/23 14:17	03/24/23 21:31	1
Calcium	66800		500		ug/L		03/24/23 14:44	03/24/23 20:45	1
Iron	891		100		ug/L		03/24/23 14:44	03/24/23 20:45	1
Magnesium	2920		500		ug/L		03/24/23 14:44	03/24/23 20:45	1
Molybdenum	10.0	U	10.0		ug/L		03/24/23 14:44	03/24/23 20:45	1
Potassium	2190		1000		ug/L		03/24/23 14:44	03/24/23 20:45	1
Selenium	20.0	U	20.0		ug/L		03/24/23 14:44	03/24/23 20:45	1
Sodium	11100		2000		ug/L		03/24/23 14:44	03/24/23 20:45	1

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Aluminum	100	U	100		ug/L		03/20/23 07:40	03/21/23 09:05	1
Antimony	5.00	U	5.00		ug/L		03/20/23 07:40	03/21/23 09:05	1
Arsenic	74.8		3.00		ug/L		03/20/23 07:40	03/21/23 09:05	1
Barium	42.0		5.00		ug/L		03/20/23 07:40	03/21/23 09:05	1
Beryllium	0.500	U	0.500		ug/L		03/20/23 07:40	03/21/23 09:05	1
Cadmium	0.500	U	0.500		ug/L		03/20/23 07:40	03/21/23 09:05	1
Chromium	5.00	U	5.00		ug/L		03/20/23 07:40	03/21/23 09:05	1
Cobalt	0.500	U	0.500		ug/L		03/20/23 07:40	03/21/23 09:05	1
Lead	2.50	U	2.50		ug/L		03/20/23 07:40	03/21/23 09:05	1
Nickel	5.00	U	5.00		ug/L		03/20/23 07:40	03/21/23 09:05	1
Silver	1.00	U	1.00		ug/L		03/20/23 07:40	03/21/23 09:05	1
Thallium	1.00	U	1.00		ug/L		03/20/23 07:40	03/21/23 09:05	1
Zinc	182		20.0		ug/L		03/20/23 07:40	03/21/23 09:05	1

2

3

5

6

8

9

11

12

13

Client: South Carolina Public Service Authority Project/Site: 125915/JM02.09.G01.1/36500

Job ID: 680-232195-1

Lab Sample ID: 680-232195-15

Matrix: Water

Client Sample ID: AF56417

Date Collected: 03/08/23 10:14 Date Received: 03/17/23 10:30

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Lithium	50.0	U	50.0		ug/L		03/23/23 14:17	03/24/23 21:35	1
Calcium	270000		500		ug/L		03/20/23 09:01	03/21/23 19:12	1
Iron	1940		100		ug/L		03/20/23 09:01	03/21/23 19:12	1
Magnesium	38900		500		ug/L		03/20/23 09:01	03/21/23 19:12	1
Molybdenum	21.2		10.0		ug/L		03/20/23 09:01	03/21/23 19:12	1
Potassium	14100		1000		ug/L		03/20/23 09:01	03/21/23 19:12	1
Selenium	20.0	U	20.0		ug/L		03/20/23 09:01	03/21/23 19:12	1
Sodium	72300		2000		ug/L		03/20/23 09:01	03/21/23 19:12	1

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Aluminum	100	U	100		ug/L		03/20/23 09:01	03/21/23 16:07	1
Antimony	5.00	U	5.00		ug/L		03/20/23 09:01	03/21/23 16:07	1
Arsenic	84.0		3.00		ug/L		03/20/23 09:01	03/21/23 16:07	1
Barium	50.0		5.00		ug/L		03/20/23 09:01	03/21/23 16:07	1
Beryllium	0.500	U	0.500		ug/L		03/20/23 09:01	03/21/23 16:07	1
Cadmium	0.500	U	0.500		ug/L		03/20/23 09:01	03/21/23 16:07	1
Chromium	5.00	U	5.00		ug/L		03/20/23 09:01	03/21/23 16:07	1
Cobalt	0.500	U	0.500		ug/L		03/20/23 09:01	03/21/23 16:07	1
Lead	2.50	U	2.50		ug/L		03/20/23 09:01	03/21/23 16:07	1
Nickel	5.00	U	5.00		ug/L		03/20/23 09:01	03/21/23 16:07	1
Silver	1.00	U	1.00		ug/L		03/20/23 09:01	03/21/23 16:07	1
Thallium	1.00	U	1.00		ug/L		03/20/23 09:01	03/21/23 16:07	1
Zinc	20.0	U	20.0		ug/L		03/20/23 09:01	03/21/23 16:07	1

3

6

8

9

11

12

Client: South Carolina Public Service Authority Project/Site: 125915/JM02.09.G01.1/36500

Job ID: 680-232195-1

Lab Sample ID: 680-232195-16

Matrix: Water

Client Sample ID: AF56429

Date Collected: 03/08/23 12:12 Date Received: 03/17/23 10:30

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Lithium	50.0	U	50.0		ug/L		03/23/23 14:17	03/24/23 21:40	1
Calcium	74200		500		ug/L		03/20/23 09:01	03/21/23 19:22	1
Iron	92900		100		ug/L		03/20/23 09:01	03/21/23 19:22	1
Magnesium	26000		500		ug/L		03/20/23 09:01	03/21/23 19:22	1
Molybdenum	10.0	U	10.0		ug/L		03/20/23 09:01	03/21/23 19:22	1
Potassium	1000	U	1000		ug/L		03/20/23 09:01	03/21/23 19:22	1
Selenium	20.0	U	20.0		ug/L		03/20/23 09:01	03/21/23 19:22	1
Sodium	82900		2000		ug/L		03/20/23 09:01	03/21/23 19:22	1

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Aluminum	2310		100		ug/L		03/20/23 09:01	03/21/23 16:19	1
Antimony	5.00	U	5.00		ug/L		03/20/23 09:01	03/21/23 16:19	1
Arsenic	3.00	U	3.00		ug/L		03/20/23 09:01	03/21/23 16:19	1
Barium	245		5.00		ug/L		03/20/23 09:01	03/21/23 16:19	1
Beryllium	0.965		0.500		ug/L		03/20/23 09:01	03/21/23 16:19	1
Cadmium	0.500	U	0.500		ug/L		03/20/23 09:01	03/21/23 16:19	1
Chromium	5.00	U	5.00		ug/L		03/20/23 09:01	03/21/23 16:19	1
Cobalt	19.1		0.500		ug/L		03/20/23 09:01	03/21/23 16:19	1
Lead	2.54		2.50		ug/L		03/20/23 09:01	03/21/23 16:19	1
Nickel	5.89		5.00		ug/L		03/20/23 09:01	03/21/23 16:19	1
Silver	1.00	U	1.00		ug/L		03/20/23 09:01	03/21/23 16:19	1
Thallium	1.00	U	1.00		ug/L		03/20/23 09:01	03/21/23 16:19	1
Zinc	20.0	U	20.0		ug/L		03/20/23 09:01	03/21/23 16:19	1

Client: South Carolina Public Service Authority Project/Site: 125915/JM02.09.G01.1/36500

Job ID: 680-232195-1

Lab Sample ID: 680-232195-17

Matrix: Water

Client Sample ID: AF56394

Date Collected: 02/14/23 12:33 Date Received: 03/17/23 10:30

Method: SW846 6010D - Meta	ıls (ICP) - Dissolve	d							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Lithium	50.0	U	50.0		ug/L		03/23/23 14:19	03/24/23 21:54	1
Calcium	11200		500		ug/L		03/20/23 09:01	03/21/23 19:25	1
Iron	3120		100		ug/L		03/20/23 09:01	03/21/23 19:25	1
Magnesium	1020		500		ug/L		03/20/23 09:01	03/21/23 19:25	1
Molybdenum	10.0	U	10.0		ug/L		03/20/23 09:01	03/21/23 19:25	1
Potassium	1000	U	1000		ug/L		03/20/23 09:01	03/21/23 19:25	1
Selenium	20.0	U	20.0		ug/L		03/20/23 09:01	03/21/23 19:25	1
Sodium	5650		2000		ug/L		03/20/23 09:01	03/21/23 19:25	1

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Aluminum	1310		100		ug/L		03/20/23 09:01	03/21/23 16:23	1
Antimony	5.00	U	5.00		ug/L		03/20/23 09:01	03/21/23 16:23	1
Arsenic	5.22		3.00		ug/L		03/20/23 09:01	03/21/23 16:23	1
Barium	76.1		5.00		ug/L		03/20/23 09:01	03/21/23 16:23	1
Beryllium	0.500	U	0.500		ug/L		03/20/23 09:01	03/21/23 16:23	1
Cadmium	0.500	U	0.500		ug/L		03/20/23 09:01	03/21/23 16:23	1
Chromium	5.00	U	5.00		ug/L		03/20/23 09:01	03/21/23 16:23	1
Cobalt	0.765		0.500		ug/L		03/20/23 09:01	03/21/23 16:23	1
Lead	2.50	U	2.50		ug/L		03/20/23 09:01	03/21/23 16:23	1
Nickel	5.00	U	5.00		ug/L		03/20/23 09:01	03/21/23 16:23	1
Silver	1.00	U	1.00		ug/L		03/20/23 09:01	03/21/23 16:23	1
Thallium	1.00	U	1.00		ug/L		03/20/23 09:01	03/21/23 16:23	1
Zinc	23.6		20.0		ug/L		03/20/23 09:01	03/21/23 16:23	1

3

Δ

5

0

0

10

12

13

Client: South Carolina Public Service Authority Project/Site: 125915/JM02.09.G01.1/36500

Job ID: 680-232195-1

Client Sample ID: AF56331

Lab Sample ID: 680-232195-18

Matrix: Water

Date Collected: 02/14/23 13:51 Date Received: 03/17/23 10:30

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Lithium	50.0	U	50.0		ug/L		03/23/23 14:19	03/24/23 22:26	1
Calcium	3560		500		ug/L		03/20/23 09:01	03/21/23 19:29	1
Iron	100	U	100		ug/L		03/20/23 09:01	03/21/23 19:29	1
Magnesium	898		500		ug/L		03/20/23 09:01	03/21/23 19:29	1
Molybdenum	10.0	U	10.0		ug/L		03/20/23 09:01	03/21/23 19:29	1
Potassium	1000	U	1000		ug/L		03/20/23 09:01	03/21/23 19:29	1
Selenium	20.0	U	20.0		ug/L		03/20/23 09:01	03/21/23 19:29	1
Sodium	2720		2000		ug/L		03/20/23 09:01	03/21/23 19:29	1

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Aluminum	793		100		ug/L		03/20/23 09:01	03/21/23 16:27	1
Antimony	5.00	U	5.00		ug/L		03/20/23 09:01	03/21/23 16:27	1
Arsenic	3.00	U	3.00		ug/L		03/20/23 09:01	03/21/23 16:27	1
Barium	30.1		5.00		ug/L		03/20/23 09:01	03/21/23 16:27	1
Beryllium	0.500	U	0.500		ug/L		03/20/23 09:01	03/21/23 16:27	1
Cadmium	0.500	U	0.500		ug/L		03/20/23 09:01	03/21/23 16:27	1
Chromium	5.00	U	5.00		ug/L		03/20/23 09:01	03/21/23 16:27	1
Cobalt	1.58		0.500		ug/L		03/20/23 09:01	03/21/23 16:27	1
Lead	2.50	U	2.50		ug/L		03/20/23 09:01	03/21/23 16:27	1
Nickel	5.00	U	5.00		ug/L		03/20/23 09:01	03/21/23 16:27	1
Silver	1.00	U	1.00		ug/L		03/20/23 09:01	03/21/23 16:27	1
Thallium	1.00	U	1.00		ug/L		03/20/23 09:01	03/21/23 16:27	1
Zinc	20.0	U	20.0		ug/L		03/20/23 09:01	03/21/23 16:27	1

3/28/2023

2

4

5

0

10

12

13

Client: South Carolina Public Service Authority Project/Site: 125915/JM02.09.G01.1/36500

Job ID: 680-232195-1

Client Sample ID: AF56332

Lab Sample ID: 680-232195-19

Matrix: Water

Date Collected: 02/14/23 15:22 Date Received: 03/17/23 10:30

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Lithium	50.0	U	50.0		ug/L		03/23/23 14:19	03/24/23 22:35	1
Calcium	87900		500		ug/L		03/20/23 09:01	03/21/23 19:38	1
Iron	5240		100		ug/L		03/20/23 09:01	03/21/23 19:38	1
Magnesium	2750		500		ug/L		03/20/23 09:01	03/21/23 19:38	1
Molybdenum	10.0	U	10.0		ug/L		03/20/23 09:01	03/21/23 19:38	1
Potassium	2150		1000		ug/L		03/20/23 09:01	03/21/23 19:38	1
Selenium	20.0	U	20.0		ug/L		03/20/23 09:01	03/21/23 19:38	1
Sodium	11700		2000		ug/L		03/20/23 09:01	03/21/23 19:38	1

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Aluminum	1300		100		ug/L		03/20/23 09:01	03/21/23 16:31	1
Antimony	5.00	U	5.00		ug/L		03/20/23 09:01	03/21/23 16:31	1
Arsenic	3.00	U	3.00		ug/L		03/20/23 09:01	03/21/23 16:31	1
Barium	102		5.00		ug/L		03/20/23 09:01	03/21/23 16:31	1
Beryllium	0.500	U	0.500		ug/L		03/20/23 09:01	03/21/23 16:31	1
Cadmium	0.500	U	0.500		ug/L		03/20/23 09:01	03/21/23 16:31	1
Chromium	5.00	U	5.00		ug/L		03/20/23 09:01	03/21/23 16:31	1
Cobalt	0.500	U	0.500		ug/L		03/20/23 09:01	03/21/23 16:31	1
Lead	2.50	U	2.50		ug/L		03/20/23 09:01	03/21/23 16:31	1
Nickel	5.00	U	5.00		ug/L		03/20/23 09:01	03/21/23 16:31	1
Silver	1.00	U	1.00		ug/L		03/20/23 09:01	03/21/23 16:31	1
Thallium	1.00	U	1.00		ug/L		03/20/23 09:01	03/21/23 16:31	1
Zinc	20.0	U	20.0		ug/L		03/20/23 09:01	03/21/23 16:31	1

Client: South Carolina Public Service Authority Project/Site: 125915/JM02.09.G01.1/36500

Lab Sample ID: 680-232195-20

Matrix: Water

Job ID: 680-232195-1

Client Sample ID: AF56395

Date Collected: 02/15/23 11:36 Date Received: 03/17/23 10:30

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Lithium	50.0	U	50.0		ug/L		03/23/23 14:19	03/24/23 22:39	1
Calcium	355000		500		ug/L		03/20/23 09:01	03/21/23 19:42	1
Iron	3970		100		ug/L		03/20/23 09:01	03/21/23 19:42	1
Magnesium	43700		500		ug/L		03/20/23 09:01	03/21/23 19:42	1
Molybdenum	10.0	U	10.0		ug/L		03/20/23 09:01	03/21/23 19:42	1
Potassium	9610		1000		ug/L		03/20/23 09:01	03/21/23 19:42	1
Selenium	20.0	U	20.0		ug/L		03/20/23 09:01	03/21/23 19:42	1
Sodium	71800		2000		ug/L		03/20/23 09:01	03/21/23 19:42	1

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Aluminum	194		100		ug/L		03/20/23 09:01	03/21/23 16:35	1
Antimony	5.00	U	5.00		ug/L		03/20/23 09:01	03/21/23 16:35	1
Arsenic	11.5		3.00		ug/L		03/20/23 09:01	03/21/23 16:35	1
Barium	151		5.00		ug/L		03/20/23 09:01	03/21/23 16:35	1
Beryllium	1.46		0.500		ug/L		03/20/23 09:01	03/21/23 16:35	1
Cadmium	0.500	U	0.500		ug/L		03/20/23 09:01	03/21/23 16:35	1
Chromium	5.00	U	5.00		ug/L		03/20/23 09:01	03/21/23 16:35	1
Cobalt	18.5		0.500		ug/L		03/20/23 09:01	03/21/23 16:35	1
Lead	2.50	U	2.50		ug/L		03/20/23 09:01	03/21/23 16:35	1
Nickel	10.1		5.00		ug/L		03/20/23 09:01	03/21/23 16:35	1
Silver	1.00	U	1.00		ug/L		03/20/23 09:01	03/21/23 16:35	1
Thallium	1.00	U	1.00		ug/L		03/20/23 09:01	03/21/23 16:35	1
Zinc	20.0	U	20.0		ug/L		03/20/23 09:01	03/21/23 16:35	1

7

8

10

11

13

Client: South Carolina Public Service Authority Project/Site: 125915/JM02.09.G01.1/36500

Job ID: 680-232195-1

Lab Sample ID: 680-232195-21

Matrix: Water

Client Sample ID: AF56396

Date Collected: 02/15/23 13:21 Date Received: 03/17/23 10:30

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Lithium	50.0	U	50.0		ug/L		03/23/23 14:19	03/24/23 22:44	1
Calcium	226000		500		ug/L		03/20/23 09:01	03/21/23 19:51	1
Iron	23400		100		ug/L		03/20/23 09:01	03/21/23 19:51	1
Magnesium	14600		500		ug/L		03/20/23 09:01	03/21/23 19:51	1
Molybdenum	10.0	U	10.0		ug/L		03/20/23 09:01	03/21/23 19:51	1
Potassium	2050		1000		ug/L		03/20/23 09:01	03/21/23 19:51	1
Selenium	20.0	U	20.0		ug/L		03/20/23 09:01	03/21/23 19:51	1
Sodium	42400		2000		ug/L		03/20/23 09:01	03/21/23 19:51	1

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Aluminum	100	U	100		ug/L		03/20/23 09:01	03/21/23 16:54	1
Antimony	5.00	U	5.00		ug/L		03/20/23 09:01	03/21/23 16:54	1
Arsenic	3.00	U	3.00		ug/L		03/20/23 09:01	03/22/23 08:24	1
Barium	149		5.00		ug/L		03/20/23 09:01	03/21/23 16:54	1
Beryllium	0.500	U	0.500		ug/L		03/20/23 09:01	03/21/23 16:54	1
Cadmium	0.500	U	0.500		ug/L		03/20/23 09:01	03/21/23 16:54	1
Chromium	5.00	U	5.00		ug/L		03/20/23 09:01	03/21/23 16:54	1
Cobalt	0.565		0.500		ug/L		03/20/23 09:01	03/21/23 16:54	1
Lead	2.50	U	2.50		ug/L		03/20/23 09:01	03/22/23 08:24	1
Nickel	5.00	U	5.00		ug/L		03/20/23 09:01	03/21/23 16:54	1
Silver	1.00	U	1.00		ug/L		03/20/23 09:01	03/21/23 16:54	1
Thallium	1.00	U	1.00		ug/L		03/20/23 09:01	03/22/23 08:24	1
Zinc	20.0	U	20.0		ug/L		03/20/23 09:01	03/21/23 16:54	1

3/28/2023

Client: South Carolina Public Service Authority

Job ID: 680-232195-1

Project/Site: 125915/JM02.09.G01.1/36500

Lab Sample ID: 680-232195-22

Matrix: Water

Client Sample ID: AF56397

Date Collected: 02/16/23 10:53 Date Received: 03/17/23 10:30

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Lithium	50.0	U	50.0		ug/L		03/23/23 14:19	03/24/23 22:49	1
Calcium	54900		500		ug/L		03/20/23 09:01	03/21/23 19:45	1
Iron	102		100		ug/L		03/20/23 09:01	03/21/23 19:45	1
Magnesium	3940		500		ug/L		03/20/23 09:01	03/21/23 19:45	1
Molybdenum	10.0	U	10.0		ug/L		03/20/23 09:01	03/21/23 19:45	1
Potassium	1830		1000		ug/L		03/20/23 09:01	03/21/23 19:45	1
Selenium	20.0	U	20.0		ug/L		03/20/23 09:01	03/21/23 19:45	1
Sodium	17100		2000		ug/L		03/20/23 09:01	03/21/23 19:45	1

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Aluminum	100	U	100		ug/L		03/20/23 09:01	03/21/23 16:46	1
Antimony	5.00	U	5.00		ug/L		03/20/23 09:01	03/21/23 16:46	1
Arsenic	3.00	U	3.00		ug/L		03/20/23 09:01	03/22/23 08:16	1
Barium	34.2		5.00		ug/L		03/20/23 09:01	03/21/23 16:46	1
Beryllium	0.500	U	0.500		ug/L		03/20/23 09:01	03/21/23 16:46	1
Cadmium	0.500	U	0.500		ug/L		03/20/23 09:01	03/21/23 16:46	1
Chromium	5.00	U	5.00		ug/L		03/20/23 09:01	03/21/23 16:46	1
Cobalt	0.500	U	0.500		ug/L		03/20/23 09:01	03/21/23 16:46	1
Lead	2.50	U	2.50		ug/L		03/20/23 09:01	03/22/23 08:16	1
Nickel	5.00	U	5.00		ug/L		03/20/23 09:01	03/21/23 16:46	1
Silver	1.00	U	1.00		ug/L		03/20/23 09:01	03/21/23 16:46	1
Thallium	1.00	U	1.00		ug/L		03/20/23 09:01	03/22/23 08:16	1
Zinc	114		20.0		ug/L		03/20/23 09:01	03/21/23 16:46	1

3/28/2023

Client: South Carolina Public Service Authority Project/Site: 125915/JM02.09.G01.1/36500

Job ID: 680-232195-1

Lab Sample ID: 680-232195-23

Matrix: Water

Client Sample ID: AF56400

Date Collected: 02/16/23 12:55 Date Received: 03/17/23 10:30

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Lithium	50.0	U	50.0		ug/L		03/23/23 14:19	03/24/23 22:53	1
Calcium	264000		500		ug/L		03/20/23 09:01	03/21/23 19:48	1
Iron	783		100		ug/L		03/20/23 09:01	03/21/23 19:48	1
Magnesium	3930		500		ug/L		03/20/23 09:01	03/21/23 19:48	1
Molybdenum	10.0	U	10.0		ug/L		03/20/23 09:01	03/21/23 19:48	1
Potassium	2390		1000		ug/L		03/20/23 09:01	03/21/23 19:48	1
Selenium	20.0	U	20.0		ug/L		03/20/23 09:01	03/21/23 19:48	1
Sodium	13900		2000		ug/L		03/20/23 09:01	03/21/23 19:48	1

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Aluminum	100	U	100		ug/L		03/20/23 09:01	03/21/23 16:50	1
Antimony	5.00	U	5.00		ug/L		03/20/23 09:01	03/21/23 16:50	1
Arsenic	3.00	U	3.00		ug/L		03/20/23 09:01	03/22/23 08:20	1
Barium	46.4		5.00		ug/L		03/20/23 09:01	03/21/23 16:50	1
Beryllium	0.500	U	0.500		ug/L		03/20/23 09:01	03/21/23 16:50	1
Cadmium	0.500	U	0.500		ug/L		03/20/23 09:01	03/21/23 16:50	1
Chromium	5.00	U	5.00		ug/L		03/20/23 09:01	03/21/23 16:50	1
Cobalt	0.500	U	0.500		ug/L		03/20/23 09:01	03/21/23 16:50	1
Lead	2.50	U	2.50		ug/L		03/20/23 09:01	03/22/23 08:20	1
Nickel	5.00	U	5.00		ug/L		03/20/23 09:01	03/21/23 16:50	1
Silver	1.00	U	1.00		ug/L		03/20/23 09:01	03/21/23 16:50	1
Thallium	1.00	U	1.00		ug/L		03/20/23 09:01	03/22/23 08:20	1
Zinc	20.0	U	20.0		ug/L		03/20/23 09:01	03/21/23 16:50	1

Client: South Carolina Public Service Authority Project/Site: 125915/JM02.09.G01.1/36500

Job ID: 680-232195-1

Lab Sample ID: 680-232195-24

Matrix: Water

Client Sample ID: AF56442

Date Collected: 02/16/23 14:07 Date Received: 03/17/23 10:30

Method: SW846 6010D - Me									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Lithium	50.0	U	50.0		ug/L		03/23/23 14:19	03/24/23 23:12	1
Calcium	162000		500		ug/L		03/20/23 09:01	03/21/23 19:55	1
Iron	286		100		ug/L		03/20/23 09:01	03/21/23 19:55	1
Magnesium	7610		500		ug/L		03/20/23 09:01	03/21/23 19:55	1
Molybdenum	10.0	U	10.0		ug/L		03/20/23 09:01	03/21/23 19:55	1
Potassium	4220		1000		ug/L		03/20/23 09:01	03/21/23 19:55	1
Selenium	20.0	U	20.0		ug/L		03/20/23 09:01	03/21/23 19:55	1
Sodium	21500		2000		ug/L		03/20/23 09:01	03/21/23 19:55	1

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Aluminum	100	U	100		ug/L		03/20/23 09:01	03/21/23 16:58	1
Antimony	5.00	U	5.00		ug/L		03/20/23 09:01	03/21/23 16:58	1
Arsenic	3.62		3.00		ug/L		03/20/23 09:01	03/22/23 08:28	1
Barium	34.7		5.00		ug/L		03/20/23 09:01	03/21/23 16:58	1
Beryllium	0.500	U	0.500		ug/L		03/20/23 09:01	03/21/23 16:58	1
Cadmium	0.500	U	0.500		ug/L		03/20/23 09:01	03/21/23 16:58	1
Chromium	5.00	U	5.00		ug/L		03/20/23 09:01	03/21/23 16:58	1
Cobalt	0.500	U	0.500		ug/L		03/20/23 09:01	03/21/23 16:58	1
Lead	2.50	U	2.50		ug/L		03/20/23 09:01	03/22/23 08:28	1
Nickel	5.00	U	5.00		ug/L		03/20/23 09:01	03/21/23 16:58	1
Silver	1.00	U	1.00		ug/L		03/20/23 09:01	03/21/23 16:58	1
Thallium	1.00	U	1.00		ug/L		03/20/23 09:01	03/22/23 08:28	1
Zinc	20.0	U	20.0		ug/L		03/20/23 09:01	03/21/23 16:58	1

3/28/2023

5

Q

10

12

13

Client: South Carolina Public Service Authority Project/Site: 125915/JM02.09.G01.1/36500

Job ID: 680-232195-1

Lab Sample ID: 680-232195-25

Matrix: Water

Client Sample ID: AF56443

Date Collected: 02/16/23 14:12 Date Received: 03/17/23 10:30

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Lithium	50.0	U	50.0		ug/L		03/23/23 14:19	03/24/23 23:17	1
Calcium	166000		500		ug/L		03/20/23 09:01	03/21/23 19:58	1
Iron	359		100		ug/L		03/20/23 09:01	03/21/23 19:58	1
Magnesium	7850		500		ug/L		03/20/23 09:01	03/21/23 19:58	1
Molybdenum	10.0	U	10.0		ug/L		03/20/23 09:01	03/21/23 19:58	1
Potassium	4220		1000		ug/L		03/20/23 09:01	03/21/23 19:58	1
Selenium	20.0	U	20.0		ug/L		03/20/23 09:01	03/21/23 19:58	1
Sodium	21500		2000		ug/L		03/20/23 09:01	03/21/23 19:58	1

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Aluminum	239		100		ug/L		03/20/23 09:01	03/21/23 17:02	1
Antimony	5.00	U	5.00		ug/L		03/20/23 09:01	03/21/23 17:02	1
Arsenic	4.54		3.00		ug/L		03/20/23 09:01	03/22/23 08:32	1
Barium	39.2		5.00		ug/L		03/20/23 09:01	03/21/23 17:02	1
Beryllium	0.500	U	0.500		ug/L		03/20/23 09:01	03/21/23 17:02	1
Cadmium	0.500	U	0.500		ug/L		03/20/23 09:01	03/21/23 17:02	1
Chromium	5.00	U	5.00		ug/L		03/20/23 09:01	03/21/23 17:02	1
Cobalt	0.715		0.500		ug/L		03/20/23 09:01	03/21/23 17:02	1
Lead	2.50	U	2.50		ug/L		03/20/23 09:01	03/22/23 08:32	1
Nickel	5.00	U	5.00		ug/L		03/20/23 09:01	03/21/23 17:02	1
Silver	1.00	U	1.00		ug/L		03/20/23 09:01	03/21/23 17:02	1
Thallium	1.00	U	1.00		ug/L		03/20/23 09:01	03/22/23 08:32	1
Zinc	20.0	U	20.0		ug/L		03/20/23 09:01	03/21/23 17:02	1

3

4

6

8

9

1 U

12

13

Client: South Carolina Public Service Authority Project/Site: 125915/JM02.09.G01.1/36500

Job ID: 680-232195-1

Lab Sample ID: 680-232195-26

Matrix: Water

Client Sample ID: AF56402 Date Collected: 02/27/23 12:47

Date Received: 03/17/23 10:30

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Lithium		U	50.0	IIIDE	ug/L		03/23/23 14:19	03/24/23 23:21	1
Calcium	199000		500		ug/L		03/20/23 09:01	03/21/23 20:01	1
Iron	22900		100		ug/L		03/20/23 09:01	03/21/23 20:01	1
Magnesium	23600		500		ug/L		03/20/23 09:01	03/21/23 20:01	1
Molybdenum	10.0	U	10.0		ug/L		03/20/23 09:01	03/21/23 20:01	1
Potassium	11200		1000		ug/L		03/20/23 09:01	03/21/23 20:01	1
Selenium	20.0	U	20.0		ug/L		03/20/23 09:01	03/21/23 20:01	1
Sodium	34600		2000		ug/L		03/20/23 09:01	03/21/23 20:01	1

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Aluminum	327		100		ug/L		03/20/23 09:01	03/21/23 17:06	1
Antimony	5.00	U	5.00		ug/L		03/20/23 09:01	03/21/23 17:06	1
Arsenic	31.0		3.00		ug/L		03/20/23 09:01	03/22/23 08:36	1
Barium	77.9		5.00		ug/L		03/20/23 09:01	03/21/23 17:06	1
Beryllium	0.500	U	0.500		ug/L		03/20/23 09:01	03/21/23 17:06	1
Cadmium	0.500	U	0.500		ug/L		03/20/23 09:01	03/21/23 17:06	1
Chromium	5.00	U	5.00		ug/L		03/20/23 09:01	03/21/23 17:06	1
Cobalt	0.500	U	0.500		ug/L		03/20/23 09:01	03/21/23 17:06	1
Lead	2.50	U	2.50		ug/L		03/20/23 09:01	03/22/23 08:36	1
Nickel	5.00	U	5.00		ug/L		03/20/23 09:01	03/21/23 17:06	1
Silver	1.00	U	1.00		ug/L		03/20/23 09:01	03/21/23 17:06	1
Thallium	1.00	U	1.00		ug/L		03/20/23 09:01	03/22/23 08:36	1
Zinc	20.0	U	20.0		ug/L		03/20/23 09:01	03/21/23 17:06	1

Client: South Carolina Public Service Authority Project/Site: 125915/JM02.09.G01.1/36500

Job ID: 680-232195-1

Lab Sample ID: 680-232195-27

Matrix: Water

Client Sample ID: AF56403

Date Collected: 02/27/23 09:57 Date Received: 03/17/23 10:30

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Lithium	70.2		50.0		ug/L		03/23/23 14:19	03/24/23 23:26	1
Calcium	645000		500		ug/L		03/20/23 09:01	03/21/23 20:04	1
Iron	22000		100		ug/L		03/20/23 09:01	03/21/23 20:04	1
Magnesium	90500		500		ug/L		03/20/23 09:01	03/21/23 20:04	1
Molybdenum	10.0	U	10.0		ug/L		03/20/23 09:01	03/21/23 20:04	1
Potassium	28700		1000		ug/L		03/20/23 09:01	03/21/23 20:04	1
Selenium	20.0	U	20.0		ug/L		03/20/23 09:01	03/21/23 20:04	1
Sodium	156000		2000		ug/L		03/20/23 09:01	03/21/23 20:04	1

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Aluminum	100	U	100		ug/L		03/20/23 09:01	03/21/23 17:10	1
Antimony	5.00	U	5.00		ug/L		03/20/23 09:01	03/21/23 17:10	1
Arsenic	3.00	U	3.00		ug/L		03/20/23 09:01	03/22/23 08:40	1
Barium	318		5.00		ug/L		03/20/23 09:01	03/21/23 17:10	1
Beryllium	0.500	U	0.500		ug/L		03/20/23 09:01	03/21/23 17:10	1
Cadmium	0.500	U	0.500		ug/L		03/20/23 09:01	03/21/23 17:10	1
Chromium	5.00	U	5.00		ug/L		03/20/23 09:01	03/21/23 17:10	1
Cobalt	0.500	U	0.500		ug/L		03/20/23 09:01	03/21/23 17:10	1
Lead	2.50	U	2.50		ug/L		03/20/23 09:01	03/22/23 08:40	1
Nickel	5.00	U	5.00		ug/L		03/20/23 09:01	03/21/23 17:10	1
Silver	1.00	U	1.00		ug/L		03/20/23 09:01	03/21/23 17:10	1
Thallium	1.00	U	1.00		ug/L		03/20/23 09:01	03/22/23 08:40	1
Zinc	20.0	U	20.0		ug/L		03/20/23 09:01	03/21/23 17:10	1

3

4

6

8

9

11

12

13

Client: South Carolina Public Service Authority Project/Site: 125915/JM02.09.G01.1/36500

Job ID: 680-232195-1

Lab Sample ID: 680-232195-28

Matrix: Water

Client Sample ID: AF56404

Date Collected: 02/27/23 10:02 Date Received: 03/17/23 10:30

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Lithium	64.9		50.0		ug/L		03/23/23 14:19	03/24/23 23:31	1
Calcium	653000		500		ug/L		03/20/23 09:01	03/21/23 20:08	1
Iron	22200		100		ug/L		03/20/23 09:01	03/21/23 20:08	1
Magnesium	91700		500		ug/L		03/20/23 09:01	03/21/23 20:08	1
Molybdenum	10.0	U	10.0		ug/L		03/20/23 09:01	03/21/23 20:08	1
Potassium	28600		1000		ug/L		03/20/23 09:01	03/21/23 20:08	1
Selenium	20.0	U	20.0		ug/L		03/20/23 09:01	03/21/23 20:08	1
Sodium	158000		2000		ug/L		03/20/23 09:01	03/21/23 20:08	1

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Aluminum	100	U	100		ug/L		03/20/23 09:01	03/21/23 17:14	1
Antimony	5.00	U	5.00		ug/L		03/20/23 09:01	03/21/23 17:14	1
Arsenic	3.00	U	3.00		ug/L		03/20/23 09:01	03/22/23 08:43	1
Barium	313		5.00		ug/L		03/20/23 09:01	03/21/23 17:14	1
Beryllium	0.500	U	0.500		ug/L		03/20/23 09:01	03/21/23 17:14	1
Cadmium	0.500	U	0.500		ug/L		03/20/23 09:01	03/21/23 17:14	1
Chromium	5.00	U	5.00		ug/L		03/20/23 09:01	03/21/23 17:14	1
Cobalt	0.500	U	0.500		ug/L		03/20/23 09:01	03/21/23 17:14	1
Lead	2.50	U	2.50		ug/L		03/20/23 09:01	03/22/23 08:43	1
Nickel	5.00	U	5.00		ug/L		03/20/23 09:01	03/21/23 17:14	1
Silver	1.00	U	1.00		ug/L		03/20/23 09:01	03/21/23 17:14	1
Thallium	1.00	U	1.00		ug/L		03/20/23 09:01	03/22/23 08:43	1
Zinc	20.0	U	20.0		ug/L		03/20/23 09:01	03/21/23 17:14	1

2

5

7

8

9

11

12

13

Client: South Carolina Public Service Authority Project/Site: 125915/JM02.09.G01.1/36500

Job ID: 680-232195-1

Lab Sample ID: 680-232195-29

Matrix: Water

Client Sample ID: AF56434

Date Collected: 02/27/23 15:44 Date Received: 03/17/23 10:30

Method: SW846 6010D - Meta	als (ICP) - Dissolve	d							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Lithium	50.0	U	50.0		ug/L		03/23/23 14:19	03/24/23 23:36	1
Calcium	60500		500		ug/L		03/20/23 09:01	03/21/23 20:17	1
Iron	2930		100		ug/L		03/20/23 09:01	03/21/23 20:17	1
Magnesium	1910		500		ug/L		03/20/23 09:01	03/21/23 20:17	1
Molybdenum	10.0	U	10.0		ug/L		03/20/23 09:01	03/21/23 20:17	1
Potassium	1000	U	1000		ug/L		03/20/23 09:01	03/21/23 20:17	1
Selenium	20.0	U	20.0		ug/L		03/20/23 09:01	03/21/23 20:17	1
Sodium	4740		2000		ug/L		03/20/23 09:01	03/21/23 20:17	1

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Aluminum	929		100		ug/L		03/20/23 09:01	03/21/23 17:18	1
Antimony	5.00	U	5.00		ug/L		03/20/23 09:01	03/21/23 17:18	1
Arsenic	3.00	U	3.00		ug/L		03/20/23 09:01	03/22/23 08:47	1
Barium	38.9		5.00		ug/L		03/20/23 09:01	03/21/23 17:18	1
Beryllium	0.500	U	0.500		ug/L		03/20/23 09:01	03/21/23 17:18	1
Cadmium	0.500	U	0.500		ug/L		03/20/23 09:01	03/21/23 17:18	1
Chromium	5.00	U	5.00		ug/L		03/20/23 09:01	03/21/23 17:18	1
Cobalt	2.41		0.500		ug/L		03/20/23 09:01	03/21/23 17:18	1
Lead	2.50	U	2.50		ug/L		03/20/23 09:01	03/22/23 08:47	1
Nickel	5.00	U	5.00		ug/L		03/20/23 09:01	03/21/23 17:18	1
Silver	1.00	U	1.00		ug/L		03/20/23 09:01	03/21/23 17:18	1
Thallium	1.00	U	1.00		ug/L		03/20/23 09:01	03/22/23 08:47	1
Zinc	68.5		20.0		ug/L		03/20/23 09:01	03/21/23 17:18	1

3/28/2023

q

10

12

13

Client: South Carolina Public Service Authority Project/Site: 125915/JM02.09.G01.1/36500

Job ID: 680-232195-1

Lab Sample ID: 680-232195-30

Matrix: Water

Client Sample ID: AF56433

Date Collected: 02/28/23 12:58 Date Received: 03/17/23 10:30

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Lithium	50.0	U	50.0		ug/L		03/23/23 14:19	03/24/23 23:41	1
Calcium	448000		500		ug/L		03/20/23 09:01	03/21/23 20:21	1
Iron	16300		100		ug/L		03/20/23 09:01	03/21/23 20:21	1
Magnesium	12900		500		ug/L		03/20/23 09:01	03/21/23 20:21	1
Molybdenum	10.0	U	10.0		ug/L		03/20/23 09:01	03/21/23 20:21	1
Potassium	5750		1000		ug/L		03/20/23 09:01	03/21/23 20:21	1
Selenium	20.0	U	20.0		ug/L		03/20/23 09:01	03/21/23 20:21	1
Sodium	10800		2000		ug/L		03/20/23 09:01	03/21/23 20:21	1

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Aluminum	100	U	100		ug/L		03/20/23 09:01	03/21/23 17:22	1
Antimony	5.00	U	5.00		ug/L		03/20/23 09:01	03/21/23 17:22	1
Arsenic	3.00	U	3.00		ug/L		03/20/23 09:01	03/22/23 09:03	1
Barium	53.8		5.00		ug/L		03/20/23 09:01	03/21/23 17:22	1
Beryllium	0.500	U	0.500		ug/L		03/20/23 09:01	03/21/23 17:22	1
Cadmium	0.500	U	0.500		ug/L		03/20/23 09:01	03/21/23 17:22	1
Chromium	5.00	U	5.00		ug/L		03/20/23 09:01	03/21/23 17:22	1
Cobalt	0.500	U	0.500		ug/L		03/20/23 09:01	03/21/23 17:22	1
Lead	2.50	U	2.50		ug/L		03/20/23 09:01	03/22/23 09:03	1
Nickel	5.00	U	5.00		ug/L		03/20/23 09:01	03/21/23 17:22	1
Silver	1.00	U	1.00		ug/L		03/20/23 09:01	03/21/23 17:22	1
Thallium	1.00	U	1.00		ug/L		03/20/23 09:01	03/22/23 09:03	1
Zinc	20.0	U	20.0		ug/L		03/20/23 09:01	03/21/23 17:22	1

2

Δ

5

7

8

9

10

12

13

Client: South Carolina Public Service Authority Project/Site: 125915/JM02.09.G01.1/36500

Job ID: 680-232195-1

Lab Sample ID: 680-232195-31

Matrix: Water

Client Sample ID: AF56435

Date Collected: 02/28/23 11:44 Date Received: 03/17/23 10:30

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Lithium	50.0	U	50.0		ug/L		03/23/23 14:19	03/24/23 23:45	1
Calcium	21900		500		ug/L		03/20/23 09:01	03/21/23 20:24	1
Iron	880		100		ug/L		03/20/23 09:01	03/21/23 20:24	1
Magnesium	892		500		ug/L		03/20/23 09:01	03/21/23 20:24	1
Molybdenum	10.0	U	10.0		ug/L		03/20/23 09:01	03/21/23 20:24	1
Potassium	1000	U	1000		ug/L		03/20/23 09:01	03/21/23 20:24	1
Selenium	20.0	U	20.0		ug/L		03/20/23 09:01	03/21/23 20:24	1
Sodium	3260		2000		ug/L		03/20/23 09:01	03/21/23 20:24	1

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Aluminum	3790		100		ug/L		03/20/23 09:01	03/21/23 17:33	1
Antimony	5.00	U	5.00		ug/L		03/20/23 09:01	03/21/23 17:33	1
Arsenic	8.02		3.00		ug/L		03/20/23 09:01	03/22/23 09:07	1
Barium	34.7		5.00		ug/L		03/20/23 09:01	03/21/23 17:33	1
Beryllium	0.500	U	0.500		ug/L		03/20/23 09:01	03/22/23 09:07	1
Cadmium	0.500	U	0.500		ug/L		03/20/23 09:01	03/21/23 17:33	1
Chromium	5.00	U	5.00		ug/L		03/20/23 09:01	03/21/23 17:33	1
Cobalt	1.29		0.500		ug/L		03/20/23 09:01	03/21/23 17:33	1
Lead	2.50	U	2.50		ug/L		03/20/23 09:01	03/22/23 09:07	1
Nickel	5.00	U	5.00		ug/L		03/20/23 09:01	03/21/23 17:33	1
Silver	1.00	U	1.00		ug/L		03/20/23 09:01	03/21/23 17:33	1
Thallium	1.00	U	1.00		ug/L		03/20/23 09:01	03/22/23 09:07	1
Zinc	20.0	U	20.0		ug/L		03/20/23 09:01	03/21/23 17:33	1

Client: South Carolina Public Service Authority Project/Site: 125915/JM02.09.G01.1/36500

Job ID: 680-232195-1

Lab Sample ID: 680-232195-32

Matrix: Water

Client Sample ID: AF56436

Date Collected: 02/28/23 10:19 Date Received: 03/17/23 10:30

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Lithium	50.0	U	50.0		ug/L		03/23/23 14:19	03/24/23 23:50	1
Calcium	92200		500		ug/L		03/20/23 09:01	03/21/23 20:30	1
Iron	771		100		ug/L		03/20/23 09:01	03/21/23 20:30	1
Magnesium	2500		500		ug/L		03/20/23 09:01	03/21/23 20:30	1
Molybdenum	10.0	U	10.0		ug/L		03/20/23 09:01	03/21/23 20:30	1
Potassium	1580		1000		ug/L		03/20/23 09:01	03/21/23 20:30	1
Selenium	20.0	U	20.0		ug/L		03/20/23 09:01	03/21/23 20:30	1
Sodium	5430		2000		ug/L		03/20/23 09:01	03/21/23 20:30	1

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Aluminum	100	U	100		ug/L		03/20/23 09:01	03/21/23 17:41	1
Antimony	5.00	U	5.00		ug/L		03/20/23 09:01	03/21/23 17:41	1
Arsenic	3.00	U	3.00		ug/L		03/20/23 09:01	03/22/23 09:15	1
Barium	37.2		5.00		ug/L		03/20/23 09:01	03/21/23 17:41	1
Beryllium	0.500	U	0.500		ug/L		03/20/23 09:01	03/22/23 09:15	1
Cadmium	0.500	U	0.500		ug/L		03/20/23 09:01	03/21/23 17:41	1
Chromium	5.00	U	5.00		ug/L		03/20/23 09:01	03/21/23 17:41	1
Cobalt	0.500	U	0.500		ug/L		03/20/23 09:01	03/21/23 17:41	1
Lead	2.50	U	2.50		ug/L		03/20/23 09:01	03/22/23 09:15	1
Nickel	5.00	U	5.00		ug/L		03/20/23 09:01	03/21/23 17:41	1
Silver	1.00	U	1.00		ug/L		03/20/23 09:01	03/21/23 17:41	1
Thallium	1.00	U	1.00		ug/L		03/20/23 09:01	03/22/23 09:15	1
Zinc	42.9		20.0		ug/L		03/20/23 09:01	03/21/23 17:41	1

3/28/2023

Client: South Carolina Public Service Authority Project/Site: 125915/JM02.09.G01.1/36500

Job ID: 680-232195-1

Lab Sample ID: 680-232195-33

Matrix: Water

Client Sample ID: AF56437

Date Collected: 02/28/23 10:24 Date Received: 03/17/23 10:30

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Lithium	50.0	U	50.0		ug/L		03/23/23 14:19	03/24/23 23:55	1
Calcium	93200		500		ug/L		03/20/23 09:01	03/21/23 20:27	1
Iron	1200		100		ug/L		03/20/23 09:01	03/21/23 20:27	1
Magnesium	1750		500		ug/L		03/20/23 09:01	03/21/23 20:27	1
Molybdenum	10.0	U	10.0		ug/L		03/20/23 09:01	03/21/23 20:27	1
Potassium	1260		1000		ug/L		03/20/23 09:01	03/21/23 20:27	1
Selenium	20.0	U	20.0		ug/L		03/20/23 09:01	03/21/23 20:27	1
Sodium	3590		2000		ug/L		03/20/23 09:01	03/21/23 20:27	1

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Aluminum	100	U	100		ug/L		03/20/23 09:01	03/21/23 17:37	1
Antimony	5.00	U	5.00		ug/L		03/20/23 09:01	03/21/23 17:37	1
Arsenic	3.00	U	3.00		ug/L		03/20/23 09:01	03/22/23 09:11	1
Barium	36.8		5.00		ug/L		03/20/23 09:01	03/21/23 17:37	1
Beryllium	0.500	U	0.500		ug/L		03/20/23 09:01	03/22/23 09:11	1
Cadmium	0.500	U	0.500		ug/L		03/20/23 09:01	03/21/23 17:37	1
Chromium	5.00	U	5.00		ug/L		03/20/23 09:01	03/21/23 17:37	1
Cobalt	0.500	U	0.500		ug/L		03/20/23 09:01	03/21/23 17:37	1
Lead	2.50	U	2.50		ug/L		03/20/23 09:01	03/22/23 09:11	1
Nickel	5.00	U	5.00		ug/L		03/20/23 09:01	03/21/23 17:37	1
Silver	1.00	U	1.00		ug/L		03/20/23 09:01	03/21/23 17:37	1
Thallium	1.00	U	1.00		ug/L		03/20/23 09:01	03/22/23 09:11	1
Zinc	20.0	U	20.0		ug/L		03/20/23 09:01	03/21/23 17:37	1

2

Δ

5

6

8

9

10

12

Client: South Carolina Public Service Authority Project/Site: 125915/JM02.09.G01.1/36500

Job ID: 680-232195-1

Client Sample ID: AF56438

Lab Sample ID: 680-232195-34

Matrix: Water

Date Collected: 02/28/23 14:31 Date Received: 03/17/23 10:30

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Lithium	50.0	U	50.0		ug/L		03/23/23 14:19	03/25/23 00:13	1
Calcium	296000		500		ug/L		03/20/23 13:39	03/21/23 11:21	1
Iron	1040		100		ug/L		03/20/23 13:39	03/21/23 11:21	1
Magnesium	28800		500		ug/L		03/20/23 13:39	03/21/23 11:21	1
Molybdenum	10.0	U	10.0		ug/L		03/20/23 13:39	03/21/23 11:21	1
Potassium	6790		1000		ug/L		03/20/23 13:39	03/21/23 11:21	1
Selenium	20.0	U	20.0		ug/L		03/20/23 13:39	03/21/23 11:21	1
Sodium	18000		2000		ug/L		03/20/23 13:39	03/21/23 11:21	1

Method: SW846 6020B - Analyte		Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Aluminum	100	U	100		ug/L		03/20/23 13:39	03/21/23 22:43	1
Antimony	5.00	U	5.00		ug/L		03/20/23 13:39	03/21/23 22:43	1
Arsenic	3.00	U	3.00		ug/L		03/20/23 13:39	03/21/23 22:43	1
Barium	41.2		5.00		ug/L		03/20/23 13:39	03/21/23 22:43	1
Beryllium	0.500	U	0.500		ug/L		03/20/23 13:39	03/21/23 22:43	1
Cadmium	0.500	U	0.500		ug/L		03/20/23 13:39	03/21/23 22:43	1
Chromium	5.00	U	5.00		ug/L		03/20/23 13:39	03/21/23 22:43	1
Cobalt	0.500	U	0.500		ug/L		03/20/23 13:39	03/21/23 22:43	1
Lead	2.50	U	2.50		ug/L		03/20/23 13:39	03/21/23 22:43	1
Nickel	5.00	U	5.00		ug/L		03/20/23 13:39	03/21/23 22:43	1
Silver	1.00	U	1.00		ug/L		03/20/23 13:39	03/21/23 22:43	1
Thallium	1.00	U	1.00		ug/L		03/20/23 13:39	03/21/23 22:43	1
Zinc	20.0	U	20.0		ug/L		03/20/23 13:39	03/21/23 22:43	1

5

8

9

11

40

7

Client: South Carolina Public Service Authority Project/Site: 125915/JM02.09.G01.1/36500

Job ID: 680-232195-1

Lab Sample ID: 680-232195-35

Matrix: Water

Client Sample ID: AF56409

Date Collected: 03/06/23 12:14 Date Received: 03/17/23 10:30

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Lithium	118		50.0		ug/L		03/23/23 14:19	03/25/23 00:18	1
Calcium	1140000		5000		ug/L		03/20/23 13:39	03/22/23 12:16	10
Iron	100	U	100		ug/L		03/20/23 13:39	03/21/23 11:24	1
Magnesium	30500		500		ug/L		03/20/23 13:39	03/21/23 11:24	1
Molybdenum	10.0	U	10.0		ug/L		03/20/23 13:39	03/21/23 11:24	1
Potassium	15500		1000		ug/L		03/20/23 13:39	03/21/23 11:24	1
Selenium	20.0	U	20.0		ug/L		03/20/23 13:39	03/21/23 11:24	1
Sodium	139000		2000		ug/L		03/20/23 13:39	03/21/23 11:24	1

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Aluminum	100	U	100		ug/L		03/20/23 13:39	03/21/23 22:47	1
Antimony	5.00	U	5.00		ug/L		03/20/23 13:39	03/21/23 22:47	1
Arsenic	15.2		3.00		ug/L		03/20/23 13:39	03/21/23 22:47	1
Barium	54.6		5.00		ug/L		03/20/23 13:39	03/21/23 22:47	1
Beryllium	0.500	U	0.500		ug/L		03/20/23 13:39	03/21/23 22:47	1
Cadmium	0.500	U	0.500		ug/L		03/20/23 13:39	03/21/23 22:47	1
Chromium	13.2		5.00		ug/L		03/20/23 13:39	03/21/23 22:47	1
Cobalt	0.500	U	0.500		ug/L		03/20/23 13:39	03/21/23 22:47	1
Lead	2.50	U	2.50		ug/L		03/20/23 13:39	03/21/23 22:47	1
Nickel	5.00	U	5.00		ug/L		03/20/23 13:39	03/21/23 22:47	1
Silver	1.00	U	1.00		ug/L		03/20/23 13:39	03/21/23 22:47	1
Thallium	1.00	U	1.00		ug/L		03/20/23 13:39	03/21/23 22:47	1
Zinc	20.0	U	20.0		ug/L		03/20/23 13:39	03/21/23 22:47	1

7

8

9

10

12

13

Client: South Carolina Public Service Authority Project/Site: 125915/JM02.09.G01.1/36500

Job ID: 680-232195-1

Lab Sample ID: 680-232195-36

Matrix: Water

Client Sample ID: AF56410

Date Collected: 03/06/23 12:19 Date Received: 03/17/23 10:30

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Lithium	109		50.0		ug/L		03/23/23 14:19	03/25/23 00:23	1
Calcium	1160000		5000		ug/L		03/20/23 13:39	03/22/23 12:13	10
Iron	113		100		ug/L		03/20/23 13:39	03/21/23 11:08	1
Magnesium	30800		500		ug/L		03/20/23 13:39	03/21/23 11:08	1
Molybdenum	10.0	U	10.0		ug/L		03/20/23 13:39	03/21/23 11:08	1
Potassium	15700		1000		ug/L		03/20/23 13:39	03/21/23 11:08	1
Selenium	20.0	U	20.0		ug/L		03/20/23 13:39	03/21/23 11:08	1
Sodium	140000		2000		ug/L		03/20/23 13:39	03/21/23 11:08	1

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Aluminum	100	U	100		ug/L		03/20/23 13:39	03/21/23 22:27	1
Antimony	5.00	U	5.00		ug/L		03/20/23 13:39	03/21/23 22:27	1
Arsenic	13.0		3.00		ug/L		03/20/23 13:39	03/21/23 22:27	1
Barium	56.5		5.00		ug/L		03/20/23 13:39	03/21/23 22:27	1
Beryllium	0.500	U	0.500		ug/L		03/20/23 13:39	03/21/23 22:27	1
Cadmium	0.500	U	0.500		ug/L		03/20/23 13:39	03/21/23 22:27	1
Chromium	5.00	U	5.00		ug/L		03/20/23 13:39	03/21/23 22:27	1
Cobalt	0.500	U	0.500		ug/L		03/20/23 13:39	03/21/23 22:27	1
Lead	2.50	U	2.50		ug/L		03/20/23 13:39	03/21/23 22:27	1
Nickel	5.00	U	5.00		ug/L		03/20/23 13:39	03/21/23 22:27	1
Silver	1.00	U	1.00		ug/L		03/20/23 13:39	03/21/23 22:27	1
Thallium	1.00	U	1.00		ug/L		03/20/23 13:39	03/21/23 22:27	1
Zinc	20.0	U	20.0		ug/L		03/20/23 13:39	03/21/23 22:27	1

3/28/2023

3

5

7

O

10

40

13

Client: South Carolina Public Service Authority Project/Site: 125915/JM02.09.G01.1/36500

Job ID: 680-232195-1

Lab Sample ID: 680-232195-37

Matrix: Water

Client Sample ID: AF56411

Date Collected: 03/06/23 11:08 Date Received: 03/17/23 10:30

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Lithium	92.4		50.0		ug/L		03/23/23 14:21	03/25/23 00:37	1
Calcium	849000		5000		ug/L		03/20/23 13:39	03/22/23 12:19	10
Iron	100	U	100		ug/L		03/20/23 13:39	03/21/23 11:37	1
Magnesium	42600		500		ug/L		03/20/23 13:39	03/21/23 11:37	1
Molybdenum	10.0	U	10.0		ug/L		03/20/23 13:39	03/21/23 11:37	1
Potassium	13800		1000		ug/L		03/20/23 13:39	03/21/23 11:37	1
Selenium	20.0	U	20.0		ug/L		03/20/23 13:39	03/21/23 11:37	1
Sodium	126000		2000		ug/L		03/20/23 13:39	03/21/23 11:37	1

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Aluminum	100	U	100		ug/L		03/20/23 13:39	03/21/23 23:02	1
Antimony	5.00	U	5.00		ug/L		03/20/23 13:39	03/21/23 23:02	1
Arsenic	7.06		3.00		ug/L		03/20/23 13:39	03/21/23 23:02	1
Barium	108		5.00		ug/L		03/20/23 13:39	03/21/23 23:02	1
Beryllium	0.500	U	0.500		ug/L		03/20/23 13:39	03/21/23 23:02	1
Cadmium	0.500	U	0.500		ug/L		03/20/23 13:39	03/21/23 23:02	1
Chromium	5.00	U	5.00		ug/L		03/20/23 13:39	03/21/23 23:02	1
Cobalt	0.500	U	0.500		ug/L		03/20/23 13:39	03/21/23 23:02	1
Lead	2.50	U	2.50		ug/L		03/20/23 13:39	03/21/23 23:02	1
Nickel	5.00	U	5.00		ug/L		03/20/23 13:39	03/21/23 23:02	1
Silver	1.00	U	1.00		ug/L		03/20/23 13:39	03/21/23 23:02	1
Thallium	1.00	U	1.00		ug/L		03/20/23 13:39	03/21/23 23:02	1
Zinc	35.7		20.0		ug/L		03/20/23 13:39	03/21/23 23:02	1

2

5

6

8

4.0

11

12

13

Client: South Carolina Public Service Authority Project/Site: 125915/JM02.09.G01.1/36500

Job ID: 680-232195-1

Lab Sample ID: 680-232195-38

Matrix: Water

Client Sample ID: AF56412

Date Collected: 03/06/23 15:15 Date Received: 03/17/23 10:30

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Lithium	64.6		50.0		ug/L		03/23/23 14:21	03/25/23 00:55	1
Calcium	698000		500		ug/L		03/20/23 13:39	03/21/23 11:30	1
Iron	1420		100		ug/L		03/20/23 13:39	03/21/23 11:30	1
Magnesium	29900		500		ug/L		03/20/23 13:39	03/21/23 11:30	1
Molybdenum	10.0	U	10.0		ug/L		03/20/23 13:39	03/21/23 11:30	1
Potassium	7230		1000		ug/L		03/20/23 13:39	03/21/23 11:30	1
Selenium	20.0	U	20.0		ug/L		03/20/23 13:39	03/21/23 11:30	1
Sodium	107000		2000		ug/L		03/20/23 13:39	03/21/23 11:30	1

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Aluminum	100	U	100		ug/L		03/20/23 13:39	03/21/23 22:55	1
Antimony	5.00	U	5.00		ug/L		03/20/23 13:39	03/21/23 22:55	1
Arsenic	6.71		3.00		ug/L		03/20/23 13:39	03/21/23 22:55	1
Barium	158		5.00		ug/L		03/20/23 13:39	03/21/23 22:55	1
Beryllium	0.500	U	0.500		ug/L		03/20/23 13:39	03/21/23 22:55	1
Cadmium	0.500	U	0.500		ug/L		03/20/23 13:39	03/21/23 22:55	1
Chromium	5.00	U	5.00		ug/L		03/20/23 13:39	03/21/23 22:55	1
Cobalt	0.500	U	0.500		ug/L		03/20/23 13:39	03/21/23 22:55	1
Lead	2.50	U	2.50		ug/L		03/20/23 13:39	03/21/23 22:55	1
Nickel	5.00	U	5.00		ug/L		03/20/23 13:39	03/21/23 22:55	1
Silver	1.00	U	1.00		ug/L		03/20/23 13:39	03/21/23 22:55	1
Thallium	1.00	U	1.00		ug/L		03/20/23 13:39	03/21/23 22:55	1
Zinc	20.0	U	20.0		ug/L		03/20/23 13:39	03/21/23 22:55	1

4

6

8

10

12

13

Client: South Carolina Public Service Authority Project/Site: 125915/JM02.09.G01.1/36500

Job ID: 680-232195-1

Lab Sample ID: 680-232195-39

Matrix: Water

Client Sample ID: AF56413

Date Collected: 03/06/23 13:41 Date Received: 03/17/23 10:30

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Lithium	50.0	U	50.0		ug/L		03/23/23 14:21	03/25/23 01:18	1
Calcium	161000		500		ug/L		03/20/23 13:39	03/21/23 11:27	1
Iron	7850		100		ug/L		03/20/23 13:39	03/21/23 11:27	1
Magnesium	11100		500		ug/L		03/20/23 13:39	03/21/23 11:27	1
Molybdenum	10.0	U	10.0		ug/L		03/20/23 13:39	03/21/23 11:27	1
Potassium	4680		1000		ug/L		03/20/23 13:39	03/21/23 11:27	1
Selenium	20.0	U	20.0		ug/L		03/20/23 13:39	03/21/23 11:27	1
Sodium	71500		2000		ug/L		03/20/23 13:39	03/21/23 11:27	1

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Aluminum	100	U	100		ug/L		03/20/23 13:39	03/21/23 22:51	1
Antimony	5.00	U	5.00		ug/L		03/20/23 13:39	03/21/23 22:51	1
Arsenic	3.00	U	3.00		ug/L		03/20/23 13:39	03/21/23 22:51	1
Barium	85.5		5.00		ug/L		03/20/23 13:39	03/21/23 22:51	1
Beryllium	0.500	U	0.500		ug/L		03/20/23 13:39	03/21/23 22:51	1
Cadmium	0.500	U	0.500		ug/L		03/20/23 13:39	03/21/23 22:51	1
Chromium	5.00	U	5.00		ug/L		03/20/23 13:39	03/21/23 22:51	1
Cobalt	0.955		0.500		ug/L		03/20/23 13:39	03/21/23 22:51	1
Lead	2.50	U	2.50		ug/L		03/20/23 13:39	03/21/23 22:51	1
Nickel	5.00	U	5.00		ug/L		03/20/23 13:39	03/21/23 22:51	1
Silver	1.00	U	1.00		ug/L		03/20/23 13:39	03/21/23 22:51	1
Thallium	1.00	U	1.00		ug/L		03/20/23 13:39	03/21/23 22:51	1
Zinc	20.0	U	20.0		ug/L		03/20/23 13:39	03/21/23 22:51	1

5

7

8

10

12

13

Client: South Carolina Public Service Authority Project/Site: 125915/JM02.09.G01.1/36500

Job ID: 680-232195-1

Lab Sample ID: 680-232195-40

Matrix: Water

Client Sample ID: AF56430

Date Collected: 03/06/23 10:10 Date Received: 03/17/23 10:30

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Lithium	50.0	U	50.0		ug/L		03/23/23 14:21	03/25/23 01:23	1
Calcium	448000		500		ug/L		03/20/23 13:39	03/21/23 11:11	1
Iron	32200		100		ug/L		03/20/23 13:39	03/21/23 11:11	1
Magnesium	72300		500		ug/L		03/20/23 13:39	03/21/23 11:11	1
Molybdenum	10.0	U	10.0		ug/L		03/20/23 13:39	03/21/23 11:11	1
Potassium	6530		1000		ug/L		03/20/23 13:39	03/21/23 11:11	1
Selenium	20.0	U	20.0		ug/L		03/20/23 13:39	03/21/23 11:11	1
Sodium	87300		2000		ug/L		03/20/23 13:39	03/21/23 11:11	1

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Aluminum	100	U	100		ug/L		03/20/23 13:39	03/21/23 22:31	1
Antimony	5.00	U	5.00		ug/L		03/20/23 13:39	03/21/23 22:31	1
Arsenic	3.00	U	3.00		ug/L		03/20/23 13:39	03/21/23 22:31	1
Barium	48.0		5.00		ug/L		03/20/23 13:39	03/21/23 22:31	1
Beryllium	0.500	U	0.500		ug/L		03/20/23 13:39	03/21/23 22:31	1
Cadmium	0.500	U	0.500		ug/L		03/20/23 13:39	03/21/23 22:31	1
Chromium	5.00	U	5.00		ug/L		03/20/23 13:39	03/21/23 22:31	1
Cobalt	6.15		0.500		ug/L		03/20/23 13:39	03/21/23 22:31	1
Lead	2.50	U	2.50		ug/L		03/20/23 13:39	03/21/23 22:31	1
Nickel	5.00	U	5.00		ug/L		03/20/23 13:39	03/21/23 22:31	1
Silver	1.00	U	1.00		ug/L		03/20/23 13:39	03/21/23 22:31	1
Thallium	1.00	U	1.00		ug/L		03/20/23 13:39	03/21/23 22:31	1
Zinc	20.0	U	20.0		ug/L		03/20/23 13:39	03/21/23 22:31	1

2

Δ

5

0

9

10

12

13

Client: South Carolina Public Service Authority Project/Site: 125915/JM02.09.G01.1/36500

Lab Sample ID: 680-232195-41

Matrix: Water

Job ID: 680-232195-1

Client Sample ID: AF56406

Date Collected: 03/09/23 10:29 Date Received: 03/17/23 10:30

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Lithium	50.0	U	50.0		ug/L		03/23/23 14:21	03/25/23 01:28	1
Calcium	194000		500		ug/L		03/20/23 13:39	03/21/23 11:40	1
Iron	1380		100		ug/L		03/20/23 13:39	03/21/23 11:40	1
Magnesium	17000		500		ug/L		03/20/23 13:39	03/21/23 11:40	1
Molybdenum	10.0	U	10.0		ug/L		03/20/23 13:39	03/21/23 11:40	1
Potassium	4650		1000		ug/L		03/20/23 13:39	03/21/23 11:40	1
Selenium	20.0	U	20.0		ug/L		03/20/23 13:39	03/21/23 11:40	1
Sodium	43100		2000		ug/L		03/20/23 13:39	03/21/23 11:40	1

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Aluminum	1740		100		ug/L		03/20/23 13:39	03/21/23 23:06	1
Antimony	5.00	U	5.00		ug/L		03/20/23 13:39	03/21/23 23:06	1
Arsenic	3.00	U	3.00		ug/L		03/20/23 13:39	03/21/23 23:06	1
Barium	38.2		5.00		ug/L		03/20/23 13:39	03/21/23 23:06	1
Beryllium	0.500	U	0.500		ug/L		03/20/23 13:39	03/21/23 23:06	1
Cadmium	0.500	U	0.500		ug/L		03/20/23 13:39	03/21/23 23:06	1
Chromium	5.00	U	5.00		ug/L		03/20/23 13:39	03/21/23 23:06	1
Cobalt	1.83		0.500		ug/L		03/20/23 13:39	03/21/23 23:06	1
Lead	2.50	U	2.50		ug/L		03/20/23 13:39	03/21/23 23:06	1
Nickel	5.00	U	5.00		ug/L		03/20/23 13:39	03/21/23 23:06	1
Silver	1.00	U	1.00		ug/L		03/20/23 13:39	03/21/23 23:06	1
Thallium	1.00	U	1.00		ug/L		03/20/23 13:39	03/21/23 23:06	1
Zinc	40.6		20.0		ug/L		03/20/23 13:39	03/21/23 23:06	1

3/28/2023

2

5

0

8

9

11

12

<u> 13</u>

Client: South Carolina Public Service Authority Project/Site: 125915/JM02.09.G01.1/36500

Job ID: 680-232195-1

Lab Sample ID: 680-232195-42

Matrix: Water

Client Sample ID: AF56407

Date Collected: 03/09/23 10:34 Date Received: 03/17/23 10:30

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Lithium	50.0	U	50.0		ug/L		03/23/23 14:21	03/25/23 01:32	1
Calcium	210000		500		ug/L		03/20/23 13:39	03/21/23 11:43	1
Iron	1430		100		ug/L		03/20/23 13:39	03/21/23 11:43	1
Magnesium	18500		500		ug/L		03/20/23 13:39	03/21/23 11:43	1
Molybdenum	10.0	U	10.0		ug/L		03/20/23 13:39	03/21/23 11:43	1
Potassium	5200		1000		ug/L		03/20/23 13:39	03/21/23 11:43	1
Selenium	20.0	U	20.0		ug/L		03/20/23 13:39	03/21/23 11:43	1
Sodium	46500		2000		ug/L		03/20/23 13:39	03/21/23 11:43	1

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Aluminum	1590		100		ug/L		03/20/23 13:39	03/21/23 23:10	1
Antimony	5.00	U	5.00		ug/L		03/20/23 13:39	03/21/23 23:10	1
Arsenic	3.00	U	3.00		ug/L		03/20/23 13:39	03/21/23 23:10	1
Barium	38.7		5.00		ug/L		03/20/23 13:39	03/21/23 23:10	1
Beryllium	0.500	U	0.500		ug/L		03/20/23 13:39	03/21/23 23:10	1
Cadmium	0.500	U	0.500		ug/L		03/20/23 13:39	03/21/23 23:10	1
Chromium	5.00	U	5.00		ug/L		03/20/23 13:39	03/21/23 23:10	1
Cobalt	2.01		0.500		ug/L		03/20/23 13:39	03/21/23 23:10	1
Lead	2.50	U	2.50		ug/L		03/20/23 13:39	03/21/23 23:10	1
Nickel	5.00	U	5.00		ug/L		03/20/23 13:39	03/21/23 23:10	1
Silver	1.00	U	1.00		ug/L		03/20/23 13:39	03/21/23 23:10	1
Thallium	1.00	U	1.00		ug/L		03/20/23 13:39	03/21/23 23:10	1
Zinc	28.0		20.0		ug/L		03/20/23 13:39	03/21/23 23:10	1

2

4

5

R

9

10

12

13

Client: South Carolina Public Service Authority Project/Site: 125915/JM02.09.G01.1/36500

Job ID: 680-232195-1

Lab Sample ID: 680-232195-43 Matrix: Water

Client Sample ID: AF56418

Date Collected: 03/09/23 12:07 Date Received: 03/17/23 10:30

Analyte	Result Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Lithium	87.9	50.0		ug/L		03/23/23 14:21	03/25/23 01:37	1
Calcium	95500	500		ug/L		03/20/23 13:39	03/21/23 11:34	1
Iron	788	100		ug/L		03/20/23 13:39	03/21/23 11:34	1
Magnesium	7530	500		ug/L		03/20/23 13:39	03/21/23 11:34	1
Molybdenum	92.0	10.0		ug/L		03/20/23 13:39	03/21/23 11:34	1
Potassium	7660	1000		ug/L		03/20/23 13:39	03/21/23 11:34	1
Selenium	20.0 U	20.0		ug/L		03/20/23 13:39	03/21/23 11:34	1
Sodium	25300	2000		ug/L		03/20/23 13:39	03/21/23 11:34	1

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Aluminum	130		100		ug/L		03/20/23 13:39	03/21/23 22:59	1
Antimony	5.00	U	5.00		ug/L		03/20/23 13:39	03/21/23 22:59	1
Arsenic	229		3.00		ug/L		03/20/23 13:39	03/21/23 22:59	1
Barium	133		5.00		ug/L		03/20/23 13:39	03/21/23 22:59	1
Beryllium	0.500	U	0.500		ug/L		03/20/23 13:39	03/21/23 22:59	1
Cadmium	0.500	U	0.500		ug/L		03/20/23 13:39	03/21/23 22:59	1
Chromium	5.00	U	5.00		ug/L		03/20/23 13:39	03/21/23 22:59	1
Cobalt	2.16		0.500		ug/L		03/20/23 13:39	03/21/23 22:59	1
Lead	2.50	U	2.50		ug/L		03/20/23 13:39	03/21/23 22:59	1
Nickel	5.00	U	5.00		ug/L		03/20/23 13:39	03/21/23 22:59	1
Silver	1.00	U	1.00		ug/L		03/20/23 13:39	03/21/23 22:59	1
Thallium	1.00	U	1.00		ug/L		03/20/23 13:39	03/21/23 22:59	1
Zinc	20.0	U	20.0		ug/L		03/20/23 13:39	03/21/23 22:59	1

Client: South Carolina Public Service Authority Project/Site: 125915/JM02.09.G01.1/36500

Job ID: 680-232195-1

Lab Sample ID: 680-232195-44

Matrix: Water

Client Sample ID: AF56422

Date Collected: 03/09/23 13:19 Date Received: 03/17/23 10:30

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Lithium	50.0	U	50.0		ug/L		03/23/23 14:21	03/25/23 01:42	1
Calcium	248000		500		ug/L		03/20/23 13:39	03/21/23 11:05	1
Iron	6050		100		ug/L		03/20/23 13:39	03/21/23 11:05	1
Magnesium	8900		500		ug/L		03/20/23 13:39	03/21/23 11:05	1
Molybdenum	10.0	U	10.0		ug/L		03/20/23 13:39	03/21/23 11:05	1
Potassium	3850		1000		ug/L		03/20/23 13:39	03/21/23 11:05	1
Selenium	20.0	U	20.0		ug/L		03/20/23 13:39	03/21/23 11:05	1
Sodium	73300		2000		ug/L		03/20/23 13:39	03/21/23 11:05	1

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Aluminum	100	U	100		ug/L		03/20/23 13:39	03/21/23 22:23	1
Antimony	5.00	U	5.00		ug/L		03/20/23 13:39	03/21/23 22:23	1
Arsenic	3.54		3.00		ug/L		03/20/23 13:39	03/21/23 22:23	1
Barium	104		5.00		ug/L		03/20/23 13:39	03/21/23 22:23	1
Beryllium	0.500	U	0.500		ug/L		03/20/23 13:39	03/21/23 22:23	1
Cadmium	0.500	U	0.500		ug/L		03/20/23 13:39	03/21/23 22:23	1
Chromium	5.00	U	5.00		ug/L		03/20/23 13:39	03/21/23 22:23	1
Cobalt	0.500	U	0.500		ug/L		03/20/23 13:39	03/21/23 22:23	1
Lead	2.50	U	2.50		ug/L		03/20/23 13:39	03/21/23 22:23	1
Nickel	5.00	U	5.00		ug/L		03/20/23 13:39	03/21/23 22:23	1
Silver	1.00	U	1.00		ug/L		03/20/23 13:39	03/21/23 22:23	1
Thallium	1.00	U	1.00		ug/L		03/20/23 13:39	03/21/23 22:23	1
Zinc	48.0		20.0		ug/L		03/20/23 13:39	03/21/23 22:23	1

2

3

4

6

8

9

10

12

13

Job ID: 680-232195-1

Prep Type: Total/NA

Prep Batch: 604817

Prep Type: Total/NA

Client: South Carolina Public Service Authority Project/Site: 125915/JM02.09.G01.1/36500

Client Sample ID: Method Blank

Method: 6010D - Metals (ICP)

Lab Sample ID: MB 160-604817/1-A

Matrix: Water

Analysis Batch: 605060

MB MB

Analyte Result Qualifier RL MDL Unit D Prepared Analyzed Dil Fac 50.0 Lithium 50.0 U ug/L 03/23/23 14:17 03/24/23 19:15

Lab Sample ID: LCS 160-604817/2-A

Matrix: Water

Analysis Batch: 605060

Analyte Lithium

Spike Added

100

Spike

Added

Spike

Added

100

100

104.4

RL

50.0

RL

50.0

RL

20.0

2000

Result Qualifier

MDL Unit

LCS LCS

111.0

Result Qualifier

MDL Unit

LCS LCS

Qualifier

MDL Unit

ug/L

ug/L

ug/L

ug/L

ug/L

ug/L

ug/L

Result

112.0

ug/L

ug/L

LCS LCS

Unit ug/L

Unit

ug/L

Unit

ug/L

D

D

%Rec 104

Prepared

%Rec

Prepared

03/23/23 14:21

%Rec

112

D

111

Lab Sample ID: MB 160-604819/1-A **Matrix: Water**

Analysis Batch: 605060

MB MB

Analyte Result Qualifier

Lithium 50.0 U

Lab Sample ID: LCS 160-604819/2-A **Matrix: Water**

Analysis Batch: 605060

Analyte

Lithium

Analyte

Analyte

Lab Sample ID: MB 160-604820/1-A

Analysis Batch: 605060

Matrix: Water

Analyte Lithium

Lab Sample ID: LCS 160-604820/2-A

Matrix: Water Analysis Batch: 605060

Lithium

Lab Sample ID: MB 680-768608/1-A

Matrix: Water

Analysis Batch: 768929

MR MR

50.0 U

Result Qualifier

MB MB Result Qualifier

Calcium 500 500 U 100 100 U Iron Magnesium 500 U 500 Molybdenum 10.0 U 10.0 1000

Potassium 1000 U 20.0 U Selenium Sodium 2000 U

Prep Batch: 604817 %Rec Limits

80 _ 120

Client Sample ID: Lab Control Sample

Client Sample ID: Method Blank

Prep Type: Total/NA

Prep Batch: 604819

Analyzed Dil Fac

03/23/23 14:19 03/24/23 21:45

Client Sample ID: Lab Control Sample

Prep Type: Total/NA

Prep Batch: 604819

%Rec Limits

80 - 120

Client Sample ID: Method Blank

Analyzed

03/25/23 00:28

Prep Type: Total/NA

Prep Batch: 604820

Dil Fac

Client Sample ID: Lab Control Sample Prep Type: Total/NA

80 _ 120

Prep Batch: 604820

%Rec Limits

Client Sample ID: Method Blank **Prep Type: Total Recoverable**

Prep Batch: 768608

D **Prepared** Analyzed Dil Fac 03/20/23 13:39 03/21/23 10:42 03/21/23 10:42 03/20/23 13:39 03/20/23 13:39 03/21/23 10:42 03/20/23 13:39 03/21/23 10:42 03/20/23 13:39 03/21/23 10:42 03/20/23 13:39 03/21/23 10:42 03/20/23 13:39 03/21/23 10:42

Eurofins Savannah

Client: South Carolina Public Service Authority Project/Site: 125915/JM02.09.G01.1/36500

Job ID: 680-232195-1

Method: 6010D - Metals (ICP) (Continued)

Lab Sample ID: LCS 680-768608/2-A

Matrix: Water

Analysis Batch: 768929

Client Sample ID: Lab Control Sample **Prep Type: Total Recoverable**

Prep Batch: 768608

	Spike	LCS	LCS				%Rec	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Calcium	5000	5036		ug/L		101	80 _ 120	
Iron	5000	5196		ug/L		104	80 _ 120	
Magnesium	5010	5075		ug/L		101	80 _ 120	
Molybdenum	100	101.3		ug/L		101	80 _ 120	
Potassium	6970	7195		ug/L		103	80 _ 120	
Selenium	100	91.14		ug/L		91	80 _ 120	
Sodium	5050	4981		ug/L		99	80 - 120	

Lab Sample ID: MB 680-768859/1-A

Matrix: Water

Analysis Batch: 768929

Client Sample ID: Method Blank **Prep Type: Total Recoverable**

Prep Batch: 768859

MB MB

MD MD

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Calcium	500	U	500		ug/L		03/20/23 09:01	03/21/23 19:06	1
Iron	100	U	100		ug/L		03/20/23 09:01	03/21/23 19:06	1
Magnesium	500	U	500		ug/L		03/20/23 09:01	03/21/23 19:06	1
Molybdenum	10.0	U	10.0		ug/L		03/20/23 09:01	03/21/23 19:06	1
Potassium	1000	U	1000		ug/L		03/20/23 09:01	03/21/23 19:06	1
Selenium	20.0	U	20.0		ug/L		03/20/23 09:01	03/21/23 19:06	1
Sodium	2000	U	2000		ug/L		03/20/23 09:01	03/21/23 19:06	1

Lab Sample ID: LCS 680-768859/2-A

Matrix: Water

Analysis Batch: 768929

Client Sample ID: Lab Control Sample Prep Type: Total Recoverable

Prep Batch: 768859

	Spike	LCS	LCS				%Rec	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Calcium	5000	5013		ug/L		100	80 - 120	
Iron	5000	5131		ug/L		103	80 _ 120	
Magnesium	5010	5094		ug/L		102	80 _ 120	
Molybdenum	100	100.7		ug/L		101	80 _ 120	
Potassium	6970	7245		ug/L		104	80 _ 120	
Selenium	100	95.19		ug/L		95	80 _ 120	
Sodium	5050	5031		ug/L		100	80 _ 120	

Lab Sample ID: MB 680-769547/1-A

Matrix: Water

Analysis Batch: 769727

Client Sample ID: Method Blank Prep Type: Total Recoverable Prep Batch: 769547

		IVID	IVID							
	Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
	Calcium	500	U	500		ug/L		03/24/23 14:44	03/24/23 19:40	1
	Iron	100	U	100		ug/L		03/24/23 14:44	03/24/23 19:40	1
	Magnesium	500	U	500		ug/L		03/24/23 14:44	03/24/23 19:40	1
	Molybdenum	10.0	U	10.0		ug/L		03/24/23 14:44	03/24/23 19:40	1
	Potassium	1000	U	1000		ug/L		03/24/23 14:44	03/24/23 19:40	1
	Selenium	20.0	U	20.0		ug/L		03/24/23 14:44	03/24/23 19:40	1
	Sodium	2000	U	2000		ug/L		03/24/23 14:44	03/24/23 19:40	1
-	-									

Client: South Carolina Public Service Authority Project/Site: 125915/JM02.09.G01.1/36500

Lab Sample ID: LCS 680-769547/2-A

Lab Sample ID: 680-232195-17 MS

Lab Sample ID: 680-232195-37 MS

Lab Sample ID: 680-232195-37 MSD

Lab Sample ID: 680-232195-15 MS

92.4

Lithium

Job ID: 680-232195-1

Client Sample ID: AF56394

Client Sample ID: AF56411

Client Sample ID: AF56411

Client Sample ID: AF56417

Client Sample ID: Lab Control Sample

Method: 6010D - Metals (ICP) (Continued)

Matrix: Water Analysis Batch: 769727					Prep	Type: Total F Prep Ba	Recoverable tch: 769547	
	Spike	LCS	LCS				%Rec	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Calcium	5000	4687		ug/L		94	80 _ 120	
Iron	5000	4647		ug/L		93	80 _ 120	
Magnesium	5010	4712		ug/L		94	80 _ 120	
Molybdenum	100	94.36		ug/L		94	80 _ 120	
Potassium	6970	6849		ug/L		98	80 _ 120	
Selenium	100	88.77		ug/L		89	80 _ 120	
Sodium	5050	4885		ug/L		97	80 _ 120	

Matrix: Water Analysis Batch: 605060										pe: Dissolved Batch: 604819
	Sample	Sample	Spike	MS	MS				%Rec	
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Lithium	50.0	U	100	109.8		ug/L		110	75 ₋ 125	

Lab Sample ID: 680-232195-17 MSD								CI	ient Sampl	e ID: AF	56394
Matrix: Water									Prep Ty	pe: Diss	olved
Analysis Batch: 605060									Prep E	Batch: 6	04819
	Sample	Sample	Spike	MSD	MSD				%Rec		RPD
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Lithium	50.0	U	100	105.2		ug/L		105	75 _ 125	4	20

Matrix: Water									Prep Type: D	issolved
Analysis Batch: 605060									Prep Batch	: 604820
	Sample	Sample	Spike	MS	MS				%Rec	
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	

217.4

ug/L

Matrix: Water									Prep Ty	pe: Diss	olved
Analysis Batch: 605060									Prep I	Batch: 6	04820
	Sample	Sample	Spike	MSD	MSD				%Rec		RPD
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Lithium	92.4		100	216.3		ua/l		124	75 125	1	20

Matrix: Water Analysis Batch: 768929										e: Dissolved atch: 768859
	Sample	Sample	Spike	MS	MS				%Rec	
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Calcium	270000		5000	260000	4	ug/L		-196	75 - 125	
Iron	1940		5000	6853		ug/L		98	75 _ 125	
Magnesium	38900		5010	42060	4	ug/L		62	75 _ 125	
Molybdenum	21.2		100	121.2		ug/L		100	75 ₋ 125	
Potassium	14100		6970	20270		ug/L		89	75 ₋ 125	
Selenium	20.0	U	100	90.82		ug/L		91	75 ₋ 125	
Sodium	72300		5050	73490	4	ua/l		25	75 125	

Eurofins Savannah

QC Sample Results

Client: South Carolina Public Service Authority Project/Site: 125915/JM02.09.G01.1/36500

Job ID: 680-232195-1

Method: 6010D - Metals (ICP) (Continued)

Lab Sample ID: 680-232195-15 MSD

Matrix: Water

Analysis Batch: 768929

Client Sample ID: AF56417 **Prep Type: Dissolved Prep Batch: 768859**

	Sample	Sample	Spike	MSD	MSD				%Rec		RPD
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Calcium	270000		5000	255000	4	ug/L		-296	75 - 125	2	20
Iron	1940		5000	6800		ug/L		97	75 _ 125	1	20
Magnesium	38900		5010	41060	4	ug/L		42	75 ₋ 125	2	20
Molybdenum	21.2		100	119.7		ug/L		99	75 ₋ 125	1	20
Potassium	14100		6970	20170		ug/L		88	75 _ 125	0	20
Selenium	20.0	U	100	95.36		ug/L		95	75 ₋ 125	5	20
Sodium	72300		5050	71860	4	ug/L		-8	75 ₋ 125	2	20

Method: 6020B - Metals (ICP/MS)

Lab Sample ID: MB 680-768492/1-A

Matrix: Water

Analysis Batch: 768799

Client Sample ID: Method Blank **Prep Type: Total Recoverable**

Prep Batch: 768492

_									
	MB	MB							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Aluminum	100	U	100		ug/L		03/20/23 07:40	03/21/23 07:15	1
Antimony	5.00	U	5.00		ug/L		03/20/23 07:40	03/21/23 07:15	1
Arsenic	3.00	U	3.00		ug/L		03/20/23 07:40	03/21/23 07:15	1
Barium	5.00	U	5.00		ug/L		03/20/23 07:40	03/21/23 07:15	1
Beryllium	0.500	U	0.500		ug/L		03/20/23 07:40	03/21/23 07:15	1
Cadmium	0.500	U	0.500		ug/L		03/20/23 07:40	03/21/23 07:15	1
Chromium	5.00	U	5.00		ug/L		03/20/23 07:40	03/21/23 07:15	1
Cobalt	0.500	U	0.500		ug/L		03/20/23 07:40	03/21/23 07:15	1
Lead	2.50	U	2.50		ug/L		03/20/23 07:40	03/21/23 07:15	1
Nickel	5.00	U	5.00		ug/L		03/20/23 07:40	03/21/23 07:15	1
Silver	1.00	U	1.00		ug/L		03/20/23 07:40	03/21/23 07:15	1
Thallium	1.00	U	1.00		ug/L		03/20/23 07:40	03/21/23 07:15	1
Zinc	20.0	U	20.0		ua/L		03/20/23 07:40	03/21/23 07:15	1

Lab Sample ID: LCS 680-768492/2-A

Matrix: Water

Analysis Batch: 768799

Client Sample ID: Lab Control Sample **Prep Type: Total Recoverable Prep Batch: 768492**

Analysis Baton. 100100							i icp baton.	100402
	Spike	LCS	LCS				%Rec	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Aluminum	5000	4932		ug/L		99	80 _ 120	
Antimony	50.0	47.96		ug/L		96	80 _ 120	
Arsenic	100	100.2		ug/L		100	80 _ 120	
Barium	100	97.57		ug/L		98	80 _ 120	
Beryllium	50.0	49.66		ug/L		99	80 _ 120	
Cadmium	50.0	48.34		ug/L		97	80 _ 120	
Chromium	100	101.0		ug/L		101	80 _ 120	
Cobalt	50.0	50.30		ug/L		101	80 _ 120	
Lead	505	492.9		ug/L		98	80 _ 120	
Nickel	100	98.30		ug/L		98	80 _ 120	
Silver	50.0	47.86		ug/L		96	80 _ 120	
Thallium	50.0	47.36		ug/L		95	80 _ 120	
Zinc	100	104.8		ug/L		105	80 _ 120	

Client: South Carolina Public Service Authority Job ID: 680-232195-1

Project/Site: 125915/JM02.09.G01.1/36500

Method: 6020B - Metals (ICP/MS) (Continued)

Matrix: Water

Analysis Batch: 768945

Lab Sample ID: MB 680-768540/1-A

Client Sample ID: Method Blank **Prep Type: Total Recoverable**

Prep Batch: 768540

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Aluminum	100	U	100		ug/L		03/20/23 09:01	03/21/23 15:59	1
Antimony	5.00	U	5.00		ug/L		03/20/23 09:01	03/21/23 15:59	1
Arsenic	3.00	U	3.00		ug/L		03/20/23 09:01	03/21/23 15:59	1
Barium	5.00	U	5.00		ug/L		03/20/23 09:01	03/21/23 15:59	1
Beryllium	0.500	U	0.500		ug/L		03/20/23 09:01	03/21/23 15:59	1
Cadmium	0.500	U	0.500		ug/L		03/20/23 09:01	03/21/23 15:59	1
Chromium	5.00	U	5.00		ug/L		03/20/23 09:01	03/21/23 15:59	1
Cobalt	0.500	U	0.500		ug/L		03/20/23 09:01	03/21/23 15:59	1
Lead	2.50	U	2.50		ug/L		03/20/23 09:01	03/21/23 15:59	1
Nickel	5.00	U	5.00		ug/L		03/20/23 09:01	03/21/23 15:59	1
Silver	1.00	U	1.00		ug/L		03/20/23 09:01	03/21/23 15:59	1
Thallium	1.00	U	1.00		ug/L		03/20/23 09:01	03/21/23 15:59	1
Zinc	20.0	U	20.0		ug/L		03/20/23 09:01	03/21/23 15:59	1

MB MB

Lab Sample ID: LCS 680-768540/2-A

Matrix: Water

Client Sample ID: Lab Control Sample **Prep Type: Total Recoverable Prep Batch: 768540**

Analysis Batch: 768945 Spike LCS LCS %Rec Analyte Added Result Qualifier Unit %Rec Limits Aluminum 5000 5338 ug/L 107 80 _ 120 Antimony 50.0 51.80 ug/L 104 80 _ 120 100 103.7 ug/L Arsenic 104 80 _ 120 Barium 100 102.1 ug/L 102 80 _ 120 50.0 54.66 109 80 _ 120 Beryllium ug/L Cadmium 50.0 51.98 ug/L 104 80 _ 120 100 108.2 108 80 _ 120 Chromium ug/L Cobalt 50.0 53.54 ug/L 107 80 - 120 Lead 505 507.5 ug/L 101 80 _ 120 Nickel 100 105.2 ug/L 105 80 _ 120 Silver 50.0 54.86 ug/L 110 80 _ 120 Thallium 50.0 49.92 100 80 _ 120 ug/L 100 110.6 ug/L 80 _ 120

Lab Sample ID: MB 680-768613/1-A

Matrix: Water

Analysis Batch: 768945

Client Sample ID: Method Blank **Prep Type: Total Recoverable Prep Batch: 768613**

	MB	MB							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Aluminum	100	U	100		ug/L		03/20/23 13:39	03/21/23 21:56	1
Antimony	5.00	U	5.00		ug/L		03/20/23 13:39	03/21/23 21:56	1
Arsenic	3.00	U	3.00		ug/L		03/20/23 13:39	03/21/23 21:56	1
Barium	5.00	U	5.00		ug/L		03/20/23 13:39	03/21/23 21:56	1
Beryllium	0.500	U	0.500		ug/L		03/20/23 13:39	03/21/23 21:56	1
Cadmium	0.500	U	0.500		ug/L		03/20/23 13:39	03/21/23 21:56	1
Chromium	5.00	U	5.00		ug/L		03/20/23 13:39	03/21/23 21:56	1
Cobalt	0.500	U	0.500		ug/L		03/20/23 13:39	03/21/23 21:56	1
Lead	2.50	U	2.50		ug/L		03/20/23 13:39	03/21/23 21:56	1
Nickel	5.00	U	5.00		ug/L		03/20/23 13:39	03/21/23 21:56	1
Silver	1.00	U	1.00		ug/L		03/20/23 13:39	03/21/23 21:56	1

Eurofins Savannah

3/28/2023

Page 66 of 102

Job ID: 680-232195-1

Client: South Carolina Public Service Authority Project/Site: 125915/JM02.09.G01.1/36500

Method: 6020B - Metals (ICP/MS) (Continued)

Lab Sample ID: MB 680-768613/1-A

Matrix: Water

Analysis Batch: 768945

Client Sample ID: Method Blank **Prep Type: Total Recoverable**

Prep Batch: 768613

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Thallium	1.00	U	1.00		ug/L		03/20/23 13:39	03/21/23 21:56	1
Zinc	20.0	U	20.0		ug/L		03/20/23 13:39	03/21/23 21:56	1

MB MB

Lab Sample ID: LCS 680-768613/2-A Client Sample ID: Lab Control Sample **Matrix: Water Prep Type: Total Recoverable** Analysis Batch: 768945

Prep Batch: 768613

7 min, y c. c _ min								
	Spike	LCS	LCS				%Rec	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Aluminum	5000	5081		ug/L		102	80 _ 120	
Antimony	50.0	50.30		ug/L		101	80 _ 120	
Arsenic	100	96.86		ug/L		97	80 _ 120	
Barium	100	96.16		ug/L		96	80 _ 120	
Beryllium	50.0	49.35		ug/L		99	80 _ 120	
Cadmium	50.0	49.86		ug/L		100	80 _ 120	
Chromium	100	98.60		ug/L		99	80 _ 120	
Cobalt	50.0	50.99		ug/L		102	80 _ 120	
Lead	505	475.9		ug/L		94	80 _ 120	
Nickel	100	96.51		ug/L		97	80 _ 120	
Silver	50.0	49.14		ug/L		98	80 _ 120	
Thallium	50.0	47.31		ug/L		95	80 _ 120	
Zinc	100	101.1		ug/L		101	80 _ 120	

Lab Sample ID: 680-232195-15 MS

Matrix: Water

Analysis Batch: 768945

Client Sample ID: AF56417 **Prep Type: Dissolved** Prep Batch: 768540

Allalysis Datell. 100545									i icp ba	1011. 7 000-
	Sample	Sample	Spike	MS	MS				%Rec	
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Aluminum	100	U	5000	5266		ug/L		104	75 ₋ 125	
Antimony	5.00	U	50.0	51.47		ug/L		103	75 ₋ 125	
Arsenic	84.0		100	178.9		ug/L		95	75 ₋ 125	
Barium	50.0		100	145.4		ug/L		95	75 ₋ 125	
Beryllium	0.500	U	50.0	54.31		ug/L		109	75 ₋ 125	
Cadmium	0.500	U	50.0	51.03		ug/L		102	75 ₋ 125	
Chromium	5.00	U	100	107.5		ug/L		106	75 ₋ 125	
Cobalt	0.500	U	50.0	52.11		ug/L		104	75 ₋ 125	
Lead	2.50	U	505	509.1		ug/L		101	75 ₋ 125	
Nickel	5.00	U	100	102.7		ug/L		103	75 ₋ 125	
Silver	1.00	U	50.0	50.31		ug/L		101	75 ₋ 125	
Thallium	1.00	U	50.0	50.73		ug/L		101	75 ₋ 125	
Zinc	20.0	U	100	101.3		ug/L		97	75 ₋ 125	

Lab Sample ID: 680-232195-15 MSD

Matrix: Water

Analysis Batch: 768945

Client Sample ID: AF56417 **Prep Type: Dissolved Prep Batch: 768540**

Timely one Date in Tool 10											
	Sample	Sample	Spike	MSD	MSD				%Rec		RPD
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Aluminum	100	U	5000	5228		ug/L		104	75 _ 125	1	20
Antimony	5.00	U	50.0	49.87		ug/L		100	75 _ 125	3	20
Arsenic	84.0		100	181.5		ug/L		98	75 _ 125	1	20

Eurofins Savannah

Page 67 of 102

QC Sample Results

Client: South Carolina Public Service Authority Project/Site: 125915/JM02.09.G01.1/36500

Job ID: 680-232195-1

Prep Type: Dissolved

Client Sample ID: AF56417

Method: 6020B - Metals (ICP/MS) (Continued)

Lab Sample ID: 680-232195-15 MSD

Matrix: Water

Analysis Batch: 768945	sis Batch: 768945								Prep I	Batch: 7	68540
	Sample	Sample	Spike	MSD	MSD				%Rec		RPD
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Barium	50.0		100	145.6		ug/L		96	75 - 125	0	20
Beryllium	0.500	U	50.0	52.47		ug/L		105	75 - 125	3	20
Cadmium	0.500	U	50.0	49.32		ug/L		99	75 _ 125	3	20
Chromium	5.00	U	100	104.1		ug/L		103	75 ₋ 125	3	20
Cobalt	0.500	U	50.0	52.90		ug/L		106	75 - 125	2	20
Lead	2.50	U	505	507.0		ug/L		100	75 _ 125	0	20
Nickel	5.00	U	100	99.09		ug/L		99	75 _ 125	4	20
Silver	1.00	U	50.0	50.77		ug/L		102	75 ₋ 125	1	20
Thallium	1.00	U	50.0	50.56		ug/L		101	75 ₋ 125	0	20
Zinc	20.0	U	100	102.5		ug/L		98	75 ₋ 125	1	20

QC Association Summary

Client: South Carolina Public Service Authority

Project/Site: 125915/JM02.09.G01.1/36500

Job ID: 680-232195-1

Metals

Prep Batch: 604817

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batc
680-232195-1	AF56421	Dissolved	Water	3010A	
680-232195-2	AF56424	Dissolved	Water	3010A	
680-232195-3	AF56439	Dissolved	Water	3010A	
680-232195-4	AF56441	Dissolved	Water	3010A	
680-232195-5	AF56414	Dissolved	Water	3010A	
680-232195-6	AF56423	Dissolved	Water	3010A	
680-232195-7	AF56428	Dissolved	Water	3010A	
680-232195-8	AF56419	Dissolved	Water	3010A	
680-232195-9	AF56425	Dissolved	Water	3010A	
680-232195-10	AF56426	Dissolved	Water	3010A	
680-232195-11	AF56427	Dissolved	Water	3010A	
680-232195-12	AF56408	Dissolved	Water	3010A	
680-232195-13	AF56415	Dissolved	Water	3010A	
680-232195-14	AF56416	Dissolved	Water	3010A	
680-232195-15	AF56417	Dissolved	Water	3010A	
680-232195-16	AF56429	Dissolved	Water	3010A	
MB 160-604817/1-A	Method Blank	Total/NA	Water	3010A	
LCS 160-604817/2-A	Lab Control Sample	Total/NA	Water	3010A	

Prep Batch: 604819

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Bato
680-232195-17	AF56394	Dissolved	Water	3010A	
680-232195-18	AF56331	Dissolved	Water	3010A	
680-232195-19	AF56332	Dissolved	Water	3010A	
680-232195-20	AF56395	Dissolved	Water	3010A	
680-232195-21	AF56396	Dissolved	Water	3010A	
680-232195-22	AF56397	Dissolved	Water	3010A	
680-232195-23	AF56400	Dissolved	Water	3010A	
680-232195-24	AF56442	Dissolved	Water	3010A	
680-232195-25	AF56443	Dissolved	Water	3010A	
680-232195-26	AF56402	Dissolved	Water	3010A	
680-232195-27	AF56403	Dissolved	Water	3010A	
680-232195-28	AF56404	Dissolved	Water	3010A	
680-232195-29	AF56434	Dissolved	Water	3010A	
680-232195-30	AF56433	Dissolved	Water	3010A	
680-232195-31	AF56435	Dissolved	Water	3010A	
680-232195-32	AF56436	Dissolved	Water	3010A	
680-232195-33	AF56437	Dissolved	Water	3010A	
680-232195-34	AF56438	Dissolved	Water	3010A	
680-232195-35	AF56409	Dissolved	Water	3010A	
680-232195-36	AF56410	Dissolved	Water	3010A	
MB 160-604819/1-A	Method Blank	Total/NA	Water	3010A	
LCS 160-604819/2-A	Lab Control Sample	Total/NA	Water	3010A	
680-232195-17 MS	AF56394	Dissolved	Water	3010A	
680-232195-17 MSD	AF56394	Dissolved	Water	3010A	

Prep Batch: 604820

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
680-232195-37	AF56411	Dissolved	Water	3010A	_ _
680-232195-38	AF56412	Dissolved	Water	3010A	
680-232195-39	AF56413	Dissolved	Water	3010A	

Eurofins Savannah

Page 69 of 102

1

3

6

8

10

13

QC Association Summary

Client: South Carolina Public Service Authority Job ID: 680-232195-1 Project/Site: 125915/JM02.09.G01.1/36500

Metals (Continued)

Prep Batch: 604820 (Continued)

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
680-232195-40	AF56430	Dissolved	Water	3010A	
680-232195-41	AF56406	Dissolved	Water	3010A	
680-232195-42	AF56407	Dissolved	Water	3010A	
680-232195-43	AF56418	Dissolved	Water	3010A	
680-232195-44	AF56422	Dissolved	Water	3010A	
MB 160-604820/1-A	Method Blank	Total/NA	Water	3010A	
LCS 160-604820/2-A	Lab Control Sample	Total/NA	Water	3010A	
680-232195-37 MS	AF56411	Dissolved	Water	3010A	
680-232195-37 MSD	AF56411	Dissolved	Water	3010A	
_					

Analysis Batch: 605060

_ab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batc
880-232195-1	AF56421	Dissolved	Water	6010D	60481
880-232195-2	AF56424	Dissolved	Water	6010D	60481
880-232195-3	AF56439	Dissolved	Water	6010D	60481
80-232195-4	AF56441	Dissolved	Water	6010D	60481
80-232195-5	AF56414	Dissolved	Water	6010D	60481
680-232195-6	AF56423	Dissolved	Water	6010D	60481
80-232195-7	AF56428	Dissolved	Water	6010D	60481
880-232195-8	AF56419	Dissolved	Water	6010D	60481
880-232195-9	AF56425	Dissolved	Water	6010D	60481
880-232195-10	AF56426	Dissolved	Water	6010D	60481
880-232195-11	AF56427	Dissolved	Water	6010D	60481
80-232195-12	AF56408	Dissolved	Water	6010D	60481
880-232195-13	AF56415	Dissolved	Water	6010D	60481
880-232195-14	AF56416	Dissolved	Water	6010D	60481
880-232195-15	AF56417	Dissolved	Water	6010D	60481
680-232195-16	AF56429	Dissolved	Water	6010D	60481
80-232195-17	AF56394	Dissolved	Water	6010D	60481
80-232195-18	AF56331	Dissolved	Water	6010D	60481
80-232195-19	AF56332	Dissolved	Water	6010D	60481
880-232195-20	AF56395	Dissolved	Water	6010D	60481
80-232195-21	AF56396	Dissolved	Water	6010D	60481
880-232195-22	AF56397	Dissolved	Water	6010D	60481
80-232195-23	AF56400	Dissolved	Water	6010D	60481
80-232195-24	AF56442	Dissolved	Water	6010D	60481
880-232195-25	AF56443	Dissolved	Water	6010D	60481
80-232195-26	AF56402	Dissolved	Water	6010D	60481
880-232195-27	AF56403	Dissolved	Water	6010D	60481
80-232195-28	AF56404	Dissolved	Water	6010D	60481
80-232195-29	AF56434	Dissolved	Water	6010D	60481
80-232195-30	AF56433	Dissolved	Water	6010D	60481
80-232195-31	AF56435	Dissolved	Water	6010D	60481
80-232195-32	AF56436	Dissolved	Water	6010D	60481
80-232195-33	AF56437	Dissolved	Water	6010D	60481
80-232195-34	AF56438	Dissolved	Water	6010D	60481
880-232195-35	AF56409	Dissolved	Water	6010D	60481
880-232195-36	AF56410	Dissolved	Water	6010D	60481
80-232195-37	AF56411	Dissolved	Water	6010D	60482
880-232195-38	AF56412	Dissolved	Water	6010D	60482
880-232195-39	AF56413	Dissolved	Water	6010D	60482

Eurofins Savannah

Client: South Carolina Public Service Authority

Project/Site: 125915/JM02.09.G01.1/36500

Job ID: 680-232195-1

Metals (Continued)

Analysis Batch: 605060 (Continued)

Lab Sample ID 680-232195-40	Client Sample ID AF56430	Prep Type Dissolved	Matrix Water	Method 6010D	Prep Batch 604820
680-232195-41	AF56406	Dissolved	Water	6010D	604820
680-232195-42	AF56407	Dissolved	Water	6010D	604820
680-232195-43	AF56418	Dissolved	Water	6010D	604820
680-232195-44	AF56422	Dissolved	Water	6010D	604820
MB 160-604817/1-A	Method Blank	Total/NA	Water	6010D	604817
MB 160-604819/1-A	Method Blank	Total/NA	Water	6010D	604819
MB 160-604820/1-A	Method Blank	Total/NA	Water	6010D	604820
LCS 160-604817/2-A	Lab Control Sample	Total/NA	Water	6010D	604817
LCS 160-604819/2-A	Lab Control Sample	Total/NA	Water	6010D	604819
LCS 160-604820/2-A	Lab Control Sample	Total/NA	Water	6010D	604820
680-232195-17 MS	AF56394	Dissolved	Water	6010D	604819
680-232195-17 MSD	AF56394	Dissolved	Water	6010D	604819
680-232195-37 MS	AF56411	Dissolved	Water	6010D	604820
680-232195-37 MSD	AF56411	Dissolved	Water	6010D	604820

Prep Batch: 768492

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
680-232195-1	AF56421	Dissolved	Water	3005A	
680-232195-2	AF56424	Dissolved	Water	3005A	
680-232195-3	AF56439	Dissolved	Water	3005A	
680-232195-4	AF56441	Dissolved	Water	3005A	
680-232195-5	AF56414	Dissolved	Water	3005A	
680-232195-6	AF56423	Dissolved	Water	3005A	
680-232195-7	AF56428	Dissolved	Water	3005A	
680-232195-8	AF56419	Dissolved	Water	3005A	
680-232195-9	AF56425	Dissolved	Water	3005A	
680-232195-10	AF56426	Dissolved	Water	3005A	
680-232195-11	AF56427	Dissolved	Water	3005A	
680-232195-12	AF56408	Dissolved	Water	3005A	
680-232195-13	AF56415	Dissolved	Water	3005A	
680-232195-14	AF56416	Dissolved	Water	3005A	
MB 680-768492/1-A	Method Blank	Total Recoverable	Water	3005A	
LCS 680-768492/2-A	Lab Control Sample	Total Recoverable	Water	3005A	

Prep Batch: 768540

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batcl
680-232195-15	AF56417	Dissolved	Water	3005A	
680-232195-16	AF56429	Dissolved	Water	3005A	
680-232195-17	AF56394	Dissolved	Water	3005A	
680-232195-18	AF56331	Dissolved	Water	3005A	
680-232195-19	AF56332	Dissolved	Water	3005A	
680-232195-20	AF56395	Dissolved	Water	3005A	
680-232195-21	AF56396	Dissolved	Water	3005A	
680-232195-22	AF56397	Dissolved	Water	3005A	
680-232195-23	AF56400	Dissolved	Water	3005A	
680-232195-24	AF56442	Dissolved	Water	3005A	
680-232195-25	AF56443	Dissolved	Water	3005A	
680-232195-26	AF56402	Dissolved	Water	3005A	
680-232195-27	AF56403	Dissolved	Water	3005A	
680-232195-28	AF56404	Dissolved	Water	3005A	

Eurofins Savannah

3/28/2023

Page 71 of 102

1

3

4

0

R

9

10

19

13

Client: South Carolina Public Service Authority Project/Site: 125915/JM02.09.G01.1/36500

Job ID: 680-232195-1

Metals (Continued)

Prep Batch: 768540 (Continued)

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
680-232195-29	AF56434	Dissolved	Water	3005A	
680-232195-30	AF56433	Dissolved	Water	3005A	
680-232195-31	AF56435	Dissolved	Water	3005A	
680-232195-32	AF56436	Dissolved	Water	3005A	
680-232195-33	AF56437	Dissolved	Water	3005A	
MB 680-768540/1-A	Method Blank	Total Recoverable	Water	3005A	
LCS 680-768540/2-A	Lab Control Sample	Total Recoverable	Water	3005A	
680-232195-15 MS	AF56417	Dissolved	Water	3005A	
680-232195-15 MSD	AF56417	Dissolved	Water	3005A	

Prep Batch: 768608

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
680-232195-34	AF56438	Dissolved	Water	3005A	
680-232195-35	AF56409	Dissolved	Water	3005A	
680-232195-36	AF56410	Dissolved	Water	3005A	
680-232195-37	AF56411	Dissolved	Water	3005A	
680-232195-38	AF56412	Dissolved	Water	3005A	
680-232195-39	AF56413	Dissolved	Water	3005A	
680-232195-40	AF56430	Dissolved	Water	3005A	
680-232195-41	AF56406	Dissolved	Water	3005A	
680-232195-42	AF56407	Dissolved	Water	3005A	
680-232195-43	AF56418	Dissolved	Water	3005A	
680-232195-44	AF56422	Dissolved	Water	3005A	
MB 680-768608/1-A	Method Blank	Total Recoverable	Water	3005A	
LCS 680-768608/2-A	Lab Control Sample	Total Recoverable	Water	3005A	

Prep Batch: 768613

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batcl
680-232195-34	AF56438	Dissolved	Water	3005A	
680-232195-35	AF56409	Dissolved	Water	3005A	
680-232195-36	AF56410	Dissolved	Water	3005A	
680-232195-37	AF56411	Dissolved	Water	3005A	
680-232195-38	AF56412	Dissolved	Water	3005A	
680-232195-39	AF56413	Dissolved	Water	3005A	
680-232195-40	AF56430	Dissolved	Water	3005A	
680-232195-41	AF56406	Dissolved	Water	3005A	
680-232195-42	AF56407	Dissolved	Water	3005A	
680-232195-43	AF56418	Dissolved	Water	3005A	
680-232195-44	AF56422	Dissolved	Water	3005A	
MB 680-768613/1-A	Method Blank	Total Recoverable	Water	3005A	
LCS 680-768613/2-A	Lab Control Sample	Total Recoverable	Water	3005A	

Analysis Batch: 768799

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
680-232195-1	AF56421	Dissolved	Water	6020B	768492
680-232195-2	AF56424	Dissolved	Water	6020B	768492
680-232195-3	AF56439	Dissolved	Water	6020B	768492
680-232195-4	AF56441	Dissolved	Water	6020B	768492
680-232195-5	AF56414	Dissolved	Water	6020B	768492
680-232195-6	AF56423	Dissolved	Water	6020B	768492
680-232195-7	AF56428	Dissolved	Water	6020B	768492

Eurofins Savannah

Page 72 of 102

Client: South Carolina Public Service Authority

Project/Site: 125915/JM02.09.G01.1/36500

Job ID: 680-232195-1

Metals (Continued)

Analysis Batch: 768799 (Continued)

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
680-232195-8	AF56419	Dissolved	Water	6020B	768492
680-232195-9	AF56425	Dissolved	Water	6020B	768492
680-232195-10	AF56426	Dissolved	Water	6020B	768492
680-232195-11	AF56427	Dissolved	Water	6020B	768492
680-232195-12	AF56408	Dissolved	Water	6020B	768492
680-232195-13	AF56415	Dissolved	Water	6020B	768492
680-232195-14	AF56416	Dissolved	Water	6020B	768492
MB 680-768492/1-A	Method Blank	Total Recoverable	Water	6020B	768492
LCS 680-768492/2-A	Lab Control Sample	Total Recoverable	Water	6020B	768492

Prep Batch: 768859

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
680-232195-15	AF56417	Dissolved	Water	3005A	
680-232195-16	AF56429	Dissolved	Water	3005A	
680-232195-17	AF56394	Dissolved	Water	3005A	
680-232195-18	AF56331	Dissolved	Water	3005A	
680-232195-19	AF56332	Dissolved	Water	3005A	
680-232195-20	AF56395	Dissolved	Water	3005A	
680-232195-21	AF56396	Dissolved	Water	3005A	
680-232195-22	AF56397	Dissolved	Water	3005A	
680-232195-23	AF56400	Dissolved	Water	3005A	
680-232195-24	AF56442	Dissolved	Water	3005A	
680-232195-25	AF56443	Dissolved	Water	3005A	
680-232195-26	AF56402	Dissolved	Water	3005A	
680-232195-27	AF56403	Dissolved	Water	3005A	
680-232195-28	AF56404	Dissolved	Water	3005A	
680-232195-29	AF56434	Dissolved	Water	3005A	
680-232195-30	AF56433	Dissolved	Water	3005A	
680-232195-31	AF56435	Dissolved	Water	3005A	
680-232195-32	AF56436	Dissolved	Water	3005A	
680-232195-33	AF56437	Dissolved	Water	3005A	
MB 680-768859/1-A	Method Blank	Total Recoverable	Water	3005A	
LCS 680-768859/2-A	Lab Control Sample	Total Recoverable	Water	3005A	
680-232195-15 MS	AF56417	Dissolved	Water	3005A	
680-232195-15 MSD	AF56417	Dissolved	Water	3005A	

Analysis Batch: 768929

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
680-232195-15	AF56417	Dissolved	Water	6010D	768859
680-232195-16	AF56429	Dissolved	Water	6010D	768859
680-232195-17	AF56394	Dissolved	Water	6010D	768859
680-232195-18	AF56331	Dissolved	Water	6010D	768859
680-232195-19	AF56332	Dissolved	Water	6010D	768859
680-232195-20	AF56395	Dissolved	Water	6010D	768859
680-232195-21	AF56396	Dissolved	Water	6010D	768859
680-232195-22	AF56397	Dissolved	Water	6010D	768859
680-232195-23	AF56400	Dissolved	Water	6010D	768859
680-232195-24	AF56442	Dissolved	Water	6010D	768859
680-232195-25	AF56443	Dissolved	Water	6010D	768859
680-232195-26	AF56402	Dissolved	Water	6010D	768859
680-232195-27	AF56403	Dissolved	Water	6010D	768859

Eurofins Savannah

Page 73 of 102

3

4

6

8

9

10

12

13

| | 4

Client: South Carolina Public Service Authority Project/Site: 125915/JM02.09.G01.1/36500

Job ID: 680-232195-1

Metals (Continued)

Analysis Batch: 768929 (Continued)

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
680-232195-28	AF56404	Dissolved	Water	6010D	768859
680-232195-29	AF56434	Dissolved	Water	6010D	768859
680-232195-30	AF56433	Dissolved	Water	6010D	768859
680-232195-31	AF56435	Dissolved	Water	6010D	768859
680-232195-32	AF56436	Dissolved	Water	6010D	768859
680-232195-33	AF56437	Dissolved	Water	6010D	768859
680-232195-34	AF56438	Dissolved	Water	6010D	768608
680-232195-35	AF56409	Dissolved	Water	6010D	768608
680-232195-36	AF56410	Dissolved	Water	6010D	768608
680-232195-37	AF56411	Dissolved	Water	6010D	768608
680-232195-38	AF56412	Dissolved	Water	6010D	768608
680-232195-39	AF56413	Dissolved	Water	6010D	768608
680-232195-40	AF56430	Dissolved	Water	6010D	768608
680-232195-41	AF56406	Dissolved	Water	6010D	768608
680-232195-42	AF56407	Dissolved	Water	6010D	768608
680-232195-43	AF56418	Dissolved	Water	6010D	768608
680-232195-44	AF56422	Dissolved	Water	6010D	768608
MB 680-768608/1-A	Method Blank	Total Recoverable	Water	6010D	768608
MB 680-768859/1-A	Method Blank	Total Recoverable	Water	6010D	768859
LCS 680-768608/2-A	Lab Control Sample	Total Recoverable	Water	6010D	768608
LCS 680-768859/2-A	Lab Control Sample	Total Recoverable	Water	6010D	768859
680-232195-15 MS	AF56417	Dissolved	Water	6010D	768859
680-232195-15 MSD	AF56417	Dissolved	Water	6010D	768859

Analysis Batch: 768945

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
680-232195-15	AF56417	Dissolved	Water	6020B	768540
680-232195-16	AF56429	Dissolved	Water	6020B	768540
680-232195-17	AF56394	Dissolved	Water	6020B	768540
680-232195-18	AF56331	Dissolved	Water	6020B	768540
680-232195-19	AF56332	Dissolved	Water	6020B	768540
680-232195-20	AF56395	Dissolved	Water	6020B	768540
680-232195-21	AF56396	Dissolved	Water	6020B	768540
680-232195-22	AF56397	Dissolved	Water	6020B	768540
680-232195-23	AF56400	Dissolved	Water	6020B	768540
680-232195-24	AF56442	Dissolved	Water	6020B	768540
680-232195-25	AF56443	Dissolved	Water	6020B	768540
680-232195-26	AF56402	Dissolved	Water	6020B	768540
680-232195-27	AF56403	Dissolved	Water	6020B	768540
680-232195-28	AF56404	Dissolved	Water	6020B	768540
680-232195-29	AF56434	Dissolved	Water	6020B	768540
680-232195-30	AF56433	Dissolved	Water	6020B	768540
680-232195-31	AF56435	Dissolved	Water	6020B	768540
680-232195-32	AF56436	Dissolved	Water	6020B	768540
680-232195-33	AF56437	Dissolved	Water	6020B	768540
680-232195-34	AF56438	Dissolved	Water	6020B	768613
680-232195-35	AF56409	Dissolved	Water	6020B	768613
680-232195-36	AF56410	Dissolved	Water	6020B	768613
680-232195-37	AF56411	Dissolved	Water	6020B	768613
680-232195-38	AF56412	Dissolved	Water	6020B	768613
680-232195-39	AF56413	Dissolved	Water	6020B	768613

Client: South Carolina Public Service Authority Project/Site: 125915/JM02.09.G01.1/36500

Job ID: 680-232195-1

Metals (Continued)

Analysis Batch: 768945 (Continued)

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
680-232195-40	AF56430	Dissolved	Water	6020B	768613
680-232195-41	AF56406	Dissolved	Water	6020B	768613
680-232195-42	AF56407	Dissolved	Water	6020B	768613
680-232195-43	AF56418	Dissolved	Water	6020B	768613
680-232195-44	AF56422	Dissolved	Water	6020B	768613
MB 680-768540/1-A	Method Blank	Total Recoverable	Water	6020B	768540
MB 680-768613/1-A	Method Blank	Total Recoverable	Water	6020B	768613
LCS 680-768540/2-A	Lab Control Sample	Total Recoverable	Water	6020B	768540
LCS 680-768613/2-A	Lab Control Sample	Total Recoverable	Water	6020B	768613
680-232195-15 MS	AF56417	Dissolved	Water	6020B	768540
680-232195-15 MSD	AF56417	Dissolved	Water	6020B	768540

Analysis Batch: 769014

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
680-232195-21	AF56396	Dissolved	Water	6020B	768540
680-232195-22	AF56397	Dissolved	Water	6020B	768540
680-232195-23	AF56400	Dissolved	Water	6020B	768540
680-232195-24	AF56442	Dissolved	Water	6020B	768540
680-232195-25	AF56443	Dissolved	Water	6020B	768540
680-232195-26	AF56402	Dissolved	Water	6020B	768540
680-232195-27	AF56403	Dissolved	Water	6020B	768540
680-232195-28	AF56404	Dissolved	Water	6020B	768540
680-232195-29	AF56434	Dissolved	Water	6020B	768540
680-232195-30	AF56433	Dissolved	Water	6020B	768540
680-232195-31	AF56435	Dissolved	Water	6020B	768540
680-232195-32	AF56436	Dissolved	Water	6020B	768540
680-232195-33	AF56437	Dissolved	Water	6020B	768540

Analysis Batch: 769167

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
680-232195-35	AF56409	Dissolved	Water	6010D	768608
680-232195-36	AF56410	Dissolved	Water	6010D	768608
680-232195-37	AF56411	Dissolved	Water	6010D	768608

Prep Batch: 769547

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batcl
680-232195-1	AF56421	Dissolved	Water	3005A	
680-232195-2	AF56424	Dissolved	Water	3005A	
80-232195-3	AF56439	Dissolved	Water	3005A	
80-232195-4	AF56441	Dissolved	Water	3005A	
880-232195-5	AF56414	Dissolved	Water	3005A	
680-232195-6	AF56423	Dissolved	Water	3005A	
880-232195-7	AF56428	Dissolved	Water	3005A	
880-232195-8	AF56419	Dissolved	Water	3005A	
880-232195-9	AF56425	Dissolved	Water	3005A	
880-232195-10	AF56426	Dissolved	Water	3005A	
80-232195-11	AF56427	Dissolved	Water	3005A	
880-232195-12	AF56408	Dissolved	Water	3005A	
80-232195-13	AF56415	Dissolved	Water	3005A	
80-232195-14	AF56416	Dissolved	Water	3005A	
MB 680-769547/1-A	Method Blank	Total Recoverable	Water	3005A	

Page 75 of 102

Client: South Carolina Public Service Authority Project/Site: 125915/JM02.09.G01.1/36500

Job ID: 680-232195-1

Metals (Continued)

Prep Batch: 769547 (Continued)

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
LCS 680-769547/2-A	Lab Control Sample	Total Recoverable	Water	3005A	

Analysis Batch: 769727

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
680-232195-1	AF56421	Dissolved	Water	6010D	769547
680-232195-2	AF56424	Dissolved	Water	6010D	769547
680-232195-3	AF56439	Dissolved	Water	6010D	769547
680-232195-4	AF56441	Dissolved	Water	6010D	769547
680-232195-5	AF56414	Dissolved	Water	6010D	769547
680-232195-6	AF56423	Dissolved	Water	6010D	769547
680-232195-7	AF56428	Dissolved	Water	6010D	769547
680-232195-8	AF56419	Dissolved	Water	6010D	769547
680-232195-9	AF56425	Dissolved	Water	6010D	769547
680-232195-10	AF56426	Dissolved	Water	6010D	769547
680-232195-11	AF56427	Dissolved	Water	6010D	769547
680-232195-12	AF56408	Dissolved	Water	6010D	769547
680-232195-13	AF56415	Dissolved	Water	6010D	769547
680-232195-14	AF56416	Dissolved	Water	6010D	769547
MB 680-769547/1-A	Method Blank	Total Recoverable	Water	6010D	769547
LCS 680-769547/2-A	Lab Control Sample	Total Recoverable	Water	6010D	769547

J

4

5

7

8

4.0

11

12

13

Client: South Carolina Public Service Authority Project/Site: 125915/JM02.09.G01.1/36500

Client Sample ID: AF56421

Date Collected: 03/01/23 14:41 Date Received: 03/17/23 10:30 Lab Sample ID: 680-232195-1

Matrix: Water

	Batch	Batch		Dilution	Batch			Prepared
Prep Type	Type	Method	Run	Factor	Number	Analyst	Lab	or Analyzed
Dissolved	Prep	3010A			604817	LKP	EET SL	03/23/23 14:17
Dissolved	Analysis	6010D		1	605060	LKP	EET SL	03/24/23 20:16
Dissolved	Prep	3005A			769547	ВСВ	EET SAV	03/24/23 14:44
Dissolved	Analysis	6010D		1	769727	BCB	EET SAV	03/24/23 19:56
Dissolved	Prep	3005A			768492	RR	EET SAV	03/20/23 07:40
Dissolved	Analysis	6020B		1	768799	BWR	EET SAV	03/21/23 08:04

Client Sample ID: AF56424

Date Collected: 03/01/23 13:37 Date Received: 03/17/23 10:30 Lab Sample ID: 680-232195-2

Matrix: Water

	Batch	Batch		Dilution	Batch			Prepared
Prep Type	Type	Method	Run	Factor	Number	Analyst	Lab	or Analyzed
Dissolved	Prep	3010A			604817	LKP	EET SL	03/23/23 14:17
Dissolved	Analysis	6010D		1	605060	LKP	EET SL	03/24/23 20:20
Dissolved	Prep	3005A			769547	ВСВ	EET SAV	03/24/23 14:44
Dissolved	Analysis	6010D		1	769727	BCB	EET SAV	03/24/23 20:00
Dissolved	Prep	3005A			768492	RR	EET SAV	03/20/23 07:40
Dissolved	Analysis	6020B		1	768799	BWR	EET SAV	03/21/23 08:08

Client Sample ID: AF56439

Date Collected: 03/01/23 10:22

Date Received: 03/17/23 10:30

Lab Sample	EID: 680-232195-3
-------------------	-------------------

Matrix: Water

	Batch	Batch		Dilution	Batch			Prepared
Prep Type	Туре	Method	Run	Factor	Number	Analyst	Lab	or Analyzed
Dissolved	Prep	3010A			604817	LKP	EET SL	03/23/23 14:17
Dissolved	Analysis	6010D		1	605060	LKP	EET SL	03/24/23 20:25
Dissolved	Prep	3005A			769547	ВСВ	EET SAV	03/24/23 14:44
Dissolved	Analysis	6010D		1	769727	ВСВ	EET SAV	03/24/23 20:03
Dissolved	Prep	3005A			768492	RR	EET SAV	03/20/23 07:40
Dissolved	Analysis	6020B		1	768799	BWR	EET SAV	03/21/23 08:12

Client Sample ID: AF56441

Date Collected: 03/01/23 11:45

Date Received: 03/17/23 10:30

Lab Sample	ID:	680-232195-4
		Matrix: Water

	Batch	Batch		Dilution	Batch			Prepared
Prep Type	Type	Method	Run	Factor	Number	Analyst	Lab	or Analyzed
Dissolved	Prep	3010A			604817	LKP	EET SL	03/23/23 14:17
Dissolved	Analysis	6010D		1	605060	LKP	EET SL	03/24/23 20:30
Dissolved	Prep	3005A			769547	ВСВ	EET SAV	03/24/23 14:44
Dissolved	Analysis	6010D		1	769727	BCB	EET SAV	03/24/23 20:06
Dissolved	Prep	3005A			768492	RR	EET SAV	03/20/23 07:40
Dissolved	Analysis	6020B		1	768799	BWR	EET SAV	03/21/23 08:16

Client: South Carolina Public Service Authority Project/Site: 125915/JM02.09.G01.1/36500

Client Sample ID: AF56414

Date Collected: 03/02/23 12:46 Date Received: 03/17/23 10:30 Lab Sample ID: 680-232195-5

Matrix: Water

	Batch	Batch		Dilution	Batch			Prepared
Prep Type	Type	Method	Run	Factor	Number	Analyst	Lab	or Analyzed
Dissolved	Prep	3010A			604817	LKP	EET SL	03/23/23 14:17
Dissolved	Analysis	6010D		1	605060	LKP	EET SL	03/24/23 20:34
Dissolved	Prep	3005A			769547	ВСВ	EET SAV	03/24/23 14:44
Dissolved	Analysis	6010D		1	769727	ВСВ	EET SAV	03/24/23 20:09
Dissolved	Prep	3005A			768492	RR	EET SAV	03/20/23 07:40
Dissolved	Analysis	6020B		1	768799	BWR	EET SAV	03/21/23 08:20

Client Sample ID: AF56423 Lab Sample ID: 680-232195-6 **Matrix: Water** Date Collected: 03/02/23 09:52

Date Received: 03/17/23 10:30

	Batch	Batch		Dilution	Batch			Prepared
Prep Type	Type	Method	Run	Factor	Number	Analyst	Lab	or Analyzed
Dissolved	Prep	3010A			604817	LKP	EET SL	03/23/23 14:17
Dissolved	Analysis	6010D		1	605060	LKP	EET SL	03/24/23 20:39
Dissolved	Prep	3005A			769547	всв	EET SAV	03/24/23 14:44
Dissolved	Analysis	6010D		1	769727	ВСВ	EET SAV	03/24/23 20:19
Dissolved	Prep	3005A			768492	RR	EET SAV	03/20/23 07:40
Dissolved	Analysis	6020B		1	768799	BWR	EET SAV	03/21/23 08:24

Lab Sample ID: 680-232195-7 **Client Sample ID: AF56428**

Matrix: Water

Date Collected: 03/02/23 10:56 Date Received: 03/17/23 10:30

	Batch	Batch		Dilution	Batch			Prepared
Prep Type	Type	Method	Run	Factor	Number	Analyst	Lab	or Analyzed
Dissolved	Prep	3010A			604817	LKP	EET SL	03/23/23 14:17
Dissolved	Analysis	6010D		1	605060	LKP	EET SL	03/24/23 20:44
Dissolved	Prep	3005A			769547	ВСВ	EET SAV	03/24/23 14:44
Dissolved	Analysis	6010D		1	769727	ВСВ	EET SAV	03/24/23 20:22
Dissolved	Prep	3005A			768492	RR	EET SAV	03/20/23 07:40
Dissolved	Analysis	6020B		1	768799	BWR	EET SAV	03/21/23 08:28

Client Sample ID: AF56419 Lab Sample ID: 680-232195-8 Date Collected: 03/07/23 14:51

Date Received: 03/17/23 10:30

	Batch	Batch		Dilution	Batch			Prepared
Prep Type	Туре	Method	Run	Factor	Number	Analyst	Lab	or Analyzed
Dissolved	Prep	3010A			604817	LKP	EET SL	03/23/23 14:17
Dissolved	Analysis	6010D		1	605060	LKP	EET SL	03/24/23 20:48
Dissolved	Prep	3005A			769547	ВСВ	EET SAV	03/24/23 14:44
Dissolved	Analysis	6010D		1	769727	ВСВ	EET SAV	03/24/23 20:25
Dissolved	Prep	3005A			768492	RR	EET SAV	03/20/23 07:40
Dissolved	Analysis	6020B		1	768799	BWR	EET SAV	03/21/23 08:33

Eurofins Savannah

Matrix: Water

Client: South Carolina Public Service Authority Project/Site: 125915/JM02.09.G01.1/36500

Client Sample ID: AF56425

Date Collected: 03/07/23 12:49 Date Received: 03/17/23 10:30 Lab Sample ID: 680-232195-9

Matrix: Water

	Batch	Batch		Dilution	Batch			Prepared
Prep Type	Type	Method	Run	Factor	Number	Analyst	Lab	or Analyzed
Dissolved	Prep	3010A			604817	LKP	EET SL	03/23/23 14:17
Dissolved	Analysis	6010D		1	605060	LKP	EET SL	03/24/23 20:53
Dissolved	Prep	3005A			769547	ВСВ	EET SAV	03/24/23 14:44
Dissolved	Analysis	6010D		1	769727	ВСВ	EET SAV	03/24/23 20:29
Dissolved	Prep	3005A			768492	RR	EET SAV	03/20/23 07:40
Dissolved	Analysis	6020B		1	768799	BWR	EET SAV	03/21/23 08:37

Client Sample ID: AF56426

Date Collected: 03/07/23 10:22 Date Received: 03/17/23 10:30 Lab Sample ID: 680-232195-10

Matrix: Water

	Batch	Batch		Dilution	Batch			Prepared
Prep Type	Type	Method	Run	Factor	Number	Analyst	Lab	or Analyzed
Dissolved	Prep	3010A			604817	LKP	EET SL	03/23/23 14:17
Dissolved	Analysis	6010D		1	605060	LKP	EET SL	03/24/23 21:12
Dissolved	Prep	3005A			769547	ВСВ	EET SAV	03/24/23 14:44
Dissolved	Analysis	6010D		1	769727	BCB	EET SAV	03/24/23 20:32
Dissolved	Prep	3005A			768492	RR	EET SAV	03/20/23 07:40
Dissolved	Analysis	6020B		1	768799	BWR	EET SAV	03/21/23 08:41

Client Sample ID: AF56427

Date Collected: 03/07/23 10:27

Date Received: 03/17/23 10:30

Lab Sam	ple ID:	680-232195-11	
Edo Odiii	PIO IDI	000 202 100 11	

Matrix: Water

	Batch	Batch		Dilution	Batch			Prepared
Prep Type	Type	Method	Run	Factor	Number	Analyst	Lab	or Analyzed
Dissolved	Prep	3010A			604817	LKP	EET SL	03/23/23 14:17
Dissolved	Analysis	6010D		1	605060	LKP	EET SL	03/24/23 21:16
Dissolved	Prep	3005A			769547	ВСВ	EET SAV	03/24/23 14:44
Dissolved	Analysis	6010D		1	769727	ВСВ	EET SAV	03/24/23 20:35
Dissolved	Prep	3005A			768492	RR	EET SAV	03/20/23 07:40
Dissolved	Analysis	6020B		1	768799	BWR	EET SAV	03/21/23 08:53

Client Sample ID: AF56408

Date Collected: 03/08/23 13:38

Date Received: 03/17/23 10:30

Lab Sa	ample	ID: 6	580-23 <i>i</i>	2195-12
--------	-------	-------	-----------------	---------

Matrix: Water

	Batch	Batch		Dilution	Batch			Prepared
Prep Type	Type	Method	Run	Factor	Number	Analyst	Lab	or Analyzed
Dissolved	Prep	3010A			604817	LKP	EET SL	03/23/23 14:17
Dissolved	Analysis	6010D		1	605060	LKP	EET SL	03/24/23 21:21
Dissolved	Prep	3005A			769547	ВСВ	EET SAV	03/24/23 14:44
Dissolved	Analysis	6010D		1	769727	ВСВ	EET SAV	03/24/23 20:38
Dissolved	Prep	3005A			768492	RR	EET SAV	03/20/23 07:40
Dissolved	Analysis	6020B		1	768799	BWR	EET SAV	03/21/23 08:57

Client: South Carolina Public Service Authority Project/Site: 125915/JM02.09.G01.1/36500

Client Sample ID: AF56415

Date Collected: 03/08/23 15:13 Date Received: 03/17/23 10:30 Lab Sample ID: 680-232195-13

Matrix: Water

	Batch	Batch		Dilution	Batch			Prepared
Prep Type	Туре	Method	Run	Factor	Number	Analyst	Lab	or Analyzed
Dissolved	Prep	3010A			604817	LKP	EET SL	03/23/23 14:17
Dissolved	Analysis	6010D		1	605060	LKP	EET SL	03/24/23 21:26
Dissolved	Prep	3005A			769547	ВСВ	EET SAV	03/24/23 14:44
Dissolved	Analysis	6010D		1	769727	ВСВ	EET SAV	03/24/23 20:42
Dissolved	Prep	3005A			768492	RR	EET SAV	03/20/23 07:40
Dissolved	Analysis	6020B		1	768799	BWR	EET SAV	03/21/23 09:01

Client Sample ID: AF56416

Date Collected: 03/08/23 10:09 Date Received: 03/17/23 10:30

Lab Sample ID: 680-232195-14

Matrix: Water

	Batch	Batch		Dilution	Batch			Prepared
Prep Type	Туре	Method	Run	Factor	Number	Analyst	Lab	or Analyzed
Dissolved	Prep	3010A			604817	LKP	EET SL	03/23/23 14:17
Dissolved	Analysis	6010D		1	605060	LKP	EET SL	03/24/23 21:31
Dissolved	Prep	3005A			769547	всв	EET SAV	03/24/23 14:44
Dissolved	Analysis	6010D		1	769727	ВСВ	EET SAV	03/24/23 20:45
Dissolved	Prep	3005A			768492	RR	EET SAV	03/20/23 07:40
Dissolved	Analysis	6020B		1	768799	BWR	EET SAV	03/21/23 09:05

Client Sample ID: AF56417

Date Collected: 03/08/23 10:14

Date Received: 03/17/23 10:30

Lab Sample ID: 680-232195-15

Matrix: Water

	Batch	Batch		Dilution	Batch			Prepared
Prep Type	Туре	Method	Run	Factor	Number	Analyst	Lab	or Analyzed
Dissolved	Prep	3010A			604817	LKP	EET SL	03/23/23 14:17
Dissolved	Analysis	6010D		1	605060	LKP	EET SL	03/24/23 21:35
Dissolved	Prep	3005A			768859	ВЈВ	EET SAV	03/20/23 09:01
Dissolved	Analysis	6010D		1	768929	BJB	EET SAV	03/21/23 19:12
Dissolved	Prep	3005A			768540	RR	EET SAV	03/20/23 09:01
Dissolved	Analysis	6020B		1	768945	BWR	EET SAV	03/21/23 16:07

Client Sample ID: AF56429

Date Collected: 03/08/23 12:12

Date Received: 03/17/23 10:30

Lab Sample ID: 680-232195-	16	
----------------------------	----	--

Matrix: Water

	Batch	Batch		Dilution	Batch			Prepared
Prep Type	Туре	Method	Run	Factor	Number	Analyst	Lab	or Analyzed
Dissolved	Prep	3010A			604817	LKP	EET SL	03/23/23 14:17
Dissolved	Analysis	6010D		1	605060	LKP	EET SL	03/24/23 21:40
Dissolved	Prep	3005A			768859	ВЈВ	EET SAV	03/20/23 09:01
Dissolved	Analysis	6010D		1	768929	BJB	EET SAV	03/21/23 19:22
Dissolved	Prep	3005A			768540	RR	EET SAV	03/20/23 09:01
Dissolved	Analysis	6020B		1	768945	BWR	EET SAV	03/21/23 16:19

Client: South Carolina Public Service Authority Project/Site: 125915/JM02.09.G01.1/36500

Client Sample ID: AF56394

Date Collected: 02/14/23 12:33 Date Received: 03/17/23 10:30 Lab Sample ID: 680-232195-17

Matrix: Water

	Batch	Batch		Dilution	Batch			Prepared
Prep Type	Type	Method	Run	Factor	Number	Analyst	Lab	or Analyzed
Dissolved	Prep	3010A			604819	LKP	EET SL	03/23/23 14:19
Dissolved	Analysis	6010D		1	605060	LKP	EET SL	03/24/23 21:54
Dissolved	Prep	3005A			768859	BJB	EET SAV	03/20/23 09:01
Dissolved	Analysis	6010D		1	768929	BJB	EET SAV	03/21/23 19:25
Dissolved	Prep	3005A			768540	RR	EET SAV	03/20/23 09:01
Dissolved	Analysis	6020B		1	768945	BWR	EET SAV	03/21/23 16:23

Client Sample ID: AF56331

Date Collected: 02/14/23 13:51 Date Received: 03/17/23 10:30 Lab Sample ID: 680-232195-18

Matrix: Water

	Batch	Batch		Dilution	Batch			Prepared
Prep Type	Type	Method	Run	Factor	Number	Analyst	Lab	or Analyzed
Dissolved	Prep	3010A			604819	LKP	EET SL	03/23/23 14:19
Dissolved	Analysis	6010D		1	605060	LKP	EET SL	03/24/23 22:26
Dissolved	Prep	3005A			768859	ВЈВ	EET SAV	03/20/23 09:01
Dissolved	Analysis	6010D		1	768929	BJB	EET SAV	03/21/23 19:29
Dissolved	Prep	3005A			768540	RR	EET SAV	03/20/23 09:01
Dissolved	Analysis	6020B		1	768945	BWR	EET SAV	03/21/23 16:27

Client Sample ID: AF56332

Date Collected: 02/14/23 15:22

Date Received: 03/17/23 10:30

Lab Sample ID: 680-232195-19

Matrix: Water

	Batch	Batch		Dilution	Batch			Prepared
Prep Type	Туре	Method	Run	Factor	Number	Analyst	Lab	or Analyzed
Dissolved	Prep	3010A			604819	LKP	EET SL	03/23/23 14:19
Dissolved	Analysis	6010D		1	605060	LKP	EET SL	03/24/23 22:35
Dissolved	Prep	3005A			768859	BJB	EET SAV	03/20/23 09:01
Dissolved	Analysis	6010D		1	768929	BJB	EET SAV	03/21/23 19:38
Dissolved	Prep	3005A			768540	RR	EET SAV	03/20/23 09:01
Dissolved	Analysis	6020B		1	768945	BWR	EET SAV	03/21/23 16:31

Client Sample ID: AF56395

Date Collected: 02/15/23 11:36

Date Received: 03/17/23 10:30

Lab	Samp	le ID:	680-232	195-20
-----	------	--------	---------	--------

Matrix: Water

	Batch	Batch		Dilution	Batch			Prepared
Prep Type	Туре	Method	Run	Factor	Number	Analyst	Lab	or Analyzed
Dissolved	Prep	3010A	 -		604819	LKP	EET SL	03/23/23 14:19
Dissolved	Analysis	6010D		1	605060	LKP	EET SL	03/24/23 22:39
Dissolved	Prep	3005A			768859	ВЈВ	EET SAV	03/20/23 09:01
Dissolved	Analysis	6010D		1	768929	BJB	EET SAV	03/21/23 19:42
Dissolved	Prep	3005A			768540	RR	EET SAV	03/20/23 09:01
Dissolved	Analysis	6020B		1	768945	BWR	EET SAV	03/21/23 16:35

Client: South Carolina Public Service Authority Project/Site: 125915/JM02.09.G01.1/36500

Client Sample ID: AF56396

Lab Sample ID: 680-232195-21

Matrix: Water

Date Collected: 02/15/23 13:21 Date Received: 03/17/23 10:30

	Batch	Batch		Dilution	Batch			Prepared
Prep Type	Type	Method	Run	Factor	Number	Analyst	Lab	or Analyzed
Dissolved	Prep	3010A			604819	LKP	EET SL	03/23/23 14:19
Dissolved	Analysis	6010D		1	605060	LKP	EET SL	03/24/23 22:44
Dissolved	Prep	3005A			768859	ВЈВ	EET SAV	03/20/23 09:01
Dissolved	Analysis	6010D		1	768929	BJB	EET SAV	03/21/23 19:51
Dissolved	Prep	3005A			768540	RR	EET SAV	03/20/23 09:01
Dissolved	Analysis	6020B		1	768945	BWR	EET SAV	03/21/23 16:54
Dissolved	Prep	3005A			768540	RR	EET SAV	03/20/23 09:01
Dissolved	Analysis	6020B		1	769014	BWR	EET SAV	03/22/23 08:24

Client Sample ID: AF56397 Lab Sample ID: 680-232195-22

Date Collected: 02/16/23 10:53 **Matrix: Water**

Date Received: 03/17/23 10:30

	Batch	Batch		Dilution	Batch			Prepared
Prep Type	Type	Method	Run	Factor	Number	Analyst	Lab	or Analyzed
Dissolved	Prep	3010A			604819	LKP	EET SL	03/23/23 14:19
Dissolved	Analysis	6010D		1	605060	LKP	EET SL	03/24/23 22:49
Dissolved	Prep	3005A			768859	ВЈВ	EET SAV	03/20/23 09:01
Dissolved	Analysis	6010D		1	768929	BJB	EET SAV	03/21/23 19:45
Dissolved	Prep	3005A			768540	RR	EET SAV	03/20/23 09:01
Dissolved	Analysis	6020B		1	768945	BWR	EET SAV	03/21/23 16:46
Dissolved	Prep	3005A			768540	RR	EET SAV	03/20/23 09:01
Dissolved	Analysis	6020B		1	769014	BWR	EET SAV	03/22/23 08:16

Client Sample ID: AF56400 Lab Sample ID: 680-232195-23

Date Collected: 02/16/23 12:55 Date Received: 03/17/23 10:30

	Batch	Batch		Dilution	Batch			Prepared
Prep Type	Type	Method	Run	Factor	Number	Analyst	Lab	or Analyzed
Dissolved	Prep	3010A			604819	LKP	EET SL	03/23/23 14:19
Dissolved	Analysis	6010D		1	605060	LKP	EET SL	03/24/23 22:53
Dissolved	Prep	3005A			768859	ВЈВ	EET SAV	03/20/23 09:01
Dissolved	Analysis	6010D		1	768929	BJB	EET SAV	03/21/23 19:48
Dissolved	Prep	3005A			768540	RR	EET SAV	03/20/23 09:01
Dissolved	Analysis	6020B		1	768945	BWR	EET SAV	03/21/23 16:50
Dissolved	Prep	3005A			768540	RR	EET SAV	03/20/23 09:01
Dissolved	Analysis	6020B		1	769014	BWR	EET SAV	03/22/23 08:20

Lab Sample ID: 680-232195-24 Client Sample ID: AF56442

Date Collected: 02/16/23 14:07 **Matrix: Water** Date Received: 03/17/23 10:30

	Batch	Batch		Dilution	Batch			Prepared
Prep Type	Type	Method	Run	Factor	Number	Analyst	Lab	or Analyzed
Dissolved	Prep	3010A			604819	LKP	EET SL	03/23/23 14:19
Dissolved	Analysis	6010D		1	605060	LKP	EET SL	03/24/23 23:12

Eurofins Savannah

Matrix: Water

3/28/2023

Client: South Carolina Public Service Authority Project/Site: 125915/JM02.09.G01.1/36500

Client Sample ID: AF56442

Date Collected: 02/16/23 14:07 Date Received: 03/17/23 10:30 Lab Sample ID: 680-232195-24

Matrix: Water

	Batch	Batch		Dilution	Batch			Prepared
Prep Type	Type	Method	Run	Factor	Number	Analyst	Lab	or Analyzed
Dissolved	Prep	3005A			768859	ВЈВ	EET SAV	03/20/23 09:01
Dissolved	Analysis	6010D		1	768929	BJB	EET SAV	03/21/23 19:55
Dissolved	Prep	3005A			768540	RR	EET SAV	03/20/23 09:01
Dissolved	Analysis	6020B		1	768945	BWR	EET SAV	03/21/23 16:58
Dissolved	Prep	3005A			768540	RR	EET SAV	03/20/23 09:01
Dissolved	Analysis	6020B		1	769014	BWR	EET SAV	03/22/23 08:28

Client Sample ID: AF56443

Date Collected: 02/16/23 14:12 Date Received: 03/17/23 10:30

Lab Sample ID: 680-232195-25

Matrix: Water

	Batch	Batch		Dilution	Batch			Prepared
Prep Type	Туре	Method	Run	Factor	Number	Analyst	Lab	or Analyzed
Dissolved	Prep	3010A			604819	LKP	EET SL	03/23/23 14:19
Dissolved	Analysis	6010D		1	605060	LKP	EET SL	03/24/23 23:17
Dissolved	Prep	3005A			768859	ВЈВ	EET SAV	03/20/23 09:01
Dissolved	Analysis	6010D		1	768929	BJB	EET SAV	03/21/23 19:58
Dissolved	Prep	3005A			768540	RR	EET SAV	03/20/23 09:01
Dissolved	Analysis	6020B		1	768945	BWR	EET SAV	03/21/23 17:02
Dissolved	Prep	3005A			768540	RR	EET SAV	03/20/23 09:01
Dissolved	Analysis	6020B		1	769014	BWR	EET SAV	03/22/23 08:32

Client Sample ID: AF56402

Date Collected: 02/27/23 12:47

Date Received: 03/17/23 10:30

Lab Sample ID: 680-232195-26

Matrix: Water

	Batch	Batch		Dilution	Batch			Prepared
Prep Type	Type	Method	Run	Factor	Number	Analyst	Lab	or Analyzed
Dissolved	Prep	3010A			604819	LKP	EET SL	03/23/23 14:19
Dissolved	Analysis	6010D		1	605060	LKP	EET SL	03/24/23 23:21
Dissolved	Prep	3005A			768859	BJB	EET SAV	03/20/23 09:01
Dissolved	Analysis	6010D		1	768929	BJB	EET SAV	03/21/23 20:01
Dissolved	Prep	3005A			768540	RR	EET SAV	03/20/23 09:01
Dissolved	Analysis	6020B		1	768945	BWR	EET SAV	03/21/23 17:06
Dissolved	Prep	3005A			768540	RR	EET SAV	03/20/23 09:01
Dissolved	Analysis	6020B		1	769014	BWR	EET SAV	03/22/23 08:36

Client Sample ID: AF56403

Date Collected: 02/27/23 09:57

Date Received: 03/17/23 10:30

ah	Sample	ID:	680	-2321	95-27
_a _	Januare	10.	OOO.	-202	133-E1

Matrix: Water

	Batch	Batch		Dilution	Batch			Prepared
Prep Type	Туре	Method	Run	Factor	Number	Analyst	Lab	or Analyzed
Dissolved	Prep	3010A			604819	LKP	EET SL	03/23/23 14:19
Dissolved	Analysis	6010D		1	605060	LKP	EET SL	03/24/23 23:26
Dissolved	Prep	3005A			768859	ВЈВ	EET SAV	03/20/23 09:01
Dissolved	Analysis	6010D		1	768929	BJB	EET SAV	03/21/23 20:04

Page 83 of 102

Client: South Carolina Public Service Authority Project/Site: 125915/JM02.09.G01.1/36500

Client Sample ID: AF56403

Date Collected: 02/27/23 09:57 Date Received: 03/17/23 10:30 **Lab Sample ID: 680-232195-27**

Matrix: Water

	Batch	Batch		Dilution	Batch			Prepared
Prep Type	Type	Method	Run	Factor	Number	Analyst	Lab	or Analyzed
Dissolved	Prep	3005A			768540	RR	EET SAV	03/20/23 09:01
Dissolved	Analysis	6020B		1	768945	BWR	EET SAV	03/21/23 17:10
Dissolved	Prep	3005A			768540	RR	EET SAV	03/20/23 09:01
Dissolved	Analysis	6020B		1	769014	BWR	EET SAV	03/22/23 08:40

Client Sample ID: AF56404

Date Collected: 02/27/23 10:02 Date Received: 03/17/23 10:30 Lab Sample ID: 680-232195-28

Matrix: Water

	Batch	Batch		Dilution	Batch			Prepared
Prep Type	Type	Method	Run	Factor	Number	Analyst	Lab	or Analyzed
Dissolved	Prep	3010A			604819	LKP	EET SL	03/23/23 14:19
Dissolved	Analysis	6010D		1	605060	LKP	EET SL	03/24/23 23:31
Dissolved	Prep	3005A			768859	ВЈВ	EET SAV	03/20/23 09:01
Dissolved	Analysis	6010D		1	768929	BJB	EET SAV	03/21/23 20:08
Dissolved	Prep	3005A			768540	RR	EET SAV	03/20/23 09:01
Dissolved	Analysis	6020B		1	768945	BWR	EET SAV	03/21/23 17:14
Dissolved	Prep	3005A			768540	RR	EET SAV	03/20/23 09:01
Dissolved	Analysis	6020B		1	769014	BWR	EET SAV	03/22/23 08:43

Client Sample ID: AF56434

Date Collected: 02/27/23 15:44

Date Received: 03/17/23 10:30

Lab Sample ID: 680-232195-29

Matrix: Water

	Batch	Batch		Dilution	Batch			Prepared
Prep Type	Type	Method	Run	Factor	Number	Analyst	Lab	or Analyzed
Dissolved	Prep	3010A			604819	LKP	EET SL	03/23/23 14:19
Dissolved	Analysis	6010D		1	605060	LKP	EET SL	03/24/23 23:36
Dissolved	Prep	3005A			768859	BJB	EET SAV	03/20/23 09:01
Dissolved	Analysis	6010D		1	768929	BJB	EET SAV	03/21/23 20:17
Dissolved	Prep	3005A			768540	RR	EET SAV	03/20/23 09:01
Dissolved	Analysis	6020B		1	768945	BWR	EET SAV	03/21/23 17:18
Dissolved	Prep	3005A			768540	RR	EET SAV	03/20/23 09:01
Dissolved	Analysis	6020B		1	769014	BWR	EET SAV	03/22/23 08:47

Client Sample ID: AF56433

Date Collected: 02/28/23 12:58

Date Received: 03/17/23 10:30

Lab Sample ID: 680-232195-30

Matrix: Water

	Batch	Batch		Dilution	Batch			Prepared
Prep Type	Туре	Method	Run	Factor	Number	Analyst	Lab	or Analyzed
Dissolved	Prep	3010A			604819	LKP	EET SL	03/23/23 14:19
Dissolved	Analysis	6010D		1	605060	LKP	EET SL	03/24/23 23:41
Dissolved	Prep	3005A			768859	BJB	EET SAV	03/20/23 09:01
Dissolved	Analysis	6010D		1	768929	BJB	EET SAV	03/21/23 20:21
Dissolved	Prep	3005A			768540	RR	EET SAV	03/20/23 09:01
Dissolved	Analysis	6020B		1	768945	BWR	EET SAV	03/21/23 17:22

Eurofins Savannah

Page 84 of 102

9

3

4

6

0

10

13

| "

Client: South Carolina Public Service Authority Project/Site: 125915/JM02.09.G01.1/36500

Client Sample ID: AF56433

Date Collected: 02/28/23 12:58 Date Received: 03/17/23 10:30 Lab Sample ID: 680-232195-30

Matrix: Water

	Batch	Batch		Dilution	Batch			Prepared
Prep Type	Type	Method	Run	Factor	Number	Analyst	Lab	or Analyzed
Dissolved	Prep	3005A			768540	RR	EET SAV	03/20/23 09:01
Dissolved	Analysis	6020B		1	769014	BWR	EET SAV	03/22/23 09:03

Client Sample ID: AF56435 Lab Sample ID: 680-232195-31

Date Collected: 02/28/23 11:44 Matrix: Water

Date Received: 03/17/23 10:30

	Batch	Batch		Dilution	Batch			Prepared
Prep Type	Type	Method	Run	Factor	Number	Analyst	Lab	or Analyzed
Dissolved	Prep	3010A			604819	LKP	EET SL	03/23/23 14:19
Dissolved	Analysis	6010D		1	605060	LKP	EET SL	03/24/23 23:45
Dissolved	Prep	3005A			768859	BJB	EET SAV	03/20/23 09:01
Dissolved	Analysis	6010D		1	768929	BJB	EET SAV	03/21/23 20:24
Dissolved	Prep	3005A			768540	RR	EET SAV	03/20/23 09:01
Dissolved	Analysis	6020B		1	768945	BWR	EET SAV	03/21/23 17:33
Dissolved	Prep	3005A			768540	RR	EET SAV	03/20/23 09:01
Dissolved	Analysis	6020B		1	769014	BWR	EET SAV	03/22/23 09:07

Client Sample ID: AF56436

Date Collected: 02/28/23 10:19 Date Received: 03/17/23 10:30 Lab Sample ID: 680-232195-32

Matrix: Water

	Batch	Batch		Dilution	Batch			Prepared
Prep Type	Type	Method	Run	Factor	Number	Analyst	Lab	or Analyzed
Dissolved	Prep	3010A			604819	LKP	EET SL	03/23/23 14:19
Dissolved	Analysis	6010D		1	605060	LKP	EET SL	03/24/23 23:50
Dissolved	Prep	3005A			768859	BJB	EET SAV	03/20/23 09:01
Dissolved	Analysis	6010D		1	768929	BJB	EET SAV	03/21/23 20:30
Dissolved	Prep	3005A			768540	RR	EET SAV	03/20/23 09:01
Dissolved	Analysis	6020B		1	768945	BWR	EET SAV	03/21/23 17:41
Dissolved	Prep	3005A			768540	RR	EET SAV	03/20/23 09:01
Dissolved	Analysis	6020B		1	769014	BWR	EET SAV	03/22/23 09:15

Client Sample ID: AF56437

Lab Sample ID: 680-232195-33 Date Collected: 02/28/23 10:24 **Matrix: Water**

Date Received: 03/17/23 10:30

	Batch	Batch		Dilution	Batch			Prepared
Prep Type	Type	Method	Run	Factor	Number	Analyst	Lab	or Analyzed
Dissolved	Prep	3010A			604819	LKP	EET SL	03/23/23 14:19
Dissolved	Analysis	6010D		1	605060	LKP	EET SL	03/24/23 23:55
Dissolved	Prep	3005A			768859	BJB	EET SAV	03/20/23 09:01
Dissolved	Analysis	6010D		1	768929	BJB	EET SAV	03/21/23 20:27
Dissolved	Prep	3005A			768540	RR	EET SAV	03/20/23 09:01
Dissolved	Analysis	6020B		1	768945	BWR	EET SAV	03/21/23 17:37
Dissolved	Prep	3005A			768540	RR	EET SAV	03/20/23 09:01
Dissolved	Analysis	6020B		1	769014	BWR	EET SAV	03/22/23 09:11

Page 85 of 102

Client: South Carolina Public Service Authority Project/Site: 125915/JM02.09.G01.1/36500

Client Sample ID: AF56438

Date Collected: 02/28/23 14:31 Date Received: 03/17/23 10:30 Lab Sample ID: 680-232195-34

Matrix: Water

	Batch	Batch		Dilution	Batch			Prepared
Prep Type	Type	Method	Run	Factor	Number	Analyst	Lab	or Analyzed
Dissolved	Prep	3010A			604819	LKP	EET SL	03/23/23 14:19
Dissolved	Analysis	6010D		1	605060	LKP	EET SL	03/25/23 00:13
Dissolved	Prep	3005A			768608	RR	EET SAV	03/20/23 13:39
Dissolved	Analysis	6010D		1	768929	BJB	EET SAV	03/21/23 11:21
Dissolved	Prep	3005A			768613	RR	EET SAV	03/20/23 13:39
Dissolved	Analysis	6020B		1	768945	BWR	EET SAV	03/21/23 22:43

Client Sample ID: AF56409

Date Collected: 03/06/23 12:14 Date Received: 03/17/23 10:30

Lab Sample ID: 680-232195-35

Matrix: Water

	Batch	Batch		Dilution	Batch			Prepared
Prep Type	Type	Method	Run	Factor	Number	Analyst	Lab	or Analyzed
Dissolved	Prep	3010A			604819	LKP	EET SL	03/23/23 14:19
Dissolved	Analysis	6010D		1	605060	LKP	EET SL	03/25/23 00:18
Dissolved	Prep	3005A			768608	RR	EET SAV	03/20/23 13:39
Dissolved	Analysis	6010D		1	768929	BJB	EET SAV	03/21/23 11:24
Dissolved	Prep	3005A			768608	RR	EET SAV	03/20/23 13:39
Dissolved	Analysis	6010D		10	769167	BJB	EET SAV	03/22/23 12:16
Dissolved	Prep	3005A			768613	RR	EET SAV	03/20/23 13:39
Dissolved	Analysis	6020B		1	768945	BWR	EET SAV	03/21/23 22:47

Client Sample ID: AF56410

Date Collected: 03/06/23 12:19

Date Received: 03/17/23 10:30

Lab Sample	e ID:	680-232195-36	
------------	-------	---------------	--

Matrix: Water

	Batch	Batch		Dilution	Batch			Prepared
Prep Type	Type	Method	Run	Factor	Number	Analyst	Lab	or Analyzed
Dissolved	Prep	3010A			604819	LKP	EET SL	03/23/23 14:19
Dissolved	Analysis	6010D		1	605060	LKP	EET SL	03/25/23 00:23
Dissolved	Prep	3005A			768608	RR	EET SAV	03/20/23 13:39
Dissolved	Analysis	6010D		1	768929	BJB	EET SAV	03/21/23 11:08
Dissolved	Prep	3005A			768608	RR	EET SAV	03/20/23 13:39
Dissolved	Analysis	6010D		10	769167	BJB	EET SAV	03/22/23 12:13
Dissolved	Prep	3005A			768613	RR	EET SAV	03/20/23 13:39
Dissolved	Analysis	6020B		1	768945	BWR	EET SAV	03/21/23 22:27

Client Sample ID: AF56411

Date Collected: 03/06/23 11:08

Date Received: 03/17/23 10:30

Lab Sample ID: 680-232195-37	Lab	Samp	le ID:	680-	2321	95-37
------------------------------	-----	------	--------	------	------	-------

Matrix: Water

	Batch	Batch		Dilution	Batch			Prepared
Prep Type	Type	Method	Run	Factor	Number	Analyst	Lab	or Analyzed
Dissolved	Prep	3010A			604820	LKP	EET SL	03/23/23 14:21
Dissolved	Analysis	6010D		1	605060	LKP	EET SL	03/25/23 00:37
Dissolved	Prep	3005A			768608	RR	EET SAV	03/20/23 13:39
Dissolved	Analysis	6010D		1	768929	BJB	EET SAV	03/21/23 11:37

Page 86 of 102

Client: South Carolina Public Service Authority Project/Site: 125915/JM02.09.G01.1/36500

Client Sample ID: AF56411

Date Collected: 03/06/23 11:08 Date Received: 03/17/23 10:30 Lab Sample ID: 680-232195-37

Matrix: Water

	Batch	Batch		Dilution	Batch			Prepared
Prep Type	Type	Method	Run	Factor	Number	Analyst	Lab	or Analyzed
Dissolved	Prep	3005A			768608	RR	EET SAV	03/20/23 13:39
Dissolved	Analysis	6010D		10	769167	BJB	EET SAV	03/22/23 12:19
Dissolved	Prep	3005A			768613	RR	EET SAV	03/20/23 13:39
Dissolved	Analysis	6020B		1	768945	BWR	EET SAV	03/21/23 23:02

Client Sample ID: AF56412

Date Collected: 03/06/23 15:15

Date Received: 03/17/23 10:30

Lab	Sample	ID:	680-232195-38

Matrix: Water

	Batch	Batch		Dilution	Batch			Prepared
Prep Type	Type	Method	Run	Factor	Number	Analyst	Lab	or Analyzed
Dissolved	Prep	3010A			604820	LKP	EET SL	03/23/23 14:21
Dissolved	Analysis	6010D		1	605060	LKP	EET SL	03/25/23 00:55
Dissolved	Prep	3005A			768608	RR	EET SAV	03/20/23 13:39
Dissolved	Analysis	6010D		1	768929	BJB	EET SAV	03/21/23 11:30
Dissolved	Prep	3005A			768613	RR	EET SAV	03/20/23 13:39
Dissolved	Analysis	6020B		1	768945	BWR	EET SAV	03/21/23 22:55

Client Sample ID: AF56413

Date Collected: 03/06/23 13:41

Date Received: 03/17/23 10:30

Lab Sample ID: 680-232195-39

Matrix: Water

	Batch	Batch		Dilution	Batch			Prepared
Prep Type	Туре	Method	Run	Factor	Number	Analyst	Lab	or Analyzed
Dissolved	Prep	3010A			604820	LKP	EET SL	03/23/23 14:21
Dissolved	Analysis	6010D		1	605060	LKP	EET SL	03/25/23 01:18
Dissolved	Prep	3005A			768608	RR	EET SAV	03/20/23 13:39
Dissolved	Analysis	6010D		1	768929	BJB	EET SAV	03/21/23 11:27
Dissolved	Prep	3005A			768613	RR	EET SAV	03/20/23 13:39
Dissolved	Analysis	6020B		1	768945	BWR	EET SAV	03/21/23 22:51

Client Sample ID: AF56430

Date Collected: 03/06/23 10:10

Date Received: 03/17/23 10:30

.ak	5	Sai	mp	le l	ID	: 1	68	0	-23	32	198	5-4	0	
-----	----------	-----	----	------	----	-----	----	---	-----	----	-----	-----	---	--

Matrix: Water

	Batch	Batch		Dilution	Batch			Prepared
Prep Type	Туре	Method	Run	Factor	Number	Analyst	Lab	or Analyzed
Dissolved	Prep	3010A			604820	LKP	EET SL	03/23/23 14:21
Dissolved	Analysis	6010D		1	605060	LKP	EET SL	03/25/23 01:23
Dissolved	Prep	3005A			768608	RR	EET SAV	03/20/23 13:39
Dissolved	Analysis	6010D		1	768929	BJB	EET SAV	03/21/23 11:11
Dissolved	Prep	3005A			768613	RR	EET SAV	03/20/23 13:39
Dissolved	Analysis	6020B		1	768945	BWR	EET SAV	03/21/23 22:31

3/28/2023

3

4

5

7

0

10

12

. .

М

Client: South Carolina Public Service Authority Project/Site: 125915/JM02.09.G01.1/36500

Client Sample ID: AF56406

Lab Sample ID: 680-232195-41 Date Collected: 03/09/23 10:29

Matrix: Water

Date Received: 03/17/23 10:30

	Batch	Batch		Dilution	Batch			Prepared
Prep Type	Type	Method	Run	Factor	Number	Analyst	Lab	or Analyzed
Dissolved	Prep	3010A			604820	LKP	EET SL	03/23/23 14:21
Dissolved	Analysis	6010D		1	605060	LKP	EET SL	03/25/23 01:28
Dissolved	Prep	3005A			768608	RR	EET SAV	03/20/23 13:39
Dissolved	Analysis	6010D		1	768929	BJB	EET SAV	03/21/23 11:40
Dissolved	Prep	3005A			768613	RR	EET SAV	03/20/23 13:39
Dissolved	Analysis	6020B		1	768945	BWR	EET SAV	03/21/23 23:06

Client Sample ID: AF56407

Lab Sample ID: 680-232195-42 Date Collected: 03/09/23 10:34 **Matrix: Water**

Date Received: 03/17/23 10:30

_	Batch	Batch		Dilution	Batch			Prepared
Prep Type	Type	Method	Run	Factor	Number	Analyst	Lab	or Analyzed
Dissolved	Prep	3010A			604820	LKP	EET SL	03/23/23 14:21
Dissolved	Analysis	6010D		1	605060	LKP	EET SL	03/25/23 01:32
Dissolved	Prep	3005A			768608	RR	EET SAV	03/20/23 13:39
Dissolved	Analysis	6010D		1	768929	BJB	EET SAV	03/21/23 11:43
Dissolved	Prep	3005A			768613	RR	EET SAV	03/20/23 13:39
Dissolved	Analysis	6020B		1	768945	BWR	EET SAV	03/21/23 23:10

Client Sample ID: AF56418 Lab Sample ID: 680-232195-43

Date Collected: 03/09/23 12:07 Matrix: Water Date Received: 03/17/23 10:30

	Batch	Batch		Dilution	Batch			Prepared
Prep Type	Type	Method	Run	Factor	Number	Analyst	Lab	or Analyzed
Dissolved	Prep	3010A			604820	LKP	EET SL	03/23/23 14:21
Dissolved	Analysis	6010D		1	605060	LKP	EET SL	03/25/23 01:37
Dissolved	Prep	3005A			768608	RR	EET SAV	03/20/23 13:39
Dissolved	Analysis	6010D		1	768929	BJB	EET SAV	03/21/23 11:34
Dissolved	Prep	3005A			768613	RR	EET SAV	03/20/23 13:39
Dissolved	Analysis	6020B		1	768945	BWR	EET SAV	03/21/23 22:59

Client Sample ID: AF56422 Lab Sample ID: 680-232195-44

Date Collected: 03/09/23 13:19 **Matrix: Water** Date Received: 03/17/23 10:30

	Batch	Batch		Dilution	Batch			Prepared
Prep Type	Type	Method	Run	Factor	Number	Analyst	Lab	or Analyzed
Dissolved	Prep	3010A			604820	LKP	EET SL	03/23/23 14:21
Dissolved	Analysis	6010D		1	605060	LKP	EET SL	03/25/23 01:42
Dissolved	Prep	3005A			768608	RR	EET SAV	03/20/23 13:39
Dissolved	Analysis	6010D		1	768929	BJB	EET SAV	03/21/23 11:05
Dissolved	Prep	3005A			768613	RR	EET SAV	03/20/23 13:39
Dissolved	Analysis	6020B		1	768945	BWR	EET SAV	03/21/23 22:23

Laboratory References:

EET SAV = Eurofins Savannah, 5102 LaRoche Avenue, Savannah, GA 31404, TEL (912)354-7858

EET SL = Eurofins St. Louis, 13715 Rider Trail North, Earth City, MO 63045, TEL (314)298-8566

Eurofins Savannah

Page 88 of 102

3/28/2023

santee cooper

Santee Cooper One Riverwood Drive Moneks Comer, SC 29461 (843)761-8000 Ext. 5148 Fax. (843)761-4175

DISSOUTED Customer Email/Report Recipient: Date Results Needed by: Project/Task/Unit #: Rerun request for any flagged QC 125915 / JM02.09. GØ1.1 / 36500 Yes No _@santeecooper.com **Analysis Group** Labworks ID # Sample Location/ Comments Bottle type: (Glass-G/Plastlc-P) Matrix(see below) Preservative (see below) Method # Collection Date BE-LISTA (Internal use Description Sample Collector METALS Grab (G) or Composite (C) Reporting limit only) Collection Misc. sample info SEE Any other notes G × Х SEE SHEET FOR RLS. 3/1/23 AF56421 WAP-21 1441 24 WAP-24 1337 WETHER 6020 39 1022 WLF-42-1 1 1145 41 WLF- A2-2 G 3/2/23 AF56414 WAP-15 1246 0952 WAP-23 23 1 1056 28 WAP-27 Sample Receiving (Internal Use Only)
TEMP (°C): 17:3 Initial: 12:3 SARgevan 35594 3/16/23 300 Correct pH: Yes Relinquished by: Date Time Employee# Preservative Lot#: Relinquished by: Employee# Date Time Employee # Date Time Date/Time/Init for preservative: ☐ METALS (all) Mutrionto

X Ag	□ Cu	N Sb	<u>ivanients</u>	WHOC.	<u>arpsent</u>	Coar	Livesii	
D(AI	.⊠Fe	∭ Se	□ TOC □ DOC	☐ BTEX ☐ Naphthalene	☐ Wallboard Gypsum(all	☐ Ultimate ☐ % Moisture	□ Ammonia □ LOI	☐ Trans. Oil Qual. ☐ %Moisture
⋊ As	ДK	□ Sn.	□ TP/TPO4	D THM/HAA	below)	□ Ash	□ % Carbon	Color
ΠB	ДLı	□ Sr	□ NH3-N	☐ VOC ☐ Oil & Grease	D AIM DTOC	□ Sulfur	☐ Mineral	Dielectric Strength
⊌ Ba	I/Mg	□ Tı	DF DCI	☐ E. Coli ☐ Total Coliform	☐ Total metals	☐ BTUs ☐ Volatile Matter	Analysis	[] IFT [] Dissolved Gases
∄ Be	□ Mn)TI JEC	□ NO2	□pH	☐ Soluble Metals ☐ Purity (CaSO4)	□ CHN	□ % Meisture	() Used Oil
⊠ Ca	X Mo	DV	□ Br □ NO3	☐ Dissolved As ☐ Dissolved Fe	□ % Moisture □ Sulfites	Other Tests:	NPDES	☐ Flashpoint ☐ Metals in oil
∑(Cd	Ö.Na	⊅ Zn	□ SO4	☐ Rad 226	□pH	□HGI	□ Oil & Grease	(As,Cd,Cr,Ni,Pb Hg)
ЖÍ Со	X(N₁	□Hg		☐ Rad 228 ☐ PCB	☐ Chlorides ☐ Particle Size	☐ Fineness ☐ Particulate Matter	□As	OTX
X(Cr	Ж Рь	□ CrVI			☐ Sulfur		O TSS	GOFER

Matrix codes GW-groundwater, DW-drinking water, SW-surface water, WW-waste water, BW-boiler water, L-limestone, Oil-oil, S-Soil, SL-solid, C-coal, G-gypsum, FA-flyash, BA-bottom ash, M-misc (describe in comment section)
Preservative code- 1=<4°C 2=HNO3 3=H₂SO₄ 4-HCl 5=Na₂S₂O₃ 6-Other (Specify)

DISSOLVED

Customer Email/Report Recipient: Date Results Needed by: Project/Task/Unit #: Rerun request for any flagged QC 125915 / JM02.09.601.1/ 36500 Yes No __@santeecooper.com Analysis Group Labworks ID # Sample Location/ Comments Matrix(see below) Preservative (see below) BELOW Glass-Time Collection Date (Internal use Description Collector Method # only) Reporting limit Grab (G) or Composite (C) Bottle type: (G/Plastic-P) Collection Misc. sample info SEE Sample Any other notes ZDM. × 3/7/23 P 6 SEE SHEET FUR RIS AF 564,9 WAP-19 45 رواب 25 WAP-25 1249 6020 WAP-26 022 26 27 WAP-26D 1027 3/8/23 1338 WAP-3 AF56408 15 WAP-16 1513 WAP - T 1009 7 WAP-17D 1014 29 WAP-28 12.2 Sample Receiving (Internal Use Only) Relinquished by: Employee# Time Received by: Employee # Date Time TEMP (°C):_ 8919-wun 35594 3/10/23 Correct pH: Yes No Relinguished by: Time Date Time Received by: Date Employee# Employee # Preservative Lot#: Relinquished by: Employee# Date Received by: Date Time Date/Time/Init for preservative: ☐ METALS (all) **Nutrients** MISC. **Gypsum** Coal Flyash X Ag Trans. Oil Qual.

3 VaMoisture

1 Color

1 Acidity

1 Diffectic Strength D Cu ⊠ Sb □ TOC BTEX □ Wallboard □ Ultimate 🖰 Ammonia X Al 12 Fe D.Se □ DOC ☐ Naphthalene Gypsum(all ☐ % Moisture below)

AlM
TOC
Total metals
Soluble Metals
Purity (CaSO4)
Moisture
Solities □ THM/HAA □ VOC Ø As EK ☐ Sn □ TP/TPO4 □ % Carbon □ Ash □ NH3-N ☐ Sulfur □В PLI □ Sr □ Mineral ☐ Oil & Grease ☐ E. Coli \Box F ☐ BTUs Analysis ☐ IFT ☐ Dissolved Gases ∭ Ba Ø.Mg □ Ti □ C1 ☐ Total Coliform ☐ Volatile Matter ☐ Sieve Used Oil

Flashpoint

Metals in oil

(As,Cd,Cr,Ni,Pb

Hg)

TX ₽ Be MШ El NO2 □ pH
□ Dissolved As □ CHN □ % Moisture □Br Other Tests: ,≅į Ca M Mo TIV ☐ Dissolved Fe □ XRF Scan
□ HGI □ NO3 NPDES ⊠ Cd \(\mathbb{Z}\)Zn [XNa □ pH □ Chlorides ☐ SO4 ☐ Oil & Grease ☐ Rad 228 ☐ Fineness
☐ Particulate Matter A Co NNi □ Hg □ As □ TSS Particle Size □ GOFER ⊠ Cr Ø-Pb ☐ CrVI

> Matrix codes: GW-groundwater, DW-drinking water, SW-surface water, WW-waste water, BW-boiler water, L-limestone, Oil-oil, S-Soil, SL-solid, C-coal, G-gypsum, FA-flyash, BA-bottom ash, M-misc (describe in comment section)
> Preservative code-1=<4°C 2=HNO3 3=H2SO4 4-HCl 5=Na₂S₂O₃ 6-Other (Specify)

Santee cooper Santec Cooper One Riverwood Drive Moneks Corner SC 29461 ne (843)761-8000 Ext. 5148 Fax. (843)761-4175

DISSOUED

Project/Task/Unit #: Rerun request for any flagged QC Customer Email/Report Recipient: Date Results Needed by: LINDA . WILLIAMS @santeecooper.com 125915 / JM02.09.601.1 / 36500 Yes No Analysis Group Labworks ID # Sample Location/ Comments (Glass-Matrix(see below) Preservative (see below) DISSOUVED Collection Date Total # of containers BELOW (Internal use Description Collector Method# only) Reporting limit Grab (G) or Composite (C) Bottle type: (G/Plastic-P) Collection Misc sample info Sample (Any other notes SPE 2.DM K 2/14/23 2 1233 P G GW SEE SHEET FOR RLS WAP-1 AF56394 ML 6020 1351 WBW-1 32 1522 WBW -AI-I AF56395 2/15/23 WAP-2 1136 [32] 76 WA-P-3 ZDM MDG 2/16/23 b53 AF56397 WAP-4 1255 WAP-T ++2 WLF-A2-6 1407 WLF-A2-60 443 1412 Sample Receiving (Internal Use Only) Relinquished by: Time Received by: Employee # Date Time TEMP (°C):_ __ Initial: 35594 8919-wan 3/16 23 Correct pH: Yes No Relinquished by: Time Received by: Date Time Employee# Date Employee# Preservative Lot#: Relinquished by: Employee# Date Time Received by: Employee # Date Time Date/Time/Init for preservative: ☐ METALS (all) <u>Nutrients</u> MISC. **Gypsum** Coal Flyash ga A □ Cu ≱Fe ≱Sb ≱Se Trans. Oil Qual.

Moisture
Color
Acidity
Dielectric Strength □ TOC D BTEX □ Wallboard ☐ Ultimate ☐ Ammonia Gypsum(all below)

AIM

TOC

Total metals ☐ Naphthalene □ DOC ☐ % Moisture □ LOI □ THM/HAA □ VOC As. XK ☐ Sn □ TP/TPO4 □ Ash ☐ % Carbon □ NH3-N ☐ Sulfur □В ALı □ Sr ☐ Mineral ☐ Oil & Grease Analysis

| Sieve ☐ BTUs ☐ IFT
☐ Dissolved Gases
☐ Used Oil ☐ E. Coli ⊠Ba ⋈ Mg □ Ti D C1 ☐ Total Coliform ☐ Volatile Matter ☐ Soluble Metals
☐ Purity (CaSO4) **K**TI IJ NO2 N Be ☐ Mn □ pH
□ Dissolved As O CHN □ % Moisture O Plashpoint
O Metals in oil
(As,Cd,Cr,Ni,Pb
Hg) 🛭 Br Other Tests: ☐ % Moisture ☐ Sulfites ☑ Ca **Ж**Мо ΠV ☐ Dissolved Fe ☐ Rad 226 □ XRF Scan
□ HGI □ NO3 **NPDES** ≱.Cd A Na ℤZn ☐ pH ☐ Chlorides ☐ Particle Size □ SO4 Oil & Grease ☐ Rad 228 Fineness X Ni X Pb X Co □Hg □ PCB ☐ Particulate Matter □ As □ TSS □ GOFER □ CrVI DLCr

 $Matrix\ codes\ GW-groundwater,\ DW-drinking\ water,\ SW-surface\ water,\ WW-waste\ water,\ BW-boiler\ water,\ L-limestone,\ Oil-oil,\ S-Soil,\ SL-solid,\ S-Soil,\ SL-solid,\ S-Soil,\ SL-solid,\ S-Soil,\ SL-solid,\ S-Soil,\ SL-solid,\ S-Soil,\ SL-solid,\ S-Soil,\ SL-solid,\ S-Soil,\ SL-solid,\ S-Soil,\ SL-solid,\ S-Soil,\ SL-solid,\ S-Soil,\ SL-solid,\ S-Soil,\ SL-solid,\ S-Soil,\ SL-solid,\ S-Soil,\ SL-solid,\ S-Soil,\ SL-solid,\ S-Soil,\ SL-solid,\ S-Soil,\ SL-solid$ C-coal, G-gypsum, FA-flyash, BA-bottom ash, M-misc (describe in comment section)
Preservative code- 1=<4°C 2=HNO3 3=H2SO4 4-HCl 5=Na2S2O3 6-Other (S

Santee cooper

Santee Cooper One Riverwood Drive Moneks Corner, SC 29461 e: (843)761-8000 Ext. 5148 Fax. (843)761-4175 DISSOLVED Rerun request for any flagged QC Customer Email/Report Recipient: Date Results Needed by: Project/Task/Unit #: LINDA. WILLIAMS @santeecooper.com 125915 / JMOZ. 09. GO 1-1/36500 es No Analysis Group Labworks ID # Sample Location/ Comments Bottle type: (Glass-G/Plastic-P) Matrix(see below) Preservative (see below) BELOW Collection Date Total # of containers (internal use Description Collector Method # Reporting limit only) Grab (G) or Composite (C) Collection Misc. sample info Sample SEE Any other notes 2DM 9 GW 2 SEE SHEET FOR RLS. × 2/27/23 AF56402 WA7-9 1247 <u>~3</u> WAP-10 0957 6020 1002 WAP-10D 1544 WLF-AI-2 434 (258 2/28/23 4556433 WUE-AI-I 1144 WLE-A1-3 35 36 WLF-AI-4 1019 37 WUF-AI- 4D 1024 38 WLF-AL-5 1431 Sample Receiving (Internal Use Only) Time Relinquished by: Employee# Date Time Received by: Employee# Date TEMP (°C):_ __ Initial: 35594 3/16/23 Sgrowan Correct pH: Yes No Relinquished by: Time Received by: Date Time Employee# Date Employee # Preservative Lot#: Relinquished by: Employee# Date Time Received by: Employee# Date Time Date/Time/Init for preservative: ☐ METALS (all) MISC. Oil **Nutrients Gypsum** Coal Flyash Trans. Oil Qual.

Semosture
Color
Acidity
Dielectric Strength
GHT
Dissolved Gases AAg □ Cu ⊠ Sb □ TOC □ BTEX
□ Naphthalene □ Wallboard □ Ultimate □ Ammonia M Fe ⊠ Se D(Al Gypsum(all below)

C AIM

TOC □ DOC ☐ % Moisture □ THM/HAA □ VOC □ Sn ₩ As ØΚ □ ТР/ТРО4 ☐ Ash
☐ Sulfur ☐ % Carbon □ NH3-N □В XL1 □ Sr □ Mineral □ Oil & Grease Analysis □ BTUs □ E. Coli ☐ Total metals ☐ Soluble Metals ☐ Purity (CaSO4) ⊠ Ba Ç,Μg U Ti □ C1 ☐ Total Coliform ☐ Volatile Matter р∕Ве □ Mn MI □ NO2 □ pH □ Dissolved As D CHN ☐ % Moisture ☐ Flashpoint
☐ Flashpoint
☐ Metals in oil
(As,Cd,Cr,Ni,Pb
Hg) □ Br Other Tests: ☐ % Moisture. ☐ Sulfites ΠV ⊠ Ca ⊠Mo □ NO3 ☐ Dissolved Fe ☐ Rad 226 ☐ XRF Scan **NPDES ₹** Cd X Na Ŋ(Zn ☐ pH ☐ Chlorides ☐ Particle Size HGI □ SO4 🛘 Oil & Grease

Matrix codes GW-groundwater, DW-drinking water, SW-surface water, WW-waste water, BW-boiler water, L-limestone, Oil-oil, S-Soil, SL-solid, C-coal, G-gypsum, FA-flyash, BA-bottom ash, M-misc (describe in comment section) Preservative code- 1=<4°C $\,^{\circ}$ C $\,^{\circ}$ 2=H:NO3 $\,^{\circ}$ 3=H:2SO4 $\,^{\circ}$ 4-HCl $\,^{\circ}$ 5=Na2S2O3 $\,^{\circ}$ 6-Other (Specify)

XI Co

Ø.Cr

įΧNı

⊠ Pb

□Hg

□ CrVI

☐ Rad 228

□ PCB

) Fineness

☐ Particulate Matter

□ As □ TSS

Santee cooper Santee Cooper One Riverwood Drive Moneks Comer, SC 29461 Phone: (843)761-8000 Ext. 5148 Fax. (843)761-4175

DISSOUTED

Project/Task/Unit #: Customer Email/Report Recipient: Rerun request for any flagged QC Date Results Needed by: ,25915 / JMO2 09. GØ1.1/ 36500 Yes No @santeecooper.com / Analysis Group Labworks ID # Sample Location/ Comments OLVRD. BELOW Matrix(see below) Preservative (see below) (Internal use Description Collection Date Collector Method # only) Reporting limit Grab (G) or Composite (C) Collection Bottle type: (G/Plastic-P) Misc. sample mfo DIS O Any other notes P 2-DN 2 Х WAP-14 3/6/23 1214 GW SEE SHEET FOR RIS. AF 56409 1219 10 6020 WA-P - 14D المهم المهم 1108 12 5.5 WAP - 148 (3 134 WAP - HC 30 WAP-29 1010 3/9/23 AF 56406 1029 WAP-12 WAP- 2D 07 1034 18 WAP-8 1 Ţ 1 22 WAD-22 1319 Sample Receiving (Internal Use Only) Relinquished by: Employee# Date Time Received by: Employee# Date Time TEMP (°C):_ __ Initial:_ 291920an 35594 3/10/23 300 Correct pH: Yes No Relinquished by: Employee# Date Time Received by: Employee # Time Preservative Lot#: Relinguished by: Employee# Date Time Received by: Employee # Date Time Date/Time/Init for preservative: ☐ METALS (all) **Nutrients** MISC. <u>Gypsum</u> Coal Oil Flyash Ag □ Cu S Sb ☐ BTEX
☐ Naphthalene
☐ THM/HAA ☐ Trans. Oil Qual. ☐ "AMoisture ☐ Color $\ \ \Box \ TOC$ □ Wallboard □ Ultimate ☐ Ammonia D(Al II Fe গ্র Se Gypsum(all below) □ DOC ☐ % Moisture □ LOI D.As MK □ Sn ☐ TP/TPO4 C Color
C Acidity
D Dielectric Strength
D IFT
D Dissolved Gases
Used Oil
G Flashpoint
D Metals in oil
(As,Cd,Cr,Ni,Pb
Hg)
UTX [] Ash ☐ % Carbon □ VOC
□ Oil & Grease □ NH3-N □ Sulfur ΩВ ML □ St ☐ TOC
☐ Total metals
☐ Soluble Metals
☐ Purity (CaSO4)
☐ % Moisture Analysis □ F □ BTUs ☐ E. Coli
☐ Total Coliform '⊠Mg ₩ Ba D Ti II CI ☐ Volatile Matter Ве □ NO2 CHN □ Mn MTI Hall □ % Moisture □ Br ☐ Dissolved As Other Tests: Ø Ca Ď-Mo υV ☐ Sulfites ☐ pH ☐ Chlorides ☐ Dissolved Fe □ NO3 ☐ XRF Scan **NPDES** ₹ Cd M Na ⊠(Zn ☐ Rad 226 □ SO4 ☐ Rad 228 ☐ Oil & Grease ☐ Fineness XI Co ΪΝi □Hg DTX □ PCB ☐ Particle Size ☐ Particulate Matter □ As □ TSS)≾ Cr ₽Pb ☐ CrVI □ GOFER

Matrix codes: GW-groundwater, DW-drinking water, SW-surface water, WW-waste water, BW-boiler water, L-limestone, Oil-oil, S-Soil, SL-solid, C-coal, G-gypsum, FA-flyash, BA-bottom ash, M-misc (describe in comment section)
Preservative code- 1=<4°C 2=HNO₃ 3=H₂SO₄ 4-HCl 5=Na₂S₂O₃ 6-Other (S 5=Na₂S₂O₃ 6-Other (Specify)

Table of Repo	rting Limits ples Meta		
Analyte	Unit	GWPS/ MCL/ RSL	Reporting Limits best case
Aluminum	mg/L	0.05 to 0.2	
Antimony	ug/L	6	5
Arsenic	ug/L	10	5
Arsenic Dissolved	ug/L		
Barium	ug/L	2000	5
Beryllium	ug/L	4	0.5
Boron	ug/L		10 to 15
Cadmium	ug/L	5	0.5
Calcium	ug/L		0.1
Chromium	ug/L	100	5
Cobalt	ug/L	6	0.5
Copper	mg/L	1	
Iron	ug/L	300	
Lead	ug/L	15	
Lithium	ug/L	40	5
Magnesium	ug/L		
Mercury	ug/L	2	0.2
Molybdenum	ug/L	100	5
Nickel	ug/L		
Potassium	mg/L		
Selenium	ug/L	50	5
Sodium	mg/L		
Thallium	ug/L	2	1
Zinc	ug/L_	5000	<u> </u>

💸 eurofins | Environment Testing

Chain of Custody Record

5102 LaRoche Avenue Savannah, GA 31404 Phone: 912-354-7858 Fax: 912-352-0165

Client Information (Sub Contract Lab)	Sampler			Lab PM:	Lab PM: Lanier, Jerry A		Carrier Tracking No(s)	No(s):	COC No.	
	Phone			E-Mail:			State of Origin:		Page	
Company				Jerry	Lanier@	Jerry Lanier@et eurofinsus com	South Carolina	Ja	Page 1 of 5	
TestAmerica Laboratories, Inc.					Accreditation VELAP -	Accreditations Required (See note): NELAP - Florida; State - South Carolina; State Program	irolina; State Progra	am	Job # 680-232195-1	
Address. 13715 Rider Trail North,	Due Date Requests 3/27/2023	ted:				Analysis	Analysis Requested		Preservation Codes:	(08)
City: Earth City Sale: Zio	TAT Requested (days):	ys):			•				A - HCL B - NaOH C - Zn Acetate	N - None O - AsNaO2 P - Na2O4S
MO, 63045					JI M	21 69			E - NaHSO4	Q - Na2SO3 R - Na2S2O3
Priorie: 314-298-8566(Tel) 314-298-8757(Fax)	# Od					шрил			G - Amchlor	S - H2SO4 T - TSP Dodecahydrate
Email:	WO#				(0)	17997110				U - Acetone V - MCAA
Project Name: 125915/JM02.09 G01.1/36500	Project #: 68008190				N:10: 88	a laon				W - pH 4-5 Y - Trizma Z - other (specify)
Site:	\$SOW#				N) as	a) avi:			other:	
Samuel Handiffeeting Plices ID II at ID	1	Sample			M/SM mone	0400/FIELD_FU			Tedmuhl liste	
		U	Preservation Code:		X					Special Instructions/Note:
AF56421 (680-232195-1)	3/1/23	14:41		Water		×			-	
AF56424 (680-232195-2)	3/1/23	13:37 Factorn		Water		×			-	
AF56439 (680-232195-3)	3/1/23	10:22 Fastern		Water		×				
AF56441 (680-232195-4)	3/1/23	11:45 Eastern		Water		×				
AF56414 (680-232195-5)	3/2/23	12:46 Eastern		Water		×			-	
AF56423 (680-232195-6)	3/2/23	09:52 Eastern	:	Water		×				
AF56428 (680-232195-7)	3/2/23	10.56 Eastern		Water	Î	×			-	
AF56419 (680-232195-8)	3/7/23	14:51 Eastern		Water	_	×				
AF56425 (680-232195-9)	3/7/23	12:49 Eastern		Water	_	×				
Note. Since laboratory accreditations are subject to change. Eurofins Environment Testing Southeast, LLC places the ownership of method, analyte & accreditation compliance upon our subcontract laboratores. This sample shipment is forwarded under chain-of-custody. If the laboratory of other instructions will be provided. Any changes to accreditation set of Origin listed above for analysis/lests/matrix being analysis/lests/matrix being analysis/lests/matrix being analysis/lests/matrix being analysis/lests/matrix being analysis/lests/matrix being analysis/lests/matrix being analysis/lests/matrix being analysis/lests/matrix being analysis/lests/matrix being southeast, LLC alterniton immediately. If all requested accreditations are current to date, return the signed Chain of Custody attesting to said compliance to Eurofins Environment Testing Southeast, LLC	ment Testing Southeast, LI ir analysis/fests/matrix bein ention immediately. If all it	LC places the o g analyzed, the equested accrei	wnership of me samples must ditations are cu	whod, analyte be be shipped ba rrent to date, re	accredital	LC places the ownership of method, analyte & accreditation compliance upon our subcontract laboratones. This sample shipment is forwarded under chain-c ng analyzed, the samples must be shipped back to the Eurofins Environment Testing Southeast, LLC laboratory or other instructions will be provided. Any chinequested accreditations are current to date, return the signed Chain of Custody attesting to said compliance to Eurofins Environment Testing Southeast, LLC	ntract laboratories. This utheast, LLC laboratory of to said compliance to E	s sample shipment or other instructions Eurofins Environme	is forwarded under chains s will be provided. Any ch nt Testing Southeast, LLC	of-custody. If the laboratory nanges to accreditation
Possible Hazard Identification					Samp	Sample Disposal (A fee may be assessed if samples are retained longer than 1 month)	be assessed if sau	mples are reta	ined longer than 1	month)
Unconfirmed						Return To Client	Disposal By Lab	P Q	Archive For	Months
Deliverable Requested: I, II, III, IV, Other (specify)	Primary Deliverable Rank:	ble Rank: 1			Specie	Special Instructions/QC Requirements:	ements:			
Empty Kit Relinquished by:		Date:			Time:		Method of Shipment:	Shipment.		
Relinquished by	Date/Time:		ď	Company	3	Received by:		Date/Time		Company
Relinquished by:	Date/Time:		ŏ	Сотрапу	0	Received by an an age	- San	Date/Time 3	2423 0910	Company
Relinquished by:	Date/Time		<u>ŏ</u>	Company	Re	Received by:		7		Company
Custody Seals Intact: Custody Seal No∴ Δ Yes Δ No					රි	Cooler Temperature(s) °C and Other Remarks	er Remarks			

structins | Environment Testing

TO SEC

Chain of Custody Record

Savannah, GA 31404 Phone: 912-354-7858 Fax: 912-352-0165

Eurofins Savannah

5102 LaRoche Avenue

Note: Since laboratory accreditations are subject to change, Eurofins Environment Testing Southeast, LLC places the ownership of method, analyte & accreditation compliance upon our subcontract laboratories. This sample shipment is forwarded under chain-of-custody. If the laboratory does not currently maintain accreditation in the State of Origin listed above for analysis/tests/matrx being analyzed, the samples must be shipped back to the Eurofins Environment or other instructions will be provided. Any changes to accreditation status should be brought to Eurofins Environment Testing Southeast, LLC. S - H2SO4 T - TSP Dodecahydrate CT45R Special Instructions/Note: Z - other (specify) Ver: 06/08/2021 P - Na204S Q - Na2SO3 R - Na2S2O3 N - None O - AsNaO2 W - pH 4-5 Y - Trizma U - Acetone Months V - MCAA Company Sample Disposal (A fee may be assessed if samples are retained longer than 1 month)

Return To Client Disposal By Lab Archive For Mont 0 Preservation Codes: 00 G - Amchlor H - Ascorbic Acid COC No: 680-731060.2 680-232195-1 A - HCL
B - NaOH
C - Zn Acetate
D - Nitric Acid
E - NaHSO4 Page 2 of 5 12/23 I - Ice J - DI Water K · EDTA L · EDA F - MeOH Page Date/Time Method of Shipment Carrier Tracking No(s) State of Origin: South Carolina Accreditations Required (See note):
NELAP - Florida; State - South Carolina; State Program **Analysis Requested** Cooler Temperature(s) °C and Other Remarks Shanger Special Instructions/QC Requirements Jerry.Lanier@et.eurofinsus.com Return To Client Received by: eceived by Received by: Lab PM: Lanier, Jerry A × × × × × × \times × × 6010D/FIELD_FLTRD (MOD) Diss.Lithium by ICP Perform MS/MSD (Yes or No) Time -Mail Preservation Code: (Winwater, Sisolid, Oinwaste/oil, Matrix Water Water Water Water Water Water Water Water Water Company Company (C=comp, G=grab) Sample Type Eastern 15:13 Eastern 13:51 Eastern 10:27 Eastern 13:38 Eastern 10:09 Eastern 10:14 Eastern 12:12 Eastern 12:33 Eastern Primary Deliverable Rank: Time 10:22 (days) Due Date Requested: 3/27/2023 Sample Date 2/14/23 3/7/23 3/8/23 3/8/23 3/8/23 3/8/23 3/8/23 2/14/23 Project #: 68008190 3/7/23 Date/Time Date/Time Date/Time Phone: # OM (Sub Contract Lab) Deliverable Requested: I, II, III, IV, Other (specify) FEDEX Sample Identification - Client ID (Lab ID) Custody Seals Intact: Custody Seal No. 314-298-8566(Tel) 314-298-8757(Fax) Possible Hazard Identification TestAmerica Laboratories, Inc. 125915/JM02.09.G01.1/36500 NF56426 (680-232195-10) AF56427 (680-232195-11) AF56408 (680-232195-12) AF56415 (680-232195-13) AF56416 (680-232195-14) AF56417 (680-232195-15) AF56429 (680-232195-16) AF56394 (680-232195-17) AF56331 (680-232195-18) Empty Kit Relinquished by: Client Information 13715 Rider Trail North △ Yes △ No Shipping/Receiving State, Zip. MO, 63045 slinquished by elinquished by: inquished by Earth City

Ver: 06/08/2021

Environment Testing eurofins :

Chain of Custody Record

Phone: 912-354-7858 Fax: 912-352-0165

Savannah, GA 31404 5102 LaRoche Avenue

Eurofins Savannah

N. None O - AsnaO2 P. Na2O4S Q - Na2SO3 R - Na2SO3 S - H2SO4 T - TSP Dodecahydrate Special Instructions/Note: Z - other (specify) U - Acetone V - MCAA Preservation Codes: A - HCL
B - NaOH
C - Zn Acetate
C - Nitric Acid
E - NaHSO4
F - MeOH
G - Amchlor
H - Ascorbic Acid COC No 680-731060.3 680-232195-1 Page: Page 3 of 5 I - Ice J - Di Water K - EDTA L - EDA Total Number of containers 400 --Carrier Tracking No(s) Accreditations Required (See note): NELAP - Florida; State - South Carolina; State Program State of Origin: South Carolina **Analysis Requested** Jerry Lanier@et.eurofinsus.com Lab PM: Lanier, Jerry A 6010D/FIELD_FLTRD (MOD) Diss.Lithium by ICP × × × × × × × × Perform MS/MSD (Yes or No) (on sext) eldmes po E-Mail: BT=Tissue, A=Air) (Weweler, Seolid, Owwesta/oil, Preservation Code: Water Water Water Water Water Water Water Matrix Water Type (C=comp, G=grab) Sample Eastern 14:12 Eastern 12:47 Eastern 11:36 Eastern 13:21 Eastern 10:53 Eastern 12:55 Eastern 14:07 Eastern 09:57 Sample TAT Requested (days): Dus Date Requested: 3/27/2023 Sample Date 2/15/23 2/16/23 2/16/23 2/15/23 2/16/23 2/27/23 2/14/23 2/16/23 Project #: 68008190 Phone Client Information (Sub Contract Lab) Sample Identification - Client ID (Lab ID) 314-298-8566(Tel) 314-298-8757(Fax) 125915/JM02.09.G01.1/36500 FestAmerica Laboratories, Inc AF56332 (680-232195-19) AF56395 (680-232195-20) AF56396 (680-232195-21) AF56397 (680-232195-22) AF56400 (680-232195-23) AF56442 (680-232195-24) AF56443 (680-232195-25) AF56402 (680-232195-26) 13715 Rider Trail North Shipping/Receiving State, Zip. MO, 63045 Earth City

pH 4-5

Note: Since laboratory accreditations are subject to change, Eurofins Environment Testing Southeast, LLC places the ownership of method, analyte & accreditation our subcontract laboratories. This sample shipment is forwarded under chain-of-custody. If the laboratory of currenty maintain accreditation in the State of Origin listed above for analysis/tests/matrix being analyzed, the samples must be shipped back to the Eurofins Environment Testing Southeast, LLC and an advention ment Testing Southeast, LLC attention immediately. If all requested accreditations are current to date, return the signed Chain of Custody attesting to said compliance to Eurofins Environment Testing Southeast, LLC. Possible Hazard Identification

×

Water

Eastern

2/27/23

AF56403 (680-232195-27)

Possible Hazard Identification				Sample Disposal (A fee may be assessed if samples are retained longer than 1 month)	sessed if samples a	re retained longer tha	n 1 month)
Unconfirmed				Return To Client	Disposal By Lah	4mhina For	AAoostho
Deliverable Requested: I, II, III, IV, Other (specify)	Primary Delive	Jeliverable Rank: 1		Requ	(a) (a) (b)		MOUNTS
Empty Kit Relinquished by:		Date:		Time:	Method of Shipment		
Relinquished by:	Date/Time.		Company	Received by:	Date/Time		Company
Relinquished by:	Date/Time:		Company	Received by:	Date/Time:		Company
Relinquished by.	Date/Time:		Company	Received by:	DateTime	0,0	3/22/23 09/10 67257
Custody Seals Infact: Custody Seal No.: Δ Yes Δ No				Cooler Temperature(s) °C and Other Remarks:	larks:		

Environment Testing 💸 eurofins

Chain of Custody Record

Phone: 912-354-7858 Fax: 912-352-0165

Eurofins Savannah

5102 LaRoche Avenue Savannah, GA 31404

Note. Since laboratory accreditations are subject to change. Eurofins Environment Testing Southeest, LLC places the ownership of method, analyte & accreditation compliance upon our subcontract laboratory or other instructions will be provided. Any changes to accreditation for analysis/lests/matrix being analyzed, the samples must be shipped back to the Eurofins Environment Testing Southeast, LLC alterition in the State of Origin listed above for analysis/lests/matrix being analyzed, the samples must be shipped back to the Eurofins Environment Testing Southeast, LLC attention immediately. If all requested accreditations are current to date, return the signed Chain of Custody attesting to ead compliance to Eurofins Environment Testing Southeast, LLC. S - H2SO4 T - TSP Dodecahydrate Special Instructions/Note: Z - other (specify) P - Na204S Q - Na2SO3 R - Na2S2O3 O - AsNaO2 U - Acetone W - pH 4-5 Months V - MCAA Y - Trizma Sample Disposal (A fee may be assessed if samples are retained longer than 1 month)

Return To Client Disposal By Lab Archive For Mon Preservation Codes: A - HCL
B - NaOH
C - Zn Acetate
D - Nitric Acid
F - MaOSO4
F - MeOH
G - Amchlor
H - Ascorbic Acid COC No 680-731060 4 680-232195-1 Page 4 of 5 1 - Ice J - Di Water K - EDTA L-EDA Total Number of containers -Carrier Tracking No(s) Accreditations Required (See note): NELAP - Florida; State - South Carolina; State Program State of Origin: South Carolina Analysis Requested Special Instructions/QC Requirements Jerry.Lanier@et.eurofinsus.com Lab PM: Lanier, Jerry A 6010D/FIELD_FLTRD (MOD) Diss.Lithium by 1CP × × × × × × × \times × (off to set) (CSM/SM emoties (off to set) sigma2 benefit-t bi E-Mail: BT=Ttasue, A=Air (Wwwster, Sweolid, Onwasta/oil, Preservation Code: Matrix Water Water Water Water Water Water Water Water Water (C=comp, G=grab) Sample Type Eastern 11:44 Eastern 15:44 Eastern 12:58 Eastern 10:19 Eastern 10:24 Eastern 14:31 Eastern 12:14 Eastern 12:19 Eastern Primary Deliverable Rank TAT Requested (days): Due Date Requested: 3/27/2023 Sample Date 2/27/23 2/27/23 2/28/23 2/28/23 2/28/23 2/28/23 2/28/23 3/6/23 Project #: 68008190 3/6/23 #OM Client Information (Sub Contract Lab) Deliverable Requested I, II, III, IV, Other (specify) Sample Identification - Client ID (Lab ID) 314-298-8757(Fax) Possible Hazard Identification Project Name: 125915/JM02.09.G01.1/36500 FestAmerica Laboratories, Inc. AF56435 (680-232195-31) AF56436 (680-232195-32) AF56437 (680-232195-33) AF56404 (680-232195-28) AF56434 (680-232195-29) AF56433 (680-232195-30) AF56438 (680-232195-34) AF56409 (680-232195-35) AF56410 (680-232195-36) 13715 Rider Trail North 314-298-8566(Tel) Shipping/Receiving State, Zip. MO, 63045 Unconfirmed Earth City

Ver: 06/08/2021

E7477

3/22/23 0910

Shankou

Received by

Received by:

Ime

Date

Empty Kit Relinquished by:

linquished by linquished by linquished by

Date/Time Jate/Time

FEDEX

Custody Seal No.

Custody Seals Intact:

Company

Date/Time Date/Time

Method of Shipment

Cooler Temperature(s) °C and Other Remarks

Ver: 06/08/2021

Second Control Seco	Client Information (Sub Contract Lab)	Sampler		یے ت	Lab PM Lanier, Jerry	ΑV		Carrier Tracking No(s)	g No(s)	COC No.	COC No:	
Interport Enterport	Phone		a a	Mail			State of Origin		Page	0.000.5		
Activation of the property Dec. Control of the property Dec. Control of the property Dec. Control of the property Dec.	Shipping/Receiving			7	erry.Lanie	er@et	eurofinsus.com	South Caro	lina	Page 5	of 5	
17.12	Company: TestAmerica Laboratories, Inc.				Accrec NEL/	litations AP - Fk	Required (See note): orida; State - South Carolin	a; State Proc	ıram	Job #:	2195.1	
Part Part	Address: 13715 Rider Trail North,	Due Date Requested: 3/27/2023					Analysis Red	quested		Preserv	ation Code	A. Hovens
10.00 10.0	itity Searth City Searth City MO, 63045	TAT Requested (days)	<u>.</u>			4 ICP				A - HCL B - NaO C - Zn A D - Nitric		N - None O - AsNaO2 P - Na2O4S Q - Na2SO3
1		# bo #				(d muin				F - MeO G - Amc		R - Na2S2O3 S - H2SO4 T - TSP Dodeo
Sample East Control	mail	,*OM				_						U - Acetone V - MCAA
Sample Gentification - Client ID (Lab ID) Sample Date Sample Classes Matrix Sample Classes Matrix Sample Classes Sample Classes Matrix Sample Classes Sample Sample Classes Sample Sample Classes Sample	roject Name: 25915/JM02.09.G01.1/36500	Project #: 68008190									. ∢	W - pH 4-5 Y - Trizma Z - other (specify
Sample General February Sample Date Time General February	te:	ssow#:										
F66411 (680-232195-37)	ample Identification - Client ID (Lab ID)	- Date			2 benetii-f blei-						1000	on inetriction of the state of
1108			1	(0)								
F66412 (680-232195-38) 3/61/23 E6810 Water X X X X X X X X X	F56411 (680-232195-37)		11:08 astern	Water		×				1-		
F56413 (680-232195-40) 3/6/23 E3/64 Water X	F56412 (680-232195-38)		15:15 astern	Water		×				· 5		
F56420 (880-232195-41) 3/9/23 10/29 Water X	F56413 (680-232195-39)		13.41 astern	Water		×				-		
10.29	-56430 (680-232195-40)		10:10 astern	Water		×				-		
256422 (680-232195-43) 3/9/23 Eastlem Water X Water	-56406 (680-232195-41)		10.29 astern	Water		×				1		
12-107 13-107 1	-56407 (680-232195-42)		10.34 astern	Water		×				1		
13.19 Water Xince laboratory accreditations are subject to charge. Eurofins Environment Testing Southeast, LLC places the ownership of method, analyte & accreditation complained upon our subcontract laboratories. This sample shipment is forwarded under the shipment in the State of Organ listed above for analysis/fests/mark being analyzed, the samples must be shipped back to the Eurofine Environment Testing Southeast, LLC attention immediately. If all requested accreditations are current to date, return the signed Chain of Custody stessing to said complained to other instructions will be provided that are defined to current to date. return the signed Chain of Custody stessing to said complained to demonstrate the samples are retained longer than 10 confirmed and principle of the samples are retained longer than 11 lines. Interest Disposal Ry Lab Archive For Inquished by Industrial of Company Received by Received by Received by Industrial of Company Received by Industrial of Company Received by Industrial of Company Received by Industrial of Company Industrial	-56418 (680-232195-43)		12:07 astern	Water		×				1.		
te. Since laboratory accreditations are subject to change. Eurofins Environment Testing Southeast, LLC places the ownership of method, analyte & accreditation compliance upon our subcontract laboratores. This sample shipment is forwarded under the sanches are current to date, return the State of Origin listed above for analysis/teststamative being analyzed, the samples must be shipped back to the Eurofins Environment Testing Southeast, LLC attention immediately. If all requested accreditations are current to date, return the signed Chain of Custody altering Southeast, LLC attention immediately. If all requested accreditations are current to date, return the signed Chain of Custody altering Southeast, LLC attention immediately. If all requested accreditations are current to date, return to special confirmed accreditation and custody Secured to the Eurofins Environment Testing Southeast Environm	56422 (680-232195-44)		13:19 astern	Water		×				-		
It is should be brought to Eurofins Environment Testing Southeast, LLC attention immediately. If all requested accreditations are current to date, return the signed Chain of Custody attesting Southeast, LLC attention immediately. If all requested accreditations are current to date, return the signed Chain of Custody attesting Southeast Southeas	le: Since laboratory accreditations are subject to change, Eurofins Envir since laboratory accreditation in the State of Organ Islada bove	onment Testing Southeast, LLC for analysis/tests/matrix being a	places the ownersinalyzed, the sampl	of method, ana	lyte & accre	aditation	compliance upon our subcontract	laboratones. Ti	his sample shipm	944	under chain-	of-custody. If the
tequested: 1. II, III, IV, Other (specify) Frimary Deliverable Rank: 1 Date: Date: Company FEDEY Date/Time: Company Tin Company Company Company All Intact: Custody Seal No.:	stus should be brought to Eurofins Environment Testing Southeast, LLC	attention immediately. If all requ	ested accreditation	is are current to da	te, return th	e signe	d Chain of Custody attesting to sa	id compliance to	Eurofins Enviror	ment Testing So	utheast, LLC	anges to accre
inquished by: Feb example Date: Company Received by: Company Co	ossible Hazard Identification				S	aldun	Disposal (A fee may be a	ssessed if s	amples are r	stained longe	er than 1	nonth)
Inquished by: Pate: Time: Time: Time: Date Date	nconfirmed				1		turn To Client	Disposal By L	.ab	Archive For		Months
Iniquished by. Date: Time: Gompany Received by Bate/Time: Date/Time: nverable nequested. I, II, III, IV, Other (specify)		Kank: 1		ਲੋ	ecial	nstructions/QC Requireme			3			
Peolet Company Received by Date/Time: Company Received by Date/Time:	mpty Kit Relinquished by		ite:		Time			Method	of Shipment:			
FEDEY Date/Time. Company Received by And Other Benevice.	olinquished by	Date/Time	-1	Сомралу		Receiv	ved by:		Date/Time:			Company
als Intact: Custody Seal No.:		Date/Time:		Company	,	Receiv	-3	-33	Date/Time:	2/22	4200	Company
Custody Seal No.		.Date/Time:		Company		Receiv			Date/Time:	53/6		Company
	40					Cooler	Cooler Temperature(s) °C and Other Remarks.	marks:				

Environment Testing

💸 eurofins

Chain of Custody Record

Eurofins Savannah 5102 LaRoche Avenue Savannah, GA 31404 Phone: 912-354-7858 Fax: 912-352-0165

Login Sample Receipt Checklist

Client: South Carolina Public Service Authority

Job Number: 680-232195-1

Login Number: 232195 List Source: Eurofins Savannah

List Number: 1

Creator: Givens, Keshia

Creator. Givens, Resilia		
Question	Answer	Comment
Radioactivity wasn't checked or is = background as measured by a survey meter.</td <td>N/A</td> <td></td>	N/A	
The cooler's custody seal, if present, is intact.	True	
Sample custody seals, if present, are intact.	True	
The cooler or samples do not appear to have been compromised or tampered with.	True	
Samples were received on ice.	True	
Cooler Temperature is acceptable.	True	
Cooler Temperature is recorded.	True	
COC is present.	True	
COC is filled out in ink and legible.	True	
COC is filled out with all pertinent information.	True	
Is the Field Sampler's name present on COC?	True	
There are no discrepancies between the containers received and the COC.	N/A	
Samples are received within Holding Time (excluding tests with immediate HTs)	True	
Sample containers have legible labels.	True	
Containers are not broken or leaking.	True	
Sample collection date/times are provided.	True	
Appropriate sample containers are used.	True	
Sample bottles are completely filled.	True	
Sample Preservation Verified.	N/A	
There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs	True	
Containers requiring zero headspace have no headspace or bubble is <6mm (1/4").	N/A	
Multiphasic samples are not present.	True	
Samples do not require splitting or compositing.	True	
Residual Chlorine Checked.	N/A	

3

4

5

7

O

10

12

13

Login Sample Receipt Checklist

Client: South Carolina Public Service Authority

Job Number: 680-232195-1

List Source: Eurofins St. Louis
List Number: 2
List Creation: 03/22/23 01:48 PM

Creator: Sharkey-Gonzalez, Briana L

Creator: Snarkey-Gonzalez, Briana L		
Question	Answer	Comment
Radioactivity wasn't checked or is = background as measured by a survey meter.</td <td>True</td> <td></td>	True	
The cooler's custody seal, if present, is intact.	True	
Sample custody seals, if present, are intact.	True	
The cooler or samples do not appear to have been compromised or tampered with.	True	
Samples were received on ice.	N/A	
Cooler Temperature is acceptable.	True	
Cooler Temperature is recorded.	True	
COC is present.	True	
COC is filled out in ink and legible.	True	
COC is filled out with all pertinent information.	True	
Is the Field Sampler's name present on COC?	True	
There are no discrepancies between the containers received and the COC.	True	
Samples are received within Holding Time (excluding tests with immediate HTs)	True	
Sample containers have legible labels.	True	
Containers are not broken or leaking.	True	
Sample collection date/times are provided.	True	
Appropriate sample containers are used.	True	
Sample bottles are completely filled.	True	
Sample Preservation Verified.	True	
There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs	True	
Containers requiring zero headspace have no headspace or bubble is <6mm (1/4").	True	
Multiphasic samples are not present.	True	
Samples do not require splitting or compositing.	True	
Residual Chlorine Checked.	N/A	

3

4

6

8

10

1.0

13

Accreditation/Certification Summary

Client: South Carolina Public Service Authority Project/Site: 125915/JM02.09.G01.1/36500

Job ID: 680-232195-1

Laboratory: Eurofins Savannah

The accreditations/certifications listed below are applicable to this report.

Authority	Program	Identification Number	Expiration Date
South Carolina	State	98001	06-30-23

Laboratory: Eurofins St. Louis

All accreditations/certifications held by this laboratory are listed. Not all accreditations/certifications are applicable to this report.

Authority	Program	Identification Number	Expiration Date
Alaska (UST)	State	20-001	05-06-25
ANAB	Dept. of Defense ELAP	L2305	04-06-25
ANAB	Dept. of Energy	L2305.01	04-06-25
ANAB	ISO/IEC 17025	L2305	04-06-25
Arizona	State	AZ0813	12-08-23
California	Los Angeles County Sanitation Districts	10259	06-30-22 *
California	State	2886	06-30-23
Connecticut	State	PH-0241	03-31-23
Florida	NELAP	E87689	06-30-23
HI - RadChem Recognition	State	n/a	06-30-23
Illinois	NELAP	200023	11-30-23
lowa	State	373	12-01-24
Kansas	NELAP	E-10236	10-31-23
Kentucky (DW)	State	KY90125	12-31-23
Kentucky (WW)	State	KY90125 (Permit KY0004049)	12-31-23
Louisiana (All)	NELAP	04080	06-30-23
Louisiana (DW)	State	LA011	12-31-23
Maryland	State	310	09-30-23
MI - RadChem Recognition	State	9005	06-30-23
Missouri	State	780	06-30-25
Nevada	State	MO000542020-1	07-31-23
New Jersey	NELAP	MO002	06-30-23
New York	NELAP	11616	04-01-23
North Carolina (DW)	State	29700	07-31-23
North Dakota	State	R-207	06-30-23
Oklahoma	NELAP	9997	08-31-23
Oregon	NELAP	4157	09-01-23
Pennsylvania	NELAP	68-00540	02-28-24
South Carolina	State	85002001	06-30-23
Texas	NELAP	T104704193	07-31-23
US Fish & Wildlife	US Federal Programs	058448	07-31-23
USDA	US Federal Programs	P330-17-00028	06-11-23
Utah	NELAP	MO000542021-14	07-31-23
Virginia	NELAP	10310	06-14-24
Washington	State	C592	08-30-23
West Virginia DEP	State	381	10-31-23

3

4

5

7

Q

11

40

 $^{{}^{\}star}\operatorname{Accreditation/Certification\ renewal\ pending\ -\ accreditation/certification\ considered\ valid}.$

Eurofins Savannah

ANALYTICAL REPORT

PREPARED FOR

Attn: Linda Williams South Carolina Public Service Authority Santee Cooper PO BOX 2946101

Moncks Corner, South Carolina 29461-2901

JOB DESCRIPTION

Generated 3/28/2023 6:36:20 PM

125915/JM02.09.G01.1/36500

JOB NUMBER

680-232196-1

Eurofins Savannah 5102 LaRoche Avenue Savannah GA 31404

Eurofins Savannah

Job Notes

The test results in this report meet NELAP requirements for parameters for which accreditation is required or available. Any exceptions to the NELAP requirements are noted. Results pertain only to samples listed in this report. This report may not be reproduced, except in full, without the written approval of the laboratory. Questions should be directed to the person who signed this report.

The test results in this report relate only to the samples as received by the laboratory and will meet all requirements of the methodology, with any exceptions noted. This report shall not be reproduced except in full, without the express written approval of the laboratory. All questions should be directed to the Eurofins Environment Testing Southeast, LLC Project Manager.

Authorization

Generated 3/28/2023 6:36:20 PM

Authorized for release by Jerry Lanier, Project Manager I <u>Jerry.Lanier@et.eurofinsus.com</u> (912)250-0281

1/

Client: South Carolina Public Service Authority Project/Site: 125915/JM02.09.G01.1/36500

Laboratory Job ID: 680-232196-1

Table of Contents

Cover Page	1
Table of Contents	3
Case Narrative	4
Sample Summary	5
Method Summary	6
Definitions	7
Detection Summary	8
Client Sample Results	24
QC Sample Results	68
QC Association	82
Chronicle	93
Chain of Custody	108
Receipt Checklists	119
Certification Summary	121

Case Narrative

Client: South Carolina Public Service Authority Project/Site: 125915/JM02.09.G01.1/36500

Job ID: 680-232196-1

Job ID: 680-232196-1

Laboratory: Eurofins Savannah

Narrative

Job Narrative 680-232196-1

Receipt

The samples were received on 3/17/2023 10:30 AM. Unless otherwise noted below, the samples arrived in good condition, and, where required, properly preserved and on ice. The temperature of the cooler at receipt time was 18.3°C

Metals

Method 6010D: preparation batch 160-604815 Elevated reporting limits are provided for the following sample due to insufficient sample provided for preparation: AF56407 (680-232196-26).

No additional analytical or quality issues were noted, other than those described above or in the Definitions/ Glossary page.

Sample Summary

Client: South Carolina Public Service Authority Project/Site: 125915/JM02.09.G01.1/36500

680-232196-44

AF56428

Job ID: 680-232196-1

Lab Sample ID	Client Sample ID	Matrix	Collected	Received
680-232196-1	AF56394	Water	02/14/23 12:33	03/17/23 10:30
680-232196-2	AF56331	Water	02/14/23 13:51	03/17/23 10:30
680-232196-3	AF56332	Water	02/14/23 15:22	03/17/23 10:30
680-232196-4	AF56395	Water	02/15/23 11:36	03/17/23 10:30
680-232196-5	AF56396	Water	02/15/23 13:21	03/17/23 10:30
680-232196-6	AF56397	Water	02/16/23 10:53	03/17/23 10:30
680-232196-7	AF56400	Water	02/16/23 12:55	03/17/23 10:30
680-232196-8	AF56442	Water	02/16/23 14:07	03/17/23 10:30
680-232196-9	AF56443	Water	02/16/23 14:12	03/17/23 10:30
680-232196-10	AF56402	Water	02/27/23 12:47	03/17/23 10:30
680-232196-11	AF56403	Water	02/27/23 09:57	03/17/23 10:30
680-232196-12	AF56404	Water	02/27/23 10:02	03/17/23 10:30
680-232196-13	AF56434	Water	02/27/23 15:44	03/17/23 10:30
680-232196-14	AF56433	Water	02/28/23 12:58	03/17/23 10:30
680-232196-15	AF56435	Water	02/28/23 11:44	03/17/23 10:30
680-232196-16	AF56436	Water	02/28/23 10:19	03/17/23 10:30
680-232196-17	AF56437	Water	02/28/23 10:24	03/17/23 10:30
680-232196-18	AF56438	Water	02/28/23 14:31	03/17/23 10:30
680-232196-19	AF56409	Water	03/06/23 12:14	03/17/23 10:30
680-232196-20	AF56410	Water	03/06/23 12:19	03/17/23 10:30
680-232196-21	AF56411	Water	03/06/23 11:08	03/17/23 10:30
680-232196-22	AF56412	Water	03/06/23 15:15	03/17/23 10:30
680-232196-23	AF56413	Water	03/06/23 13:41	03/17/23 10:30
680-232196-24	AF56430	Water	03/06/23 10:10	03/17/23 10:30
680-232196-25	AF56406	Water	03/09/23 10:29	03/17/23 10:30
680-232196-26	AF56407	Water	03/09/23 10:34	03/17/23 10:30
680-232196-27	AF56418	Water	03/09/23 12:07	03/17/23 10:30
680-232196-28	AF56422	Water	03/09/23 13:19	03/17/23 10:30
680-232196-29	AF56419	Water	03/07/23 14:51	03/17/23 10:30
680-232196-30	AF56425	Water	03/07/23 12:49	03/17/23 10:30
680-232196-31	AF56426	Water	03/07/23 10:22	03/17/23 10:30
680-232196-32	AF56427	Water	03/07/23 10:27	03/17/23 10:30
680-232196-33	AF56408	Water	03/08/23 13:38	03/17/23 10:30
680-232196-34	AF56415	Water	03/08/23 15:13	03/17/23 10:30
680-232196-35	AF56416	Water	03/08/23 10:09	03/17/23 10:30
680-232196-36	AF56417	Water	03/08/23 10:14	03/17/23 10:30
680-232196-37	AF56429	Water	03/08/23 12:12	03/17/23 10:30
680-232196-38	AF56421	Water	03/01/23 14:41	03/17/23 10:30
680-232196-39	AF56428	Water	03/01/23 13:37	03/17/23 10:30
680-232196-40	AF56439	Water	03/01/23 10:22	03/17/23 10:30
680-232196-41	AF56441	Water	03/01/23 11:45	03/17/23 10:30
680-232196-42	AF56414	Water	03/02/23 12:46	03/17/23 10:30
680-232196-43	AF56423	Water	03/02/23 10:56	03/17/23 10:30
	4.550.400	147.4	00/00/00 00 00	00117100 10 00

9

3

4

5

7

8

12

13

14

Water

Method Summary

Client: South Carolina Public Service Authority Project/Site: 125915/JM02.09.G01.1/36500

Job ID: 680-232196-1

Method	Method Description	Protocol	Laboratory
6010D	Metals (ICP)	SW846	EET SAV
6010D	Metals (ICP)	SW846	EET SL
6020B	Metals (ICP/MS)	SW846	EET SAV
7470A	Mercury (CVAA)	SW846	EET SAV
3005A	Preparation, Total Recoverable or Dissolved Metals	SW846	EET SAV
3010A	Preparation, Total Metals	SW846	EET SL
7470A	Preparation, Mercury	SW846	EET SAV

Protocol References:

SW846 = "Test Methods For Evaluating Solid Waste, Physical/Chemical Methods", Third Edition, November 1986 And Its Updates.

Laboratory References:

EET SAV = Eurofins Savannah, 5102 LaRoche Avenue, Savannah, GA 31404, TEL (912)354-7858 EET SL = Eurofins St. Louis, 13715 Rider Trail North, Earth City, MO 63045, TEL (314)298-8566 . .

3

4

5

Q

9

10

12

13

114

Definitions/Glossary

Client: South Carolina Public Service Authority Job ID: 680-232196-1 Project/Site: 125915/JM02.09.G01.1/36500

Qualifiers

Qualifier	Qualifier Description
4	MS, MSD: The analyte present in the original sample is greater than 4 times the matrix spike concentration; therefore, control limits are not applicable.
F1	MS and/or MSD recovery exceeds control limits.
F2	MS/MSD RPD exceeds control limits
Н	Sample was prepped or analyzed beyond the specified holding time
H3	Sample was received and analyzed past holding time.
U	Indicates the analyte was analyzed for but not detected.

U	Indicates the analyte was analyzed for but not detected.
Glossary	
Abbreviation	These commonly used abbreviations may or may not be present in this report.
¤	Listed under the "D" column to designate that the result is reported on a dry weight basis
%R	Percent Recovery
CFL	Contains Free Liquid
CFU	Colony Forming Unit
CNF	Contains No Free Liquid
DER	Duplicate Error Ratio (normalized absolute difference)
Dil Fac	Dilution Factor
DL	Detection Limit (DoD/DOE)
DL, RA, RE, IN	Indicates a Dilution, Re-analysis, Re-extraction, or additional Initial metals/anion analysis of the sample
DLC	Decision Level Concentration (Radiochemistry)
EDL	Estimated Detection Limit (Dioxin)
LOD	Limit of Detection (DoD/DOE)
LOQ	Limit of Quantitation (DoD/DOE)
MCL	EPA recommended "Maximum Contaminant Level"
MDA	Minimum Detectable Activity (Radiochemistry)
MDC	Minimum Detectable Concentration (Radiochemistry)
MDL	Method Detection Limit
ML	Minimum Level (Dioxin)
MPN	Most Probable Number
MQL	Method Quantitation Limit

NC Not Calculated

ND Not Detected at the reporting limit (or MDL or EDL if shown)

NEG Negative / Absent POS Positive / Present

PQL Practical Quantitation Limit

PRES Presumptive QC **Quality Control**

RER Relative Error Ratio (Radiochemistry)

RLReporting Limit or Requested Limit (Radiochemistry)

RPD Relative Percent Difference, a measure of the relative difference between two points

TEF Toxicity Equivalent Factor (Dioxin) TEQ Toxicity Equivalent Quotient (Dioxin)

TNTC Too Numerous To Count

Client: South Carolina Public Service Authority Project/Site: 125915/JM02.09.G01.1/36500

Client Sample ID: AF56394

Job ID: 680-232196-1

Lab Sample ID: 680-232196-1

Lab Sample ID: 680-232196-2

Lab Sample ID: 680-232196-3

Analyte	Result	Qualifier RL	MDL (Unit	Dil Fac	D	Method	Prep Type
Calcium	10600	500		ug/L	1		6010D	Total
								Recoverable
Iron	3060	100	ι	ug/L	1		6010D	Total
								Recoverable
Magnesium	1000	500	ι	ug/L	1		6010D	Total
								Recoverable
Sodium	5460	2000	ι	ug/L	1		6010D	Total
								Recoverable
Aluminum	1280	100	ı	ug/L	1		6020B	Total
								Recoverable
Arsenic	5.88	3.00	ι	ug/L	1		6020B	Total
								Recoverable
Barium	76.0	5.00	ı	ug/L	1		6020B	Total
								Recoverable
Cobalt	0.705	0.500	ı	ug/L	1		6020B	Total
								Recoverable
Zinc	24.9	20.0	ı	ug/L	1		6020B	Total
								Recoverable
Manganese	27.1	5.00	ı	ug/L	1		6020B	Total
								Recoverable

Client Sample ID: AF56331

Analyte	Result	Qualifier RL	MDL	Unit	Dil Fac	D	Method	Prep Type
Calcium	2790	500		ug/L	1		6010D	Total
								Recoverable
Iron	251	100	1	ug/L	1		6010D	Total
								Recoverable
Magnesium	902	500	ı	ug/L	1		6010D	Total
								Recoverable
Sodium	2670	2000		ug/L	1		6010D	Total
								Recoverable
Aluminum	845	100		ug/L	1		6020B	Total
								Recoverable
Barium	31.7	5.00		ug/L	1		6020B	Total
								Recoverable
Cobalt	1.52	0.500		ug/L	1		6020B	Total
								Recoverable
Manganese	44.6	5.00		ug/L	1		6020B	Total

Client Sample ID: AF56332

•									
- Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type
Calcium	85600		500		ug/L	1	_	6010D	Total
									Recoverable
Iron	5130		100		ug/L	1		6010D	Total
									Recoverable
Magnesium	2660		500		ug/L	1		6010D	Total
									Recoverable
Potassium	2030		1000		ug/L	1		6010D	Total
									Recoverable
Sodium	11300		2000		ug/L	1		6010D	Total
									Recoverable
Aluminum	1170		100		ug/L	1		6020B	Total
									Recoverable
Barium	88.5		5.00		ug/L	1		6020B	Total
									Recoverable

This Detection Summary does not include radiochemical test results.

Eurofins Savannah

Recoverable

Client: South Carolina Public Service Authority Project/Site: 125915/JM02.09.G01.1/36500

Job ID: 680-232196-1

Client Sample ID: AF56332 (Continued) Lab Sample ID: 680-232196-3

Result Qualifier Dil Fac D Method Prep Type RL MDL Unit 46.7 5.00 6020B Manganese ug/L Total Recoverable

Lab Sample ID: 680-232196-4 Client Sample ID: AF56395

Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type
Calcium	367000		500		ug/L	1		6010D	Total
									Recoverable
Iron	5110		100		ug/L	1		6010D	Total
									Recoverable
Magnesium	45200		500		ug/L	1		6010D	Total
									Recoverable
Potassium	9860		1000		ug/L	1		6010D	Total
									Recoverable
Sodium	74600		2000		ug/L	1		6010D	Total
					_				Recoverable
Aluminum	948		100		ug/L	1		6020B	Total
									Recoverable
Arsenic	23.2		3.00		ug/L	1		6020B	Total
Б.:	407		5.00		,,	4		00000	Recoverable
Barium	167		5.00		ug/L	1		6020B	Total
Beryllium	1.96		0.500		/!	1		6020B	Recoverable Total
Berylliditi	1.90		0.500		ug/L	'		0020B	Recoverable
Cobalt	19.7		0.500		ug/L	1		6020B	Total
Cobait	15.7		0.300		ug/L	'		0020B	Recoverable
Nickel	11.6		5.00		ug/L	1		6020B	Total
	11.0		0.00		~g/ =	'			Recoverable
Manganese	721		5.00		ug/L	1		6020B	Total
	721		3.00		0				Recoverable

Client Sample ID: AF56396

Lab Sample ID: 680-232196-5

Analyte	Result	Qualifier RL	MDL	Unit	Dil Fac	D	Method	Prep Type
Calcium	225000	500		ug/L	1		6010D	Total
								Recoverable
Iron	25400	100		ug/L	1		6010D	Total
								Recoverable
Magnesium	14300	500	ı	ug/L	1		6010D	Total
								Recoverable
Potassium	1980	1000	ı	ug/L	1		6010D	Total
								Recoverable
Sodium	42300	2000	ı	ug/L	1		6010D	Total
								Recoverable
Barium	146	5.00	ı	ug/L	1		6020B	Total
								Recoverable
Manganese	213	5.00	ı	ug/L	1		6020B	Total
								Recoverable
Mercury	0.259	H H3 0.200		ug/L	1		7470A	Total/NA

Client Sample ID: AF56397

Lab Sample ID: 680-232196-6

Analyte Calcium	Result 54300	Qualifier	RL 500	 Unit ug/L	Dil Fac	D	Method 6010D	Prep Type Total
Iron	731		100	ug/L	1		6010D	Recoverable Total Recoverable

This Detection Summary does not include radiochemical test results.

Page 9 of 121

Client: South Carolina Public Service Authority Project/Site: 125915/JM02.09.G01.1/36500

Job ID: 680-232196-1

Client Sample ID: AF56397 (Continued) Lab Sample ID: 680-232196-6

Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type
Magnesium	4040		500		ug/L	1		6010D	Total
									Recoverable
Potassium	1990		1000		ug/L	1		6010D	Total
									Recoverable
Sodium	17300		2000		ug/L	1		6010D	Total
									Recoverable
Barium	39.4		5.00		ug/L	1		6020B	Total
									Recoverable
Zinc	309		20.0		ug/L	1		6020B	Total
									Recoverable
Manganese	112		5.00		ug/L	1		6020B	Total
									Recoverable

Client Sample ID: AF56400 Lab Sample ID: 680-232196-7

Analyte	Result	Qualifier RL	MDL	Unit	Dil Fac	D	Method	Prep Type
Calcium	262000	500		ug/L	1		6010D	Total
								Recoverable
Iron	789	100		ug/L	1		6010D	Total
								Recoverable
Magnesium	3890	500		ug/L	1		6010D	Total
								Recoverable
Potassium	2320	1000		ug/L	1		6010D	Total
								Recoverable
Sodium	13800	2000		ug/L	1		6010D	Total
								Recoverable
Aluminum	111	100		ug/L	1		6020B	Total
								Recoverable
Barium	42.1	5.00		ug/L	1		6020B	Total
								Recoverable
Manganese	18.6	5.00		ug/L	1		6020B	Total
								Recoverable

Client Sample ID: AF56442

Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type
Calcium	166000		500		ug/L	1		6010D	Total
									Recoverable
Iron	450		100		ug/L	1		6010D	Total
									Recoverable
Magnesium	7730		500		ug/L	1		6010D	Total
									Recoverable
Potassium	4290		1000		ug/L	1		6010D	Total
									Recoverable
Sodium	21900		2000		ug/L	1		6010D	Total
									Recoverable
Barium	32.6		5.00		ug/L	1		6020B	Total
									Recoverable
Manganese	58.2		5.00		ug/L	1		6020B	Total
									Recoverable

Client Sample ID: AF56443

Analyte	Result Qualifier	RL	MDL Unit	Dil Fac	D Method	Prep Type
Calcium	160000	500	ug/L	1	6010D	Total
						Recoverable
Iron	302	100	ug/L	1	6010D	Total
						Recoverable

This Detection Summary does not include radiochemical test results.

Eurofins Savannah

Lab Sample ID: 680-232196-8

Lab Sample ID: 680-232196-9

Client: South Carolina Public Service Authority Project/Site: 125915/JM02.09.G01.1/36500

Client Sample ID: AF56443 (Continued)

Job ID: 680-232196-1

Lab Sample ID: 680-232196-9

Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type
Magnesium	7590		500		ug/L	1	_	6010D	Total
									Recoverable
Potassium	4050		1000		ug/L	1		6010D	Total
									Recoverable
Sodium	20700		2000		ug/L	1		6010D	Total
									Recoverable
Barium	33.8		5.00		ug/L	1		6020B	Total
									Recoverable
Manganese	57.3		5.00		ug/L	1		6020B	Total
									Recoverable

Client Sample ID: AF56402

Lab Sample ID: 680-2321	96-10
-------------------------	-------

Analyte	Result	Qualifier RL	MDL U	nit	Dil Fac	D	Method	Prep Type
Calcium	204000	500	u	g/L	1		6010D	Total
								Recoverable
Iron	23500	100	u	g/L	1		6010D	Total
								Recoverable
Magnesium	24400	500	u	g/L	1		6010D	Total
								Recoverable
Potassium	11400	1000	u	g/L	1		6010D	Total
								Recoverable
Sodium	35500	2000	u	g/L	1		6010D	Total
								Recoverable
Aluminum	386	100	u	g/L	1		6020B	Total
								Recoverable
Arsenic	31.0	3.00	u	g/L	1		6020B	Total
								Recoverable
Barium	74.9	5.00	u	g/L	1		6020B	Total
								Recoverable
Manganese	283	5.00	u	g/L	1		6020B	Total
								Recoverable

Client Sample ID: AF56403

Lab Sample ID: 680-232196-11

Analyte	Result	Qualifier RL	MDL	Unit	Dil Fac	D	Method	Prep Type
Lithium	51.4	50.0		ug/L	1	_	6010D	Total/NA
Calcium	644000	500		ug/L	1		6010D	Total
								Recoverable
Iron	25200	100		ug/L	1		6010D	Total
								Recoverable
Magnesium	90300	500		ug/L	1		6010D	Total
								Recoverable
Potassium	28200	1000		ug/L	1		6010D	Total
								Recoverable
Sodium	155000	2000		ug/L	1		6010D	Total
								Recoverable
Barium	332	5.00		ug/L	1		6020B	Total
								Recoverable
Manganese	820	5.00		ug/L	1		6020B	Total
								Recoverable

Client Sample ID: AF56404

Lab Sample ID: 680-232196-12

Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type
Lithium	58.2		50.0		ug/L	1		6010D	Total/NA
Calcium	659000		500		ug/L	1		6010D	Total
									Recoverable

This Detection Summary does not include radiochemical test results.

Eurofins Savannah

3/28/2023

Client: South Carolina Public Service Authority Project/Site: 125915/JM02.09.G01.1/36500

Client Sample ID: AF56404 (Continued)

Job ID: 680-232196-1

Lab Sample ID: 680-232196-12

Analyte	Result	Qualifier RL	. MDL	Unit	Dil Fac	D	Method	Prep Type
Iron	25100	100		ug/L	1	_	6010D	Total
								Recoverable
Magnesium	91700	500		ug/L	1		6010D	Total
								Recoverable
Potassium	29000	1000		ug/L	1		6010D	Total
								Recoverable
Sodium	158000	2000		ug/L	1		6010D	Total
								Recoverable
Barium	325	5.00		ug/L	1		6020B	Total
								Recoverable
Manganese	800	5.00		ug/L	1		6020B	Total
								Recoverable

Client Sample ID: AF56434

Lab Sample ID: 680-232196-13

Analyte	Result	Qualifier RL	MDL	Unit	Dil Fac	D	Method	Prep Type
Calcium	62900	500		ug/L	1		6010D	Total
								Recoverable
Iron	3180	100		ug/L	1		6010D	Total
								Recoverable
Magnesium	1950	500		ug/L	1		6010D	Total
								Recoverable
Sodium	4810	2000		ug/L	1		6010D	Total
								Recoverable
Aluminum	1430	100		ug/L	1		6020B	Total
								Recoverable
Barium	41.2	5.00		ug/L	1		6020B	Total
								Recoverable
Cobalt	2.15	0.500		ug/L	1		6020B	Total
								Recoverable
Zinc	264	20.0		ug/L	1		6020B	Total
								Recoverable
Manganese	52.9	5.00		ug/L	1		6020B	Total
_								Recoverable

Client Sample ID: AF56433

Lab Sample ID: 680-232196-14

Analyte	Result	Qualifier RL	MDL U	nit	Dil Fac	D	Method	Prep Type
Calcium	433000	500	u	g/L	1	_	6010D	Total
								Recoverable
Iron	17100	100	u	g/L	1		6010D	Total
								Recoverable
Magnesium	12200	500	u	g/L	1		6010D	Total
								Recoverable
Potassium	5480	1000	u	g/L	1		6010D	Total
								Recoverable
Sodium	10300	2000	u	g/L	1		6010D	Total
								Recoverable
Aluminum	219	100	u	g/L	1		6020B	Total
								Recoverable
Barium	51.1	5.00	u	g/L	1		6020B	Total
								Recoverable
Manganese	1240	5.00	u	g/L	1		6020B	Total
								Recoverable

This Detection Summary does not include radiochemical test results.

Eurofins Savannah

3/28/2023

3

-

7

8

10

11

10

1)

Client: South Carolina Public Service Authority Project/Site: 125915/JM02.09.G01.1/36500

Client Sample ID: AF56435

Job ID: 680-232196-1

Lab Sample ID: 680-232196-15

Analyte	Result	Qualifier RL	MDL	Unit	Dil Fac	D	Method	Prep Type
Calcium	20400	500		ug/L	1		6010D	Total
								Recoverable
Iron	863	100		ug/L	1		6010D	Total
								Recoverable
Magnesium	821	500		ug/L	1		6010D	Total
								Recoverable
Sodium	3070	2000		ug/L	1		6010D	Total
								Recoverable
Aluminum	3470	100		ug/L	1		6020B	Total
								Recoverable
Arsenic	8.46	3.00		ug/L	1		6020B	Total
								Recoverable
Barium	29.9	5.00		ug/L	1		6020B	Total
								Recoverable
Cobalt	1.03	0.500		ug/L	1		6020B	Total
								Recoverable
Manganese	24.2	5.00		ug/L	1		6020B	Total
								Recoverable

Client Sample ID: AF56436

lient Sample ID: AF56436			Lab S	ample ID: 680-	232196-16	
Analyte	Result Qualifie	r RL	MDL Uni	t Dil Fac D	Method	Prep Type

Analyte	Result	Qualifier RL	MDL	Unit	Dil Fac	D	Method	Prep Type
Calcium	85500	500		ug/L	1		6010D	Total
								Recoverable
Iron	1170	100		ug/L	1		6010D	Total
								Recoverable
Magnesium	1970	500		ug/L	1		6010D	Total
								Recoverable
Potassium	1460	1000		ug/L	1		6010D	Total
								Recoverable
Sodium	4490	2000		ug/L	1		6010D	Total
								Recoverable
Barium	35.5	5.00		ug/L	1		6020B	Total
								Recoverable
Zinc	53.3	20.0		ug/L	1		6020B	Total
								Recoverable
Manganese	81.1	5.00		ug/L	1		6020B	Total
								Recoverable

Client Sample ID: AF56437

Analyte Result Qualifier RL MDL Unit Dil Fac D Method **Prep Type** 6010D Calcium 92300 500 ug/L Total Recoverable 6010D Iron 1310 100 ug/L Total Recoverable Magnesium 1710 500 ug/L 6010D Total Recoverable Potassium 1230 1000 6010D ug/L Total Recoverable Sodium 3600 2000 ug/L 6010D Total Recoverable Barium 5.00 6020B 36.2 ug/L Total Recoverable 5.00 6020B Manganese 88.0 ug/L Total

This Detection Summary does not include radiochemical test results.

Eurofins Savannah

3/28/2023

Recoverable

Lab Sample ID: 680-232196-17

Client: South Carolina Public Service Authority Project/Site: 125915/JM02.09.G01.1/36500

Client Sample ID: AF56438

Job ID: 680-232196-1

Lab Sample ID: 680-232196-18

Analyte	Result	Qualifier RI	. MDL	Unit	Dil Fac	D	Method	Prep Type
Calcium	287000	500)	ug/L	1		6010D	Total
								Recoverable
Iron	1800	100)	ug/L	1		6010D	Total
								Recoverable
Magnesium	28000	500)	ug/L	1		6010D	Total
								Recoverable
Potassium	6740	1000)	ug/L	1		6010D	Total
								Recoverable
Sodium	17500	2000)	ug/L	1		6010D	Total
								Recoverable
Barium	34.9	5.00)	ug/L	1		6020B	Total
								Recoverable
Manganese	495	5.00)	ug/L	1		6020B	Total
_								Recoverable

Client Sample ID: AF56409

Lab Sam	ple ID:	680-232196-19
Lab Caili	PIC ID.	OCC ECE ICC IC

Analyte	Result	Qualifier RL	MDL	Unit	Dil Fac	D	Method	Prep Type
Lithium	104	50.0		ug/L	1		6010D	Total/NA
Calcium	1150000	5000		ug/L	10		6010D	Total
								Recoverable
Magnesium	31700	500		ug/L	1		6010D	Total
								Recoverable
Potassium	15800	1000		ug/L	1		6010D	Total
								Recoverable
Sodium	144000	2000		ug/L	1		6010D	Total
								Recoverable
Arsenic	13.8	3.00		ug/L	1		6020B	Total
								Recoverable
Barium	57.7	5.00		ug/L	1		6020B	Total
								Recoverable
Manganese	6.96	5.00		ug/L	1		6020B	Total
								Recoverable

Client Sample ID: AF56410

Lab Sample ID: 680-232196-20

Lab Sample ID: 680-232196-21

Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type
Lithium	128		50.0		ug/L	1		6010D	Total/NA
Calcium	1130000		5000		ug/L	10		6010D	Total
									Recoverable
Magnesium	30600		500		ug/L	1		6010D	Total
									Recoverable
Potassium	15400		1000		ug/L	1		6010D	Total
									Recoverable
Sodium	138000		2000		ug/L	1		6010D	Total
									Recoverable
Arsenic	12.6		3.00		ug/L	1		6020B	Total
									Recoverable
Barium	52.0		5.00		ug/L	1		6020B	Total
									Recoverable
Manganese	7.61		5.00		ug/L	1		6020B	Total
									Recoverable

Client Sample ID: AF56411

Analyte	Result Qualifier	RL	MDL Unit	Dil Fac D	Method	Prep Type
Lithium	77.1	50.0	ug/L	1	6010D	Total/NA

This Detection Summary does not include radiochemical test results.

3/28/2023

Client: South Carolina Public Service Authority Project/Site: 125915/JM02.09.G01.1/36500

Job ID: 680-232196-1

Client Sample ID: AF56411 (Continued)

Lab	Samp	le	ID:	680	-2321	96-21
Lab	Sallip	16	ID.	OOU	-232	30-2

Analyte	Result	Qualifier RL	MDL	Unit	Dil Fac	D	Method	Prep Type
Calcium	796000	5000		ug/L	10		6010D	Total
								Recoverable
Magnesium	40800	500		ug/L	1		6010D	Total
								Recoverable
Potassium	13000	1000		ug/L	1		6010D	Total
								Recoverable
Sodium	121000	2000		ug/L	1		6010D	Total
								Recoverable
Arsenic	8.18	3.00		ug/L	1		6020B	Total
								Recoverable
Barium	95.4	5.00		ug/L	1		6020B	Total
								Recoverable
Zinc	199	F1 20.0		ug/L	1		6020B	Total
								Recoverable
Manganese	101	5.00		ug/L	1		6020B	Total
_								Recoverable

Client Sample ID: AF56412

Lab Sample ID: 680-232196-22

Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type
Lithium	51.5		50.0		ug/L	1		6010D	Total/NA
Calcium	701000		500		ug/L	1		6010D	Total
									Recoverable
Iron	14700		100		ug/L	1		6010D	Total
									Recoverable
Magnesium	30200		500		ug/L	1		6010D	Total
									Recoverable
Potassium	7240		1000		ug/L	1		6010D	Total
									Recoverable
Sodium	108000		2000		ug/L	1		6010D	Total
									Recoverable
Arsenic	4.94		3.00		ug/L	1		6020B	Total
									Recoverable
Barium	165		5.00		ug/L	1		6020B	Total
									Recoverable
Manganese	355		5.00		ug/L	1		6020B	Total
									Recoverable

Client Sample ID: AF56413

Lab Sample ID: 680-232196-23

Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type
Calcium	163000		500		ug/L	1		6010D	Total
									Recoverable
Iron	10100		100		ug/L	1		6010D	Total
									Recoverable
Magnesium	11200		500		ug/L	1		6010D	Total
									Recoverable
Potassium	5010		1000		ug/L	1		6010D	Total
									Recoverable
Sodium	72500		2000		ug/L	1		6010D	Total
									Recoverable
Barium	88.7		5.00		ug/L	1		6020B	Total
									Recoverable
Cobalt	0.870		0.500		ug/L	1		6020B	Total
									Recoverable
Manganese	235		5.00		ug/L	1		6020B	Total
									Recoverable

This Detection Summary does not include radiochemical test results.

Eurofins Savannah

Page 15 of 121

Client: South Carolina Public Service Authority Project/Site: 125915/JM02.09.G01.1/36500

Client Sample ID: AF56430

Job ID: 680-232196-1

Lab Sample ID: 680-232196-24

Analyte	Result	Qualifier RL	MDL	Unit	Dil Fac	D	Method	Prep Type
Calcium	446000	500		ug/L	1		6010D	Total
								Recoverable
Iron	33300	100		ug/L	1		6010D	Total
								Recoverable
Magnesium	72500	500		ug/L	1		6010D	Total
								Recoverable
Potassium	6540	1000		ug/L	1		6010D	Total
								Recoverable
Sodium	87200	2000		ug/L	1		6010D	Total
								Recoverable
Barium	36.3	5.00		ug/L	1		6020B	Total
								Recoverable
Cobalt	6.51	0.500		ug/L	1		6020B	Total
								Recoverable
Manganese	3770	5.00		ug/L	1		6020B	Total
								Recoverable

Client Sample ID: AF56406 Lab Sample ID: 680-232196-25

Analyte	Result	Qualifier RL	MDL	Unit	Dil Fac	D	Method	Prep Type
Calcium	203000	500		ug/L	1		6010D	Total
								Recoverable
Iron	1450	100		ug/L	1		6010D	Total
								Recoverable
Magnesium	18100	500		ug/L	1		6010D	Total
								Recoverable
Potassium	4990	1000		ug/L	1		6010D	Total
								Recoverable
Sodium	45500	2000		ug/L	1		6010D	Total
								Recoverable
Aluminum	1940	100		ug/L	1		6020B	Total
								Recoverable
Barium	36.4	5.00		ug/L	1		6020B	Total
								Recoverable
Cobalt	1.84	0.500		ug/L	1		6020B	Total
								Recoverable
Zinc	45.6	20.0		ug/L	1		6020B	Total
								Recoverable
Manganese	183	5.00		ug/L	1		6020B	Total
								Recoverable

Client Sample ID: AF56407

Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type
Calcium	207000		500		ug/L	1	_	6010D	Total
									Recoverable
Iron	1440		100		ug/L	1		6010D	Total
									Recoverable
Magnesium	18200		500		ug/L	1		6010D	Total
									Recoverable
Potassium	5150		1000		ug/L	1		6010D	Total
									Recoverable
Sodium	46200		2000		ug/L	1		6010D	Total
									Recoverable
Aluminum	2090		100		ug/L	1		6020B	Total
									Recoverable
Barium	36.9		5.00		ug/L	1		6020B	Total

This Detection Summary does not include radiochemical test results.

Eurofins Savannah

Recoverable

3/28/2023

Lab Sample ID: 680-232196-26

Page 16 of 121

7

9

10

11

13

14

Client: South Carolina Public Service Authority Project/Site: 125915/JM02.09.G01.1/36500

Job ID: 680-232196-1

Lab Sample ID: 680-232196-26

Lab Sample ID: 680-232196-27

Client Sam	ple ID:	AF56407	(Continued)

Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type
Cobalt	1.65		0.500		ug/L	1		6020B	Total
									Recoverable
Zinc	29.1		20.0		ug/L	1		6020B	Total
									Recoverable
Manganese	207		5.00		ug/L	1		6020B	Total
_									Recoverable

Client Sample ID: AF56418

Analyte	Result	Qualifier RL	MDL Unit	Dil Fac	D Method	Prep Type
Lithium	76.7	50.0	ug/L	1	6010D	Total/NA
Calcium	94400	500	ug/L	1	6010D	Total
						Recoverable
Iron	840	100	ug/L	1	6010D	Total
						Recoverable
Magnesium	7510	500	ug/L	1	6010D	Total
						Recoverable
Molybdenum	90.2	10.0	ug/L	1	6010D	Total
						Recoverable
Potassium	7420	1000	ug/L	1	6010D	Total
						Recoverable
Sodium	25200	2000	ug/L	1	6010D	Total
						Recoverable
Aluminum	134	100	ug/L	1	6020B	Total
						Recoverable
Arsenic	249	3.00	ug/L	1	6020B	Total
,						Recoverable
Barium	127	5.00	ug/L	1	6020B	Total
						Recoverable
Cobalt	2.17	0.500	ug/L	1	6020B	Total
	440	5.00			2222	Recoverable
Manganese	113	5.00	ug/L	1	6020B	Total Recoverable

Client Sample ID: AF56422 Lab Sample ID: 680-232196-28

Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type
Calcium	250000		500		ug/L	1		6010D	Total
									Recoverable
Iron	15600		100		ug/L	1		6010D	Total
									Recoverable
Magnesium	9000		500		ug/L	1		6010D	Total
									Recoverable
Potassium	3920		1000		ug/L	1		6010D	Total
									Recoverable
Sodium	74400		2000		ug/L	1		6010D	Total
									Recoverable
Arsenic	8.53		3.00		ug/L	1		6020B	Total
									Recoverable
Barium	121		5.00		ug/L	1		6020B	Total
									Recoverable
Zinc	37.7		20.0		ug/L	1		6020B	Total
									Recoverable
Manganese	272		5.00		ug/L	1		6020B	Total
									Recoverable

This Detection Summary does not include radiochemical test results.

Client: South Carolina Public Service Authority Project/Site: 125915/JM02.09.G01.1/36500

Client Sample ID: AF56419

Job ID: 680-232196-1

Lab Sample ID: 680-232196-29

Analyte	Result	Qualifier RL	MDL	Unit	Dil Fac	D	Method	Prep Type
Lithium	234	50.0		ug/L	1		6010D	Total/NA
Calcium	601000	500		ug/L	1		6010D	Total
								Recoverable
Iron	19700	100		ug/L	1		6010D	Total
								Recoverable
Magnesium	88700	500		ug/L	1		6010D	Total
								Recoverable
Molybdenum	94.7	10.0		ug/L	1		6010D	Total
5	20222	4000		,,			00400	Recoverable
Potassium	22200	1000		ug/L	1		6010D	Total
Sodium	44900	2000			1		6010D	Recoverable
Sodium	44900	2000		ug/L	ı		60100	Total Recoverable
Aluminum	672	100		ug/L	1		6020B	Total
Adminum	012	100		ug/L	'		00200	Recoverable
Arsenic	474	3.00		ug/L	1		6020B	Total
, ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		5.55		9				Recoverable
Barium	83.9	5.00		ug/L	1		6020B	Total
								Recoverable
Cobalt	1.29	0.500		ug/L	1		6020B	Total
								Recoverable
Zinc	24.2	20.0		ug/L	1		6020B	Total
								Recoverable
Manganese	1020	5.00		ug/L	1		6020B	Total
								Recoverable

Client Sample ID: AF56425

Lab Sample ID: 680-232196-30

Analyte	Result Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type
Calcium	68500	500		ug/L	1		6010D	Total
								Recoverable
Iron	3190	100		ug/L	1		6010D	Total
								Recoverable
Magnesium	2680	500		ug/L	1		6010D	Total
								Recoverable
Potassium	2060	1000		ug/L	1		6010D	Total
								Recoverable
Sodium	11100	2000		ug/L	1		6010D	Total
								Recoverable
Barium	9.10	5.00		ug/L	1		6020B	Total
								Recoverable
Copper	30.7	5.00		ug/L	1		6020B	Total
								Recoverable
Manganese	90.8	5.00		ug/L	1		6020B	Total
								Recoverable

Client Sample ID: AF56426

Lab Sample ID: 680-232196-31

Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type
Calcium	20600		500		ug/L	1		6010D	Total
									Recoverable
Iron	386		100		ug/L	1		6010D	Total
									Recoverable
Magnesium	1730		500		ug/L	1		6010D	Total
									Recoverable
Sodium	4370		2000		ug/L	1		6010D	Total
									Recoverable

This Detection Summary does not include radiochemical test results.

Eurofins Savannah

Client: South Carolina Public Service Authority Project/Site: 125915/JM02.09.G01.1/36500

Job ID: 680-232196-1

Client Sample ID: AF56426 (Continued)

Lab Sample ID: 68	0-232196-31
-------------------	-------------

Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type
Aluminum	164		100		ug/L	1	_	6020B	Total
									Recoverable
Barium	34.6		5.00		ug/L	1		6020B	Total
									Recoverable
Zinc	32.7		20.0		ug/L	1		6020B	Total
									Recoverable
Manganese	18.4		5.00		ug/L	1		6020B	Total
									Recoverable

Client Sample ID: AF56427

Lab Sample ID: 680-232196-32

Analyte	Result	Qualifier RL	MDL	Unit	Dil Fac	D	Method	Prep Type
Calcium	22400	500		ug/L	1		6010D	Total
								Recoverable
Iron	392	100		ug/L	1		6010D	Total
								Recoverable
Magnesium	1820	500		ug/L	1		6010D	Total
								Recoverable
Sodium	4470	2000		ug/L	1		6010D	Total
								Recoverable
Aluminum	178	100		ug/L	1		6020B	Total
								Recoverable
Barium	34.5	5.00		ug/L	1		6020B	Total
								Recoverable
Manganese	19.9	5.00		ug/L	1		6020B	Total
								Recoverable

Client Sample ID: AF56408

Lab Sample ID: 680-232196-33

Analyte	Result	Qualifier RL	MDL	Unit	Dil Fac	D	Method	Prep Type
Calcium	416000	500		ug/L	1		6010D	Total
								Recoverable
Iron	56000	100		ug/L	1		6010D	Total
								Recoverable
Magnesium	30400	500		ug/L	1		6010D	Total
								Recoverable
Potassium	2780	1000		ug/L	1		6010D	Total
								Recoverable
Sodium	127000	2000		ug/L	1		6010D	Total
								Recoverable
Barium	305	5.00		ug/L	1		6020B	Total
								Recoverable
Cobalt	0.555	0.500		ug/L	1		6020B	Total
								Recoverable
Zinc	136	20.0		ug/L	1		6020B	Total
								Recoverable
Manganese	694	5.00		ug/L	1		6020B	Total
_								Recoverable

Client Sample ID: AF56415

Lab Sample ID: 680-232196-34

Analyte	Result Qualifier	RL	MDL Unit	Dil Fac	D Method	Prep Type
Calcium	202000	500	ug/L	1	6010D	Total
						Recoverable
Iron	8580	100	ug/L	1	6010D	Total
						Recoverable
Magnesium	19800	500	ug/L	1	6010D	Total
						Recoverable

This Detection Summary does not include radiochemical test results.

Eurofins Savannah

3/28/2023

Client: South Carolina Public Service Authority Project/Site: 125915/JM02.09.G01.1/36500

Job ID: 680-232196-1

Lab Sample ID: 680-232196-34

Client Sample	D: AF56415	(Continued)
---------------	------------	-------------

Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type
Potassium	11800		1000		ug/L	1	_	6010D	Total
									Recoverable
Sodium	128000		2000		ug/L	1		6010D	Total
									Recoverable
Barium	86.8		5.00		ug/L	1		6020B	Total
									Recoverable
Zinc	39.3		20.0		ug/L	1		6020B	Total
									Recoverable
Manganese	203		5.00		ug/L	1		6020B	Total
									Recoverable

Client Sample ID: AF56416

Client Sample ID: AF56416						Lab	Sa	mple ID:	680-232196-35
Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type
Calcium	260000		500		ug/L	1	_	6010D	Total
									Recoverable

Allalyte	result	addillici itt	11102	011110	Dill'uc D	method	i ich iyec
Calcium	260000	500		ug/L		6010D	Total
							Recoverable
Iron	1570	100		ug/L	1	6010D	Total
							Recoverable
Magnesium	38100	500		ug/L	1	6010D	Total
							Recoverable
Molybdenum	18.0	10.0		ug/L	1	6010D	Total
							Recoverable
Potassium	13800	1000		ug/L	1	6010D	Total
							Recoverable
Sodium	69700	2000		ug/L	1	6010D	Total
							Recoverable
Arsenic	85.9	3.00		ug/L	1	6020B	Total
							Recoverable
Barium	44.4	5.00		ug/L	1	6020B	Total
							Recoverable
Zinc	413	20.0		ug/L	1	6020B	Total
							Recoverable
Manganese	82.2	5.00		ug/L	1	6020B	Total
							Recoverable

Client Sample ID: AF56417

Lab Sample ID: 680-232196-36

Analyte	Result	Qualifier RL	MDL	Unit	Dil Fac	D	Method	Prep Type
Calcium	260000	500		ug/L	1		6010D	Total
								Recoverable
Iron	1740	100		ug/L	1		6010D	Total
								Recoverable
Magnesium	37600	500		ug/L	1		6010D	Total
								Recoverable
Molybdenum	21.2	10.0		ug/L	1		6010D	Total
								Recoverable
Potassium	13800	1000		ug/L	1		6010D	Total
								Recoverable
Sodium	69400	2000		ug/L	1		6010D	Total
								Recoverable
Arsenic	85.8	3.00		ug/L	1		6020B	Total
								Recoverable
Barium	45.4	5.00		ug/L	1		6020B	Total
								Recoverable
Zinc	27.9	20.0		ug/L	1		6020B	Total
								Recoverable
Manganese	84.4	5.00		ug/L	1		6020B	Total
								Recoverable

This Detection Summary does not include radiochemical test results.

Eurofins Savannah

3/28/2023

Client: South Carolina Public Service Authority Project/Site: 125915/JM02.09.G01.1/36500

Client Sample ID: AF56429

Job ID: 680-232196-1

Lab Sample ID: 680-232196-37

Analyte	Result	Qualifier RL	MDL	Unit	Dil Fac	D	Method	Prep Type
Calcium	73100	500		ug/L	1		6010D	Total
								Recoverable
Iron	94400	100		ug/L	1		6010D	Total
								Recoverable
Magnesium	26000	500		ug/L	1		6010D	Total
								Recoverable
Sodium	82200	2000		ug/L	1		6010D	Total
								Recoverable
Aluminum	2410	100		ug/L	1		6020B	Total
								Recoverable
Barium	258	5.00		ug/L	1		6020B	Total
								Recoverable
Beryllium	0.985	0.500		ug/L	1		6020B	Total
								Recoverable
Cobalt	18.6	0.500		ug/L	1		6020B	Total
								Recoverable
Lead	3.19	2.50		ug/L	1		6020B	Total
								Recoverable
Manganese	1540	5.00		ug/L	1		6020B	Total
								Recoverable

Client Sample ID: AF56421

Lab Sample ID: 680-232196-38

Analyte	Result C	Qualifier RL	MDL	Unit	Dil Fac	D	Method	Prep Type
Calcium	114000	500		ug/L	1		6010D	Total
								Recoverable
Iron	4430	100		ug/L	1		6010D	Total
								Recoverable
Magnesium	16900	500		ug/L	1		6010D	Total
								Recoverable
Potassium	10500	1000		ug/L	1		6010D	Total
								Recoverable
Sodium	21200	2000		ug/L	1		6010D	Total
								Recoverable
Aluminum	159	100		ug/L	1		6020B	Total
								Recoverable
Barium	37.8	5.00		ug/L	1		6020B	Total
								Recoverable
Manganese	128	5.00		ug/L	1		6020B	Total
								Recoverable

Client Sample ID: AF56428

Lab Sample ID: 680-232196-39

Analyte	Result	Qualifier RL	MDL	Unit	Dil Fac	D	Method	Prep Type
Calcium	199000	500		ug/L	1		6010D	Total
								Recoverable
Iron	714	100		ug/L	1		6010D	Total
								Recoverable
Magnesium	15200	500		ug/L	1		6010D	Total
								Recoverable
Potassium	6130	1000		ug/L	1		6010D	Total
								Recoverable
Sodium	38200	2000		ug/L	1		6010D	Total
								Recoverable
Barium	8.73	5.00		ug/L	1		6020B	Total
								Recoverable
Manganese	59.2	5.00		ug/L	1		6020B	Total
								Recoverable

This Detection Summary does not include radiochemical test results.

Eurofins Savannah

Client: South Carolina Public Service Authority Project/Site: 125915/JM02.09.G01.1/36500

Client Sample ID: AF56439

Job ID: 680-232196-1

Lab Sample ID: 680-232196-40

Analyte	Result	Qualifier RL	MDL	Unit	Dil Fac	D	Method	Prep Type
Calcium	138000	500		ug/L	1	_	6010D	Total
								Recoverable
Iron	9540	100		ug/L	1		6010D	Total
								Recoverable
Magnesium	14600	500		ug/L	1		6010D	Total
								Recoverable
Potassium	7790	1000		ug/L	1		6010D	Total
								Recoverable
Sodium	38300	2000		ug/L	1		6010D	Total
								Recoverable
Aluminum	1000	100		ug/L	1		6020B	Total
								Recoverable
Arsenic	42.3	3.00		ug/L	1		6020B	Total
Barium	104	5.00		ua/l	1		6020B	Recoverable Total
Darium	104	5.00		ug/L	'		6020B	Recoverable
Cobalt	6.88	0.500		ug/L	1		6020B	Total
Cobait	0.00	0.000		ug/L	'		00200	Recoverable
Zinc	67.1	20.0		ug/L	1		6020B	Total
	07.1	20.0		~g/ =			33232	Recoverable
Manganese	167	5.00		ug/L	1		6020B	Total
		5.55			·			Recoverable

Client Sample ID: AF56441

Lab Sample ID: 680-232196-41

Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type
Lithium	121		50.0		ug/L	1		6010D	Total/NA
Calcium	191000		500		ug/L	1		6010D	Total
									Recoverable
Iron	5280		100		ug/L	1		6010D	Total
									Recoverable
Magnesium	10900		500		ug/L	1		6010D	Total
									Recoverable
Potassium	5500		1000		ug/L	1		6010D	Total
									Recoverable
Sodium	24400		2000		ug/L	1		6010D	Total
									Recoverable
Arsenic	182		3.00		ug/L	1		6020B	Total
									Recoverable
Barium	78.6		5.00		ug/L	1		6020B	Total
									Recoverable
Manganese	324		5.00		ug/L	1		6020B	Total
									Recoverable

Client Sample ID: AF56414

Lab Sample ID: 680-232196-42

Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type
Calcium	495000		500		ug/L	1		6010D	Total
									Recoverable
Iron	27800		100		ug/L	1		6010D	Total
									Recoverable
Magnesium	49100		500		ug/L	1		6010D	Total
									Recoverable
Potassium	6740		1000		ug/L	1		6010D	Total
									Recoverable
Sodium	101000		2000		ug/L	1		6010D	Total
									Recoverable

This Detection Summary does not include radiochemical test results.

Eurofins Savannah

3/28/2023

3

4

7

8

10

11

13

Client: South Carolina Public Service Authority Project/Site: 125915/JM02.09.G01.1/36500

Job ID: 680-232196-1

Client Sample ID: AF56414 (Continued) Lab Sample ID: 680-232196-42

Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type
Barium	413		5.00		ug/L	1	_	6020B	Total
									Recoverable
Manganese	626		5.00		ug/L	1		6020B	Total
									Recoverable

Client Sample ID: AF56423 Lab Sample ID: 680-232196-43

Analyte	Result	Qualifier RL	MDL	Unit	Dil Fac	D	Method	Prep Type
Lithium	104	50.0		ug/L	1	_	6010D	Total/NA
Calcium	429000	500		ug/L	1		6010D	Total
								Recoverable
Iron	16600	100		ug/L	1		6010D	Total
								Recoverable
Magnesium	52600	500		ug/L	1		6010D	Total
								Recoverable
Potassium	13400	1000		ug/L	1		6010D	Total
								Recoverable
Sodium	92700	2000		ug/L	1		6010D	Total
								Recoverable
Arsenic	363	3.00		ug/L	1		6020B	Total
								Recoverable
Barium	262	5.00		ug/L	1		6020B	Total
								Recoverable
Manganese	887	5.00		ug/L	1		6020B	Total
_								Recoverable

Client Sample ID: AF56428

Lab Sample ID: 680-232196-44

Analyte	Result	Qualifier RL	MDL	Unit	Dil Fac	D	Method	Prep Type
Calcium	102000	500		ug/L	1		6010D	Total
								Recoverable
Iron	89800	100		ug/L	1		6010D	Total
								Recoverable
Magnesium	23400	500		ug/L	1		6010D	Total
								Recoverable
Potassium	10800	1000		ug/L	1		6010D	Total
								Recoverable
Sodium	37100	2000		ug/L	1		6010D	Total
								Recoverable
Arsenic	88.3	3.00		ug/L	1		6020B	Total
								Recoverable
Barium	123	5.00		ug/L	1		6020B	Total
								Recoverable
Cobalt	0.630	0.500		ug/L	1		6020B	Total
								Recoverable
Manganese	362	5.00		ug/L	1		6020B	Total
								Recoverable

This Detection Summary does not include radiochemical test results.

Client: South Carolina Public Service Authority Project/Site: 125915/JM02.09.G01.1/36500

Method: SW846 6010D - Metals (ICP)

Client Sample ID: AF56394

Sodium

Job ID: 680-232196-1

Lab Sample ID: 680-232196-1

03/21/23 22:21

Matrix: Water

03/20/23 09:08

Date Collected: 02/14/23 12:33 Date Received: 03/17/23 10:30

5460

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Lithium	50.0	U	50.0		ug/L		03/23/23 14:13	03/24/23 13:50	1
– Method: SW846 6010D - N	Metals (ICP) - Total Re	coverable							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Calcium	10600		500		ug/L		03/20/23 09:08	03/21/23 22:21	1
Iron	3060		100		ug/L		03/20/23 09:08	03/21/23 22:21	1
Magnesium	1000		500		ug/L		03/20/23 09:08	03/21/23 22:21	1
Molybdenum	10.0	U	10.0		ug/L		03/20/23 09:08	03/21/23 22:21	1
Potassium	1000	U	1000		ug/L		03/20/23 09:08	03/21/23 22:21	1
Selenium	20.0	U	20.0		ug/L		03/20/23 09:08	03/21/23 22:21	1

2000

ug/L

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Aluminum	1280		100		ug/L		03/20/23 09:08	03/21/23 18:05	1
Antimony	5.00	U	5.00		ug/L		03/20/23 09:08	03/21/23 18:05	1
Arsenic	5.88		3.00		ug/L		03/20/23 09:08	03/21/23 18:05	1
Barium	76.0		5.00		ug/L		03/20/23 09:08	03/21/23 18:05	1
Beryllium	0.500	U	0.500		ug/L		03/20/23 09:08	03/22/23 09:30	1
Cadmium	0.500	U	0.500		ug/L		03/20/23 09:08	03/21/23 18:05	1
Chromium	5.00	U	5.00		ug/L		03/20/23 09:08	03/21/23 18:05	1
Cobalt	0.705		0.500		ug/L		03/20/23 09:08	03/21/23 18:05	1
Copper	5.00	U	5.00		ug/L		03/20/23 09:08	03/21/23 18:05	1
Lead	2.50	U	2.50		ug/L		03/20/23 09:08	03/21/23 18:05	1
Nickel	5.00	U	5.00		ug/L		03/20/23 09:08	03/21/23 18:05	1
Silver	1.00	U	1.00		ug/L		03/20/23 09:08	03/21/23 18:05	1
Thallium	1.00	U	1.00		ug/L		03/20/23 09:08	03/21/23 18:05	1
Zinc	24.9		20.0		ug/L		03/20/23 09:08	03/21/23 18:05	1
Manganese	27.1		5.00		ug/L		03/20/23 09:08	03/21/23 18:05	1
- Method: SW846 7470A - N	Mercury (CVAA)								
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Mercury	0.200	U H H3	0.200		ug/L		03/20/23 12:30	03/20/23 19:57	1

Client: South Carolina Public Service Authority Project/Site: 125915/JM02.09.G01.1/36500

Job ID: 680-232196-1

Lab Sample ID: 680-232196-2

Matrix: Water

Client Sample ID: AF56331 Date Collected: 02/14/23 13:51

Method: SW846 6010D - Met	, ,								
Analyte		Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
Lithium	50.0	U	50.0		ug/L		03/23/23 14:13	03/24/23 14:13	
Method: SW846 6010D - Met	tals (ICP) - Total Re	coverable							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
Calcium	2790		500		ug/L		03/20/23 09:08	03/21/23 22:31	
Iron	251		100		ug/L		03/20/23 09:08	03/21/23 22:31	
Magnesium	902		500		ug/L		03/20/23 09:08	03/21/23 22:31	
Molybdenum	10.0	U	10.0		ug/L		03/20/23 09:08	03/21/23 22:31	
Potassium	1000	U	1000		ug/L		03/20/23 09:08	03/21/23 22:31	
Selenium	20.0	U	20.0		ug/L		03/20/23 09:08	03/21/23 22:31	
Sodium	2670		2000		ug/L		03/20/23 09:08	03/21/23 22:31	
Method: SW846 6020B - Met	tals (ICP/MS) - Total	Recoverable)						
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
Aluminum	845		100		ug/L		03/20/23 09:08	03/21/23 18:16	
Antimony	5.00	U	5.00		ug/L		03/20/23 09:08	03/21/23 18:16	
Arsenic	3.00	U	3.00		ug/L		03/20/23 09:08	03/21/23 18:16	
	31.7		E 00		ug/L		03/20/23 09:08	03/21/23 18:16	
Barium	01.7		5.00		ug/L		03/20/23 09.00	03/21/23 10.10	
Barium Beryllium	0.500	U	0.500		ug/L		03/20/23 09:08	03/22/23 09:50	
Beryllium					-				
	0.500	U	0.500		ug/L		03/20/23 09:08	03/22/23 09:50	
Beryllium Cadmium	0.500 0.500	U	0.500 0.500		ug/L ug/L		03/20/23 09:08 03/20/23 09:08	03/22/23 09:50 03/21/23 18:16	
Beryllium Cadmium Chromium Cobalt	0.500 0.500 5.00	U	0.500 0.500 5.00		ug/L ug/L ug/L		03/20/23 09:08 03/20/23 09:08 03/20/23 09:08	03/22/23 09:50 03/21/23 18:16 03/21/23 18:16	
Beryllium Cadmium Chromium Cobalt Copper	0.500 0.500 5.00 1.52	U U	0.500 0.500 5.00 0.500		ug/L ug/L ug/L ug/L		03/20/23 09:08 03/20/23 09:08 03/20/23 09:08 03/20/23 09:08	03/22/23 09:50 03/21/23 18:16 03/21/23 18:16 03/21/23 18:16	
Beryllium Cadmium Chromium	0.500 0.500 5.00 1.52 5.00	U U U	0.500 0.500 5.00 0.500 5.00		ug/L ug/L ug/L ug/L ug/L		03/20/23 09:08 03/20/23 09:08 03/20/23 09:08 03/20/23 09:08 03/20/23 09:08	03/22/23 09:50 03/21/23 18:16 03/21/23 18:16 03/21/23 18:16 03/21/23 18:16	
Beryllium Cadmium Chromium Cobalt Copper Lead Nickel	0.500 0.500 5.00 1.52 5.00 2.50	U U U U	0.500 0.500 5.00 0.500 5.00 2.50		ug/L ug/L ug/L ug/L ug/L		03/20/23 09:08 03/20/23 09:08 03/20/23 09:08 03/20/23 09:08 03/20/23 09:08 03/20/23 09:08	03/22/23 09:50 03/21/23 18:16 03/21/23 18:16 03/21/23 18:16 03/21/23 18:16 03/21/23 18:16	
Beryllium Cadmium Chromium Cobalt Copper Lead	0.500 0.500 5.00 1.52 5.00 2.50	U U U U U	0.500 0.500 5.00 0.500 5.00 2.50 5.00		ug/L ug/L ug/L ug/L ug/L ug/L		03/20/23 09:08 03/20/23 09:08 03/20/23 09:08 03/20/23 09:08 03/20/23 09:08 03/20/23 09:08 03/20/23 09:08	03/22/23 09:50 03/21/23 18:16 03/21/23 18:16 03/21/23 18:16 03/21/23 18:16 03/21/23 18:16 03/21/23 18:16	
Beryllium Cadmium Chromium Cobalt Copper Lead Nickel	0.500 0.500 5.00 1.52 5.00 2.50 5.00	U U U U U	0.500 0.500 5.00 0.500 5.00 2.50 5.00		ug/L ug/L ug/L ug/L ug/L ug/L ug/L		03/20/23 09:08 03/20/23 09:08 03/20/23 09:08 03/20/23 09:08 03/20/23 09:08 03/20/23 09:08 03/20/23 09:08 03/20/23 09:08	03/22/23 09:50 03/21/23 18:16 03/21/23 18:16 03/21/23 18:16 03/21/23 18:16 03/21/23 18:16 03/21/23 18:16 03/21/23 18:16	

Method: SW846 7470A - Mercury (C	SVAA)								
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Mercury	0.200	U H H3	0.200		ug/L		03/20/23 12:45	03/21/23 13:40	1

Eurofins Savannah

Client: South Carolina Public Service Authority Project/Site: 125915/JM02.09.G01.1/36500

Job ID: 680-232196-1

Lab Sample ID: 680-232196-3

Matrix: Water

Client Sample ID: AF56332 Date Collected: 02/14/23 15:22

Mercury

	P)								
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Lithium	50.0	U	50.0		ug/L		03/23/23 14:13	03/24/23 14:18	1
Method: SW846 6010D - Metals (ICF	P) - Total Re	coverable							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Calcium	85600		500		ug/L		03/20/23 09:08	03/21/23 22:40	•
Iron	5130		100		ug/L		03/20/23 09:08	03/21/23 22:40	,
Magnesium	2660		500		ug/L		03/20/23 09:08	03/21/23 22:40	1
Molybdenum	10.0	U	10.0		ug/L		03/20/23 09:08	03/21/23 22:40	1
Potassium	2030		1000		ug/L		03/20/23 09:08	03/21/23 22:40	
Selenium	20.0	U	20.0		ug/L		03/20/23 09:08	03/21/23 22:40	
Sodium	11300		2000		ug/L		03/20/23 09:08	03/21/23 22:40	
Method: SW846 6020B - Metals (ICF	P/MS) - Total	Recoverable							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
Aluminum	1170		100		ug/L		03/20/23 09:08	03/21/23 18:20	•
Antimony	5.00	U	5.00		ug/L		03/20/23 09:08	03/21/23 18:20	
Arsenic	3.00	U	3.00		ug/L		03/20/23 09:08	03/21/23 18:20	
Barium	88.5		5.00		ug/L		03/20/23 09:08	03/21/23 18:20	
Beryllium	0.500	U	0.500		ug/L		03/20/23 09:08	03/22/23 09:54	
Cadmium	0.500	U	0.500		ug/L		03/20/23 09:08	03/21/23 18:20	,
Chromium	5.00	U	5.00		ug/L		03/20/23 09:08	03/21/23 18:20	•
	0.500	U	0.500		ug/L		03/20/23 09:08	03/21/23 18:20	
	0.000		0.500		ug/ =			00/21/20 10:20	
Cobalt	5.00	U	5.00		ug/L		03/20/23 09:08	03/21/23 18:20	
Cobalt Copper					-		03/20/23 09:08 03/20/23 09:08		
Cobalt Copper Lead	5.00	U	5.00		ug/L			03/21/23 18:20	,
Cobalt Copper Lead Nickel	5.00 2.50	U	5.00 2.50		ug/L ug/L		03/20/23 09:08	03/21/23 18:20 03/21/23 18:20	
Cobalt Copper Lead Nickel Silver	5.00 2.50 5.00	U U U	5.00 2.50 5.00		ug/L ug/L ug/L		03/20/23 09:08 03/20/23 09:08	03/21/23 18:20 03/21/23 18:20 03/21/23 18:20	
Cobalt Copper Lead Nickel Silver Thallium	5.00 2.50 5.00 1.00	U U U	5.00 2.50 5.00 1.00		ug/L ug/L ug/L ug/L		03/20/23 09:08 03/20/23 09:08 03/20/23 09:08	03/21/23 18:20 03/21/23 18:20 03/21/23 18:20 03/21/23 18:20	
Cobalt Copper Lead Nickel Silver Thallium	5.00 2.50 5.00 1.00	U U U	5.00 2.50 5.00 1.00		ug/L ug/L ug/L ug/L ug/L		03/20/23 09:08 03/20/23 09:08 03/20/23 09:08 03/20/23 09:08	03/21/23 18:20 03/21/23 18:20 03/21/23 18:20 03/21/23 18:20 03/21/23 18:20	
Cobalt Copper Lead Nickel Silver Thallium Zinc	5.00 2.50 5.00 1.00 20.0 46.7	U U U	5.00 2.50 5.00 1.00 1.00 20.0		ug/L ug/L ug/L ug/L ug/L		03/20/23 09:08 03/20/23 09:08 03/20/23 09:08 03/20/23 09:08 03/20/23 09:08	03/21/23 18:20 03/21/23 18:20 03/21/23 18:20 03/21/23 18:20 03/21/23 18:20 03/21/23 18:20	

0.200

ug/L

0.200 U H H3

03/20/23 12:45

03/21/23 13:20

Client: South Carolina Public Service Authority Project/Site: 125915/JM02.09.G01.1/36500

Job ID: 680-232196-1

Client Sample ID: AF56395

Date Collected: 02/15/23 11:36 Date Received: 03/17/23 10:30

Silver

Zinc

Thallium

Manganese

Lab Sample ID: 680-232196-4

Matrix: Water

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Lithium	50.0	U	50.0		ug/L		03/23/23 14:13	03/24/23 14:36	1
Method: SW846 6010D - N	/letals (ICP) - Total Re	coverable							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Calcium	367000		500		ug/L		03/20/23 09:08	03/21/23 22:44	1
Iron	5110		100		ug/L		03/20/23 09:08	03/21/23 22:44	1
Magnesium	45200		500		ug/L		03/20/23 09:08	03/21/23 22:44	1
Molybdenum	10.0	U	10.0		ug/L		03/20/23 09:08	03/21/23 22:44	1
Potassium	9860		1000		ug/L		03/20/23 09:08	03/21/23 22:44	
Selenium	20.0	U	20.0		ug/L		03/20/23 09:08	03/21/23 22:44	
Sodium Method: SW846 6020B - N	74600 Metals (ICP/MS) - Total	Recoverable	2000		ug/L		03/20/23 09:08	03/21/23 22:44	,
Method: SW846 6020B - N	/letals (ICP/MS) - Total			MDI	J	D			
Method: SW846 6020B - N Analyte	Metals (ICP/MS) - Total Result	Recoverable Qualifier	RL	MDL	Unit	<u>D</u>	Prepared	Analyzed	Dil Fac
Method: SW846 6020B - N Analyte Aluminum	Metals (ICP/MS) - Total Result 948	Qualifier	RL 100	MDL	Unit ug/L	<u>D</u>	Prepared 03/20/23 09:08	Analyzed 03/21/23 18:24	1 Dil Fac
Method: SW846 6020B - N Analyte Aluminum Antimony	Netals (ICP/MS) - Total Result 948 5.00	Qualifier	RL 100 5.00	MDL	Unit ug/L ug/L	<u>D</u>	Prepared 03/20/23 09:08 03/20/23 09:08	Analyzed 03/21/23 18:24 03/21/23 18:24	Dil Fac
Method: SW846 6020B - N Analyte Aluminum Antimony Arsenic	Metals (ICP/MS) - Total Result 948 5.00 23.2	Qualifier	RL 100	MDL	Unit ug/L ug/L ug/L	<u>D</u>	Prepared 03/20/23 09:08	Analyzed 03/21/23 18:24	Dil Fac
Method: SW846 6020B - N Analyte Aluminum Antimony Arsenic Barium	Netals (ICP/MS) - Total Result 948 5.00 23.2 167	Qualifier	RL 100 5.00 3.00	MDL	Unit ug/L ug/L ug/L	<u>D</u>	Prepared 03/20/23 09:08 03/20/23 09:08 03/20/23 09:08	Analyzed 03/21/23 18:24 03/21/23 18:24 03/21/23 18:24	Dil Fac
Method: SW846 6020B - N Analyte Aluminum Antimony Arsenic	Metals (ICP/MS) - Total Result 948 5.00 23.2	Qualifier U	RL 100 5.00 3.00 5.00	MDL	Unit ug/L ug/L ug/L ug/L ug/L	<u>D</u>	Prepared 03/20/23 09:08 03/20/23 09:08 03/20/23 09:08 03/20/23 09:08	Analyzed 03/21/23 18:24 03/21/23 18:24 03/21/23 18:24 03/21/23 18:24	Dil Fac
Method: SW846 6020B - N Analyte Aluminum Antimony Arsenic Barium Beryllium	Metals (ICP/MS) - Total Result 948 5.00 23.2 167 1.96	Qualifier U	RL 100 5.00 3.00 5.00 0.500	MDL	Unit ug/L ug/L ug/L ug/L ug/L ug/L ug/L	<u>D</u>	Prepared 03/20/23 09:08 03/20/23 09:08 03/20/23 09:08 03/20/23 09:08 03/20/23 09:08	Analyzed 03/21/23 18:24 03/21/23 18:24 03/21/23 18:24 03/21/23 18:24 03/22/23 09:58	Dil Fac
Method: SW846 6020B - N Analyte Aluminum Antimony Arsenic Barium Beryllium Cadmium	Metals (ICP/MS) - Total Result 948 5.00 23.2 167 1.96 0.500	Qualifier U	RL 100 5.00 3.00 5.00 0.500	MDL	Unit ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L	D	Prepared 03/20/23 09:08 03/20/23 09:08 03/20/23 09:08 03/20/23 09:08 03/20/23 09:08 03/20/23 09:08	Analyzed 03/21/23 18:24 03/21/23 18:24 03/21/23 18:24 03/21/23 18:24 03/22/23 09:58 03/21/23 18:24	Dil Fac
Method: SW846 6020B - NANALYTE Aluminum Antimony Arsenic Barium Beryllium Cadmium Chromium Cobalt	Metals (ICP/MS) - Total Result 948 5.00 23.2 167 1.96 0.500 5.00	Qualifier U U	RL 100 5.00 3.00 5.00 0.500 0.500 5.00	MDL	Unit ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L	D	Prepared 03/20/23 09:08 03/20/23 09:08 03/20/23 09:08 03/20/23 09:08 03/20/23 09:08 03/20/23 09:08 03/20/23 09:08	Analyzed 03/21/23 18:24 03/21/23 18:24 03/21/23 18:24 03/22/23 09:58 03/21/23 18:24 03/21/23 18:24	Dil Fac
Method: SW846 6020B - NANALYTE Aluminum Antimony Arsenic Barium Beryllium Cadmium Chromium	Metals (ICP/MS) - Total Result 948 5.00 23.2 167 1.96 0.500 5.00 19.7	Qualifier U U U	RL 100 5.00 3.00 5.00 0.500 0.500 5.00	MDL	Unit ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L	<u>D</u>	Prepared 03/20/23 09:08 03/20/23 09:08 03/20/23 09:08 03/20/23 09:08 03/20/23 09:08 03/20/23 09:08 03/20/23 09:08 03/20/23 09:08	Analyzed 03/21/23 18:24 03/21/23 18:24 03/21/23 18:24 03/21/23 18:24 03/21/23 18:24 03/21/23 18:24 03/21/23 18:24	Dil Fac

Method: SW846 7470A - Mercury (CVAA))								
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Mercury	0.200	U H H3	0.200		ug/L		03/20/23 12:45	03/21/23 12:56	1

1.00

1.00

20.0

5.00

ug/L

ug/L

ug/L

ug/L

03/20/23 09:08

03/20/23 09:08

03/20/23 09:08

03/20/23 09:08

03/21/23 18:24

03/21/23 18:24

03/21/23 18:24

03/21/23 18:24

1.00 U

1.00 U

20.0 U

721

Eurofins Savannah

Client: South Carolina Public Service Authority Project/Site: 125915/JM02.09.G01.1/36500

Job ID: 680-232196-1

Lab Sample ID: 680-232196-5

Matrix: Water

Client Sample ID: AF56396 Date Collected: 02/15/23 13:21

Mercury

Method: SW846 6010D - Metals (ICP)									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Lithium	50.0	U	50.0		ug/L		03/23/23 14:13	03/24/23 14:41	1
Method: SW846 6010D - Metals (ICP) - Tot	al Red	coverable							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Calcium 2	25000		500		ug/L		03/20/23 09:08	03/21/23 22:47	1
Iron	25400		100		ug/L		03/20/23 09:08	03/21/23 22:47	1
Magnesium	14300		500		ug/L		03/20/23 09:08	03/21/23 22:47	1
Molybdenum	10.0	U	10.0		ug/L		03/20/23 09:08	03/21/23 22:47	1
Potassium	1980		1000		ug/L		03/20/23 09:08	03/21/23 22:47	1
Selenium	20.0	U	20.0		ug/L		03/20/23 09:08	03/21/23 22:47	1
Sodium	42300		2000		ug/L		03/20/23 09:08	03/21/23 22:47	
Method: SW846 6020B - Metals (ICP/MS) -	Total	Recoverable							
		Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Aluminum	100	U	100		ug/L		03/20/23 09:08	03/21/23 18:28	
Antimony	5.00	U	5.00		ug/L		03/20/23 09:08	03/21/23 18:28	
Arsenic	3.00	U	3.00		ug/L		03/20/23 09:08	03/21/23 18:28	
Barium	146		5.00		ug/L		03/20/23 09:08	03/21/23 18:28	
Beryllium	0.500	U	0.500		ug/L		03/20/23 09:08	03/22/23 10:02	
Cadmium	0.500	U	0.500		ug/L		03/20/23 09:08	03/21/23 18:28	1
Chromium	5.00	U	5.00		ug/L		03/20/23 09:08	03/21/23 18:28	1
Cobalt	0.500	U	0.500		ug/L		03/20/23 09:08	03/21/23 18:28	
Copper	5.00	U	5.00		ug/L		03/20/23 09:08	03/21/23 18:28	,
Lead	2.50	U	2.50		ug/L		03/20/23 09:08	03/21/23 18:28	
Nickel	5.00	U	5.00		ug/L		03/20/23 09:08	03/21/23 18:28	
	1.00	U	1.00		ug/L		03/20/23 09:08	03/21/23 18:28	
Silver	1.00	U	1.00		ug/L		03/20/23 09:08	03/21/23 18:28	
	1.00				ug/L		03/20/23 09:08	03/21/23 18:28	
Thallium	20.0	U	20.0		ug/L		03/20/23 03.00	03/21/23 10.20	
Silver Thallium Zinc Manganese		U	20.0 5.00		ug/L		03/20/23 09:08	03/21/23 18:28	
Thallium Zinc	20.0	U			-				

0.200

ug/L

0.259 HH3

Eurofins Savannah

03/20/23 12:45

03/21/23 14:04

Client: South Carolina Public Service Authority Project/Site: 125915/JM02.09.G01.1/36500

Job ID: 680-232196-1

Lab Sample ID: 680-232196-6

Matrix: Water

Client Sample ID: AF56397 Date Collected: 02/16/23 10:53

Mercury

Method: SW846 6010D - Me	etals (ICP)								
Analyte		Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
Lithium	50.0	U	50.0		ug/L		03/23/23 14:13	03/24/23 14:45	
Method: SW846 6010D - Me	etals (ICP) - Total Red	coverable							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
Calcium	54300		500		ug/L		03/20/23 09:08	03/21/23 22:50	
Iron	731		100		ug/L		03/20/23 09:08	03/21/23 22:50	
Magnesium	4040		500		ug/L		03/20/23 09:08	03/21/23 22:50	
Molybdenum	10.0	U	10.0		ug/L		03/20/23 09:08	03/21/23 22:50	•
Potassium	1990		1000		ug/L		03/20/23 09:08	03/21/23 22:50	
Selenium	20.0	U	20.0		ug/L		03/20/23 09:08	03/21/23 22:50	
Sodium	17300		2000		ug/L		03/20/23 09:08	03/21/23 22:50	
Method: SW846 6020B - Me	etals (ICP/MS) - Total	Pecoverable							
Analyte	,	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
Aluminum	100	U	100		ug/L		03/20/23 09:08	03/21/23 18:32	
Antimony	5.00	U	5.00		ug/L		03/20/23 09:08	03/21/23 18:32	
Arsenic	3.00	U	3.00		ug/L		03/20/23 09:08	03/21/23 18:32	
Barium	39.4		5.00		ug/L		03/20/23 09:08	03/21/23 18:32	
Beryllium	0.500	U	0.500		ug/L		03/20/23 09:08	03/22/23 10:06	
Cadmium	0.500	U	0.500		ug/L		03/20/23 09:08	03/21/23 18:32	
Chromium	5.00	U	5.00		ug/L		03/20/23 09:08	03/21/23 18:32	
Cobalt	0.500	U	0.500		ug/L		03/20/23 09:08	03/21/23 18:32	
Copper	5.00	U	5.00		ug/L		03/20/23 09:08	03/21/23 18:32	
Lead	2.50	U	2.50		ug/L		03/20/23 09:08	03/21/23 18:32	
Nickel	5.00	U	5.00		ug/L		03/20/23 09:08	03/21/23 18:32	
Silver	1.00	U	1.00		ug/L		03/20/23 09:08	03/21/23 18:32	
Thallium	1.00	U	1.00		ug/L		03/20/23 09:08	03/21/23 18:32	
Zinc	309		20.0		ug/L		03/20/23 09:08	03/21/23 18:32	
Manganese	112		5.00		ug/L		03/20/23 09:08	03/21/23 18:32	
Method: SW846 7470A - Me	,	0	D.	MP:	11:4	_	Downson	Amakanad	Dil Fa
Analyte	Result	Qualifier	RL	MDL	Offic	D	Prepared	Analyzed	1711 1-2

0.200

ug/L

0.200 U H H3

Eurofins Savannah

03/20/23 12:45

03/21/23 12:43

Client: South Carolina Public Service Authority Project/Site: 125915/JM02.09.G01.1/36500

Job ID: 680-232196-1

Lab Sample ID: 680-232196-7

Matrix: Water

Client Sample ID: AF56400 Date Collected: 02/16/23 12:55

Mercury

Method: SW846 6010D - Metals (ICP)									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Lithium	50.0	U	50.0		ug/L		03/23/23 14:13	03/24/23 14:50	•
Method: SW846 6010D - Metals (ICP)	- Total Re	coverable							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Calcium	262000		500		ug/L		03/20/23 09:08	03/21/23 22:53	
Iron	789		100		ug/L		03/20/23 09:08	03/21/23 22:53	
Magnesium	3890		500		ug/L		03/20/23 09:08	03/21/23 22:53	
Molybdenum	10.0	U	10.0		ug/L		03/20/23 09:08	03/21/23 22:53	
Potassium	2320		1000		ug/L		03/20/23 09:08	03/21/23 22:53	
Selenium	20.0	U	20.0		ug/L		03/20/23 09:08	03/21/23 22:53	
Sodium	13800		2000		ug/L		03/20/23 09:08	03/21/23 22:53	
<u> </u>		Qualifier	RL 100	MDL	Unit	<u>D</u>	Prepared	Analyzed	
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
Aluminum	111		100		ug/L		03/20/23 09:08	03/21/23 18:44	,
Antimony	5.00	_	5.00		ug/L		03/20/23 09:08	03/21/23 18:44	•
Arsenic	3.00	U	3.00		ug/L		03/20/23 09:08	03/21/23 18:44	
Barium	42.1		5.00		ug/L		03/20/23 09:08	03/21/23 18:44	
Beryllium	0.500		0.500		ug/L		03/20/23 09:08	03/21/23 18:44	
Cadmium	0.500		0.500		ug/L		03/20/23 09:08	03/21/23 18:44	
Chromium	5.00		5.00		ug/L		03/20/23 09:08	03/21/23 18:44	•
Cobalt	0.500		0.500		ug/L		03/20/23 09:08	03/21/23 18:44	•
Copper	5.00	U	5.00		ug/L		03/20/23 09:08	03/21/23 18:44	
Lead	2.50	U	2.50		ug/L		03/20/23 09:08	03/21/23 18:44	
Nickel	5.00	U	5.00		ug/L		03/20/23 09:08	03/21/23 18:44	
Silver	1.00	U	1.00		ug/L		03/20/23 09:08	03/21/23 18:44	
	1.00	U	1.00		ug/L		03/20/23 09:08	03/21/23 18:44	
Thallium		U	20.0		ug/L		03/20/23 09:08	03/21/23 18:44	
	20.0								
Zinc	20.0 18.6		5.00		ug/L		03/20/23 09:08	03/21/23 18:44	
Thallium Zinc Manganese Method: SW846 7470A - Mercury (CV	18.6		5.00		ug/L		03/20/23 09:08	03/21/23 18:44	•

0.200

ug/L

0.200 U H H3

Eurofins Savannah

03/20/23 13:40

03/21/23 11:09

Client: South Carolina Public Service Authority Project/Site: 125915/JM02.09.G01.1/36500

Job ID: 680-232196-1

Lab Sample ID: 680-232196-8 Client Sample ID: AF56442 Date Collected: 02/16/23 14:07

0.200 U H H3

Matrix: Water

Date Received: 03/17/23 10:30

Mercury

	letals (ICP)					_			
Analyte		Qualifier	RL	MDL		D	Prepared	Analyzed	Dil Fa
Lithium	50.0	U	50.0		ug/L		03/23/23 14:13	03/24/23 15:08	
Method: SW846 6010D - N	letals (ICP) - Total Re	coverable							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
Calcium	166000		500		ug/L		03/20/23 09:08	03/21/23 22:57	
Iron	450		100		ug/L		03/20/23 09:08	03/21/23 22:57	
Magnesium	7730		500		ug/L		03/20/23 09:08	03/21/23 22:57	
Molybdenum	10.0	U	10.0		ug/L		03/20/23 09:08	03/21/23 22:57	
Potassium	4290		1000		ug/L		03/20/23 09:08	03/21/23 22:57	
Selenium	20.0	U	20.0		ug/L		03/20/23 09:08	03/21/23 22:57	
Sodium	21900		2000		ug/L		03/20/23 09:08	03/21/23 22:57	
Method: SW846 6020B - N	letals (ICP/MS) - Total	Recoverable							
Analyte		Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
Aluminum	100	U	100		ug/L		03/20/23 09:08	03/21/23 18:48	
Antimony	5.00	U	5.00		ug/L		03/20/23 09:08	03/21/23 18:48	
Arsenic	3.00	U	3.00		ug/L		03/20/23 09:08	03/21/23 18:48	
Barium	32.6		5.00		ug/L		03/20/23 09:08	03/21/23 18:48	
Beryllium	0.500	U	0.500		ug/L		03/20/23 09:08	03/21/23 18:48	
Cadmium	0.500	U	0.500		ug/L		03/20/23 09:08	03/21/23 18:48	
Chromium	5.00	U	5.00		ug/L		03/20/23 09:08	03/21/23 18:48	
Cobalt	0.500	U	0.500		ug/L		03/20/23 09:08	03/21/23 18:48	
Copper	5.00	U	5.00		ug/L		03/20/23 09:08	03/21/23 18:48	
Lead	2.50	U	2.50		ug/L		03/20/23 09:08	03/21/23 18:48	
Nickel	5.00	U	5.00		ug/L		03/20/23 09:08	03/21/23 18:48	
Silver	1.00	U	1.00		ug/L		03/20/23 09:08	03/21/23 18:48	
Thallium	1.00	U	1.00		ug/L		03/20/23 09:08	03/21/23 18:48	
Zinc	20.0	U	20.0		ug/L		03/20/23 09:08	03/21/23 18:48	
Manganese	58.2		5.00		ug/L		03/20/23 09:08	03/21/23 18:48	
	(01/11)								
Method: SW846 7470A - M Analyte	,								
		Qualifier	RL	MDL		D	Prepared	Analyzed	Dil Fa

0.200

ug/L

Eurofins Savannah

03/20/23 13:40

03/21/23 11:19

Client: South Carolina Public Service Authority Project/Site: 125915/JM02.09.G01.1/36500

Job ID: 680-232196-1

Lab Sample ID: 680-232196-9

Matrix: Water

Client Sample ID: AF56443 Date Collected: 02/16/23 14:12

Date Received: 03/17/23 10:30

Nickel

Silver

Zinc

Thallium

Manganese

Method: SW846 6010D - N	/letals (ICP)								
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Lithium	50.0	U	50.0		ug/L		03/23/23 14:13	03/24/23 15:13	1
Method: SW846 6010D - N	Metals (ICP) - Total Red	coverable							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Calcium	160000		500		ug/L		03/20/23 09:08	03/21/23 23:00	1
Iron	302		100		ug/L		03/20/23 09:08	03/21/23 23:00	1
Magnesium	7590		500		ug/L		03/20/23 09:08	03/21/23 23:00	1
Molybdenum	10.0	U	10.0		ug/L		03/20/23 09:08	03/21/23 23:00	1
Potassium	4050		1000		ug/L		03/20/23 09:08	03/21/23 23:00	1
Selenium	20.0	U	20.0		ug/L		03/20/23 09:08	03/21/23 23:00	1
Sodium	20700		2000		ug/L		03/20/23 09:08	03/21/23 23:00	1
Sodium Method: SW846 6020B - N		Recoverable			ug/L		03/20/23 09:08	03/21/23 23:00	1
	Metals (ICP/MS) - Total	Recoverable Qualifier		MDL	Ü	D	03/20/23 09:08 Prepared	03/21/23 23:00 Analyzed	1 Dil Fac
Method: SW846 6020B - N	Metals (ICP/MS) - Total	Qualifier		MDL	Ü	D			Dil Fac
Method: SW846 6020B - N Analyte	Metals (ICP/MS) - Total Result	Qualifier U	RL	MDL	Unit	<u>D</u>	Prepared	Analyzed	1 Dil Fac 1
Method: SW846 6020B - N Analyte Aluminum	Metals (ICP/MS) - Total Result 100	Qualifier U	RL 100	MDL	Unit ug/L	<u>D</u>	Prepared 03/20/23 09:08	Analyzed 03/21/23 18:52	1 Dil Fac 1 1 1
Method: SW846 6020B - N Analyte Aluminum Antimony	Metals (ICP/MS) - Total Result 100 5.00	Qualifier U	RL 100 5.00	MDL	Unit ug/L ug/L	<u>D</u>	Prepared 03/20/23 09:08 03/20/23 09:08	Analyzed 03/21/23 18:52 03/21/23 18:52	Dil Fac 1 1 1 1
Method: SW846 6020B - N Analyte Aluminum Antimony Arsenic	Netals (ICP/MS) - Total Result 100 5.00 3.00	Qualifier U U U	RL 100 5.00 3.00	MDL	Unit ug/L ug/L ug/L	<u>D</u>	Prepared 03/20/23 09:08 03/20/23 09:08 03/20/23 09:08	Analyzed 03/21/23 18:52 03/21/23 18:52 03/21/23 18:52	Dil Fac 1 1 1 1 1
Method: SW846 6020B - N Analyte Aluminum Antimony Arsenic Barium	Metals (ICP/MS) - Total Result 100 5.00 3.00 33.8	Qualifier U U U	RL 100 5.00 3.00 5.00	MDL	Unit ug/L ug/L ug/L	<u>D</u>	Prepared 03/20/23 09:08 03/20/23 09:08 03/20/23 09:08 03/20/23 09:08	Analyzed 03/21/23 18:52 03/21/23 18:52 03/21/23 18:52 03/21/23 18:52	1 Dil Fac 1 1 1 1 1 1 1 1
Method: SW846 6020B - N Analyte Aluminum Antimony Arsenic Barium Beryllium	Metals (ICP/MS) - Total Result 100 5.00 3.00 33.8 0.500	Qualifier U U U U	RL 100 5.00 3.00 5.00 0.500	MDL	Unit ug/L ug/L ug/L ug/L ug/L	D	Prepared 03/20/23 09:08 03/20/23 09:08 03/20/23 09:08 03/20/23 09:08 03/20/23 09:08	Analyzed 03/21/23 18:52 03/21/23 18:52 03/21/23 18:52 03/21/23 18:52 03/21/23 18:52	Dil Fac 1 1 1 1 1 1 1 1 1 1
Method: SW846 6020B - NANAIYte Aluminum Antimony Arsenic Barium Beryllium Cadmium	Metals (ICP/MS) - Total Result 100 5.00 3.00 33.8 0.500 0.500	Qualifier U U U U U U U	RL 100 5.00 3.00 5.00 0.500	MDL	Unit ug/L ug/L ug/L ug/L ug/L ug/L	<u>D</u>	Prepared 03/20/23 09:08 03/20/23 09:08 03/20/23 09:08 03/20/23 09:08 03/20/23 09:08 03/20/23 09:08	Analyzed 03/21/23 18:52 03/21/23 18:52 03/21/23 18:52 03/21/23 18:52 03/21/23 18:52 03/21/23 18:52	Dil Fac 1 1 1 1 1 1 1 1 1 1 1 1
Method: SW846 6020B - NAnalyte Aluminum Antimony Arsenic Barium Beryllium Cadmium Chromium	Metals (ICP/MS) - Total Result 100 5.00 3.00 33.8 0.500 0.500 5.00	Qualifier U U U U U U U U U U U	RL 100 5.00 3.00 5.00 0.500 0.500 5.00	MDL	Unit ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L	D	Prepared 03/20/23 09:08 03/20/23 09:08 03/20/23 09:08 03/20/23 09:08 03/20/23 09:08 03/20/23 09:08 03/20/23 09:08	Analyzed 03/21/23 18:52 03/21/23 18:52 03/21/23 18:52 03/21/23 18:52 03/21/23 18:52 03/21/23 18:52 03/21/23 18:52	Dil Fac 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

Method: SW846 7470A - Mercury (CVAA	·)								
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Mercury	0.200	U H H3	0.200		ug/L		03/20/23 13:40	03/21/23 10:52	1

5.00

1.00

1.00

20.0

5.00

ug/L

ug/L

ug/L

ug/L

ug/L

03/20/23 09:08

03/20/23 09:08

03/20/23 09:08

03/20/23 09:08

03/20/23 09:08

03/21/23 18:52

03/21/23 18:52

03/21/23 18:52

03/21/23 18:52

03/21/23 18:52

5.00 U

1.00 U

1.00 U

20.0 U

57.3

Eurofins Savannah

3

4

6

8

10

12

13

М

Client: South Carolina Public Service Authority Project/Site: 125915/JM02.09.G01.1/36500

Job ID: 680-232196-1

Lab Sample ID: 680-232196-10

Matrix: Water

Client Sample ID: AF56402 Date Collected: 02/27/23 12:47

Mercury

Method: SW846 6010D - Metals (ICP	P)								
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
Lithium	50.0	U	50.0		ug/L		03/23/23 14:13	03/24/23 15:18	
Method: SW846 6010D - Metals (ICF	P) - Total Re	coverable							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
Calcium	204000		500		ug/L		03/20/23 09:08	03/21/23 23:03	
Iron	23500		100		ug/L		03/20/23 09:08	03/21/23 23:03	
Magnesium	24400		500		ug/L		03/20/23 09:08	03/21/23 23:03	
Molybdenum	10.0	U	10.0		ug/L		03/20/23 09:08	03/21/23 23:03	
Potassium	11400		1000		ug/L		03/20/23 09:08	03/21/23 23:03	
Selenium	20.0	U	20.0		ug/L		03/20/23 09:08	03/21/23 23:03	
Sodium	35500		2000		ug/L		03/20/23 09:08	03/21/23 23:03	
Mathadi CMOAC COOD Matala (ICC	VMC) Total	Deceyerable							
Method: SW846 6020B - Metals (ICF Analyte	•	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
Aluminum	386	<u> </u>	100		ug/L		03/20/23 09:08	03/21/23 18:56	
Antimony	5.00	U	5.00		ug/L		03/20/23 09:08	03/21/23 18:56	
Arsenic	31.0		3.00		ug/L		03/20/23 09:08	03/21/23 18:56	
Barium	74.9		5.00		ug/L		03/20/23 09:08	03/21/23 18:56	
Beryllium	0.500	U	0.500		ug/L		03/20/23 09:08	03/21/23 18:56	
Cadmium	0.500	U	0.500		ug/L		03/20/23 09:08	03/21/23 18:56	
Chromium	5.00	U	5.00		ug/L		03/20/23 09:08	03/21/23 18:56	
Cobalt	0.500	U	0.500		ug/L		03/20/23 09:08	03/21/23 18:56	
Copper	5.00	U	5.00		ug/L		03/20/23 09:08	03/21/23 18:56	
Lead	2.50	U	2.50		ug/L		03/20/23 09:08	03/21/23 18:56	
Nickel	5.00	U	5.00		ug/L		03/20/23 09:08	03/21/23 18:56	
8:1	1.00	U	1.00		ug/L		03/20/23 09:08	03/21/23 18:56	
Silver	1.00	U	1.00		ug/L		03/20/23 09:08	03/21/23 18:56	
			20.0		ug/L		03/20/23 09:08	03/21/23 18:56	
Thallium	20.0	U	20.0						
Silver Thallium Zinc		U			-		U3/2U/33 U0:U8	03/21/23 18:56	
Thallium	283	U	5.00		ug/L		03/20/23 09:08	03/21/23 18:56	

0.200

ug/L

0.200 U

03/20/23 13:40

03/21/23 10:42

2

1

_

b

8

10

12

13

Client: South Carolina Public Service Authority Project/Site: 125915/JM02.09.G01.1/36500

Job ID: 680-232196-1

Lab Sample ID: 680-232196-11

Matrix: Water

Client Sample ID: AF56403 Date Collected: 02/27/23 09:57

Mercury

Method: SW846 6010D - Met	tals (ICP)								
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
Lithium	51.4		50.0		ug/L		03/23/23 14:13	03/24/23 15:22	
Method: SW846 6010D - Met	tals (ICP) - Total Re	coverable							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
Calcium	644000		500		ug/L		03/20/23 09:08	03/21/23 23:06	-
Iron	25200		100		ug/L		03/20/23 09:08	03/21/23 23:06	
Magnesium	90300		500		ug/L		03/20/23 09:08	03/21/23 23:06	
Molybdenum	10.0	U	10.0		ug/L		03/20/23 09:08	03/21/23 23:06	
Potassium	28200		1000		ug/L		03/20/23 09:08	03/21/23 23:06	
Selenium	20.0	U	20.0		ug/L		03/20/23 09:08	03/21/23 23:06	
Sodium	155000		2000		ug/L		03/20/23 09:08	03/21/23 23:06	
Mothod: SW946 6020B Mot	tals (ICD/MS) Total	Doggverable							
Method: SW846 6020B - Met Analyte	•	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
Aluminum	100	U	100		ug/L		03/20/23 09:08	03/21/23 19:00	
Antimony	5.00	U	5.00		ug/L		03/20/23 09:08	03/21/23 19:00	
Arsenic	3.00	U	3.00		ug/L		03/20/23 09:08	03/21/23 19:00	
Barium	332		5.00		ug/L		03/20/23 09:08	03/21/23 19:00	
Beryllium	0.500	U	0.500		ug/L		03/20/23 09:08	03/21/23 19:00	
Cadmium	0.500	U	0.500		ug/L		03/20/23 09:08	03/21/23 19:00	
Chromium	5.00	U	5.00		ug/L		03/20/23 09:08	03/21/23 19:00	
Cobalt	0.500	U	0.500		ug/L		03/20/23 09:08	03/21/23 19:00	
Copper	5.00	U	5.00		ug/L		03/20/23 09:08	03/21/23 19:00	
Lead	2.50	U	2.50		ug/L		03/20/23 09:08	03/21/23 19:00	
Nickel	5.00	U	5.00		ug/L		03/20/23 09:08	03/21/23 19:00	
Silver	1.00	U	1.00		ug/L		03/20/23 09:08	03/21/23 19:00	
Thallium	1.00	U	1.00		ug/L		03/20/23 09:08	03/21/23 19:00	
Zinc	20.0	U	20.0		ug/L		03/20/23 09:08	03/21/23 19:00	
Manganese	820		5.00		ug/L		03/20/23 09:08	03/21/23 19:00	
Method: SW846 7470A - Mer	cury (CVAA)								

0.200

ug/L

0.200 U

Eurofins Savannah

03/20/23 13:40

03/21/23 10:32

Client: South Carolina Public Service Authority Project/Site: 125915/JM02.09.G01.1/36500

Job ID: 680-232196-1

Client Sample ID: AF56404

Lab Sample ID: 680-232196-12

Matrix: Water

Date Collected: 02/27/23 10:02 Date Received: 03/17/23 10:30

Analyte

Mercury

Method: SW846 6010D - I	Metals (ICP)								
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
Lithium	58.2		50.0		ug/L		03/23/23 14:13	03/24/23 15:27	
Method: SW846 6010D - I	Metals (ICP) - Total Re	coverable							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
Calcium	659000		500		ug/L		03/20/23 09:08	03/21/23 23:10	
Iron	25100		100		ug/L		03/20/23 09:08	03/21/23 23:10	
Magnesium	91700		500		ug/L		03/20/23 09:08	03/21/23 23:10	
Molybdenum	10.0	U	10.0		ug/L		03/20/23 09:08	03/21/23 23:10	
Potassium	29000		1000		ug/L		03/20/23 09:08	03/21/23 23:10	
Selenium	20.0	U	20.0		ug/L		03/20/23 09:08	03/21/23 23:10	
Sodium	158000		2000		ug/L		03/20/23 09:08	03/21/23 23:10	
Markarda (2000)	Matala (IOD/MO) Tatal	Decemble	_						
Method: SW846 6020B - I	•			MDI	1114	_	D	A I I	D.1. E.
Analyte		Qualifier	RL 100	MDL	Unit	D	Prepared	Analyzed 03/21/23 19:03	Dil Fa
Aluminum	5.00		5.00		ug/L		03/20/23 09:08 03/20/23 09:08	03/21/23 19:03	
Antimony	3.00	_	3.00		ug/L		03/20/23 09:08	03/21/23 19:03	
Arsenic			5.00		ug/L		03/20/23 09:08	03/21/23 19:03	
Barium	325 0.500				ug/L				
Beryllium	0.500		0.500		ug/L		03/20/23 09:08	03/21/23 19:03	
Cadmium	5.00		0.500 5.00		ug/L		03/20/23 09:08 03/20/23 09:08	03/21/23 19:03 03/21/23 19:03	
Chromium	0.500		0.500		ug/L		03/20/23 09:08	03/21/23 19:03	
Cobalt					ug/L		03/20/23 09:08	03/21/23 19:03	
Copper	5.00		5.00 2.50		ug/L				
Lead Nickel	2.50				ug/L		03/20/23 09:08	03/21/23 19:03	
			5.00		ug/L		03/20/23 09:08	03/21/23 19:03	
Silver	1.00		1.00		ug/L		03/20/23 09:08	03/21/23 19:03	
	1.00		1.00 20.0		ug/L		03/20/23 09:08	03/21/23 19:03	
Thallium	22.2		20.0		ug/L		03/20/23 09:08	03/21/23 19:03	
Thallium Zinc Manganese	20.0 800	U	5.00		ug/L		03/20/23 09:08	03/21/23 19:03	

RL

0.200

MDL Unit

ug/L

Prepared

03/20/23 12:45

Analyzed

03/21/23 13:50

Dil Fac

Result Qualifier

0.200 U

4

5

7

a

10

12

13

14

Client: South Carolina Public Service Authority

Job ID: 680-232196-1

Project/Site: 125915/JM02.09.G01.1/36500

Lab Sample ID: 680-232196-13

Matrix: Water

Client Sample ID: AF56434 Date Collected: 02/27/23 15:44

Mercury

Method: SW846 6010D - Metals (ICF	-)								
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
Lithium	50.0	U	50.0		ug/L		03/23/23 14:13	03/24/23 15:32	
Method: SW846 6010D - Metals (ICF	P) - Total Re	coverable							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
Calcium	62900		500		ug/L		03/20/23 09:08	03/21/23 23:19	
Iron	3180		100		ug/L		03/20/23 09:08	03/21/23 23:19	
Magnesium	1950		500		ug/L		03/20/23 09:08	03/21/23 23:19	
Molybdenum	10.0	U	10.0		ug/L		03/20/23 09:08	03/21/23 23:19	
Potassium	1000	U	1000		ug/L		03/20/23 09:08	03/21/23 23:19	
Selenium	20.0	U	20.0		ug/L		03/20/23 09:08	03/21/23 23:19	
Sodium	4810		2000		ug/L		03/20/23 09:08	03/21/23 23:19	
Method: SW846 6020B - Metals (ICF	P/MS) - Total	Recoverable	!						
Analyte	-	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
Aluminum	1430		100		ug/L		03/20/23 09:08	03/21/23 19:07	
Antimony	5.00	U	5.00		ug/L		03/20/23 09:08	03/21/23 19:07	
Arsenic	3.00	U	3.00		ug/L		03/20/23 09:08	03/21/23 19:07	
Barium	41.2		5.00		ug/L		03/20/23 09:08	03/21/23 19:07	
Beryllium	0.500	U	0.500		ug/L		03/20/23 09:08	03/21/23 19:07	
Cadmium	0.500	U	0.500		ug/L		03/20/23 09:08	03/21/23 19:07	
Chromium	5.00	U	5.00		ug/L		03/20/23 09:08	03/21/23 19:07	
Cobalt	2.15		0.500		ug/L		03/20/23 09:08	03/21/23 19:07	
Copper	5.00	U	5.00		ug/L		03/20/23 09:08	03/21/23 19:07	
Lead	2.50	U	2.50		ug/L		03/20/23 09:08	03/21/23 19:07	
Nickel	5.00	U	5.00		ug/L		03/20/23 09:08	03/21/23 19:07	
Silver	1.00	U	1.00		ug/L		03/20/23 09:08	03/21/23 19:07	
Thallium	1.00	U	1.00		ug/L		03/20/23 09:08	03/21/23 19:07	
Zinc	264		20.0		ug/L		03/20/23 09:08	03/21/23 19:07	
Manganese	52.9		5.00		ug/L		03/20/23 09:08	03/21/23 19:07	
Method: SW846 7470A - Mercury (C	·VΔΔ)								

0.200

ug/L

0.200 U

Eurofins Savannah

03/20/23 12:45 03/21/23 13:36

Client: South Carolina Public Service Authority Project/Site: 125915/JM02.09.G01.1/36500

Job ID: 680-232196-1

Lab Sample ID: 680-232196-14

Matrix: Water

Date Received: 03/17/23 10:30	
_	

Client Sample ID: AF56433 Date Collected: 02/28/23 12:58

Method: SW846 6010D - Metals (ICI	P)								
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Lithium	50.0	U	50.0		ug/L		03/23/23 14:13	03/24/23 15:37	1

Method: SW846 6010D -	Metals (ICP) - Total Re	coverable							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Calcium	433000		500		ug/L		03/20/23 09:08	03/21/23 23:23	1
Iron	17100		100		ug/L		03/20/23 09:08	03/21/23 23:23	
Magnesium	12200		500		ug/L		03/20/23 09:08	03/21/23 23:23	
Molybdenum	10.0	U	10.0		ug/L		03/20/23 09:08	03/21/23 23:23	
Potassium	5480		1000		ug/L		03/20/23 09:08	03/21/23 23:23	
Selenium	20.0	U	20.0		ug/L		03/20/23 09:08	03/21/23 23:23	
Sodium	10300		2000		ua/L		03/20/23 09:08	03/21/23 23:23	1

Method: SW846 6020B - Metals (ICP/MS) - Total Recoverable

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Aluminum	219		100		ug/L		03/20/23 09:08	03/21/23 19:11	1
Antimony	5.00	U	5.00		ug/L		03/20/23 09:08	03/21/23 19:11	1
Arsenic	3.00	U	3.00		ug/L		03/20/23 09:08	03/21/23 19:11	1
Barium	51.1		5.00		ug/L		03/20/23 09:08	03/21/23 19:11	1
Beryllium	0.500	U	0.500		ug/L		03/20/23 09:08	03/21/23 19:11	1
Cadmium	0.500	U	0.500		ug/L		03/20/23 09:08	03/21/23 19:11	1
Chromium	5.00	U	5.00		ug/L		03/20/23 09:08	03/21/23 19:11	1
Cobalt	0.500	U	0.500		ug/L		03/20/23 09:08	03/21/23 19:11	1
Copper	5.00	U	5.00		ug/L		03/20/23 09:08	03/21/23 19:11	1
Lead	2.50	U	2.50		ug/L		03/20/23 09:08	03/21/23 19:11	1
Nickel	5.00	U	5.00		ug/L		03/20/23 09:08	03/21/23 19:11	1
Silver	1.00	U	1.00		ug/L		03/20/23 09:08	03/21/23 19:11	1
Thallium	1.00	U	1.00		ug/L		03/20/23 09:08	03/21/23 19:11	1
Zinc	20.0	U	20.0		ug/L		03/20/23 09:08	03/21/23 19:11	1
Manganese	1240		5.00		ug/L		03/20/23 09:08	03/21/23 19:11	1

Method: S	W846 7470A - I	Mercury (CVAA)
-----------	----------------	----------------

Analyte	Result	Qualifier	RL	MDL U	it	D	Prepared	Analyzed	Dil Fac
Mercury	0.200	U	0.200	นอู	/L		03/20/23 12:45	03/21/23 13:16	1

Eurofins Savannah

Client: South Carolina Public Service Authority Project/Site: 125915/JM02.09.G01.1/36500

Job ID: 680-232196-1

Lab Sample ID: 680-232196-15

Matrix: Water

Client Sample ID: AF56435 Date Collected: 02/28/23 11:44

Mercury

Method: SW846 6010D - Me	etals (ICP)								
Analyte		Qualifier	RL	MDL		D	Prepared	Analyzed	Dil Fa
Lithium	50.0	U	50.0		ug/L		03/23/23 14:13	03/24/23 15:42	
Method: SW846 6010D - Me	etals (ICP) - Total Re	coverable							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
Calcium	20400		500		ug/L		03/20/23 09:08	03/21/23 23:26	
Iron	863		100		ug/L		03/20/23 09:08	03/21/23 23:26	
Magnesium	821		500		ug/L		03/20/23 09:08	03/21/23 23:26	
Molybdenum	10.0	U	10.0		ug/L		03/20/23 09:08	03/21/23 23:26	
Potassium	1000	U	1000		ug/L		03/20/23 09:08	03/21/23 23:26	
Selenium	20.0	U	20.0		ug/L		03/20/23 09:08	03/21/23 23:26	
Sodium	3070		2000		ug/L		03/20/23 09:08	03/21/23 23:26	
Method: SW846 6020B - Me	otals (ICD/MS) Total	Pacovorable							
Analyte		Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
Aluminum	3470		100		ug/L		03/20/23 09:08	03/21/23 19:15	
Antimony	5.00	U	5.00		ug/L		03/20/23 09:08	03/21/23 19:15	
Arsenic	8.46		3.00		ug/L		03/20/23 09:08	03/21/23 19:15	
Barium	29.9		5.00		ug/L		03/20/23 09:08	03/21/23 19:15	
Beryllium	0.500	U	0.500		ug/L		03/20/23 09:08	03/21/23 19:15	
Cadmium	0.500	U	0.500		ug/L		03/20/23 09:08	03/21/23 19:15	
Chromium	5.00	U	5.00		ug/L		03/20/23 09:08	03/21/23 19:15	
Cobalt	1.03		0.500		ug/L		03/20/23 09:08	03/21/23 19:15	
Copper	5.00	U	5.00		ug/L		03/20/23 09:08	03/21/23 19:15	
Lead	2.50	U	2.50		ug/L		03/20/23 09:08	03/21/23 19:15	
Nickel	5.00	U	5.00		ug/L		03/20/23 09:08	03/21/23 19:15	
Silver	1.00	U	1.00		ug/L		03/20/23 09:08	03/21/23 19:15	
Thallium	1.00	U	1.00		ug/L		03/20/23 09:08	03/21/23 19:15	
Zinc	20.0	U	20.0		ug/L		03/20/23 09:08	03/21/23 19:15	
Manganese	24.2		5.00		ug/L		03/20/23 09:08	03/21/23 19:15	
Method: SW846 7470A - Me	,					_			-
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa

0.200

ug/L

03/20/23 12:45

03/21/23 13:06

0.200 U

Client: South Carolina Public Service Authority Project/Site: 125915/JM02.09.G01.1/36500

Job ID: 680-232196-1

Lab Sample ID: 680-232196-16

Matrix: Water

Client Sample ID: AF56436

Date Collected: 02/28/23 10:19 Date Received: 03/17/23 10:30

Mercury

Method: SW846 6010D - Metals (ICP))								
Analyte		Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
Lithium	50.0	U	50.0		ug/L		03/23/23 14:13	03/24/23 15:46	
Method: SW846 6010D - Metals (ICP)	- Total Re	coverable							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
Calcium	85500		500		ug/L		03/20/23 09:08	03/21/23 23:29	
Iron	1170		100		ug/L		03/20/23 09:08	03/21/23 23:29	
Magnesium	1970		500		ug/L		03/20/23 09:08	03/21/23 23:29	
Molybdenum	10.0	U	10.0		ug/L		03/20/23 09:08	03/21/23 23:29	
Potassium	1460		1000		ug/L		03/20/23 09:08	03/21/23 23:29	
Selenium	20.0	U	20.0		ug/L		03/20/23 09:08	03/21/23 23:29	
Sodium	4490		2000		ug/L		03/20/23 09:08	03/21/23 23:29	
Method: SW846 6020B - Metals (ICP/ Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
				MDL		D			
Aluminum	100	U	100		ug/L		03/20/23 09:08	03/21/23 19:19	
Antimony	5.00	_	5.00		ug/L		03/20/23 09:08	03/21/23 19:19	
Arsenic	3.00		3.00		ug/L		03/20/23 09:08	03/21/23 19:19	
Barium 	35.5		5.00		ug/L		03/20/23 09:08	03/21/23 19:19	
Beryllium	0.500		0.500		ug/L		03/20/23 09:08	03/21/23 19:19	
Cadmium	0.500		0.500		ug/L		03/20/23 09:08	03/21/23 19:19	
Chromium	5.00		5.00		ug/L		03/20/23 09:08	03/21/23 19:19	
Cobalt	0.500	_	0.500		ug/L		03/20/23 09:08	03/21/23 19:19	
Copper	5.00		5.00		ug/L		03/20/23 09:08	03/21/23 19:19	
Lead	2.50		2.50		ug/L		03/20/23 09:08	03/21/23 19:19	
	5.00		5.00		ug/L		03/20/23 09:08	03/21/23 19:19	
Nickel		1.1	1.00		ug/L		03/20/23 09:08	03/21/23 19:19	
Nickel Silver	1.00								
	1.00		1.00		ug/L		03/20/23 09:08	03/21/23 19:19	
Silver					ug/L ug/L		03/20/23 09:08 03/20/23 09:08	03/21/23 19:19 03/21/23 19:19	
Silver Thallium	1.00		1.00		-				
Silver Thallium Zinc	1.00 53.3 81.1		1.00 20.0		ug/L		03/20/23 09:08	03/21/23 19:19	

0.200

ug/L

0.200 U

03/20/23 12:45

03/21/23 12:39

Client: South Carolina Public Service Authority Project/Site: 125915/JM02.09.G01.1/36500

Job ID: 680-232196-1

Client Sample ID: AF56437

Lab Sample ID: 680-232196-17

Matrix: Water

Date Collected: 02/28/23 10:24 Date Received: 03/17/23 10:30

Mercury

Method: SW846 6010D - M	etals (ICP)								
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
Lithium	50.0	U	50.0		ug/L		03/23/23 14:13	03/24/23 15:51	
Method: SW846 6010D - M	etals (ICP) - Total Re	coverable							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
Calcium	92300		500		ug/L		03/20/23 09:08	03/21/23 23:32	
Iron	1310		100		ug/L		03/20/23 09:08	03/21/23 23:32	
Magnesium	1710		500		ug/L		03/20/23 09:08	03/21/23 23:32	
Molybdenum	10.0	U	10.0		ug/L		03/20/23 09:08	03/21/23 23:32	
Potassium	1230		1000		ug/L		03/20/23 09:08	03/21/23 23:32	
Selenium	20.0	U	20.0		ug/L		03/20/23 09:08	03/21/23 23:32	
Sodium	3600		2000		ug/L		03/20/23 09:08	03/21/23 23:32	
Method: SW846 6020B - M	etals (ICP/MS) - Total	Recoverable	:						
Analyte		Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
Aluminum	100	U	100		ug/L		03/20/23 09:08	03/21/23 19:31	
Antimony	5.00	U	5.00		ug/L		03/20/23 09:08	03/21/23 19:31	
Arsenic	3.00	U	3.00		ug/L		03/20/23 09:08	03/21/23 19:31	
Barium	36.2		5.00		ug/L		03/20/23 09:08	03/21/23 19:31	
Beryllium	0.500	U	0.500		ug/L		03/20/23 09:08	03/21/23 19:31	
Cadmium	0.500	U	0.500		ug/L		03/20/23 09:08	03/21/23 19:31	
Chromium	5.00	U	5.00		ug/L		03/20/23 09:08	03/21/23 19:31	
Cobalt	0.500	U	0.500		ug/L		03/20/23 09:08	03/21/23 19:31	
Copper	5.00	U	5.00		ug/L		03/20/23 09:08	03/21/23 19:31	
Lead	2.50	U	2.50		ug/L		03/20/23 09:08	03/21/23 19:31	
Nickel	5.00	U	5.00		ug/L		03/20/23 09:08	03/21/23 19:31	
Silver	1.00	U	1.00		ug/L		03/20/23 09:08	03/21/23 19:31	
Thallium	1.00	U	1.00		ug/L		03/20/23 09:08	03/21/23 19:31	
Zinc	20.0	U	20.0		ug/L		03/20/23 09:08	03/21/23 19:31	
Manganese	88.0		5.00		ug/L		03/20/23 09:08	03/21/23 19:31	
Method: SW846 7470A - M	ercury (CVAA)								
Analyte	,	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa

0.200

ug/L

0.200 U

03/20/23 13:40 03/21/23 11:35

Client: South Carolina Public Service Authority Project/Site: 125915/JM02.09.G01.1/36500

Job ID: 680-232196-1

Lab Sample ID: 680-232196-18

Matrix: Water

Client Sample ID: AF56438 Date Collected: 02/28/23 14:31

Mercury

Method: SW846 6010D - N	letals (ICP)								
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Lithium	50.0	U	50.0		ug/L		03/23/23 14:13	03/24/23 16:10	•
Method: SW846 6010D - N	letals (ICP) - Total Re	coverable							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Calcium	287000		500		ug/L		03/20/23 09:08	03/21/23 23:36	
Iron	1800		100		ug/L		03/20/23 09:08	03/21/23 23:36	
Magnesium	28000		500		ug/L		03/20/23 09:08	03/21/23 23:36	,
Molybdenum	10.0	U	10.0		ug/L		03/20/23 09:08	03/21/23 23:36	1
Potassium	6740		1000		ug/L		03/20/23 09:08	03/21/23 23:36	
Selenium	20.0	U	20.0		ug/L		03/20/23 09:08	03/21/23 23:36	,
Sodium	17500		2000		ug/L		03/20/23 09:08	03/21/23 23:36	
Method: SW846 6020B - N	Notals (ICD/MS) Total	Pocoverable							
Analyte		Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Aluminum	100	U	100		ug/L		03/20/23 09:08	03/21/23 19:35	
Antimony	5.00	U	5.00		ug/L		03/20/23 09:08	03/21/23 19:35	
Arsenic	3.00	U	3.00		ug/L		03/20/23 09:08	03/21/23 19:35	
Barium	34.9		5.00		ug/L		03/20/23 09:08	03/21/23 19:35	
Beryllium	0.500	U	0.500		ug/L		03/20/23 09:08	03/21/23 19:35	
Cadmium	0.500	U	0.500		ug/L		03/20/23 09:08	03/21/23 19:35	
Chromium	5.00	U	5.00		ug/L		03/20/23 09:08	03/21/23 19:35	
Cobalt	0.500	U	0.500		ug/L		03/20/23 09:08	03/21/23 19:35	
Copper	5.00	U	5.00		ug/L		03/20/23 09:08	03/21/23 19:35	
Lead	2.50	U	2.50		ug/L		03/20/23 09:08	03/21/23 19:35	
Nickel	5.00	U	5.00		ug/L		03/20/23 09:08	03/21/23 19:35	
Silver	1.00	U	1.00		ug/L		03/20/23 09:08	03/21/23 19:35	
Thallium	1.00	U	1.00		ug/L		03/20/23 09:08	03/21/23 19:35	
Zinc	20.0	U	20.0		ug/L		03/20/23 09:08	03/21/23 19:35	
Manganese	495		5.00		ug/L		03/20/23 09:08	03/21/23 19:35	
Method: SW846 7470A - M	lercury (CVAA)								
Analyte	• • • • • • • • • • • • • • • • • • • •	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
									

0.200

ug/L

0.200 U

03/20/23 13:40

03/21/23 11:32

Client: South Carolina Public Service Authority Project/Site: 125915/JM02.09.G01.1/36500

Job ID: 680-232196-1

Client Sample ID: AF56409 Lab

0.200 U

Lab Sample ID: 680-232196-19

Matrix: Water

Date Collected: 03/06/23 12:14 Date Received: 03/17/23 10:30

Mercury

	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
Lithium	104		50.0		ug/L		03/23/23 14:13	03/24/23 16:14	
Method: SW846 6010D - Metals	(ICP) - Total Re	coverable							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
Calcium	1150000		5000		ug/L		03/20/23 09:08	03/22/23 11:50	1
ron	100	U	100		ug/L		03/20/23 09:08	03/21/23 23:39	
Magnesium	31700		500		ug/L		03/20/23 09:08	03/21/23 23:39	
Molybdenum	10.0	U	10.0		ug/L		03/20/23 09:08	03/21/23 23:39	
Potassium	15800		1000		ug/L		03/20/23 09:08	03/21/23 23:39	
Selenium	20.0	U	20.0		ug/L		03/20/23 09:08	03/21/23 23:39	
Sodium	144000		2000		ug/L		03/20/23 09:08	03/21/23 23:39	
Method: SW846 6020B - Metals	(ICP/MS) - Total	l Recoverable							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
Aluminum	100	U	100		ug/L		03/20/23 09:08	03/21/23 19:39	
Antimony	5.00	U	5.00		ug/L		03/20/23 09:08	03/21/23 19:39	
Arsenic	13.8		3.00		ug/L		03/20/23 09:08	03/21/23 19:39	
Barium	57.7		5.00		ug/L		03/20/23 09:08	03/21/23 19:39	
Beryllium	0.500	U	0.500		ug/L		03/20/23 09:08	03/21/23 19:39	
Cadmium	0.500	U	0.500		ug/L		03/20/23 09:08	03/21/23 19:39	
Jaumum	5.00	U	5.00		ug/L		03/20/23 09:08	03/21/23 19:39	
Chromium	5.00								
	0.500	U	0.500		ug/L		03/20/23 09:08	03/21/23 19:39	
Chromium			0.500 5.00		ug/L ug/L		03/20/23 09:08 03/20/23 09:08	03/21/23 19:39 03/21/23 19:39	
Chromium Cobalt	0.500	U			_				
Chromium Cobalt Copper	0.500 5.00	U	5.00		ug/L		03/20/23 09:08	03/21/23 19:39	
Chromium Cobalt Copper Lead	0.500 5.00 2.50	U U U	5.00 2.50		ug/L ug/L		03/20/23 09:08 03/20/23 09:08	03/21/23 19:39 03/21/23 19:39	
Chromium Cobalt Copper Lead Vickel	0.500 5.00 2.50 5.00	U U U	5.00 2.50 5.00		ug/L ug/L ug/L		03/20/23 09:08 03/20/23 09:08 03/20/23 09:08	03/21/23 19:39 03/21/23 19:39 03/21/23 19:39	
Chromium Cobalt Copper Lead Nickel Silver	0.500 5.00 2.50 5.00 1.00	U U U U	5.00 2.50 5.00 1.00		ug/L ug/L ug/L ug/L		03/20/23 09:08 03/20/23 09:08 03/20/23 09:08 03/20/23 09:08	03/21/23 19:39 03/21/23 19:39 03/21/23 19:39 03/21/23 19:39	
Chromium Cobalt Copper Lead Nickel Silver Fhallium	0.500 5.00 2.50 5.00 1.00	U U U U	5.00 2.50 5.00 1.00		ug/L ug/L ug/L ug/L ug/L		03/20/23 09:08 03/20/23 09:08 03/20/23 09:08 03/20/23 09:08 03/20/23 09:08	03/21/23 19:39 03/21/23 19:39 03/21/23 19:39 03/21/23 19:39 03/21/23 19:39	
Chromium Cobalt Copper Lead Nickel Silver Thallium Zinc	0.500 5.00 2.50 5.00 1.00 20.0 6.96	U U U U	5.00 2.50 5.00 1.00 1.00 20.0		ug/L ug/L ug/L ug/L ug/L ug/L		03/20/23 09:08 03/20/23 09:08 03/20/23 09:08 03/20/23 09:08 03/20/23 09:08 03/20/23 09:08	03/21/23 19:39 03/21/23 19:39 03/21/23 19:39 03/21/23 19:39 03/21/23 19:39	

0.200

ug/L

3/28/2023

03/20/23 13:40

03/21/23 11:12

Client: South Carolina Public Service Authority Project/Site: 125915/JM02.09.G01.1/36500

Job ID: 680-232196-1

Lab Sample ID: 680-232196-20

Matrix: Water

Client Sample ID: AF56410

Date Collected: 03/06/23 12:19 Date Received: 03/17/23 10:30

Mercury

Method: SW846 6010D - M									
Analyte		Qualifier	RL	MDL		D	Prepared	Analyzed	Dil Fac
Lithium	128		50.0		ug/L		03/23/23 14:13	03/24/23 16:19	•
Method: SW846 6010D - M	etals (ICP) - Total Re	coverable							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
Calcium	1130000		5000		ug/L		03/20/23 09:08	03/22/23 11:53	1
Iron	100	U	100		ug/L		03/20/23 09:08	03/21/23 23:42	
Magnesium	30600		500		ug/L		03/20/23 09:08	03/21/23 23:42	
Molybdenum	10.0	U	10.0		ug/L		03/20/23 09:08	03/21/23 23:42	
Potassium	15400		1000		ug/L		03/20/23 09:08	03/21/23 23:42	
Selenium	20.0	U	20.0		ug/L		03/20/23 09:08	03/21/23 23:42	
Sodium	138000		2000		ug/L		03/20/23 09:08	03/21/23 23:42	
Method: SW846 6020B - M Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
Alluminum		U	100	MDL	ug/L		03/20/23 09:08	03/21/23 19:43	DII Fa
Antimony	5.00	_	5.00		ug/L		03/20/23 09:08	03/21/23 19:43	
Arsenic	12.6		3.00		ug/L		03/20/23 09:08	03/21/23 19:43	
Barium	52.0		5.00		ug/L		03/20/23 09:08	03/21/23 19:43	
Beryllium	0.500	Ш	0.500		ug/L		03/20/23 09:08	03/21/23 19:43	
Cadmium	0.500		0.500		ug/L		03/20/23 09:08	03/21/23 19:43	
Chromium	5.00		5.00		ug/L		03/20/23 09:08	03/21/23 19:43	
Cobalt	0.500		0.500		ug/L		03/20/23 09:08	03/21/23 19:43	
Copper	5.00	_	5.00		ug/L		03/20/23 09:08	03/21/23 19:43	
Lead	2.50		2.50		ug/L		03/20/23 09:08	03/21/23 19:43	
Nickel	5.00		5.00		ug/L		03/20/23 09:08	03/21/23 19:43	
Silver	1.00		1.00		ug/L		03/20/23 09:08	03/21/23 19:43	
Thallium	1.00		1.00		ug/L		03/20/23 09:08	03/21/23 19:43	
Zinc	20.0		20.0		ug/L		03/20/23 09:08	03/21/23 19:43	
Manganese	7.61		5.00		ug/L		03/20/23 09:08	03/21/23 19:43	
manganeoc	7.01				9				
Mathadi CMOAC 7470A M	orcury (CVAA)								
Method: SW846 7470A - Monalyte		Qualifier	RL	MDL		D			Dil Fa

0.200

ug/L

0.200 U

03/20/23 13:40

03/21/23 10:59

4

5

8

10

12

13

14

Client: South Carolina Public Service Authority Project/Site: 125915/JM02.09.G01.1/36500

Job ID: 680-232196-1

Lab Sample ID: 680-232196-21

Matrix: Water

Client Sample ID: AF56411

Date Collected: 03/06/23 11:08

Mercury

Method: SW846 6010D - M	etals (ICP)								
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Lithium	77.1		50.0		ug/L		03/23/23 14:15	03/24/23 16:42	1
Method: SW846 6010D - M	etals (ICP) - Total Re	coverable							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Calcium	796000		5000		ug/L		03/20/23 09:08	03/22/23 11:56	10
Iron	100	U	100		ug/L		03/20/23 09:08	03/21/23 20:50	
Magnesium	40800		500		ug/L		03/20/23 09:08	03/21/23 20:50	1
Molybdenum	10.0	U	10.0		ug/L		03/20/23 09:08	03/21/23 20:50	1
Potassium	13000		1000		ug/L		03/20/23 09:08	03/21/23 20:50	1
Selenium	20.0	U F2 F1	20.0		ug/L		03/20/23 09:08	03/21/23 20:50	1
Sodium	121000		2000		ug/L		03/20/23 09:08	03/21/23 20:50	
Method: SW846 6020B - M	etals (ICP/MS) - Total	Recoverable	<u>.</u>						
Analyte		Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Aluminum	100	U	100		ug/L		03/20/23 09:08	03/21/23 20:02	
Antimony	5.00	U	5.00		ug/L		03/20/23 09:08	03/21/23 20:02	
Arsenic	8.18		3.00		ug/L		03/20/23 09:08	03/21/23 20:02	
Barium	95.4		5.00		ug/L		03/20/23 09:08	03/21/23 20:02	
Beryllium	0.500	U	0.500		ug/L		03/20/23 09:08	03/21/23 20:02	
Cadmium	0.500	U	0.500		ug/L		03/20/23 09:08	03/21/23 20:02	,
Chromium	5.00	U	5.00		ug/L		03/20/23 09:08	03/21/23 20:02	1
Cobalt	0.500	U	0.500		ug/L		03/20/23 09:08	03/21/23 20:02	
Copper	5.00	U	5.00		ug/L		03/20/23 09:08	03/21/23 20:02	
Lead	2.50	U	2.50		ug/L		03/20/23 09:08	03/21/23 20:02	
Nickel	5.00	U	5.00		ug/L		03/20/23 09:08	03/21/23 20:02	,
Silver	1.00	U	1.00		ug/L		03/20/23 09:08	03/21/23 20:02	
Thallium	1.00	U F1	1.00		ug/L		03/20/23 09:08	03/21/23 20:02	
Zinc	199	F1	20.0		ug/L		03/20/23 09:08	03/21/23 20:02	
Manganese	101		5.00		ug/L		03/20/23 09:08	03/21/23 20:02	
Method: SW846 7470A - M	ercury (CVAA)								
Analyte		Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa

0.200

ug/L

0.200 U

03/20/23 13:40 03/21/23 10:38

Client: South Carolina Public Service Authority Project/Site: 125915/JM02.09.G01.1/36500

Job ID: 680-232196-1

Lab Sample ID: 680-232196-22

Matrix: Water

Client Sample ID: AF56412 Date Collected: 03/06/23 15:15

Date Received: 03/17/23 10:30

Lead

Nickel

Silver

Zinc

Thallium

Manganese

Method: SW846 6010D - Metals	s (ICP)								
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Lithium	51.5		50.0		ug/L		03/23/23 14:15	03/24/23 16:51	•
Method: SW846 6010D - Metal	s (ICP) - Total Red	coverable							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Calcium	701000		500		ug/L		03/20/23 09:08	03/21/23 21:00	•
Iron	14700		100		ug/L		03/20/23 09:08	03/21/23 21:00	,
Magnesium	30200		500		ug/L		03/20/23 09:08	03/21/23 21:00	,
Molybdenum	10.0	U	10.0		ug/L		03/20/23 09:08	03/21/23 21:00	
Potassium	7240		1000		ug/L		03/20/23 09:08	03/21/23 21:00	
Selenium	20.0	U	20.0		ug/L		03/20/23 09:08	03/21/23 21:00	,
Sodium	108000		2000		ug/L		03/20/23 09:08	03/21/23 21:00	
Method: SW846 6020B - Metals	s (ICP/MS) - Total	Recoverable							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Aluminum	100	U	100		ug/L		03/20/23 09:08	03/21/23 20:14	-
Antimony	5.00	U	5.00		ug/L		03/20/23 09:08	03/21/23 20:14	
Arsenic	4.94		3.00		ug/L		03/20/23 09:08	03/21/23 20:14	
Barium	165		5.00		ug/L		03/20/23 09:08	03/21/23 20:14	
Beryllium	0.500	U	0.500		ug/L		03/20/23 09:08	03/21/23 20:14	
Cadmium	0.500	U	0.500		ug/L		03/20/23 09:08	03/21/23 20:14	,
Chromium	5.00	U	5.00		ug/L		03/20/23 09:08	03/21/23 20:14	
Cobalt	0.500	U	0.500		ug/L		03/20/23 09:08	03/21/23 20:14	
Copper	5.00		5.00		ug/L		03/20/23 09:08	03/21/23 20:14	

Method: SW846 7470A - Mercury (CVA	AA)								
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Mercury	0.200	U	0.200		ug/L		03/20/23 13:40	03/21/23 14:20	1

2.50

5.00

1.00

1.00

20.0

5.00

ug/L

ug/L

ug/L

ug/L

ug/L

ug/L

03/20/23 09:08

03/20/23 09:08

03/20/23 09:08

03/20/23 09:08

03/20/23 09:08

03/20/23 09:08

03/21/23 20:14

03/21/23 20:14

03/21/23 20:14

03/21/23 20:14

03/21/23 20:14

03/21/23 20:14

2.50 U

5.00 U

1.00 U

1.00 U

20.0 U

355

Client: South Carolina Public Service Authority Project/Site: 125915/JM02.09.G01.1/36500

Job ID: 680-232196-1

Lab Sample ID: 680-232196-23

Matrix: Water

Client Sample ID: AF56413

Date Collected: 03/06/23 13:41 Date Received: 03/17/23 10:30

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Lithium	50.0		50.0		ug/L	=	03/23/23 14:15	03/24/23 17:23	1
Method: SW846 6010D -	Metals (ICP) - Total Re	coverable							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Calcium	163000		500		ug/L		03/20/23 09:08	03/21/23 21:03	1
Iron	10100		100		ug/L		03/20/23 09:08	03/21/23 21:03	1
Magnesium	11200		500		ug/L		03/20/23 09:08	03/21/23 21:03	1
Molybdenum	10.0	U	10.0		ug/L		03/20/23 09:08	03/21/23 21:03	1
Potassium	5010		1000		ug/L		03/20/23 09:08	03/21/23 21:03	1
Selenium	20.0	U	20.0		ug/L		03/20/23 09:08	03/21/23 21:03	1
Sodium	72500		2000		ug/L		03/20/23 09:08	03/21/23 21:03	1
Method: SW846 6020B -	Metals (ICP/MS) - Total	Recoverable	·						
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Aluminum	100	U	100		ug/L		03/20/23 09:08	03/21/23 20:18	1

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Aluminum	100	U	100		ug/L		03/20/23 09:08	03/21/23 20:18	1
Antimony	5.00	U	5.00		ug/L		03/20/23 09:08	03/21/23 20:18	1
Arsenic	3.00	U	3.00		ug/L		03/20/23 09:08	03/21/23 20:18	1
Barium	88.7		5.00		ug/L		03/20/23 09:08	03/21/23 20:18	1
Beryllium	0.500	U	0.500		ug/L		03/20/23 09:08	03/21/23 20:18	1
Cadmium	0.500	U	0.500		ug/L		03/20/23 09:08	03/21/23 20:18	1
Chromium	5.00	U	5.00		ug/L		03/20/23 09:08	03/21/23 20:18	1
Cobalt	0.870		0.500		ug/L		03/20/23 09:08	03/21/23 20:18	1
Copper	5.00	U	5.00		ug/L		03/20/23 09:08	03/21/23 20:18	1
Lead	2.50	U	2.50		ug/L		03/20/23 09:08	03/21/23 20:18	1
Nickel	5.00	U	5.00		ug/L		03/20/23 09:08	03/21/23 20:18	1
Silver	1.00	U	1.00		ug/L		03/20/23 09:08	03/21/23 20:18	1
Thallium	1.00	U	1.00		ug/L		03/20/23 09:08	03/21/23 20:18	1
Zinc	20.0	U	20.0		ug/L		03/20/23 09:08	03/21/23 20:18	1
Manganese	235		5.00		ug/L		03/20/23 09:08	03/21/23 20:18	1

Method: SW846 7470A - Mercury (CVAA	۱)								
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Mercury	0.200	U	0.200		ug/L		03/20/23 12:45	03/21/23 13:46	1

3/28/2023

3

5

7

8

10

12

13

14

Client: South Carolina Public Service Authority Project/Site: 125915/JM02.09.G01.1/36500

Job ID: 680-232196-1

Lab Sample ID: 680-232196-24

Matrix: Water

Client Sample ID: AF56430 Date Collected: 03/06/23 10:10

Mercury

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
Lithium	50.0	U	50.0		ug/L		03/23/23 14:15	03/24/23 17:28	
Method: SW846 6010D - Metals (ICP) - To	tal Red	coverable							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
Calcium	446000		500		ug/L		03/20/23 09:08	03/21/23 21:06	
ron	33300		100		ug/L		03/20/23 09:08	03/21/23 21:06	
Magnesium	72500		500		ug/L		03/20/23 09:08	03/21/23 21:06	
Molybdenum	10.0	U	10.0		ug/L		03/20/23 09:08	03/21/23 21:06	
Potassium	6540		1000		ug/L		03/20/23 09:08	03/21/23 21:06	
Selenium	20.0	U	20.0		ug/L		03/20/23 09:08	03/21/23 21:06	
Sodium	87200		2000		ug/L		03/20/23 09:08	03/21/23 21:06	
Analyte		Qualifier	RL	MDL		D	Prepared	Analyzed	Dil Fa
Method: SW846 6020B - Metals (ICP/MS)						_			
Aluminum	100	U	100		ug/L		03/20/23 09:08	03/21/23 20:22	
Antimony	5.00	U	5.00		ug/L		03/20/23 09:08	03/21/23 20:22	
Arsenic	3.00	U	3.00		ug/L		03/20/23 09:08	03/21/23 20:22	
Barium	36.3		5.00		ug/L		03/20/23 09:08	03/21/23 20:22	
Beryllium	0.500	U	0.500		ug/L		03/20/23 09:08	03/21/23 20:22	
Cadmium	0.500	U	0.500		ug/L		03/20/23 09:08	03/21/23 20:22	
Chromium	5.00	U	5.00		ug/L		03/20/23 09:08	03/21/23 20:22	
Cobalt	6.51		0.500		ug/L		03/20/23 09:08	03/21/23 20:22	
Copper	5.00	U	5.00		ug/L		03/20/23 09:08	03/21/23 20:22	
Lead	2.50	U	2.50		ug/L		03/20/23 09:08	03/21/23 20:22	
Nickel	5.00	U	5.00		ug/L		03/20/23 09:08	03/21/23 20:22	
Silver	1.00	U	1.00		ug/L		03/20/23 09:08	03/21/23 20:22	
Fhallium	1.00	U	1.00		ug/L		03/20/23 09:08	03/21/23 20:22	
Zinc	20.0	U	20.0		ug/L		03/20/23 09:08	03/21/23 20:22	
LING			5.00		ug/L		03/20/23 09:08	03/21/23 20:22	
Manganese	3770		5.00		ug/L		03/20/23 09.00	03/21/23 20.22	
	3770		5.00		ug/L		03/20/23 03.00	03/21/23 20.22	

0.200

ug/L

0.200 U

03/20/23 12:45 03/21/23 14:10

Client: South Carolina Public Service Authority Project/Site: 125915/JM02.09.G01.1/36500

Job ID: 680-232196-1

Lab Sample ID: 680-232196-25

Matrix: Water

Client Sample ID: AF56406 Date Collected: 03/09/23 10:29

Mercury

Method: SW846 6010D - Metals (ICP)								
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Lithium	50.0	U	50.0		ug/L		03/23/23 14:15	03/24/23 17:33	1
Method: SW846 6010D - Metals (ICP) - Total Re	coverable							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Calcium	203000		500		ug/L		03/20/23 09:08	03/21/23 21:09	1
Iron	1450		100		ug/L		03/20/23 09:08	03/21/23 21:09	1
Magnesium	18100		500		ug/L		03/20/23 09:08	03/21/23 21:09	1
Molybdenum	10.0	U	10.0		ug/L		03/20/23 09:08	03/21/23 21:09	1
Potassium	4990		1000		ug/L		03/20/23 09:08	03/21/23 21:09	1
Selenium	20.0	U	20.0		ug/L		03/20/23 09:08	03/21/23 21:09	1
Sodium	45500		2000		ug/L		03/20/23 09:08	03/21/23 21:09	
Method: SW846 6020B - Metals (ICP	/MS) - Total	Recoverable							
Analyte	•	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
Aluminum	1940		100		ug/L		03/20/23 09:08	03/21/23 20:26	
Antimony	5.00	U	5.00		ug/L		03/20/23 09:08	03/21/23 20:26	
Arsenic	3.00	U	3.00		ug/L		03/20/23 09:08	03/21/23 20:26	
Barium	36.4		5.00		ug/L		03/20/23 09:08	03/21/23 20:26	•
Beryllium	0.500	U	0.500		ug/L		03/20/23 09:08	03/21/23 20:26	
Cadmium	0.500	U	0.500		ug/L		03/20/23 09:08	03/21/23 20:26	1
Chromium	5.00	U	5.00		ug/L		03/20/23 09:08	03/21/23 20:26	1
Cobalt	1.84		0.500		ug/L		03/20/23 09:08	03/21/23 20:26	
Copper	5.00	U	5.00		ug/L		03/20/23 09:08	03/21/23 20:26	
Lead	2.50	U	2.50		ug/L		03/20/23 09:08	03/21/23 20:26	•
Nickel	5.00	U	5.00		ug/L		03/20/23 09:08	03/21/23 20:26	
Silver	1.00	U	1.00		ug/L		03/20/23 09:08	03/21/23 20:26	
Thallium	1.00	U	1.00		ug/L		03/20/23 09:08	03/21/23 20:26	
	45.6		20.0		ug/L		03/20/23 09:08	03/21/23 20:26	
Zinc					,,			00/04/00 00 00	
Zinc Manganese	183		5.00		ug/L		03/20/23 09:08	03/21/23 20:26	
	183		5.00		ug/L		03/20/23 09:08	03/21/23 20:26	•

0.200

ug/L

0.200 U

Eurofins Savannah

03/20/23 12:45

03/21/23 13:13

Client: South Carolina Public Service Authority Project/Site: 125915/JM02.09.G01.1/36500

Job ID: 680-232196-1

Lab Sample ID: 680-232196-26 Client Sample ID: AF56407 Date Collected: 03/09/23 10:34

Matrix: Water

Date Received: 03/17/23 10:30

Analyte

Mercury

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
Lithium	100	U	100		ug/L		03/23/23 14:15	03/24/23 17:38	
Method: SW846 6010D - M	etals (ICP) - Total Re	coverable							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
Calcium	207000		500		ug/L		03/20/23 09:08	03/21/23 21:13	
Iron	1440		100		ug/L		03/20/23 09:08	03/21/23 21:13	
Magnesium	18200		500		ug/L		03/20/23 09:08	03/21/23 21:13	
Molybdenum	10.0	U	10.0		ug/L		03/20/23 09:08	03/21/23 21:13	
Potassium	5150		1000		ug/L		03/20/23 09:08	03/21/23 21:13	
Selenium	20.0	U	20.0		ug/L		03/20/23 09:08	03/21/23 21:13	
Sodium	46200		2000		ug/L		03/20/23 09:08	03/21/23 21:13	
Method: SW846 6020B - Me						_			
Analyte		Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil F
Aluminum	2090		100		ug/L		03/20/23 09:08	03/21/23 20:30	
Antimony	5.00	_	5.00		ug/L		03/20/23 09:08	03/21/23 20:30	
Arsenic	3.00		3.00		ug/L		03/20/23 09:08	03/21/23 20:30	
Barium 	36.9		5.00		ug/L		03/20/23 09:08	03/21/23 20:30	
Beryllium	0.500		0.500		ug/L		03/20/23 09:08	03/21/23 20:30	
Cadmium	0.500		0.500		ug/L		03/20/23 09:08	03/21/23 20:30	
Chromium	5.00	U	5.00		ug/L		03/20/23 09:08	03/21/23 20:30	
Cobalt	1.65		0.500		ug/L		03/20/23 09:08	03/21/23 20:30	
Copper	5.00		5.00		ug/L		03/20/23 09:08	03/21/23 20:30	
_ead	2.50	U	2.50		ug/L		03/20/23 09:08	03/21/23 20:30	
	5.00	U	5.00		ug/L		03/20/23 09:08	03/21/23 20:30	
Nickel	1.00	U	1.00		ug/L		03/20/23 09:08	03/21/23 20:30	
			1.00		ug/L		03/20/23 09:08	03/21/23 20:30	
Silver	1.00	U	1.00						
Nickel Silver Challium Z inc	1.00 29.1	U	20.0		ug/L		03/20/23 09:08	03/21/23 20:30	

RL

0.200

MDL Unit

ug/L

Prepared

03/20/23 12:45

Analyzed

03/21/23 13:03

Dil Fac

Result Qualifier

0.200 U

Client: South Carolina Public Service Authority Project/Site: 125915/JM02.09.G01.1/36500

Job ID: 680-232196-1

Lab Sample ID: 680-232196-27

Matrix: Water

Client Sample ID: AF56418 Date Collected: 03/09/23 12:07

Mercury

Method: SW846 6010D - Metals (ICP)									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
Lithium	76.7		50.0		ug/L		03/23/23 14:15	03/24/23 17:42	
Method: SW846 6010D - Metals (ICP)	- Total Re	coverable							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
Calcium	94400		500		ug/L		03/20/23 09:08	03/21/23 21:22	
Iron	840		100		ug/L		03/20/23 09:08	03/21/23 21:22	
Magnesium	7510		500		ug/L		03/20/23 09:08	03/21/23 21:22	
Molybdenum	90.2		10.0		ug/L		03/20/23 09:08	03/21/23 21:22	
Potassium	7420		1000		ug/L		03/20/23 09:08	03/21/23 21:22	
Selenium	20.0	U	20.0		ug/L		03/20/23 09:08	03/21/23 21:22	
Sodium	25200		2000		ug/L		03/20/23 09:08	03/21/23 21:22	
Method: SW846 6020B - Metals (ICP/I	MS) - Total	Recoverable	;						
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
Aluminum	134		100		ug/L		03/20/23 09:08	03/21/23 20:41	
Antimony	5.00	U	5.00		ug/L		03/20/23 09:08	03/21/23 20:41	
Arsenic	249		3.00		ug/L		03/20/23 09:08	03/21/23 20:41	
Barium	127		5.00		ug/L		03/20/23 09:08	03/21/23 20:41	
Beryllium	0.500	U	0.500		ug/L		03/20/23 09:08	03/21/23 20:41	
Cadmium	0.500	U	0.500		ug/L		03/20/23 09:08	03/21/23 20:41	
Chromium	5.00	U	5.00		ug/L		03/20/23 09:08	03/21/23 20:41	
Cobalt	2.17		0.500		ug/L		03/20/23 09:08	03/21/23 20:41	
Copper	5.00	U	5.00		ug/L		03/20/23 09:08	03/21/23 20:41	
Lead	2.50	U	2.50		ug/L		03/20/23 09:08	03/21/23 20:41	
Nickel	5.00	U	5.00		ug/L		03/20/23 09:08	03/21/23 20:41	
Silver	1.00	U	1.00		ug/L		03/20/23 09:08	03/21/23 20:41	
Thallium	1.00	U	1.00		ug/L		03/20/23 09:08	03/21/23 20:41	
Zinc	20.0	U	20.0		ug/L		03/20/23 09:08	03/21/23 20:41	
Manganese	113		5.00		ug/L		03/20/23 09:08	03/21/23 20:41	
Method: SW846 7470A - Mercury (CV	AA)								

0.200

ug/L

0.200 U

03/20/23 12:45 03/21/23 12:36

Client: South Carolina Public Service Authority Project/Site: 125915/JM02.09.G01.1/36500

Job ID: 680-232196-1

Lab Sample ID: 680-232196-28

Matrix: Water

Date Collected: 03/09/23 13:19 Date Received: 03/17/23 10:30

Mercury

Client Sample ID: AF56422

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
Lithium	50.0	U	50.0		ug/L		03/23/23 14:15	03/24/23 17:47	
Method: SW846 6010D - Meta	ls (ICP) - Total Red	coverable							
Analyte		Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
Calcium	250000		500		ug/L		03/20/23 09:08	03/21/23 21:26	
Iron	15600		100		ug/L		03/20/23 09:08	03/21/23 21:26	
Magnesium	9000		500		ug/L		03/20/23 09:08	03/21/23 21:26	
Molybdenum	10.0	U	10.0		ug/L		03/20/23 09:08	03/21/23 21:26	
Potassium	3920		1000		ug/L		03/20/23 09:08	03/21/23 21:26	
Selenium	20.0	U	20.0		ug/L		03/20/23 09:08	03/21/23 21:26	
Sodium	74400		2000		ug/L		03/20/23 09:08	03/21/23 21:26	
Method: SW846 6020B - Meta ^{Analyte}		Recoverable Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
Aluminum	100		100	MDL	ug/L		03/20/23 09:08	03/21/23 20:45	DII Fa
Antimony	5.00	_	5.00		ug/L		03/20/23 09:08	03/21/23 20:45	
Antimorty		O			ug/L				
Arconic									
	8.53		3.00				03/20/23 09:08	03/21/23 20:45	
Arsenic Barium Baryllium	121		5.00		ug/L		03/20/23 09:08	03/21/23 20:45	
Barium Beryllium	121 0.500		5.00 0.500		ug/L ug/L		03/20/23 09:08 03/20/23 09:08	03/21/23 20:45 03/21/23 20:45	
3arium Beryllium Cadmium	121 0.500 0.500	U	5.00 0.500 0.500		ug/L ug/L ug/L		03/20/23 09:08 03/20/23 09:08 03/20/23 09:08	03/21/23 20:45 03/21/23 20:45 03/21/23 20:45	
Barium Beryllium Cadmium Chromium	121 0.500 0.500 5.00	U	5.00 0.500 0.500 5.00		ug/L ug/L ug/L ug/L		03/20/23 09:08 03/20/23 09:08 03/20/23 09:08 03/20/23 09:08	03/21/23 20:45 03/21/23 20:45 03/21/23 20:45 03/21/23 20:45	
Barium Beryllium Cadmium Chromium Cobalt	121 0.500 0.500 5.00 0.500	U U	5.00 0.500 0.500 5.00 0.500		ug/L ug/L ug/L ug/L ug/L		03/20/23 09:08 03/20/23 09:08 03/20/23 09:08 03/20/23 09:08 03/20/23 09:08	03/21/23 20:45 03/21/23 20:45 03/21/23 20:45 03/21/23 20:45 03/21/23 20:45	
Barium Beryllium Cadmium Chromium Cobalt Copper	121 0.500 0.500 5.00 0.500 5.00	บ บ บ	5.00 0.500 0.500 5.00 0.500 5.00		ug/L ug/L ug/L ug/L ug/L ug/L		03/20/23 09:08 03/20/23 09:08 03/20/23 09:08 03/20/23 09:08 03/20/23 09:08 03/20/23 09:08	03/21/23 20:45 03/21/23 20:45 03/21/23 20:45 03/21/23 20:45 03/21/23 20:45 03/21/23 20:45	
Barium Beryllium Cadmium Chromium Cobalt Copper	121 0.500 0.500 5.00 0.500 5.00 2.50	U U U U	5.00 0.500 0.500 5.00 0.500 5.00 2.50		ug/L ug/L ug/L ug/L ug/L ug/L		03/20/23 09:08 03/20/23 09:08 03/20/23 09:08 03/20/23 09:08 03/20/23 09:08 03/20/23 09:08 03/20/23 09:08	03/21/23 20:45 03/21/23 20:45 03/21/23 20:45 03/21/23 20:45 03/21/23 20:45 03/21/23 20:45 03/21/23 20:45	
Barium Beryllium Cadmium Chromium Cobalt Copper Lead	121 0.500 0.500 5.00 0.500 5.00 2.50 5.00	U U U U U	5.00 0.500 0.500 5.00 0.500 5.00 2.50 5.00		ug/L ug/L ug/L ug/L ug/L ug/L ug/L		03/20/23 09:08 03/20/23 09:08 03/20/23 09:08 03/20/23 09:08 03/20/23 09:08 03/20/23 09:08 03/20/23 09:08 03/20/23 09:08	03/21/23 20:45 03/21/23 20:45 03/21/23 20:45 03/21/23 20:45 03/21/23 20:45 03/21/23 20:45 03/21/23 20:45 03/21/23 20:45	
Barium Beryllium Cadmium Chromium Cobalt Copper Lead Nickel	121 0.500 0.500 5.00 0.500 5.00 2.50 5.00	U U U U U	5.00 0.500 0.500 5.00 0.500 5.00 2.50 5.00		ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L		03/20/23 09:08 03/20/23 09:08 03/20/23 09:08 03/20/23 09:08 03/20/23 09:08 03/20/23 09:08 03/20/23 09:08 03/20/23 09:08 03/20/23 09:08	03/21/23 20:45 03/21/23 20:45 03/21/23 20:45 03/21/23 20:45 03/21/23 20:45 03/21/23 20:45 03/21/23 20:45 03/21/23 20:45 03/21/23 20:45	
Barium Beryllium Cadmium Chromium Cobalt Copper Lead Nickel Silver	121 0.500 0.500 5.00 0.500 5.00 2.50 5.00 1.00	U U U U U	5.00 0.500 0.500 5.00 0.500 5.00 2.50 5.00 1.00		ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L		03/20/23 09:08 03/20/23 09:08 03/20/23 09:08 03/20/23 09:08 03/20/23 09:08 03/20/23 09:08 03/20/23 09:08 03/20/23 09:08 03/20/23 09:08	03/21/23 20:45 03/21/23 20:45 03/21/23 20:45 03/21/23 20:45 03/21/23 20:45 03/21/23 20:45 03/21/23 20:45 03/21/23 20:45 03/21/23 20:45 03/21/23 20:45	
Barium Beryllium Cadmium Chromium Cobalt Copper Lead Nickel	121 0.500 0.500 5.00 0.500 5.00 2.50 5.00	U U U U U	5.00 0.500 0.500 5.00 0.500 5.00 2.50 5.00		ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L		03/20/23 09:08 03/20/23 09:08 03/20/23 09:08 03/20/23 09:08 03/20/23 09:08 03/20/23 09:08 03/20/23 09:08 03/20/23 09:08 03/20/23 09:08	03/21/23 20:45 03/21/23 20:45 03/21/23 20:45 03/21/23 20:45 03/21/23 20:45 03/21/23 20:45 03/21/23 20:45 03/21/23 20:45 03/21/23 20:45	

0.200

ug/L

0.200 U

03/20/23 13:40 03/21/23 14:24

Client: South Carolina Public Service Authority Project/Site: 125915/JM02.09.G01.1/36500

Job ID: 680-232196-1

Lab Sample ID: 680-232196-29

Matrix: Water

Client Sample ID: AF56419

Date Collected: 03/07/23 14:51 Date Received: 03/17/23 10:30

Mercury

	tals (ICP)								
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
Lithium	234		50.0		ug/L		03/23/23 14:15	03/24/23 17:52	
Method: SW846 6010D - Me	tals (ICP) - Total Re	coverable							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
Calcium	601000		500		ug/L		03/20/23 09:08	03/21/23 21:29	
Iron	19700		100		ug/L		03/20/23 09:08	03/21/23 21:29	
Magnesium	88700		500		ug/L		03/20/23 09:08	03/21/23 21:29	
Molybdenum	94.7		10.0		ug/L		03/20/23 09:08	03/21/23 21:29	
Potassium	22200		1000		ug/L		03/20/23 09:08	03/21/23 21:29	
Selenium	20.0	U	20.0		ug/L		03/20/23 09:08	03/21/23 21:29	
Sodium	44900		2000		ug/L		03/20/23 09:08	03/21/23 21:29	
Method: SW846 6020B - Me Analyte	Result	Qualifier	RL 100	MDL		D	Prepared	Analyzed 03/21/23 20:49	Dil Fa
		Qualifier		MDL		D			
Aluminum Antimony	672 5.00	11	5.00		ug/L ug/L		03/20/23 09:08 03/20/23 09:08	03/21/23 20:49	
Arsenic	474	O	3.00		ug/L		03/20/23 09:08	03/21/23 20:49	
Arsenic			5.00		ug/L				
Darium								03/21/23 20:40	
Barium	83.9	11			-		03/20/23 09:08	03/21/23 20:49	
Beryllium	0.500		0.500		ug/L		03/20/23 09:08	03/21/23 20:49	
Beryllium Cadmium	0.500 0.500	U	0.500 0.500		ug/L ug/L		03/20/23 09:08 03/20/23 09:08	03/21/23 20:49 03/21/23 20:49	
Beryllium Cadmium Chromium	0.500 0.500 5.00	U	0.500 0.500 5.00		ug/L ug/L ug/L		03/20/23 09:08 03/20/23 09:08 03/20/23 09:08	03/21/23 20:49 03/21/23 20:49 03/21/23 20:49	
Beryllium Cadmium Chromium Cobalt	0.500 0.500 5.00 1.29	U	0.500 0.500 5.00 0.500		ug/L ug/L ug/L ug/L		03/20/23 09:08 03/20/23 09:08 03/20/23 09:08 03/20/23 09:08	03/21/23 20:49 03/21/23 20:49 03/21/23 20:49 03/21/23 20:49	
Beryllium Cadmium Chromium Cobalt Copper	0.500 0.500 5.00 1.29 5.00	บ บ	0.500 0.500 5.00 0.500 5.00		ug/L ug/L ug/L ug/L ug/L		03/20/23 09:08 03/20/23 09:08 03/20/23 09:08 03/20/23 09:08 03/20/23 09:08	03/21/23 20:49 03/21/23 20:49 03/21/23 20:49 03/21/23 20:49 03/21/23 20:49	
Beryllium Cadmium Chromium Cobalt Copper Lead	0.500 0.500 5.00 1.29 5.00 2.50	U U U	0.500 0.500 5.00 0.500 5.00 2.50		ug/L ug/L ug/L ug/L ug/L		03/20/23 09:08 03/20/23 09:08 03/20/23 09:08 03/20/23 09:08 03/20/23 09:08 03/20/23 09:08	03/21/23 20:49 03/21/23 20:49 03/21/23 20:49 03/21/23 20:49 03/21/23 20:49 03/21/23 20:49	
Beryllium Cadmium Chromium Cobalt Copper Lead Nickel	0.500 0.500 5.00 1.29 5.00 2.50	U U U U	0.500 0.500 5.00 0.500 5.00 2.50 5.00		ug/L ug/L ug/L ug/L ug/L ug/L		03/20/23 09:08 03/20/23 09:08 03/20/23 09:08 03/20/23 09:08 03/20/23 09:08 03/20/23 09:08 03/20/23 09:08	03/21/23 20:49 03/21/23 20:49 03/21/23 20:49 03/21/23 20:49 03/21/23 20:49 03/21/23 20:49 03/21/23 20:49	
Beryllium Cadmium Chromium Cobalt Copper Lead Nickel Silver	0.500 0.500 5.00 1.29 5.00 2.50 5.00	U U U U U	0.500 0.500 5.00 0.500 5.00 2.50 5.00 1.00		ug/L ug/L ug/L ug/L ug/L ug/L ug/L		03/20/23 09:08 03/20/23 09:08 03/20/23 09:08 03/20/23 09:08 03/20/23 09:08 03/20/23 09:08 03/20/23 09:08 03/20/23 09:08	03/21/23 20:49 03/21/23 20:49 03/21/23 20:49 03/21/23 20:49 03/21/23 20:49 03/21/23 20:49 03/21/23 20:49 03/21/23 20:49	
Beryllium Cadmium Chromium Cobalt Copper Lead Nickel Silver	0.500 0.500 5.00 1.29 5.00 2.50 5.00 1.00	U U U U U	0.500 0.500 5.00 0.500 5.00 2.50 5.00 1.00		ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L		03/20/23 09:08 03/20/23 09:08 03/20/23 09:08 03/20/23 09:08 03/20/23 09:08 03/20/23 09:08 03/20/23 09:08 03/20/23 09:08	03/21/23 20:49 03/21/23 20:49 03/21/23 20:49 03/21/23 20:49 03/21/23 20:49 03/21/23 20:49 03/21/23 20:49 03/21/23 20:49 03/21/23 20:49	
Beryllium Cadmium Chromium Cobalt Copper Lead Nickel Silver Thallium	0.500 0.500 5.00 1.29 5.00 2.50 5.00 1.00 2.4.2	U U U U U	0.500 0.500 5.00 0.500 5.00 2.50 5.00 1.00 1.00		ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L		03/20/23 09:08 03/20/23 09:08 03/20/23 09:08 03/20/23 09:08 03/20/23 09:08 03/20/23 09:08 03/20/23 09:08 03/20/23 09:08 03/20/23 09:08	03/21/23 20:49 03/21/23 20:49 03/21/23 20:49 03/21/23 20:49 03/21/23 20:49 03/21/23 20:49 03/21/23 20:49 03/21/23 20:49 03/21/23 20:49 03/21/23 20:49	
Beryllium Cadmium Chromium	0.500 0.500 5.00 1.29 5.00 2.50 5.00 1.00	U U U U U	0.500 0.500 5.00 0.500 5.00 2.50 5.00 1.00		ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L		03/20/23 09:08 03/20/23 09:08 03/20/23 09:08 03/20/23 09:08 03/20/23 09:08 03/20/23 09:08 03/20/23 09:08 03/20/23 09:08	03/21/23 20:49 03/21/23 20:49 03/21/23 20:49 03/21/23 20:49 03/21/23 20:49 03/21/23 20:49 03/21/23 20:49 03/21/23 20:49 03/21/23 20:49	
Beryllium Cadmium Chromium Cobalt Copper Lead Nickel Silver Thallium	0.500 0.500 5.00 1.29 5.00 2.50 5.00 1.00 2.4.2	U U U U U	0.500 0.500 5.00 0.500 5.00 2.50 5.00 1.00 1.00		ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L		03/20/23 09:08 03/20/23 09:08 03/20/23 09:08 03/20/23 09:08 03/20/23 09:08 03/20/23 09:08 03/20/23 09:08 03/20/23 09:08 03/20/23 09:08	03/21/23 20:49 03/21/23 20:49 03/21/23 20:49 03/21/23 20:49 03/21/23 20:49 03/21/23 20:49 03/21/23 20:49 03/21/23 20:49 03/21/23 20:49 03/21/23 20:49	

0.200

ug/L

0.200 U

03/20/23 13:40 03/21/23 11:22

Client: South Carolina Public Service Authority Project/Site: 125915/JM02.09.G01.1/36500

Job ID: 680-232196-1

Lab Sample ID: 680-232196-30

Matrix: Water

Client Sample ID: AF56425

Date Collected: 03/07/23 12:49

Analyte

Mercury

Method: SW846 6010D - M	etals (ICP)								
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
Lithium	50.0	U	50.0		ug/L		03/23/23 14:15	03/24/23 18:10	
Method: SW846 6010D - M	etals (ICP) - Total Re	coverable							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
Calcium	68500		500		ug/L		03/20/23 09:08	03/21/23 21:32	
Iron	3190		100		ug/L		03/20/23 09:08	03/21/23 21:32	
Magnesium	2680		500		ug/L		03/20/23 09:08	03/21/23 21:32	
Molybdenum	10.0	U	10.0		ug/L		03/20/23 09:08	03/21/23 21:32	
Potassium	2060		1000		ug/L		03/20/23 09:08	03/21/23 21:32	
Selenium	20.0	U	20.0		ug/L		03/20/23 09:08	03/21/23 21:32	
Sodium	11100		2000		ug/L		03/20/23 09:08	03/21/23 21:32	
Method: SW846 6020B - M	etals (ICP/MS) - Total	Recoverable)						
Analyte		Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
Aluminum	100	U	100		ug/L		03/20/23 09:08	03/21/23 20:53	
Antimony	5.00	U	5.00		ug/L		03/20/23 09:08	03/21/23 20:53	
Arsenic	3.00	U	3.00		ug/L		03/20/23 09:08	03/21/23 20:53	
Barium	9.10		5.00		ug/L		03/20/23 09:08	03/21/23 20:53	
Beryllium	0.500	U	0.500		ug/L		03/20/23 09:08	03/21/23 20:53	
Cadmium	0.500	U	0.500		ug/L		03/20/23 09:08	03/21/23 20:53	
Chromium	5.00	U	5.00		ug/L		03/20/23 09:08	03/21/23 20:53	
Cobalt	0.500	U	0.500		ug/L		03/20/23 09:08	03/21/23 20:53	
Copper	30.7		5.00		ug/L		03/20/23 09:08	03/21/23 20:53	
Lead	2.50	U	2.50		ug/L		03/20/23 09:08	03/21/23 20:53	
Nickel	5.00	U	5.00		ug/L		03/20/23 09:08	03/21/23 20:53	
Silver	1.00	U	1.00		ug/L		03/20/23 09:08	03/21/23 20:53	
Thallium	1.00	U	1.00		ug/L		03/20/23 09:08	03/21/23 20:53	
Zinc	20.0	U	20.0		ug/L		03/20/23 09:08	03/21/23 20:53	
Manganese	90.8		5.00		ug/L		03/20/23 09:08	03/21/23 20:53	

RL

0.200

MDL Unit

ug/L

Prepared

03/20/23 13:40

Analyzed

03/21/23 11:05

Dil Fac

Result Qualifier

0.200 U

Client: South Carolina Public Service Authority Project/Site: 125915/JM02.09.G01.1/36500

Job ID: 680-232196-1

Lab Sample ID: 680-232196-31

Matrix: Water

Client Sample ID: AF56426 Date Collected: 03/07/23 10:22

Date Received: 03/17/23 10:30

Method: SW846 6010D - Metals	(ICP)								
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
Lithium	50.0	U	50.0		ug/L		03/23/23 14:15	03/24/23 18:15	
Method: SW846 6010D - Metals	(ICP) - Total Re	coverable							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
Calcium	20600		500		ug/L		03/20/23 09:08	03/21/23 21:35	
ron	386		100		ug/L		03/20/23 09:08	03/21/23 21:35	
Magnesium	1730		500		ug/L		03/20/23 09:08	03/21/23 21:35	
Molybdenum	10.0	U	10.0		ug/L		03/20/23 09:08	03/21/23 21:35	
Potassium	1000	U	1000		ug/L		03/20/23 09:08	03/21/23 21:35	
Selenium	20.0	U	20.0		ug/L		03/20/23 09:08	03/21/23 21:35	
Sodium	4370		2000		ug/L		03/20/23 09:08	03/21/23 21:35	
	•	Recoverable Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
Method: SW846 6020B - Metals	(ICP/MS) - Total	Recoverable							
Analyte	Result		RL	MDL	Unit	D	Prepared 00.00	Analyzed	Dil Fa
Analyte Aluminum	Result 164	Qualifier	100 RL	MDL	ug/L	D	03/20/23 09:08	03/21/23 20:57	
Analyte Aluminum Antimony	Result 164 5.00	Qualifier U	100 5.00	MDL	ug/L ug/L	<u>D</u>	03/20/23 09:08 03/20/23 09:08	03/21/23 20:57 03/21/23 20:57	
Analyte Aluminum Antimony Arsenic	Result 164 5.00 3.00	Qualifier U	100 5.00 3.00	MDL	ug/L ug/L ug/L	<u>D</u>	03/20/23 09:08 03/20/23 09:08 03/20/23 09:08	03/21/23 20:57 03/21/23 20:57 03/21/23 20:57	
Analyte Aluminum Antimony Arsenic Barium	Result 164 5.00 3.00 34.6	Qualifier U U	RL 100 5.00 3.00 5.00	MDL	ug/L ug/L ug/L ug/L	<u>D</u>	03/20/23 09:08 03/20/23 09:08 03/20/23 09:08 03/20/23 09:08	03/21/23 20:57 03/21/23 20:57 03/21/23 20:57 03/21/23 20:57	
Analyte Aluminum Antimony Arsenic Barium Beryllium	Result 164 5.00 3.00 34.6 0.500	Qualifier U U	RL 100 5.00 3.00 5.00 0.500	MDL	ug/L ug/L ug/L ug/L ug/L	<u>D</u>	03/20/23 09:08 03/20/23 09:08 03/20/23 09:08 03/20/23 09:08 03/20/23 09:08	03/21/23 20:57 03/21/23 20:57 03/21/23 20:57 03/21/23 20:57 03/21/23 20:57	-
Analyte Aluminum Antimony Arsenic Barium Beryllium Cadmium	Result 164 5.00 3.00 34.6 0.500 0.500	U U U U	RL 100 5.00 3.00 5.00 0.500	MDL	ug/L ug/L ug/L ug/L ug/L ug/L	<u>D</u>	03/20/23 09:08 03/20/23 09:08 03/20/23 09:08 03/20/23 09:08 03/20/23 09:08 03/20/23 09:08	03/21/23 20:57 03/21/23 20:57 03/21/23 20:57 03/21/23 20:57 03/21/23 20:57 03/21/23 20:57	
Analyte Aluminum Antimony Arsenic Barium Beryllium Cadmium Chromium	Result 164 5.00 3.00 34.6 0.500 0.500 5.00	U U U U	RL 100 5.00 3.00 5.00 0.500 0.500 5.00	MDL	ug/L ug/L ug/L ug/L ug/L ug/L	<u>D</u>	03/20/23 09:08 03/20/23 09:08 03/20/23 09:08 03/20/23 09:08 03/20/23 09:08 03/20/23 09:08 03/20/23 09:08	03/21/23 20:57 03/21/23 20:57 03/21/23 20:57 03/21/23 20:57 03/21/23 20:57 03/21/23 20:57 03/21/23 20:57	
Analyte Aluminum Antimony Arsenic Barium Beryllium Cadmium Chromium Cobalt	Result 164 5.00 3.00 34.6 0.500 0.500 5.00 0.500	Qualifier U U U U U U U U	RL 100 5.00 3.00 5.00 0.500 0.500 5.00	MDL	ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L	<u>D</u>	03/20/23 09:08 03/20/23 09:08 03/20/23 09:08 03/20/23 09:08 03/20/23 09:08 03/20/23 09:08 03/20/23 09:08 03/20/23 09:08	03/21/23 20:57 03/21/23 20:57 03/21/23 20:57 03/21/23 20:57 03/21/23 20:57 03/21/23 20:57 03/21/23 20:57 03/21/23 20:57	
Analyte Aluminum Antimony Arsenic Barium Beryllium Cadmium Chromium Cobalt Copper	Result 164 5.00 3.00 34.6 0.500 0.500 5.00 0.500 5.00	Qualifier U U U U U U U U U	RL 100 5.00 3.00 5.00 0.500 0.500 5.00 0.500 5.00	MDL	ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L	<u>D</u>	03/20/23 09:08 03/20/23 09:08 03/20/23 09:08 03/20/23 09:08 03/20/23 09:08 03/20/23 09:08 03/20/23 09:08 03/20/23 09:08 03/20/23 09:08	03/21/23 20:57 03/21/23 20:57 03/21/23 20:57 03/21/23 20:57 03/21/23 20:57 03/21/23 20:57 03/21/23 20:57 03/21/23 20:57 03/21/23 20:57	
Analyte Aluminum Antimony Arsenic Barium Beryllium Cadmium Chromium Cobalt Copper	Result 164 5.00 3.00 34.6 0.500 0.500 5.00 0.500 5.00 2.50	U U U U U U U	RL 100 5.00 3.00 5.00 0.500 0.500 5.00 0.500 5.00	MDL	ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L	<u>D</u>	03/20/23 09:08 03/20/23 09:08 03/20/23 09:08 03/20/23 09:08 03/20/23 09:08 03/20/23 09:08 03/20/23 09:08 03/20/23 09:08 03/20/23 09:08 03/20/23 09:08	03/21/23 20:57 03/21/23 20:57 03/21/23 20:57 03/21/23 20:57 03/21/23 20:57 03/21/23 20:57 03/21/23 20:57 03/21/23 20:57 03/21/23 20:57 03/21/23 20:57	
Analyte Aluminum Antimony Arsenic Barium Beryllium Cadmium Chromium Copper Lead	Result 164 5.00 3.00 34.6 0.500 0.500 5.00 0.500 5.00 2.500 5.00	Qualifier U U U U U U U U U U U U U	RL 100 5.00 3.00 5.00 0.500 5.00 0.500 5.00 2.50 5.00	MDL	ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L	<u>D</u>	03/20/23 09:08 03/20/23 09:08	03/21/23 20:57 03/21/23 20:57	
Analyte Aluminum Antimony Arsenic Barium Beryllium Cadmium Chromium Copper Lead Silver	Result 164 5.00 3.00 34.6 0.500 0.500 5.00 0.500 5.00 2.50 5.00 1.00	Qualifier U U U U U U U U U U U U U	RL 100 5.00 3.00 5.00 0.500 5.00 0.500 5.00 2.50 5.00	MDL	ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L	<u>D</u>	03/20/23 09:08 03/20/23 09:08	03/21/23 20:57 03/21/23 20:57	
Analyte Aluminum Antimony Arsenic Barium Beryllium Cadmium Chromium Cobalt Copper Lead Nickel Silver	Result 164 5.00 3.00 34.6 0.500 0.500 5.00 0.500 5.00 1.00	Qualifier U U U U U U U U U U U U U	RL 100 5.00 3.00 5.00 0.500 0.500 5.00 0.500 5.00 2.50 5.00 1.00	MDL	ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L	<u>D</u>	03/20/23 09:08 03/20/23 09:08	03/21/23 20:57 03/21/23 20:57	
Method: SW846 6020B - Metals Analyte Aluminum Antimony Arsenic Barium Beryllium Cadmium Chromium Cobalt Copper Lead Nickel Silver Thallium Zinc	Result 164 5.00 3.00 34.6 0.500 0.500 5.00 0.500 5.00 2.50 5.00 1.00	Qualifier U U U U U U U U U U U U U	RL 100 5.00 3.00 5.00 0.500 5.00 0.500 5.00 2.50 5.00	MDL	ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L	<u>D</u>	03/20/23 09:08 03/20/23 09:08	03/21/23 20:57 03/21/23 20:57	

Method: SW846 7470A - Mercury (C	CVAA)								
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Mercury	0.200	U	0.200		ug/L		03/20/23 13:40	03/21/23 10:55	1

Client: South Carolina Public Service Authority Project/Site: 125915/JM02.09.G01.1/36500

Client Sample ID: AF56427 Date Collected: 03/07/23 10:27

Date Received: 03/17/23 10:30

Analyte

Mercury

Job ID: 680-232196-1

Lab Sample ID: 680-232196-32

Matrix: Water

5

×
U.

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
Lithium	50.0	U	50.0		ug/L		03/23/23 14:15	03/24/23 18:19	
Method: SW846 6010D - Meta	als (ICP) - Total Re	coverable							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
Calcium	22400		500		ug/L		03/20/23 09:08	03/21/23 21:39	
Iron	392		100		ug/L		03/20/23 09:08	03/21/23 21:39	
Magnesium	1820		500		ug/L		03/20/23 09:08	03/21/23 21:39	
Molybdenum	10.0	U	10.0		ug/L		03/20/23 09:08	03/21/23 21:39	
Potassium	1000	U	1000		ug/L		03/20/23 09:08	03/21/23 21:39	
Selenium	20.0	U	20.0		ug/L		03/20/23 09:08	03/21/23 21:39	
Sodium	4470		2000		ug/L		03/20/23 09:08	03/21/23 21:39	
Aluminum	178		100		ug/L		03/20/23 09:08	03/21/23 21:01	
Method: SW846 6020B - Meta	als (ICP/MS) - Total	Recoverable	•						
					-				
Antimony	5.00	_	5.00		ug/L		03/20/23 09:08	03/21/23 21:01	
Arsenic	3.00		3.00		ug/L		03/20/23 09:08	03/21/23 21:01	
	34.5		5.00		ug/L		03/20/23 09:08	03/21/23 21:01	
Barium	0.500	1.1	0.500						
Beryllium	0.500		0.500		ug/L		03/20/23 09:08	03/21/23 21:01	
Beryllium Cadmium	0.500	U	0.500		ug/L		03/20/23 09:08	03/21/23 21:01	
Beryllium Cadmium Chromium	0.500 5.00	U	0.500 5.00		ug/L ug/L		03/20/23 09:08 03/20/23 09:08	03/21/23 21:01 03/21/23 21:01	
Beryllium Cadmium Chromium Cobalt	0.500 5.00 0.500	U U	0.500 5.00 0.500		ug/L ug/L ug/L		03/20/23 09:08 03/20/23 09:08 03/20/23 09:08	03/21/23 21:01 03/21/23 21:01 03/21/23 21:01	
Beryllium Cadmium Chromium Cobalt Copper	0.500 5.00 0.500 5.00	U U U	0.500 5.00 0.500 5.00		ug/L ug/L ug/L ug/L		03/20/23 09:08 03/20/23 09:08 03/20/23 09:08 03/20/23 09:08	03/21/23 21:01 03/21/23 21:01 03/21/23 21:01 03/21/23 21:01	
Beryllium Cadmium Chromium Cobalt Copper Lead	0.500 5.00 0.500 5.00 2.50	U U U U	0.500 5.00 0.500 5.00 2.50		ug/L ug/L ug/L ug/L ug/L		03/20/23 09:08 03/20/23 09:08 03/20/23 09:08 03/20/23 09:08 03/20/23 09:08	03/21/23 21:01 03/21/23 21:01 03/21/23 21:01 03/21/23 21:01 03/21/23 21:01	
Beryllium Cadmium Chromium Cobalt Copper Lead Vickel	0.500 5.00 0.500 5.00 2.50 5.00	U U U U	0.500 5.00 0.500 5.00 2.50 5.00		ug/L ug/L ug/L ug/L ug/L ug/L		03/20/23 09:08 03/20/23 09:08 03/20/23 09:08 03/20/23 09:08 03/20/23 09:08 03/20/23 09:08	03/21/23 21:01 03/21/23 21:01 03/21/23 21:01 03/21/23 21:01 03/21/23 21:01 03/21/23 21:01	
Beryllium Cadmium Chromium Cobalt Copper Lead Nickel Silver	0.500 5.00 0.500 5.00 2.50 5.00	U U U U U	0.500 5.00 0.500 5.00 2.50 5.00		ug/L ug/L ug/L ug/L ug/L ug/L		03/20/23 09:08 03/20/23 09:08 03/20/23 09:08 03/20/23 09:08 03/20/23 09:08 03/20/23 09:08 03/20/23 09:08	03/21/23 21:01 03/21/23 21:01 03/21/23 21:01 03/21/23 21:01 03/21/23 21:01 03/21/23 21:01 03/21/23 21:01	
Beryllium Cadmium Chromium Cobalt Copper Lead Nickel Silver Thallium	0.500 5.00 0.500 5.00 2.50 5.00 1.00	U U U U U U U U U U U U U U U	0.500 5.00 0.500 5.00 2.50 5.00 1.00		ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L		03/20/23 09:08 03/20/23 09:08 03/20/23 09:08 03/20/23 09:08 03/20/23 09:08 03/20/23 09:08 03/20/23 09:08 03/20/23 09:08	03/21/23 21:01 03/21/23 21:01 03/21/23 21:01 03/21/23 21:01 03/21/23 21:01 03/21/23 21:01 03/21/23 21:01 03/21/23 21:01	
Beryllium Cadmium Chromium	0.500 5.00 0.500 5.00 2.50 5.00	U U U U U U U U U U U U U U U	0.500 5.00 0.500 5.00 2.50 5.00		ug/L ug/L ug/L ug/L ug/L ug/L		03/20/23 09:08 03/20/23 09:08 03/20/23 09:08 03/20/23 09:08 03/20/23 09:08 03/20/23 09:08 03/20/23 09:08	03/21/23 21:01 03/21/23 21:01 03/21/23 21:01 03/21/23 21:01 03/21/23 21:01 03/21/23 21:01 03/21/23 21:01	

RL

0.200

MDL Unit

ug/L

Prepared

03/20/23 13:40

Analyzed

03/21/23 10:35

Dil Fac

Result Qualifier

0.200 U

Client: South Carolina Public Service Authority Project/Site: 125915/JM02.09.G01.1/36500

Job ID: 680-232196-1

Lab Sample ID: 680-232196-33

Matrix: Water

Client Sample ID: AF56408 Date Collected: 03/08/23 13:38

Mercury

Method: SW846 6010D - M	letals (ICP)								
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
Lithium	50.0	U	50.0		ug/L		03/23/23 14:15	03/24/23 18:24	
Method: SW846 6010D - M	letals (ICP) - Total Re	coverable							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
Calcium	416000		500		ug/L		03/20/23 09:08	03/21/23 21:42	
Iron	56000		100		ug/L		03/20/23 09:08	03/21/23 21:42	
Magnesium	30400		500		ug/L		03/20/23 09:08	03/21/23 21:42	
Molybdenum	10.0	U	10.0		ug/L		03/20/23 09:08	03/21/23 21:42	
Potassium	2780		1000		ug/L		03/20/23 09:08	03/21/23 21:42	
Selenium	20.0	U	20.0		ug/L		03/20/23 09:08	03/21/23 21:42	
Sodium	127000		2000		ug/L		03/20/23 09:08	03/21/23 21:42	
Method: SW846 6020B - M	lotals (ICD/MS) Total	Pacoverable							
Analyte		Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
Aluminum	100	U	100		ug/L		03/20/23 09:08	03/21/23 21:05	
Antimony	5.00	U	5.00		ug/L		03/20/23 09:08	03/21/23 21:05	
Arsenic	3.00	U	3.00		ug/L		03/20/23 09:08	03/21/23 21:05	
Barium	305		5.00		ug/L		03/20/23 09:08	03/21/23 21:05	
Beryllium	0.500	U	0.500		ug/L		03/20/23 09:08	03/21/23 21:05	
Cadmium	0.500	U	0.500		ug/L		03/20/23 09:08	03/21/23 21:05	
Chromium	5.00	U	5.00		ug/L		03/20/23 09:08	03/21/23 21:05	
Cobalt	0.555		0.500		ug/L		03/20/23 09:08	03/21/23 21:05	
Copper	5.00	U	5.00		ug/L		03/20/23 09:08	03/21/23 21:05	
Lead	2.50	U	2.50		ug/L		03/20/23 09:08	03/21/23 21:05	
Nickel	5.00	U	5.00		ug/L		03/20/23 09:08	03/21/23 21:05	
Silver	1.00	U	1.00		ug/L		03/20/23 09:08	03/21/23 21:05	
Thallium	1.00	U	1.00		ug/L		03/20/23 09:08	03/21/23 21:05	
Zinc	136		20.0		ug/L		03/20/23 09:08	03/21/23 21:05	
Manganese	694		5.00		ug/L		03/20/23 09:08	03/21/23 21:05	
Method: SW846 7470A - M	lercury (CVAA)								
Metriou. Syvo40 7470A - W Analyte	,	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
							<u> </u>		

0.200

ug/L

0.200 U F1

03/20/23 13:40 03/21/23 12:16

Client: South Carolina Public Service Authority Project/Site: 125915/JM02.09.G01.1/36500

Job ID: 680-232196-1

Lab Sample ID: 680-232196-34

Matrix: Water

Client Sample ID: AF56415 Date Collected: 03/08/23 15:13

Mercury

	CP)								
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
Lithium	50.0	U	50.0		ug/L		03/23/23 14:15	03/24/23 18:29	
Method: SW846 6010D - Metals (I	CP) - Total Re	coverable							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
Calcium	202000		500		ug/L		03/20/23 09:08	03/21/23 21:45	
ron	8580		100		ug/L		03/20/23 09:08	03/21/23 21:45	
Magnesium	19800		500		ug/L		03/20/23 09:08	03/21/23 21:45	
Molybdenum	10.0	U	10.0		ug/L		03/20/23 09:08	03/21/23 21:45	
Potassium	11800		1000		ug/L		03/20/23 09:08	03/21/23 21:45	
Selenium	20.0	U	20.0		ug/L		03/20/23 09:08	03/21/23 21:45	
Sodium	128000		2000		ug/L		03/20/23 09:08	03/21/23 21:45	
Analyte	Result	Qualifier	RL	MDL		D	Prepared	Analyzed	Dil Fa
Method: SW846 6020B - Metals (I				MDI	Unit	В	Propared	Analyzed	Dil Ea
Aluminum	100	U	100		ug/L		03/20/23 09:08	03/21/23 21:09	
Antimony	5.00	U	5.00		ug/L		03/20/23 09:08	03/21/23 21:09	
Arsenic	3.00	U	3.00		ug/L		03/20/23 09:08	03/21/23 21:09	
Barium	86.8		5.00		ug/L		03/20/23 09:08	03/21/23 21:09	
Beryllium	0.500	U	0.500		ug/L		03/20/23 09:08	03/21/23 21:09	
Cadmium	0.500	U	0.500		ug/L		03/20/23 09:08	03/21/23 21:09	
Chromium	5.00	U	5.00		ug/L		03/20/23 09:08	03/21/23 21:09	
Cobalt	0.500	U	0.500		ug/L		03/20/23 09:08	03/21/23 21:09	
Copper	5.00	U	5.00		ug/L		03/20/23 09:08	03/21/23 21:09	
Lead	2.50	U	2.50		ug/L		03/20/23 09:08	03/21/23 21:09	
Nickel	5.00	U	5.00		ug/L		03/20/23 09:08	03/21/23 21:09	
00	1.00	U	1.00		ug/L		03/20/23 09:08	03/21/23 21:09	
Silver	1.00	U	1.00		ug/L		03/20/23 09:08	03/21/23 21:09	
			20.0		ug/L		03/20/23 09:08	03/21/23 21:09	
Thallium	39.3								
Silver Thallium Zinc Manganese	39.3 203		5.00		ug/L		03/20/23 09:08	03/21/23 21:09	
Thallium Zinc	203		5.00		ug/L		03/20/23 09:08	03/21/23 21:09	

0.200

ug/L

0.200 U

03/20/23 12:45 03/21/23 13:43

Client: South Carolina Public Service Authority Project/Site: 125915/JM02.09.G01.1/36500

Job ID: 680-232196-1

Lab Sample ID: 680-232196-35

Matrix: Water

Client Sample ID: AF56416 Date Collected: 03/08/23 10:09

Mercury

Method: SW846 6010D - Metals (ICP)									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Lithium -	50.0	U	50.0		ug/L		03/23/23 14:15	03/24/23 18:34	1
Method: SW846 6010D - Metals (ICP) - To	otal Re	coverable							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
Calcium	260000		500		ug/L		03/20/23 09:08	03/21/23 21:48	
Iron	1570		100		ug/L		03/20/23 09:08	03/21/23 21:48	
Magnesium	38100		500		ug/L		03/20/23 09:08	03/21/23 21:48	
Molybdenum	18.0		10.0		ug/L		03/20/23 09:08	03/21/23 21:48	
Potassium	13800		1000		ug/L		03/20/23 09:08	03/21/23 21:48	
Selenium	20.0	U	20.0		ug/L		03/20/23 09:08	03/21/23 21:48	
Sodium	69700		2000		ug/L		03/20/23 09:08	03/21/23 21:48	
Method: SW846 6020B - Metals (ICP/MS)	Total	Pocovorablo							
Analyte		Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
Aluminum	100	U	100		ug/L		03/20/23 09:08	03/21/23 21:13	-
Antimony	5.00	U	5.00		ug/L		03/20/23 09:08	03/21/23 21:13	
Arsenic	85.9		3.00		ug/L		03/20/23 09:08	03/21/23 21:13	
Barium	44.4		5.00		ug/L		03/20/23 09:08	03/21/23 21:13	
Beryllium	0.500	U	0.500		ug/L		03/20/23 09:08	03/21/23 21:13	
Cadmium	0.500	U	0.500		ug/L		03/20/23 09:08	03/21/23 21:13	
Chromium	5.00	U	5.00		ug/L		03/20/23 09:08	03/21/23 21:13	
Cobalt	0.500	U	0.500		ug/L		03/20/23 09:08	03/21/23 21:13	
Copper	5.00	U	5.00		ug/L		03/20/23 09:08	03/21/23 21:13	
Lead	2.50	U	2.50		ug/L		03/20/23 09:08	03/21/23 21:13	
Nickel	5.00	U	5.00		ug/L		03/20/23 09:08	03/21/23 21:13	
Silver	1.00	U	1.00		ug/L		03/20/23 09:08	03/21/23 21:13	
Thallium	1.00	U	1.00		ug/L		03/20/23 09:08	03/21/23 21:13	
	413		20.0		ug/L		03/20/23 09:08	03/21/23 21:13	
Zinc									
Zinc Manganese	82.2		5.00		ug/L		03/20/23 09:08	03/21/23 21:13	
			5.00		ug/L		03/20/23 09:08	03/21/23 21:13	

0.200

ug/L

0.200 U

03/20/23 12:45

03/21/23 13:23

Client: South Carolina Public Service Authority Project/Site: 125915/JM02.09.G01.1/36500

Job ID: 680-232196-1

Lab Sample ID: 680-232196-36

Matrix: Water

Client Sample ID: AF56417 Date Collected: 03/08/23 10:14

Analyte

Mercury

Method: SW846 6010D - Me	etals (ICP)								
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
Lithium	50.0	U	50.0		ug/L		03/23/23 14:15	03/24/23 18:38	
Method: SW846 6010D - Me	etals (ICP) - Total Re	coverable							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
Calcium	260000		500		ug/L		03/20/23 09:08	03/21/23 21:52	
ron	1740		100		ug/L		03/20/23 09:08	03/21/23 21:52	
Magnesium	37600		500		ug/L		03/20/23 09:08	03/21/23 21:52	
Molybdenum	21.2		10.0		ug/L		03/20/23 09:08	03/21/23 21:52	
Potassium	13800		1000		ug/L		03/20/23 09:08	03/21/23 21:52	
Selenium	20.0	U	20.0		ug/L		03/20/23 09:08	03/21/23 21:52	
Sodium	69400		2000		ug/L		03/20/23 09:08	03/21/23 21:52	
Method: SW846 6020B - Me	stals (ICP/MS) - Total	Recoverable							
Analyte		Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
Aluminum	100	U	100		ug/L		03/20/23 09:08	03/21/23 21:17	
Antimony	5.00	U	5.00		ug/L		03/20/23 09:08	03/21/23 21:17	
Arsenic	85.8		3.00		ug/L		03/20/23 09:08	03/21/23 21:17	
Barium	45.4		5.00		ug/L		03/20/23 09:08	03/21/23 21:17	
Beryllium	0.500	U	0.500		ug/L		03/20/23 09:08	03/21/23 21:17	
Cadmium	0.500	U	0.500		ug/L		03/20/23 09:08	03/21/23 21:17	
Chromium	5.00	U	5.00		ug/L		03/20/23 09:08	03/21/23 21:17	
	0.500	U	0.500		ug/L		03/20/23 09:08	03/21/23 21:17	
Cobalt			5.00		ug/L		03/20/23 09:08	03/21/23 21:17	
	5.00	U	5.00					03/21/23 21:17	
Copper	5.00 2.50		2.50		ug/L		03/20/23 09:08	03/21/23 21.17	
Copper Lead		U			ug/L ug/L		03/20/23 09:08 03/20/23 09:08	03/21/23 21:17	
Copper Lead Nickel	2.50	U	2.50		•				
Copper Lead Nickel Silver	2.50 5.00	U U U	2.50 5.00		ug/L		03/20/23 09:08	03/21/23 21:17	
Cobalt Copper Lead Nickel Silver Thallium Zinc	2.50 5.00 1.00	U U U	2.50 5.00 1.00		ug/L ug/L		03/20/23 09:08 03/20/23 09:08	03/21/23 21:17 03/21/23 21:17	

RL

0.200

MDL Unit

ug/L

Prepared

03/20/23 12:45

Analyzed

03/21/23 13:10

Dil Fac

Result Qualifier

0.200 U

Client: South Carolina Public Service Authority Project/Site: 125915/JM02.09.G01.1/36500

Job ID: 680-232196-1

Lab Sample ID: 680-232196-37

Matrix: Water

Client Sample ID: AF56429 Date Collected: 03/08/23 12:12

Date Received: 03/17/23 10:30

Mercury

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
Lithium	50.0	U	50.0		ug/L		03/23/23 14:15	03/24/23 18:43	
Method: SW846 6010D - Metals	(ICP) - Total Re	coverable							
Analyte		Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
Calcium	73100		500		ug/L		03/20/23 09:08	03/21/23 22:01	
ron	94400		100		ug/L		03/20/23 09:08	03/21/23 22:01	
Magnesium	26000		500		ug/L		03/20/23 09:08	03/21/23 22:01	
Molybdenum	10.0	U	10.0		ug/L		03/20/23 09:08	03/21/23 22:01	
Potassium	1000	U	1000		ug/L		03/20/23 09:08	03/21/23 22:01	
Selenium	20.0	U	20.0		ug/L		03/20/23 09:08	03/21/23 22:01	
Sodium	82200		2000		ug/L		03/20/23 09:08	03/21/23 22:01	
Method: SW846 6020B - Metals ^{Analyte}	,	Recoverable Qualifier	RL	MDL	Umit	D	Prepared	Analyzed	Dile
	Result	Qualifier	100	MDL	ug/L		03/20/23 09:08	03/21/23 21:28	Dil Fa
Aluminum	5.00	11	5.00		•		03/20/23 09:08	03/21/23 21:28	
Antimony	3.00	_	3.00		ug/L ug/L		03/20/23 09:08	03/21/23 21:28	
Arsenic			5.00		ug/L ug/L		03/20/23 09:08	03/21/23 21:28	
Barium Barrum	258 0.985		0.500		ug/L ug/L		03/20/23 09:08	03/21/23 21:28	
Beryllium Cadmium	0.985		0.500		ug/L ug/L		03/20/23 09:08	03/21/23 21:28	
Chromium	5.00		5.00		ug/L ug/L		03/20/23 09:08	03/21/23 21:28	
		U	0.500		ug/L ug/L		03/20/23 09:08	03/21/23 21:28	
Cobalt Copper	18.6 5.00	11	5.00		ug/L ug/L		03/20/23 09:08	03/21/23 21:28	
soppei			2.50		ug/L ug/L		03/20/23 09:08	03/21/23 21:28	
and	3.19	11	5.00		ug/L ug/L		03/20/23 09:08	03/21/23 21:28	
_ead		U	5.00		ug/L ug/L		03/20/23 09:08	03/21/23 21:28	
Nickel	5.00		1.00						
Nickel Silver	1.00		1.00						
Nickel Silver Fhallium	1.00	U	1.00		ug/L		03/20/23 09:08	03/21/23 21:28	
lickel Silver	1.00	U							

0.200

ug/L

0.200 U

03/20/23 12:45 03/21/23 14:07

4

5

7

8

10

12

13

14

Client: South Carolina Public Service Authority Project/Site: 125915/JM02.09.G01.1/36500

Job ID: 680-232196-1

Lab Sample ID: 680-232196-38

Matrix: Water

Client Sample ID: AF56421 Date Collected: 03/01/23 14:41

Mercury

Method: SW846 6010D - Metals	s (ICP)								
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Lithium	50.0	U	50.0		ug/L		03/23/23 14:15	03/24/23 18:48	
Method: SW846 6010D - Metals	s (ICP) - Total Re	coverable							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
Calcium	114000		500		ug/L		03/20/23 09:08	03/21/23 22:05	
Iron	4430		100		ug/L		03/20/23 09:08	03/21/23 22:05	
Magnesium	16900		500		ug/L		03/20/23 09:08	03/21/23 22:05	
Molybdenum	10.0	U	10.0		ug/L		03/20/23 09:08	03/21/23 22:05	
Potassium	10500		1000		ug/L		03/20/23 09:08	03/21/23 22:05	
Selenium	20.0	U	20.0		ug/L		03/20/23 09:08	03/21/23 22:05	
Sodium	21200		2000		ug/L		03/20/23 09:08	03/21/23 22:05	
Method: SW846 6020B - Metals	c (ICD/MS) Total	Dogovorablo							
Analyte		Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
Aluminum	159		100		ug/L		03/20/23 09:08	03/21/23 21:32	
Antimony	5.00	U	5.00		ug/L		03/20/23 09:08	03/21/23 21:32	
Arsenic	3.00	U	3.00		ug/L		03/20/23 09:08	03/21/23 21:32	
Barium	37.8		5.00		ug/L		03/20/23 09:08	03/21/23 21:32	
Beryllium	0.500	U	0.500		ug/L		03/20/23 09:08	03/21/23 21:32	
Cadmium	0.500	U	0.500		ug/L		03/20/23 09:08	03/21/23 21:32	
Chromium	5.00	U	5.00		ug/L		03/20/23 09:08	03/21/23 21:32	
Cobalt	0.500	U	0.500		ug/L		03/20/23 09:08	03/21/23 21:32	
Copper	5.00	U	5.00		ug/L		03/20/23 09:08	03/21/23 21:32	
Lead	2.50	U	2.50		ug/L		03/20/23 09:08	03/21/23 21:32	
Nickel	5.00	U	5.00		ug/L		03/20/23 09:08	03/21/23 21:32	
Silver	1.00	U	1.00		ug/L		03/20/23 09:08	03/21/23 21:32	
Thallium	1.00	U	1.00		ug/L		03/20/23 09:08	03/21/23 21:32	
Zinc	20.0	U	20.0		ug/L		03/20/23 09:08	03/21/23 21:32	
Manganese	128		5.00		ug/L		03/20/23 09:08	03/21/23 21:32	
Marklanda (1940) 40 7 470 A	(0)(0.0)								
Method: SW846 7470A - Mercu	,	0			11-14	_			B.: 5
Analyte	Result	Qualifier	RL	MDL	UNIT	D	Prepared	Analyzed	Dil Fa

0.200

ug/L

0.200 U F1

Eurofins Savannah

03/20/23 12:45

03/21/23 12:26

Client: South Carolina Public Service Authority Project/Site: 125915/JM02.09.G01.1/36500

Job ID: 680-232196-1

Lab Sample ID: 680-232196-39

Matrix: Water

Client Sample ID: AF56428 Date Collected: 03/01/23 13:37

Mercury

Method: SW846 6010D - Metals (IC	(P)								
Analyte		Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
_ithium	50.0	U	50.0		ug/L		03/23/23 14:15	03/24/23 18:52	•
Method: SW846 6010D - Metals (IC	P) - Total Re	coverable							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
Calcium	199000		500		ug/L		03/20/23 09:01	03/21/23 20:34	
ron	714		100		ug/L		03/20/23 09:01	03/21/23 20:34	
Magnesium	15200		500		ug/L		03/20/23 09:01	03/21/23 20:34	
Molybdenum	10.0	U	10.0		ug/L		03/20/23 09:01	03/21/23 20:34	
Potassium	6130		1000		ug/L		03/20/23 09:01	03/21/23 20:34	
Selenium	20.0	U	20.0		ug/L		03/20/23 09:01	03/21/23 20:34	
Sodium	38200		2000		ug/L		03/20/23 09:01	03/21/23 20:34	
Mothod: SW946 6020B Motols (IC	PD/MC) Total	Doggvershie							
Method: SW846 6020B - Metals (IC _{Analyte}	•	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
Aluminum	100	U	100		ug/L		03/20/23 09:01	03/21/23 17:45	
Antimony	5.00	U	5.00		ug/L		03/20/23 09:01	03/21/23 17:45	
Arsenic	3.00	U	3.00		ug/L		03/20/23 09:01	03/22/23 09:19	
Barium	8.73		5.00		ug/L		03/20/23 09:01	03/21/23 17:45	
Beryllium	0.500	U	0.500		ug/L		03/20/23 09:01	03/22/23 09:19	
Cadmium	0.500	U	0.500		ug/L		03/20/23 09:01	03/21/23 17:45	
Chromium	5.00	U	5.00		ug/L		03/20/23 09:01	03/21/23 17:45	
Cobalt	0.500	U	0.500		ug/L		03/20/23 09:01	03/21/23 17:45	
Copper	5.00	U	5.00		ug/L		03/20/23 09:01	03/21/23 17:45	
_ead	2.50	U	2.50		ug/L		03/20/23 09:01	03/22/23 09:19	
Nickel	5.00	U	5.00		ug/L		03/20/23 09:01	03/21/23 17:45	
Silver	1.00	U	1.00		ug/L		03/20/23 09:01	03/21/23 17:45	
Thallium	1.00	U	1.00		ug/L		03/20/23 09:01	03/22/23 09:19	
	20.0	U	20.0		ug/L		03/20/23 09:01	03/21/23 17:45	
Zinc	20.0								

0.200

ug/L

0.200 U

03/20/23 13:40

03/21/23 11:39

4

5

8

46

11

13

1 4

Client: South Carolina Public Service Authority

Job ID: 680-232196-1

Project/Site: 125915/JM02.09.G01.1/36500

Lab Sample ID: 680-232196-40

Matrix: Water

Client Sample ID: AF56439 Date Collected: 03/01/23 10:22 Date Received: 03/17/23 10:30

Method: SW846 6010D - Metals (ICP)										
Analyte	Result	Qualifier	RL	MDL Unit	D	Prepared	Analyzed	Dil Fac		
Lithium	50.0	U	50.0	ug/L		03/23/23 14:15	03/24/23 19:11	1		

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Calcium	138000		500		ug/L		03/20/23 09:08	03/21/23 22:08	1
Iron	9540		100		ug/L		03/20/23 09:08	03/21/23 22:08	1
Magnesium	14600		500		ug/L		03/20/23 09:08	03/21/23 22:08	1
Molybdenum	10.0	U	10.0		ug/L		03/20/23 09:08	03/21/23 22:08	1
Potassium	7790		1000		ug/L		03/20/23 09:08	03/21/23 22:08	1
Selenium	20.0	U	20.0		ug/L		03/20/23 09:08	03/21/23 22:08	1
Sodium	38300		2000		ug/L		03/20/23 09:08	03/21/23 22:08	1

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Aluminum	1000		100		ug/L		03/20/23 09:08	03/21/23 21:36	1
Antimony	5.00	U	5.00		ug/L		03/20/23 09:08	03/21/23 21:36	1
Arsenic	42.3		3.00		ug/L		03/20/23 09:08	03/21/23 21:36	1
Barium	104		5.00		ug/L		03/20/23 09:08	03/21/23 21:36	1
Beryllium	0.500	U	0.500		ug/L		03/20/23 09:08	03/21/23 21:36	1
Cadmium	0.500	U	0.500		ug/L		03/20/23 09:08	03/21/23 21:36	1
Chromium	5.00	U	5.00		ug/L		03/20/23 09:08	03/21/23 21:36	1
Cobalt	6.88		0.500		ug/L		03/20/23 09:08	03/21/23 21:36	1
Copper	5.00	U	5.00		ug/L		03/20/23 09:08	03/21/23 21:36	1
Lead	2.50	U	2.50		ug/L		03/20/23 09:08	03/21/23 21:36	1
Nickel	5.00	U	5.00		ug/L		03/20/23 09:08	03/21/23 21:36	1
Silver	1.00	U	1.00		ug/L		03/20/23 09:08	03/21/23 21:36	1
Thallium	1.00	U	1.00		ug/L		03/20/23 09:08	03/21/23 21:36	1
Zinc	67.1		20.0		ug/L		03/20/23 09:08	03/21/23 21:36	1
Manganese	167		5.00		ug/L		03/20/23 09:08	03/21/23 21:36	1

Method: SW846 7470A - Mercury (CVAA)										
	Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
	Mercury	0.200	U	0.200		ug/L		03/20/23 13:40	03/21/23 11:15	1

Client: South Carolina Public Service Authority Project/Site: 125915/JM02.09.G01.1/36500

Method: SW846 7470A - Mercury (CVAA)

Client Sample ID: AF56441 Date Collected: 03/01/23 11:45

Date Received: 03/17/23 10:30

Job ID: 680-232196-1

Lab Sample ID: 680-232196-41

Matrix: Water

	4
	E

D	Prepared	Analyzed	Dil Fac

		0
	Dil Fac	
1	1	
1	1	O
1	1	O
1	1	
1	1	9

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Lithium	121		50.0		ug/L		03/23/23 14:17	03/24/23 19:24	1
Method: SW846 6010D - N	/letals (ICP) - Total Re	coverable							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Calcium	191000		500		ug/L		03/20/23 09:08	03/21/23 22:11	1
Iron	5280		100		ug/L		03/20/23 09:08	03/21/23 22:11	1
Magnesium	10900		500		ug/L		03/20/23 09:08	03/21/23 22:11	1
Molybdenum	10.0	U	10.0		ug/L		03/20/23 09:08	03/21/23 22:11	1
Potassium	5500		1000		ug/L		03/20/23 09:08	03/21/23 22:11	1
Selenium	20.0	U	20.0		ug/L		03/20/23 09:08	03/21/23 22:11	1
Sodium	24400		2000		ug/L		03/20/23 09:08	03/21/23 22:11	1
-									
Method: SW846 6020B - N	•								
Analyte		Qualifier	RL	MDL		D	Prepared	Analyzed	Dil Fac
Aluminum	100	_	100		ug/L		03/20/23 09:08	03/21/23 21:40	1
Antimony	5.00	U	5.00		ug/L		03/20/23 09:08	03/21/23 21:40	1
Arsenic	182		3.00		ug/L		03/20/23 09:08	03/21/23 21:40	1
Barium	78.6		5.00		ug/L		03/20/23 09:08	03/21/23 21:40	1
Beryllium	0.500	U	0.500		ug/L		03/20/23 09:08	03/21/23 21:40	1
Cadmium	0.500	U	0.500		ug/L		03/20/23 09:08	03/21/23 21:40	1
Chromium	5.00	U	5.00		ug/L		03/20/23 09:08	03/21/23 21:40	1
Cobalt	0.500	U	0.500		ug/L		03/20/23 09:08	03/21/23 21:40	1
Copper	5.00	U	5.00		ug/L		03/20/23 09:08	03/21/23 21:40	1
Lead	2.50	U	2.50		ug/L		03/20/23 09:08	03/21/23 21:40	1
Nickel	5.00	U	5.00		ug/L		03/20/23 09:08	03/21/23 21:40	1
	1.00	U	1.00		ug/L		03/20/23 09:08	03/21/23 21:40	1
Silver			1.00		ug/L		03/20/23 09:08	03/21/23 21:40	1
Silver Thallium	1.00	U	1.00						
	1.00 20.0		20.0		ug/L		03/20/23 09:08	03/21/23 21:40	1

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Mercury	0.200	U	0.200		ug/L	_	03/20/23 13:40	03/21/23 11:02	1

Client: South Carolina Public Service Authority Project/Site: 125915/JM02.09.G01.1/36500

Job ID: 680-232196-1

Lab Sample ID: 680-232196-42

Matrix: Water

Client Sample ID: AF56414

Date Collected: 03/02/23 12:46 Date Received: 03/17/23 10:30

Mercury

Method: SW846 6010D - M	etals (ICP)								
Analyte		Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
Lithium	50.0	U	50.0		ug/L		03/23/23 14:17	03/24/23 19:34	
Method: SW846 6010D - M	etals (ICP) - Total Re	coverable							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
Calcium	495000		500		ug/L		03/20/23 13:39	03/21/23 10:48	
Iron	27800		100		ug/L		03/20/23 13:39	03/21/23 10:48	
Magnesium	49100		500		ug/L		03/20/23 13:39	03/21/23 10:48	
Molybdenum	10.0	U	10.0		ug/L		03/20/23 13:39	03/21/23 10:48	
Potassium	6740		1000		ug/L		03/20/23 13:39	03/21/23 10:48	
Selenium	20.0	U	20.0		ug/L		03/20/23 13:39	03/21/23 10:48	
Sodium	101000		2000		ug/L		03/20/23 13:39	03/21/23 10:48	
Method: SW846 6020B - M	etals (ICP/MS) - Total	Recoverable							
Analyte		Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
Aluminum	100	U	100		ug/L		03/20/23 13:39	03/21/23 22:04	
Antimony	5.00	U	5.00		ug/L		03/20/23 13:39	03/21/23 22:04	
Arsenic	3.00	U	3.00		ug/L		03/20/23 13:39	03/21/23 22:04	
Barium	413		5.00		ug/L		03/20/23 13:39	03/21/23 22:04	
Beryllium	0.500	U	0.500		ug/L		03/20/23 13:39	03/21/23 22:04	
Cadmium	0.500	U	0.500		ug/L		03/20/23 13:39	03/21/23 22:04	
Chromium	5.00	U	5.00		ug/L		03/20/23 13:39	03/21/23 22:04	
Cobalt	0.500	U	0.500		ug/L		03/20/23 13:39	03/21/23 22:04	
Copper	5.00	U	5.00		ug/L		03/20/23 13:39	03/21/23 22:04	
Lead	2.50	U	2.50		ug/L		03/20/23 13:39	03/21/23 22:04	
Nickel	5.00	U	5.00		ug/L		03/20/23 13:39	03/21/23 22:04	
Silver	1.00	U	1.00		ug/L		03/20/23 13:39	03/21/23 22:04	
Thallium	1.00	U	1.00		ug/L		03/20/23 13:39	03/21/23 22:04	
Zinc	20.0	U	20.0		ug/L		03/20/23 13:39	03/21/23 22:04	
Manganese	626		5.00		ug/L		03/20/23 13:39	03/21/23 22:04	
Market and ONE CO. 100	(0)(7.7)								
Method: SW846 7470A - Mo	,	Ovalifier	DI.	MD	l lm:4	_	Dranarad	Amalymad	Dil Fa
Analyte	Result	Qualifier	RL	MDL	Offic	D	Prepared	Analyzed	ם ווע

0.200

ug/L

0.200 U

Eurofins Savannah

03/20/23 15:26

03/21/23 14:17

2

<u>၁</u>

5

b

8

10

12

13

14

Client: South Carolina Public Service Authority Project/Site: 125915/JM02.09.G01.1/36500

Job ID: 680-232196-1

Lab Sample ID: 680-232196-43

Matrix: Water

Client Sample ID: AF56423

Date Collected: 03/02/23 10:56

Analyte

Mercury

Method: SW846 6010D - M	letals (ICP)								
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
Lithium	104		50.0		ug/L		03/23/23 14:17	03/24/23 19:38	
Method: SW846 6010D - M	letals (ICP) - Total Red	coverable							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
Calcium	429000		500		ug/L		03/20/23 13:39	03/21/23 10:58	
Iron	16600		100		ug/L		03/20/23 13:39	03/21/23 10:58	
Magnesium	52600		500		ug/L		03/20/23 13:39	03/21/23 10:58	
Molybdenum	10.0	U	10.0		ug/L		03/20/23 13:39	03/21/23 10:58	
Potassium	13400		1000		ug/L		03/20/23 13:39	03/21/23 10:58	
Selenium	20.0	U	20.0		ug/L		03/20/23 13:39	03/21/23 10:58	
Sodium	92700		2000		ug/L		03/20/23 13:39	03/21/23 10:58	
Method: SW846 6020B - M	letals (ICP/MS) - Total	Recoverable)						
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
Aluminum	100	U	100		ug/L		03/20/23 13:39	03/21/23 22:15	
Antimony	5.00	U	5.00		ug/L		03/20/23 13:39	03/21/23 22:15	
Arsenic	363		3.00		ug/L		03/20/23 13:39	03/21/23 22:15	
Barium	262		5.00		ug/L		03/20/23 13:39	03/21/23 22:15	
Beryllium	0.500	U	0.500		ug/L		03/20/23 13:39	03/21/23 22:15	
Cadmium	0.500	U	0.500		ug/L		03/20/23 13:39	03/21/23 22:15	
Chromium	5.00	U	5.00		ug/L		03/20/23 13:39	03/21/23 22:15	
Cobalt	0.500	U	0.500		ug/L		03/20/23 13:39	03/21/23 22:15	
Copper	5.00	U	5.00		ug/L		03/20/23 13:39	03/21/23 22:15	
Lead	2.50	U	2.50		ug/L		03/20/23 13:39	03/21/23 22:15	
Nickel	5.00	U	5.00		ug/L		03/20/23 13:39	03/21/23 22:15	
Silver	1.00	U	1.00		ug/L		03/20/23 13:39	03/21/23 22:15	
Thallium	1.00	U	1.00		ug/L		03/20/23 13:39	03/21/23 22:15	
Zinc	20.0	U	20.0		ug/L		03/20/23 13:39	03/21/23 22:15	
Manganese	887		5.00		ug/L		03/20/23 13:39	03/21/23 22:15	

RL

0.200

MDL Unit

ug/L

Prepared

03/20/23 15:26

Analyzed

03/21/23 12:02

Dil Fac

Result Qualifier

0.200 U

Client: South Carolina Public Service Authority

Job ID: 680-232196-1

Project/Site: 125915/JM02.09.G01.1/36500

Lab Sample ID: 680-232196-44

Matrix: Water

Client Sample ID: AF56428 Date Collected: 03/02/23 00:00 Date Received: 03/17/23 10:30

Method: SW846 6010D - Metals (ICP) RL Dil Fac Result Qualifier MDL Unit Prepared Analyzed Lithium 50.0 U 50.0 ug/L 03/23/23 14:17 03/24/23 20:11

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Calcium	102000		500		ug/L		03/20/23 13:39	03/21/23 11:01	1
Iron	89800		100		ug/L		03/20/23 13:39	03/21/23 11:01	1
Magnesium	23400		500		ug/L		03/20/23 13:39	03/21/23 11:01	1
Molybdenum	10.0	U	10.0		ug/L		03/20/23 13:39	03/21/23 11:01	1
Potassium	10800		1000		ug/L		03/20/23 13:39	03/21/23 11:01	1
Selenium	20.0	U	20.0		ug/L		03/20/23 13:39	03/21/23 11:01	1
Sodium	37100		2000		ug/L		03/20/23 13:39	03/21/23 11:01	1

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Aluminum	100	U	100		ug/L		03/20/23 13:39	03/21/23 22:19	1
Antimony	5.00	U	5.00		ug/L		03/20/23 13:39	03/21/23 22:19	1
Arsenic	88.3		3.00		ug/L		03/20/23 13:39	03/21/23 22:19	1
Barium	123		5.00		ug/L		03/20/23 13:39	03/21/23 22:19	1
Beryllium	0.500	U	0.500		ug/L		03/20/23 13:39	03/21/23 22:19	1
Cadmium	0.500	U	0.500		ug/L		03/20/23 13:39	03/21/23 22:19	1
Chromium	5.00	U	5.00		ug/L		03/20/23 13:39	03/21/23 22:19	1
Cobalt	0.630		0.500		ug/L		03/20/23 13:39	03/21/23 22:19	1
Copper	5.00	U	5.00		ug/L		03/20/23 13:39	03/21/23 22:19	1
Lead	2.50	U	2.50		ug/L		03/20/23 13:39	03/21/23 22:19	1
Nickel	5.00	U	5.00		ug/L		03/20/23 13:39	03/21/23 22:19	1
Silver	1.00	U	1.00		ug/L		03/20/23 13:39	03/21/23 22:19	1
Thallium	1.00	U	1.00		ug/L		03/20/23 13:39	03/21/23 22:19	1
Zinc	20.0	U	20.0		ug/L		03/20/23 13:39	03/21/23 22:19	1
Manganese	362		5.00		ug/L		03/20/23 13:39	03/21/23 22:19	1

Method: SW846 7470A - Mercury (CVAA)										
	Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
	Mercury	0.200	U	0.200		ug/L		03/20/23 15:26	03/21/23 14:14	1

Client: South Carolina Public Service Authority Project/Site: 125915/JM02.09.G01.1/36500

Method: 6010D - Metals (ICP)

Lab Sample ID: MB 160-604813/1-A

Matrix: Water

Analysis Batch: 605060

MB MB

Sample Sample

Result Qualifier

U

Sample Sample

50.0 U

Result Qualifier

MR MR

50.0 U

Sample Sample

51.5

Result Qualifier

Result Qualifier

50.0

Analyte Result Qualifier

Lithium

50.0 U

Spike

Added

Spike

Added

Spike

Added

Spike

Added

Spike

Added

Spike

100

100

100

100

100

100

RL MDL Unit 50.0

103.0

Result

101.3

106.2

RL

50.0

LCS LCS

MS MS

MSD MSD

Result Qualifier

MDL Unit

LCS LCS

MS MS

MSD MSD

Qualifier

Result Qualifier

Qualifier

Result

103.2

160.3

Result

167.3

ug/L

Qualifier

Result Qualifier

ug/L

Unit

ug/L

Unit

ug/L

Unit

ug/L

Unit

ug/L

Unit

ug/L

Unit

ug/L

Prepared 03/23/23 14:13

D

D

103

%Rec

%Rec

Prepared

03/23/23 14:15

%Rec

%Rec

%Rec

116

109

103

D

D

106

101

D

Client Sample ID: Method Blank

Analyzed 03/24/23 13:41

Dil Fac

Prep Type: Total/NA

Prep Batch: 604813

Lab Sample ID: LCS 160-604813/2-A

Matrix: Water

Analysis Batch: 605060

Analyte Lithium

Lab Sample ID: 680-232196-3 MS

Matrix: Water Analysis Batch: 605060

Analyte

Lithium Lab Sample ID: 680-232196-3 MSD

Matrix: Water

Analysis Batch: 605060

Analyte

Lab Sample ID: MB 160-604815/1-A

Matrix: Water

Lithium

Analyte

Analysis Batch: 605060

Analyte

Lithium Lab Sample ID: LCS 160-604815/2-A

Matrix: Water Analysis Batch: 605060

Lithium

Lab Sample ID: 680-232196-22 MS **Matrix: Water**

Analysis Batch: 605060

Analyte

Lithium Lab Sample ID: 680-232196-22 MSD

Matrix: Water

Analysis Batch: 605060

Sample Sample Result Qualifier

Analyte Added Lithium 51.5

Client Sample ID: Lab Control Sample

Prep Type: Total/NA Prep Batch: 604813

%Rec %Rec Limits

80 _ 120

Client Sample ID: AF56332

Prep Type: Total/NA Prep Batch: 604813

%Rec

Limits

75 - 125

Client Sample ID: AF56332 Prep Type: Total/NA

Prep Batch: 604813

RPD %Rec

Limits RPD Limit

75 - 125 20

Client Sample ID: Method Blank

Analyzed

03/24/23 16:33

Prep Type: Total/NA

Prep Batch: 604815

Dil Fac

Client Sample ID: Lab Control Sample

Prep Type: Total/NA

Prep Batch: 604815

%Rec Limits

80 _ 120

Client Sample ID: AF56412 Prep Type: Total/NA

Prep Batch: 604815

%Rec

Limits 75 _ 125

Client Sample ID: AF56412 Prep Type: Total/NA

Prep Batch: 604815

%Rec RPD

Limits **RPD** Limit 75 _ 125

Job ID: 680-232196-1

Client: South Carolina Public Service Authority Project/Site: 125915/JM02.09.G01.1/36500

Method: 6010D - Metals (ICP)

Lab Sample ID: MB 160-604817/1-A

Matrix: Water

Analysis Batch: 605060

Prep Type: Total/NA Prep Batch: 604817

Client Sample ID: Method Blank

MB MB

Analyte Result Qualifier RL MDL Unit Prepared Analyzed Dil Fac Lithium 50.0 U 50.0 ug/L 03/23/23 14:17 03/24/23 19:15

Lab Sample ID: LCS 160-604817/2-A Client Sample ID: Lab Control Sample **Matrix: Water** Prep Type: Total/NA Analysis Batch: 605060 Prep Batch: 604817

%Rec

Spike LCS LCS Analyte Added Result Qualifier Unit D %Rec Limits

Lithium 100 104.4 ug/L 104 80 _ 120 Lab Sample ID: 680-232196-43 MS Client Sample ID: AF56423

Matrix: Water Prep Type: Total/NA

Analysis Batch: 605060 **Prep Batch: 604817** Spike MS MS %Rec Sample Sample

Analyte Result Qualifier Added Result Qualifier Unit %Rec Limits Lithium 104 100 215.8 112 75 _ 125 ug/L

Lab Sample ID: 680-232196-43 MSD Client Sample ID: AF56423 Prep Type: Total/NA

Matrix: Water

Analysis Batch: 605060

Prep Batch: 604817 Sample Sample Spike MSD MSD %Rec RPD Added Result Qualifier Result Qualifier Unit %Rec Limits Limit

Analyte Lithium 104 100 206.4 75 - 125 ug/L 103 20

Lab Sample ID: MB 680-768608/1-A Client Sample ID: Method Blank **Matrix: Water Prep Type: Total Recoverable**

Analysis Batch: 768929

	MB	MB							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Calcium	500	U	500		ug/L		03/20/23 13:39	03/21/23 10:42	1
Iron	100	U	100		ug/L		03/20/23 13:39	03/21/23 10:42	1
Magnesium	500	U	500		ug/L		03/20/23 13:39	03/21/23 10:42	1
Molybdenum	10.0	U	10.0		ug/L		03/20/23 13:39	03/21/23 10:42	1
Potassium	1000	U	1000		ug/L		03/20/23 13:39	03/21/23 10:42	1
Selenium	20.0	U	20.0		ug/L		03/20/23 13:39	03/21/23 10:42	1
Sodium	2000	U	2000		ug/L		03/20/23 13:39	03/21/23 10:42	1

Lab Sample ID: LCS 680-768608/2-A Client Sample ID: Lab Control Sample

Matrix: Water Prep Type: Total Recoverable Analysis Batch: 768929 **Prep Batch: 768608**

	Spike	LCS	LCS				%Rec	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Calcium	5000	5036		ug/L		101	80 _ 120	
Iron	5000	5196		ug/L		104	80 _ 120	
Magnesium	5010	5075		ug/L		101	80 _ 120	
Molybdenum	100	101.3		ug/L		101	80 _ 120	
Potassium	6970	7195		ug/L		103	80 _ 120	
Selenium	100	91.14		ug/L		91	80 _ 120	
Sodium	5050	4981		ua/l		99	80 120	

Eurofins Savannah

3/28/2023

Prep Batch: 768608

Job ID: 680-232196-1

Client: South Carolina Public Service Authority Project/Site: 125915/JM02.09.G01.1/36500

Method: 6010D - Metals (ICP) (Continued)

Lab Sample ID: 680-232196-42 MS Client Sample ID: AF56414 **Matrix: Water Prep Type: Total Recoverable** Analysis Batch: 768929 **Prep Batch: 768608**

	Sample	Sample	Spike	MS	MS				%Rec	
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Calcium	495000		5000	465900	4	ug/L		-584	75 _ 125	
Iron	27800		5000	30980	4	ug/L		65	75 _ 125	
Magnesium	49100		5010	51080	4	ug/L		40	75 _ 125	
Molybdenum	10.0	U	100	99.69		ug/L		100	75 ₋ 125	
Potassium	6740		6970	13970		ug/L		104	75 _ 125	
Selenium	20.0	U	100	99.11		ug/L		99	75 _ 125	
Sodium	101000		5050	99940	4	ug/L		-27	75 ₋ 125	

Lab Sample ID: 680-232196-42 MSD Client Sample ID: AF56414 **Matrix: Water Prep Type: Total Recoverable** Analysis Batch: 768929 Prep Batch: 768608

Sample Sample Spike MSD MSD Analyte Result Qualifier Added Limit Result Qualifier Unit %Rec Limits **RPD** Calcium 495000 5000 479700 4 ug/L -308 75 _ 125 3 20 Iron 27800 5000 31600 4 ug/L 77 75 _ 125 2 20 49100 5010 51880 4 55 75 _ 125 20 Magnesium ug/L 2 100 99.88 100 Molybdenum 10.0 ug/L 75 - 125 20 Potassium 6970 14290 108 75 _ 125 20 6740 ug/L 2 Selenium 20.0 U 100 98.21 ug/L 98 75 - 125 20 5050 Sodium 101000 101500 4 ug/L 75 _ 125 20

Lab Sample ID: MB 680-768857/1-A Client Sample ID: Method Blank **Matrix: Water Prep Type: Total Recoverable** Analysis Batch: 768929 **Prep Batch: 768857**

	MB	MB							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Calcium	500	U	500		ug/L		03/20/23 09:08	03/21/23 22:14	1
Iron	100	U	100		ug/L		03/20/23 09:08	03/21/23 22:14	1
Magnesium	500	U	500		ug/L		03/20/23 09:08	03/21/23 22:14	1
Molybdenum	10.0	U	10.0		ug/L		03/20/23 09:08	03/21/23 22:14	1
Potassium	1000	U	1000		ug/L		03/20/23 09:08	03/21/23 22:14	1
Selenium	20.0	U	20.0		ug/L		03/20/23 09:08	03/21/23 22:14	1
Sodium	2000	U	2000		ug/L		03/20/23 09:08	03/21/23 22:14	1

Lab Sample ID: LCS 680-768857/2-A **Client Sample ID: Lab Control Sample Matrix: Water Prep Type: Total Recoverable** Analysis Batch: 768929 Prep Batch: 768857

	Spike	LCS	LCS				%Rec	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Calcium	5000	5172		ug/L		103	80 _ 120	
Iron	5000	5307		ug/L		106	80 _ 120	
Magnesium	5010	5182		ug/L		103	80 _ 120	
Molybdenum	100	101.0		ug/L		101	80 _ 120	
Potassium	6970	7569		ug/L		109	80 _ 120	
Selenium	100	95.33		ug/L		95	80 _ 120	
Sodium	5050	5064		ug/L		100	80 ₋ 120	

Client: South Carolina Public Service Authority Project/Site: 125915/JM02.09.G01.1/36500

Job ID: 680-232196-1

Method: 6010D - Metals (ICP) (Continued)

Lab Sample ID: 680-232196-1 MS

Matrix: Water

Analysis Batch: 768929

Client Sample ID: AF56394 **Prep Type: Total Recoverable Prep Batch: 768857**

н	Analysis Baton. 1000E0									1 Tep Date	<i></i> 1 00001
		Sample	Sample	Spike	MS	MS				%Rec	
	Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	
	Calcium	10600		5000	15760		ug/L		104	75 _ 125	
	Iron	3060		5000	8285		ug/L		105	75 ₋ 125	
	Magnesium	1000		5010	6188		ug/L		104	75 ₋ 125	
	Molybdenum	10.0	U	100	100.6		ug/L		101	75 ₋ 125	
	Potassium	1000	U	6970	7931		ug/L		107	75 ₋ 125	
	Selenium	20.0	U	100	94.05		ug/L		94	75 ₋ 125	
	Sodium	5460		5050	10600		ug/L		102	75 ₋ 125	
	_										

Lab Sample ID: 680-232196-1 MSD

Matrix: Water

Analysis Batch: 768929

Client Sample ID: AF56394 **Prep Type: Total Recoverable**

Prep Batch: 768857

	Sample	Sample	Spike	MSD	MSD				%Rec		RPD
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Calcium	10600		5000	15550		ug/L		100	75 ₋ 125	1	20
Iron	3060		5000	8180		ug/L		102	75 _ 125	1	20
Magnesium	1000		5010	6135		ug/L		102	75 _ 125	1	20
Molybdenum	10.0	U	100	99.59		ug/L		100	75 ₋ 125	1	20
Potassium	1000	U	6970	7836		ug/L		105	75 ₋ 125	1	20
Selenium	20.0	U	100	89.89		ug/L		90	75 ₋ 125	5	20
Sodium	5460		5050	10460		ug/L		99	75 ₋ 125	1	20

Lab Sample ID: MB 680-768858/1-A

Matrix: Water

Analysis Batch: 768929

Client Sample ID: Method Blank **Prep Type: Total Recoverable**

Prep Batch: 768858

	MB	MB							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Calcium	500	U	500		ug/L		03/20/23 09:08	03/21/23 20:43	1
Iron	100	U	100		ug/L		03/20/23 09:08	03/21/23 20:43	1
Magnesium	500	U	500		ug/L		03/20/23 09:08	03/21/23 20:43	1
Molybdenum	10.0	U	10.0		ug/L		03/20/23 09:08	03/21/23 20:43	1
Potassium	1000	U	1000		ug/L		03/20/23 09:08	03/21/23 20:43	1
Selenium	20.0	U	20.0		ug/L		03/20/23 09:08	03/21/23 20:43	1
Sodium	2000	U	2000		ug/L		03/20/23 09:08	03/21/23 20:43	1

Lab Sample ID: LCS 680-768858/2-A

Matrix: Water

Analysis Batch: 768929

Client Sample ID: Lab Control Sample Prep Type: Total Recoverable Prep Batch: 768858

-	Spike	LCS	LCS				%Rec
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits
Calcium	5000	5290		ug/L		106	80 - 120
Iron	5000	5413		ug/L		108	80 _ 120
Magnesium	5010	5283		ug/L		105	80 - 120
Molybdenum	100	104.8		ug/L		105	80 _ 120
Potassium	6970	7535		ug/L		108	80 - 120
Selenium	100	92.88		ug/L		93	80 _ 120
Sodium	5050	5173		ug/L		103	80 _ 120

Job ID: 680-232196-1

Client: South Carolina Public Service Authority Project/Site: 125915/JM02.09.G01.1/36500

Method: 6010D - Metals (ICP) (Continued)

Lab Sample ID: 680-232196-21 MS **Matrix: Water**

Analysis Batch: 768929

Client Sample ID: AF56411
Prep Type: Total Recoverable
Prep Batch: 768858

	Sample	Sample	Spike	MS	MS				%Rec	
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Iron	100	U	5000	5184		ug/L		102	75 _ 125	
Magnesium	40800		5010	46170	4	ug/L		108	75 _ 125	
Molybdenum	10.0	U	100	98.61		ug/L		99	75 ₋ 125	
Potassium	13000		6970	20750		ug/L		111	75 ₋ 125	
Selenium	20.0	U F2 F1	100	40.57	F1	ug/L		41	75 _ 125	
Sodium	121000		5050	126600	4	ug/L		109	75 ₋ 125	

Lab Sample ID: 680-232196-21 MS

Matrix: Water

Matrix: Water

Analysis Ratch: 760167

Allalysis	Dateii.	•	UĐ	107	

Analyte Calcium

Lab Sample ID: 680-232196-21 MSD

Sample	Sample	
Result	Qualifier	
796000		

Spike Added 5000

Result Qualifier 822800 4

MS MS

ug/L

Unit

536

75 ₋ 125

%Rec

Client Sample ID: AF56411 **Prep Type: Total Recoverable**

Client Sample ID: AF56411 **Prep Type: Total Recoverable**

%Rec

Limits

75 _ 125

%Rec

Prep Batch: 768858

Prep Batch: 768858

Analysis Batch: 768929 Sample Sample Spike MSD MSD %Rec Analyte Result Qualifier Added Qualifier Unit %Rec Limits RPD Result 5000 100 5335 105 75 _ 125 Iron ug/L 40800 5010 46540 115 75 _ 125 Magnesium ug/L 100 75 - 125 Molybdenum 10.0 102.3 ug/L 102 Potassium 13000 6970 21390 ug/L 120 75 _ 125 3 Selenium 20.0 U F2 F1 100 51.00 F2 F1 51 75 _ 125 ug/L 23

5050

Lab Sample ID: 680-232196-21 MSD

Lab Sample ID: MB 680-768859/1-A

Matrix: Water

Matrix: Water

Sodium

Analyte

Calcium

Sodium

Analysis Batch: 769167

Sample	Sample
Result	Qualifier

121000

Added 796000 5000

2000 U

MSD MSD Spike Result 827000

RL

500

100

500

Qualifier

127400 4

Unit ug/L

D

ug/L

%Rec Limits 620

Prepared

03/20/23 09:01

03/20/23 09:01

03/20/23 09:01

125

Limit 75 _ 125 Client Sample ID: Method Blank

Prep Type: Total Recoverable

Analyzed

03/21/23 19:06

03/21/23 19:06

03/21/23 19:06

Client Sample ID: AF56411 **Prep Type: Total Recoverable**

Prep Batch: 768859

Prep Batch: 768858

RPD

Analysis Batch: 768929

	IVID	IVID
Analyte	Result	Qual
Calcium	500	U

Iron 100 U Magnesium 500 Molybdenum 10.0 U Potassium 1000 U Selenium 20.0 U

lifier

10.0 ug/L 1000 ug/L 20.0 ug/L 2000 ug/L

MDL Unit

ug/L

ug/L

ug/L

03/20/23 09:01 03/21/23 19:06 03/20/23 09:01 03/20/23 09:01

03/21/23 19:06 03/21/23 19:06 03/20/23 09:01 03/21/23 19:06

Eurofins Savannah

RPD

Limit

20

20

20

20

20

20

RPD

Dil Fac

Client: South Carolina Public Service Authority Project/Site: 125915/JM02.09.G01.1/36500

Job ID: 680-232196-1

Method: 6010D - Metals (ICP) (Continued)

Lab Sample ID: LCS 680-768859/2-A Client Sample ID: Lab Control Sample **Matrix: Water Prep Type: Total Recoverable** Analysis Batch: 768929 **Prep Batch: 768859**

	Spike	LCS	LCS				%Rec	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Calcium	5000	5013		ug/L		100	80 _ 120	
Iron	5000	5131		ug/L		103	80 _ 120	
Magnesium	5010	5094		ug/L		102	80 _ 120	
Molybdenum	100	100.7		ug/L		101	80 ₋ 120	
Potassium	6970	7245		ug/L		104	80 _ 120	
Selenium	100	95.19		ug/L		95	80 _ 120	
Sodium	5050	5031		ug/L		100	80 _ 120	

Method: 6020B - Metals (ICP/MS)

Analysis Batch: 768945

Lab Sample ID: MB 680-768540/1-A Client Sample ID: Method Blank **Matrix: Water Prep Type: Total Recoverable**

Analysis Batch: 768945 **Prep Batch: 768540**

MB MB Analyte Result Qualifier RL MDL Unit Prepared Dil Fac Analyzed 100 U 100 03/21/23 15:59 Aluminum ug/L 03/20/23 09:01 03/20/23 09:01 5.00 U 5.00 03/21/23 15:59 Antimony ug/L Arsenic 3.00 U 3.00 ug/L 03/20/23 09:01 03/21/23 15:59 Barium 5.00 U 5.00 ug/L 03/20/23 09:01 03/21/23 15:59 0.500 U 0.500 03/20/23 09:01 03/21/23 15:59 Beryllium ug/L Cadmium 0.500 U 0.500 ug/L 03/20/23 09:01 03/21/23 15:59 5.00 U 5.00 03/20/23 09:01 03/21/23 15:59 Chromium ug/L Cobalt 0.500 U 0.500 ug/L 03/20/23 09:01 03/21/23 15:59 5.00 U 5.00 ug/L 03/20/23 09:01 03/21/23 15:59 Copper Lead 2.50 U 2.50 ug/L 03/20/23 09:01 03/21/23 15:59 Nickel 5.00 U 5.00 ug/L 03/20/23 09:01 03/21/23 15:59 1.00 03/21/23 15:59 Silver 1.00 U ug/L 03/20/23 09:01 1.00 U 1.00 03/20/23 09:01 Thallium ug/L 03/21/23 15:59 20.0 U 20.0 03/20/23 09:01 03/21/23 15:59 Zinc ug/L 5.00 U 5.00 ug/L 03/20/23 09:01 03/21/23 15:59 Manganese

Lab Sample ID: LCS 680-768540/2-A Client Sample ID: Lab Control Sample **Matrix: Water Prep Type: Total Recoverable**

LCS LCS **Spike** %Rec Analyte Added Result Qualifier Unit %Rec Limits Aluminum 5000 5338 107 80 _ 120 ug/L Antimony 50.0 51.80 ug/L 104 80 _ 120 Arsenic 100 103.7 ug/L 104 80 _ 120 102.1 Barium 100 ug/L 102 80 _ 120 50.0 Beryllium 54.66 ug/L 109 80 _ 120 51.98 Cadmium 50.0 ug/L 104 80 _ 120 Chromium 100 108.2 108 80 _ 120 ug/L Cobalt 50.0 53 54 107 80 _ 120 ug/L Copper 100 116.1 ug/L 116 80 - 120 505 507.5 ug/L 101 80 _ 120 Lead Nickel 100 105.2 ug/L 105 80 _ 120 Silver 50.0 54.86 ug/L 110 80 _ 120 Thallium 50.0 49.92 ug/L 100 80 _ 120

Eurofins Savannah

Prep Batch: 768540

Client: South Carolina Public Service Authority Project/Site: 125915/JM02.09.G01.1/36500

Job ID: 680-232196-1

Method: 6020B - Metals (ICP/MS) (Continued)

Lab Sample ID: LCS 680-768540/2-A **Matrix: Water**

Analysis Batch: 768945

Client Sample ID: Lab Control Sample **Prep Type: Total Recoverable**

Prep Batch: 768540

Spike LCS LCS %Rec Added Result Qualifier Limits **Analyte** Unit %Rec 100 Zinc 110.6 ug/L 111 80 _ 120 Manganese 400 429.2 ug/L 107 80 - 120

> **Client Sample ID: Method Blank Prep Type: Total Recoverable**

Prep Batch: 768544

Lab Sample ID: MB 680-768544/1-A

Matrix: Water

Analysis Batch: 768945

	MB	MB							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Aluminum	100	U	100		ug/L		03/20/23 09:08	03/21/23 17:57	1
Antimony	5.00	U	5.00		ug/L		03/20/23 09:08	03/21/23 17:57	1
Arsenic	3.00	U	3.00		ug/L		03/20/23 09:08	03/21/23 17:57	1
Barium	5.00	U	5.00		ug/L		03/20/23 09:08	03/21/23 17:57	1
Cadmium	0.500	U	0.500		ug/L		03/20/23 09:08	03/21/23 17:57	1
Chromium	5.00	U	5.00		ug/L		03/20/23 09:08	03/21/23 17:57	1
Cobalt	0.500	U	0.500		ug/L		03/20/23 09:08	03/21/23 17:57	1
Copper	5.00	U	5.00		ug/L		03/20/23 09:08	03/21/23 17:57	1
Lead	2.50	U	2.50		ug/L		03/20/23 09:08	03/21/23 17:57	1
Nickel	5.00	U	5.00		ug/L		03/20/23 09:08	03/21/23 17:57	1
Silver	1.00	U	1.00		ug/L		03/20/23 09:08	03/21/23 17:57	1
Thallium	1.00	U	1.00		ug/L		03/20/23 09:08	03/21/23 17:57	1
Zinc	20.0	U	20.0		ug/L		03/20/23 09:08	03/21/23 17:57	1
Manganese	5.00	U	5.00		ug/L		03/20/23 09:08	03/21/23 17:57	1

Lab Sample ID: MB 680-768544/1-A

Matrix: Water

Analysis Batch: 769014

MB MB

Analyte Result Qualifier RL MDL Unit Prepared Analyzed Dil Fac Beryllium 0.500 U 0.500 ug/L 03/20/23 09:08 03/22/23 09:23

Lab Sample ID: LCS 680-768544/2-A

Matrix: Water

Analysis Patch: 769045

Client Sample ID: Lab Control Sample **Prep Type: Total Recoverable** Prep Batch: 768544

Client Sample ID: Method Blank

Prep Type: Total Recoverable

Prep Batch: 768544

Analysis Batch: 768945							Prep Batch: 76	38544
	Spike	LCS	LCS				%Rec	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Aluminum	5000	4884		ug/L		98	80 _ 120	
Antimony	50.0	49.01		ug/L		98	80 _ 120	
Arsenic	100	95.38		ug/L		95	80 _ 120	
Barium	100	95.86		ug/L		96	80 ₋ 120	
Cadmium	50.0	50.36		ug/L		101	80 _ 120	
Chromium	100	100.9		ug/L		101	80 _ 120	
Cobalt	50.0	50.80		ug/L		102	80 ₋ 120	
Copper	100	105.9		ug/L		106	80 _ 120	
Lead	505	477.8		ug/L		95	80 _ 120	
Nickel	100	92.93		ug/L		93	80 _ 120	
Silver	50.0	51.72		ug/L		103	80 _ 120	
Thallium	50.0	47.32		ug/L		95	80 _ 120	
Zinc	100	105.9		ug/L		106	80 ₋ 120	
Manganese	400	409.6		ug/L		102	80 _ 120	

Eurofins Savannah

Page 74 of 121

Client: South Carolina Public Service Authority Project/Site: 125915/JM02.09.G01.1/36500

Job ID: 680-232196-1

Method: 6020B - Metals (ICP/MS) (Continued)

Lab Sample ID: LCS 680-768544/2-A

Matrix: Water

Analyte

Analysis Batch: 769014

Client Sample ID: Lab Control Sample **Prep Type: Total Recoverable**

Limits

%Rec

Prep Batch: 768544

Beryllium 50.0 56.61 ug/L 113 80 _ 120 Lab Sample ID: 680-232196-1 MS Client Sample ID: AF56394

LCS LCS

MS MS

Qualifier

Unit

ug/L

Result

56.69

Result Qualifier

Unit

Spike

Added

Matrix: Water

Analysis Batch: 768945

Prep Type: Total Recoverable Prep Batch: 768544

Sample Sample Spike MS MS %Rec Analyte Result Qualifier Added Result Qualifier Unit %Rec Limits Aluminum 1280 5000 6366 ug/L 102 75 - 125 Antimony 5.00 50.0 51 68 103 75 _ 125 ug/L Arsenic 5.88 100 108.0 ug/L 102 75 _ 125 100 176.8 ug/L Barium 76.0 101 75 - 125 Cadmium 0.500 U 50.0 50.40 ug/L 101 75 _ 125 Chromium 5.00 U 100 102.8 ug/L 103 75 ₋ 125 Cobalt 0.705 50.0 51.99 ug/L 103 75 - 125 Copper 5.00 U 100 108.0 ug/L 108 75 _ 125 505 489.2 97 Lead 2.50 U ug/L 75 _ 125 100 Nickel 5.00 U 98.15 ug/L 98 75 - 125 106 Silver 50.0 52.85 75 - 125 1.00 U ug/L Thallium 1.00 50.0 48.51 97 75 _ 125 ug/L Zinc 24 9 100 132.5 ug/L 108 75 - 12527.1 400 434.5 ug/L 102 75 _ 125 Manganese

Spike

Added

50.0

Lab Sample ID: 680-232196-1 MS

Matrix: Water

Analyte

Beryllium

Analysis Batch: 769014

Client Sample ID: AF56394 **Prep Type: Total Recoverable** Prep Batch: 768544

%Rec %Rec Limits 75 _ 125 113

Lab Sample ID: 680-232196-1 MSD

Sample Sample

Result Qualifier

0.500 U

Matrix: Water

Analysis Batch: 768945

Client Sample ID: AF56394 **Prep Type: Total Recoverable Prep Batch: 768544**

								i ich i	Jaton. I	JUJ44
Sample	Sample	Spike	MSD	MSD				%Rec		RPD
Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
1280		5000	6254		ug/L		100	75 - 125	2	20
5.00	U	50.0	49.50		ug/L		99	75 - 125	4	20
5.88		100	108.9		ug/L		103	75 _ 125	1	20
76.0		100	172.6		ug/L		97	75 ₋ 125	2	20
0.500	U	50.0	49.54		ug/L		99	75 _ 125	2	20
5.00	U	100	102.5		ug/L		102	75 _ 125	0	20
0.705		50.0	51.45		ug/L		101	75 _ 125	1	20
5.00	U	100	108.8		ug/L		109	75 _ 125	1	20
2.50	U	505	485.5		ug/L		96	75 _ 125	1	20
5.00	U	100	98.23		ug/L		98	75 _ 125	0	20
1.00	U	50.0	51.83		ug/L		104	75 _ 125	2	20
1.00	U	50.0	48.13		ug/L		96	75 _ 125	1	20
24.9		100	123.0		ug/L		98	75 _ 125	7	20
27.1		400	432.3		ug/L		101	75 _ 125	1	20
	Result 1280 5.00 5.88 76.0 0.500 5.00 0.705 5.00 2.50 5.00 1.00 1.00 24.9	5.00 U 5.88 76.0 0.500 U 5.00 U 0.705 5.00 U 2.50 U 5.00 U 1.00 U 1.00 U 24.9	Result Qualifier Added 1280 5000 5.00 U 50.0 5.88 100 76.0 100 0.500 U 50.0 5.00 U 100 0.705 50.0 50.0 5.00 U 100 2.50 U 505 5.00 U 100 1.00 U 50.0 1.00 U 50.0 24.9 100	Result Qualifier Added Result 1280 5000 6254 5.00 U 50.0 49.50 5.88 100 108.9 76.0 100 172.6 0.500 U 50.0 49.54 5.00 U 100 102.5 0.705 50.0 51.45 5.00 U 100 108.8 2.50 U 505 485.5 5.00 U 100 98.23 1.00 U 50.0 51.83 1.00 U 50.0 48.13 24.9 100 123.0	Result Qualifier Added Result Qualifier 1280 5000 6254 5.00 U 50.0 49.50 5.88 100 108.9 76.0 100 172.6 0.500 U 50.0 49.54 5.00 U 100 102.5 0.705 50.0 51.45 5.00 U 100 108.8 2.50 U 505 485.5 5.00 U 100 98.23 1.00 U 50.0 51.83 1.00 U 50.0 48.13 24.9 100 123.0	Result Qualifier Added Result Qualifier Unit 1280 5000 6254 ug/L 5.00 U 50.0 49.50 ug/L 5.88 100 108.9 ug/L 76.0 100 172.6 ug/L 0.500 U 50.0 49.54 ug/L 5.00 U 100 102.5 ug/L 0.705 50.0 51.45 ug/L 5.00 U 100 108.8 ug/L 2.50 U 505 485.5 ug/L 5.00 U 100 98.23 ug/L 1.00 U 50.0 51.83 ug/L 1.00 U 50.0 48.13 ug/L 24.9 100 123.0 ug/L	Result Qualifier Added Result Qualifier Unit D 1280 5000 6254 ug/L ug/L 5.00 U 50.0 49.50 ug/L 5.88 100 108.9 ug/L 76.0 100 172.6 ug/L 0.500 U 50.0 49.54 ug/L 5.00 U 100 102.5 ug/L 0.705 50.0 51.45 ug/L 5.00 U 100 108.8 ug/L 2.50 U 505 485.5 ug/L 5.00 U 100 98.23 ug/L 1.00 U 50.0 51.83 ug/L 1.00 U 50.0 48.13 ug/L 24.9 100 123.0 ug/L	Result Qualifier Added Result Qualifier Unit D %Rec 1280 5000 6254 ug/L 100 5.00 U 50.0 49.50 ug/L 99 5.88 100 108.9 ug/L 97 0.500 100 172.6 ug/L 97 0.500 U 50.0 49.54 ug/L 99 5.00 U 100 102.5 ug/L 102 0.705 50.0 51.45 ug/L 101 5.00 U 100 108.8 ug/L 109 2.50 U 505 485.5 ug/L 96 5.00 U 100 98.23 ug/L 98 1.00 U 50.0 51.83 ug/L 96 24.9 100 123.0 ug/L 98	Sample Result Sample Qualifier Added Added Result Qualifier Unit D %Rec Limits 1280 5000 6254 ug/L 100 75 - 125 5.00 U 50.0 49.50 ug/L 99 75 - 125 5.88 100 108.9 ug/L 103 75 - 125 76.0 100 172.6 ug/L 97 75 - 125 0.500 U 50.0 49.54 ug/L 99 75 - 125 5.00 U 100 102.5 ug/L 102 75 - 125 0.705 50.0 51.45 ug/L 101 75 - 125 5.00 U 100 108.8 ug/L 109 75 - 125 5.00 U 505 485.5 ug/L 96 75 - 125 5.00 U 100 98.23 ug/L 98 75 - 125 5.00 U 50.0 51.83 ug/L 96 75 - 125	Result Qualifier Added Result Qualifier Unit D %Rec Limits RPD 1280 5000 6254 ug/L 100 75 - 125 2 5.00 U 50.0 49.50 ug/L 99 75 - 125 4 5.88 100 108.9 ug/L 103 75 - 125 1 76.0 100 172.6 ug/L 97 75 - 125 2 0.500 U 50.0 49.54 ug/L 99 75 - 125 2 5.00 U 100 102.5 ug/L 102 75 - 125 0 0.705 50.0 51.45 ug/L 101 75 - 125 1 5.00 U 100 108.8 ug/L 109 75 - 125 1 2.50 U 505 485.5 ug/L 96 75 - 125 1 5.00 U 100 98.23 ug/L 98

Client: South Carolina Public Service Authority Project/Site: 125915/JM02.09.G01.1/36500

Job ID: 680-232196-1

Method: 6020B - Metals (ICP/MS) (Continued)

Lab Sample ID: 680-232196-1 MSD Client Sample ID: AF56394 **Matrix: Water Prep Type: Total Recoverable** Analysis Batch: 769014 **Prep Batch: 768544** Sample Sample Spike MSD MSD Result Qualifier Added Result Qualifier Analyte Unit %Rec Limits RPD Limit Beryllium 0.500 U 50.0 56.09 ug/L 112 75 _ 125

Lab Sample ID: MB 680-768552/1-A **Client Sample ID: Method Blank Matrix: Water Prep Type: Total Recoverable**

Pren Batch: 768552

Analysis Batch: 768945								Prep Batch:	768552
	MB	MB							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Aluminum	100	U	100		ug/L		03/20/23 09:08	03/21/23 19:54	1
Antimony	5.00	U	5.00		ug/L		03/20/23 09:08	03/21/23 19:54	1
Arsenic	3.00	U	3.00		ug/L		03/20/23 09:08	03/21/23 19:54	1
Barium	5.00	U	5.00		ug/L		03/20/23 09:08	03/21/23 19:54	1
Beryllium	0.500	U	0.500		ug/L		03/20/23 09:08	03/21/23 19:54	1
Cadmium	0.500	U	0.500		ug/L		03/20/23 09:08	03/21/23 19:54	1
Chromium	5.00	U	5.00		ug/L		03/20/23 09:08	03/21/23 19:54	1
Cobalt	0.500	U	0.500		ug/L		03/20/23 09:08	03/21/23 19:54	1
Copper	5.00	U	5.00		ug/L		03/20/23 09:08	03/21/23 19:54	1
Lead	2.50	U	2.50		ug/L		03/20/23 09:08	03/21/23 19:54	1
Nickel	5.00	U	5.00		ug/L		03/20/23 09:08	03/21/23 19:54	1
Silver	1.00	U	1.00		ug/L		03/20/23 09:08	03/21/23 19:54	1
Thallium	1.00	U	1.00		ug/L		03/20/23 09:08	03/21/23 19:54	1
Zinc	20.0	U	20.0		ug/L		03/20/23 09:08	03/21/23 19:54	1
Manganese	5.00	U	5.00		ug/L		03/20/23 09:08	03/21/23 19:54	1

Lab Sample ID: LCS 680-768552/2-A

Matrix: Water

Analysis Batch: 768945

Client Sample ID: Lab Control Sample Prep Type: Total Recoverable Prep Batch: 768552

Allalysis Datell. 100040							i icp bat	CII. 1 00332
	Spike	LCS	LCS				%Rec	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Aluminum	5000	5381		ug/L		108	80 _ 120	
Antimony	50.0	53.20		ug/L		106	80 _ 120	
Arsenic	100	109.8		ug/L		110	80 _ 120	
Barium	100	104.9		ug/L		105	80 _ 120	
Beryllium	50.0	50.03		ug/L		100	80 _ 120	
Cadmium	50.0	54.49		ug/L		109	80 _ 120	
Chromium	100	107.2		ug/L		107	80 _ 120	
Cobalt	50.0	54.46		ug/L		109	80 _ 120	
Copper	100	111.4		ug/L		111	80 _ 120	
Lead	505	513.4		ug/L		102	80 _ 120	
Nickel	100	100.1		ug/L		100	80 _ 120	
Silver	50.0	54.03		ug/L		108	80 _ 120	
Thallium	50.0	51.46		ug/L		103	80 _ 120	
Zinc	100	103.8		ug/L		104	80 _ 120	
Manganese	400	434.1		ug/L		109	80 _ 120	

Client: South Carolina Public Service Authority Project/Site: 125915/JM02.09.G01.1/36500

Method: 6020B - Metals (ICP/MS) (Continued)

Lab Sample ID: 680-232196-21 MS

Matrix: Water

Analysis Batch: 768945

Client Sample ID: AF56411 Prep Type: Total Recoverable Prep Batch: 768552

Sam	le Sample	Spike	MS	MS				%Rec	
Analyte Res	ılt Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Aluminum 1	00 U	5000	5779		ug/L		116	75 _ 125	
Antimony 5.	00 U	50.0	55.90		ug/L		112	75 _ 125	
Arsenic 8.	18	100	120.5		ug/L		112	75 ₋ 125	
Barium 99	.4	100	211.5		ug/L		116	75 ₋ 125	
Beryllium 0.5	00 U	50.0	55.57		ug/L		111	75 _ 125	
Cadmium 0.5	00 U	50.0	53.63		ug/L		107	75 _ 125	
Chromium 5.	00 U	100	121.9		ug/L		122	75 ₋ 125	
Cobalt 0.5	00 U	50.0	59.05		ug/L		118	75 _ 125	
Copper 5.	00 U	100	114.5		ug/L		114	75 ₋ 125	
Lead 2.	50 U	505	600.1		ug/L		119	75 ₋ 125	
Nickel 5.	00 U	100	110.8		ug/L		111	75 _ 125	
Silver 1.	00 U	50.0	53.16		ug/L		106	75 - 125	
Thallium 1.	00 UF1	50.0	61.74		ug/L		123	75 - 125	
Zinc 1	99 F1	100	267.8	F1	ug/L		69	75 - 125	
Manganese 1	01	400	587.0		ug/L		122	75 _ 125	

Lab Sample ID: 680-232196-21 MSD

Matrix: Water

Analysis Patch: 769045

Client Sample ID: AF56411 **Prep Type: Total Recoverable** Prep Batch: 768552

Analysis Batch: 768945									Prep I	Batch: 7	68552
	Sample	Sample	Spike	MSD	MSD				%Rec		RPD
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Aluminum	100	U	5000	5957		ug/L		119	75 _ 125	3	20
Antimony	5.00	U	50.0	58.11		ug/L		116	75 _ 125	4	20
Arsenic	8.18		100	126.6		ug/L		118	75 _ 125	5	20
Barium	95.4		100	218.6		ug/L		123	75 ₋ 125	3	20
Beryllium	0.500	U	50.0	58.13		ug/L		116	75 _ 125	5	20
Cadmium	0.500	U	50.0	56.57		ug/L		113	75 _ 125	5	20
Chromium	5.00	U	100	119.1		ug/L		119	75 _ 125	2	20
Cobalt	0.500	U	50.0	59.36		ug/L		119	75 _ 125	1	20
Copper	5.00	U	100	116.8		ug/L		117	75 _ 125	2	20
Lead	2.50	U	505	608.8		ug/L		121	75 _ 125	1	20
Nickel	5.00	U	100	111.7		ug/L		112	75 _ 125	1	20
Silver	1.00	U	50.0	53.81		ug/L		108	75 _ 125	1	20
Thallium	1.00	U F1	50.0	62.76	F1	ug/L		126	75 _ 125	2	20
Zinc	199	F1	100	301.0		ug/L		102	75 _ 125	12	20
Manganese	101		400	576.8		ug/L		119	75 _ 125	2	20

Lab Sample ID: MB 680-768613/1-A

Matrix: Water

Analysis Batch: 768945

Client Sample ID: Method Blank Prep Type: Total Recoverable

Prep Batch: 768613

	MB	MB							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Aluminum	100	U	100		ug/L		03/20/23 13:39	03/21/23 21:56	1
Antimony	5.00	U	5.00		ug/L		03/20/23 13:39	03/21/23 21:56	1
Arsenic	3.00	U	3.00		ug/L		03/20/23 13:39	03/21/23 21:56	1
Barium	5.00	U	5.00		ug/L		03/20/23 13:39	03/21/23 21:56	1
Beryllium	0.500	U	0.500		ug/L		03/20/23 13:39	03/21/23 21:56	1
Cadmium	0.500	U	0.500		ug/L		03/20/23 13:39	03/21/23 21:56	1
Chromium	5.00	U	5.00		ug/L		03/20/23 13:39	03/21/23 21:56	1

Eurofins Savannah

3/28/2023

Page 77 of 121

QC Sample Results

Client: South Carolina Public Service Authority Project/Site: 125915/JM02.09.G01.1/36500

Job ID: 680-232196-1

Method: 6020B - Metals (ICP/MS) (Continued)

Lab Sample ID: MB 680-768613/1-A

Matrix: Water

Analysis Batch: 768945

Client Sample ID: Method Blank **Prep Type: Total Recoverable Prep Batch: 768613**

	MB	MB							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Cobalt	0.500	U	0.500		ug/L		03/20/23 13:39	03/21/23 21:56	1
Copper	5.00	U	5.00		ug/L		03/20/23 13:39	03/21/23 21:56	1
Lead	2.50	U	2.50		ug/L		03/20/23 13:39	03/21/23 21:56	1
Nickel	5.00	U	5.00		ug/L		03/20/23 13:39	03/21/23 21:56	1
Silver	1.00	U	1.00		ug/L		03/20/23 13:39	03/21/23 21:56	1
Thallium	1.00	U	1.00		ug/L		03/20/23 13:39	03/21/23 21:56	1
Zinc	20.0	U	20.0		ug/L		03/20/23 13:39	03/21/23 21:56	1
Manganese	5.00	U	5.00		ug/L		03/20/23 13:39	03/21/23 21:56	1

Lab Sample ID: LCS 680-768613/2-A

Matrix: Water

Analysis Batch: 768945

Client Sample ID: Lab Control Sample Prep Type: Total Recoverable

Prep Batch: 768613

/ many cic Datem i coc ic								
	Spike	LCS	LCS				%Rec	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Aluminum	5000	5081		ug/L		102	80 _ 120	
Antimony	50.0	50.30		ug/L		101	80 _ 120	
Arsenic	100	96.86		ug/L		97	80 _ 120	
Barium	100	96.16		ug/L		96	80 _ 120	
Beryllium	50.0	49.35		ug/L		99	80 _ 120	
Cadmium	50.0	49.86		ug/L		100	80 _ 120	
Chromium	100	98.60		ug/L		99	80 ₋ 120	
Cobalt	50.0	50.99		ug/L		102	80 _ 120	
Copper	100	100.7		ug/L		101	80 _ 120	
Lead	505	475.9		ug/L		94	80 _ 120	
Nickel	100	96.51		ug/L		97	80 _ 120	
Silver	50.0	49.14		ug/L		98	80 _ 120	
Thallium	50.0	47.31		ug/L		95	80 _ 120	
Zinc	100	101.1		ug/L		101	80 _ 120	
Manganese	400	400.6		ug/L		100	80 _ 120	

Lab Sample ID: 680-232196-42 MS

Matrix: Water

Analysis Batch: 768945

Client Sample ID: AF56414 **Prep Type: Total Recoverable Prep Batch: 768613**

i many one Date coo .e										
	Sample	Sample	Spike	MS	MS				%Rec	
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Aluminum	100	U	5000	5171		ug/L		103	75 _ 125	
Antimony	5.00	U	50.0	51.95		ug/L		104	75 ₋ 125	
Arsenic	3.00	U	100	100.8		ug/L		100	75 ₋ 125	
Barium	413		100	504.5	4	ug/L		91	75 ₋ 125	
Beryllium	0.500	U	50.0	50.80		ug/L		101	75 _ 125	
Cadmium	0.500	U	50.0	50.23		ug/L		100	75 _ 125	
Chromium	5.00	U	100	103.6		ug/L		104	75 ₋ 125	
Cobalt	0.500	U	50.0	51.77		ug/L		104	75 ₋ 125	
Copper	5.00	U	100	103.1		ug/L		103	75 ₋ 125	
Lead	2.50	U	505	527.4		ug/L		105	75 ₋ 125	
Nickel	5.00	U	100	96.03		ug/L		96	75 ₋ 125	
Silver	1.00	U	50.0	48.82		ug/L		98	75 _ 125	
Thallium	1.00	U	50.0	53.92		ug/L		108	75 ₋ 125	
Zinc	20.0	U	100	100.1		ug/L		100	75 ₋ 125	

Eurofins Savannah

Page 78 of 121

QC Sample Results

Client: South Carolina Public Service Authority Project/Site: 125915/JM02.09.G01.1/36500

Job ID: 680-232196-1

Method: 6020B - Metals (ICP/MS) (Continued)

Lab Sample ID: 680-232196-42 MS

Matrix: Water

Analysis Batch: 768945

Client Sample ID: AF56414 **Prep Type: Total Recoverable**

Prep Batch: 768613

Sample Sample Spike MS MS %Rec Result Qualifier Added Result Qualifier Limits Analyte Unit %Rec 626 400 Manganese 1027 ug/L 100 75 _ 125

Lab Sample ID: 680-232196-42 MSD Client Sample ID: AF56414 **Matrix: Water**

Prep Type: Total Recoverable

Analysis Batch: 768945									Prep I	Batch: 7	68613
	Sample	Sample	Spike	MSD	MSD				%Rec		RPD
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Aluminum	100	U	5000	5419		ug/L		108	75 - 125	5	20
Antimony	5.00	U	50.0	53.96		ug/L		108	75 _ 125	4	20
Arsenic	3.00	U	100	118.0		ug/L		117	75 - 125	16	20
Barium	413		100	527.2	4	ug/L		114	75 - 125	4	20
Beryllium	0.500	U	50.0	54.08		ug/L		107	75 ₋ 125	6	20
Cadmium	0.500	U	50.0	53.48		ug/L		107	75 - 125	6	20
Chromium	5.00	U	100	110.0		ug/L		110	75 ₋ 125	6	20
Cobalt	0.500	U	50.0	55.83		ug/L		112	75 _ 125	8	20
Copper	5.00	U	100	108.4		ug/L		108	75 ₋ 125	5	20
Lead	2.50	U	505	554.7		ug/L		110	75 _ 125	5	20
Nickel	5.00	U	100	101.5		ug/L		102	75 - 125	6	20
Silver	1.00	U	50.0	50.75		ug/L		101	75 _ 125	4	20
Thallium	1.00	U	50.0	56.00		ug/L		112	75 ₋ 125	4	20
Zinc	20.0	U	100	108.5		ug/L		108	75 ₋ 125	8	20
Manganese	626		400	1076		ug/L		112	75 ₋ 125	5	20

Method: 7470A - Mercury (CVAA)

Lab Sample ID: MB 680-768588/1-A

Matrix: Water

Analysis Batch: 768864

мв мв

Analyte Result Qualifier RLMDL Unit Prepared Analyzed Dil Fac Mercury 0.200 U 0.200 ug/L 03/20/23 12:30 03/20/23 18:43

Lab Sample ID: LCS 680-768588/2-A

Matrix: Water Prep Type: Total/NA Analysis Batch: 768864 **Prep Batch: 768588** Spike LCS LCS %Rec Analyte Added Result Qualifier Unit %Rec Limits

2.479

ug/L

2.50

Lab Sample ID: MB 680-768590/1-A

Matrix: Water

Mercury

Analysis Batch: 768864

Client Sample ID: Method Blank

Client Sample ID: Lab Control Sample

80 _ 120

Client Sample ID: Method Blank

Prep Type: Total/NA

Prep Batch: 768588

Prep Type: Total/NA

Prep Batch: 768590

мв мв Result Qualifier RL MDL Unit Analyte Prepared Analyzed Dil Fac 0.200 U 0.200 03/20/23 12:45 Mercury ug/L 03/21/23 12:19

LCS LCS

MS MS

MSD MSD

Qualifier

MDL Unit

LCS LCS

MS MS

MSD MSD

0.7309 F1

Result Qualifier

0.8587 F1

Result Qualifier

2.338

Result Qualifier

ug/L

Result

0.8144

RL

0.200

0.7944 F1

Result Qualifier

2.311

Result Qualifier

Unit

ug/L

Unit

ug/L

Unit

ug/L

Unit

ug/L

Unit

ug/L

Unit

ug/L

Spike

Added

Sample Sample

0.200 UF1

Sample Sample

0.200 UF1

Result Qualifier

MR MR

0.200 U

Sample Sample

0.200 UF1

Sample Sample

0.200 UF1

Result Qualifier

Result Qualifier

Result Qualifier

Result Qualifier

2.50

Spike

Added

1.00

Spike

Added

Spike

Added

2.50

Spike

Added

1.00

Spike

Added

1.00

1.00

Client: South Carolina Public Service Authority Project/Site: 125915/JM02.09.G01.1/36500

Job ID: 680-232196-1

Prep Type: Total/NA

Prep Batch: 768590

Prep Type: Total/NA

Prep Batch: 768590

Prep Type: Total/NA

Prep Batch: 768590

RPD

Prep Type: Total/NA

Prep Batch: 768609

Client Sample ID: AF56421

Client Sample ID: AF56421

Client Sample ID: Lab Control Sample

Limits

80 _ 120

%Rec

Limits

80 _ 120

%Rec

Limits

80 _ 120

Client Sample ID: Method Blank

03/21/23 10:12

%Rec

%Rec

%Rec

Prepared

03/20/23 13:40

%Rec

%Rec

%Rec

65

78

D

D

94

81

79

D

92

Method: 7470A - Mercury (CVAA) (Continued)

Lab Sample ID: LCS 680-768590/2-A

Matrix: Water

Analysis Batch: 768864

Analyte

Mercury

Analyte

Analyte

Matrix: Water

Lab Sample ID: 680-232196-38 MS

Analysis Batch: 768864

Mercury

Lab Sample ID: 680-232196-38 MSD **Matrix: Water**

Analysis Batch: 768864

Mercury

Lab Sample ID: MB 680-768609/1-A

Matrix: Water

Analysis Batch: 768864

Analyte

Mercury

Lab Sample ID: LCS 680-768609/2-A

Matrix: Water

Analyte

Analyte

Mercury

Mercury

Analysis Batch: 768864

Mercury

Lab Sample ID: 680-232196-33 MS Matrix: Water

Analysis Batch: 768864

Lab Sample ID: 680-232196-33 MSD

Matrix: Water

Analysis Batch: 768864

Analyte

Lab Sample ID: MB 680-768648/1-A

Matrix: Water

Analysis Batch: 768864

MB MB

Analyte Result Qualifier 0.200 Mercury U

0.200

RL

MDL Unit ug/L

Prepared 03/20/23 15:26

Analyzed 03/21/23 11:46

Eurofins Savannah

Page 80 of 121

Analyzed Dil Fac

RPD

Limit

Client Sample ID: Lab Control Sample Prep Type: Total/NA

Prep Batch: 768609

Limits

80 _ 120

80 _ 120

Client Sample ID: AF56408

Prep Type: Total/NA

Prep Batch: 768609

%Rec Limits

Client Sample ID: AF56408

Prep Type: Total/NA

Prep Batch: 768609 RPD

%Rec Limits **RPD** Limit 80 _ 120

Prep Batch: 768648

Dil Fac

QC Sample Results

Client: South Carolina Public Service Authority Project/Site: 125915/JM02.09.G01.1/36500

Job ID: 680-232196-1

Method: 7470A - Mercury (CVAA)

Mercury

Lab Sample ID: LCS 680-768648/2-A

Matrix: Water

Prep Type: Total/NA

Analysis Batch: 768664

Prep Batch: 768648

Analysis Batch: 768864

Spike LCS LCS

Analyte

Added Result Qualifier Unit D %Rec Limits

2.50

Lab Sample ID: 680-232196-44 MS Client Sample ID: AF56428

Matrix: Water Prep Type: Total/NA
Analysis Batch: 768864 Prep Batch: 768648

2.343

ug/L

94

80 _ 120

Sample Sample Spike MS MS %Rec %Rec Analyte Result Qualifier Added Result Qualifier Unit D Limits Mercury 0.200 U 1.00 0.8867 ug/L 89 80 _ 120

Lab Sample ID: 680-232196-44 MSD

Client Sample ID: AF56428

Matrix: Water

Prep Type: Total/NA

Analysis Batch: 768864

Sample Sample Spike MSD MSD Spike RPD

Rec RPD

Sample Sample Spike Analyte Result Qualifier Added Result Qualifier Unit Limits **RPD** Limit 0.200 U 1.00 Mercury 0.8738 ug/L 87 80 _ 120

3

4

6

7

8

9

10

11

12

13

14

Client: South Carolina Public Service Authority Project/Site: 125915/JM02.09.G01.1/36500

Job ID: 680-232196-1

Metals

Prep Batch: 604813

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batc
680-232196-1	AF56394	Total/NA	Water	3010A	
680-232196-2	AF56331	Total/NA	Water	3010A	
680-232196-3	AF56332	Total/NA	Water	3010A	
680-232196-4	AF56395	Total/NA	Water	3010A	
680-232196-5	AF56396	Total/NA	Water	3010A	
680-232196-6	AF56397	Total/NA	Water	3010A	
680-232196-7	AF56400	Total/NA	Water	3010A	
680-232196-8	AF56442	Total/NA	Water	3010A	
680-232196-9	AF56443	Total/NA	Water	3010A	
680-232196-10	AF56402	Total/NA	Water	3010A	
680-232196-11	AF56403	Total/NA	Water	3010A	
680-232196-12	AF56404	Total/NA	Water	3010A	
680-232196-13	AF56434	Total/NA	Water	3010A	
680-232196-14	AF56433	Total/NA	Water	3010A	
680-232196-15	AF56435	Total/NA	Water	3010A	
680-232196-16	AF56436	Total/NA	Water	3010A	
680-232196-17	AF56437	Total/NA	Water	3010A	
680-232196-18	AF56438	Total/NA	Water	3010A	
680-232196-19	AF56409	Total/NA	Water	3010A	
680-232196-20	AF56410	Total/NA	Water	3010A	
MB 160-604813/1-A	Method Blank	Total/NA	Water	3010A	
LCS 160-604813/2-A	Lab Control Sample	Total/NA	Water	3010A	
680-232196-3 MS	AF56332	Total/NA	Water	3010A	
680-232196-3 MSD	AF56332	Total/NA	Water	3010A	

Prep Batch: 604815

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batc
680-232196-21	AF56411	Total/NA	Water	3010A	
680-232196-22	AF56412	Total/NA	Water	3010A	
680-232196-23	AF56413	Total/NA	Water	3010A	
680-232196-24	AF56430	Total/NA	Water	3010A	
680-232196-25	AF56406	Total/NA	Water	3010A	
680-232196-26	AF56407	Total/NA	Water	3010A	
680-232196-27	AF56418	Total/NA	Water	3010A	
680-232196-28	AF56422	Total/NA	Water	3010A	
680-232196-29	AF56419	Total/NA	Water	3010A	
680-232196-30	AF56425	Total/NA	Water	3010A	
680-232196-31	AF56426	Total/NA	Water	3010A	
680-232196-32	AF56427	Total/NA	Water	3010A	
680-232196-33	AF56408	Total/NA	Water	3010A	
680-232196-34	AF56415	Total/NA	Water	3010A	
680-232196-35	AF56416	Total/NA	Water	3010A	
680-232196-36	AF56417	Total/NA	Water	3010A	
680-232196-37	AF56429	Total/NA	Water	3010A	
680-232196-38	AF56421	Total/NA	Water	3010A	
680-232196-39	AF56428	Total/NA	Water	3010A	
680-232196-40	AF56439	Total/NA	Water	3010A	
MB 160-604815/1-A	Method Blank	Total/NA	Water	3010A	
LCS 160-604815/2-A	Lab Control Sample	Total/NA	Water	3010A	
680-232196-22 MS	AF56412	Total/NA	Water	3010A	
680-232196-22 MSD	AF56412	Total/NA	Water	3010A	

Eurofins Savannah

Page 82 of 121

Client: South Carolina Public Service Authority

Project/Site: 125915/JM02.09.G01.1/36500

Job ID: 680-232196-1

Metals

Prep Batch: 604817

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
680-232196-41	AF56441	Total/NA	Water	3010A	
680-232196-42	AF56414	Total/NA	Water	3010A	
680-232196-43	AF56423	Total/NA	Water	3010A	
680-232196-44	AF56428	Total/NA	Water	3010A	
MB 160-604817/1-A	Method Blank	Total/NA	Water	3010A	
LCS 160-604817/2-A	Lab Control Sample	Total/NA	Water	3010A	
680-232196-43 MS	AF56423	Total/NA	Water	3010A	
680-232196-43 MSD	AF56423	Total/NA	Water	3010A	

Analysis Batch: 605060

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
680-232196-1	AF56394	Total/NA	Water	6010D	604813
680-232196-2	AF56331	Total/NA	Water	6010D	604813
680-232196-3	AF56332	Total/NA	Water	6010D	604813
680-232196-4	AF56395	Total/NA	Water	6010D	604813
680-232196-5	AF56396	Total/NA	Water	6010D	604813
680-232196-6	AF56397	Total/NA	Water	6010D	604813
680-232196-7	AF56400	Total/NA	Water	6010D	604813
680-232196-8	AF56442	Total/NA	Water	6010D	604813
680-232196-9	AF56443	Total/NA	Water	6010D	604813
680-232196-10	AF56402	Total/NA	Water	6010D	604813
680-232196-11	AF56403	Total/NA	Water	6010D	604813
680-232196-12	AF56404	Total/NA	Water	6010D	604813
680-232196-13	AF56434	Total/NA	Water	6010D	604813
680-232196-14	AF56433	Total/NA	Water	6010D	604813
680-232196-15	AF56435	Total/NA	Water	6010D	604813
680-232196-16	AF56436	Total/NA	Water	6010D	604813
680-232196-17	AF56437	Total/NA	Water	6010D	604813
680-232196-18	AF56438	Total/NA	Water	6010D	604813
680-232196-19	AF56409	Total/NA	Water	6010D	604813
680-232196-20	AF56410	Total/NA	Water	6010D	604813
680-232196-21	AF56411	Total/NA	Water	6010D	604815
680-232196-22	AF56412	Total/NA	Water	6010D	604815
680-232196-23	AF56413	Total/NA	Water	6010D	604815
680-232196-24	AF56430	Total/NA	Water	6010D	604815
680-232196-25	AF56406	Total/NA	Water	6010D	604815
680-232196-26	AF56407	Total/NA	Water	6010D	604815
680-232196-27	AF56418	Total/NA	Water	6010D	604815
680-232196-28	AF56422	Total/NA	Water	6010D	604815
680-232196-29	AF56419	Total/NA	Water	6010D	604815
680-232196-30	AF56425	Total/NA	Water	6010D	604815
680-232196-31	AF56426	Total/NA	Water	6010D	604815
680-232196-32	AF56427	Total/NA	Water	6010D	604815
680-232196-33	AF56408	Total/NA	Water	6010D	604815
680-232196-34	AF56415	Total/NA	Water	6010D	604815
680-232196-35	AF56416	Total/NA	Water	6010D	604815
680-232196-36	AF56417	Total/NA	Water	6010D	604815
680-232196-37	AF56429	Total/NA	Water	6010D	604815
680-232196-38	AF56421	Total/NA	Water	6010D	604815
680-232196-39	AF56428	Total/NA	Water	6010D	604815
680-232196-40	AF56439	Total/NA	Water	6010D	604815

Eurofins Savannah

_

4

6

8

10

12

13

Client: South Carolina Public Service Authority Job ID: 680-232196-1 Project/Site: 125915/JM02.09.G01.1/36500

Metals (Continued)

Analysis Batch: 605060 (Continued)

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
680-232196-41	AF56441	Total/NA	Water	6010D	604817
680-232196-42	AF56414	Total/NA	Water	6010D	604817
680-232196-43	AF56423	Total/NA	Water	6010D	604817
680-232196-44	AF56428	Total/NA	Water	6010D	604817
MB 160-604813/1-A	Method Blank	Total/NA	Water	6010D	604813
MB 160-604815/1-A	Method Blank	Total/NA	Water	6010D	604815
MB 160-604817/1-A	Method Blank	Total/NA	Water	6010D	604817
LCS 160-604813/2-A	Lab Control Sample	Total/NA	Water	6010D	604813
LCS 160-604815/2-A	Lab Control Sample	Total/NA	Water	6010D	604815
LCS 160-604817/2-A	Lab Control Sample	Total/NA	Water	6010D	604817
680-232196-3 MS	AF56332	Total/NA	Water	6010D	604813
680-232196-3 MSD	AF56332	Total/NA	Water	6010D	604813
680-232196-22 MS	AF56412	Total/NA	Water	6010D	604815
680-232196-22 MSD	AF56412	Total/NA	Water	6010D	604815
680-232196-43 MS	AF56423	Total/NA	Water	6010D	604817
680-232196-43 MSD	AF56423	Total/NA	Water	6010D	604817

Prep Batch: 768540

[<u>.</u>					
Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
680-232196-39	AF56428	Total Recoverable	Water	3005A	
MB 680-768540/1-A	Method Blank	Total Recoverable	Water	3005A	
LCS 680-768540/2-A	Lab Control Sample	Total Recoverable	Water	3005A	

Prep Batch: 768544

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batc
680-232196-1	AF56394	Total Recoverable	Water	3005A	
680-232196-2	AF56331	Total Recoverable	Water	3005A	
680-232196-3	AF56332	Total Recoverable	Water	3005A	
680-232196-4	AF56395	Total Recoverable	Water	3005A	
680-232196-5	AF56396	Total Recoverable	Water	3005A	
680-232196-6	AF56397	Total Recoverable	Water	3005A	
680-232196-7	AF56400	Total Recoverable	Water	3005A	
680-232196-8	AF56442	Total Recoverable	Water	3005A	
680-232196-9	AF56443	Total Recoverable	Water	3005A	
680-232196-10	AF56402	Total Recoverable	Water	3005A	
80-232196-11	AF56403	Total Recoverable	Water	3005A	
880-232196-12	AF56404	Total Recoverable	Water	3005A	
880-232196-13	AF56434	Total Recoverable	Water	3005A	
80-232196-14	AF56433	Total Recoverable	Water	3005A	
880-232196-15	AF56435	Total Recoverable	Water	3005A	
880-232196-16	AF56436	Total Recoverable	Water	3005A	
880-232196-17	AF56437	Total Recoverable	Water	3005A	
880-232196-18	AF56438	Total Recoverable	Water	3005A	
680-232196-19	AF56409	Total Recoverable	Water	3005A	
680-232196-20	AF56410	Total Recoverable	Water	3005A	
MB 680-768544/1-A	Method Blank	Total Recoverable	Water	3005A	
_CS 680-768544/2-A	Lab Control Sample	Total Recoverable	Water	3005A	
680-232196-1 MS	AF56394	Total Recoverable	Water	3005A	
680-232196-1 MSD	AF56394	Total Recoverable	Water	3005A	

Client: South Carolina Public Service Authority Project/Site: 125915/JM02.09.G01.1/36500

Metals

Prep Batch: 768552

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batc
680-232196-21	AF56411	Total Recoverable	Water	3005A	
680-232196-22	AF56412	Total Recoverable	Water	3005A	
680-232196-23	AF56413	Total Recoverable	Water	3005A	
680-232196-24	AF56430	Total Recoverable	Water	3005A	
680-232196-25	AF56406	Total Recoverable	Water	3005A	
680-232196-26	AF56407	Total Recoverable	Water	3005A	
680-232196-27	AF56418	Total Recoverable	Water	3005A	
680-232196-28	AF56422	Total Recoverable	Water	3005A	
680-232196-29	AF56419	Total Recoverable	Water	3005A	
680-232196-30	AF56425	Total Recoverable	Water	3005A	
680-232196-31	AF56426	Total Recoverable	Water	3005A	
680-232196-32	AF56427	Total Recoverable	Water	3005A	
680-232196-33	AF56408	Total Recoverable	Water	3005A	
680-232196-34	AF56415	Total Recoverable	Water	3005A	
680-232196-35	AF56416	Total Recoverable	Water	3005A	
680-232196-36	AF56417	Total Recoverable	Water	3005A	
680-232196-37	AF56429	Total Recoverable	Water	3005A	
680-232196-38	AF56421	Total Recoverable	Water	3005A	
680-232196-40	AF56439	Total Recoverable	Water	3005A	
680-232196-41	AF56441	Total Recoverable	Water	3005A	
MB 680-768552/1-A	Method Blank	Total Recoverable	Water	3005A	
LCS 680-768552/2-A	Lab Control Sample	Total Recoverable	Water	3005A	
680-232196-21 MS	AF56411	Total Recoverable	Water	3005A	
680-232196-21 MSD	AF56411	Total Recoverable	Water	3005A	

Prep Batch: 768588

Lab Sample ID 680-232196-1	Client Sample ID AF56394	Prep Type Total/NA	Water	Method 7470A	Prep Batch
MB 680-768588/1-A	Method Blank	Total/NA	Water	7470A	
LCS 680-768588/2-A	Lab Control Sample	Total/NA	Water	7470A	

Prep Batch: 768590

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batcl
680-232196-2	AF56331	Total/NA	Water	7470A	
680-232196-3	AF56332	Total/NA	Water	7470A	
680-232196-4	AF56395	Total/NA	Water	7470A	
680-232196-5	AF56396	Total/NA	Water	7470A	
680-232196-6	AF56397	Total/NA	Water	7470A	
680-232196-12	AF56404	Total/NA	Water	7470A	
680-232196-13	AF56434	Total/NA	Water	7470A	
880-232196-14	AF56433	Total/NA	Water	7470A	
680-232196-15	AF56435	Total/NA	Water	7470A	
680-232196-16	AF56436	Total/NA	Water	7470A	
80-232196-23	AF56413	Total/NA	Water	7470A	
80-232196-24	AF56430	Total/NA	Water	7470A	
880-232196-25	AF56406	Total/NA	Water	7470A	
880-232196-26	AF56407	Total/NA	Water	7470A	
680-232196-27	AF56418	Total/NA	Water	7470A	
880-232196-34	AF56415	Total/NA	Water	7470A	
80-232196-35	AF56416	Total/NA	Water	7470A	
80-232196-36	AF56417	Total/NA	Water	7470A	

Page 85 of 121

Job ID: 680-232196-1

Client: South Carolina Public Service Authority Project/Site: 125915/JM02.09.G01.1/36500

Job ID: 680-232196-1

Metals (Continued)

Prep Batch: 768590 (Continued)

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
680-232196-37	AF56429	Total/NA	Water	7470A	
680-232196-38	AF56421	Total/NA	Water	7470A	
MB 680-768590/1-A	Method Blank	Total/NA	Water	7470A	
LCS 680-768590/2-A	Lab Control Sample	Total/NA	Water	7470A	
680-232196-38 MS	AF56421	Total/NA	Water	7470A	
680-232196-38 MSD	AF56421	Total/NA	Water	7470A	

Prep Batch: 768608

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
680-232196-42	AF56414	Total Recoverable	Water	3005A	
680-232196-43	AF56423	Total Recoverable	Water	3005A	
680-232196-44	AF56428	Total Recoverable	Water	3005A	
MB 680-768608/1-A	Method Blank	Total Recoverable	Water	3005A	
LCS 680-768608/2-A	Lab Control Sample	Total Recoverable	Water	3005A	
680-232196-42 MS	AF56414	Total Recoverable	Water	3005A	
680-232196-42 MSD	AF56414	Total Recoverable	Water	3005A	

Prep Batch: 768609

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
680-232196-7	AF56400	Total/NA	Water	7470A	
680-232196-8	AF56442	Total/NA	Water	7470A	
680-232196-9	AF56443	Total/NA	Water	7470A	
680-232196-10	AF56402	Total/NA	Water	7470A	
680-232196-11	AF56403	Total/NA	Water	7470A	
680-232196-17	AF56437	Total/NA	Water	7470A	
680-232196-18	AF56438	Total/NA	Water	7470A	
680-232196-19	AF56409	Total/NA	Water	7470A	
680-232196-20	AF56410	Total/NA	Water	7470A	
680-232196-21	AF56411	Total/NA	Water	7470A	
680-232196-22	AF56412	Total/NA	Water	7470A	
680-232196-28	AF56422	Total/NA	Water	7470A	
680-232196-29	AF56419	Total/NA	Water	7470A	
680-232196-30	AF56425	Total/NA	Water	7470A	
680-232196-31	AF56426	Total/NA	Water	7470A	
680-232196-32	AF56427	Total/NA	Water	7470A	
680-232196-33	AF56408	Total/NA	Water	7470A	
680-232196-39	AF56428	Total/NA	Water	7470A	
680-232196-40	AF56439	Total/NA	Water	7470A	
680-232196-41	AF56441	Total/NA	Water	7470A	
MB 680-768609/1-A	Method Blank	Total/NA	Water	7470A	
LCS 680-768609/2-A	Lab Control Sample	Total/NA	Water	7470A	
680-232196-33 MS	AF56408	Total/NA	Water	7470A	
680-232196-33 MSD	AF56408	Total/NA	Water	7470A	

Prep Batch: 768613

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
680-232196-42	AF56414	Total Recoverable	Water	3005A	<u> </u>
680-232196-43	AF56423	Total Recoverable	Water	3005A	
680-232196-44	AF56428	Total Recoverable	Water	3005A	
MB 680-768613/1-A	Method Blank	Total Recoverable	Water	3005A	
LCS 680-768613/2-A	Lab Control Sample	Total Recoverable	Water	3005A	

Eurofins Savannah

Page 86 of 121

Client: South Carolina Public Service Authority Project/Site: 125915/JM02.09.G01.1/36500

Job ID: 680-232196-1

Metals (Continued)

Prep Batch: 768613 (Continued)

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
680-232196-42 MS	AF56414	Total Recoverable	Water	3005A	
680-232196-42 MSD	AF56414	Total Recoverable	Water	3005A	

Prep Batch: 768648

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
680-232196-42	AF56414	Total/NA	Water	7470A	
680-232196-43	AF56423	Total/NA	Water	7470A	
680-232196-44	AF56428	Total/NA	Water	7470A	
MB 680-768648/1-A	Method Blank	Total/NA	Water	7470A	
LCS 680-768648/2-A	Lab Control Sample	Total/NA	Water	7470A	
680-232196-44 MS	AF56428	Total/NA	Water	7470A	
680-232196-44 MSD	AF56428	Total/NA	Water	7470A	

Prep Batch: 768857

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batc
680-232196-1	AF56394	Total Recoverable	Water	3005A	
680-232196-2	AF56331	Total Recoverable	Water	3005A	
680-232196-3	AF56332	Total Recoverable	Water	3005A	
680-232196-4	AF56395	Total Recoverable	Water	3005A	
680-232196-5	AF56396	Total Recoverable	Water	3005A	
680-232196-6	AF56397	Total Recoverable	Water	3005A	
680-232196-7	AF56400	Total Recoverable	Water	3005A	
680-232196-8	AF56442	Total Recoverable	Water	3005A	
680-232196-9	AF56443	Total Recoverable	Water	3005A	
680-232196-10	AF56402	Total Recoverable	Water	3005A	
680-232196-11	AF56403	Total Recoverable	Water	3005A	
680-232196-12	AF56404	Total Recoverable	Water	3005A	
680-232196-13	AF56434	Total Recoverable	Water	3005A	
680-232196-14	AF56433	Total Recoverable	Water	3005A	
680-232196-15	AF56435	Total Recoverable	Water	3005A	
680-232196-16	AF56436	Total Recoverable	Water	3005A	
680-232196-17	AF56437	Total Recoverable	Water	3005A	
680-232196-18	AF56438	Total Recoverable	Water	3005A	
680-232196-19	AF56409	Total Recoverable	Water	3005A	
680-232196-20	AF56410	Total Recoverable	Water	3005A	
MB 680-768857/1-A	Method Blank	Total Recoverable	Water	3005A	
LCS 680-768857/2-A	Lab Control Sample	Total Recoverable	Water	3005A	
680-232196-1 MS	AF56394	Total Recoverable	Water	3005A	
680-232196-1 MSD	AF56394	Total Recoverable	Water	3005A	

Prep Batch: 768858

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batcl
680-232196-21	AF56411	Total Recoverable	Water	3005A	
680-232196-22	AF56412	Total Recoverable	Water	3005A	
680-232196-23	AF56413	Total Recoverable	Water	3005A	
680-232196-24	AF56430	Total Recoverable	Water	3005A	
680-232196-25	AF56406	Total Recoverable	Water	3005A	
680-232196-26	AF56407	Total Recoverable	Water	3005A	
680-232196-27	AF56418	Total Recoverable	Water	3005A	
680-232196-28	AF56422	Total Recoverable	Water	3005A	
680-232196-29	AF56419	Total Recoverable	Water	3005A	

Eurofins Savannah

Page 87 of 121

3

4

10

13

14

Client: South Carolina Public Service Authority
Project/Site: 125915/JM02.09.G01.1/36500

Job ID: 680-232196-1

Metals (Continued)

Prep Batch: 768858 (Continued)

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
680-232196-30	AF56425	Total Recoverable	Water	3005A	
680-232196-31	AF56426	Total Recoverable	Water	3005A	
680-232196-32	AF56427	Total Recoverable	Water	3005A	
680-232196-33	AF56408	Total Recoverable	Water	3005A	
680-232196-34	AF56415	Total Recoverable	Water	3005A	
680-232196-35	AF56416	Total Recoverable	Water	3005A	
680-232196-36	AF56417	Total Recoverable	Water	3005A	
680-232196-37	AF56429	Total Recoverable	Water	3005A	
680-232196-38	AF56421	Total Recoverable	Water	3005A	
680-232196-40	AF56439	Total Recoverable	Water	3005A	
680-232196-41	AF56441	Total Recoverable	Water	3005A	
MB 680-768858/1-A	Method Blank	Total Recoverable	Water	3005A	
LCS 680-768858/2-A	Lab Control Sample	Total Recoverable	Water	3005A	
680-232196-21 MS	AF56411	Total Recoverable	Water	3005A	
680-232196-21 MSD	AF56411	Total Recoverable	Water	3005A	

Prep Batch: 768859

Lab Sample ID 680-232196-39	Client Sample ID AF56428	Prep Type Total Recoverable	Matrix Water	Method 3005A	Prep Batch
MB 680-768859/1-A	Method Blank	Total Recoverable	Water	3005A	
LCS 680-768859/2-A	Lab Control Sample	Total Recoverable	Water	3005A	

Analysis Batch: 768864

_ab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batcl
80-232196-1	AF56394	Total/NA	Water	7470A	768588
880-232196-2	AF56331	Total/NA	Water	7470A	768590
880-232196-3	AF56332	Total/NA	Water	7470A	76859
880-232196-4	AF56395	Total/NA	Water	7470A	768590
80-232196-5	AF56396	Total/NA	Water	7470A	768590
80-232196-6	AF56397	Total/NA	Water	7470A	768590
80-232196-7	AF56400	Total/NA	Water	7470A	768609
80-232196-8	AF56442	Total/NA	Water	7470A	768609
80-232196-9	AF56443	Total/NA	Water	7470A	768609
80-232196-10	AF56402	Total/NA	Water	7470A	768609
80-232196-11	AF56403	Total/NA	Water	7470A	768609
80-232196-12	AF56404	Total/NA	Water	7470A	768590
80-232196-13	AF56434	Total/NA	Water	7470A	768590
80-232196-14	AF56433	Total/NA	Water	7470A	768590
80-232196-15	AF56435	Total/NA	Water	7470A	768590
80-232196-16	AF56436	Total/NA	Water	7470A	768590
80-232196-17	AF56437	Total/NA	Water	7470A	768609
80-232196-18	AF56438	Total/NA	Water	7470A	768609
80-232196-19	AF56409	Total/NA	Water	7470A	768609
80-232196-20	AF56410	Total/NA	Water	7470A	768609
80-232196-21	AF56411	Total/NA	Water	7470A	768609
80-232196-22	AF56412	Total/NA	Water	7470A	768609
80-232196-23	AF56413	Total/NA	Water	7470A	76859
80-232196-24	AF56430	Total/NA	Water	7470A	768590
80-232196-25	AF56406	Total/NA	Water	7470A	768590
80-232196-26	AF56407	Total/NA	Water	7470A	768590
80-232196-27	AF56418	Total/NA	Water	7470A	768590

Eurofins Savannah

Page 88 of 121 3/28/2023

3

4

6

Q

. .

19

13

М

Client: South Carolina Public Service Authority Project/Site: 125915/JM02.09.G01.1/36500

Job ID: 680-232196-1

Metals (Continued)

Analysis Batch: 768864 (Continued)

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
680-232196-28	AF56422	Total/NA	Water	7470A	768609
680-232196-29	AF56419	Total/NA	Water	7470A	768609
680-232196-30	AF56425	Total/NA	Water	7470A	768609
680-232196-31	AF56426	Total/NA	Water	7470A	768609
680-232196-32	AF56427	Total/NA	Water	7470A	768609
680-232196-33	AF56408	Total/NA	Water	7470A	768609
680-232196-34	AF56415	Total/NA	Water	7470A	768590
680-232196-35	AF56416	Total/NA	Water	7470A	768590
680-232196-36	AF56417	Total/NA	Water	7470A	768590
680-232196-37	AF56429	Total/NA	Water	7470A	768590
680-232196-38	AF56421	Total/NA	Water	7470A	768590
680-232196-39	AF56428	Total/NA	Water	7470A	768609
680-232196-40	AF56439	Total/NA	Water	7470A	768609
680-232196-41	AF56441	Total/NA	Water	7470A	768609
680-232196-42	AF56414	Total/NA	Water	7470A	768648
680-232196-43	AF56423	Total/NA	Water	7470A	768648
680-232196-44	AF56428	Total/NA	Water	7470A	768648
MB 680-768588/1-A	Method Blank	Total/NA	Water	7470A	768588
MB 680-768590/1-A	Method Blank	Total/NA	Water	7470A	768590
MB 680-768609/1-A	Method Blank	Total/NA	Water	7470A	768609
MB 680-768648/1-A	Method Blank	Total/NA	Water	7470A	768648
LCS 680-768588/2-A	Lab Control Sample	Total/NA	Water	7470A	768588
LCS 680-768590/2-A	Lab Control Sample	Total/NA	Water	7470A	768590
LCS 680-768609/2-A	Lab Control Sample	Total/NA	Water	7470A	768609
LCS 680-768648/2-A	Lab Control Sample	Total/NA	Water	7470A	768648
680-232196-33 MS	AF56408	Total/NA	Water	7470A	768609
680-232196-33 MSD	AF56408	Total/NA	Water	7470A	768609
680-232196-38 MS	AF56421	Total/NA	Water	7470A	768590
680-232196-38 MSD	AF56421	Total/NA	Water	7470A	768590
680-232196-44 MS	AF56428	Total/NA	Water	7470A	768648
680-232196-44 MSD	AF56428	Total/NA	Water	7470A	768648

Analysis Batch: 768929

ab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
80-232196-1	AF56394	Total Recoverable	Water	6010D	768857
880-232196-2	AF56331	Total Recoverable	Water	6010D	768857
880-232196-3	AF56332	Total Recoverable	Water	6010D	768857
80-232196-4	AF56395	Total Recoverable	Water	6010D	768857
80-232196-5	AF56396	Total Recoverable	Water	6010D	768857
80-232196-6	AF56397	Total Recoverable	Water	6010D	768857
80-232196-7	AF56400	Total Recoverable	Water	6010D	768857
80-232196-8	AF56442	Total Recoverable	Water	6010D	768857
80-232196-9	AF56443	Total Recoverable	Water	6010D	768857
80-232196-10	AF56402	Total Recoverable	Water	6010D	768857
80-232196-11	AF56403	Total Recoverable	Water	6010D	768857
80-232196-12	AF56404	Total Recoverable	Water	6010D	768857
80-232196-13	AF56434	Total Recoverable	Water	6010D	768857
80-232196-14	AF56433	Total Recoverable	Water	6010D	768857
80-232196-15	AF56435	Total Recoverable	Water	6010D	768857
80-232196-16	AF56436	Total Recoverable	Water	6010D	768857
80-232196-17	AF56437	Total Recoverable	Water	6010D	768857

Eurofins Savannah

Page 89 of 121

Client: South Carolina Public Service Authority
Project/Site: 125915/JM02.09.G01.1/36500

Job ID: 680-232196-1

Metals (Continued)

Analysis Batch: 768929 (Continued)

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batcl
680-232196-18	AF56438	Total Recoverable	Water	6010D	76885
680-232196-19	AF56409	Total Recoverable	Water	6010D	76885
680-232196-20	AF56410	Total Recoverable	Water	6010D	76885
680-232196-21	AF56411	Total Recoverable	Water	6010D	768858
680-232196-22	AF56412	Total Recoverable	Water	6010D	768858
680-232196-23	AF56413	Total Recoverable	Water	6010D	768858
680-232196-24	AF56430	Total Recoverable	Water	6010D	768858
680-232196-25	AF56406	Total Recoverable	Water	6010D	768858
680-232196-26	AF56407	Total Recoverable	Water	6010D	768858
680-232196-27	AF56418	Total Recoverable	Water	6010D	768858
680-232196-28	AF56422	Total Recoverable	Water	6010D	768858
680-232196-29	AF56419	Total Recoverable	Water	6010D	768858
680-232196-30	AF56425	Total Recoverable	Water	6010D	768858
680-232196-31	AF56426	Total Recoverable	Water	6010D	768858
680-232196-32	AF56427	Total Recoverable	Water	6010D	768858
680-232196-33	AF56408	Total Recoverable	Water	6010D	768858
680-232196-34	AF56415	Total Recoverable	Water	6010D	768858
80-232196-35	AF56416	Total Recoverable	Water	6010D	76885
680-232196-36	AF56417	Total Recoverable	Water	6010D	768858
680-232196-37	AF56429	Total Recoverable	Water	6010D	768858
680-232196-38	AF56421	Total Recoverable	Water	6010D	768858
680-232196-39	AF56428	Total Recoverable	Water	6010D	768859
680-232196-40	AF56439	Total Recoverable	Water	6010D	768858
680-232196-41	AF56441	Total Recoverable	Water	6010D	768858
680-232196-42	AF56414	Total Recoverable	Water	6010D	768608
680-232196-43	AF56423	Total Recoverable	Water	6010D	768608
680-232196-44	AF56428	Total Recoverable	Water	6010D	768608
MB 680-768608/1-A	Method Blank	Total Recoverable	Water	6010D	768608
MB 680-768857/1-A	Method Blank	Total Recoverable	Water	6010D	76885
MB 680-768858/1-A	Method Blank	Total Recoverable	Water	6010D	768858
MB 680-768859/1-A	Method Blank	Total Recoverable	Water	6010D	768859
_CS 680-768608/2-A	Lab Control Sample	Total Recoverable	Water	6010D	768608
_CS 680-768857/2-A	Lab Control Sample	Total Recoverable	Water	6010D	76885
_CS 680-768858/2-A	Lab Control Sample	Total Recoverable	Water	6010D	768858
_CS 680-768859/2-A	Lab Control Sample	Total Recoverable	Water	6010D	76885
680-232196-1 MS	AF56394	Total Recoverable	Water	6010D	76885
680-232196-1 MSD	AF56394	Total Recoverable	Water	6010D	76885
680-232196-21 MS	AF56411	Total Recoverable	Water	6010D	768858
680-232196-21 MSD	AF56411	Total Recoverable	Water	6010D	768858
680-232196-42 MS	AF56414	Total Recoverable	Water	6010D	768608
680-232196-42 MSD	AF56414	Total Recoverable	Water	6010D	768608

Analysis Batch: 768945

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
680-232196-1	AF56394	Total Recoverable	Water	6020B	768544
680-232196-2	AF56331	Total Recoverable	Water	6020B	768544
680-232196-3	AF56332	Total Recoverable	Water	6020B	768544
680-232196-4	AF56395	Total Recoverable	Water	6020B	768544
680-232196-5	AF56396	Total Recoverable	Water	6020B	768544
680-232196-6	AF56397	Total Recoverable	Water	6020B	768544
680-232196-7	AF56400	Total Recoverable	Water	6020B	768544

Eurofins Savannah

Page 90 of 121

3

4

6

8

10

1 1

13

14

Client: South Carolina Public Service Authority Project/Site: 125915/JM02.09.G01.1/36500

Job ID: 680-232196-1

Metals (Continued)

Analysis Batch: 768945 (Continued)

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batc
680-232196-8	AF56442	Total Recoverable	Water	6020B	76854
680-232196-9	AF56443	Total Recoverable	Water	6020B	76854
880-232196-10	AF56402	Total Recoverable	Water	6020B	76854
880-232196-11	AF56403	Total Recoverable	Water	6020B	76854
680-232196-12	AF56404	Total Recoverable	Water	6020B	76854
880-232196-13	AF56434	Total Recoverable	Water	6020B	76854
880-232196-14	AF56433	Total Recoverable	Water	6020B	76854
680-232196-15	AF56435	Total Recoverable	Water	6020B	76854
880-232196-16	AF56436	Total Recoverable	Water	6020B	76854
680-232196-17	AF56437	Total Recoverable	Water	6020B	76854
680-232196-18	AF56438	Total Recoverable	Water	6020B	76854
680-232196-19	AF56409	Total Recoverable	Water	6020B	76854
680-232196-20	AF56410	Total Recoverable	Water	6020B	76854
880-232196-21	AF56411	Total Recoverable	Water	6020B	76855
880-232196-22	AF56412	Total Recoverable	Water	6020B	76855
80-232196-23	AF56413	Total Recoverable	Water	6020B	76855
880-232196-24	AF56430	Total Recoverable	Water	6020B	76855
880-232196-25	AF56406	Total Recoverable	Water	6020B	76855
580-232196-26	AF56407	Total Recoverable	Water	6020B	76855
680-232196-27	AF56418	Total Recoverable	Water	6020B	76855
580-232196-28	AF56422	Total Recoverable	Water	6020B	76855
80-232196-29	AF56419	Total Recoverable	Water	6020B	76855
	AF56425	Total Recoverable	Water	6020B	76855
80-232196-30					
80-232196-31	AF56426	Total Recoverable	Water	6020B	76855
80-232196-32	AF56427	Total Recoverable	Water	6020B	76855
80-232196-33	AF56408	Total Recoverable	Water	6020B	76855
80-232196-34	AF56415	Total Recoverable	Water	6020B	76855
880-232196-35	AF56416	Total Recoverable	Water	6020B	76855
80-232196-36	AF56417	Total Recoverable	Water	6020B	76855
80-232196-37	AF56429	Total Recoverable	Water	6020B	76855
880-232196-38	AF56421	Total Recoverable	Water	6020B	76855
80-232196-39	AF56428	Total Recoverable	Water	6020B	76854
80-232196-40	AF56439	Total Recoverable	Water	6020B	76855
80-232196-41	AF56441	Total Recoverable	Water	6020B	76855
80-232196-42	AF56414	Total Recoverable	Water	6020B	76861
80-232196-43	AF56423	Total Recoverable	Water	6020B	76861
80-232196-44	AF56428	Total Recoverable	Water	6020B	76861
/IB 680-768540/1-A	Method Blank	Total Recoverable	Water	6020B	76854
/IB 680-768544/1-A	Method Blank	Total Recoverable	Water	6020B	76854
/IB 680-768552/1-A	Method Blank	Total Recoverable	Water	6020B	76855
/IB 680-768613/1-A	Method Blank	Total Recoverable	Water	6020B	76861
.CS 680-768540/2-A	Lab Control Sample	Total Recoverable	Water	6020B	76854
.CS 680-768544/2-A	Lab Control Sample	Total Recoverable	Water	6020B	76854
.CS 680-768552/2-A	Lab Control Sample	Total Recoverable	Water	6020B	76855
.CS 680-768613/2-A	Lab Control Sample	Total Recoverable	Water	6020B	76861
80-232196-1 MS	AF56394	Total Recoverable	Water	6020B	76854
80-232196-1 MSD	AF56394	Total Recoverable	Water	6020B	76854
80-232196-21 MS	AF56411	Total Recoverable	Water	6020B	76855
880-232196-21 MSD	AF56411	Total Recoverable	Water	6020B	76855
680-232196-42 MS	AF56414	Total Recoverable	Water	6020B	76861
880-232196-42 MSD	AF56414	Total Recoverable	Water	6020B	76861

Eurofins Savannah

3

4

၁

9

11

13

Ш

Client: South Carolina Public Service Authority Project/Site: 125915/JM02.09.G01.1/36500

Job ID: 680-232196-1

Metals

Analysis Batch: 769014

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
680-232196-1	AF56394	Total Recoverable	Water	6020B	768544
680-232196-2	AF56331	Total Recoverable	Water	6020B	768544
680-232196-3	AF56332	Total Recoverable	Water	6020B	768544
680-232196-4	AF56395	Total Recoverable	Water	6020B	768544
680-232196-5	AF56396	Total Recoverable	Water	6020B	768544
680-232196-6	AF56397	Total Recoverable	Water	6020B	768544
680-232196-39	AF56428	Total Recoverable	Water	6020B	768540
MB 680-768544/1-A	Method Blank	Total Recoverable	Water	6020B	768544
LCS 680-768544/2-A	Lab Control Sample	Total Recoverable	Water	6020B	768544
680-232196-1 MS	AF56394	Total Recoverable	Water	6020B	768544
680-232196-1 MSD	AF56394	Total Recoverable	Water	6020B	768544

Analysis Batch: 769167

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
680-232196-19	AF56409	Total Recoverable	Water	6010D	768857
680-232196-20	AF56410	Total Recoverable	Water	6010D	768857
680-232196-21	AF56411	Total Recoverable	Water	6010D	768858
680-232196-21 MS	AF56411	Total Recoverable	Water	6010D	768858
680-232196-21 MSD	AF56411	Total Recoverable	Water	6010D	768858

Lab Chronicle

Client: South Carolina Public Service Authority Project/Site: 125915/JM02.09.G01.1/36500

Job ID: 680-232196-1

Lab Sample ID: 680-232196-1

Lab Sample ID: 680-232196-2

Matrix: Water

Date Collected: 02/14/23 12:33 Date Received: 03/17/23 10:30

Client Sample ID: AF56394

	Batch	Batch		Dilution	Batch			Prepared
Prep Type	Type	Method	Run	Factor	Number	Analyst	Lab	or Analyzed
Total Recoverable	Prep	3005A			768857	ВЈВ	EET SAV	03/20/23 09:08
Total Recoverable	Analysis	6010D		1	768929	BJB	EET SAV	03/21/23 22:21
Total/NA	Prep	3010A			604813	LKP	EET SL	03/23/23 14:13
Total/NA	Analysis	6010D		1	605060	LKP	EET SL	03/24/23 13:50
Total Recoverable	Prep	3005A			768544	RR	EET SAV	03/20/23 09:08
Total Recoverable	Analysis	6020B		1	768945	BWR	EET SAV	03/21/23 18:05
Total Recoverable	Prep	3005A			768544	RR	EET SAV	03/20/23 09:08
Total Recoverable	Analysis	6020B		1	769014	BWR	EET SAV	03/22/23 09:30
Total/NA	Prep	7470A			768588	всв	EET SAV	03/20/23 12:30
Total/NA	Analysis	7470A		1	768864	ВСВ	EET SAV	03/20/23 19:57

Client Sample ID: AF56331

Date Collected: 02/14/23 13:51

Date Received: 03/17/23 10:30

	Batch	Batch		Dilution	Batch			Prepared
Prep Type	Туре	Method	Run	Factor	Number	Analyst	Lab	or Analyzed
Total Recoverable	Prep	3005A			768857	ВЈВ	EET SAV	03/20/23 09:08
Total Recoverable	Analysis	6010D		1	768929	BJB	EET SAV	03/21/23 22:31
Total/NA	Prep	3010A			604813	LKP	EET SL	03/23/23 14:13
Total/NA	Analysis	6010D		1	605060	LKP	EET SL	03/24/23 14:13
Total Recoverable	Prep	3005A			768544	RR	EET SAV	03/20/23 09:08
Total Recoverable	Analysis	6020B		1	768945	BWR	EET SAV	03/21/23 18:16
Total Recoverable	Prep	3005A			768544	RR	EET SAV	03/20/23 09:08
Total Recoverable	Analysis	6020B		1	769014	BWR	EET SAV	03/22/23 09:50
Total/NA	Prep	7470A			768590	всв	EET SAV	03/20/23 12:45

1

768864 BCB

EET SAV

03/21/23 13:40

Client Sample ID: AF56332

Analysis

7470A

Date Collected: 02/14/23 15:22

Date Received: 03/17/23 10:30

Total/NA

	Batch	Batch		Dilution	Batch			Prepared
Prep Type	Туре	Method	Run	Factor	Number	Analyst	Lab	or Analyzed
Total Recoverable	Prep	3005A			768857	ВЈВ	EET SAV	03/20/23 09:08
Total Recoverable	Analysis	6010D		1	768929	BJB	EET SAV	03/21/23 22:40
Total/NA	Prep	3010A			604813	LKP	EET SL	03/23/23 14:13
Total/NA	Analysis	6010D		1	605060	LKP	EET SL	03/24/23 14:18
Total Recoverable	Prep	3005A			768544	RR	EET SAV	03/20/23 09:08
Total Recoverable	Analysis	6020B		1	768945	BWR	EET SAV	03/21/23 18:20
Total Recoverable	Prep	3005A			768544	RR	EET SAV	03/20/23 09:08
Total Recoverable	Analysis	6020B		1	769014	BWR	EET SAV	03/22/23 09:54
Total/NA	Prep	7470A			768590	ВСВ	EET SAV	03/20/23 12:45
Total/NA	Analysis	7470A		1	768864	ВСВ	EET SAV	03/21/23 13:20

Eurofins Savannah

Lab Sample ID: 680-232196-3

Matrix: Water

Matrix: Water

Lab Chronicle

Client: South Carolina Public Service Authority Project/Site: 125915/JM02.09.G01.1/36500

Lab Sample ID: 680-232196-4

Matrix: Water

Job ID: 680-232196-1

Client Sample ID: AF56395 Date Collected: 02/15/23 11:36

Date Received: 03/17/23 10:30

	Batch	Batch		Dilution	Batch			Prepared
Prep Type	Туре	Method	Run	Factor	Number	Analyst	Lab	or Analyzed
Total Recoverable	Prep	3005A			768857	BJB	EET SAV	03/20/23 09:08
Total Recoverable	Analysis	6010D		1	768929	BJB	EET SAV	03/21/23 22:44
Total/NA	Prep	3010A			604813	LKP	EET SL	03/23/23 14:13
Total/NA	Analysis	6010D		1	605060	LKP	EET SL	03/24/23 14:36
Total Recoverable	Prep	3005A			768544	RR	EET SAV	03/20/23 09:08
Total Recoverable	Analysis	6020B		1	768945	BWR	EET SAV	03/21/23 18:24
Total Recoverable	Prep	3005A			768544	RR	EET SAV	03/20/23 09:08
Total Recoverable	Analysis	6020B		1	769014	BWR	EET SAV	03/22/23 09:58
Total/NA	Prep	7470A			768590	всв	EET SAV	03/20/23 12:45
Total/NA	Analysis	7470A		1	768864	ВСВ	EET SAV	03/21/23 12:56

Client Sample ID: AF56396

Date Collected: 02/15/23 13:21

Date Received: 03/17/23 10:30

Lab Sample ID: 680-232196-5

Matrix: Water

	Batch	Batch		Dilution	Batch			Prepared
Prep Type	Туре	Method	Run	Factor	Number	Analyst	Lab	or Analyzed
Total Recoverable	Prep	3005A			768857	ВЈВ	EET SAV	03/20/23 09:08
Total Recoverable	Analysis	6010D		1	768929	BJB	EET SAV	03/21/23 22:47
Total/NA	Prep	3010A			604813	LKP	EET SL	03/23/23 14:13
Total/NA	Analysis	6010D		1	605060	LKP	EET SL	03/24/23 14:41
Total Recoverable	Prep	3005A			768544	RR	EET SAV	03/20/23 09:08
Total Recoverable	Analysis	6020B		1	768945	BWR	EET SAV	03/21/23 18:28
Total Recoverable	Prep	3005A			768544	RR	EET SAV	03/20/23 09:08
Total Recoverable	Analysis	6020B		1	769014	BWR	EET SAV	03/22/23 10:02
Total/NA	Prep	7470A			768590	ВСВ	EET SAV	03/20/23 12:45
Total/NA	Analysis	7470A		1	768864	ВСВ	EET SAV	03/21/23 14:04

Client Sample ID: AF56397

Date Collected: 02/16/23 10:53

Date Received: 03/17/23 10:30

Lab Sam	ple ID:	680-232196	-6
---------	---------	------------	----

Matrix: Water

	Batch	Batch		Dilution	Batch			Prepared
Prep Type	Туре	Method	Run	Factor	Number	Analyst	Lab	or Analyzed
Total Recoverable	Prep	3005A			768857	ВЈВ	EET SAV	03/20/23 09:08
Total Recoverable	Analysis	6010D		1	768929	BJB	EET SAV	03/21/23 22:50
Total/NA	Prep	3010A			604813	LKP	EET SL	03/23/23 14:13
Total/NA	Analysis	6010D		1	605060	LKP	EET SL	03/24/23 14:45
Total Recoverable	Prep	3005A			768544	RR	EET SAV	03/20/23 09:08
Total Recoverable	Analysis	6020B		1	768945	BWR	EET SAV	03/21/23 18:32
Total Recoverable	Prep	3005A			768544	RR	EET SAV	03/20/23 09:08
Total Recoverable	Analysis	6020B		1	769014	BWR	EET SAV	03/22/23 10:06
Total/NA	Prep	7470A			768590	ВСВ	EET SAV	03/20/23 12:45
Total/NA	Analysis	7470A		1	768864	всв	EET SAV	03/21/23 12:43

Client: South Carolina Public Service Authority Project/Site: 125915/JM02.09.G01.1/36500

Client Sample ID: AF56400

Lab Sample ID: 680-232196-7 Date Collected: 02/16/23 12:55

Matrix: Water

Date Received: 03/17/23 10:30

	Batch	Batch		Dilution	Batch			Prepared
Prep Type	Туре	Method	Run	Factor	Number	Analyst	Lab	or Analyzed
Total Recoverable	Prep	3005A			768857	ВЈВ	EET SAV	03/20/23 09:08
Total Recoverable	Analysis	6010D		1	768929	BJB	EET SAV	03/21/23 22:53
Total/NA	Prep	3010A			604813	LKP	EET SL	03/23/23 14:13
Total/NA	Analysis	6010D		1	605060	LKP	EET SL	03/24/23 14:50
Total Recoverable	Prep	3005A			768544	RR	EET SAV	03/20/23 09:08
Total Recoverable	Analysis	6020B		1	768945	BWR	EET SAV	03/21/23 18:44
Total/NA	Prep	7470A			768609	ВСВ	EET SAV	03/20/23 13:40
Total/NA	Analysis	7470A		1	768864	ВСВ	EET SAV	03/21/23 11:09

Client Sample ID: AF56442 Lab Sample ID: 680-232196-8

Date Collected: 02/16/23 14:07 **Matrix: Water**

Date Received: 03/17/23 10:30

	Batch	Batch		Dilution	Batch			Prepared
Prep Type	Type	Method	Run	Factor	Number	Analyst	Lab	or Analyzed
Total Recoverable	Prep	3005A			768857	ВЈВ	EET SAV	03/20/23 09:08
Total Recoverable	Analysis	6010D		1	768929	BJB	EET SAV	03/21/23 22:57
Total/NA	Prep	3010A			604813	LKP	EET SL	03/23/23 14:13
Total/NA	Analysis	6010D		1	605060	LKP	EET SL	03/24/23 15:08
Total Recoverable	Prep	3005A			768544	RR	EET SAV	03/20/23 09:08
Total Recoverable	Analysis	6020B		1	768945	BWR	EET SAV	03/21/23 18:48
Total/NA	Prep	7470A			768609	ВСВ	EET SAV	03/20/23 13:40
Total/NA	Analysis	7470A		1	768864	BCB	EET SAV	03/21/23 11:19

Client Sample ID: AF56443 Lab Sample ID: 680-232196-9 Date Collected: 02/16/23 14:12

Date Received: 03/17/23 10:30

	Batch	Batch		Dilution	Batch			Prepared
Prep Type	Type	Method	Run	Factor	Number	Analyst	Lab	or Analyzed
Total Recoverable	Prep	3005A			768857	ВЈВ	EET SAV	03/20/23 09:08
Total Recoverable	Analysis	6010D		1	768929	BJB	EET SAV	03/21/23 23:00
Total/NA	Prep	3010A			604813	LKP	EET SL	03/23/23 14:13
Total/NA	Analysis	6010D		1	605060	LKP	EET SL	03/24/23 15:13
Total Recoverable	Prep	3005A			768544	RR	EET SAV	03/20/23 09:08
Total Recoverable	Analysis	6020B		1	768945	BWR	EET SAV	03/21/23 18:52
Total/NA	Prep	7470A			768609	ВСВ	EET SAV	03/20/23 13:40
Total/NA	Analysis	7470A		1	768864	ВСВ	EET SAV	03/21/23 10:52

Lab Sample ID: 680-232196-10 **Client Sample ID: AF56402**

Date Collected: 02/27/23 12:47 **Matrix: Water** Date Received: 03/17/23 10:30

	Batch	Batch		Dilution	Batch			Prepared
Prep Type	Туре	Method	Run	Factor	Number	Analyst	Lab	or Analyzed
Total Recoverable	Prep	3005A			768857	BJB	EET SAV	03/20/23 09:08
Total Recoverable	Analysis	6010D		1	768929	BJB	EET SAV	03/21/23 23:03

Eurofins Savannah

Matrix: Water

Client: South Carolina Public Service Authority Project/Site: 125915/JM02.09.G01.1/36500

Client Sample ID: AF56402

Lab Sample ID: 680-232196-10 Date Collected: 02/27/23 12:47

Matrix: Water

Date Received: 03/17/23 10:30

	Batch	Batch		Dilution	Batch			Prepared
Prep Type	Type	Method	Run	Factor	Number	Analyst	Lab	or Analyzed
Total/NA	Prep	3010A			604813	LKP	EET SL	03/23/23 14:13
Total/NA	Analysis	6010D		1	605060	LKP	EET SL	03/24/23 15:18
Total Recoverable	Prep	3005A			768544	RR	EET SAV	03/20/23 09:08
Total Recoverable	Analysis	6020B		1	768945	BWR	EET SAV	03/21/23 18:56
Total/NA	Prep	7470A			768609	ВСВ	EET SAV	03/20/23 13:40
Total/NA	Analysis	7470A		1	768864	ВСВ	EET SAV	03/21/23 10:42

Client Sample ID: AF56403

Lab Sample ID: 680-232196-11 Date Collected: 02/27/23 09:57 **Matrix: Water**

Date Received: 03/17/23 10:30

Batch Batch Dilution Prepared Batch Prep Type Туре Method Run Factor Number Analyst Lab or Analyzed Total Recoverable Prep 3005A 768857 BJB EET SAV 03/20/23 09:08 6010D 03/21/23 23:06 Total Recoverable Analysis 768929 BJB **EET SAV** 1 Total/NA 3010A 03/23/23 14:13 Prep 604813 LKP EET SL Total/NA 6010D 605060 LKP EET SL 03/24/23 15:22 Analysis 3005A 03/20/23 09:08 Total Recoverable Prep 768544 RR **EET SAV** 768945 BWR Total Recoverable Analysis 6020B **EET SAV** 03/21/23 19:00 7470A 768609 BCB EET SAV 03/20/23 13:40 Total/NA Prep Total/NA Analysis 7470A 768864 BCB **EET SAV** 03/21/23 10:32

Client Sample ID: AF56404

Lab Sample ID: 680-232196-12 Date Collected: 02/27/23 10:02 **Matrix: Water** Date Received: 03/17/23 10:30

	Batch	Batch		Dilution	Batch			Prepared
Prep Type	Type	Method	Run	Factor	Number	Analyst	Lab	or Analyzed
Total Recoverable	Prep	3005A			768857	ВЈВ	EET SAV	03/20/23 09:08
Total Recoverable	Analysis	6010D		1	768929	BJB	EET SAV	03/21/23 23:10
Total/NA	Prep	3010A			604813	LKP	EET SL	03/23/23 14:13
Total/NA	Analysis	6010D		1	605060	LKP	EET SL	03/24/23 15:27
Total Recoverable	Prep	3005A			768544	RR	EET SAV	03/20/23 09:08
Total Recoverable	Analysis	6020B		1	768945	BWR	EET SAV	03/21/23 19:03
Total/NA	Prep	7470A			768590	ВСВ	EET SAV	03/20/23 12:45
Total/NA	Analysis	7470A		1	768864	ВСВ	EET SAV	03/21/23 13:50

Client Sample ID: AF56434

Lab Sample ID: 680-232196-13 Date Collected: 02/27/23 15:44 Matrix: Water

Date Received: 03/17/23 10:30

	Batch	Batch		Dilution	Batch			Prepared
Prep Type	Туре	Method	Run	Factor	Number	Analyst	Lab	or Analyzed
Total Recoverable	Prep	3005A			768857	BJB	EET SAV	03/20/23 09:08
Total Recoverable	Analysis	6010D		1	768929	BJB	EET SAV	03/21/23 23:19
Total/NA	Prep	3010A			604813	LKP	EET SL	03/23/23 14:13
Total/NA	Analysis	6010D		1	605060	LKP	EET SL	03/24/23 15:32

Eurofins Savannah

Page 96 of 121

3/28/2023

Client: South Carolina Public Service Authority Project/Site: 125915/JM02.09.G01.1/36500

Client Sample ID: AF56434

Date Collected: 02/27/23 15:44 Date Received: 03/17/23 10:30 Lab Sample ID: 680-232196-13

Matrix: Water

	Batch	Batch		Dilution	Batch			Prepared
Prep Type	Туре	Method	Run	Factor	Number	Analyst	Lab	or Analyzed
Total Recoverable	Prep	3005A			768544	RR	EET SAV	03/20/23 09:08
Total Recoverable	Analysis	6020B		1	768945	BWR	EET SAV	03/21/23 19:07
Total/NA	Prep	7470A			768590	BCB	EET SAV	03/20/23 12:45
Total/NA	Analysis	7470A		1	768864	ВСВ	EET SAV	03/21/23 13:36

Client Sample ID: AF56433

Date Collected: 02/28/23 12:58

Date Received: 03/17/23 10:30

Lab Sample ID: 680-232196-14

Matrix: Water

	Batch	Batch		Dilution	Batch			Prepared
Prep Type	Type	Method	Run	Factor	Number	Analyst	Lab	or Analyzed
Total Recoverable	Prep	3005A			768857	ВЈВ	EET SAV	03/20/23 09:08
Total Recoverable	Analysis	6010D		1	768929	BJB	EET SAV	03/21/23 23:23
Total/NA	Prep	3010A			604813	LKP	EET SL	03/23/23 14:13
Total/NA	Analysis	6010D		1	605060	LKP	EET SL	03/24/23 15:37
Total Recoverable	Prep	3005A			768544	RR	EET SAV	03/20/23 09:08
Total Recoverable	Analysis	6020B		1	768945	BWR	EET SAV	03/21/23 19:11
Total/NA	Prep	7470A			768590	ВСВ	EET SAV	03/20/23 12:45
Total/NA	Analysis	7470A		1	768864	ВСВ	EET SAV	03/21/23 13:16

Client Sample ID: AF56435

Date Collected: 02/28/23 11:44

Date Received: 03/17/23 10:30

Lab Sample ID:	680-232196-15
----------------	---------------

Matrix: Water

	Batch	Batch		Dilution	Batch			Prepared
Prep Type	Туре	Method	Run	Factor	Number	Analyst	Lab	or Analyzed
Total Recoverable	Prep	3005A			768857	ВЈВ	EET SAV	03/20/23 09:08
Total Recoverable	Analysis	6010D		1	768929	BJB	EET SAV	03/21/23 23:26
Total/NA	Prep	3010A			604813	LKP	EET SL	03/23/23 14:13
Total/NA	Analysis	6010D		1	605060	LKP	EET SL	03/24/23 15:42
Total Recoverable	Prep	3005A			768544	RR	EET SAV	03/20/23 09:08
Total Recoverable	Analysis	6020B		1	768945	BWR	EET SAV	03/21/23 19:15
Total/NA	Prep	7470A			768590	ВСВ	EET SAV	03/20/23 12:45
Total/NA	Analysis	7470A		1	768864	BCB	EET SAV	03/21/23 13:06

Client Sample ID: AF56436

Date Collected: 02/28/23 10:19

Date Received: 03/17/23 10:30

Lab	Sam	ole	ID:	680	-2321	196-1	6
-----	-----	-----	-----	-----	-------	-------	---

Matrix: Water

	Batch	Batch		Dilution	Batch			Prepared
Prep Type	Туре	Method	Run	Factor	Number	Analyst	Lab	or Analyzed
Total Recoverable	Prep	3005A			768857	ВЈВ	EET SAV	03/20/23 09:08
Total Recoverable	Analysis	6010D		1	768929	BJB	EET SAV	03/21/23 23:29
Total/NA	Prep	3010A			604813	LKP	EET SL	03/23/23 14:13
Total/NA	Analysis	6010D		1	605060	LKP	EET SL	03/24/23 15:46
Total Recoverable	Prep	3005A			768544	RR	EET SAV	03/20/23 09:08
Total Recoverable	Analysis	6020B		1	768945	BWR	EET SAV	03/21/23 19:19

Eurofins Savannah

Page 97 of 121

9

3

4

6

9

11

12

. .

ilei

Client: South Carolina Public Service Authority Project/Site: 125915/JM02.09.G01.1/36500

Client Sample ID: AF56436

Date Collected: 02/28/23 10:19 Date Received: 03/17/23 10:30 Lab Sample ID: 680-232196-16

Matrix: Water

	Batch	Batch		Dilution	Batch			Prepared
Prep Type	Туре	Method	Run	Factor	Number	Analyst	Lab	or Analyzed
Total/NA	Prep	7470A			768590	ВСВ	EET SAV	03/20/23 12:45
Total/NA	Analysis	7470A		1	768864	ВСВ	EET SAV	03/21/23 12:39

Client Sample ID: AF56437

Date Collected: 02/28/23 10:24 Date Received: 03/17/23 10:30

Lab Sample ID: 680-232196-17

Matrix: Water

	Batch	Batch		Dilution	Batch			Prepared
Prep Type	Type	Method	Run	Factor	Number	Analyst	Lab	or Analyzed
Total Recoverable	Prep	3005A			768857	ВЈВ	EET SAV	03/20/23 09:08
Total Recoverable	Analysis	6010D		1	768929	BJB	EET SAV	03/21/23 23:32
Total/NA	Prep	3010A			604813	LKP	EET SL	03/23/23 14:13
Total/NA	Analysis	6010D		1	605060	LKP	EET SL	03/24/23 15:51
Total Recoverable	Prep	3005A			768544	RR	EET SAV	03/20/23 09:08
Total Recoverable	Analysis	6020B		1	768945	BWR	EET SAV	03/21/23 19:31
Total/NA	Prep	7470A			768609	ВСВ	EET SAV	03/20/23 13:40
Total/NA	Analysis	7470A		1	768864	ВСВ	EET SAV	03/21/23 11:35

Client Sample ID: AF56438

Date Collected: 02/28/23 14:31 Date Received: 03/17/23 10:30

Lab Sample ID: 680-232196-18

Matrix: Water

	Batch	Batch		Dilution	Batch			Prepared
Prep Type	Туре	Method	Run	Factor	Number	Analyst	Lab	or Analyzed
Total Recoverable	Prep	3005A			768857	ВЈВ	EET SAV	03/20/23 09:08
Total Recoverable	Analysis	6010D		1	768929	BJB	EET SAV	03/21/23 23:36
Total/NA	Prep	3010A			604813	LKP	EET SL	03/23/23 14:13
Total/NA	Analysis	6010D		1	605060	LKP	EET SL	03/24/23 16:10
Total Recoverable	Prep	3005A			768544	RR	EET SAV	03/20/23 09:08
Total Recoverable	Analysis	6020B		1	768945	BWR	EET SAV	03/21/23 19:35
Total/NA	Prep	7470A			768609	ВСВ	EET SAV	03/20/23 13:40
Total/NA	Analysis	7470A		1	768864	всв	EET SAV	03/21/23 11:32

Client Sample ID: AF56409

Date Collected: 03/06/23 12:14

Date Received: 03/17/23 10:30

Lab Sample ID: 680-232196	-19
---------------------------	-----

Matrix: Water

	Batch	Batch		Dilution	Batch			Prepared
Prep Type	Type	Method	Run	Factor	Number	Analyst	Lab	or Analyzed
Total Recoverable	Prep	3005A			768857	ВЈВ	EET SAV	03/20/23 09:08
Total Recoverable	Analysis	6010D		1	768929	BJB	EET SAV	03/21/23 23:39
Total Recoverable	Prep	3005A			768857	BJB	EET SAV	03/20/23 09:08
Total Recoverable	Analysis	6010D		10	769167	BJB	EET SAV	03/22/23 11:50
Total/NA	Prep	3010A			604813	LKP	EET SL	03/23/23 14:13
Total/NA	Analysis	6010D		1	605060	LKP	EET SL	03/24/23 16:14
Total Recoverable	Prep	3005A			768544	RR	EET SAV	03/20/23 09:08
Total Recoverable	Analysis	6020B		1	768945	BWR	EET SAV	03/21/23 19:39

Page 98 of 121

Matrix: Water

Client: South Carolina Public Service Authority Project/Site: 125915/JM02.09.G01.1/36500

Client Sample ID: AF56409

Lab Sample ID: 680-232196-19 Date Collected: 03/06/23 12:14 **Matrix: Water**

Date Received: 03/17/23 10:30

	Batch	Batch		Dilution	Batch			Prepared
Prep Type	Туре	Method	Run	Factor	Number	Analyst	Lab	or Analyzed
Total/NA	Prep	7470A			768609	ВСВ	EET SAV	03/20/23 13:40
Total/NA	Analysis	7470A		1	768864	BCB	EET SAV	03/21/23 11:12

Client Sample ID: AF56410 Lab Sample ID: 680-232196-20

Date Collected: 03/06/23 12:19

Date Received: 03/17/23 10:30

	Batch	Batch		Dilution	Batch			Prepared
Prep Type	Туре	Method	Run	Factor	Number	Analyst	Lab	or Analyzed
Total Recoverable	Prep	3005A			768857	ВЈВ	EET SAV	03/20/23 09:08
Total Recoverable	Analysis	6010D		1	768929	BJB	EET SAV	03/21/23 23:42
Total Recoverable	Prep	3005A			768857	BJB	EET SAV	03/20/23 09:08
Total Recoverable	Analysis	6010D		10	769167	BJB	EET SAV	03/22/23 11:53
Total/NA	Prep	3010A			604813	LKP	EET SL	03/23/23 14:13
Total/NA	Analysis	6010D		1	605060	LKP	EET SL	03/24/23 16:19
Total Recoverable	Prep	3005A			768544	RR	EET SAV	03/20/23 09:08
Total Recoverable	Analysis	6020B		1	768945	BWR	EET SAV	03/21/23 19:43
Total/NA	Prep	7470A			768609	ВСВ	EET SAV	03/20/23 13:40
Total/NA	Analysis	7470A		1	768864	ВСВ	EET SAV	03/21/23 10:59

Lab Sample ID: 680-232196-21 **Client Sample ID: AF56411**

Date Collected: 03/06/23 11:08 **Matrix: Water** Date Received: 03/17/23 10:30

	Batch	Batch		Dilution	Batch			Prepared
Prep Type	Туре	Method	Run	Factor	Number	Analyst	Lab	or Analyzed
Total Recoverable	Prep	3005A			768858	BJB	EET SAV	03/20/23 09:08
Total Recoverable	Analysis	6010D		1	768929	BJB	EET SAV	03/21/23 20:50
Total Recoverable	Prep	3005A			768858	ВЈВ	EET SAV	03/20/23 09:08
Total Recoverable	Analysis	6010D		10	769167	BJB	EET SAV	03/22/23 11:56
Total/NA	Prep	3010A			604815	LKP	EET SL	03/23/23 14:15
Total/NA	Analysis	6010D		1	605060	LKP	EET SL	03/24/23 16:42
Total Recoverable	Prep	3005A			768552	RR	EET SAV	03/20/23 09:08
Total Recoverable	Analysis	6020B		1	768945	BWR	EET SAV	03/21/23 20:02
Total/NA	Prep	7470A			768609	всв	EET SAV	03/20/23 13:40
Total/NA	Analysis	7470A		1	768864	BCB	EET SAV	03/21/23 10:38

Client Sample ID: AF56412 Lab Sample ID: 680-232196-22 Date Collected: 03/06/23 15:15 Matrix: Water

Date Received: 03/17/23 10:30

	Batch	Batch		Dilution	Batch			Prepared
Prep Type	Туре	Method	Run	Factor	Number	Analyst	Lab	or Analyzed
Total Recoverable	Prep	3005A			768858	ВЈВ	EET SAV	03/20/23 09:08
Total Recoverable	Analysis	6010D		1	768929	BJB	EET SAV	03/21/23 21:00
Total/NA	Prep	3010A			604815	LKP	EET SL	03/23/23 14:15
Total/NA	Analysis	6010D		1	605060	LKP	EET SL	03/24/23 16:51

Eurofins Savannah

Page 99 of 121

Client: South Carolina Public Service Authority Project/Site: 125915/JM02.09.G01.1/36500

Client Sample ID: AF56412

Date Collected: 03/06/23 15:15 Date Received: 03/17/23 10:30 Lab Sample ID: 680-232196-22

Matrix: Water

	Batch	Batch		Dilution	Batch			Prepared
Prep Type	Туре	Method	Run	Factor	Number	Analyst	Lab	or Analyzed
Total Recoverable	Prep	3005A			768552	RR	EET SAV	03/20/23 09:08
Total Recoverable	Analysis	6020B		1	768945	BWR	EET SAV	03/21/23 20:14
Total/NA	Prep	7470A			768609	ВСВ	EET SAV	03/20/23 13:40
Total/NA	Analysis	7470A		1	768864	ВСВ	EET SAV	03/21/23 14:20

Client Sample ID: AF56413

Date Collected: 03/06/23 13:41 Date Received: 03/17/23 10:30 Lab Sample ID: 680-232196-23

Matrix: Water

	Batch	Batch		Dilution	Batch			Prepared
Prep Type	Type	Method	Run	Factor	Number	Analyst	Lab	or Analyzed
Total Recoverable	Prep	3005A			768858	BJB	EET SAV	03/20/23 09:08
Total Recoverable	Analysis	6010D		1	768929	BJB	EET SAV	03/21/23 21:03
Total/NA	Prep	3010A			604815	LKP	EET SL	03/23/23 14:15
Total/NA	Analysis	6010D		1	605060	LKP	EET SL	03/24/23 17:23
Total Recoverable	Prep	3005A			768552	RR	EET SAV	03/20/23 09:08
Total Recoverable	Analysis	6020B		1	768945	BWR	EET SAV	03/21/23 20:18
Total/NA	Prep	7470A			768590	всв	EET SAV	03/20/23 12:45
Total/NA	Analysis	7470A		1	768864	ВСВ	EET SAV	03/21/23 13:46

Client Sample ID: AF56430

Date Collected: 03/06/23 10:10

Date Received: 03/17/23 10:30

Lab Sample ID: 680-232196-24

Matrix: Water

	Batch	Batch		Dilution	Batch			Prepared
Prep Type	Type	Method	Run	Factor	Number	Analyst	Lab	or Analyzed
Total Recoverable	Prep	3005A			768858	ВЈВ	EET SAV	03/20/23 09:08
Total Recoverable	Analysis	6010D		1	768929	BJB	EET SAV	03/21/23 21:06
Total/NA	Prep	3010A			604815	LKP	EET SL	03/23/23 14:15
Total/NA	Analysis	6010D		1	605060	LKP	EET SL	03/24/23 17:28
Total Recoverable	Prep	3005A			768552	RR	EET SAV	03/20/23 09:08
Total Recoverable	Analysis	6020B		1	768945	BWR	EET SAV	03/21/23 20:22
Total/NA	Prep	7470A			768590	ВСВ	EET SAV	03/20/23 12:45
Total/NA	Analysis	7470A		1	768864	ВСВ	EET SAV	03/21/23 14:10

Client Sample ID: AF56406

Date Collected: 03/09/23 10:29

Date Received: 03/17/23 10:30

Lab Sample ID: 680-232196-25

Matrix: Water

	Batch	Batch		Dilution	Batch			Prepared
Prep Type	Type	Method	Run	Factor	Number	Analyst	Lab	or Analyzed
Total Recoverable	Prep	3005A			768858	ВЈВ	EET SAV	03/20/23 09:08
Total Recoverable	Analysis	6010D		1	768929	BJB	EET SAV	03/21/23 21:09
Total/NA	Prep	3010A			604815	LKP	EET SL	03/23/23 14:15
Total/NA	Analysis	6010D		1	605060	LKP	EET SL	03/24/23 17:33
Total Recoverable	Prep	3005A			768552	RR	EET SAV	03/20/23 09:08
Total Recoverable	Analysis	6020B		1	768945	BWR	EET SAV	03/21/23 20:26

Client: South Carolina Public Service Authority Project/Site: 125915/JM02.09.G01.1/36500

Client Sample ID: AF56406

Date Collected: 03/09/23 10:29 Date Received: 03/17/23 10:30 Lab Sample ID: 680-232196-25

Matrix: Water

	Batch	Batch		Dilution	Batch			Prepared
Prep Type	Type	Method	Run	Factor	Number	Analyst	Lab	or Analyzed
Total/NA	Prep	7470A			768590	ВСВ	EET SAV	03/20/23 12:45
Total/NA	Analysis	7470A		1	768864	ВСВ	EET SAV	03/21/23 13:13

Client Sample ID: AF56407 Lab Sample ID: 680-232196-26

Date Collected: 03/09/23 10:34 Matrix: Water

Date Received: 03/17/23 10:30

	Batch	Batch		Dilution	Batch			Prepared
Prep Type	Туре	Method	Run	Factor	Number	Analyst	Lab	or Analyzed
Total Recoverable	Prep	3005A			768858	ВЈВ	EET SAV	03/20/23 09:08
Total Recoverable	Analysis	6010D		1	768929	BJB	EET SAV	03/21/23 21:13
Total/NA	Prep	3010A			604815	LKP	EET SL	03/23/23 14:15
Total/NA	Analysis	6010D		1	605060	LKP	EET SL	03/24/23 17:38
Total Recoverable	Prep	3005A			768552	RR	EET SAV	03/20/23 09:08
Total Recoverable	Analysis	6020B		1	768945	BWR	EET SAV	03/21/23 20:30
Total/NA	Prep	7470A			768590	всв	EET SAV	03/20/23 12:45
Total/NA	Analysis	7470A		1	768864	ВСВ	EET SAV	03/21/23 13:03

Client Sample ID: AF56418

Date Collected: 03/09/23 12:07 Date Received: 03/17/23 10:30 Lab Sample ID: 680-232196-27

Matrix: Water

	Batch	Batch		Dilution	Batch			Prepared
Prep Type	Туре	Method	Run	Factor	Number	Analyst	Lab	or Analyzed
Total Recoverable	Prep	3005A			768858	ВЈВ	EET SAV	03/20/23 09:08
Total Recoverable	Analysis	6010D		1	768929	BJB	EET SAV	03/21/23 21:22
Total/NA	Prep	3010A			604815	LKP	EET SL	03/23/23 14:15
Total/NA	Analysis	6010D		1	605060	LKP	EET SL	03/24/23 17:42
Total Recoverable	Prep	3005A			768552	RR	EET SAV	03/20/23 09:08
Total Recoverable	Analysis	6020B		1	768945	BWR	EET SAV	03/21/23 20:41
Total/NA	Prep	7470A			768590	ВСВ	EET SAV	03/20/23 12:45
Total/NA	Analysis	7470A		1	768864	ВСВ	EET SAV	03/21/23 12:36

Client Sample ID: AF56422

Date Collected: 03/09/23 13:19

Date Received: 03/17/23 10:30

Lab Sample ID:	680-232196-28
----------------	---------------

Matrix: Water

	Batch	Batch		Dilution	Batch			Prepared
Prep Type	Type	Method	Run	Factor	Number	Analyst	Lab	or Analyzed
Total Recoverable	Prep	3005A			768858	ВЈВ	EET SAV	03/20/23 09:08
Total Recoverable	Analysis	6010D		1	768929	BJB	EET SAV	03/21/23 21:26
Total/NA	Prep	3010A			604815	LKP	EET SL	03/23/23 14:15
Total/NA	Analysis	6010D		1	605060	LKP	EET SL	03/24/23 17:47
Total Recoverable	Prep	3005A			768552	RR	EET SAV	03/20/23 09:08
Total Recoverable	Analysis	6020B		1	768945	BWR	EET SAV	03/21/23 20:45
Total/NA	Prep	7470A			768609	ВСВ	EET SAV	03/20/23 13:40
Total/NA	Analysis	7470A		1	768864	всв	EET SAV	03/21/23 14:24

Eurofins Savannah

2

А

6

9

11

13

4 4

М

Client: South Carolina Public Service Authority

Project/Site: 125915/JM02.09.G01.1/36500

Client Sample ID: AF56419

Date Collected: 03/07/23 14:51 Date Received: 03/17/23 10:30

Lab Sample ID: 680-232196-29

Matrix: Water

	Batch	Batch		Dilution	Batch			Prepared
Prep Type	Type	Method	Run	Factor	Number	Analyst	Lab	or Analyzed
Total Recoverable	Prep	3005A			768858	ВЈВ	EET SAV	03/20/23 09:08
Total Recoverable	Analysis	6010D		1	768929	BJB	EET SAV	03/21/23 21:29
Total/NA	Prep	3010A			604815	LKP	EET SL	03/23/23 14:15
Total/NA	Analysis	6010D		1	605060	LKP	EET SL	03/24/23 17:52
Total Recoverable	Prep	3005A			768552	RR	EET SAV	03/20/23 09:08
Total Recoverable	Analysis	6020B		1	768945	BWR	EET SAV	03/21/23 20:49
Total/NA	Prep	7470A			768609	ВСВ	EET SAV	03/20/23 13:40
Total/NA	Analysis	7470A		1	768864	BCB	EET SAV	03/21/23 11:22

Client Sample ID: AF56425 Lab Sample ID: 680-232196-30

Matrix: Water Date Collected: 03/07/23 12:49

Date Received: 03/17/23 10:30

	Batch	Batch		Dilution	Batch			Prepared
Prep Type	Туре	Method	Run	Factor	Number	Analyst	Lab	or Analyzed
Total Recoverable	Prep	3005A			768858	ВЈВ	EET SAV	03/20/23 09:08
Total Recoverable	Analysis	6010D		1	768929	BJB	EET SAV	03/21/23 21:32
Total/NA	Prep	3010A			604815	LKP	EET SL	03/23/23 14:15
Total/NA	Analysis	6010D		1	605060	LKP	EET SL	03/24/23 18:10
Total Recoverable	Prep	3005A			768552	RR	EET SAV	03/20/23 09:08
Total Recoverable	Analysis	6020B		1	768945	BWR	EET SAV	03/21/23 20:53
Total/NA	Prep	7470A			768609	ВСВ	EET SAV	03/20/23 13:40
Total/NA	Analysis	7470A		1	768864	BCB	EET SAV	03/21/23 11:05

Client Sample ID: AF56426 Lab Sample ID: 680-232196-31 Date Collected: 03/07/23 10:22 **Matrix: Water**

Date Received: 03/17/23 10:30

Date Received: 03/17/23 10:30

	Batch	Batch		Dilution	Batch			Prepared
Prep Type	Type	Method	Run	Factor	Number	Analyst	Lab	or Analyzed
Total Recoverable	Prep	3005A			768858	ВЈВ	EET SAV	03/20/23 09:08
Total Recoverable	Analysis	6010D		1	768929	BJB	EET SAV	03/21/23 21:35
Total/NA	Prep	3010A			604815	LKP	EET SL	03/23/23 14:15
Total/NA	Analysis	6010D		1	605060	LKP	EET SL	03/24/23 18:15
Total Recoverable	Prep	3005A			768552	RR	EET SAV	03/20/23 09:08
Total Recoverable	Analysis	6020B		1	768945	BWR	EET SAV	03/21/23 20:57
Total/NA	Prep	7470A			768609	ВСВ	EET SAV	03/20/23 13:40
Total/NA	Analysis	7470A		1	768864	BCB	EET SAV	03/21/23 10:55

Client Sample ID: AF56427 Lab Sample ID: 680-232196-32

Date Collected: 03/07/23 10:27 **Matrix: Water**

Batch Batch Dilution Batch Prepared Method **Prep Type** Туре Run Factor Number Analyst Lab or Analyzed Total Recoverable 3005A 768858 BJB EET SAV 03/20/23 09:08 Prep 6010D 768929 BJB EET SAV 03/21/23 21:39 Total Recoverable Analysis

Client: South Carolina Public Service Authority Project/Site: 125915/JM02.09.G01.1/36500

Client Sample ID: AF56427

Date Collected: 03/07/23 10:27

Lab Sample ID: 680-232196-32

Matrix: Water

Date Received: 03/17/23 10:30

Batch Batch

	Batch	Batch		Dilution	Batch			Prepared
Prep Type	Туре	Method	Run	Factor	Number	Analyst	Lab	or Analyzed
Total/NA	Prep	3010A			604815	LKP	EET SL	03/23/23 14:15
Total/NA	Analysis	6010D		1	605060	LKP	EET SL	03/24/23 18:19
Total Recoverable	Prep	3005A			768552	RR	EET SAV	03/20/23 09:08
Total Recoverable	Analysis	6020B		1	768945	BWR	EET SAV	03/21/23 21:01
Total/NA	Prep	7470A			768609	ВСВ	EET SAV	03/20/23 13:40
Total/NA	Analysis	7470A		1	768864	BCB	EET SAV	03/21/23 10:35

Client Sample ID: AF56408

Date Collected: 03/08/23 13:38 Date Received: 03/17/23 10:30 Lab Sample ID: 680-232196-33

Matrix: Water

Batch Batch Dilution Batch **Prepared** Prep Type Туре Method Run Factor Number Analyst Lab or Analyzed Total Recoverable Prep 3005A 768858 BJB EET SAV 03/20/23 09:08 6010D 03/21/23 21:42 Total Recoverable Analysis 768929 BJB EET SAV 1 Total/NA 03/23/23 14:15 Prep 3010A 604815 LKP EET SL 03/24/23 18:24 Total/NA 6010D 605060 LKP EET SL Analysis 3005A 03/20/23 09:08 Total Recoverable Prep 768552 RR **EET SAV** Total Recoverable Analysis 6020B 768945 BWR **EET SAV** 03/21/23 21:05 7470A 768609 BCB EET SAV 03/20/23 13:40 Total/NA Prep Total/NA Analysis 7470A 768864 BCB **EET SAV** 03/21/23 12:16

Client Sample ID: AF56415

Date Collected: 03/08/23 15:13 Date Received: 03/17/23 10:30 Lab Sample ID: 680-232196-34

Matrix: Water

	Batch	Batch		Dilution	Batch			Prepared
Prep Type	Type	Method	Run	Factor	Number	Analyst	Lab	or Analyzed
Total Recoverable	Prep	3005A			768858	ВЈВ	EET SAV	03/20/23 09:08
Total Recoverable	Analysis	6010D		1	768929	BJB	EET SAV	03/21/23 21:45
Total/NA	Prep	3010A			604815	LKP	EET SL	03/23/23 14:15
Total/NA	Analysis	6010D		1	605060	LKP	EET SL	03/24/23 18:29
Total Recoverable	Prep	3005A			768552	RR	EET SAV	03/20/23 09:08
Total Recoverable	Analysis	6020B		1	768945	BWR	EET SAV	03/21/23 21:09
Total/NA	Prep	7470A			768590	ВСВ	EET SAV	03/20/23 12:45
Total/NA	Analysis	7470A		1	768864	всв	EET SAV	03/21/23 13:43

Client Sample ID: AF56416

Date Collected: 03/08/23 10:09

Date Received: 03/17/23 10:30

Lab Sample ID: 680-232196-35

Matrix: Water

	Batch	Batch		Dilution	Batch			Prepared
Prep Type	Туре	Method	Run	Factor	Number	Analyst	Lab	or Analyzed
Total Recoverable	Prep	3005A			768858	ВЈВ	EET SAV	03/20/23 09:08
Total Recoverable	Analysis	6010D		1	768929	BJB	EET SAV	03/21/23 21:48
Total/NA	Prep	3010A			604815	LKP	EET SL	03/23/23 14:15
Total/NA	Analysis	6010D		1	605060	LKP	EET SL	03/24/23 18:34

Client: South Carolina Public Service Authority

Project/Site: 125915/JM02.09.G01.1/36500

Client Sample ID: AF56416

Date Collected: 03/08/23 10:09 Date Received: 03/17/23 10:30 Lab Sample ID: 680-232196-35

Matrix: Water

	Batch	Batch		Dilution	Batch			Prepared
Prep Type	Type	Method	Run	Factor	Number	Analyst	Lab	or Analyzed
Total Recoverable	Prep	3005A			768552	RR	EET SAV	03/20/23 09:08
Total Recoverable	Analysis	6020B		1	768945	BWR	EET SAV	03/21/23 21:13
Total/NA	Prep	7470A			768590	всв	EET SAV	03/20/23 12:45
Total/NA	Analysis	7470A		1	768864	ВСВ	EET SAV	03/21/23 13:23

Client Sample ID: AF56417

Date Collected: 03/08/23 10:14

Date Received: 03/17/23 10:30

Lab Sample ID: 680-232196-36

Matrix: Water

	Batch	Batch		Dilution	Batch			Prepared
Prep Type	Type	Method	Run	Factor	Number	Analyst	Lab	or Analyzed
Total Recoverable	Prep	3005A			768858	ВЈВ	EET SAV	03/20/23 09:08
Total Recoverable	Analysis	6010D		1	768929	BJB	EET SAV	03/21/23 21:52
Total/NA	Prep	3010A			604815	LKP	EET SL	03/23/23 14:15
Total/NA	Analysis	6010D		1	605060	LKP	EET SL	03/24/23 18:38
Total Recoverable	Prep	3005A			768552	RR	EET SAV	03/20/23 09:08
Total Recoverable	Analysis	6020B		1	768945	BWR	EET SAV	03/21/23 21:17
Total/NA	Prep	7470A			768590	ВСВ	EET SAV	03/20/23 12:45
Total/NA	Analysis	7470A		1	768864	ВСВ	EET SAV	03/21/23 13:10

Client Sample ID: AF56429

Date Collected: 03/08/23 12:12

Date Received: 03/17/23 10:30

Lab Sample ID: 680-232196-37

Matrix: Water

	Batch	Batch		Dilution	Batch			Prepared
Prep Type	Туре	Method	Run	Factor	Number	Analyst	Lab	or Analyzed
Total Recoverable	Prep	3005A			768858	ВЈВ	EET SAV	03/20/23 09:08
Total Recoverable	Analysis	6010D		1	768929	BJB	EET SAV	03/21/23 22:01
Total/NA	Prep	3010A			604815	LKP	EET SL	03/23/23 14:15
Total/NA	Analysis	6010D		1	605060	LKP	EET SL	03/24/23 18:43
Total Recoverable	Prep	3005A			768552	RR	EET SAV	03/20/23 09:08
Total Recoverable	Analysis	6020B		1	768945	BWR	EET SAV	03/21/23 21:28
Total/NA	Prep	7470A			768590	ВСВ	EET SAV	03/20/23 12:45
Total/NA	Analysis	7470A		1	768864	ВСВ	EET SAV	03/21/23 14:07

Client Sample ID: AF56421

Date Collected: 03/01/23 14:41

Date Received: 03/17/23 10:30

Lab Sample ID: 680-232196-38

Matrix: Water

	Batch	Batch		Dilution	Batch			Prepared
Prep Type	Type	Method	Run	Factor	Number	Analyst	Lab	or Analyzed
Total Recoverable	Prep	3005A			768858	ВЈВ	EET SAV	03/20/23 09:08
Total Recoverable	Analysis	6010D		1	768929	BJB	EET SAV	03/21/23 22:05
Total/NA	Prep	3010A			604815	LKP	EET SL	03/23/23 14:15
Total/NA	Analysis	6010D		1	605060	LKP	EET SL	03/24/23 18:48
Total Recoverable	Prep	3005A			768552	RR	EET SAV	03/20/23 09:08
Total Recoverable	Analysis	6020B		1	768945	BWR	EET SAV	03/21/23 21:32

Client: South Carolina Public Service Authority Project/Site: 125915/JM02.09.G01.1/36500

Client Sample ID: AF56421

Date Collected: 03/01/23 14:41 Date Received: 03/17/23 10:30 Lab Sample ID: 680-232196-38

Matrix: Water

	Batch	Batch		Dilution	Batch			Prepared
Prep Type	Type	Method	Run	Factor	Number	Analyst	Lab	or Analyzed
Total/NA	Prep	7470A			768590	ВСВ	EET SAV	03/20/23 12:45
Total/NA	Analysis	7470A		1	768864	ВСВ	EET SAV	03/21/23 12:26

Client Sample ID: AF56428 Lab Sample ID: 680-232196-39

Date Collected: 03/01/23 13:37 Matrix: Water

Date Received: 03/17/23 10:30

	Batch	Batch		Dilution	Batch			Prepared
Prep Type	Туре	Method	Run	Factor	Number	Analyst	Lab	or Analyzed
Total Recoverable	Prep	3005A			768859	ВЈВ	EET SAV	03/20/23 09:0
Total Recoverable	Analysis	6010D		1	768929	BJB	EET SAV	03/21/23 20:3
Total/NA	Prep	3010A			604815	LKP	EET SL	03/23/23 14:1
Total/NA	Analysis	6010D		1	605060	LKP	EET SL	03/24/23 18:5
Total Recoverable	Prep	3005A			768540	RR	EET SAV	03/20/23 09:0
Total Recoverable	Analysis	6020B		1	768945	BWR	EET SAV	03/21/23 17:4
Total Recoverable	Prep	3005A			768540	RR	EET SAV	03/20/23 09:0
Total Recoverable	Analysis	6020B		1	769014	BWR	EET SAV	03/22/23 09:1
Total/NA	Prep	7470A			768609	ВСВ	EET SAV	03/20/23 13:4
Total/NA	Analysis	7470A		1	768864	ВСВ	EET SAV	03/21/23 11:3

Client Sample ID: AF56439

Lab Sample ID: 680-232196-40 Date Collected: 03/01/23 10:22 **Matrix: Water**

Date Received: 03/17/23 10:30

	Batch	Batch		Dilution	Batch			Prepared
Prep Type	Type	Method	Run	Factor	Number	Analyst	Lab	or Analyzed
Total Recoverable	Prep	3005A			768858	ВЈВ	EET SAV	03/20/23 09:08
Total Recoverable	Analysis	6010D		1	768929	BJB	EET SAV	03/21/23 22:08
Total/NA	Prep	3010A			604815	LKP	EET SL	03/23/23 14:15
Total/NA	Analysis	6010D		1	605060	LKP	EET SL	03/24/23 19:11
Total Recoverable	Prep	3005A			768552	RR	EET SAV	03/20/23 09:08
Total Recoverable	Analysis	6020B		1	768945	BWR	EET SAV	03/21/23 21:36
Total/NA	Prep	7470A			768609	ВСВ	EET SAV	03/20/23 13:40
Total/NA	Analysis	7470A		1	768864	всв	EET SAV	03/21/23 11:15

Client Sample ID: AF56441 Lab Sample ID: 680-232196-41 Date Collected: 03/01/23 11:45

Date Received: 03/17/23 10:30

	Batch	Batch		Dilution	Batch			Prepared
Prep Type	Туре	Method	Run	Factor	Number	Analyst	Lab	or Analyzed
Total Recoverable	Prep	3005A			768858	ВЈВ	EET SAV	03/20/23 09:08
Total Recoverable	Analysis	6010D		1	768929	BJB	EET SAV	03/21/23 22:11
Total/NA	Prep	3010A			604817	LKP	EET SL	03/23/23 14:17
Total/NA	Analysis	6010D		1	605060	LKP	EET SL	03/24/23 19:24
Total Recoverable	Prep	3005A			768552	RR	EET SAV	03/20/23 09:08
Total Recoverable	Analysis	6020B		1	768945	BWR	EET SAV	03/21/23 21:40

Eurofins Savannah

Page 105 of 121

Client: South Carolina Public Service Authority Project/Site: 125915/JM02.09.G01.1/36500

Client Sample ID: AF56441

Date Collected: 03/01/23 11:45 Date Received: 03/17/23 10:30 Lab Sample ID: 680-232196-41

Matrix: Water

	Batch	Batch		Dilution	Batch			Prepared
Prep Type	Type	Method	Run	Factor	Number	Analyst	Lab	or Analyzed
Total/NA	Prep	7470A			768609	ВСВ	EET SAV	03/20/23 13:40
Total/NA	Analysis	7470A		1	768864	BCB	EET SAV	03/21/23 11:02

Client Sample ID: AF56414 Lab Sample ID: 680-232196-42

Date Collected: 03/02/23 12:46 Matrix: Water

Date Received: 03/17/23 10:30

	Batch	Batch		Dilution	Batch			Prepared
Prep Type	Туре	Method	Run	Factor	Number	Analyst	Lab	or Analyzed
Total Recoverable	Prep	3005A			768608	RR	EET SAV	03/20/23 13:39
Total Recoverable	Analysis	6010D		1	768929	BJB	EET SAV	03/21/23 10:48
Total/NA	Prep	3010A			604817	LKP	EET SL	03/23/23 14:17
Total/NA	Analysis	6010D		1	605060	LKP	EET SL	03/24/23 19:34
Total Recoverable	Prep	3005A			768613	RR	EET SAV	03/20/23 13:39
Total Recoverable	Analysis	6020B		1	768945	BWR	EET SAV	03/21/23 22:04
Total/NA	Prep	7470A			768648	всв	EET SAV	03/20/23 15:26
Total/NA	Analysis	7470A		1	768864	ВСВ	EET SAV	03/21/23 14:17

Client Sample ID: AF56423 Lab Sample ID: 680-232196-43

Date Collected: 03/02/23 10:56 **Matrix: Water**

Date Received: 03/17/23 10:30

	Batch	Batch		Dilution	Batch			Prepared
Prep Type	Type	Method	Run	Factor	Number	Analyst	Lab	or Analyzed
Total Recoverable	Prep	3005A			768608	RR	EET SAV	03/20/23 13:39
Total Recoverable	Analysis	6010D		1	768929	BJB	EET SAV	03/21/23 10:58
Total/NA	Prep	3010A			604817	LKP	EET SL	03/23/23 14:1
Total/NA	Analysis	6010D		1	605060	LKP	EET SL	03/24/23 19:3
Total Recoverable	Prep	3005A			768613	RR	EET SAV	03/20/23 13:3
Total Recoverable	Analysis	6020B		1	768945	BWR	EET SAV	03/21/23 22:1
Total/NA	Prep	7470A			768648	ВСВ	EET SAV	03/20/23 15:2
Total/NA	Analysis	7470A		1	768864	всв	EET SAV	03/21/23 12:0

Client Sample ID: AF56428

Date Collected: 03/02/23 00:00 **Matrix: Water**

Date Received: 03/17/23 10:30

	Batch	Batch		Dilution	Batch			Prepared
Prep Type	Туре	Method	Run	Factor	Number	Analyst	Lab	or Analyzed
Total Recoverable	Prep	3005A			768608	RR	EET SAV	03/20/23 13:39
Total Recoverable	Analysis	6010D		1	768929	BJB	EET SAV	03/21/23 11:01
Total/NA	Prep	3010A			604817	LKP	EET SL	03/23/23 14:17
Total/NA	Analysis	6010D		1	605060	LKP	EET SL	03/24/23 20:1
Total Recoverable	Prep	3005A			768613	RR	EET SAV	03/20/23 13:3
Total Recoverable	Analysis	6020B		1	768945	BWR	EET SAV	03/21/23 22:1
Total/NA	Prep	7470A			768648	ВСВ	EET SAV	03/20/23 15:2
Total/NA	Analysis	7470A		1	768864	всв	EET SAV	03/21/23 14:1

Eurofins Savannah

Lab Sample ID: 680-232196-44

Page 106 of 121

Lab Chronicle

Client: South Carolina Public Service Authority Project/Site: 125915/JM02.09.G01.1/36500

Job ID: 680-232196-1

Laboratory References:

EET SAV = Eurofins Savannah, 5102 LaRoche Avenue, Savannah, GA 31404, TEL (912)354-7858 EET SL = Eurofins St. Louis, 13715 Rider Trail North, Earth City, MO 63045, TEL (314)298-8566

Chain of Custody

Santee Cooper One Riverwood Drive Moneks Corner, SC 29461 Phone (843)761-8000 Ext. 5148 Fax. (843)761-4175 TOTAL **Customer Email/Report Recipient:** Date Results Needed by: Project/Task/Unit #: Rerun request for any flagged QC 125915 / JM02.09.601.1/ 36500 LCWILLIA Yes No _@santeecooper.com

											A	nalysis	Group
Labworks ID # (Internal use only)	Sample Location/ Description	Collection Date	Collection Time	Sample Collector	Total # of containers	Bottle type: (Glass- G/Plastic-P)	Grab (G) or Composite (C)	Matrix(see below)	Preservative (see below)	Comments Method # Reporting limit Misc sample info Any other notes	TOTAL METALS	SEE BE OW	
AF56374	WAP-1	2/14/23	1233	EDM ML	l	P	G	GW	2	SEE SHEET FOR RLS	Х		
31	MBM-I		1351				-		destata	WHERE APPLICABLE			
32	WBW-AI-I		1522	1						HG 7470			
AF 56395	WAP-2	2/15/23	1136							B-6010			
1 76	WAP-3	1	1321	L						ALL OTHERS 6020.			
At56397	WAP-4	2/16/23	1653	ZDM MG						* PLEASE SEND SAMPLES			
1 400	WAP-7		1255	1						TO ST LOUIS FOR B.			
442	WLF A2-6		1407										
443	WLF AZ 6D	-	1412	nagering.					Ţ				

Relinguished by:	Employee#	Date	Time	Received by:	Employee#	Date	Time
GMroun	35594	3/16/23	1300	1990		03/19/2	3 10:37
Relinguished by:	Employee#	Date	Time	Received by:	Employee #	Date	Time
Relinguished by:	Employee#	Date	Time	Received by:	Employee#	Date	Time

Sample Receiving (Internal Use Only) TEMP (°C): Initial:

Correct pH: Yes

Preservative Lot#:

Date/Time/Init for preservative:

	□ META	LS (all)	Nutrients	MISC.	Gypsum	Coal	Flyash	<u>Oil</u>
⊠,Ag	ØCu	X Sb	ПТОС	D BTEX	□ Wallboard	□ Ultimate	[] Ammonia	☐ Trans, Oil Gual.
J≅∖AI	≱Fe	∦Se	□ DOC	☐ Naphthalene	Gypsum(all	□ % Moisture		□ %Moisture
⊠ As	ÞK	□ Sn	☐ TP/TPO4	□ THM/HAA	below)	□ Ash	□ % Carbon	□ Color □ Acidity
ЖB)Ø Li	□ Sr	□ NH3-N	□ VOC □ Oil & Grease	□ AIM □ TOC	□ Sulfur	☐ Mineral	☐ Dielectric Strength
⊠Ba	Ņ∕Mg	□ Ti		☐ E. Coli ☐ Total Coliform	☐ Total metals	☐ BTUs ☐ Volatile Matter	Analysis □ Sieve	□ IFT □ Dissolved Gases
A Be	∭Mn	XTI	□ NO2	□pH	☐ Soluble Metals ☐ Purity (CaSO4)	□CHN	□ % Moisture	□ Used Oil
∑ Ca	M.Mo	υV	□ Br □ NO3	☐ Dissolved As ☐ Dissolved Fe	□ % Moisture □ Sulfites	Other Tests:	NIDDEC	☐ Flashpoint ☐ Metals in oil
ЖĮ Сd	XNa	⊠-Zn	□ SO4	□ Rad 226	□pH	□ HGI	NPDES Oil & Grease	(As,Cd,Cr,Ni,Pl
∏(Co	XNi	Hg		☐ Rad 228 ☐ PCB	☐ Chlorides ☐ Particle Size	☐ Fineness ☐ Particulate Matter	□ As	Hg) □TX
⊠ Cr	МРЬ	☐ CrVI	-		☐ Sulfur	1 4	□ TSS	□ GOFER

Page 108 of 121

18.3/18.2

Matrix codes. GW-groundwater, DW-drinking water, SW-surface water, WW-waste water, BW-boller water, C-coal, G-gypsum, FA-flyash, BA-bottom ash, M-misc (describe in comment section)
Preservative code- 1=<4°C 2=HNO₃ 3=H₂SO₄ 4-HCl 5=Na₂S₂O₃ 6-Other (S 6-Other (Specify)

TOTAL

Chain of Custody

santee cooper

Santee Cooper One Riverwood Drive Moncks Comer, SC 29461 Phone (843)761-8000 Ext., 5148 Fax. (843)761-4175

Customer Email/Report Recipient: Date Results Needed by: Project/Task/Unit #: Rerun request for any flagged QC LCWILLIA 125915 / JM02.09.GØ1.1/ 36500 @santeecooper.com (Yes) No **Analysis Group** Labworks ID# Sample Location/ Comments TOTAL METAS SEE BELOW Bottle type: (Glass-G/Plastic-P) Matrix(see below) Collection Time Collection Date Total # of containers Preservative (see below) (Internal use Description Method # Collecto only) Reporting limit Grab (G) or Composite (C) Misc. sample info Sample (Any other notes 2DM 2 X F 2/27/23 G GW 1247 SEE SHEET FOR RLS AF56402 WAP 9 WHERE APPLICABLE. WAP-10 0957 03 HG-7470 WAP-LOD 1002 04 B-6010 ALL OTHERS 6020. 1544 WLF-A1-2 484 IN PLEASE SEND OUT FOR AF56433 WLF-AI-1 2/28/23 1258 BORCH. 35 WLF-AI-3 1144 36 1019 WLF-AI-4 37 WLF-A1-40 1024 WLF-A1-5 1431 38 Sample Receiving (Internal Use Only) Relinguished by: Employee# Date Time Received by: Employee# Date Time TEMP (°C): Initial: MA プリ チ/コラ 10:50 35594 3/16/23 Sygroan 1300 Correct pH: Yes No Relinquished by: Employee# Date Time Received by: Employee # Date Time Preservative Lot#: Relinquished by: Received by: Date Employee# Date Time Employee # Time Date/Time/Init for preservative: ☐ METALS (all) **Nutrients** MISC. Gypsum Coal Flyash Oil)≰ Cu ÄSb `⊠ Ag □ TOC BTEX □ Wallboard □ Ultimate ☐ Trans, Oil Qual. □ Ammonia Φ(AI ⊠.Fe Z Se □ Naphthalene Gypsum(all □ %Moisture □ DOC ☐ % Moisture □ LOI As □ TĤM/HAA □ Color ΜK □ Sn below) □ TP/TPO4 □ Ash ☐ % Carbon □ Acidity □ VOC □ AIM **AL**ı □ NH3-N ☐ Sulfur ЖВ ☐ Mineral □ Sr ☐ Dielectric Strength ☐ Oil & Grease □ TOC OF □ BTUs Analysis DIFT □ E. Coli M Ba √ Mg □ Ti ☐ Total metals □ Sieve □ C1 ☐ Volatile Matter ☐ Total Coliform ☐ Dissolved Gases ☐ Soluble Metals TI **⊠**Be Mn Mn □ NO2 ☐ Used Oil **CHN** ☐ % Moisture □рН □ Purity (CaSO4) ☐ Dissolved As ☐ % Moisture Other Tests: ☐ Flashpoint)A,Ca)**⊘** Мо $\square V$ ☐ Metals in oil (As,Cd,Cr,Ni,Pb ☐ Dissolved Fe ☐ XRF Scan □ NO3 ☐ Sulfites **NPDES** √D Cd X Na)∜ Zn □ Rad 226 □pH D HGI □ SO4 □ Oil & Grease Hg) ☐ Rad 228 ☐ Chlorides ☐ Fineness **Ni** X Hg χ(C₀ □TX □ As □ TSS □ PCB ☐ Particulate Matter ☐ Particle Size □ GOFER Ø₽b ′□ CrVI □ Sulfur

Santee Cooper One Riverwood Drive Moncks Corner, SC 29461 Phone (843)761-8000 Ext. 5148

													101	K					Fe	x (84	3)761	-4175	
Custo	mer Emai	l/Report Re	cipien	it:	D	ate R	esults Ne	eede	d b	y:			Pr	ojec	t/T	ask/l	Unit #:	Rerun req	uest fo	or aı	าy fla	ggeo	I QC
LCV	VILLIA	@san	teeco	oper.com							12.	5°	115	<u></u>	М	02 (09. GØ1.1/3	65 <u>00</u> (9	es i	No			
																				£	<u> Inalysl</u>	s Grou	пр
	orks ID # nal use	Sample Lo Descriptio		/	Collection Date		Collection Time	Sample Collector		Total # of containers	Bottle type: (Glass-	G/Plastic-P)	Grab (G) or Composite (C)	Matrix(see below)		Preservative (see	Method # Reporting Misc. sam Any other	ple info		TOTAL METALS	SEE BELOW		
AFS	56409	WAP-1	+		3/0	-/23	1214	Z0	7 N	1	P		G	GW	J	2		PPLICABLE		×			
1	10	WAP-I	+D				1219	1		1	1	1	1	1		1	H6-7470 B-6010			1			
	l l	WAP-14	A				1108	П			П						ALL OTHER	25 6020.		T			
	12	WAP-1	lB				1515	П							1		* PLEASE	SEAD OUT					
	IS	WAP-1	<u></u>				1341					1				T	FOR BORD	ν.		T			
	QE,	WAF-2	7		1		1010	Ī		I	1		Ī	Ţ		I				T			
AF 5	6406	WAP-12			3/	9/23-	1029			1				١									
	07	WAP-12	D				1034																
	18	WAP -18	3				1207																
	22	WAP-2	2_			-	1319	1		1			1	Ī		1							
Reli	nguished by:	Employ	ee#	Date	Tim	ie	Receiv				mploy	ee f	# T.	Da	ite			nple Receiving (inte MP (°C):		e On itial			
Spr	rour	3559	4 :	3/16/23	130	r0	M	2,3	A CONTRACTOR OF THE PARTY OF TH				0	3/1	9	123	2/0-20			1441	•	/ 10 Mins.	
Reli	nquished by:	Employ	ee#	Date	Tim	e	Receiv	ed by	12	E	mploy	ee #	•	Da	ite		Time	rrect pH: Yes eservative Lot#:	No				
Reli	nquished by:	Employ	ee#	Date	Tim	e	Receiv	red by	•	E	mploy	ee #	+	Da	ite		Time						
									····						concerné		Dal	te/Time/Init for pre	servati	ve:			
		ETALS (a		Nuti	rient	S	MIS	SC.	THE REAL PROPERTY.		G	iyı	osun	n			Coal	Flyash			<u>01</u>		
Ag A Al	<u>jé,C</u> Ø,Fe			סד נו	С		DBTEX			[Wall	boı	ard			٥	Ultimate	□ Ammonia			ns. Ol	Qua	
X As				□ DO □ TP/			☐ Naphtha☐ THM/H					rps lon	um(<i>a)</i> >)	II .			□ % Moisture	D LOI			6Moist olor	ture	
X B	QL:	The second secon	-	□NH			□ VOC □ Oil & G				D.	AIN	vi.				□ Ash □ Sulfur	☐ % Carbon ☐ Mineral		A	cidity electric	Strans	nh
)() Ba	Ŋ. ŊM			□ F			□ E. Coli					ΓΟ¢ Fota	C il meta	ls			□ BTUs	Analysis	SERVICE EDICORDO	⊜ ¥	7		
∏ Be	-	and the second second		□ CI □ NO	2		☐ Total Co ☐ pH	lifom	n.		D 8	lolu	ible Me ty (Ca5	tals			☐ Volatile Matter ☐ CHN	☐ Sieve☐ % Moisture			issolve :d Oil		es
X Ca		The state of the s		() Br			☐ Dissolve						ry (Car foisture				ther Tests:			(F)	lashpo	int	
Q Cd	17			□ NO			☐ Dissolve ☐ Rad 226				□ S □ p		ites				XRF Scan HGl	NPDES			letals i As,Cd,		Pb
15				□ SO4	,		□ Rad 228				(Chlo	orides			ΩI	Pineness	□ Oil & Grease		Ħ	lg)		
紋 Co 幻 Cr	LA NI		∑Hg □ CrVI				□ PCB				□ F Sul6		icle Siz	æ			Particulate Matter	□ As □ TSS		G0	X FER		

Chain of Custody

Santee Cooper One Riverwood Drive Moncks Comer, SC 29461 Phone (843)761-8000 Ext. 5148 Fax (843)761-4175

santee cooper

TOTAL

Customer Email/Report Recipient: Project/Task/Unit #: Date Results Needed by: Rerun request for any flagged QC 125915 / JMD2.09.601.1/ 36500 LCWILLIA @santeecooper.com (Yes) No Analysis Group Labworks ID# Sample Location/ Comments MEDAL **Collection Time** Matrix(see below (Internal use Description Collection Date Total # of container (see Method # Sample Collector only) Reporting limit Grab (G) or Composite (C) Bottle type: (G/Plastic-P) Misc. sample info SEE Any other notes SEE SHEET FOR MLS ZOM 3/7/23 P X AF56419 WAP-19 1451 6 GW WHERE APPLICABLE WAP-25 1249 46-7470 B-6010 1022 WAP-26 26 WAP-26D ALL OTHERS 6020. 27 1027 3/8/23 AF 56408 WAP-13 1339 * PLEASE SEARD OUT 15 WAP-16 1213 FOR BORON. 16 WAP-17 1009 17 WAP-17D 1014 29 WAP-28 1212 Sample Receiving (Internal Use Only) Relinguished by: Employee# Date Time Received by: Employee# Date Time TEMP (°C): Initial: 1000 OS/AKES (O Smoun 35594 3/16/23 1300 Correct pH: Yes Relinquished by: Employee# Received by: Employee # Date Time Date Time Preservative Lot#: Relinquished by: Employee# Date Time Received by: Employee # Date Time Date/Time/Init for preservative: ☐ METALS (all) **Nutrients** MISC. **Gypsum** Coal Oil Flyash M Ag M Al XÍ SÞ Ø Cu n toc □ Wallboard Trans, Oll Qual. O BTEX □ Ultimate ☐ Ammonia ₽ Fe ⊠ Se DOC ☐ Naphthalene Gypsum(all %Moisture □ % Moisture □ LOI □ THM/HAA Ď(As ДK □ Sn below) Color □ TP/TPO4 □ Ash □ % Carbon □ AIM □ TOC □ VOC ЮВ ⊠ Li □ NH3-N ☐ Sulfur □ Sr ☐ Mineral ☐ Oil & Grease) Dielectric Strength HF □ BTUs Analysis □ E. Coli JET ⊠ Ba □ Ti ☐ Total metals Ø Mg □ C1 ☐ Total Coliform ☐ Volatile Matter □ Sieve Dissolved Gases ☐ Soluble Metals Д Ве ⊠Mn M TI □ NO2 □ CHN ☐ Purity (CaSO4) ☐ % Moisture Used Oil □pH □ Br □ Dissolved As □ % Moisture Other Tests: Flashpoint X Ca **Мо** $\Box V$ Metals in oil (As,Cd,Cr,Ni,Pb ☐ Dissolved Fe ☐ XRF Scan □ NO3 □ Sulfites NPDES ⊠ Cd M Na y Zn ☐ Rad 226 □ HG1 □ SO4 □pH □ Oil & Grease □ Rad 228 ☐ Chlorides ☐ Fineness 冶 Co ⊠ Ni Д Hg □ As □ PCB ☐ Particulate Matter ☐ Particle Size ☐ TSS GOFER ⊠ Cr ⊠Pb □ CrVI □ Sulfur

Chain of Custody

Santee cooper

Sanice Cooper One Riverwood Drive Moncks Corner, SC 29461 Phone (843)761-8000 Ext. 5148 Fax (843)761-4175 TOTAL

Customer Email/Report Recipient: CWILLIA Osanteercoper com			ent:	D	ate R	esults Ne	eded b	y:		Pı	oject/	Task/	Unit #:	Rer	un request	for a	ny fla	gged QC	
LC	WILLIA		@santeec	ooper.com		/				1259	715	/ JM	102.0	9.601.1	1 36500	(es)	No		
																	E	\nalys	is Group
	works ID # ernal use i)		ple Locatio cription	n/	Collection Date		Collection Time	Sample Collector	Total # of containers	Bottle type: (Glass-G/Plastic-P)	Grab (G) or Composite (C)	Matrix(see below)	Preservative (see	• Met • Rep • Mis • Any	Comments hod # orting lumit c. sample mfo other notes		TOTAL METAS	SEE BELOW	
Ą₹-	56421	WA	P-21		3/	1/23	ldrf)	ZDM ML	ı	P	હ	G-W	2	SEE	SHEET FOR	KUS BUE.	X		
,	24	WA	₩-24			1	1337			1							1		
	39	WL	F-A2-1				1022							HG - 74					
	41	WLE	=- A2-2	•			1145		1		1			ALLOT	HERS 6020)			
AF	56414	WA	P-15		3/2	/23	1246	1			G	Gw	1						
	23	WA	A-23				0952							* PLEA	SE SEAD !	DUT			
_	28	WAF-27			1	_	1056			Ī				FOR BO	次外 1.				
Ri	elinguished by:		Employee#	Date	Tin	ie	Receiv	ed by:	E	mployee	#	Date		Time	Sample Receiving TEMP (°C):	ng (Internal L	lse Or Initia		
SH	Gioun	180	55574	3/16/23	130	5		ez-	>		8	3/1	7	23 10	Correct pH:		LILL LIA		
Re	elinquished by:		Employee#	Date	Tin	e	Receiv	ed by:	E	mployee	#	Date		Time	Correct pH:	Yes No			
															Preservative L	ot#;			
Re	elinguished by:		Employee#	Date	Tim	e	Receiv	ed by:	EI	mployee	#	Date		Time					
						anna ari ay badii ana		Carrier and a section of							Date/Time/Init	for preserva	tive:		
	□ M □	ETAI	LS (all)	Nuti	doni		NATO	<u> </u>		Gu	psun	•		L	-			A:	
ØΑ)⊠′Sb	□ TO	PROGRAMMENT OF THE PROGRAMMENT O	55000 SSSS	MIS	16.	l n	Wallbo		<u></u>	1 -	Coal Ultimate		rash	Tro	<u>0i</u> :: 01	l Qual.
XΑ)≰.Se	DO	C		□ Naphthal			Gyp	sum(a	11		□% Moist			, 9	6Mois	
ØΑ			□ Sn	□ TP/			□ THM/H/ □ VOC	LA		belo □ Al				□ Ash	□%C	Secretary and the second secretary second		olor cidity	
ØВ	具L	i	□ Sr	□ NH □ F	3-N		□ Oil & Gr	ease		UTC	C			☐ Sulfur ☐ BTUs	□Min		g p	ielectric	Strength
ØВ	a ØM	lg	□ Ti	0.01			☐ E. Coli ☐ Total Co	liform			tal meta			□ Volatile		inalysis e	11 II 14 D		ed Gases
ŅΒ		n	%;T1	□NO	2		□ pH	HULH			luble M rity (Ca			□ CHN		oisture	Us	ed Oi	ı
Ø C			υ	□Br			☐ Dissolve			□%1	Moistur			ther Tests:				lashpo	
ØС		Section of the sectio	/Sl.Zn	□ NO. □ SO4			☐ Dissolve ☐ Rad 226			□ Sul □ pH				XRF Scan HGI		DES		letals As,Cd	m oil Cr,Ni,Pb
χC			Hg	- 30	7		☐ Rad 228			□ Ch	lorides			Fineness		Grease	i	lg)	
							□ PCB			□ Par Sulfur	ticle Si			Particulate Ma	itter As		G0		
VI C	Ø Cr							Jounds											

3

4

5

9

4 4

40

Page 113 of 121

Table of Reporting Limits for Groundwater

Unit

mg/L

ug/L

ug/L

ug/L ug/L

ug/L

ug/L

ug/L

ug/L

ug/L

ug/L

mg/L

ug/L

ug/L

ug/L

ug/L

ug/L

ug/L

ug/L

mg/L

ug/L

mg/L

ug/L

ug/L

Metals Only

GWPS/

MCL/ RSL

0.05 to 0.2

6

10

2000

4

5

100

6

1

300

15

40

2

100

50

2

5000

Reporting

Limits best

case

5

5

5

0.5

10 to 15

0.1

5

0.5

5

0.2

5

5

1

0.5

Samples--

Analyte

Aluminum

Antimony

Arsenic Dissolved

Arsenic

Barium

Boron

Beryllium

Cadmium

Chromium

Calcium

Cobalt

Copper

Lithium

Mercury

Nickel

Magnesium

Molybdenum

Potassium

Selenium

Sodium

Thallium

Zinc

Iron

Lead

💸 eurofins | Environment Testing

Chain of Custody Record

Eurofins Savannah 5102 LaRoche Avenue

Savannah, GA 31404 Dhone: 042 364 7868 Env. 042 962 0466	Cha	in of Cu	Chain of Custody Record	Score	_			eurorins 💝	Environment Testin
11016: 912-004-1000 1 dx. 912-002-0100	Sampler		Lab PM			Carrier Tracking No(s)	na No(s):	COC No.	
Client Information (Sub Contract Lab)			Lanie	Lanier, Jerry A				680-731060.1	
Culent Confact: Shipping/Receiving	Phone		E-Mail. Jerry.	Lanier@e	E-Mail: Jerry Lanier@et.eurofinsus.com	State of Origin: South Carolina	ı: ılina	Page: Page 1 of 5	
Company: TestAmerica Laboratories, Inc.				ACCreditation	Accreditations Required (See note): NELAP - Florida; State - South Carolina;	ina; State Program	gram	Job #: 680-232196-1	
Address. 13715 Rider Trail North,	Due Date Requested: 3/27/2023				Analysis Reguested	equested		၂ၓ	98:
City Earth City State, Zip	TAT Requested (days):							B - HCL B - NaOH C - Zn Acetate	m - rexans N - None O - AsNaO2 P - Na2O4S
- 1	# Od:								Q - Na2SO3 R - Na2S2O3 S - H2SO4
314-298-8566(Tel) 314-298-8757(Fax)	#OM							ъ	T - TSP Dodecahydrate U - Acetone
Project Name	77			OM.					V - MCAA W - pH 4-5
125915/JM02.09.G01.1/36500	68008190			JG 98,			orús).	_	Y - Trizma Z - other (specify)
Site:	SSOW#			N) as			100 10	Other:	
Sample Identification - Client ID /I ab ID)	Sample Date Tir	Sample Type Sample (C=comp,	Matrix (Wwwater, Sweetid, Owwatefoll,	S benediti blei MISM amoine S_Aoros/doro			o redmuM isto		
			tion Code:	4×					Special Instructions/Note:
AF56394 (680-232196-1)	2/14/23		Water	×					
AF56331 (680-232196-2)	2/14/23 Fac	13:51 Factorn	Water	×					
AF56332 (680-232196-3)	2/14/23 15:	15:22 Fastern	Water	×					
AF56395 (680-232196-4)	2/15/23 T1:	11:36 Eastern	Water	×					
AF56396 (680-232196-5)	2/15/23 13:	13:21 Fastern	Water	×					
AF56397 (680-232196-6)	2/16/23 10:	10:53 Fastern	Water	×					
AF56400 (680-232196-7)	2/16/23 Fas	12:55 Eastern	Water	×					
AF56442 (680-232196-8)	2/16/23 14:	14:07 Eastern	Water	×					
AF56443 (680-232196-9)	2/16/23 14:12 Eastern	14.12 Eastern	Water	×					
Note: Since laboratory accreditations are subject to change, Eurofins Environment Testing Southeast, LLC places the ownership of method, analyte & accreditation compliance upon our subcontract laboratories. This sample shipment is forwarded under chain-of-custody. If the laborator does not currently maintain accreditation in the State of Origin listed above for analysis/rests/mainx being analyzed, the samples must be shipped back to the Euroffins Environment Testing Southeast, LLC attention immediately. If all requested accreditations are current to date, return the signed Chain of Custody attesting to said compliance to Euroffins Environment Testing Southeast, LLC.	nment Testing Southeast, LLC plac or analysis/tests/matrix being analy tention immediately. If all requests	ces the ownership or yzed, the samples or accreditations and	of method, analyte 6 must be shipped bar e current to date, re	accreditation to the Eur	on compliance upon our subcontri rofins Environment Testing South.	ict laboratories. Ti sast, LLC laborator said compliance to	his sample shipment is ry or other instructions v o Eurofins Environment	forwarded under chain- vill be provided. Any ch Testing Southeast, LLC	of-custody. If the laborato
Possible Hazard Identification				Sampl	Sample Disposal (A fee may be assessed if samples are retained longer than 1 month)	assessed if s	samples are retain	ed longer than 1	month)
Unconfirmed	:				Return To Client	Disposal By Lab	ab Arc	Archive For	Months
Deliverable Requested: I, II, IV, Other (specify)	Primary Deliverable Rank:	ank: 1		Specia	Special Instructions/QC Requirements	ents:			
Empty Kit Relinquished by:	Date			Time:		Method	Method of Shipment:		
Relinquished by:	Date/Fime:		Company	Rec	Raceived by		Date/Time		Company
Relinquished by. FED 64	Date/Time:		Company	Seg.	Received by	7	8	no sale	Company
Refinquished by:	Date/Time:		Company	Rec	Received by:				Company
Custody Seals Intact: Custody Seal No.: △ Yes △ No				Coo	Cooler Temperature(s) °C and Other Remarks	Remarks:			

seurofins Environment Testing

Chain of Custody Record

Phone: 912-354-7858 Fax: 912-352-0165

Eurofins Savannah

5102 LaRoche Avenue Savannah, GA 31404

S - H2SO4 T - TSP Dodecahydrate Special Instructions/Note: Z - other (specify) P - Na204S Q - Na2SO3 R - Na2S2O3 N - None O - AsNaO2 W - pH 4-5 Y - Trizma U - Acetone V - MCAA Preservation Codes: A - HCL
B - NaOH
C - Zn Acetate
D - Nitric Acid
F - MahSO4
F - MeOH
G - Amchlor
H - Ascorbic Acid COC No. 680-731060.2 680-232196-1 Page 2 of 5 J - Ice J - DI Water K · EDTA L · EDA Total Number of containers -Carrier Tracking No(s) State of Origin: South Carolina Accreditations Required (See note): NELAP - Florida; State - South Carolina; State Program **Analysis Requested** Jerry.Lanier@et.eurofinsus.com Lab P.M: Lanier, Jerry A × × × × 6010D/3010A_2% Lithium by ICP \times × × × × Perform MS/MSD (Yes or No) sted Sample (Yes or No) E-Mail: BT=Tissue, A=Air) Sweelid, Owwesta/oll, Preservation Code: Water Water Water Water Water Water Matrix Water Water (W=water, Water (C=comp, G=grab) Sample Type Eastern 09:57 Eastern 15:44 Eastern 10:19 Eastern 10:24 Eastern 10:02 Eastern 12:58 Eastern 11:44 Eastern 14.31 Eastern TAT Requested (days): Due Date Requested: 3/27/2023 Sample Date 2/28/23 2/28/23 2/28/23 2/27/23 2/27/23 2/27/23 2/28/23 2/27/23 2/28/23 58008190 Phone #OM Client Information (Sub Contract Lab) Sample Identification - Client ID (Lab ID) 314-298-8757(Fax) estAmerica Laboratories, Inc 125915/JM02.09.G01.1/36500 NF56402 (680-232196-10) AF56403 (680-232196-11) AF56404 (680-232196-12) AF56434 (680-232196-13) AF56433 (680-232196-14) AF56435 (680-232196-15) AF56436 (680-232196-16) AF56437 (680-232196-17) AF56438 (680-232196-18) 13715 Rider Trail North 314-298-8566(Tel) Shipping/Receiving State, Zip: MO, 63045 Earth City

Note: Since laboratory acceditations are subject to change, Eurofins Environment Testing Southeast, LLC places the ownership of method, analyte & accreditation compliance upon our subcontract laboratories. This sample shipment is forwarded under chain-of-custody. If the laboratory of currently maintain accreditation in the State of Origin listed above for analysis/lests/matrix being analyzed, the samples must be shipped back to the Eurofins Environment Testing Southeast, LLC attention immedately. If all requested accreditations are current to date, return the signed Chain of Custody attesting to said compliance to Eurofins Environment Testing Southeast, LLC. Sample Disposal (A fee may be assessed if samples are retained longer than 1 month) Disposal By Lab Special Instructions/QC Requirements Return To Client Primary Deliverable Rank: Date Deliverable Requested: I, II, III, IV, Other (specify) Possible Hazard Identification Empty Kit Relinquished by Unconfirmed

Ver: 06/08/2021 E 1457 ompany 0160 3/22/23 Date/Time: Date/Time Date/Time Method of Shipment 102 Cooler Temperature(s) °C and Other Remarks sharpey -Received by: eceived by me ompany Date/Time Date/Time FEDEX Custody Seal No. Custody Seals Intact: A Yes A No elinquished by: elinquished by

Ver: 06/08/2021

Environment Testing 💸 eurofins

Chain of Custody Record

Phone: 912-354-7858 Fax: 912-352-0165

Eurofins Savannah

5102 LaRoche Avenue Savannah, GA 31404

T - TSP Dodecahydrate Special Instructions/Note: Z - other (specify) N - None O - AsNaO2 P - Na2O4S Q - Na2SO3 R - Na2S203 U - Acetone V - MCAA W - pH 4-5 S-H2SO4 Preservation Codes: G - Amchlor H - Ascorbic Acid 680-731060.3 680-232196-1 Page: Page 3 of 5 A - HCL
B - NaOH
C - Zn Acetate
D - Nitric Acid
E - NaHSO4
F - MeOH I - Ice J - DI Water K - EDTA L - EDA Total Number of containers Carrier Tracking No(s) State of Origin: South Carolina Accreditations Required (See note):
NELAP - Florida; State - South Carolina; State Program **Analysis Requested** Jerry.Lanier@et.eurofinsus.com Lab PM: Lanier, Jerry A 6010D/3010A_2% Lithium by ICP \times \times × \times × \times × × × (off to say) CSM/SM mioha9 Field Filtered Sample (Yes or No) E-Mail: BT-Tissue, A-Air (Wewater, Seolid, Oswaste/oil, Preservation Code: Matrix Water Water Water Water Water Water Water Water Water Type (C=comp, Sample G=grab) Eastern 12:19 Eastern 13:41 Eastern 10:10 Eastern 12:07 Eastern 11:08 Eastern 15:15 Eastern 10:29 Eastern 10:34 Eastern Sample TAT Requested (days): Due Date Requested: 3/27/2023 Sample Date 3/6/23 3/6/23 3/6/23 3/6/23 3/6/23 3/9/23 3/9/23 Project # 68008190 3/6/23 3/9/23 Phone # ON Client Information (Sub Contract Lab) Sample Identification - Client ID (Lab ID) 314-298-8566(Tel) 314-298-8757(Fax) FestAmerica Laboratories, Inc. Project Name: 125915/JM02.09.G01.1/36500 AF56411 (680-232196-21) AF56412 (680-232196-22) AF56413 (680-232196-23) AF56430 (680-232196-24) AF56407 (680-232196-26) AF56409 (680-232196-19) AF56410 (680-232196-20) AF56406 (680-232196-25) AF56418 (680-232196-27) 13715 Rider Trail North Shipping/Receiving MO, 63045 Earth City

Note: Since laboratory accreditations are subject to change, Eurofins Environment Testing Southeast, LLC places the ownership of method, analyte & accreditation compliance upon our subcontract laboratories. This sample shipment is forwarded under chain-of-custody. If the laboratory of currently maintain accreditation in the State of Origin isted above for analysis/lests/matrix being analyzed, the samples must be shipped back to the Eurofins Environment Testing Southeast, LLC alterition immediately. If all requested accreditations are current to date, return the signed Chain of Custody attesting to said compliance to Eurofins Environment Testing Southeast, LLC. Possible Hazard Identification

	Unconfirmed			Campo Disposar (A received to assessed it samples are retained longer than 1 month)	sacased II samples a	eramed longer man 1	nontn)
	Deliverable Requested: I, II, III, IV, Other (specify)	Primary Deliverable Rank: 1	tank: 1	Requ	osal By Lab	Archive For	Months
	Empty Kit Relinquished by:	Date		Time:	Method of Shipment:		
	Relinquished by:	Date/Time:	Company	Received by:	Date/Time:		Company
2	Relinquished by	Date/Time	Company	Received by:	Date/Time		Сотрану
/28	Relinquished by:	Date/Time	Company	Received by:	Data/Hme:	alto calaste	ETASTC Company
/2N23	Custody Seals Infact: Custody Seal No.:			Cooler Temperature(s) °C and Other Remarks:	marks:		

Ver: 06/08/2021

Environment Testing

💸 eurofins

Chain of Custody Record

Phone: 912-354-7858 Fax: 912-352-0165

Eurofins Savannah

5102 LaRoche Avenue Savannah, GA 31404

7 - TSP Dodecahydrate Special Instructions/Note: other (specify) N - None O - AsNaO2 P - Na2O4S Q - Na2SO3 R - Na2S2O3 S - H2SO4 U - Acetone V - MCAA W - PH 4-5 Preservation Codes: A - HCL
B - NaOH
C - Zn Acetate
C - Nitric Acid
E - Nitric Acid
F - MeOH
G - Amchlor
H - Ascorbic Acid COC No: 680-731060.4 680-232196-1 Page: Page 4 of 5 I - Ice J - DI Water K - EDTA L - EDA Frenishnos to redmuM IstoT. Carrier Tracking No(s) State of Origin: South Carolina Accreditations Required (See note): NELAP - Florida; State - South Carolina; State Program **Analysis Requested** Jerry.Lanier@et.eurofinsus.com Lab PM: Lanier, Jerry A 6010D/3010A_2% Lithium by ICP × × × × × \times × × × (off to set) (NSMSM mrothes (oN 10 29Y) sigmas benedi (W=water, S=solid, O=waste/oll, Preservation Code: Matrix Water Water Water Water Water Water Water Water Water (C=comp, G=grab) Sample Type Eastern 14:51 Eastern 12:49 Eastern 10:22 Eastern 10:27 Eastern 10:09 Eastern 10:14 Eastern 13:38 Eastern 15:13 Eastern Time TAT Requested (days): Due Date Requested: 3/27/2023 Sample Date 3/9/23 3/8/23 Project #: 68008190 3/7/23 3/7/23 3/7/23 3/7/23 3/8/23 3/8/23 3/8/23 #MOSS Phone MO# Client Information (Sub Contract Lab) Sample Identification - Client ID (Lab ID) 314-298-8566(Tel) 314-298-8757(Fax) Project Name: 125915/JM02.09.G01.1/36500 TestAmerica Laboratories, Inc AF56426 (680-232196-31) AF56422 (680-232196-28) AF56419 (680-232196-29) AF56425 (680-232196-30) AF56427 (680-232196-32) AF56408 (680-232196-33) AF56416 (680-232196-35) AF56417 (680-232196-36) AF56415 (680-232196-34) 13715 Rider Trail North Shipping/Receiving State, Zip. MO, 63045 Earth City

Note. Since laboratory accreditations are subject to change, Eurofins Environment Testing Southeast, LLC places the ownership of method, analyte & accreditation our subcontract laboratory or other instructions will be provided. Any changes to accreditation does not currently maintain accreditation in the State of Origin listed above for analysis/tests/matrix being analyzed, the samples must be shipped back to the Eurofins Environment Testing Southeast, LLC attention immediately. If all requested accreditations are current to date, return the signed Chain of Custody attesting to said compliance to Eurofins Environment Testing Southeast, LLC. Sample Disposal (A fee may be assessed if samples are retained longer than 1 m Possible Hazard Identification

					campic proposal (A Ice may be assess	described a special of the manufacture of the samples are relatined longer than 1 months	month	_
	Unconfirmed				Return To Client Dispos	Disposal By Lab	Months	_
	Deliverable Requested: I, II, III, IV, Other (specify)	Primary Deliverable Rank: 1	able Rank: 1		Redui		Simolar	
	Empty Kit Relinquished by:		Date	Time:		Method of Shipment:		_
	Relinquished by:	Date/Time:		Company	Received by:	Date/Time:	Company	
3	Relinquished by	Date/Time.		Company	Received by:	Date/Time 3/22/23 09 10 Company	Company	
1221	Relinquished by:	Date/Time:		Company	Received by:	Date/Time:	Company	
2023	Custody Seals Intact: Custody Seal No.				Cooler Temperature(s) °C and Other Remarks:			

Ver: 06/08/2021

💸 eurofins

Chain of Custody Record

Phone: 912-354-7858 Fax: 912-352-0165

Eurofins Savannah

5102 LaRoche Avenue Savannah, GA 31404

T - TSP Dodecahydrate Special Instructions/Note: Z - other (specify) N - None O - AsNaO2 P - Na2O4S Q - Na2SO3 R - Na2S2O3 S - H2SO4 U - Acetone V - MCAA W - pH 4-5 Preservation Codes: G - Amchlor H - Ascorbic Acid COC No: 680-731060.5 680-232196-1 A - HCL
B - NaOH
C - Zn Acetate
D - Nitric Acid
E - NaHSO4
F - MeOH Page: Page 5 of 5 I - Ice J - Di Water K - EDTA 27 L-EDA Total Number of containers Carrier Tracking No(s) State of Origin: South Carolina Accreditations Required (See note):
NELAP - Florida; State - South Carolina; State Program **Analysis Requested** Jerry.Lanier@et.eurofinsus.com 6010D/3010A_2% Lithium by ICP × × × \times × \times × × Lanier, Jerry A Perform MS/MSD (Yes or No) Field Filtered Sample (Xes or No) (Wwwster, Sesolid, Owwaste/oil, Preservation Code: Matrix Water Water Water Water Water Water Water Water (C=comp, G=grab) Sample Type Eastern 14:41 Eastern 13:37 Eastern 10:22 Eastern 11:45 Eastern 12:46 Eastern Eastern 10:56 Eastern (AT Requested (days) Due Date Requested: 3/27/2023 Sample Date 3/8/23 3/2/23 Project #: 68008190 3/1/23 3/1/23 3/1/23 3/1/23 3/2/23 3/2/23 # OA Client Information (Sub Contract Lab) Sample Identification - Client ID (Lab ID) 314-298-8566(Tel) 314-298-8757(Fax) TestAmerica Laboratories, Inc. 125915/JM02.09.G01.1/36500 AF56439 (680-232196-40) AF56441 (680-232196-41) AF56428 (680-232196-44) AF56421 (680-232196-38) AF56428 (680-232196-39) AF56423 (680-232196-43) AF56429 (680-232196-37) AF56414 (680-232196-42) 13715 Rider Trail North Shipping/Receiving State, Zip. MO, 63045 Project Name Earth City

Note: Since laboratory accreditations are subject to change, Eurofins Environment Testing Southeast, LLC places the ownership of method, analytie & accreditation our subcontract laboratory or other instructions will be provided. Any changes to accreditation of the Eurofins Environment Testing Southeast, LLC laboratory or other instructions will be provided. Any changes to accreditation sterus should be brought to Eurofins Environment Testing Southeast, LLC. Months Sample Disposal (A fee may be assessed if samples are retained longer than 1 month) Archive For Disposal By Lab Special Instructions/QC Requirements Return To Client Primary Deliverable Rank. Deliverable Requested: I, II, III, IV, Other (specify) Possible Hazard Identification Unconfirmed

67ASTL Company Date/Time 3/22/23 09/10 Date/Time Method of Shipment: 200 Cooler Temperature(s) °C and Other Remarks Shandary Received by eceived by eceived by me Company Date/Time Date/Time Date/Time F600 Custody Seal No. Empty Kit Relinquished by: Custody Seals Intact: A Yes A No elinquished by elinquished by inquished by

Login Sample Receipt Checklist

Client: South Carolina Public Service Authority

Job Number: 680-232196-1

Login Number: 232196 List Source: Eurofins Savannah

List Number: 1

Creator: Padayao, Abigail

Creator: Padayao, Abigaii		
Question	Answer	Comment
Radioactivity wasn't checked or is = background as measured by a survey meter.</td <td>N/A</td> <td></td>	N/A	
The cooler's custody seal, if present, is intact.	True	
Sample custody seals, if present, are intact.	True	
The cooler or samples do not appear to have been compromised or tampered with.	True	
Samples were received on ice.	True	
Cooler Temperature is acceptable.	True	
Cooler Temperature is recorded.	True	
COC is present.	True	
COC is filled out in ink and legible.	True	
COC is filled out with all pertinent information.	True	
Is the Field Sampler's name present on COC?	True	
There are no discrepancies between the containers received and the COC.	True	
Samples are received within Holding Time (excluding tests with immediate HTs)	True	
Sample containers have legible labels.	True	
Containers are not broken or leaking.	True	
Sample collection date/times are provided.	True	
Appropriate sample containers are used.	True	
Sample bottles are completely filled.	True	
Sample Preservation Verified.	True	
There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs	True	
Containers requiring zero headspace have no headspace or bubble is <6mm (1/4").	True	
Multiphasic samples are not present.	True	
Samples do not require splitting or compositing.	True	
Residual Chlorine Checked.	N/A	

<u>5</u>

4

6

8

10

11

13

Login Sample Receipt Checklist

Client: South Carolina Public Service Authority

Job Number: 680-232196-1

List Source: Eurofins St. Louis
List Number: 2
List Creation: 03/22/23 01:44 PM

Creator: Sharkey-Gonzalez, Briana L

Question	Answer	Comment
Radioactivity wasn't checked or is = background as measured by a survey meter.</td <td>True</td> <td></td>	True	
The cooler's custody seal, if present, is intact.	True	
Sample custody seals, if present, are intact.	True	
The cooler or samples do not appear to have been compromised or tampered with.	True	
Samples were received on ice.	N/A	
Cooler Temperature is acceptable.	True	
Cooler Temperature is recorded.	True	
COC is present.	True	
COC is filled out in ink and legible.	True	
COC is filled out with all pertinent information.	True	
Is the Field Sampler's name present on COC?	True	
There are no discrepancies between the containers received and the COC.	True	
Samples are received within Holding Time (excluding tests with immediate HTs)	True	
Sample containers have legible labels.	True	
Containers are not broken or leaking.	True	
Sample collection date/times are provided.	True	
Appropriate sample containers are used.	True	
Sample bottles are completely filled.	True	
Sample Preservation Verified.	True	
There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs	True	
Containers requiring zero headspace have no headspace or bubble is <6mm (1/4").	True	
Multiphasic samples are not present.	True	
Samples do not require splitting or compositing.	True	
Residual Chlorine Checked.	N/A	

3

4

5

7

9

11

46

Accreditation/Certification Summary

Client: South Carolina Public Service Authority Project/Site: 125915/JM02.09.G01.1/36500

Job ID: 680-232196-1

Laboratory: Eurofins Savannah

The accreditations/certifications listed below are applicable to this report.

Α	uthority	Program	Identification Number	Expiration Date
S	outh Carolina	State	98001	06-30-23

Laboratory: Eurofins St. Louis

All accreditations/certifications held by this laboratory are listed. Not all accreditations/certifications are applicable to this report.

Authority	Program	Identification Number	Expiration Date
Alaska (UST)	State	20-001	05-06-25
ANAB	Dept. of Defense ELAP	L2305	04-06-25
ANAB	Dept. of Energy	L2305.01	04-06-25
ANAB	ISO/IEC 17025	L2305	04-06-25
Arizona	State	AZ0813	12-08-23
California	Los Angeles County Sanitation Districts	10259	06-30-22 *
California	State	2886	06-30-23
Connecticut	State	PH-0241	03-31-23
Florida	NELAP	E87689	06-30-23
HI - RadChem Recognition	State	n/a	06-30-23
Illinois	NELAP	200023	11-30-23
lowa	State	373	12-01-24
Kansas	NELAP	E-10236	10-31-23
Kentucky (DW)	State	KY90125	12-31-23
Kentucky (WW)	State	KY90125 (Permit KY0004049)	12-31-23
Louisiana (All)	NELAP	04080	06-30-23
Louisiana (DW)	State	LA011	12-31-23
Maryland	State	310	09-30-23
MI - RadChem Recognition	State	9005	06-30-23
Missouri	State	780	06-30-25
Nevada	State	MO000542020-1	07-31-23
New Jersey	NELAP	MO002	06-30-23
New York	NELAP	11616	04-01-23
North Carolina (DW)	State	29700	07-31-23
North Dakota	State	R-207	06-30-23
Oklahoma	NELAP	9997	08-31-23
Oregon	NELAP	4157	09-01-23
Pennsylvania	NELAP	68-00540	02-28-24
South Carolina	State	85002001	06-30-23
Texas	NELAP	T104704193	07-31-23
US Fish & Wildlife	US Federal Programs	058448	07-31-23
USDA	US Federal Programs	P330-17-00028	06-11-23
Utah	NELAP	MO000542021-14	07-31-23
Virginia	NELAP	10310	06-14-24
Washington	State	C592	08-30-23
West Virginia DEP	State	381	10-31-23

Q

9

11

12

 $^{^{\}star} \ \text{Accreditation/Certification renewal pending - accreditation/certification considered valid}.$

Eurofins Savannah

10

12

13

ANALYTICAL REPORT

PREPARED FOR

Attn: Linda Williams South Carolina Public Service Authority Santee Cooper PO BOX 2946101

Moncks Corner, South Carolina 29461-2901

Generated 4/24/2023 3:13:36 PM

JOB DESCRIPTION

125915/JM02.09.G01.1/36500

JOB NUMBER

680-233704-2

Eurofins Savannah 5102 LaRoche Avenue Savannah GA 31404

Eurofins Savannah

Job Notes

This report may not be reproduced except in full, and with written approval from the laboratory. The results relate only to the samples tested. For questions please contact the Project Manager at the e-mail address or telephone number listed on this page.

The test results in this report relate only to the samples as received by the laboratory and will meet all requirements of the methodology, with any exceptions noted. This report shall not be reproduced except in full, without the express written approval of the laboratory. All questions should be directed to the Eurofins Environment Testing Southeast, LLC Project Manager.

Authorization

Generated 4/24/2023 3:13:36 PM

Authorized for release by Jerry Lanier, Project Manager I <u>Jerry.Lanier@et.eurofinsus.com</u> (912)250-0281 Client: South Carolina Public Service Authority Project/Site: 125915/JM02.09.G01.1/36500

Laboratory Job ID: 680-233704-2

Table of Contents

Cover Page	1
Table of Contents	3
Case Narrative	4
Sample Summary	5
Method Summary	6
Definitions	7
Detection Summary	8
Client Sample Results	9
QC Sample Results	13
QC Association	14
Chronicle	15
Chain of Custody	16
Receipt Checklists	21
Certification Summary	22

6

<u>۾</u>

9

10

12

13

Case Narrative

Client: South Carolina Public Service Authority Project/Site: 125915/JM02.09.G01.1/36500

Job ID: 680-233704-2

Job ID: 680-233704-2

Laboratory: Eurofins Savannah

Narrative

Job Narrative 680-233704-2

Receipt

The samples were received on 4/18/2023 10:00 AM. Unless otherwise noted below, the samples arrived in good condition, and, where required, properly preserved and on ice. The temperature of the cooler at receipt time was 16.4°C

Metals

No additional analytical or quality issues were noted, other than those described above or in the Definitions/ Glossary page.

3

4

7

8

9

10

12

13

Sample Summary

Client: South Carolina Public Service Authority Project/Site: 125915/JM02.09.G01.1/36500

Job ID: 680-233704-2

Lab Sample ID	Client Sample ID	Matrix	Collected	Received
680-233704-10	AF60585	GW	04/10/23 12:20	04/18/23 10:00
680-233704-11	AF60586	GW	04/10/23 12:25	04/18/23 10:00
680-233704-12	AF60587	GW	04/10/23 09:58	04/18/23 10:00
680-233704-13	AF60588	GW	04/10/23 11:04	04/18/23 10:00

4

6

10

11

10

Method Summary

Client: South Carolina Public Service Authority Project/Site: 125915/JM02.09.G01.1/36500

Job ID: 680-233704-2

Method	Method Description	Protocol	Laboratory
6020B	Metals (ICP/MS)	SW846	EET SAV
7470A	Mercury (CVAA)	SW846	EET SAV
3005A	Preparation, Total Recoverable or Dissolved Metals	SW846	EET SAV
7470A	Preparation, Mercury	SW846	EET SAV

Protocol References:

SW846 = "Test Methods For Evaluating Solid Waste, Physical/Chemical Methods", Third Edition, November 1986 And Its Updates.

Laboratory References:

EET SAV = Eurofins Savannah, 5102 LaRoche Avenue, Savannah, GA 31404, TEL (912)354-7858

2

6

9

10

10

13

Definitions/Glossary

Client: South Carolina Public Service Authority Job ID: 680-233704-2 Project/Site: 125915/JM02.09.G01.1/36500

Qualifiers

Metals

Qualifier **Qualifier Description**

Indicates the analyte was analyzed for but not detected.

Glossary

DLC

Abbreviation	These commonly used abbreviations may or may not be present in this report.
¤	Listed under the "D" column to designate that the result is reported on a dry weight basis
%R	Percent Recovery
CFL	Contains Free Liquid
CFU	Colony Forming Unit
CNF	Contains No Free Liquid
DER	Duplicate Error Ratio (normalized absolute difference)
Dil Fac	Dilution Factor
DL	Detection Limit (DoD/DOE)
DL, RA, RE, IN	Indicates a Dilution, Re-analysis, Re-extraction, or additional Initial metals/anion analysis of the sample

Decision Level Concentration (Radiochemistry) EDL Estimated Detection Limit (Dioxin) LOD Limit of Detection (DoD/DOE) LOQ Limit of Quantitation (DoD/DOE)

MCL EPA recommended "Maximum Contaminant Level" MDA Minimum Detectable Activity (Radiochemistry) MDC Minimum Detectable Concentration (Radiochemistry)

MDL Method Detection Limit Minimum Level (Dioxin) MPN Most Probable Number MQL Method Quantitation Limit

NC Not Calculated

ND Not Detected at the reporting limit (or MDL or EDL if shown)

NEG Negative / Absent Positive / Present POS

PQL Practical Quantitation Limit

PRES Presumptive QC **Quality Control**

RER Relative Error Ratio (Radiochemistry)

RL Reporting Limit or Requested Limit (Radiochemistry)

RPD Relative Percent Difference, a measure of the relative difference between two points

TEF Toxicity Equivalent Factor (Dioxin) Toxicity Equivalent Quotient (Dioxin) TEQ

TNTC Too Numerous To Count

Eurofins Savannah

4/24/2023

Page 7 of 22

Detection Summary

Client: South Carolina Public Service Authority Project/Site: 125915/JM02.09.G01.1/36500

Job ID: 680-233704-2

Lab Sample ID: 680-233704-11

Client Sample ID: AF60585 Lab Sample ID: 680-233704-10

Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type
Arsenic	89.3		3.00		ug/L	1		6020B	Total
									Recoverable
Barium	136		5.00		ug/L	1		6020B	Total
									Recoverable
Calcium	95700		500		ug/L	1		6020B	Total
									Recoverable
Cobalt	0.570		0.500		ug/L	1		6020B	Total
									Recoverable

Client Sample ID: AF60586

							•	
Analyte	Result (Qualifier F	L MDL	. Unit	Dil Fac	D Me	ethod	Prep Type
Arsenic	94.8	3.	00	ug/L	1	60	20B	Total
								Recoverable

Barium	130	5.00	ug/L	1	6020B	Total
						Recoverable
Calcium	94800	500	ug/L	1	6020B	Total
						Recoverable
Cobalt	0.535	0.500	ug/L	1	6020B	Total
						Recoverable

Client Sample ID: AF60587	Lab Sample ID: 680-233704-12

Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type
Barium	229		5.00		ug/L	1	_	6020B	Total
									Recoverable
Beryllium	1.00		0.500		ug/L	1		6020B	Total
									Recoverable
Calcium	75200		500		ug/L	1		6020B	Total
									Recoverable
Cobalt	17.7		0.500		ug/L	1		6020B	Total
									Recoverable
Lead	3.09		2.50		ug/L	1		6020B	Total
									Recoverable

Client Sample ID: AF60588 Lab Sample ID: 680-233704-13

Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type
Barium	34.4		5.00		ug/L	1		6020B	Total
									Recoverable
Calcium	576000		5000		ug/L	10		6020B	Total
									Recoverable
Cobalt	7.19		0.500		ug/L	1		6020B	Total
									Recoverable

Client: South Carolina Public Service Authority Project/Site: 125915/JM02.09.G01.1/36500

Job ID: 680-233704-2

Lab Sample ID: 680-233704-10

Prepared

04/20/23 17:02

Matrix: GW

Client Sample ID: AF60585 Date Collected: 04/10/23 12:20

Date Received: 04/18/23 10:00

Analyte

Mercury

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Antimony	5.00	U	5.00		ug/L		04/20/23 05:28	04/20/23 17:16	1
Arsenic	89.3		3.00		ug/L		04/20/23 05:28	04/20/23 17:16	1
Barium	136		5.00		ug/L		04/20/23 05:28	04/20/23 17:16	1
Beryllium	0.500	U	0.500		ug/L		04/20/23 05:28	04/20/23 17:16	1
Cadmium	0.500	U	0.500		ug/L		04/20/23 05:28	04/20/23 17:16	1
Calcium	95700		500		ug/L		04/20/23 05:28	04/20/23 17:16	1
Chromium	5.00	U	5.00		ug/L		04/20/23 05:28	04/20/23 17:16	1
Cobalt	0.570		0.500		ug/L		04/20/23 05:28	04/20/23 17:16	1
Lead	2.50	U	2.50		ug/L		04/20/23 05:28	04/20/23 17:16	1
Selenium	2.50	U	2.50		ug/L		04/20/23 05:28	04/20/23 17:16	1
Thallium	1.00	U	1.00		ug/L		04/20/23 05:28	04/20/23 17:16	1

RL

0.200

MDL Unit

ug/L

Result Qualifier

0.200 U

Dil Fac

Analyzed

04/21/23 13:59

Client: South Carolina Public Service Authority Project/Site: 125915/JM02.09.G01.1/36500

Job ID: 680-233704-2

Lab Sample ID: 680-233704-11

Matrix: GW

Client Sample ID: AF60586 Date Collected: 04/10/23 12:25

Date Received: 04/18/23 10:00

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Antimony	5.00	U	5.00		ug/L		04/20/23 05:28	04/20/23 17:21	1
Arsenic	94.8		3.00		ug/L		04/20/23 05:28	04/20/23 17:21	1
Barium	130		5.00		ug/L		04/20/23 05:28	04/20/23 17:21	1
Beryllium	0.500	U	0.500		ug/L		04/20/23 05:28	04/20/23 17:21	1
Cadmium	0.500	U	0.500		ug/L		04/20/23 05:28	04/20/23 17:21	1
Calcium	94800		500		ug/L		04/20/23 05:28	04/20/23 17:21	1
Chromium	5.00	U	5.00		ug/L		04/20/23 05:28	04/20/23 17:21	1
Cobalt	0.535		0.500		ug/L		04/20/23 05:28	04/20/23 17:21	1
Lead	2.50	U	2.50		ug/L		04/20/23 05:28	04/20/23 17:21	1
Selenium	2.50	U	2.50		ug/L		04/20/23 05:28	04/20/23 17:21	1
Thallium	1.00	U	1.00		ug/L		04/20/23 05:28	04/20/23 17:21	1

Method: SW846 7470A - Mercury (C	VAA)								
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Mercury	0.200	U	0.200		ug/L		04/20/23 17:02	04/21/23 14:04	1

4

6

8

4.0

4 4

12

Client: South Carolina Public Service Authority Project/Site: 125915/JM02.09.G01.1/36500

Job ID: 680-233704-2

Lab Sample ID: 680-233704-12

04/20/23 17:02

04/21/23 14:06

Matrix: GW

Client Sample ID: AF60587

Date Collected: 04/10/23 09:58 Date Received: 04/18/23 10:00

Mercury

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Antimony	5.00	U	5.00		ug/L		04/20/23 05:28	04/20/23 17:25	1
Arsenic	3.00	U	3.00		ug/L		04/20/23 05:28	04/20/23 17:25	1
Barium	229		5.00		ug/L		04/20/23 05:28	04/20/23 17:25	1
Beryllium	1.00		0.500		ug/L		04/20/23 05:28	04/20/23 17:25	1
Cadmium	0.500	U	0.500		ug/L		04/20/23 05:28	04/20/23 17:25	1
Calcium	75200		500		ug/L		04/20/23 05:28	04/20/23 17:25	1
Chromium	5.00	U	5.00		ug/L		04/20/23 05:28	04/20/23 17:25	1
Cobalt	17.7		0.500		ug/L		04/20/23 05:28	04/20/23 17:25	1
Lead	3.09		2.50		ug/L		04/20/23 05:28	04/20/23 17:25	1
Selenium	2.50	U	2.50		ug/L		04/20/23 05:28	04/20/23 17:25	1
Thallium	1.00	U	1.00		ug/L		04/20/23 05:28	04/20/23 17:25	1
Method: SW846 7470A -	Mercury (CVAA)								
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac

0.200

ug/L

0.200 U

13

a

Client: South Carolina Public Service Authority Project/Site: 125915/JM02.09.G01.1/36500

Job ID: 680-233704-2

Lab Sample ID: 680-233704-13

04/20/23 17:29

04/20/23 17:29

04/20/23 05:28

04/20/23 05:28

Matrix: GW

Client Sample ID: AF60588

Date Collected: 04/10/23 11:04 Date Received: 04/18/23 10:00

Selenium

Thallium

Method: SW846 6020B - Metals (ICP/MS) - Total Recoverable Result Qualifier RLMDL Unit D Prepared Analyzed Dil Fac 5.00 U 5.00 04/20/23 05:28 04/20/23 17:29 Antimony ug/L Arsenic 3.00 U 3.00 ug/L 04/20/23 05:28 04/20/23 17:29 **Barium** 34.4 5.00 ug/L 04/20/23 05:28 04/20/23 17:29 0.500 U Beryllium 0.500 04/20/23 05:28 04/20/23 17:29 ug/L Cadmium 0.500 U 0.500 ug/L 04/20/23 05:28 04/20/23 17:29 1 Calcium 576000 5000 ug/L 04/20/23 05:28 04/21/23 11:13 10 Chromium 5.00 U 5.00 04/20/23 05:28 04/20/23 17:29 ug/L 0.500 ug/L 04/20/23 05:28 04/20/23 17:29 Cobalt 7.19 2.50 U 2.50 ug/L 04/20/23 05:28 04/20/23 17:29

Method: SW846 7470A - Mercury (CV	AA)								
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Mercury	0.200	U	0.200		ug/L		04/20/23 17:02	04/21/23 14:07	1

2.50

1.00

ug/L

ug/L

2.50 U

1.00 U

2

3

4

6

8

10

11

12

4.4

Client: South Carolina Public Service Authority Job ID: 680-233704-2 Project/Site: 125915/JM02.09.G01.1/36500

Method: 6020B - Metals (ICP/MS)

Lab Sample ID: MB 680-774333/1-A

Matrix: Water Analysis Batch: 774617

Client Sample ID: Method Blank Prep Type: Total Recoverable

Prep Batch: 774333

-	MB	MB						-	
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Antimony	5.00	U	5.00		ug/L		04/20/23 05:28	04/20/23 16:16	1
Arsenic	3.00	U	3.00		ug/L		04/20/23 05:28	04/20/23 16:16	1
Barium	5.00	U	5.00		ug/L		04/20/23 05:28	04/20/23 16:16	1
Beryllium	0.500	U	0.500		ug/L		04/20/23 05:28	04/20/23 16:16	1
Cadmium	0.500	U	0.500		ug/L		04/20/23 05:28	04/20/23 16:16	1
Calcium	500	U	500		ug/L		04/20/23 05:28	04/20/23 16:16	1
Chromium	5.00	U	5.00		ug/L		04/20/23 05:28	04/20/23 16:16	1
Cobalt	0.500	U	0.500		ug/L		04/20/23 05:28	04/20/23 16:16	1
Lead	2.50	U	2.50		ug/L		04/20/23 05:28	04/20/23 16:16	1
Selenium	2.50	U	2.50		ug/L		04/20/23 05:28	04/20/23 16:16	1
Thallium	1.00	U	1.00		ug/L		04/20/23 05:28	04/20/23 16:16	1

Lab Sample ID: LCS 680-774333/2-A

Matrix: Water

Client Sample ID: Lab Control Sample **Prep Type: Total Recoverable**

Analysis Batch: 774617							Prep Batc	h: 77433
	Spike	LCS	LCS				%Rec	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Antimony	50.0	56.78		ug/L		114	80 _ 120	
Arsenic	100	111.2		ug/L		111	80 _ 120	
Barium	100	106.3		ug/L		106	80 _ 120	
Beryllium	50.0	54.86		ug/L		110	80 _ 120	
Cadmium	50.0	55.87		ug/L		112	80 _ 120	
Calcium	5000	5504		ug/L		110	80 _ 120	
Chromium	100	113.4		ug/L		113	80 _ 120	
Cobalt	50.0	53.95		ug/L		108	80 _ 120	
Lead	500	522.7		ug/L		105	80 _ 120	
Selenium	100	108.4		ug/L		108	80 _ 120	
Thallium	50.0	52.38		ug/L		105	80 _ 120	

Method: 7470A - Mercury (CVAA)

Lab Sample ID: MB 680-774521/1-A

Matrix: Water

Analysis Batch: 774740

Cli	ent	Samp	le ID:	Meth	od Bla	ank
		1	Prep	Type:	Total	/NA

Prep Batch: 774521

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Mercury	0.200	U	0.200		ug/L		04/20/23 17:02	04/21/23 13:47	1

MB MB

Lab Sample ID: LCS 680-774521/2-A

Matrix: Water

Analysis Batch: 774740

Client Sample ID:	Lab Control Sample
	Prep Type: Total/NA

Prep Batch: 774521

	Spike	LCS	LCS			%Rec	
Analyte	Added	Result	Qualifier Un	it D	%Rec	Limits	
Mercury	2.50	2.439	ug/	L	98	80 _ 120	

QC Association Summary

Client: South Carolina Public Service Authority Project/Site: 125915/JM02.09.G01.1/36500

Job ID: 680-233704-2

Metals

Prep Batch: 774333

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
680-233704-10	AF60585	Total Recoverable	GW	3005A	
680-233704-11	AF60586	Total Recoverable	GW	3005A	
680-233704-12	AF60587	Total Recoverable	GW	3005A	
680-233704-13	AF60588	Total Recoverable	GW	3005A	
MB 680-774333/1-A	Method Blank	Total Recoverable	Water	3005A	
LCS 680-774333/2-A	Lab Control Sample	Total Recoverable	Water	3005A	

Prep Batch: 774521

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
680-233704-10	AF60585	Total/NA	GW	7470A	
680-233704-11	AF60586	Total/NA	GW	7470A	
680-233704-12	AF60587	Total/NA	GW	7470A	
680-233704-13	AF60588	Total/NA	GW	7470A	
MB 680-774521/1-A	Method Blank	Total/NA	Water	7470A	
LCS 680-774521/2-A	Lab Control Sample	Total/NA	Water	7470A	

Analysis Batch: 774617

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
680-233704-10	AF60585	Total Recoverable	GW	6020B	774333
680-233704-11	AF60586	Total Recoverable	GW	6020B	774333
680-233704-12	AF60587	Total Recoverable	GW	6020B	774333
680-233704-13	AF60588	Total Recoverable	GW	6020B	774333
MB 680-774333/1-A	Method Blank	Total Recoverable	Water	6020B	774333
LCS 680-774333/2-A	Lab Control Sample	Total Recoverable	Water	6020B	774333

Analysis Batch: 774740

Γ					
Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
680-233704-10	AF60585	Total/NA	GW	7470A	774521
680-233704-11	AF60586	Total/NA	GW	7470A	774521
680-233704-12	AF60587	Total/NA	GW	7470A	774521
680-233704-13	AF60588	Total/NA	GW	7470A	774521
MB 680-774521/1-A	Method Blank	Total/NA	Water	7470A	774521
LCS 680-774521/2-A	Lab Control Sample	Total/NA	Water	7470A	774521

Analysis Batch: 774895

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
680-233704-13	AF60588	Total Recoverable	GW	6020B	774333

Eurofins Savannah

Job ID: 680-233704-2

Client: South Carolina Public Service Authority

Project/Site: 125915/JM02.09.G01.1/36500

Lab Sample ID: 680-233704-10

Matrix: GW

Date Collected: 04/10/23 12:20 Date Received: 04/18/23 10:00

Client Sample ID: AF60585

	Batch	Batch		Dilution	Batch			Prepared
Prep Type	Type	Method	Run	Factor	Number	Analyst	Lab	or Analyzed
Total Recoverable	Prep	3005A			774333	RR	EET SAV	04/20/23 05:28
Total Recoverable	Analysis	6020B		1	774617	BWR	EET SAV	04/20/23 17:16
Total/NA	Prep	7470A			774521	JKL	EET SAV	04/20/23 17:02
Total/NA	Analysis	7470A		1	774740	JKL	EET SAV	04/21/23 13:59

Lab Sample ID: 680-233704-11

Matrix: GW

Date Collected: 04/10/23 12:25 Date Received: 04/18/23 10:00

Client Sample ID: AF60586

	Batch	Batch		Dilution	Batch			Prepared
Prep Type	Type	Method	Run	Factor	Number	Analyst	Lab	or Analyzed
Total Recoverable	Prep	3005A			774333	RR	EET SAV	04/20/23 05:28
Total Recoverable	Analysis	6020B		1	774617	BWR	EET SAV	04/20/23 17:21
Total/NA	Prep	7470A			774521	JKL	EET SAV	04/20/23 17:02
Total/NA	Analysis	7470A		1	774740	JKL	EET SAV	04/21/23 14:04

Client Sample ID: AF60587 Lab Sample ID: 680-233704-12

Date Collected: 04/10/23 09:58

Matrix: GW

Date Received: 04/18/23 10:00

Batch Batch Dilution Batch Prepared Method **Prep Type** Туре Run Factor Number Analyst Lab or Analyzed Total Recoverable 3005A 774333 RR EET SAV 04/20/23 05:28 Prep Total Recoverable 6020B 04/20/23 17:25 Analysis 774617 BWR EET SAV

Total/NA Prep 7470A 774521 JKL EET SAV 04/20/23 17:02 Total/NA 774740 JKL EET SAV 04/21/23 14:06 Analysis 7470A 1

Client Sample ID: AF60588 Lab Sample ID: 680-233704-13

Date Collected: 04/10/23 11:04 Matrix: GW Date Received: 04/18/23 10:00

	Batch	Batch		Dilution	Batch			Prepared
Prep Type	Type	Method	Run	Factor	Number	Analyst	Lab	or Analyzed
Total Recoverable	Prep	3005A			774333	RR	EET SAV	04/20/23 05:28
Total Recoverable	Analysis	6020B		1	774617	BWR	EET SAV	04/20/23 17:29
Total Recoverable	Prep	3005A			774333	RR	EET SAV	04/20/23 05:28
Total Recoverable	Analysis	6020B		10	774895	BWR	EET SAV	04/21/23 11:13
Total/NA	Prep	7470A			774521	JKL	EET SAV	04/20/23 17:02
Total/NA	Analysis	7470A		1	774740	JKL	EET SAV	04/21/23 14:07

Laboratory References:

EET SAV = Eurofins Savannah, 5102 LaRoche Avenue, Savannah, GA 31404, TEL (912)354-7858

Eurofins Savannah

5

Chain of Custody

Sentes Cooper One Riverwood Drive Moncks Corner, SC 29461 Phone (843)761-8000 Ext, 5148 Fax. (843)761-4175

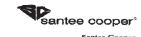
Project/Task/Unit #: Customer Email/Report Recipient: Date Results Needed by: Rerun request for any flagged QC LCWILLIA 125915 / JMOZ.09.GØ1.1/ 36500 Yes (No @santeecooper.com Analysis Group Sample Location/ Labworks ID# Comments TOTAL METALS BELDIM Preservative (see below) Collection Date Collection Time Matrix(see below (Internal use Description Method # Sample Collector Bottle type: (Glas G/Plastic-P) only) Total # of contai Reporting limit Grab (G) or Composite (C) Misc. sample info Any other notes ZOM Hg-7470 2 P 6 GW X AF 60585 WAP-27 4/10/23 1220 BWM ALL OTHERS 6020. 1225 WAP-27D 86 PLEASE REFER TO SHEET WAP - 28 87 0958 FOR RLS. 88 WAP - 29 1104 * PLEASE RETURN COCLER. Sample Receiving (Internal Use Only) Relinquished by: Employee# Date Time Received by: Employee # Date Time TEMP (°C):_ Initial: 418.23 1000 35594 4/17/23 m Sambun 1300 Correct pH: Yes Relinquished by: Employee # Employee# Date Time Received by: Date Time Preservative Lot#: Relinquished by: Employee# Date Time Received by: Employee # Date Time Date/Time/Init for preservative: ☐ METALS (all) Nutrients MISC. Gypsum Coal Oil Flyash ⊠Sb ⊠Se □ Ag □ Cu Trans. Oll Qual. D TOC O BTEX ☐ Wallboard □ Ultimate □ Апиновіа □ A1 □ Fe □ Napthalene %Moisture Gypsum(all DDOC ☐ % Moisture DLOI As D THM/HAA DK □ Sn Color □ TP/TPO4 below) □ Ash D % Carbon DVOC Acidity □ NH3-N O AIM □ Sulfur O Li □ Sr □ Mineral $\square B$ □ Oil & Grease Dielectric Strength DITOC DF D BTUs Analysis IFT DE. Coli □ Mg □ Ti C Total metals **⊠**Ba UCI □ Volatile Matter □ Sieve ☐ Total Coliform Dissolved Gases ☐ Soluble Metals **⊠**Be □ Mn M TI D NO2 D CHN □ % Moisture Used Oll □pH ☐ Purity (CaSO4) ☐ Dissolved As Other Tests: D Br Flashpoint Metals in oil ☐ % Moisture X Ca □ Mo OV □ Dissolved Fe □ XRF Scan □ NO3 ☐ Sulfites NPDES (As,Cd,Cr,Ni,Pb O Zn □ Rad 226 X,Cd □ Na DHGI □ SO4 HqD Oil & Grease Hg) □ Rad 228 □ Chlorides ☐ Fineness X Co **KHg** O Ni DAS ☐ Particulate Matter □ PCB Particle Size DISS GOFER P.Pb □ CrVI X Cr

Table of Reporting Limits for Groundwater Samples-- Metals Only

Analyte	Unit	GWPS/ MCL/ RSL	Reporting Limits best case
Aluminum	mg/L	0.05 to 0.2	
Antimony	ug/L	6	5
Arsenic	ug/L	10	5
Arsenic Dissolved	ug/L		-
Barium	ug/L	2000	5
Beryllium	ug/L	4	0.5
Boron	ug/L		10 to 15
Cadmium	ug/L	5	0.5
Calcium	ug/L		0.1
Chromium	uġ/L	100	.5
Cobalt	ug/L	6	0.5
Copper	mg/L	1	_ = 3482 = _
Iron	ug/L	300	
Lead	ug/L	15	1
Lithium	ug/L	40	5
Magnesium	ug/L		
Mercury	ug/L	2	0.2
Molybdenum	ug/L	100	5
Nickel	ug/L		
Potassium	mg/L		
Selenium	ug/L	50	5
Sodium	mg/L		***
Thallium	ug/L	2	1
Zinc	ug/L	5000	-

o

Chain of Custody



Santee Cooper One Riverwood Drive Moneks Comer, SC 29461 (843)761-8000 Ext. 5148 Fax. (843)761-4175

Customer Email/Report Recipient: Date Results Needed by: Project/Task/Unit #: Rerun request for any flagged QC LCWILLIA 125915/JM02.08.G01.5/ 36500 @santeecooper.com Yes (No) **Analysis Group** Labworks ID# Sample Location/ Comments SEE BELOW Bottle type: (Glass-G/Plastic-P) Matrix(see below) **Collection Date Collection Time** (Internal use Description Total # of containers Preservative (see below) Method # Collector only) Grab (G) or Composite (C) Reporting limit Misc. sample info Any other notes ZDM 2 4/4/23 1 P AF60141 1138 G GGSMW-4 GW X METHOD 6020 BWM 5 PLEASE KEFER TO SHEET 42 1300 FOR TILS. 6 43 1033 * PLEASE RETURN 44 1223 COOLER. 4/3/23 AF60138 1 1033 2 39 1144 40 3 1403 45 10 1320 11 46 1226 Sample Receiving (Internal Use Only) Relinquished by: Employee# Date Time Received by: Employee# Date Time TEMP (°C): 15.8 Initial: 4-18-23 SABrown 35594 4/17/23 1300 Th 1000 Correct pH: Yes' Received by: Relinquished by: Employee# Date Time Employee # Date Time Preservative Lot#: Relinquished by: Employee# Date Time Received by: Date Employee# Time Date/Time/Init for preservative: ☐ METALS (all) **Nutrients** MISC. Gypsum Coal <u>Flyash</u> X Cu □ Ag □ Sb D TOC ☐ Wallboard □ BTEX Trans, Oll Qual. □ Ultimate ☐ Ammonia **MFe** X Se ☐ Napthalene n poc Gypsum(all ☐ % Moisture 1. %Moisture D THM/HAA As $\Box K$ □ Sn ☐ TP/TPO4 below) □ Ash □ % Carbon nvoc Acidity □ NH3-N □В □ Li □ St ☐ Sulfur □ Mineral ☐ Oil & Grease Dielectric Strength DITOC $\square F$ □ BTUs Analysis IFT D.F. Coll X Ba □Mg O Ti ☐ Total metals \Box C1 ☐ Volatile Matter □ Sieve Dissolved Gases ☐ Total Coliform ☐ Soluble Metals □Ве □ Mn **M**TI □ NO2 □ CHN □pH ☐ Purity (CaSO4) ☐ % Moisture Used Oil □ Br ☐ Dissolved As Other Tests: Flashpoint ☐ % Moisture □ Ca □Мо $\square V$ □ NO3 □ Dissolved Fe □ Sulfites ☐ XRF Scan Metals in oil **NPDES** X Cd □ Na X Zn ☐ Rad 226 O pH □ HGI (As,Cd,Cr,Ni,Pb □ SO4 □ Oil & Grease □ Rad 228 ☐ Chlorides ☐ Fineness Hg) □ Co □ Ni □Hg □As \square PCB ☐ Particulate Matter 1.8 ☐ Particle Size **GOFER** `⊠ Cr ⊠ Pb □ CrVI D Sulfue

Matrix codes: GW-groundwater, DW-drinking water, SW-surface water, WW-waste water, BW-boiler water, L-limestone, Oil-oil, S-Soil, SL-solid, C-coal, G-gypsum, FA-flyash, BA-bottom ash, M-misc (describe in comment section) Preservative code- 1=<4°C 2=HNO₃ 3=H₂SO₄ 4-HCl 5=Na₂S₂O₃ 6-Other (Specify)

Chain of Custody

Santee Cooper One Riverwood Drive Moneks Corner SC 29461 Phone (843)761-8000 Ext. 5148 Fax: (843)761-4175

LEMUCHE 10 # Sample Location/ Description Descript	Cus	tomer	Email	/Report Re	cipie	nt:	D	ate R	esults Ne	eded b	y:		Pr	oject/	Task/	Unit #:		Rerun requ	est for	any f	lagge	d QC
Labworks ID # Comments Comm	L	CWILL	LIA	@sant	teecc	ooper.com		/	//.			1250	115	J JM	02.0	9.6-Ø1	.1 3650	<u> </u>	es (No	9		
																				Analy	sls Gro	up
### COS # S WAP - 21	(In	ternal us					Collection Date		Collection Time	Sample Collector	Total # of containers	Bottle type: (Glass- G/Plastic-P)	Grab (G) or Composite (C)	Matrix(see below)	Preservative (see	• M	Aethod # Reporting limit Aisc. sample ir	ufo	DIAL METALS	SEE BELAW		
12.25	Αŧ	-605	85	WAP-2	7		4/1	0/23	1220		1	Р	G	GW	2	Hg-	7470			\neg		
ST WAP - 25			86	WAP-2	JD				1225							ALLO	THERS 6	026.				
Relinquished by: Employee# Date Time Received by: Employee# Date Time Temployee# Date Time Received by: Employee# Date Time Temployee# Date Time Received by: Employee# Date Time Temployee# Date Time Temployee# Date Time Received by: Employee# Date Time Temployee# Date Time Temployee# Date Time Date Tim			87	WAP-2	28				e958							1		P TO SHEE				
Relinquished by: Employee# Date Time Received by: Employee# Date Time Somple Receiving (Internal Use Only) Relinquished by: Employee# Date Time Received by: Employee# Date Time Relinquished by: Employee# Date Time Received by: Employee# Date Time METALS (all)			88	WAP - 25	7		_		1104										1			
Relinquished by: Employee# Date Time Received by: Employee# Date Time Sample Receiving (Internal Use Only) Relinquished by: Employee# Date Time Received by: Employee# Date Time Relinquished by: Employee# Date Time Received by: Employee# Date Time METALS (all)																						
Relinquished by: Employee# Date Time Received by: Employee# Date Time Received by: Employee# Date Time Received by: Employee# Date Time Received by: Employee# Date Time Received by: Employee# Date Time Received by: Employee# Date Time Received by: Employee# Date Time Received by: Employee# Date Time Date/Time/Init for preservative: METALS (all																* Pu	EASE R	EJURN				
																	COCLER.					
															·							
Relinquished by: Employee# Date Time Received by: Employee# Date Time Preservative Lot#:	f	elinquish	hed by:	Employe	ee#	Date	Tim	e I	Receiv	ed by:	Er	nployee	#	Date	1	Time						
Relinquished by: Employee# Date Time Received by: Employee # Date Time Preservative Lot#: Relinquished by: Employee# Date Time Received by: Employee # Date Time Date/Time/Init for preservative: METALS (all)	291	gwas	p.	3559	4	4/17/23	130	-	Del	1	-	m	e	118,2	3	1000				181;	i, introduction	
Relinquished by: Employee# Date Time Received by: Employee # Date Time Date/Time/Init for preservative: METALS (all)				Employe	ee#	Date	Tim	e	Receiv	ed by:	Er	nployee	#	Date		Time	Correct	pH: Yes	No			
Date/Time/Init for preservative:																	Preserv	ative Lot#:				
METALS (all)	R	elinguish	red by:	Employe	e#	Date	Tim	•	Receiv	ed by:	Er	nployee	#	Date		Time						
Ag																	Date/Ti	ne/init for pre	servative):		
Ag		i	□ME	TALS (al	1)	Nut	rient		NAIC	r		GV	nenn	a		Fo		Elemak		А	:1	
Name		Section of the sectio	The second second second			Will Department of the Control of th		DENSERGE C	-	<u></u>	lα	CONTRACTOR OF THE PARTY OF THE	005000000000000000000000000000000000000	•	lo				1			d.
□ B □ Li □ Sr □ NH3-N □ VOC □ Oil & Grease □ Fe □ Min □ Ti □ NO2 □ PH □ Dissolved As □ NO3 □ NO3 □ Dissolved Fe □ NO3 □ SO4 □ Rad 228 □ Col □ Ni □ NH3 □ SO4 □ Rad 228 □ Col □ Ni □ NH3 □		and the second	I	ANNIPARADORES PROPERTY		DO	C					Gyp	sum(a	11		□ % Mo	oisture	□ LO1		%Mo	isture	
F	ē								□ VOC			O Al	M						1	Acidit	y	
Co						n F			□ B. Colì					ls		□ BTUs		Analysis			ne Stren	gth
✓ Ca □ Mo □ V □ Br □ Dissolved As □ % Moisture Other Tests: □ Rest Dissolved Pe □ Sulfites □ XRF Scan NPDES Metals in oil (As, Cd, Cr, Ni, Pb ✓ Co □ Ni ☒ Hg □ Chlorides □ Fineness □ Gil & Grease □ Hg ☐ Particulare Matter □ As □ IX							2		☐ Total Co	iform		□ Sol	uble M	tals						Dissol		ises
NO3						□ Br			☐ Dissolved						O			The sample in th		Flashp	oinl	
Co Ni KHg Chlorides Fineness Coll & Grease Hg) Particulate Matter Chlorides Fineness Coll & Grease Hg) Fineness Coll & Grease Hg) Coll & Grease	Tax a									i Fe		O Sul	fites					NPDES	1			
	174 1000					□ 204	•		☐ Rad 228			□ Chl	orides		נם 🏻	Fineness				Hg)		
									□ PCB		l		ticle Siz	ie.		Particulate						

Matrix codes: GW-groundwater, DW-drinking water, SW-surface water, WW-waste water, BW-boller water, L-limestone, Oil-oil, S-Soil, SL-soild, C-coal, G-gypsum, FA-flyash, BA-bottom ash, M-misc (describe in comment section)

Preservative code- 1=<4°C 2=HNO₃ 3=H₂SO₄ 4-HCl 5=Na₂S₂O₃ 6-Other (Specify)

Table of Reporting Limits for Groundwater Samples-- Metals Only

Samp	oles ivietai	s Only	
Analyte	Unit	GWPS/ MCL/ RSL	Reporting Limits best case
Aluminum	mg/L	0.05 to 0.2	
Antimony	ug/L	6	5
Arsenic	ug/L	10	5
Arsenic Dissolved	ug/L		
Barium	ug/L	2000	5
Beryllium	ug/L	4	0.5
Boron	ug/L		10 to 15
Cadmium	ug/L	5	0.5
Calcium	ug/L		0.1
Chromium	uġ/L	100	5
Cobalt	ug/L	6	0.5
Copper	mg/L	1	
Iron	ug/L	300	
Lead	ug/L	15	1
Lithium	ug/L	40	5
Magnesium	ug/L		
Mercury	ug/L	2	0.2
Molybdenum	ug/L	100	5
Nickel	ug/L		
Potassium	mg/L		
Selenium	ug/L	50	5
Sodium	mg/L		
Thallium	ug/L	2	
Zinc	ug/L	5000	

Login Sample Receipt Checklist

Client: South Carolina Public Service Authority

Job Number: 680-233704-2

Login Number: 233704 List Source: Eurofins Savannah

List Number: 1

Creator: Daughtry, Beth A

Creator: Daughtry, Beth A		
Question	Answer	Comment
Radioactivity wasn't checked or is = background as measured by a survey meter.</td <td>N/A</td> <td></td>	N/A	
The cooler's custody seal, if present, is intact.	True	
Sample custody seals, if present, are intact.	True	
The cooler or samples do not appear to have been compromised or tampered with.	True	
Samples were received on ice.	False	Thermal preservation not required.
Cooler Temperature is acceptable.	True	
Cooler Temperature is recorded.	True	
COC is present.	True	
COC is filled out in ink and legible.	True	
COC is filled out with all pertinent information.	True	
Is the Field Sampler's name present on COC?	True	
There are no discrepancies between the containers received and the COC.	True	
Samples are received within Holding Time (excluding tests with immediate HTs)	True	
Sample containers have legible labels.	True	
Containers are not broken or leaking.	True	
Sample collection date/times are provided.	True	
Appropriate sample containers are used.	True	
Sample bottles are completely filled.	True	
Sample Preservation Verified.	N/A	
There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs	True	
Containers requiring zero headspace have no headspace or bubble is <6mm (1/4").	N/A	
Multiphasic samples are not present.	True	
Samples do not require splitting or compositing.	True	
Residual Chlorine Checked.	N/A	

4

7

9

10

12

13

Accreditation/Certification Summary

Client: South Carolina Public Service Authority

Project/Site: 125915/JM02.09.G01.1/36500

Job ID: 680-233704-2

Laboratory: Eurofins Savannah

The accreditations/certifications listed below are applicable to this report.

Authority	Program	Identification Number	Expiration Date
South Carolina	State	98001	06-30-23

000 000704 0

3

_

9

11

16

gel.com

August 11, 2023

Ms. Jeanette Gilmetti Santee Cooper P.O. Box 2946101 OCO3 Moncks Corner, South Carolina 29461

Re: ABS Lab Analytical Work Order: 629286

Dear Ms. Gilmetti:

GEL Laboratories, LLC (GEL) appreciates the opportunity to provide the enclosed analytical results for the sample(s) we received on July 14, 2023. This original data report has been prepared and reviewed in accordance with GEL's standard operating procedures.

The samples were delivered with proper chain of custody documentation and signatures. All sample containers arrived without any visible signs of tampering or breakage. There are no additional comments concerning sample receipt.

Test results for NELAP or ISO 17025 accredited tests are verified to meet the requirements of those standards, with any exceptions noted. The results reported relate only to the items tested and to the sample as received by the laboratory. These results may not be reproduced except as full reports without approval by the laboratory. Copies of GEL's accreditations and certifications can be found on our website at www.gel.com.

Our policy is to provide high quality, personalized analytical services to enable you to meet your analytical needs on time every time. We trust that you will find everything in order and to your satisfaction. If you have any questions, please do not hesitate to call me at (843) 556-8171, ext. 4289.

Sincerely,

Julie Robinson Project Manager

Purchase Order: 398684

Enclosures

2040 Savage Road Charleston SC 29407 - (843) 556-8171 - www.gel.com

Certificate of Analysis Report for

SOOP001 Santee Cooper

Client SDG: 629286 GEL Work Order: 629286

The Qualifiers in this report are defined as follows:

- * A quality control analyte recovery is outside of specified acceptance criteria
- ** Analyte is a Tracer compound
- ** Analyte is a surrogate compound
- U Analyte was analyzed for, but not detected above the MDL, MDA, MDC or LOD.

Where the analytical method has been performed under NELAP certification, the analysis has met all of the requirements of the NELAC standard unless qualified on the Certificate of Analysis.

The designation ND, if present, appears in the result column when the analyte concentration is not detected above the limit as defined in the 'U' qualifier above.

This data report has been prepared and reviewed in accordance with GEL Laboratories LLC standard operating procedures. Please direct any questions to your Project Manager, Julie Robinson.

Reviewed by	June 1	w_	
•			

0,50

Page 2 of 25 SDG: 629286

2040 Savage Road Charleston SC 29407 - (843) 556-8171 - www.gel.com

Certificate of Analysis

Report Date: August 11, 2023

SOOP00119

Analyst Comments

Company: Santee Cooper Address: P.O. Box 2946101

OCO3

Moncks Corner, South Carolina 29461

Contact: Ms. Jeanette Gilmetti Project: ABS Lab Analytical

Client Sample ID: AF68757 Sample ID: 629286001

Matrix: GW

Collect Date: 11-JUL-23 09:51 Receive Date: 14-JUL-23 Collector: Client

Description

Project: Client ID: SOOP001

Parameter	Qualifier	Result	Uncertainty	MDC	RL	Units	PF	DF Ana	lyst Date	Time Batch	Method
Rad Gas Flow Proportion	onal Counting										
GFPC, Ra228, Liquid "A	As Received"										
Radium-228		3.22	+/-1.48	1.97	3.00	pCi/L		JE1	08/10/23	0842 2472078	1
Radium-226+Radium-2	28 Calculatio	n "See Pa	arent Products"								
Radium-226+228 Sum		5.93	+/-1.65			pCi/L		1 NXI	1 08/11/23	1032 2460567	2
Rad Radium-226											
Lucas Cell, Ra226, Liqu	uid "As Recei	ved"									
Radium-226		2.72	+/-0.749	0.537	1.00	pCi/L		LXP	1 08/11/23	0818 2460555	3
The following Analytic	al Methods w	ere perfo	rmed:								

1	EPA 904.0/SW846 9320 Modified		•		
2	Calculation				
3	EPA 903.1 Modified				
Surrogate/Tracer Recove	ery Test	Result	Nominal	Recovery%	Acceptable Limits

Barium-133 Tracer GFPC, Ra228, Liquid "As Received" 66.9 (15%-125%)

Notes:

Method

Counting Uncertainty is calculated at the 95% confidence level (1.96-sigma).

Column headers are defined as follows:

DF: Dilution Factor Lc/LC: Critical Level DL: Detection Limit PF: Prep Factor MDA: Minimum Detectable Activity **RL**: Reporting Limit

MDC: Minimum Detectable Concentration SQL: Sample Quantitation Limit

Page 3 of 25 SDG: 629286

2040 Savage Road Charleston SC 29407 - (843) 556-8171 - www.gel.com

Certificate of Analysis

Report Date: August 11, 2023

Company: Santee Cooper Address: P.O. Box 2946101

OCO3

Moncks Corner, South Carolina 29461

Contact: Ms. Jeanette Gilmetti Project: ABS Lab Analytical

Client Sample ID: AF68749 Sample ID:

Matrix: GW

Collect Date: 11-JUL-23 10:52 Receive Date: 14-JUL-23 Collector: Client

Project: SOOP00119 629286002 Client ID: SOOP001

Parameter	Qualifier	Result	Uncertainty	MDC	RL	Units	PF	DF	Analy	st Date	Time	Batch	Method
Rad Gas Flow Proportio	nal Counting												
GFPC, Ra228, Liquid "A	As Received"												
Radium-228	U	0.544	+/-0.893	1.57	3.00	pCi/L			JE1	08/10/23	0842	2472078	1
Radium-226+Radium-22	28 Calculation	n "See Pa	arent Products"										
Radium-226+228 Sum		1.24	+/-1.00			pCi/L		1	NXL1	08/11/23	1032	2460567	2
Rad Radium-226													
Lucas Cell, Ra226, Liqu	id "As Recei	ved"											
Radium-226		0.697	+/-0.455	0.623	1.00	pCi/L			LXP1	08/11/23	0818	2460555	3
The following Analytic	al Methods w	ere perfo	ormed:										
Method	Description					I	Analys	t Co	nment	S			

1	EPA 904.0/SW846 9320 Modified		·		
2	Calculation				
3	EPA 903.1 Modified				
Surrogate/Tracer Recov	ery Test	Result	Nominal	Recovery%	Acceptable Limits

Counting Uncertainty is calculated at the 95% confidence level (1.96-sigma).

Barium-133 Tracer 69.1 (15%-125%) GFPC, Ra228, Liquid "As Received"

Column headers are defined as follows:

Notes:

DF: Dilution Factor Lc/LC: Critical Level DL: Detection Limit PF: Prep Factor MDA: Minimum Detectable Activity **RL**: Reporting Limit

MDC: Minimum Detectable Concentration SQL: Sample Quantitation Limit

Page 4 of 25 SDG: 629286

2040 Savage Road Charleston SC 29407 - (843) 556-8171 - www.gel.com

Certificate of Analysis

Report Date: August 11, 2023

Company: Santee Cooper Address: P.O. Box 2946101

OCO3

Moncks Corner, South Carolina 29461

Contact: Ms. Jeanette Gilmetti Project: ABS Lab Analytical

Client Sample ID: AF68751 Sample ID:

Matrix: GW

Collect Date: 10-JUL-23 10:00 Receive Date: 14-JUL-23 Collector: Client

Project: SOOP00119 629286003 Client ID: SOOP001

Parameter	Qualifier	Result	Uncertainty	MDC	RL	Units	PF	DF	Analy	st Date	Time Batch	Method
Rad Gas Flow Proportion	onal Counting											
GFPC, Ra228, Liquid "	'As Received"											
Radium-228		2.87	+/-1.41	2.04	3.00	pCi/L			JE1	08/10/23	0842 2472078	3 1
Radium-226+Radium-2	228 Calculation	n "See Pa	arent Products"									
Radium-226+228 Sum		4.17	+/-1.51			pCi/L		1	NXL1	08/11/23	1032 2460567	7 2
Rad Radium-226												
Lucas Cell, Ra226, Liq	uid "As Recei	ved"										
Radium-226		1.30	+/-0.536	0.479	1.00	pCi/L			LXP1	08/11/23	0849 2460555	5 3
The following Analytic	cal Methods w	ere perfo	ormed:									
Method	Description					I	Analys	st Co	nment	S		

1	EPA 904.0/SW846 9320 Modified
2	Calculation
3	EPA 903.1 Modified

Surrogate/Tracer Recovery Result Nominal Recovery% Acceptable Limits Test Barium-133 Tracer GFPC, Ra228, Liquid "As Received" 74.2 (15%-125%)

Notes:

Counting Uncertainty is calculated at the 95% confidence level (1.96-sigma).

Column headers are defined as follows:

DF: Dilution Factor Lc/LC: Critical Level DL: Detection Limit PF: Prep Factor MDA: Minimum Detectable Activity **RL**: Reporting Limit

MDC: Minimum Detectable Concentration SQL: Sample Quantitation Limit

Page 5 of 25 SDG: 629286

2040 Savage Road Charleston SC 29407 - (843) 556-8171 - www.gel.com

Certificate of Analysis

Report Date: August 11, 2023

Company: Santee Cooper Address: P.O. Box 2946101

OCO3

Moncks Corner, South Carolina 29461

Contact: Ms. Jeanette Gilmetti Project: ABS Lab Analytical

Client Sample ID: AF68750 Sample ID:

Matrix: GW

Collect Date: 10-JUL-23 11:18 Receive Date: 14-JUL-23 Collector: Client

Project: SOOP00119 629286004 Client ID: SOOP001

Parameter	Qualifier	Result	Uncertainty	MDC	RL	Units	PF	DF	Analy	st Date	Time	Batch	Method
Rad Gas Flow Proportion	onal Counting												
GFPC, Ra228, Liquid ".	As Received"												
Radium-228	U	0.458	+/-1.13	2.03	3.00	pCi/L			JE1	08/10/23	0842	2472078	1
Radium-226+Radium-2	28 Calculatio	n "See Pa	arent Products"										
Radium-226+228 Sum		1.43	+/-1.23			pCi/L		1	NXL1	08/11/23	1032	2460567	2
Rad Radium-226													
Lucas Cell, Ra226, Liqu	uid "As Recei	ved"											
Radium-226		0.970	+/-0.485	0.536	1.00	pCi/L			LXP1	08/11/23	0849	2460555	3
The following Analytic	al Methods w	ere perfo	ormed:										
Method	Description					1	Analys	st Co	mment	S			

1	EPA 904.0/SW846 9320 Modified				
2	Calculation				
3	EPA 903.1 Modified				
Surrogate/Tracer Recov	erv Test	Result	Nominal	Recovery%	Acceptable Limits

GFPC, Ra228, Liquid "As Received" (15%-125%) Barium-133 Tracer 64.6

Counting Uncertainty is calculated at the 95% confidence level (1.96-sigma).

Column headers are defined as follows:

DF: Dilution Factor Lc/LC: Critical Level DL: Detection Limit PF: Prep Factor MDA: Minimum Detectable Activity **RL**: Reporting Limit

MDC: Minimum Detectable Concentration SQL: Sample Quantitation Limit

Page 6 of 25 SDG: 629286

2040 Savage Road Charleston SC 29407 - (843) 556-8171 - www.gel.com

Certificate of Analysis

Report Date: August 11, 2023

Company: Santee Cooper Address: P.O. Box 2946101

OCO3

Moncks Corner, South Carolina 29461

Contact: Ms. Jeanette Gilmetti Project: ABS Lab Analytical

Client Sample ID: AF68755 Sample ID: 629286005

Matrix: GW

Collect Date: 10-JUL-23 12:59
Receive Date: 14-JUL-23
Collector: Client

AF68755 Project: SOOP00119 629286005 Client ID: SOOP001

Parameter	Qualifier	Result	Uncertainty	MDC	RL	Units	PF	DF	Analy	st Date	Time	Batch	Method
Rad Gas Flow Proportion	onal Counting												
GFPC, Ra228, Liquid "A	As Received"												
Radium-228	U	1.17	+/-1.06	1.72	3.00	pCi/L			JE1	08/10/23	0842	2472078	1
Radium-226+Radium-2	28 Calculation	n "See Pa	arent Products"										
Radium-226+228 Sum		2.19	+/-1.17			pCi/L		1	NXL1	08/11/23	1032	2460567	2
Rad Radium-226													
Lucas Cell, Ra226, Liqu	uid "As Recei	ved"											
Radium-226		1.03	+/-0.485	0.517	1.00	pCi/L			LXP1	08/11/23	0849	2460555	3
The following Analytic	al Methods w	ere perfo	ormed:										
Method	Description					1	Analys	st Co	mment	S			

1	EPA 904.0/SW846 9320 Modified				
2	Calculation				
3	EPA 903.1 Modified				
Surrogate/Tracer Recove	ery Test	Result	Nominal	Recovery%	Acceptable Limits

Barium-133 Tracer GFPC, Ra228, Liquid "As Received" 69.5 (15%-125%)

Notes:

Counting Uncertainty is calculated at the 95% confidence level (1.96-sigma).

Column headers are defined as follows:

DF: Dilution Factor Lc/LC: Critical Level
DL: Detection Limit PF: Prep Factor
MDA: Minimum Detectable Activity RL: Reporting Limit

MDC: Minimum Detectable Concentration SQL: Sample Quantitation Limit

Page 7 of 25 SDG: 629286

2040 Savage Road Charleston SC 29407 - (843) 556-8171 - www.gel.com

Certificate of Analysis

Report Date: August 11, 2023

Company: Santee Cooper Address: P.O. Box 2946101

OCO3

Moncks Corner, South Carolina 29461

Contact: Ms. Jeanette Gilmetti Project: ABS Lab Analytical

Client Sample ID: AF68733 Sample ID:

Matrix: GW

Collect Date: 10-JUL-23 14:10 Receive Date: 14-JUL-23 Collector: Client

Project: SOOP00119 629286006 Client ID: SOOP001

Parameter	Qualifier	Result	Uncertainty	MDC	RL	Units	PF	DF	Analy	st Date	Time	Batch	Method
Rad Gas Flow Proportion	onal Counting												
GFPC, Ra228, Liquid ".	As Received"												
Radium-228		1.80	+/-1.14	1.65	3.00	pCi/L			JE1	08/10/23	0842	2472078	1
Radium-226+Radium-2	28 Calculatio	n "See Pa	arent Products"										
Radium-226+228 Sum		3.41	+/-1.31			pCi/L		1	NXL1	08/11/23	1032	2460567	2
Rad Radium-226													
Lucas Cell, Ra226, Liqu	uid "As Recei	ved"											
Radium-226		1.61	+/-0.663	0.592	1.00	pCi/L			LXP1	08/11/23	0849	2460555	3
The following Analytic	al Methods w	ere perfo	ormed:										
Method	Description					1	Analys	st Co	mment	S			

1	EPA 904.0/SW846 9320 Modified				
2	Calculation				
3	EPA 903.1 Modified				
Surrogate/Tracer Recov	erv Test	Result	Nominal	Recovery%	Acceptable Limits

GFPC, Ra228, Liquid "As Received" (15%-125%) Barium-133 Tracer 68

Counting Uncertainty is calculated at the 95% confidence level (1.96-sigma).

Column headers are defined as follows:

DF: Dilution Factor Lc/LC: Critical Level DL: Detection Limit PF: Prep Factor MDA: Minimum Detectable Activity **RL**: Reporting Limit

MDC: Minimum Detectable Concentration SQL: Sample Quantitation Limit

Page 8 of 25 SDG: 629286

2040 Savage Road Charleston SC 29407 - (843) 556-8171 - www.gel.com

Certificate of Analysis

Report Date: August 11, 2023

Company: Santee Cooper Address: P.O. Box 2946101

OCO3

Moncks Corner, South Carolina 29461

Contact: Ms. Jeanette Gilmetti Project: ABS Lab Analytical

Client Sample ID: AF68734 Sample ID: 629286007

Matrix: GW

Collect Date: 10-JUL-23 14:15 Receive Date: 14-JUL-23 Collector: Client

Project: SOOP00119 Client ID: SOOP001

Parameter	Qualifier	Result U	Incertainty	MDC	RL	Units	PF	DF	Analy	st Date	Time	Batch	Method
Rad Gas Flow Proporti	onal Counting	;											
GFPC, Ra228, Liquid '	'As Received"	1											
Radium-228	U	1.00	+/-1.01	1.66	3.00	pCi/L			JE1	08/10/23	0842	2472078	1
Radium-226+Radium-2	228 Calculatio	n "See Pare	ent Products"										
Radium-226+228 Sum		2.38	+/-1.15			pCi/L		1	NXL1	08/11/23	1032	2460567	2
Rad Radium-226													
Lucas Cell, Ra226, Liq	uid "As Recei	ved"											
Radium-226	•	1.38	+/-0.544	0.546	1.00	pCi/L			LXP1	08/11/23	0849	2460555	3
The following Analytic	cal Methods w	ere perforn	ned:										

Method	Description	Analyst Comments
1	EPA 904.0/SW846 9320 Modified	•

2 Calculation

EPA 903.1 Modified

Surrogate/Tracer Recovery	Test	Result	Nominai	Recovery%	Acceptable Limits
Barium-133 Tracer	GFPC, Ra228, Liquid "As Received"			68.5	(15%-125%)

Notes:

Counting Uncertainty is calculated at the 95% confidence level (1.96-sigma).

Column headers are defined as follows:

DF: Dilution Factor Lc/LC: Critical Level DL: Detection Limit PF: Prep Factor MDA: Minimum Detectable Activity **RL**: Reporting Limit

MDC: Minimum Detectable Concentration SQL: Sample Quantitation Limit

Page 9 of 25 SDG: 629286

2040 Savage Road Charleston SC 29407 - (843) 556-8171 - www.gel.com

Certificate of Analysis

Report Date: August 11, 2023

Company: Santee Cooper P.O. Box 2946101 Address:

OCO3

Moncks Corner, South Carolina 29461

Contact: Ms. Jeanette Gilmetti Project: ABS Lab Analytical

Client Sample ID: AF68740 Sample ID: 629286008

Matrix: GW

Collect Date: 12-JUL-23 11:01 Receive Date: 14-JUL-23 Collector: Client

Project: SOOP00119 Client ID: SOOP001

Parameter	Qualifier	Result	Uncertainty	MDC	RL	Units	PF	DF	Analy	st Date	Time	e Batch	Method
Rad Gas Flow Proporti	onal Counting												
GFPC, Ra228, Liquid "	'As Received"												
Radium-228	U	0.589	+/-1.25	2.22	3.00	pCi/L			JE1	08/10/23	0842	2472078	1
Radium-226+Radium-2	228 Calculatio	n "See Pa	arent Products"										
Radium-226+228 Sum		2.99	+/-1.40			pCi/L		1	NXL1	08/11/23	1032	2460567	2
Rad Radium-226													
Lucas Cell, Ra226, Liq	uid "As Recei	ved"											
Radium-226		2.40	+/-0.623	0.312	1.00	pCi/L			LXP1	08/11/23	0849	2460555	3
The following Analytic	cal Methods w	ere perfo	ormed:										
Method	Description					1	Analys	st Co	mment	s			
1	EDA 004 0/SW	1846 0320 1	Modified				•						

1	EPA 904.0/SW 846 9320 Modified				
2	Calculation				
3	EPA 903.1 Modified				
Surrogate/Tracer Recove	ery Test	Result	Nominal	Recovery%	Acceptable Limits

Barium-133 Tracer GFPC, Ra228, Liquid "As Received" 64.8 (15%-125%)

Notes:

Counting Uncertainty is calculated at the 95% confidence level (1.96-sigma).

Column headers are defined as follows:

DF: Dilution Factor Lc/LC: Critical Level DL: Detection Limit PF: Prep Factor MDA: Minimum Detectable Activity **RL**: Reporting Limit

MDC: Minimum Detectable Concentration SQL: Sample Quantitation Limit

Page 10 of 25 SDG: 629286

2040 Savage Road Charleston SC 29407 - (843) 556-8171 - www.gel.com

Certificate of Analysis

Project:

Client ID:

Analyst Comments

Report Date: August 11, 2023

SOOP00119

SOOP001

Company: Santee Cooper Address: P.O. Box 2946101

OCO3

Moncks Corner, South Carolina 29461

Contact: Ms. Jeanette Gilmetti Project: ABS Lab Analytical

Client Sample ID: AF68743 Sample ID: 629286009

Matrix: GW

Collect Date: 12-JUL-23 13:23
Receive Date: 14-JUL-23
Collector: Client

Parameter	Qualifier	Result	Uncertainty	MDC RL Units PF DF Analyst Date		MDC RL Units PF DF Analyst Dat		ty MDC RL Units PF DF Analyst Date		MDC RL Units PF DF Analyst Date		MDC RL Units PF DF Analyst Date		MDC RL Units PF DF Analyst Da		DF Analyst Date		PF DF Analyst Dat		DF Analyst Date		Method
Rad Gas Flow Proport	tional Counting	5																				
GFPC, Ra228, Liquid	"As Received"	1																				
Radium-228	U	0.685	+/-1.18	2.05	3.00	pCi/L			JE1	08/10/23	0842 2472078	1										
Radium-226+Radium-	-228 Calculatio	n "See Pa	arent Products"																			
Radium-226+228 Sum		3.51	+/-1.39			pCi/L		1	NXL1	08/11/23	1032 2460567	2										
Rad Radium-226																						
Lucas Cell, Ra226, Li	quid "As Recei	ved"																				
Radium-226		2.82	+/-0.733	0.542	1.00	pCi/L			LXP1	08/11/23	0849 2460555	3										
The following Analyst	ical Mathada y	ara narfo	rmad.																			

The following Analytical Methods were performed:

Description

1	EPA 904.0/SW846 9320 Modified				
2	Calculation				
3	EPA 903.1 Modified				
Surrogate/Tracer Recov	ery Test	Result	Nominal	Recovery%	Acceptable Limits

Barium-133 Tracer GFPC, Ra228, Liquid "As Received" 72.2 (15%-125%)

Notes:

Method

Counting Uncertainty is calculated at the 95% confidence level (1.96-sigma).

Column headers are defined as follows:

DF: Dilution Factor Lc/LC: Critical Level
DL: Detection Limit PF: Prep Factor
MDA: Minimum Detectable Activity RL: Reporting Limit

MDC: Minimum Detectable Concentration SQL: Sample Quantitation Limit

Page 11 of 25 SDG: 629286

2040 Savage Road Charleston SC 29407 - (843) 556-8171 - www.gel.com

Certificate of Analysis

Project:

Client ID:

Report Date: August 11, 2023

LXP1 08/11/23 0849 2460555

SOOP00119

SOOP001

Company: Santee Cooper P.O. Box 2946101 Address:

OCO3

Moncks Corner, South Carolina 29461

Contact: Ms. Jeanette Gilmetti Project: ABS Lab Analytical

Client Sample ID: AF68744 Sample ID: 629286010

Matrix: GW

Collect Date: 12-JUL-23 13:28 Receive Date: 14-JUL-23 Collector: Client

Parameter	Qualifier	Result	Uncertainty	MDC	RL	Units	PF	DF	Analy	st Date	Time Batch	Method
Rad Gas Flow Proporti	onal Counting	5										
GFPC, Ra228, Liquid '	'As Received'	'										
Radium-228	U	0.0630	+/-0.807	1.56	3.00	pCi/L			JE1	08/10/23	0842 2472078	1
Radium-226+Radium-2	228 Calculation	on "See Par	rent Products"									
Radium-226+228 Sum		1.35	+/-0.976			pCi/L		1	NXL1	08/11/23	1032 2460567	2
Rad Radium-226												
Lucas Cell Ra226 Lig	mid "As Recei	ived"										

1.00

pCi/L

Radium-226 The following Analytical Methods were performed:

Method	Description	Analyst Comments
1	EPA 904.0/SW846 9320 Modified	
2	Calculation	
3	EPA 903.1 Modified	

0.548

Surrogate/Tracer Recovery Nominal Acceptable Limits Test Result Recovery% Barium-133 Tracer GFPC, Ra228, Liquid "As Received" 69.1 (15%-125%)

Notes:

Counting Uncertainty is calculated at the 95% confidence level (1.96-sigma).

1.29

+/-0.549

Column headers are defined as follows:

DF: Dilution Factor Lc/LC: Critical Level PF: Prep Factor DL: Detection Limit MDA: Minimum Detectable Activity **RL**: Reporting Limit

MDC: Minimum Detectable Concentration SQL: Sample Quantitation Limit

Page 12 of 25 SDG: 629286

2040 Savage Road Charleston SC 29407 - (843) 556-8171 - www.gel.com

Certificate of Analysis

Project:

Client ID:

Analyst Comments

Report Date: August 11, 2023

SOOP00119

SOOP001

Company: Santee Cooper Address: P.O. Box 2946101

OCO3

Moncks Corner, South Carolina 29461

Contact: Ms. Jeanette Gilmetti Project: ABS Lab Analytical

Client Sample ID: AF68738 Sample ID: 629286011

Matrix: GW

Collect Date: 12-JUL-23 12:28
Receive Date: 14-JUL-23
Collector: Client

Parameter	Qualifier	Result	Uncertainty	MDC	RL	Units	PF	DF	Analy	st Date	Time Batch	Method
Rad Gas Flow Proportion	onal Counting	;										
GFPC, Ra228, Liquid "	As Received'	1										
Radium-228	U	0.925	+/-1.25	2.13	3.00	pCi/L			JE1	08/10/23	0842 2472078	1
Radium-226+Radium-2	228 Calculation	n "See P	arent Products"									
Radium-226+228 Sum		1.75	+/-1.34			pCi/L		1	NXL1	08/11/23	1032 2460567	2
Rad Radium-226												
Lucas Cell, Ra226, Liqu	uid "As Recei	ved"										
Radium-226		0.823	+/-0.494	0.633	1.00	pCi/L			LXP1	08/11/23	0921 2460555	3
The following Analytic	eal Methods w	zere nerfa	rmed·									

Description

Surrogate/Tracer Recove	ery Test	Result	Nominal	Recovery%	Acceptable Limits
3	EPA 903.1 Modified				
2	Calculation				
1	EPA 904.0/SW846 9320 Modified				

Barium-133 Tracer GFPC, Ra228, Liquid "As Received" 69.2 (15%-125%)

Notes:

Method

Counting Uncertainty is calculated at the 95% confidence level (1.96-sigma).

Column headers are defined as follows:

DF: Dilution Factor Lc/LC: Critical Level
DL: Detection Limit PF: Prep Factor
MDA: Minimum Detectable Activity RL: Reporting Limit

MDC: Minimum Detectable Concentration SQL: Sample Quantitation Limit

Page 13 of 25 SDG: 629286

2040 Savage Road Charleston SC 29407 - (843) 556-8171 - www.gel.com

Certificate of Analysis

Project:

Client ID:

Analyst Comments

Report Date: August 11, 2023

SOOP00119

SOOP001

Company: Santee Cooper Address: P.O. Box 2946101

OCO3

Moncks Corner, South Carolina 29461

Contact: Ms. Jeanette Gilmetti Project: ABS Lab Analytical

Client Sample ID: AF68732 Sample ID: 629286012

Matrix: GW

Collect Date: 12-JUL-23 14:32
Receive Date: 14-JUL-23
Collector: Client

Parameter	Qualifier	Result U	Uncertainty	MDC	RL	Units	PF	DF Ana	lyst Date	Time Batch	Method
Rad Gas Flow Proporti	onal Counting	;									
GFPC, Ra228, Liquid '	"As Received"	1									
Radium-228	U	1.24	+/-1.50	2.54	3.00	pCi/L		JE1	08/10/23	1038 2472078	1
Radium-226+Radium-2	228 Calculatio	n "See Par	ent Products"								
Radium-226+228 Sum		3.96	+/-1.68			pCi/L		1 NXI	1 08/11/23	1032 2460567	2
Rad Radium-226											
Lucas Cell, Ra226, Liq	լuid "As Recei	ved"									
Radium-226		2.72	+/-0.746	0.393	1.00	pCi/L		LXP	1 08/11/23	0921 2460555	3
The following Analyti	cal Methods w	zere nerfori	med·								

The following Analytical Methods were performed:

Description

1 EPA 904.0/SW846 9320 Modified
2 Calculation
3 EPA 903.1 Modified

Surrogate/Tracer Recovery Test Result Nominal Recovery% Acceptable Limits

Barium-133 Tracer GFPC, Ra228, Liquid "As Received"

Result Nonlinial Recovery Acceptable Lini

71.1 (15%-125%)

Notes:

Method

Counting Uncertainty is calculated at the 95% confidence level (1.96-sigma).

Column headers are defined as follows:

DF: Dilution Factor Lc/LC: Critical Level
DL: Detection Limit PF: Prep Factor
MDA: Minimum Detectable Activity RL: Reporting Limit

MDC: Minimum Detectable Concentration SQL: Sample Quantitation Limit

Page 14 of 25 SDG: 629286

2040 Savage Road Charleston SC 29407 - (843) 556-8171 - www.gel.com

Certificate of Analysis

Report Date: August 11, 2023

Company: Santee Cooper Address: P.O. Box 2946101

OCO3

Moncks Corner, South Carolina 29461

Contact: Ms. Jeanette Gilmetti Project: ABS Lab Analytical

Client Sample ID: AF68741 Sample ID:

Matrix: GW

Collect Date: 11-JUL-23 12:51 Receive Date: 14-JUL-23 Collector: Client

Project: SOOP00119 629286013 Client ID: SOOP001

Parameter	Qualifier	Result	Uncertainty	MDC	RL	Units	PF	DF	Analy	st Date	Time	Batch	Method
Rad Gas Flow Proporti	onal Counting												
GFPC, Ra228, Liquid '	'As Received"												
Radium-228	U	0.845	+/-0.937	1.56	3.00	pCi/L			JE1	08/10/23	0843	2472078	1
Radium-226+Radium-2	228 Calculatio	n "See Pa	arent Products"										
Radium-226+228 Sum		1.64	+/-1.02			pCi/L		1	NXL1	08/11/23	1032	2460567	2
Rad Radium-226													
Lucas Cell, Ra226, Liq	uid "As Recei	ved"											
Radium-226		0.794	+/-0.405	0.422	1.00	pCi/L			LXP1	08/11/23	0921	2460555	3
The following Analytic	cal Methods w	ere perfo	ormed:										
Method	Description		Analyst Comments										
1	EPA 904.0/SW	/846 9320 1	Modified			•				•			

1	E171 704.0/3W 040 7320 Widdined				
2	Calculation				
3	EPA 903.1 Modified				
Surrogate/Tracer Recover	rv Test	Result	Nominal	Recovery%	Acceptable Limits

GFPC, Ra228, Liquid "As Received" 63.5 (15%-125%) Barium-133 Tracer

Counting Uncertainty is calculated at the 95% confidence level (1.96-sigma).

Column headers are defined as follows:

DF: Dilution Factor Lc/LC: Critical Level DL: Detection Limit PF: Prep Factor MDA: Minimum Detectable Activity **RL**: Reporting Limit

MDC: Minimum Detectable Concentration SQL: Sample Quantitation Limit

Page 15 of 25 SDG: 629286

2040 Savage Road Charleston SC 29407 - (843) 556-8171 - www.gel.com

Certificate of Analysis

Report Date: August 11, 2023

Company: Santee Cooper Address: P.O. Box 2946101

OCO3

Moncks Corner, South Carolina 29461

Contact: Ms. Jeanette Gilmetti Project: ABS Lab Analytical

Client Sample ID: AF68745 Sample ID:

Matrix: GW

Collect Date: 11-JUL-23 15:21 Receive Date: 14-JUL-23 Collector: Client

Project: SOOP00119 629286014 Client ID: SOOP001

Parameter	Qualifier	Result	Uncertainty	MDC	RL	Units	PF	DF	Analy	st Date	Time	Batch	Method
Rad Gas Flow Proport	tional Counting												
GFPC, Ra228, Liquid	"As Received"												
Radium-228	U	0.768	+/-0.851	1.42	3.00	pCi/L			JE1	08/10/23	0843	2472078	1
Radium-226+Radium-	-228 Calculation	n "See P	arent Products"										
Radium-226+228 Sum		1.41	+/-0.959			pCi/L		1	NXL1	08/11/23	1032	2460567	2
Rad Radium-226													
Lucas Cell, Ra226, Li	quid "As Recei	ved"											
Radium-226		0.638	+/-0.442	0.588	1.00	pCi/L			LXP1	08/11/23	0921	2460555	3
The following Analytical Methods were performed:													
Method	Description					I	Analys	st Co	mment	S			

1	EPA 904.0/SW846 9320 Modified		•		
2	Calculation				
3	EPA 903.1 Modified				
Surrogate/Tracer Recov	ery Test	Result	Nominal	Recovery%	Acceptable Limits

Barium-133 Tracer 72.8 GFPC, Ra228, Liquid "As Received" (15%-125%)

Notes:

Counting Uncertainty is calculated at the 95% confidence level (1.96-sigma).

Column headers are defined as follows:

DF: Dilution Factor Lc/LC: Critical Level DL: Detection Limit PF: Prep Factor MDA: Minimum Detectable Activity **RL**: Reporting Limit

MDC: Minimum Detectable Concentration SQL: Sample Quantitation Limit

Page 16 of 25 SDG: 629286

2040 Savage Road Charleston, SC 29407 - (843) 556-8171 - www.gel.com

QC Summary

Report Date: August 11, 2023

Santee Cooper P.O. Box 2946101

OCO3

Moncks Corner, South Carolina

Contact: Ms. Jeanette Gilmetti

Workorder: 629286

Parmname	NOM	Sample	Qual	QC	Units	RPD%	REC%	Range	Anlst	Date Time
Rad Gas Flow Batch 2472078 —										
QC1205480715 629286001 DUP Radium-228		3.22		1.58	pCi/L	68.4		(0% - 100%)	JE1	08/10/23 08:43
	Uncertainty	+/-1.48		+/-1.02						
QC1205480716 LCS										
Radium-228	80.5			89.3	pCi/L		111	(75%-125%)		08/10/23 08:43
	Uncertainty			+/-5.27						
QC1205480714 MB										
Radium-228			U	0.162	pCi/L					08/10/23 08:43
	Uncertainty			+/-0.894						
Rad Ra-226 Batch 2460555										
QC1205460757 629286001 DUP										
Radium-226		2.72		1.82	pCi/L	39.5*		(0%-20%)	LXP1	08/11/23 09:21
	Uncertainty	+/-0.749		+/-0.601						
0.012054.0750 1.00										
QC1205460759 LCS Radium-226	26.3			28.2	pCi/L		107	(75%-125%)		08/11/23 09:21
	Uncertainty			+/-2.27	•			,		
QC1205460756 MB Radium-226			U	0.261	pCi/L					08/11/23 09:21
Rudium 220	Uncertainty			+/-0.295	PCFE					00/11/25 05.21
	·									
QC1205460758 629286001 MS Radium-226	131	2.72		126	pCi/L		93.9	(75%-125%)		08/11/23 09:21
Radium-220	Uncertainty	+/-0.749		+/-10.6	pCI/L		73.7	(13/0-12370)		00/11/23 09.21
	o no or turnity									

Notes:

Counting Uncertainty is calculated at the 95% confidence level (1.96-sigma).

The Qualifiers in this report are defined as follows:

U Analyte was analyzed for, but not detected above the MDL, MDA, MDC or LOD.

J Value is estimated

X Consult Case Narrative, Data Summary package, or Project Manager concerning this qualifier

H Analytical holding time was exceeded

< Result is less than value reported

Page 17 of 25 SDG: 629286

Page 1 of 2

2040 Savage Road Charleston, SC 29407 - (843) 556-8171 - www.gel.com

QC Summary

Workorder: 629286 Page 2 of 2 Pa

Parmname	NOM	Sample (Qual	QC	Units	RPD%	REC%	Range	Anlst	Date	Time

- Result is greater than value reported
- Gamma Spectroscopy--Uncertain identification UI
- BDResults are either below the MDC or tracer recovery is low
- h Preparation or preservation holding time was exceeded
- R Sample results are rejected
- RPD of sample and duplicate evaluated using +/-RL. Concentrations are <5X the RL. Qualifier Not Applicable for Radiochemistry.
- N/A RPD or %Recovery limits do not apply.
- ND Analyte concentration is not detected above the detection limit
- M M if above MDC and less than LLD
- NJ Consult Case Narrative, Data Summary package, or Project Manager concerning this qualifier
- FA Failed analysis.
- UJ Gamma Spectroscopy--Uncertain identification
- Q One or more quality control criteria have not been met. Refer to the applicable narrative or DER.
- K Analyte present. Reported value may be biased high. Actual value is expected to be lower.
- UL Not considered detected. The associated number is the reported concentration, which may be inaccurate due to a low bias.
- Analyte present. Reported value may be biased low. Actual value is expected to be higher. L
- N1See case narrative
- Y Other specific qualifiers were required to properly define the results. Consult case narrative.
- ** Analyte is a Tracer compound
- REMP Result > MDC/CL and < RDL M
- J See case narrative for an explanation

N/A indicates that spike recovery limits do not apply when sample concentration exceeds spike conc. by a factor of 4 or more or %RPD not applicable.

- ^ The Relative Percent Difference (RPD) obtained from the sample duplicate (DUP) is evaluated against the acceptance criteria when the sample is greater than five times (5X) the contract required detection limit (RL). In cases where either the sample or duplicate value is less than 5X the RL, a control limit of +/- the RL is used to evaluate the DUP result.
- * Indicates that a Quality Control parameter was not within specifications.

For PS, PSD, and SDILT results, the values listed are the measured amounts, not final concentrations.

Where the analytical method has been performed under NELAP certification, the analysis has met all of the requirements of the NELAC standard unless qualified on the QC Summary.

Page 18 of 25 SDG: 629286

Radiochemistry Technical Case Narrative Santee Cooper SDG #: 629286

Product: GFPC, Ra228, Liquid

<u>Analytical Method:</u> EPA 904.0/SW846 9320 Modified <u>Analytical Procedure:</u> GL-RAD-A-063 REV# 5

Analytical Batch: 2472078

The following samples were analyzed using the above methods and analytical procedure(s).

GEL Sample ID#	Client Sample Identification
629286001	AF68757
629286002	AF68749
629286003	AF68751
629286004	AF68750
629286005	AF68755
629286006	AF68733
629286007	AF68734
629286008	AF68740
629286009	AF68743
629286010	AF68744
629286011	AF68738
629286012	AF68732
629286013	AF68741
629286014	AF68745
1205480714	Method Blank (MB)
1205480715	629286001(AF68757) Sample Duplicate (DUP)
1205480716	Laboratory Control Sample (LCS)

The samples in this SDG were analyzed on an "as received" basis.

Data Summary:

All sample data provided in this report met the acceptance criteria specified in the analytical methods and procedures for initial calibration, continuing calibration, instrument controls and process controls where applicable, with the following exceptions.

Preparation Information

Homogenous Matrix

Samples 629286004 (AF68750), 629286006 (AF68733), 629286007 (AF68734), 629286011 (AF68738) and 629286012 (AF68732) were non-homogenous matrix. sample 12 is brown the others are a light yellow 629286004 (AF68750), 629286006 (AF68733), 629286007 (AF68734), 629286011 (AF68738) and 629286012 (AF68732).

Technical Information

Sample Re-prep/Re-analysis

Samples were reprepped due to high blank activity. The re-analysis is being reported.

Recounts

Page 19 of 25 SDG: 629286

Samples were re-eluted and recounted to verify sample results. The recounts are reported.

Product: Lucas Cell, Ra226, Liquid **Analytical Method:** EPA 903.1 Modified

Analytical Procedure: GL-RAD-A-008 REV# 15

Analytical Batch: 2460555

The following samples were analyzed using the above methods and analytical procedure(s).

GEL Sample ID#	Client Sample Identification
629286001	AF68757
629286002	AF68749
629286003	AF68751
629286004	AF68750
629286005	AF68755
629286006	AF68733
629286007	AF68734
629286008	AF68740
629286009	AF68743
629286010	AF68744
629286011	AF68738
629286012	AF68732
629286013	AF68741
629286014	AF68745
1205460756	Method Blank (MB)
1205460757	629286001(AF68757) Sample Duplicate (DUP)
1205460758	629286001(AF68757) Matrix Spike (MS)
1205460759	Laboratory Control Sample (LCS)

The samples in this SDG were analyzed on an "as received" basis.

Data Summary:

All sample data provided in this report met the acceptance criteria specified in the analytical methods and procedures for initial calibration, continuing calibration, instrument controls and process controls where applicable, with the following exceptions.

Quality Control (QC) Information

Duplication Criteria between QC Sample and Duplicate Sample

The Sample and the Duplicate, (See Below), did not meet the relative percent difference requirement; however, they do meet the relative error ratio requirement with the value listed below.

I	Sample	Analyte	Value
I	1205460757 (AF68757DUP)	Radium-226	RPD 39.5* (0.00%-20.00%) RER 1.5 (0-3)

Miscellaneous Information

Additional Comments

The matrix spike, 1205460758 (AF68757MS), aliquot was reduced to conserve sample volume.

Page 20 of 25 SDG: 629286

Certification Statement

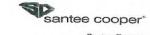
Where the analytical method has been performed under NELAP certification, the analysis has met all of the requirements of the NELAC standard unless otherwise noted in the analytical case narrative.

Page 21 of 25 SDG: 629286

Date Results Needed by:

Customer Email/Report Recipient:

Project/Task/Unit #:


Santee Cooper One Riverwood Drive Moncks Corner, SC 29461 Phone: (843)761-8000 Ext. 5148 Fax: (843)761-4175

Rerun request for any flagged QC

125915 / JM02.08. GØ1.1 / 36500 LCWILLIA @santeecooper.com Yes No Analysis Group Labworks ID# Sample Location/ Comments Matrix(see below Collection Date (Internal use Description (Glass see Collection Tim Method # Sample Collecto Total # of contal Preservative (s below) only) Grab (G) or Composite (C) Reporting limit Bottle type: (G/Plastic-P) 226 87 RAD Misc. sample info RAD Any other notes RAD TATAL WJK 2 2 G X 7/11/23 GW WLF-A2-2 0951 AF68757 1052 WBW - A1-1 AF68749 7/10/23 WLF-AI-2 AF68751 1000 WLF-AI- 1. 1118 AF68750 AF68755 WLF-AI-5 1259 1410 AF 68 733 WAP-17 1415 AF68734 WAP-IT DUP Sample Receiving (Internal Use Only) Relinquished by: Employee# Received by: Employee # Date Time Date Time TEMP (°C):_____ Initial:_ GEL Somoun 0859 35594 7/14/23 0859 7/14/23 Correct pH: Yes Received by: Relinquished by: Employee# Date Time Employee # Date Time Preservative Lot#: BEL 7/4/23 US Relinquished by: Employee# Date Time Received by: Employee # Time Date/Time/Init for preservative: ☐ METALS (all) **Nutrients** MISC. Gypsum Coal **Flyash** Oil □ Ag □ Cu □ Sb TOC BTEX □ Wallboard ☐ Ultimate ☐ Ammonia Trans. Oil Qual. □ A1 □ Fe □ Se DOC ☐ Naphthalene Gypsum(all ☐ % Moisture %Moisture □ LOI □ As $\Box K$ □ Sn ☐ THM/HAA TP/TPO4 below) Color □ Ash ☐ % Carbon □ VOC NH3-N ☐ AIM Acidity □ Sulfur \Box B □ Li □ Sr ☐ Mineral □ Oil & Grease □ TOC Dielectric Strength □ BTUs Analysis □ E. Coli IFT □ Ti ☐ Total metals □ Ba □ Mg CI □ Volatile Matter ☐ Sieve ☐ Total Coliform Dissolved Gases ☐ Soluble Metals NO2 □ Be □ Mn □ Tl □pH □ CHN □ % Moisture Used Oil ☐ Purity (CaSO4) Br ☐ Dissolved As Other Tests: □ % Moisture Flashpoint □ Ca □ Mo OV □ Dissolved Fe ☐ XRF Scan NO₃ □ Sulfites Metals in oil **NPDES** □ Cd □ Na □ Zn ☐ Rad 226 □ HGI (As,Cd,Cr.Ni.Pb ☐ SO4 □pH □ Oil & Grease □ Rad 228 Hg) ☐ Chlorides ☐ Fineness □ Ni □ Hg □ Co □ PCB □ As Particle Size ☐ Particulate Matter TX □ TSS □ Cr □ Pb □ CrVI GOFER Sulfur

Chain of Custody

Date Results Needed by:

Santee Cooper One Riverwood Drive Moncks Corner, SC 29461 Phone: (843)761-8000 Ext. 5148 Fax: (843)761-4175

Customer Email/Report Recipient:		Date	Date Results Needed by:			Project/Task/Unit #:				Rerun request for any flagged QC							
CWILLA @santeecooper.com						1/ 3650	Yes	No No									
															4	Analysi	s Group
Labworks ID (Internal use only)	100	Sample Locatio Description		Collection Date	Collection Time	Sample Collector	Total # of containers	Bottle type: (Glass-G/Plastic-P)	Grab (G) or Composite (C)	Matrix(see below)	Preservative (see	Rej Mi	thod # porting lim sc. sample y other note	info	RAD 226	RAD 228	TOTALRAD ONC.
AF68 74	0 1	NAP- 23		7/12/23	1101	WK ML	2	P	G	GW	2				ı	1	×
AF6874	3	WAP-26			1323										1	1	
AF68744	+ 1	MAP-26 DU	P	1	[328	1	1	1	1	Ţ	1						
AF68738		WAP-21			1228			1									
AF68732	2	WAP-16		1	1432	1											
AF68741	1	WAP-24		7/11/23	1251												
AF68745	5 \	WAP - 27		1	1521	1	1	1	1	1					1	1	_
														14			
Relinquishe	ed by:	Employee#	Date	Time	Receiv	ved by:	Er	mployee	#	Date		Time	TEMP	Receiving (Internation)	l Use Or Initia		
8912 wun		35594	7/14/23	0859	859			GEL 7/14/23 0859			A CONTRACTOR OF THE PARTY OF TH	et pH: Yes N					
Relinquishe	ed by:	Employee#	Date	Time	Receiv	ved by:	Er	Employee # Date Time				0					
20		BEL.	7-14.27	wes	22		6	EL	7	lul	3	195	Preser	vative Lot#:			
Relinquishe	ed by:	Employee#	Date	Time	Receiv	ved by:	Er	nployee		Date		Time					
													Date/1	ime/Init for prese	rvative:		
	ME	TALS (all)	Nut	rients	MI	SC.		Gy	psun	n		Coa		Elyach		Oi	
□Ag	□ Cu	□ Sb	DTO		□ BTEX	<u> </u>	п	Walibo	10 00 miles	30.50	П	Ultimate		Flyash Ammonia	D Tes	100	l Qual.
□ A1	□ Fe	□ Se		OC	☐ Naphtha		195	Gyp	sum(a	II		☐ % Mois	sture	□ LOI	0.5	%Mois	
□ As	\Box K	□ Sn	Control of the second	/TPO4	□ THM/H □ VOC	AA	1	belon Al				□ Ash		□ % Carbon		Color Acidity	
□В	□ Li	Mg Ti F Cl NO2		D-IV	□ Oil & G □ E. Coli	rease		□ TO	C		· New	□ Sulfur □ BTUs		☐ Mineral Analysis	LID		Strength
□ Ba	□ Mg				☐ Total Co	oliform	1		tal meta			□ Volatile	e Matter	☐ Sieve	HI.	Dissolv	ed Gases
□ Be	□ Mn				□ pH □ Dissolve	ed As	1	☐ Pur	rity (Cal	SO4)	0	☐ CHN ther Tests:		☐ % Moisture		ed Oi	
□ Ca	□Мо	□V			□ Dissolve	ed Fe			Moistur fites	е	T 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	XRF Scan		NPDES	T N	lashpo Metals	in oil
□ Cd	□ Na	□ Zn	□ SC		☐ Rad 226 ☐ Rad 228			□pH				HGI Fineness		□ Oil & Grease		(As,Cd. Hg)	.Cr.Ni,Pb
□Со	□Ni	□ Hg	13		□ PCB		1		lorides ticle Siz	ze		Particulate N	fatter	□ As	10.7	ΓX	
□ Cr	□ Pb	☐ CrVI		The state of			0	☐ Sulfur				□ TSS	li GO	FER			

Laboratories LLC SAMPLE RECEIPT & REVIEW FORM Client: SOUP SDG/AR/COC/Work Order: (12) 250 Received By: QG Date Received: 7/14/23 FedEx Express FedEx Ground UPS Field Services Courier Carrier and Tracking Number Suspected Hazard Information "If yet Counts > 100cpm on samples not marked "radioactive", contact the Radiation Safety Group for further investigation. Hazara Class Shipped: UN#: If UN2910, Is the Radioactive Shipment Survey Compliant? Yes_ A)Shipped as a DOT Hazardous? B) Did the client designate the samples are to be notation or radioactive stickers on containers equal client designation. received as radioactive? Maximum Net Counts Observed* (Observed Counts - Area Background Counts): C) Did the RSO classify the samples as CPM / mR/Hr Classified as: Rad 1 Rad 2 Rad 3 radioactive? notation or hazard labels on containers equal client designation. D) Did the client designate samples are hazardous? If D or E is yes, select Hazards below. PCB's Flammable Foreign Soil RCRA Asbestos Beryllium E) Did the RSO identify possible hazards? X X S Sample Receipt Criteria Comments/Qualifiers (Required for Non-Conforming Items) Circle Applicable: Seals broken Damaged container Leaking container Other (describe) Shipping containers received intact and sealed? Chain of custody documents included Circle Applicable: Client contacted and provided COC COC created upon receipt with shipment? Preservation Method: Wet Ice ce Packs Dry ice None Other: Samples requiring cold preservation *all temperatures are eorded in Celsius TEMP: 3 6 within $(0 \le 6 \text{ deg. C})$?* Daily check performed and passed on IR Temperature Device Serial #: IR4-23 temperature gun? Secondary Temperature Device Serial # (If Applicable): Circle Applicable: Seals broken Damaged container Leaking container Other (describe) Sample containers intact and sealed? Sample ID's and Containers Affected: Samples requiring chemical preservation at proper pH? servation added. Lot#: It les, are Encores or Soil Kits present for solids? Yes No NA (If yes, take to VOA Freezer) Do liquid VOA vials contain acid preservation? Yes____No___ Do any samples require Volatile NA__(If unknown, select No) Are liquid VOA vials free of headspace? Yes___ No___ NA_ Analysis? Sample ID's and containers affected: ID's and tests affected: 8 Samples received within holding time? ID's and containers affected: Sample ID's on COC match ID's on Date & time on COC match date & time Circle Applicable: No dates on containers—No times on containers—COC missing info—Other (describe) 10 on bottles? Number of containers received match Circle Applicable: No container count on COC Other (describe) number indicated on COC? Are sample containers identifiable as GEL provided by use of GEL labels? COC form is properly signed in Circle Applicable: Not relinquished Other (describe) relinquished/received sections? Comments (Use Continuation Form if needed):

GL-CHL-SR-001 Rev 7

33 Page ____ of __

PM (or PMA) review: Initials

List of current GEL Certifications as of 11 August 2023

State	Certification
Alabama	42200
Alaska	17-018
Alaska Drinking Water	SC00012
Arkansas	88-0651
CLIA	42D0904046
California	2940
Colorado	SC00012
Connecticut	PH-0169
DoD ELAP/ ISO17025 A2LA	2567.01
Florida NELAP	E87156
Foreign Soils Permit	P330-15-00283, P330-15-00253
Georgia	SC00012
Georgia SDWA	967
Hawaii	SC00012
Idaho	SC00012 SC00012
Illinois NELAP	200029
Indiana	C-SC-01
Kansas NELAP	E-10332
Kentucky SDWA	90129
Kentucky Wastewater	90129
Louisiana Drinking Water	LA024
Louisiana NELAP	03046 (AI33904)
Maine	2019020
	2019020
Maryland Massachusetts	M-SC012
Massachusetts PFAS Approv	Letter
Michigan Michigan	9976
Mississippi	SC00012
Nebraska	NE-OS-26-13
Nevada	SC000122023-4
New Hampshire NELAP	2054
_	
New Jersey NELAP New Mexico	SC002
New York NELAP	SC00012 11501
North Carolina	233
North Carolina SDWA	
	45709
North Dakota	R-158
Oklahoma	2022-160
Pennsylvania NELAP	68-00485
Puerto Rico	SC00012
S. Carolina Radiochem	10120002
Sanitation Districts of L	9255651
South Carolina Chemistry	10120001
Tennessee	TN 02934
Texas NELAP	T104704235-22-20
Utah NELAP	SC000122022-37
Vermont	VT87156
Virginia NELAP	460202
Washington	C780

ANALYTICAL REPORT

PREPARED FOR

Attn: Linda Williams South Carolina Public Service Authority Santee Cooper PO BOX 2946101

Moncks Corner, South Carolina 29461-2901

Generated 9/13/2023 6:37:26 PM Revision 1

JOB DESCRIPTION

125915/JM02.09.G01.1/36500

JOB NUMBER

680-239668-1

Eurofins Savannah 5102 LaRoche Avenue Savannah GA 31404

Eurofins Savannah

Job Notes

This report may not be reproduced except in full, and with written approval from the laboratory. The results relate only to the samples tested. For questions please contact the Project Manager at the e-mail address or telephone number listed on this page.

The test results in this report relate only to the samples as received by the laboratory and will meet all requirements of the methodology, with any exceptions noted. This report shall not be reproduced except in full, without the express written approval of the laboratory. All questions should be directed to the Eurofins Environment Testing Southeast, LLC Project Manager.

Authorization

Generated 9/13/2023 6:37:26 PM Revision 1

Authorized for release by Jerry Lanier, Project Manager I <u>Jerry.Lanier@et.eurofinsus.com</u> (912)250-0281

Table of Contents

Cover Page	1
Table of Contents	3
Case Narrative	4
Sample Summary	5
Method Summary	6
Definitions	7
Detection Summary	8
Client Sample Results	9
QC Sample Results	13
QC Association	14
Chronicle	15
Chain of Custody	16
Receipt Checklists	
·	10

4

5

7

9

10

12

13

Case Narrative

Client: South Carolina Public Service Authority Project/Site: 125915/JM02.09.G01.1/36500

Job ID: 680-239668-1

Job ID: 680-239668-1

Laboratory: Eurofins Savannah

Narrative

Job Narrative 680-239668-1

REVISION

The report being provided is a revision of the original report sent on 9/1/2023. The report (revision 1) is being revised due to Client needs mercury re-run due to failing CCV..

Receipt

The samples were received on 8/30/2023 9:10 AM. Unless otherwise noted below, the samples arrived in good condition, and, where required, properly preserved and on ice. The temperature of the cooler at receipt time was 22.7°C

Metals

No additional analytical or quality issues were noted, other than those described above or in the Definitions/ Glossary page.

6

3

5

6

16

16

13

Sample Summary

Client: South Carolina Public Service Authority Project/Site: 125915/JM02.09.G01.1/36500

Job ID: 680-239668-1

680-239668-4 AF75786 Water 08/28/23 12:35 08/30/23 09:10	Lab Sample ID 680-239668-1 680-239668-2 680-239668-3	Client Sample ID AF75783 AF75784 AF75785	Matrix Water Water Water	08/28/23 11:09	Received 08/30/23 09:10 08/30/23 09:10 08/30/23 09:10
	680-239668-4	AF75786	Water	08/28/23 12:35	08/30/23 09:10

4

5

6

8

9

1 0

12

13

Method Summary

Client: South Carolina Public Service Authority Project/Site: 125915/JM02.09.G01.1/36500

Job ID: 680-239668-1

Method	Method Description	Protocol	Laboratory
7470A	Mercury (CVAA)	SW846	EET SAV
7470A	Preparation, Mercury	SW846	EET SAV

Protocol References:

SW846 = "Test Methods For Evaluating Solid Waste, Physical/Chemical Methods", Third Edition, November 1986 And Its Updates.

Laboratory References:

EET SAV = Eurofins Savannah, 5102 LaRoche Avenue, Savannah, GA 31404, TEL (912)354-7858

3

4

5

6

1

0

10

111

13

Definitions/Glossary

Client: South Carolina Public Service Authority

Job ID: 680-239668-1

Project/Site: 125915/JM02.09.G01.1/36500

Qualifiers

Metals

U Indicates the analyte was analyzed for but not detected.

Glossary

Abbreviation These commonly used abbreviations may or may not be present in this report.

Listed under the "D" column to designate that the result is reported on a dry weight basis

%R Percent Recovery
CFL Contains Free Liquid
CFU Colony Forming Unit
CNF Contains No Free Liquid

DER Duplicate Error Ratio (normalized absolute difference)

Dil Fac Dilution Factor

DL Detection Limit (DoD/DOE)

DL, RA, RE, IN Indicates a Dilution, Re-analysis, Re-extraction, or additional Initial metals/anion analysis of the sample

DLC Decision Level Concentration (Radiochemistry)

EDL Estimated Detection Limit (Dioxin)

LOD Limit of Detection (DoD/DOE)

LOQ Limit of Quantitation (DoD/DOE)

MCL EPA recommended "Maximum Contaminant Level"

MDA Minimum Detectable Activity (Radiochemistry)

MDC Minimum Detectable Concentration (Radiochemistry)

MDL Method Detection Limit
ML Minimum Level (Dioxin)
MPN Most Probable Number
MQL Method Quantitation Limit

NC Not Calculated

ND Not Detected at the reporting limit (or MDL or EDL if shown)

NEG Negative / Absent
POS Positive / Present

PQL Practical Quantitation Limit

PRES Presumptive
QC Quality Control

RER Relative Error Ratio (Radiochemistry)

RL Reporting Limit or Requested Limit (Radiochemistry)

RPD Relative Percent Difference, a measure of the relative difference between two points

TEF Toxicity Equivalent Factor (Dioxin)
TEQ Toxicity Equivalent Quotient (Dioxin)

TNTC Too Numerous To Count

3

-4

•

7

8

10

11

12

Detection Summary

Project/Site: 125915/JM02.09.G01.1/36500	
Client Sample ID: AF75783	Lab Sample ID: 680-239668-1
No Detections.	
Client Sample ID: AF75784	Lab Sample ID: 680-239668-2
No Detections.	
Client Sample ID: AF75785	Lab Sample ID: 680-239668-3
No Detections.	
Client Sample ID: AF75786	Lab Sample ID: 680-239668-4
No Detections.	

This Detection Summary does not include radiochemical test results.

Client: South Carolina Public Service Authority

Job ID: 680-239668-1

Client: South Carolina Public Service Authority Job ID: 680-239668-1

Project/Site: 125915/JM02.09.G01.1/36500 Lab Sample ID: 680-239668-1 **Client Sample ID: AF75783**

Matrix: Water

Date Collected: 08/28/23 13:49 Date Received: 08/30/23 09:10

Method: SW846 7470A - Mercury (CVAA)

Analyte Result Qualifier RL MDL Unit **Prepared** Analyzed Dil Fac 0.200 U 09/11/23 12:16 09/12/23 12:41 Mercury

0.200 ug/L

Client: South Carolina Public Service Authority Job ID: 680-239668-1 Project/Site: 125915/JM02.09.G01.1/36500

Lab Sample ID: 680-239668-2 **Client Sample ID: AF75784** Date Collected: 08/28/23 11:09

Matrix: Water

Date Received: 08/30/23 09:10

Method: SW846 7470A - Mercury (CVAA) Analyte Result Qualifier RL MDL Unit Prepared Analyzed

0.200 U 09/11/23 12:16 09/12/23 12:43 Mercury 0.200 ug/L

Dil Fac

Client: South Carolina Public Service Authority

Project/Site: 125915/JM02.09.G01.1/36500

Job ID: 680-239668-1

Client Sample ID: AF75785 Lab Sample ID: 680-239668-3

Date Collected: 08/28/23 11:14 Matrix: Water

Date Received: 08/30/23 09:10

Method: SW846 7470A - Mercury (CVAA)
Analyte Result Qualifier RL MDL Unit D Prepared Analyzed Dil Fac

Mercury 0.200 U 0.200 ug/L 09/11/23 12:16 09/12/23 12:44 1

2

4

5

6

8

40

11

13

Client: South Carolina Public Service Authority Job ID: 680-239668-1

Project/Site: 125915/JM02.09.G01.1/36500

Lab Sample ID: 680-239668-4 **Client Sample ID: AF75786** Date Collected: 08/28/23 12:35

Matrix: Water

Date Received: 08/30/23 09:10

Method: SW846 7470A - Mercury (CVAA)

Analyte Result Qualifier RL MDL Unit Prepared Analyzed Dil Fac

0.200 U 09/11/23 12:16 09/12/23 12:46 Mercury 0.200 ug/L

QC Sample Results

Client: South Carolina Public Service Authority Project/Site: 125915/JM02.09.G01.1/36500

Job ID: 680-239668-1

Method: 7470A - Mercury (CVAA)

Lab Sample ID: MB 680-797380/1-A **Client Sample ID: Method Blank**

Matrix: Water

Analyte

Analysis Batch: 797609

Prep Type: Total/NA **Prep Batch: 797380**

MB MB **MDL** Unit Dil Fac Result Qualifier RL **Prepared** Analyzed

0.200 09/11/23 11:54 09/12/23 12:08 Mercury 0.200 U ug/L

Lab Sample ID: LCS 680-797380/2-A **Client Sample ID: Lab Control Sample Matrix: Water** Prep Type: Total/NA

Analysis Batch: 797609 **Prep Batch: 797380**

Spike LCS LCS %Rec **Analyte** Added Result Qualifier Unit D %Rec Limits

2.50 2.650 106 80 - 120 Mercury ug/L

QC Association Summary

Client: South Carolina Public Service Authority

Project/Site: 125915/JM02.09.G01.1/36500

Job ID: 680-239668-1

Metals

Prep Batch: 797380

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
680-239668-1	AF75783	Total/NA	Water	7470A	
680-239668-2	AF75784	Total/NA	Water	7470A	
680-239668-3	AF75785	Total/NA	Water	7470A	
680-239668-4	AF75786	Total/NA	Water	7470A	
MB 680-797380/1-A	Method Blank	Total/NA	Water	7470A	
LCS 680-797380/2-A	Lab Control Sample	Total/NA	Water	7470A	

Analysis Batch: 797609

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
680-239668-1	AF75783	Total/NA	Water	7470A	797380
680-239668-2	AF75784	Total/NA	Water	7470A	797380
680-239668-3	AF75785	Total/NA	Water	7470A	797380
680-239668-4	AF75786	Total/NA	Water	7470A	797380
MB 680-797380/1-A	Method Blank	Total/NA	Water	7470A	797380
LCS 680-797380/2-A	Lab Control Sample	Total/NA	Water	7470A	797380

3

4

6

8

46

10

12

Lab Chronicle

Client: South Carolina Public Service Authority Project/Site: 125915/JM02.09.G01.1/36500

Client Sample ID: AF75783

Date Collected: 08/28/23 13:49

Job ID: 680-239668-1

Lab Sample ID: 680-239668-1

Matrix: Water

Date Received: 08/30/23 09:10

	Batch	Batch		Dilution	Batch			Prepared
Prep Type	Type	Method	Run	Factor	Number	Analyst	Lab	or Analyzed
Total/NA	Prep	7470A			797380	DW	EET SAV	09/11/23 12:16
Total/NA	Analysis	7470A		1	797609	DW	EET SAV	09/12/23 12:41

Client Sample ID: AF75784 Lab Sample ID: 680-239668-2

Date Collected: 08/28/23 11:09 **Matrix: Water** Date Received: 08/30/23 09:10

	Batch	Batch		Dilution	Batch			Prepared
Prep Type	Type	Method	Run	Factor	Number	Analyst	Lab	or Analyzed
Total/NA	Prep	7470A			797380	DW	EET SAV	09/11/23 12:16
Total/NA	Analysis	7470A		1	797609	DW	EET SAV	09/12/23 12:43

Client Sample ID: AF75785 Lab Sample ID: 680-239668-3

Date Collected: 08/28/23 11:14 **Matrix: Water** Date Received: 08/30/23 09:10

Batch Batch **Dilution** Batch **Prepared** Method Number Analyst **Prep Type** Type Run **Factor** or Analyzed Lab 09/11/23 12:16 Total/NA Prep 7470A 797380 DW **EET SAV**

Client Sample ID: AF75786 Lab Sample ID: 680-239668-4

1

797609 DW

EET SAV

09/12/23 12:44

Date Collected: 08/28/23 12:35 **Matrix: Water**

Date Received: 08/30/23 09:10

Analysis

7470A

	Batch	Batch		Dilution	Batch			Prepared
Prep Type	Type	Method	Run	Factor	Number	Analyst	Lab	or Analyzed
Total/NA	Prep	7470A			797380	DW	EET SAV	09/11/23 12:16
Total/NA	Analysis	7470A		1	797609	DW	EET SAV	09/12/23 12:46

Laboratory References:

Total/NA

EET SAV = Eurofins Savannah, 5102 LaRoche Avenue, Savannah, GA 31404, TEL (912)354-7858

Eurofins Savannah

O Cr

□ Pb

□ CrVI

Chain of Custody

santee cooper

Santec Cooper One Riverwood Drive Moneks Comer, SC 29461 le: (843)761-8000 Ext. 5148 Fax: (843)761-4175

Customer Email/Report Recipient: Date Results Needed by: Project/Task/Unit #: Rerun request for any flagged QC LINDA . WILLIAMS @santeecooper.com 125915 / JMO2.09.GØ1.1 / 36500 Yes No Analysis Group Labworks ID# Sample Location/ Comments Preservative (see below) Bottle type: (Glass-G/Plastic-P) Matrix(see below) (Internal use Description Collection Date Collection Time Collector Method# Total # of contain only) Reporting limit Grab (G) or Composite (C) Misc. sample info Sample Any other notes \$ BSB BSB €W 8/28/23 G 2 AF 75783 WAP - 27 1349 1 7 7471 RLS 0.2 OR 2 Mg/L х 84 WAP-28 1109 85 WAP-28D 1114 WAP- 29 1235 86 680-239668 Chain of Custody Sample Receiving (Internal Use Only) Date Time Received by: Employee # Employee# Date Time TEMP (°C): Initial: Sproun 35594 8/29/23 1300 Correct pH: Yes No Relinquished by: Employee# Date Time Received by: Time Preservative Lot#: Relinquished by: Employee# Date Time Received by: Employee # Date Time Date/Time/Init for preservative: ☐ METALS (all) MISC. Gypsum Coal DAg □ Cu □ Sb □ BTEX
□ Naphthalene
□ THM/HAA □ TOC Wallboard Trans. Oil Qual. □ Ultimate O Al □ Fe □ Se □ DOC Gypsum(all ☐ % Moisture □ As □ Sn below)

AIM
TOC OK □ ТР/ТРО4 E ASE □ % Fa OVOC □ NH3-N □ Sr □ Sulfur DВ □ Li □ Oil & Grease Analysis DE D BTUs ☐ E. Coli
☐ Total Coliform □ Ba O Ti □ Mg □ Volatile Matter □ SO4 Ве O TI □ Mn □pH DCHN 1 1/2 1/2 1/2 1/2 Used Oil Dissolved As Other Tests □ Ca OV □Мо ☐ Dissolved Fe
☐ Rad 226 □ Cđ □ Na □ Zn □ pH
□ Chlorides □ Oil & Grease □ Rad 228
□ PCB O Co □Ni XHg □ As
□ TSS ☐ Particulate Matter

Matrix codes: GW-groundwater, DW-drinking water, SW-surface water, WW-waste water, BW-boiler water, L-limestone, Oil-oil, S-Soil, SL-solid, C-coal, G-gypsum, FA-flyash, BA-bottom ash, M-misc (describe in comment section)

Preservative code. 1=<4°C 2=HNO2 3=H3SO4 4-HCl 5=Na2S2O3 6-Other (Specify)

■ Particle Size

GOFER

USDA Gyp RLs

		Units	Screening Value	
	Ag	mg kg		
	Al	g kg		
	As	mg kg	13.1	6010
	В	mg kg	200	
	Ва	mg kg	1000	
_	Be	mg kg	? 2.5	6020
	Ca	g kg		6010
	Cd	mg kg	1	6010
	Co	mg kg	20	
-	Cr(III)	mg kg	100	010
	Cu	mg kg	95	
	Fe	g kg		
-	Hg	mg kg	2.5	
	Mg	g kg.		6010
	Mn	mg kg	1500	
	Мо	mg kg	10	6010
-	Ni	mg kg	100	6010
	Pb	mg kg	30	
1	-5	gkg	220	CFL
-	Sb	mg kg	1.5	6020
-	Se	mg kg	50	6010
	Sn	mg kg		
_	TI	mg kg	1	6020
1	٧	mg kg	136	
	Zn	mg kg	125	
	Rad 226	oCi/e	10	

10 16

Continue analysis monthly Analyze quarterly

Page 17 of 19

Login Sample Receipt Checklist

Client: South Carolina Public Service Authority

Job Number: 680-239668-1

Login Number: 239668 List Source: Eurofins Savannah

List Number: 1

Creator: Johnson, Corey M

oreator, comison, corey in		
Question	Answer	Comment
Radioactivity wasn't checked or is = background as measured by a survey meter.</td <td>N/A</td> <td></td>	N/A	
The cooler's custody seal, if present, is intact.	True	
Sample custody seals, if present, are intact.	True	
The cooler or samples do not appear to have been compromised or tampered with.	True	
Samples were received on ice.	True	
Cooler Temperature is acceptable.	True	
Cooler Temperature is recorded.	True	
COC is present.	True	
COC is filled out in ink and legible.	True	
COC is filled out with all pertinent information.	True	
Is the Field Sampler's name present on COC?	True	
There are no discrepancies between the containers received and the COC.	True	
Samples are received within Holding Time (excluding tests with immediate HTs)	True	
Sample containers have legible labels.	True	
Containers are not broken or leaking.	True	
Sample collection date/times are provided.	True	
Appropriate sample containers are used.	True	
Sample bottles are completely filled.	True	
Sample Preservation Verified.	N/A	
There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs	True	
Containers requiring zero headspace have no headspace or bubble is <6mm (1/4").	N/A	
Multiphasic samples are not present.	True	
Samples do not require splitting or compositing.	True	
Residual Chlorine Checked.	N/A	

2

3

4

5

0

9

11

13

Accreditation/Certification Summary

Client: South Carolina Public Service Authority
Project/Site: 125915/JM02.09.G01.1/36500

Job ID: 680-239668-1

Laboratory: Eurofins Savannah

The accreditations/certifications listed below are applicable to this report.

Authority	Program	Identification Number	Expiration Date
South Carolina	State	98001	06-30-23 *

4

_

9

4 4

12

10

 $^{^*\} Accreditation/Certification\ renewal\ pending\ -\ accreditation/certification\ considered\ valid.$

ANALYTICAL REPORT

PREPARED FOR

Attn: Linda Williams
South Carolina Public Service Authority
Santee Cooper
PO BOX 2946101
Moncks Corner, South Carolina 29461-2901

Generated 8/16/2023 12:48:34 PM Revision 1

JOB DESCRIPTION

125915/JM02.09.G01.1/36500

JOB NUMBER

680-238537-1

Eurofins Savannah 5102 LaRoche Avenue Savannah GA 31404

Eurofins Savannah

Job Notes

This report may not be reproduced except in full, and with written approval from the laboratory. The results relate only to the samples tested. For questions please contact the Project Manager at the e-mail address or telephone number listed on this page.

The test results in this report relate only to the samples as received by the laboratory and will meet all requirements of the methodology, with any exceptions noted. This report shall not be reproduced except in full, without the express written approval of the laboratory. All questions should be directed to the Eurofins Environment Testing Southeast, LLC Project Manager.

Authorization

Generated 8/16/2023 12:48:34 PM Revision 1

Authorized for release by Jerry Lanier, Project Manager I <u>Jerry.Lanier@et.eurofinsus.com</u> (912)250-0281

2

4

5

6

8

4.0

. .

12

13

Table of Contents

Cover Page	1
Table of Contents	3
Case Narrative	4
Sample Summary	5
Method Summary	6
Definitions	7
Detection Summary	8
Client Sample Results	9
QC Sample Results	13
QC Association	16
Chronicle	18
Chain of Custody	19
Receipt Checklists	21
Cartification Summary	22

4

6

8

9

10

12

13

Case Narrative

Client: South Carolina Public Service Authority Project/Site: 125915/JM02.09.G01.1/36500

Job ID: 680-238537-1

Job ID: 680-238537-1

Laboratory: Eurofins Savannah

Narrative

Job Narrative 680-238537-1

REVISION

The report being provided is a revision of the original report sent on 8/9/2023. The report (revision 1) is being revised due to Client is requesting add'l metals to be reported under method 6020A (AI, Cu, Fe, Mg, Ni & Zn).

Receipt

The samples were received on 8/2/2023 10:45 AM. Unless otherwise noted below, the samples arrived in good condition, and, where required, properly preserved and on ice. The temperature of the cooler at receipt time was 4.3°C

Metals

No additional analytical or quality issues were noted, other than those described above or in the Definitions/ Glossary page.

3

5

6

1

10

12

13

Sample Summary

Client: South Carolina Public Service Authority Project/Site: 125915/JM02.09.G01.1/36500

Job ID: 680-238537-1

680-238537-4 Af68717 Water 06/27/23 13:57 08/02/23 10:45	Lab Sample ID 680-238537-1 680-238537-2 680-238537-3	Client Sample ID AF68739 Af68748 Af68711	Matrix Water Water Water	06/27/23 10:15	Received 08/02/23 10:45 08/02/23 10:45 08/02/23 10:45
	880-238537-4	Af68717	Water	06/27/23 13:57	08/02/23 10:45

4

_

6

0

9

10

46

13

Method Summary

Client: South Carolina Public Service Authority Project/Site: 125915/JM02.09.G01.1/36500

Job ID: 680-238537-1

Method	Method Description	Protocol	Laboratory
6010D	Metals (ICP)	SW846	EET SAV
6020B	Metals (ICP/MS)	SW846	EET SAV
3005A	Preparation, Total Recoverable or Dissolved Metals	SW846	EET SAV

Protocol References:

SW846 = "Test Methods For Evaluating Solid Waste, Physical/Chemical Methods", Third Edition, November 1986 And Its Updates.

Laboratory References:

EET SAV = Eurofins Savannah, 5102 LaRoche Avenue, Savannah, GA 31404, TEL (912)354-7858

2

3

7

8

4.6

11

12

Definitions/Glossary

Client: South Carolina Public Service Authority

Job ID: 680-238537-1

Project/Site: 125915/JM02.09.G01.1/36500

Qualifiers

Metals

Qualifier Qualifier Description

U Indicates the analyte was analyzed for but not detected.

Glossary

Abbreviation These commonly used abbreviations may or may not be present in this report.

Listed under the "D" column to designate that the result is reported on a dry weight basis

%R Percent Recovery
CFL Contains Free Liquid
CFU Colony Forming Unit
CNF Contains No Free Liquid

DER Duplicate Error Ratio (normalized absolute difference)

Dil Fac Dilution Factor

DL Detection Limit (DoD/DOE)

DL, RA, RE, IN Indicates a Dilution, Re-analysis, Re-extraction, or additional Initial metals/anion analysis of the sample

DLC Decision Level Concentration (Radiochemistry)

EDL Estimated Detection Limit (Dioxin)

LOD Limit of Detection (DoD/DOE)

LOQ Limit of Quantitation (DoD/DOE)

MCL EPA recommended "Maximum Contaminant Level"

MDA Minimum Detectable Activity (Radiochemistry)

MDC Minimum Detectable Concentration (Radiochemistry)

MDL Method Detection Limit
ML Minimum Level (Dioxin)
MPN Most Probable Number
MQL Method Quantitation Limit

NC Not Calculated

ND Not Detected at the reporting limit (or MDL or EDL if shown)

NEG Negative / Absent
POS Positive / Present

PQL Practical Quantitation Limit

PRES Presumptive
QC Quality Control

RER Relative Error Ratio (Radiochemistry)

RL Reporting Limit or Requested Limit (Radiochemistry)

RPD Relative Percent Difference, a measure of the relative difference between two points

TEF Toxicity Equivalent Factor (Dioxin)
TEQ Toxicity Equivalent Quotient (Dioxin)

TNTC Too Numerous To Count

3

4

,

J

6

Q

9

10

12

13

Detection Summary

Client: South Carolina Public Service Authority Project/Site: 125915/JM02.09.G01.1/36500

Client Sample ID: AF68739

Job ID: 680-238537-1

Lab Sample ID: 680-238537-1

Lab Sample ID: 680-238537-2

Lab Sample ID: 680-238537-3

Lab Sample ID: 680-238537-4

Analyte	Result Qu	ualifier RL	MDL U	Jnit	Dil Fac	D	Method	Prep Type
Calcium	227000	500	u	ıg/L	1		6010D	Total
Arsenic	8.46	3.00	u	ıg/L	1		6020B	Recoverable Total
								Recoverable
Barium	97.2	5.00	u	ıg/L	1		6020B	Total Recoverable
Iron	17200	100	u	ıg/L	1		6020B	Total
Magnesium	8080	250	u	ıg/L	1		6020B	Recoverable Total Recoverable

Client Sample ID: Af68748

Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type
Calcium	3260		500		ug/L	1		6010D	Total
									Recoverable
Aluminum	938		100		ug/L	1		6020B	Total
									Recoverable
Barium	53.4		5.00		ug/L	1		6020B	Total
									Recoverable
Cobalt	2.00		0.500		ug/L	1		6020B	Total
									Recoverable
Magnesium	1280		250		ug/L	1		6020B	Total
									Recoverable

Client Sample ID: Af68711

Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type
Calcium	8490		500		ug/L	1		6010D	Total
									Recoverable
Aluminum	1140		100		ug/L	1		6020B	Total
									Recoverable
Arsenic	8.50		3.00		ug/L	1		6020B	Total
									Recoverable
Barium	77.1		5.00		ug/L	1		6020B	Total
									Recoverable
Cobalt	0.595		0.500		ug/L	1		6020B	Total
									Recoverable
Iron	2200		100		ug/L	1		6020B	Total
									Recoverable
Magnesium	733		250		ug/L	1		6020B	Total
									Recoverable

Client Sample ID: Af68717

Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type
Calcium	605000		500		ug/L	1		6010D	Total
									Recoverable
Barium	42.8		5.00		ug/L	1		6020B	Total
									Recoverable
Iron	169		100		ug/L	1		6020B	Total
									Recoverable
Magnesium	13800		250		ug/L	1		6020B	Total
									Recoverable

This Detection Summary does not include radiochemical test results.

Eurofins Savannah

Client: South Carolina Public Service Authority Job ID: 680-238537-1 Project/Site: 125915/JM02.09.G01.1/36500

Client Sample ID: AF68739

Lab Sample ID: 680-238537-1

Matrix: Water

Date Collected: 07/05/23 10:44 Date Received: 08/02/23 10:45

Method: SW846 6010	D - Metals (ICP) - To	tal Recover	able						
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Calcium	227000		500		ug/L		08/03/23 06:38	08/04/23 17:08	1
Selenium	20.0	U	20.0		ug/L		08/03/23 06:38	08/04/23 17:08	1
Method: SW846 6020	B - Metals (ICP/MS)	- Total Reco	overable						
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Aluminum	100	U	100		ug/L		08/03/23 06:38	08/08/23 15:01	1
Antimony	5.00	U	5.00		ug/L		08/03/23 06:38	08/08/23 15:01	1
Arsenic	8.46		3.00		ug/L		08/03/23 06:38	08/08/23 15:01	1
Barium	97.2		5.00		ug/L		08/03/23 06:38	08/08/23 15:01	1
Beryllium	0.500	U	0.500		ug/L		08/03/23 06:38	08/08/23 15:01	1
Cadmium	0.500	U	0.500		ug/L		08/03/23 06:38	08/08/23 15:01	1
Chromium	5.00	U	5.00		ug/L		08/03/23 06:38	08/08/23 15:01	1
Cobalt	0.500	U	0.500		ug/L		08/03/23 06:38	08/08/23 15:01	1
Copper	5.00	U	5.00		ug/L		08/03/23 06:38	08/08/23 15:01	1
Iron	17200		100		ug/L		08/03/23 06:38	08/08/23 15:01	1
Lead	2.50	U	2.50		ug/L		08/03/23 06:38	08/08/23 15:01	1
Magnesium	8080		250		ug/L		08/03/23 06:38	08/08/23 15:01	1
Nickel	5.00	U	5.00		ug/L		08/03/23 06:38	08/08/23 15:01	1
Thallium	1.00	U	1.00		ug/L		08/03/23 06:38	08/08/23 15:01	1
Zinc	20.0	U	20.0		ug/L		08/03/23 06:38	08/08/23 15:01	1

Client: South Carolina Public Service Authority

Project/Site: 125915/JM02.09.G01.1/36500

Job ID: 680-238537-1

Client Sample ID: Af68748

Lab Sample ID: 680-238537-2

Matrix: Water

Date Collected: 06/27/23 10:15 Date Received: 08/02/23 10:45

Method: SW846 6010D -	Metals (ICP) - To	tal Recover	able						
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Calcium	3260		500		ug/L		08/03/23 05:51	08/03/23 15:18	1
Selenium	20.0	U	20.0		ug/L		08/03/23 05:51	08/03/23 15:18	1
Method: SW846 6020B -	Metals (ICP/MS)	- Total Reco	overable						
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Aluminum	938		100		ug/L		08/03/23 05:51	08/07/23 16:42	1
Antimony	5.00	U	5.00		ug/L		08/03/23 05:51	08/07/23 16:42	1
Arsenic	3.00	U	3.00		ug/L		08/03/23 05:51	08/07/23 16:42	1
Barium	53.4		5.00		ug/L		08/03/23 05:51	08/07/23 16:42	1
Beryllium	0.500	U	0.500		ug/L		08/03/23 05:51	08/07/23 16:42	1
Cadmium	0.500	U	0.500		ug/L		08/03/23 05:51	08/07/23 16:42	1
Chromium	5.00	U	5.00		ug/L		08/03/23 05:51	08/07/23 16:42	1
Cobalt	2.00		0.500		ug/L		08/03/23 05:51	08/07/23 16:42	1
Copper	5.00	U	5.00		ug/L		08/03/23 05:51	08/07/23 16:42	1
Iron	100	U	100		ug/L		08/03/23 05:51	08/07/23 16:42	1
Lead	2.50	U	2.50		ug/L		08/03/23 05:51	08/07/23 16:42	1
Magnesium	1280		250		ug/L		08/03/23 05:51	08/07/23 16:42	1
Nickel	5.00	U	5.00		ug/L		08/03/23 05:51	08/07/23 16:42	1
Thallium	1.00	U	1.00		ug/L		08/03/23 05:51	08/07/23 16:42	1
Zinc	20.0	U	20.0		ug/L		08/03/23 05:51	08/07/23 16:42	1

2

5

6

8

9

11

14

Client: South Carolina Public Service Authority

Job ID: 680-238537-1

Project/Site: 125915/JM02.09.G01.1/36500

Client Sample ID: Af68711 Lab Sample ID: 680-238537-3

Matrix: Water

08/03/23 06:38 08/08/23 15:05

Date Collected: 06/27/23 11:26 Date Received: 08/02/23 10:45

Zinc

Method: SW846 6010E	O - Metals (ICP) - To	tal Recover	able						
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Calcium	8490		500		ug/L		08/03/23 06:38	08/04/23 17:10	1
Selenium	20.0	U	20.0		ug/L		08/03/23 06:38	08/04/23 17:10	1
Method: SW846 6020E	B - Metals (ICP/MS)	- Total Reco	overable						
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Aluminum	1140		100		ug/L		08/03/23 06:38	08/08/23 15:05	1
Antimony	5.00	U	5.00		ug/L		08/03/23 06:38	08/08/23 15:05	1
Arsenic	8.50		3.00		ug/L		08/03/23 06:38	08/08/23 15:05	1
Barium	77.1		5.00		ug/L		08/03/23 06:38	08/08/23 15:05	1
Beryllium	0.500	U	0.500		ug/L		08/03/23 06:38	08/08/23 15:05	1
Cadmium	0.500	U	0.500		ug/L		08/03/23 06:38	08/08/23 15:05	1
Chromium	5.00	U	5.00		ug/L		08/03/23 06:38	08/08/23 15:05	1
Cobalt	0.595		0.500		ug/L		08/03/23 06:38	08/08/23 15:05	1
Copper	5.00	U	5.00		ug/L		08/03/23 06:38	08/08/23 15:05	1
Iron	2200		100		ug/L		08/03/23 06:38	08/08/23 15:05	1
Lead	2.50	U	2.50		ug/L		08/03/23 06:38	08/08/23 15:05	1
Magnesium	733		250		ug/L		08/03/23 06:38	08/08/23 15:05	1
Nickel	5.00	U	5.00		ug/L		08/03/23 06:38	08/08/23 15:05	1
Thallium	1.00	U	1.00		ug/L		08/03/23 06:38	08/08/23 15:05	1

20.0

ug/L

20.0 U

Client: South Carolina Public Service Authority

Job ID: 680-238537-1

Project/Site: 125915/JM02.09.G01.1/36500

Client Sample ID: Af68717 Lab Sample ID: 680-238537-4

. Matrix: Water

Date Collected: 06/27/23 13:57 Date Received: 08/02/23 10:45

Method: SW846 6010	D - Metals (ICP) - To	tal Recover	able						
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Calcium	605000		500		ug/L		08/03/23 06:38	08/04/23 17:13	1
Selenium	20.0	U	20.0		ug/L		08/03/23 06:38	08/04/23 17:13	1
Method: SW846 6020	B - Metals (ICP/MS)	- Total Reco	overable						
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Aluminum	100	U	100		ug/L		08/03/23 06:38	08/08/23 15:09	1
Antimony	5.00	U	5.00		ug/L		08/03/23 06:38	08/08/23 15:09	1
Arsenic	3.00	U	3.00		ug/L		08/03/23 06:38	08/08/23 15:09	1
Barium	42.8		5.00		ug/L		08/03/23 06:38	08/08/23 15:09	1
Beryllium	0.500	U	0.500		ug/L		08/03/23 06:38	08/08/23 15:09	1
Cadmium	0.500	U	0.500		ug/L		08/03/23 06:38	08/08/23 15:09	1
Chromium	5.00	U	5.00		ug/L		08/03/23 06:38	08/08/23 15:09	1
Cobalt	0.500	U	0.500		ug/L		08/03/23 06:38	08/08/23 15:09	1
Copper	5.00	U	5.00		ug/L		08/03/23 06:38	08/08/23 15:09	1
Iron	169		100		ug/L		08/03/23 06:38	08/08/23 15:09	1
Lead	2.50	U	2.50		ug/L		08/03/23 06:38	08/08/23 15:09	1
Magnesium	13800		250		ug/L		08/03/23 06:38	08/08/23 15:09	1
Nickel	5.00	U	5.00		ug/L		08/03/23 06:38	08/08/23 15:09	1
Thallium	1.00	U	1.00		ug/L		08/03/23 06:38	08/08/23 15:09	1
Zinc	20.0	U	20.0		ug/L		08/03/23 06:38	08/08/23 15:09	1

2

6

8

3

11

12

Client: South Carolina Public Service Authority Job ID: 680-238537-1 Project/Site: 125915/JM02.09.G01.1/36500

Method: 6010D - Metals (ICP)

Lab Sample ID: MB 680-791516/1-A

Matrix: Water

Analysis Batch: 791719

Client Sample ID: Method Blank Prep Type: Total Recoverable Prep Batch: 791516

	MB	MB						
Analyte	Result	Qualifier	RL	MDL Unit	: D	Prepared	Analyzed	Dil Fac
Calcium	500	U	500	ug/L		08/03/23 05:51	08/03/23 14:52	1
Selenium	20.0	U	20.0	ug/L	-	08/03/23 05:51	08/03/23 14:52	1

Lab Sample ID: LCS 680-791516/2-A

Matrix: Water

Analysis Batch: 791719

Client Sample ID: Lab Control Sample Prep Type: Total Recoverable Prep Batch: 791516

	Spike	LCS	LCS			%Rec	
Analyte	Added	Result	Qualifier	Unit D	%Rec	Limits	
Calcium	5000	4950		ug/L	99	80 - 120	
Selenium	100	94.39		ug/L	94	80 - 120	

Lab Sample ID: MB 680-791519/1-A

Matrix: Water

Analysis Batch: 791897

Client Sample ID: Method Blank Prep Type: Total Recoverable

Prep Batch: 791519

	MB	MB							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Calcium	500	U	500		ug/L		08/03/23 06:38	08/04/23 16:50	1
Selenium	20.0	U	20.0		ug/L		08/03/23 06:38	08/04/23 16:50	1

Lab Sample ID: LCS 680-791519/2-A

Matrix: Water

Analysis Batch: 791897

Client Sample ID: Lab Control Sample Prep Type: Total Recoverable Prep Batch: 791519

	Spike	LCS	LCS				%Rec	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Calcium	5000	4801		ug/L		96	80 - 120	
Selenium	100	99.73		ug/L		100	80 - 120	

Method: 6020B - Metals (ICP/MS)

Lab Sample ID: MB 680-791513/1-A

Matrix: Water

Analysis Ratch: 792230

Client Sample ID: Method Blank Prep Type: Total Recoverable Prep Ratch: 791513

Analysis Batch: 792230								Prep Batch:	791513
	MB	MB							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Aluminum	100	U	100		ug/L		08/03/23 05:51	08/07/23 15:57	1
Antimony	5.00	U	5.00		ug/L		08/03/23 05:51	08/07/23 15:57	1
Arsenic	3.00	U	3.00		ug/L		08/03/23 05:51	08/07/23 15:57	1
Barium	5.00	U	5.00		ug/L		08/03/23 05:51	08/07/23 15:57	1
Beryllium	0.500	U	0.500		ug/L		08/03/23 05:51	08/07/23 15:57	1
Cadmium	0.500	U	0.500		ug/L		08/03/23 05:51	08/07/23 15:57	1
Chromium	5.00	U	5.00		ug/L		08/03/23 05:51	08/07/23 15:57	1
Cobalt	0.500	U	0.500		ug/L		08/03/23 05:51	08/07/23 15:57	1
Copper	5.00	U	5.00		ug/L		08/03/23 05:51	08/07/23 15:57	1
Iron	100	U	100		ug/L		08/03/23 05:51	08/07/23 15:57	1
Lead	2.50	U	2.50		ug/L		08/03/23 05:51	08/07/23 15:57	1
Magnesium	250	U	250		ug/L		08/03/23 05:51	08/07/23 15:57	1
Nickel	5.00	U	5.00		ug/L		08/03/23 05:51	08/07/23 15:57	1
Thallium	1.00	U	1.00		ug/L		08/03/23 05:51	08/07/23 15:57	1
Zinc	20.0	U	20.0		ug/L		08/03/23 05:51	08/07/23 15:57	1

Eurofins Savannah

Job ID: 680-238537-1

Client: South Carolina Public Service Authority Project/Site: 125915/JM02.09.G01.1/36500

Method: 6020B - Metals (ICP/MS) (Continued)

Lab Sample ID: LCS 680-791513/2-A

Matrix: Water

Analysis Batch: 792230

Client Sample ID: Lab Control Sample

Prep Type: Total Recoverable

Prep Batch: 791513

	Spike	LCS	LCS				%Rec	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Aluminum	5050	5120		ug/L		101	80 - 120	
Antimony	50.0	50.97		ug/L		102	80 _ 120	
Arsenic	100	106.4		ug/L		106	80 _ 120	
Barium	100	102.9		ug/L		103	80 - 120	
Beryllium	50.0	49.97		ug/L		100	80 _ 120	
Cadmium	50.0	50.92		ug/L		102	80 _ 120	
Chromium	100	109.3		ug/L		109	80 - 120	
Cobalt	50.0	55.15		ug/L		110	80 - 120	
Copper	100	113.2		ug/L		113	80 - 120	
Iron	4990	5167		ug/L		104	80 - 120	
Lead	500	530.5		ug/L		106	80 - 120	
Magnesium	5000	4977		ug/L		100	80 - 120	
Nickel	100	110.4		ug/L		110	80 - 120	
Thallium	50.0	50.20		ug/L		100	80 - 120	
Zinc	100	110.4		ug/L		110	80 - 120	

Lab Sample ID: MB 680-791518/1-A

Matrix: Water

Analysis Batch: 792490

Client Sample ID: Method Blank Prep Type: Total Recoverable Prep Batch: 791518

Alialysis Dalcii. 132430								Frep Batch.	191910
	MB	MB							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Aluminum	100	U	100		ug/L		08/03/23 06:38	08/08/23 14:41	1
Antimony	5.00	U	5.00		ug/L		08/03/23 06:38	08/08/23 14:41	1
Arsenic	3.00	U	3.00		ug/L		08/03/23 06:38	08/08/23 14:41	1
Barium	5.00	U	5.00		ug/L		08/03/23 06:38	08/08/23 14:41	1
Beryllium	0.500	U	0.500		ug/L		08/03/23 06:38	08/08/23 14:41	1
Cadmium	0.500	U	0.500		ug/L		08/03/23 06:38	08/08/23 14:41	1
Chromium	5.00	U	5.00		ug/L		08/03/23 06:38	08/08/23 14:41	1
Cobalt	0.500	U	0.500		ug/L		08/03/23 06:38	08/08/23 14:41	1
Copper	5.00	U	5.00		ug/L		08/03/23 06:38	08/08/23 14:41	1
Iron	100	U	100		ug/L		08/03/23 06:38	08/08/23 14:41	1
Lead	2.50	U	2.50		ug/L		08/03/23 06:38	08/08/23 14:41	1
Magnesium	250	U	250		ug/L		08/03/23 06:38	08/08/23 14:41	1
Nickel	5.00	U	5.00		ug/L		08/03/23 06:38	08/08/23 14:41	1
Thallium	1.00	U	1.00		ug/L		08/03/23 06:38	08/08/23 14:41	1
Zinc	20.0	U	20.0		ug/L		08/03/23 06:38	08/08/23 14:41	1

Lab Sample ID: LCS 680-791518/2-A

Matrix: Water

Analysis Batch: 792490

Client Sample ID: Lab Control Sample
Prep Type: Total Recoverable
Prep Batch: 791518

Analysis Batom 102400							Trep Baton: To To To	
	Spike	LCS	LCS				%Rec	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Aluminum	5050	4652		ug/L		92	80 - 120	
Antimony	50.0	46.52		ug/L		93	80 _ 120	
Arsenic	100	97.80		ug/L		98	80 - 120	
Barium	100	95.86		ug/L		96	80 - 120	
Beryllium	50.0	48.56		ug/L		97	80 _ 120	
Cadmium	50.0	46.20		ug/L		92	80 - 120	
Chromium	100	100.4		ug/L		100	80 - 120	

Eurofins Savannah

Page 14 of 22

3

4

6

8

10

12

13

QC Sample Results

Client: South Carolina Public Service Authority Job ID: 680-238537-1 Project/Site: 125915/JM02.09.G01.1/36500

Method: 6020B - Metals (ICP/MS) (Continued)

Zinc

Lab Sample ID: LCS 680-791518/2-A Matrix: Water Analysis Batch: 792490				Client Sample ID: Lab Control Sai Prep Type: Total Recover Prep Batch: 79						
	Spike	LCS	LCS				%Rec			
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits			
Cobalt	50.0	47.54		ug/L		95	80 - 120			
Copper	100	102.8		ug/L		103	80 - 120			
Iron	4990	5052		ug/L		101	80 - 120			
Lead	500	485.1		ug/L		97	80 - 120			
Magnesium	5000	4591		ug/L		92	80 - 120			
Nickel	100	98.89		ug/L		99	80 - 120			
Thallium	50.0	46.82		ug/L		94	80 - 120			

101.9

ug/L

100

102 80 - 120

QC Association Summary

Client: South Carolina Public Service Authority Job ID: 680-238537-1 Project/Site: 125915/JM02.09.G01.1/36500

Metals

Pre	p Batc	h: 79	1513
-----	--------	-------	------

Lab Sample ID 680-238537-2	Client Sample ID Af68748	Prep Type Total Recoverable	Matrix Water	Method 3005A	Prep Batch
MB 680-791513/1-A	Method Blank	Total Recoverable	Water	3005A	
LCS 680-791513/2-A	Lab Control Sample	Total Recoverable	Water	3005A	

Prep Batch: 791516

Lab Sample ID 680-238537-2	Client Sample ID Af68748	Prep Type Total Recoverable	Matrix Water	Method 3005A	Prep Batch
MB 680-791516/1-A	Method Blank	Total Recoverable	Water	3005A	
LCS 680-791516/2-A	Lab Control Sample	Total Recoverable	Water	3005A	

Prep Batch: 791518

Lab Sample ID 680-238537-1	Client Sample ID AF68739	Prep Type Total Recoverable	Matrix Water	Method 3005A	Prep Batch
680-238537-3	Af68711	Total Recoverable	Water	3005A	
680-238537-4	Af68717	Total Recoverable	Water	3005A	
MB 680-791518/1-A	Method Blank	Total Recoverable	Water	3005A	
LCS 680-791518/2-A	Lab Control Sample	Total Recoverable	Water	3005A	

Prep Batch: 791519

Lab Sample ID 680-238537-1	Client Sample ID AF68739	Prep Type Total Recoverable	Matrix Water	Method 3005A	Prep Batch
680-238537-3	Af68711	Total Recoverable	Water	3005A	
680-238537-4	Af68717	Total Recoverable	Water	3005A	
MB 680-791519/1-A	Method Blank	Total Recoverable	Water	3005A	
LCS 680-791519/2-A	Lab Control Sample	Total Recoverable	Water	3005A	

Analysis Batch: 791719

Lab Sample ID		Client Sample ID	Prep Type	Matrix	Method	Prep Batch
	680-238537-2	Af68748	Total Recoverable	Water	6010D	791516
	MB 680-791516/1-A	Method Blank	Total Recoverable	Water	6010D	791516
	LCS 680-791516/2-A	Lab Control Sample	Total Recoverable	Water	6010D	791516

Analysis Batch: 791897

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
680-238537-1	AF68739	Total Recoverable	Water	6010D	791519
680-238537-3	Af68711	Total Recoverable	Water	6010D	791519
680-238537-4	Af68717	Total Recoverable	Water	6010D	791519
MB 680-791519/1-A	Method Blank	Total Recoverable	Water	6010D	791519
LCS 680-791519/2-A	Lab Control Sample	Total Recoverable	Water	6010D	791519

Analysis Batch: 792230

Lab Sample ID 680-238537-2	Client Sample ID Af68748	Prep Type Total Recoverable	Matrix Water	Method 6020B	Prep Batch 791513
MB 680-791513/1-A	Method Blank	Total Recoverable	Water	6020B	791513
LCS 680-791513/2-A	Lab Control Sample	Total Recoverable	Water	6020B	791513

Analysis Batch: 792490

Lab Sample ID 680-238537-1	Client Sample ID AF68739	Prep Type Total Recoverable	Matrix Water	Method 6020B	Prep Batch 791518
680-238537-3	Af68711	Total Recoverable	Water	6020B	791518
680-238537-4	Af68717	Total Recoverable	Water	6020B	791518

Eurofins Savannah

Page 16 of 22

QC Association Summary

Client: South Carolina Public Service Authority
Project/Site: 125915/JM02.09.G01.1/36500

Job ID: 680-238537-1

Metals (Continued)

Analysis Batch: 792490 (Continued)

Lab Sample ID	Client Sample ID Prep Type		Matrix	Method	Prep Batch	
MB 680-791518/1-A	Method Blank	Total Recoverable	Water	6020B	791518	
LCS 680-791518/2-A	Lab Control Sample	Total Recoverable	Water	6020B	791518	

3

4

5

7

10

12

13

Lab Chronicle

Client: South Carolina Public Service Authority Project/Site: 125915/JM02.09.G01.1/36500

Job ID: 680-238537-1

Lab Sample ID: 680-238537-1

Matrix: Water

Date Collected: 07/05/23 10:44 Date Received: 08/02/23 10:45

Client Sample ID: AF68739

	Batch	Batch		Dilution	Batch			Prepared
Prep Type	Type	Method	Run	Factor	Number	Analyst	Lab	or Analyzed
Total Recoverable	Prep	3005A			791519	RR	EET SAV	08/03/23 06:38
Total Recoverable	Analysis	6010D		1	791897	BJB	EET SAV	08/04/23 17:08
Total Recoverable	Prep	3005A			791518	RR	EET SAV	08/03/23 06:38
Total Recoverable	Analysis	6020B		1	792490	BWR	EET SAV	08/08/23 15:01

Lab Sample ID: 680-238537-2

Matrix: Water

Date Collected: 06/27/23 10:15 Date Received: 08/02/23 10:45

Client Sample ID: Af68748

	Batch	Batch		Dilution	Batch			Prepared
Prep Type	Type	Method	Run	Factor	Number	Analyst	Lab	or Analyzed
Total Recoverable	Prep	3005A			791516	RR	EET SAV	08/03/23 05:51
Total Recoverable	Analysis	6010D		1	791719	BJB	EET SAV	08/03/23 15:18
Total Recoverable Total Recoverable	Prep Analysis	3005A 6020B		1	791513 792230		EET SAV EET SAV	08/03/23 05:51 08/07/23 16:42

Client Sample ID: Af68711 Lab Sample ID: 680-238537-3

Matrix: Water

Date Collected: 06/27/23 11:26 Date Received: 08/02/23 10:45

	Batch	Batch		Dilution	Batch			Prepared
Prep Type	Type	Method	Run	Factor	Number	Analyst	Lab	or Analyzed
Total Recoverable	Prep	3005A			791519	RR	EET SAV	08/03/23 06:38
Total Recoverable	Analysis	6010D		1	791897	BJB	EET SAV	08/04/23 17:10
Total Recoverable	Prep	3005A			791518	RR	EET SAV	08/03/23 06:38
Total Recoverable	Analysis	6020B		1	792490	BWR	EET SAV	08/08/23 15:05

Lab Sample ID: 680-238537-4 **Client Sample ID: Af68717**

Date Collected: 06/27/23 13:57

Date Received: 08/02/23 10:45

	Batch	Batch		Dilution	Batch			Prepared
Prep Type	Type	Method	Run	Factor	Number	Analyst	Lab	or Analyzed
Total Recoverable	Prep	3005A			791519	RR	EET SAV	08/03/23 06:38
Total Recoverable	Analysis	6010D		1	791897	BJB	EET SAV	08/04/23 17:13
Total Recoverable	Prep	3005A			791518	RR	EET SAV	08/03/23 06:38
Total Recoverable	Analysis	6020B		1	792490	BWR	EET SAV	08/08/23 15:09

Laboratory References:

EET SAV = Eurofins Savannah, 5102 LaRoche Avenue, Savannah, GA 31404, TEL (912)354-7858

Eurofins Savannah

Matrix: Water

Chain of Custody

santee cooper

Santee Coope One Riverwood Drive Moneks Comer, SC 29461 Phone (843)761 8000 Ext. 5148 Fax. (843)761-4175

Customer Email/Report Recipient: Date Results Needed by: Project/Task/Unit #: Rerun request for any flagged QC LCWILLIA 125915 / JM02.09. GØ1.1/ 36500 @santeecooper.com (Yes No Analysis Group Labworks ID# Sample Location/ Comments METALS Matrix(see below) Collection Date Collection Time (Internal use (see Description Total # of container: Sample Collector Method# only) Preservative (s below) Grab (G) or Composite (C) Reporting limit Bottle type: (G/Plastic-P) Misc. sample info TOTAL SEE Any other notes νIJΥ P 2 Х AF68739 WAP-22 7/5/23 1044 G GW 6020 - SEE SHEET FOR RLS WBW-1 6/27/23 1015 AF 68748 WAP-1 AF68711 1126 WA-P-7 AF-68717 1357 PLEASE RETURN SAMPLES UPON COMPLETION. 680-238537 Chain of Custody Sample Receiving (Internal Use Only)
TEMP (°C): 2/1/2 Initial: Relinguished by: Employee# Date Time Received by: Employee# Date Time Hodco SHBrown 35594 8/2/23 8/2/23 0756 0756 COURTER Correct pH: Yes No Relinquished by: Employee# Date Time Received by: Employee # Date Time Preservative Lot#: EHodge 8-2-23 812123 1644 TA counter 1045 Relinquished by: Employee# Date Time Received by: Employee # Date Time Date/Time/Init for preservative: ☐ METALS (all) **Nutrients** MISC. **Gypsum** Coal Oil Flyash □ Ag □ Cu Z Sb □ TOC □ BTEX □ Wallboard □ Ultimate □ Ammonia Trans. Oil Qual. □ Fe ℤ Se □ Naphthalene □ DOC Gypsum(all □ % Moisture %Moisture □ LOI Ø As $\Box K$ □ Sn □ THM/HAA □ TP/TPO4 below) Color □ Ash □ % Carbon □ VOC Acidity □ AIM □ NH3-N \Box B □ Li ☐ Sulfur □ Sr ☐ Mineral ☐ Oil & Grease Dielectric Strength □ TOC υF □ BTUs Analysis □ E. Coli Ø Ba IFT □ Mg □ Ti ☐ Total metals o ci ☐ Volatile Matter ☐ Total Coliform ☐ Sieve ☐ Soluble Metals Dissolved Gases Ø Be Z TI □ Mn □ NO2 □рН ☐ CHN □ % Moisture Used Oil El Purity (CaSO4) ⊟Вт ☐ Dissolved As Flashpoint Other Tests: Z;Ca □ % Moisture □Мо $\square V$ ☐ Dissolved Fe □ NO3 ☐ XRF Scan Metals in oil □ Sulfites **NPDES** Z Cd □ Na □ Zn ☐ Rad 226 (As:Cd:Cr.Ni.Pb □ HGI □ **SO**4 □ pH Oil & Grease ☐ Rad 228 ☐ Fineness Hg) □ Chlorides □ Hg ZÍ Co □Ni □ PCB □ As ☐ Particulate Matter FΧ ☐ Particle Size Ø′Cr Z Pb □ CrVI O TSS GOFFR □ Sulfur

2

Table of Reporting Limits for Groundwater Samples-- Metals Only

Oum	nes ivietai	SOIIII	
Analyte	Unit	GWPS/ MCL/ RSL	Reporting Limits best case
Aluminum	mg/L	0.05 to 0.2	
Antimony	ug/L	6	5
Arsenic	ug/L	10	5
Arsenic Dissolved	ug/L		
Barium	ug/L	2000	5
Beryllium	ug/L	4	0.5
Boron	ug/L		10 to 15
Cadmium	ug/L	5	0.5
Calcium	ug/L		0.1
Chromium	uġ/L	100	5
Cobalt	ug/L	6	0.5
Copper	mg/L	1	
iron	ug/L	300	
Lead	ug/L	15	1
Lithium	ug/L	40	5
Magnesium	ug/L		
Mercury	ug/L	2	02
Molybdenum	ug/L	100	5
Nickel	ug/L		00 00 Tab
Potassium	mg/L		
Selenium	ug/L	50	5
Sodium	mg/L	p= 50r pps	
Thallium	ug/L	2	1
Zinc	ug/L	5000	

3

4

__

6

o

9

10

11

13

1,

Login Sample Receipt Checklist

Client: South Carolina Public Service Authority

Job Number: 680-238537-1

Login Number: 238537 List Source: Eurofins Savannah

List Number: 1

Creator: Sims, Robert D

Creator. Sims, Nobert D		
Question	Answer	Comment
Radioactivity wasn't checked or is = background as measured by a survey meter.</td <td>N/A</td> <td></td>	N/A	
The cooler's custody seal, if present, is intact.	True	
Sample custody seals, if present, are intact.	True	
The cooler or samples do not appear to have been compromised or tampered with.	True	
Samples were received on ice.	True	
Cooler Temperature is acceptable.	True	
Cooler Temperature is recorded.	True	
COC is present.	True	
COC is filled out in ink and legible.	True	
COC is filled out with all pertinent information.	True	
Is the Field Sampler's name present on COC?	True	
There are no discrepancies between the containers received and the COC.	True	
Samples are received within Holding Time (excluding tests with immediate HTs)	True	
Sample containers have legible labels.	True	
Containers are not broken or leaking.	True	
Sample collection date/times are provided.	True	
Appropriate sample containers are used.	True	
Sample bottles are completely filled.	True	
Sample Preservation Verified.	N/A	
There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs	True	
Containers requiring zero headspace have no headspace or bubble is <6mm (1/4").	N/A	
Multiphasic samples are not present.	True	
Samples do not require splitting or compositing.	True	
Residual Chlorine Checked.	N/A	

4

6

0

9

11

12

13

Accreditation/Certification Summary

Client: South Carolina Public Service Authority
Project/Site: 125915/JM02.09.G01.1/36500

Laboratory: Eurofins Savannah

The accreditations/certifications listed below are applicable to this report.

Authority	Program	Identification Number	Expiration Date
South Carolina	State	98001	06-30-23 *

Job ID: 680-238537-1

3

4

Б

6

8

9

11

12

^{*} Accreditation/Certification renewal pending - accreditation/certification considered valid.

a member of The GEL Group INC

gel.com

August 17, 2023

Ms. Jeanette Gilmetti Santee Cooper P.O. Box 2946101 OCO3 Moncks Corner, South Carolina 29461

Re: ABS Lab Analytical Work Order: 630054

Dear Ms. Gilmetti:

GEL Laboratories, LLC (GEL) appreciates the opportunity to provide the enclosed analytical results for the sample(s) we received on July 21, 2023. This original data report has been prepared and reviewed in accordance with GEL's standard operating procedures.

The samples were delivered with proper chain of custody documentation and signatures. All sample containers arrived without any visible signs of tampering or breakage. There are no additional comments concerning sample receipt.

Test results for NELAP or ISO 17025 accredited tests are verified to meet the requirements of those standards, with any exceptions noted. The results reported relate only to the items tested and to the sample as received by the laboratory. These results may not be reproduced except as full reports without approval by the laboratory. Copies of GEL's accreditations and certifications can be found on our website at www.gel.com.


Our policy is to provide high quality, personalized analytical services to enable you to meet your analytical needs on time every time. We trust that you will find everything in order and to your satisfaction. If you have any questions, please do not hesitate to call me at (843) 556-8171, ext. 4289.

Sincerely,

Julie Robinson Project Manager

Purchase Order: 398684

Enclosures

2040 Savage Road Charleston SC 29407 - (843) 556-8171 - www.gel.com

Certificate of Analysis Report for

SOOP001 Santee Cooper

Client SDG: 630054 GEL Work Order: 630054

The Qualifiers in this report are defined as follows:

- * A quality control analyte recovery is outside of specified acceptance criteria
- ** Analyte is a Tracer compound
- ** Analyte is a surrogate compound
- U Analyte was analyzed for, but not detected above the MDL, MDA, MDC or LOD.

Where the analytical method has been performed under NELAP certification, the analysis has met all of the requirements of the NELAC standard unless qualified on the Certificate of Analysis.

The designation ND, if present, appears in the result column when the analyte concentration is not detected above the limit as defined in the 'U' qualifier above.

This data report has been prepared and reviewed in accordance with GEL Laboratories LLC standard operating procedures. Please direct any questions to your Project Manager, Julie Robinson.

Reviewed by	Juno	me	
			_

0,50

Page 2 of 22 SDG: 630054

2040 Savage Road Charleston SC 29407 - (843) 556-8171 - www.gel.com

Certificate of Analysis

Report Date: August 17, 2023

2

SOOP00119

SOOP001

Company: Santee Cooper Address: P.O. Box 2946101

OCO3

Moncks Corner, South Carolina 29461

Contact: Ms. Jeanette Gilmetti Project: ABS Lab Analytical

Client Sample ID: AF68725 Sample ID: 630054001

Matrix: GW

Collect Date: 18-JUL-23 11:49
Receive Date: 21-JUL-23
Collector: Client

Parameter **Oualifier** Result Uncertainty **MDC** RL Units PF DF Analyst Date Time Batch Method Rad Gas Flow Proportional Counting GFPC, Ra228, Liquid "As Received" Radium-228 1.69 +/-1.08 1.60 3.00 pCi/L JE1 08/09/23 1337 2464193 1

Project:

Client ID:

Analyst Comments

Radium-226+Radium-228 Calculation "See Parent Products"

Radium-226+228 Sum

3.46 +/-1.25 pCi/L NXL1 08/17/23 1207 2464198

Rad Radium-226 Lucas Cell, Ra226, Liquid "As Received"

Radium-226 1.76 +/-0.637 0.695 1.00 pCi/L LXP1 08/17/23 0843 2464194 3

The following Analytical Methods were performed:

Method Description

1 EPA 904.0/SW846 9320 Modified
2 Calculation
3 EPA 903.1 Modified

Surrogate/Tracer Recovery Test Result Nominal Recovery% Acceptable Limits

Barium-133 Tracer GFPC, Ra228, Liquid "As Received"

83.5 (15%-125%)

Notes:

Counting Uncertainty is calculated at the 95% confidence level (1.96-sigma).

Column headers are defined as follows:

DF: Dilution Factor Lc/LC: Critical Level
DL: Detection Limit PF: Prep Factor
MDA: Minimum Detectable Activity RL: Reporting Limit

MDC: Minimum Detectable Concentration SQL: Sample Quantitation Limit

Page 3 of 22 SDG: 630054

2040 Savage Road Charleston SC 29407 - (843) 556-8171 - www.gel.com

Certificate of Analysis

Report Date: August 17, 2023

SOOP00119

Company: Santee Cooper Address: P.O. Box 2946101

OCO3

Moncks Corner, South Carolina 29461

Contact: Ms. Jeanette Gilmetti Project: ABS Lab Analytical

Client Sample ID: AF68742 Sample ID: 630054002

Matrix: GW

Collect Date: 18-JUL-23 14:53
Receive Date: 21-JUL-23
Collector: Client

630054002 Client ID: SOOP001

Project:

Parameter	Qualifier	Result	Uncertainty	MDC	RL	Units	PF	DF Analys	t Date	Time	Batch	Method
Rad Gas Flow Proportio	nal Counting											
GFPC, Ra228, Liquid "A	As Received"											
Radium-228	U	-0.146	+/-0.647	1.34	3.00	pCi/L		JE1	08/09/23	1337	2464193	1
Radium-226+Radium-22	28 Calculation	n "See Pa	arent Products"									
Radium-226+228 Sum		0.686	+/-0.748			pCi/L		NXL1	08/17/23	1207	2464198	2
Rad Radium-226												
Lucas Cell, Ra226, Liqu	id "As Recei	ved"										
Radium-226		0.686	+/-0.376	0.411	1.00	pCi/L		LXP1	08/17/23	0843	2464194	3
The following Analytic	al Methods w	ere perfo	ormed:									
Method	Description					A	Analys	st Comments				
1	EPA 904.0/SW846 9320 Modified											

3	EPA 903.1 Modified				
Surrogate/Tracer Recove	ery Test	Result	Nominal	Recovery%	Acceptable Limits

Barium-133 Tracer GFPC, Ra228, Liquid "As Received" 80.9 (15%-125%)

Notes:

Counting Uncertainty is calculated at the 95% confidence level (1.96-sigma).

Column headers are defined as follows:

DF: Dilution Factor Lc/LC: Critical Level
DL: Detection Limit PF: Prep Factor
MDA: Minimum Detectable Activity RL: Reporting Limit

MDC: Minimum Detectable Concentration SQL: Sample Quantitation Limit

Page 4 of 22 SDG: 630054

2040 Savage Road Charleston SC 29407 - (843) 556-8171 - www.gel.com

Certificate of Analysis

Report Date: August 17, 2023

Company: Santee Cooper Address: P.O. Box 2946101

OCO3

Moncks Corner, South Carolina 29461

Contact: Ms. Jeanette Gilmetti Project: ABS Lab Analytical

Client Sample ID: AF68747 Sample ID: 630054003

Matrix: GW

Collect Date: 17-JUL-23 10:08
Receive Date: 21-JUL-23
Collector: Client

Project: SOOP00119
Client ID: SOOP001

Parameter	Qualifier	Result	Uncertainty	MDC	RL	Units	PF	DF Analy	st Date	Time Batch	Method
Rad Gas Flow Proportion	onal Counting										
GFPC, Ra228, Liquid ".	As Received"										
Radium-228	U	0.780	+/-1.07	1.83	3.00	pCi/L		JE1	08/09/23	1337 2464193	1
Radium-226+Radium-2	28 Calculatio	n "See Pa	arent Products"								
Radium-226+228 Sum		0.830	+/-1.12			pCi/L		NXL1	08/17/23	1207 2464198	2
Rad Radium-226											
Lucas Cell, Ra226, Liqu	uid "As Recei	ved"									
Radium-226	U	0.0502	+/-0.326	0.672	1.00	pCi/L		LXP1	08/17/23	0843 2464194	3
The following Analytic	The following Analytical Methods were performed:										
Method	Description					F	Analys	st Comment	s		

1	EPA 904.0/SW846 9320 Modified		•		
2	Calculation				
3	EPA 903.1 Modified				
Surrogate/Tracer Recov	erv Test	Result	Nominal	Recoverv%	Acceptable Limits

Barium-133 Tracer GFPC, Ra228, Liquid "As Received"

83.6 (15%-125%)

Notes:

Counting Uncertainty is calculated at the 95% confidence level (1.96-sigma).

Column headers are defined as follows:

DF: Dilution Factor Lc/LC: Critical Level
DL: Detection Limit PF: Prep Factor
MDA: Minimum Detectable Activity RL: Reporting Limit

MDC: Minimum Detectable Concentration SQL: Sample Quantitation Limit

Page 5 of 22 SDG: 630054

2040 Savage Road Charleston SC 29407 - (843) 556-8171 - www.gel.com

Certificate of Analysis

Report Date: August 17, 2023

Company: Santee Cooper P.O. Box 2946101 Address:

OCO3

Moncks Corner, South Carolina 29461

Contact: Ms. Jeanette Gilmetti Project: ABS Lab Analytical

Client Sample ID: AF68731 Sample ID: 630054004

Matrix: GW

Collect Date: 17-JUL-23 11:15 Receive Date: 21-JUL-23 Collector: Client

Project: SOOP00119 Client ID: SOOP001

Parameter	Qualifier	Result	Uncertainty	MDC	RL	Units	PF	DF Analy	st Date	Time Batch	Method
Rad Gas Flow Proportion	onal Counting										
GFPC, Ra228, Liquid "	As Received"										
Radium-228	U	1.43	+/-0.956	1.46	3.00	pCi/L		JE1	08/09/23	1337 2464193	1
Radium-226+Radium-2	28 Calculatio	n "See Pa	arent Products"								
Radium-226+228 Sum		3.62	+/-1.18			pCi/L		NXL1	08/17/23	1207 2464198	2
Rad Radium-226											
Lucas Cell, Ra226, Liqu	uid "As Recei	ved"									
Radium-226		2.19	+/-0.690	0.625	1.00	pCi/L		LXP1	08/17/23	0915 2464194	3
The following Analytic	The following Analytical Methods were performed:										
Method	Description					F	Analys	st Comment	s		

1	EPA 904.0/SW846 9320 Modified		•		
2	Calculation				
3	EPA 903.1 Modified				
Surrogate/Tracer Recov	ery Test	Result	Nominal	Recovery%	Acceptable Limits

Barium-133 Tracer 90.9 GFPC, Ra228, Liquid "As Received" (15%-125%)

Notes:

Counting Uncertainty is calculated at the 95% confidence level (1.96-sigma).

Column headers are defined as follows:

DF: Dilution Factor Lc/LC: Critical Level PF: Prep Factor DL: Detection Limit MDA: Minimum Detectable Activity **RL**: Reporting Limit

MDC: Minimum Detectable Concentration SQL: Sample Quantitation Limit

Page 6 of 22 SDG: 630054

2040 Savage Road Charleston SC 29407 - (843) 556-8171 - www.gel.com

Certificate of Analysis

Report Date: August 17, 2023

Company: Santee Cooper Address: P.O. Box 2946101

OCO3

Moncks Corner, South Carolina 29461

Contact: Ms. Jeanette Gilmetti Project: ABS Lab Analytical

Client Sample ID: AF68723 Sample ID: 630054005

Matrix: GW

Collect Date: 17-JUL-23 13:00
Receive Date: 21-JUL-23
Collector: Client

Project: SOOP00119 Client ID: SOOP001

Parameter	Qualifier	Result	Uncertainty	MDC	RL	Units	PF	DF Analyst Date	Time Batch	Method
Rad Gas Flow Proportion	onal Counting									
GFPC, Ra228, Liquid ".	As Received"									
Radium-228		2.31	+/-0.984	1.25	3.00	pCi/L		JE1 08/09/23	1337 2464193	1
Radium-226+Radium-2	28 Calculatio	n "See Pa	arent Products"							
Radium-226+228 Sum		2.99	+/-1.09			pCi/L		NXL1 08/17/23	1207 2464198	2
Rad Radium-226										
Lucas Cell, Ra226, Liqu	uid "As Recei	ved"								
Radium-226		0.688	+/-0.472	0.659	1.00	pCi/L		LXP1 08/17/23	0915 2464194	3
The following Analytic	al Methods w	ere perfo	ormed:							
Method	Description		Analyst Comments							
1	EPA 904.0/SW846 9320 Modified									

2	Calculation				
3	EPA 903.1 Modified				
Surrogate/Tracer Recov	ery Test	Result	Nominal	Recovery%	Acceptable Limits

Barium-133 Tracer GFPC, Ra228, Liquid "As Received" 86 (15%-125%)

Notes:

Counting Uncertainty is calculated at the 95% confidence level (1.96-sigma).

Column headers are defined as follows:

DF: Dilution Factor Lc/LC: Critical Level
DL: Detection Limit PF: Prep Factor
MDA: Minimum Detectable Activity RL: Reporting Limit

MDC: Minimum Detectable Concentration SQL: Sample Quantitation Limit

Page 7 of 22 SDG: 630054

2040 Savage Road Charleston SC 29407 - (843) 556-8171 - www.gel.com

Certificate of Analysis

Project:

Client ID:

Analyst Comments

Report Date: August 17, 2023

SOOP00119

SOOP001

Company: Santee Cooper Address: P.O. Box 2946101

OCO3

Moncks Corner, South Carolina 29461

Contact: Ms. Jeanette Gilmetti Project: ABS Lab Analytical

Client Sample ID: AF68724 Sample ID: 630054006

Matrix: GW

Collect Date: 17-JUL-23 13:05
Receive Date: 21-JUL-23
Collector: Client

Parameter	Qualifier	Result	Uncertainty	MDC	RL	Units	PF	DF Analy	yst Date	Time Batch	Method
Rad Gas Flow Propor	tional Counting	3									
GFPC, Ra228, Liquid	d "As Received"	"									
Radium-228	U	0.607	+/-0.706	1.18	3.00	pCi/L		JE1	08/09/23	1337 2464193	1
Radium-226+Radium	-228 Calculation	on "See Par	rent Products"								
Radium-226+228 Sum		1.46	+/-0.825			pCi/L		NXL1	08/17/23	1207 2464198	2
Rad Radium-226											
Lucas Cell, Ra226, L	iquid "As Rece	ived"									
Radium-226		0.856	+/-0.428	0.473	1.00	pCi/L		LXP1	08/17/23	0915 2464194	3
The following Analy	tical Methods v	vere perfor	med:								

The following A	Analytical Methods we	ere performed.
Method	Description	

EPA 904.0/SW846 9320 Modified

2 Calculation

3 EPA 903.1 Modified

Surrogate/Tracer Recovery	Test	Result	Nominal	Recovery%	Acceptable Limits
Barium-133 Tracer	GFPC, Ra228, Liquid "As Received"			91.2	(15%-125%)

Notes

Counting Uncertainty is calculated at the 95% confidence level (1.96-sigma).

Column headers are defined as follows:

DF: Dilution Factor Lc/LC: Critical Level
DL: Detection Limit PF: Prep Factor
MDA: Minimum Detectable Activity RL: Reporting Limit

MDC: Minimum Detectable Concentration SQL: Sample Quantitation Limit

Page 8 of 22 SDG: 630054

2040 Savage Road Charleston SC 29407 - (843) 556-8171 - www.gel.com

Certificate of Analysis

Project:

Client ID:

Analyst Comments

Report Date: August 17, 2023

SOOP00119

SOOP001

Company: Santee Cooper Address: P.O. Box 2946101

OCO3

Moncks Corner, South Carolina 29461

Contact: Ms. Jeanette Gilmetti Project: ABS Lab Analytical

Client Sample ID: AF68746 Sample ID: 630054007

Matrix: GW

Collect Date: 17-JUL-23 14:24
Receive Date: 21-JUL-23
Collector: Client

Parameter	Qualifier	Result	Uncertainty	MDC	RL	Units	PF	DF Anal	yst Date	Time Batch	Method
Rad Gas Flow Propor	tional Counting	5									
GFPC, Ra228, Liquid	"As Received"	•									
Radium-228		1.92	+/-0.974	1.34	3.00	pCi/L		JE1	08/09/23	1337 2464193	1
Radium-226+Radium	-228 Calculatio	n "See Par	rent Products"								
Radium-226+228 Sum		6.65	+/-1.45			pCi/L		NXL1	08/17/23	1207 2464198	2
Rad Radium-226											
Lucas Cell, Ra226, Li	quid "As Recei	ved"									
Radium-226		4.73	+/-1.07	0.573	1.00	pCi/L		LXP1	08/17/23	0916 2464194	3
TT1 C 11 ' A 1		C									

The following Analytical Methods were performed:

Description

1	EPA 904.0/SW846 9320 Modified				
2	Calculation				
3	EPA 903.1 Modified				
Surrogate/Tracer Recov	ery Test	Result	Nominal	Recovery%	Acceptable Limits

Barium-133 Tracer GFPC, Ra228, Liquid "As Received" 85.2 (15%-125%)

Notes:

Method

Counting Uncertainty is calculated at the 95% confidence level (1.96-sigma).

Column headers are defined as follows:

DF: Dilution Factor Lc/LC: Critical Level
DL: Detection Limit PF: Prep Factor
MDA: Minimum Detectable Activity RL: Reporting Limit

MDC: Minimum Detectable Concentration SQL: Sample Quantitation Limit

Page 9 of 22 SDG: 630054

2040 Savage Road Charleston SC 29407 - (843) 556-8171 - www.gel.com

Certificate of Analysis

Report Date: August 17, 2023

Company: Santee Cooper P.O. Box 2946101 Address:

OCO3

Moncks Corner, South Carolina 29461

Contact: Ms. Jeanette Gilmetti Project: ABS Lab Analytical

Client Sample ID: AF68726 Sample ID:

Matrix: GW

Collect Date: 13-JUL-23 14:16 Receive Date: 21-JUL-23 Collector: Client

Description

Project: SOOP00119 630054008 Client ID: SOOP001

Parameter	Qualifier	Result U	Incertainty	MDC	RL	Units	PF	DF Anal	yst Date	Time Batch	Method
Rad Gas Flow Proportion	onal Counting										
GFPC, Ra228, Liquid "	As Received"										
Radium-228	U	1.84	+/-1.23	1.93	3.00	pCi/L		JE1	08/09/23	1338 2464193	3 1
Radium-226+Radium-2	228 Calculatio	n "See Pare	ent Products"								
Radium-226+228 Sum		2.85	+/-1.31			pCi/L		NXL1	08/17/23	1207 2464198	3 2
Rad Radium-226											
Lucas Cell, Ra226, Liq	uid "As Recei	ved"									
Radium-226		1.01	+/-0.469	0.559	1.00	pCi/L		LXP1	08/17/23	0916 2464194	1 3
The following Analytic	cal Methods w	ere perforn	ned:								

Analyst Comments

I	EPA 904.0/SW846 9320 Modified
2	Calculation
3	EPA 903.1 Modified

Surrogate/Tracer Recovery Acceptable Limits Test Result Nominal Recovery% Barium-133 Tracer 93.9 GFPC, Ra228, Liquid "As Received" (15%-125%)

Notes:

Method

Counting Uncertainty is calculated at the 95% confidence level (1.96-sigma).

Column headers are defined as follows:

DF: Dilution Factor Lc/LC: Critical Level PF: Prep Factor DL: Detection Limit MDA: Minimum Detectable Activity **RL**: Reporting Limit

MDC: Minimum Detectable Concentration SQL: Sample Quantitation Limit

Page 10 of 22 SDG: 630054

2040 Savage Road Charleston SC 29407 - (843) 556-8171 - www.gel.com

Certificate of Analysis

Report Date: August 17, 2023

Company: Santee Cooper Address: P.O. Box 2946101

OCO3

Moncks Corner, South Carolina 29461

Contact: Ms. Jeanette Gilmetti Project: ABS Lab Analytical

Client Sample ID: AF68727 Sample ID: 630054009

Matrix: GW

Collect Date: 13-JUL-23 14:21
Receive Date: 21-JUL-23
Collector: Client

AF68727 Project: SOOP00119 630054009 Client ID: SOOP001

Parameter	Qualifier	Result	Uncertainty	MDC	RL	Units	PF	DF Analys	st Date	Time Batch	Method
Rad Gas Flow Proportion	onal Counting										
GFPC, Ra228, Liquid ".	As Received"										
Radium-228	U	1.25	+/-0.862	1.32	3.00	pCi/L		JE1	08/09/23	1337 2464193	1
Radium-226+Radium-2	28 Calculatio	n "See Pa	arent Products"								
Radium-226+228 Sum		2.17	+/-0.944			pCi/L		NXL1	08/17/23	1207 2464198	2
Rad Radium-226											
Lucas Cell, Ra226, Liqu	uid "As Recei	ved"									
Radium-226		0.927	+/-0.386	0.295	1.00	pCi/L		LXP1	08/17/23	0916 2464194	3
The following Analytic	al Methods w	ere perfo	ormed:								
Method	Description					I	Analys	st Comments			

1	EPA 904.0/SW846 9320 Modified		•		
2	Calculation				
3	EPA 903.1 Modified				
Surrogate/Tracer Recove	ery Test	Result	Nominal	Recovery%	Acceptable Limits

Barium-133 Tracer GFPC, Ra228, Liquid "As Received" 91.6 (15%-125%)

Notes:

Counting Uncertainty is calculated at the 95% confidence level (1.96-sigma).

Column headers are defined as follows:

DF: Dilution Factor Lc/LC: Critical Level
DL: Detection Limit PF: Prep Factor
MDA: Minimum Detectable Activity RL: Reporting Limit

MDC: Minimum Detectable Concentration SQL: Sample Quantitation Limit

Page 11 of 22 SDG: 630054

2040 Savage Road Charleston SC 29407 - (843) 556-8171 - www.gel.com

Certificate of Analysis

Report Date: August 17, 2023

SOOP00119

82

Company: Santee Cooper Address: P.O. Box 2946101

OCO3

Moncks Corner, South Carolina 29461

Contact: Ms. Jeanette Gilmetti Project: ABS Lab Analytical

Client Sample ID: AF68730 Sample ID: 630054010

Matrix: GW

Collect Date: 13-JUL-23 10:01 Receive Date: 21-JUL-23 Collector: Client

Project: Client ID: SOOP001

Parameter	Qualifier	Result	Uncertainty	MDC	RL	Units	PF	DF Analyst Date	Time Batch	Method
Rad Gas Flow Proporti	onal Counting									
GFPC, Ra228, Liquid "	'As Received"									
Radium-228	U	0.272	+/-0.745	1.38	3.00	pCi/L		JE1 08/09/2	3 1337 2464193	1
Radium-226+Radium-2	228 Calculatio	n "See Pa	arent Products"							
Radium-226+228 Sum		2.75	+/-1.03			pCi/L		NXL1 08/17/2	3 1207 2464198	2
Rad Radium-226										
Lucas Cell, Ra226, Liq	uid "As Recei	ved"								
Radium-226		2.47	+/-0.719	0.614	1.00	pCi/L		LXP1 08/17/2	3 0916 2464194	3
The following Analytic	cal Methods w	ere perfo	ormed:							
Method	Description					A	Analys	st Comments		
1	EPA 904.0/SW	846 9320 1	Modified							
2	Calculation									

EPA 903.1 Modified Surrogate/Tracer Recovery Result Nominal Recovery% Acceptable Limits Test Barium-133 Tracer GFPC, Ra228, Liquid "As Received" (15%-125%)

Notes:

Counting Uncertainty is calculated at the 95% confidence level (1.96-sigma).

Column headers are defined as follows:

DF: Dilution Factor Lc/LC: Critical Level DL: Detection Limit PF: Prep Factor MDA: Minimum Detectable Activity **RL**: Reporting Limit

MDC: Minimum Detectable Concentration SQL: Sample Quantitation Limit

Page 12 of 22 SDG: 630054

2040 Savage Road Charleston SC 29407 - (843) 556-8171 - www.gel.com

Certificate of Analysis

Report Date: August 17, 2023

SOOP00119

Company: Santee Cooper Address: P.O. Box 2946101

OCO3

Moncks Corner, South Carolina 29461

Contact: Ms. Jeanette Gilmetti Project: ABS Lab Analytical

Client Sample ID: AF68729 Sample ID: 630054011

Matrix: GW

Collect Date: 13-JUL-23 11:24
Receive Date: 21-JUL-23
Collector: Client

0054011 Client ID: SOOP001

Project:

Parameter	Qualifier	Result	Uncertainty	MDC	RL	Units	PF	DF Analyst Date Tim	e Batch	Method
Rad Gas Flow Propor	tional Counting									
GFPC, Ra228, Liquid	l "As Received"									
Radium-228		2.66	+/-1.11	1.42	3.00	pCi/L		JE1 08/09/23 1337	2464193	1
Radium-226+Radium	-228 Calculatio	n "See Pa	arent Products"							
Radium-226+228 Sum		8.89	+/-1.58			pCi/L		NXL1 08/17/23 1207	2464198	2
Rad Radium-226										
Lucas Cell, Ra226, L	iquid "As Recei	ved"								
Radium-226		6.23	+/-1.12	0.394	1.00	pCi/L		LXP1 08/17/23 0916	2464194	3
The following Analy	tical Methods w	ere perfo	ormed:							
Method	Description					I	Analys	t Comments		

1	EPA 904.0/SW846 9320 Modified		•		
2	Calculation				
3	EPA 903.1 Modified				
Surrogate/Tracer Reco	overy Test	Result	Nominal	Recovery%	Acceptable Limits

Barium-133 Tracer GFPC, Ra228, Liquid "As Received" 80.5 (15%-125%)

Notes:

Counting Uncertainty is calculated at the 95% confidence level (1.96-sigma).

Column headers are defined as follows:

DF: Dilution Factor Lc/LC: Critical Level
DL: Detection Limit PF: Prep Factor
MDA: Minimum Detectable Activity RL: Reporting Limit

MDC: Minimum Detectable Concentration SQL: Sample Quantitation Limit

Page 13 of 22 SDG: 630054

2040 Savage Road Charleston SC 29407 - (843) 556-8171 - www.gel.com

Certificate of Analysis

Report Date: August 17, 2023

SOOP00119

Company: Santee Cooper P.O. Box 2946101 Address:

OCO3

Moncks Corner, South Carolina 29461

Contact: Ms. Jeanette Gilmetti Project: ABS Lab Analytical

Client Sample ID: AF68728 Sample ID: 630054012

Matrix: GW

Collect Date: 13-JUL-23 13:32 Receive Date: 21-JUL-23 Collector: Client

Project: Client ID: SOOP001

Parameter	Qualifier	Result	Uncertainty	MDC	RL	Units	PF	DF Analy	st Date	Time Batch	n Method
Rad Gas Flow Proport	ional Counting										
GFPC, Ra228, Liquid	"As Received"										
Radium-228		2.03	+/-1.14	1.70	3.00	pCi/L		JE1	08/09/23	1337 246419	03 1
Radium-226+Radium-	-228 Calculatio	n "See Pa	arent Products"								
Radium-226+228 Sum		3.68	+/-1.28			pCi/L		NXL1	08/17/23	1207 246419	98 2
Rad Radium-226											
Lucas Cell, Ra226, Lie	quid "As Recei	ved"									
Radium-226		1.65	+/-0.572	0.492	1.00	pCi/L		LXP1	08/17/23	0947 246419	94 3
The following Analyt	ical Methods w	ere perfo	ormed:								
Method	Description					I	Analys	st Comment	s		
1	EDA 004 0/SW	1846 0320 1	Modified								

1	EPA 904.0/SW846 9320 Modified				
2	Calculation				
3	EPA 903.1 Modified				
Surrogate/Tracer Recov	ery Test	Result	Nominal	Recovery%	Acceptable Limits

Barium-133 Tracer GFPC, Ra228, Liquid "As Received" 80 (15%-125%)

Notes:

Counting Uncertainty is calculated at the 95% confidence level (1.96-sigma).

Column headers are defined as follows:

DF: Dilution Factor Lc/LC: Critical Level PF: Prep Factor DL: Detection Limit MDA: Minimum Detectable Activity **RL**: Reporting Limit

MDC: Minimum Detectable Concentration SQL: Sample Quantitation Limit

Page 14 of 22 SDG: 630054

2040 Savage Road Charleston, SC 29407 - (843) 556-8171 - www.gel.com

QC Summary

Report Date: August 17, 2023

Santee Cooper P.O. Box 2946101

OCO3

Moncks Corner, South Carolina

Contact: Ms. Jeanette Gilmetti

Workorder: 630054

Parmname			NOM	Sample	Qual	QC	Units	RPD%	REC%	Range	Anlst	Date Time
Rad Gas Flow Batch 246	4193											
QC1205466431 Radium-228	630054001	DUP	Uncertainty	1.69 +/-1.08		1.53 +/-0.862	pCi/L	10.2		(0% - 100%)	JE1	08/09/23 13:36
QC1205466432 Radium-228	LCS		79.4 Uncertainty			73.7 +/-4.40	pCi/L		92.8	(75%-125%)		08/09/23 13:36
QC1205466430 Radium-228	MB		Uncertainty		U	0.374 +/-1.10	pCi/L					08/09/23 13:36
Rad Ra-226 Batch 246	4194	,										
QC1205466427 Radium-226	630054001	DUP	Uncertainty	1.76 +/-0.637		1.93 +/-0.646	pCi/L	9.03		(0% - 100%)	LXP1	08/17/23 09:47
QC1205466429 Radium-226	LCS		25.6 Uncertainty			20.0 +/-1.70	pCi/L		78.3	(75%-125%)		08/17/23 09:47
QC1205466426 Radium-226	MB		Uncertainty		U	0.222 +/-0.288	pCi/L					08/17/23 09:47
QC1205466428 Radium-226	630054001	MS	131 Uncertainty	1.76 +/-0.637		121 +/-9.22	pCi/L		91.2	(75%-125%)		08/17/23 09:47

Notes:

Counting Uncertainty is calculated at the 95% confidence level (1.96-sigma).

The Qualifiers in this report are defined as follows:

U Analyte was analyzed for, but not detected above the MDL, MDA, MDC or LOD.

J Value is estimated

X Consult Case Narrative, Data Summary package, or Project Manager concerning this qualifier

H Analytical holding time was exceeded

< Result is less than value reported

Page 15 of 22 SDG: 630054

Page 1 of 2

2040 Savage Road Charleston, SC 29407 - (843) 556-8171 - www.gel.com

QC Summary

Workorder: 630054

Page 2 of 2

Parmage

NOM Sample Qual OC Units RPD% REC% Range And Date Time

Parmname	NOM	Sample	Qual	QC	Units	RPD%	REC%	Range	Anlst	Date	Time

- Result is greater than value reported
- UI Gamma Spectroscopy--Uncertain identification
- BD Results are either below the MDC or tracer recovery is low
- h Preparation or preservation holding time was exceeded
- R Sample results are rejected
- ^ RPD of sample and duplicate evaluated using +/-RL. Concentrations are <5X the RL. Qualifier Not Applicable for Radiochemistry.
- N/A RPD or %Recovery limits do not apply.
- ND Analyte concentration is not detected above the detection limit
- M if above MDC and less than LLD
- NJ Consult Case Narrative, Data Summary package, or Project Manager concerning this qualifier
- FA Failed analysis.
- UJ Gamma Spectroscopy--Uncertain identification
- Q One or more quality control criteria have not been met. Refer to the applicable narrative or DER.
- K Analyte present. Reported value may be biased high. Actual value is expected to be lower.
- UL Not considered detected. The associated number is the reported concentration, which may be inaccurate due to a low bias.
- L Analyte present. Reported value may be biased low. Actual value is expected to be higher.
- N1 See case narrative
- Y Other specific qualifiers were required to properly define the results. Consult case narrative.
- ** Analyte is a Tracer compound
- M REMP Result > MDC/CL and < RDL
- J See case narrative for an explanation

N/A indicates that spike recovery limits do not apply when sample concentration exceeds spike conc. by a factor of 4 or more or %RPD not applicable.

- ^ The Relative Percent Difference (RPD) obtained from the sample duplicate (DUP) is evaluated against the acceptance criteria when the sample is greater than five times (5X) the contract required detection limit (RL). In cases where either the sample or duplicate value is less than 5X the RL, a control limit of +/- the RL is used to evaluate the DUP result.
- * Indicates that a Quality Control parameter was not within specifications.

For PS, PSD, and SDILT results, the values listed are the measured amounts, not final concentrations.

Where the analytical method has been performed under NELAP certification, the analysis has met all of the requirements of the NELAC standard unless qualified on the QC Summary.

Page 16 of 22 SDG: 630054

Radiochemistry Technical Case Narrative Santee Cooper SDG #: 630054

Product: GFPC, Ra228, Liquid

<u>Analytical Method:</u> EPA 904.0/SW846 9320 Modified <u>Analytical Procedure:</u> GL-RAD-A-063 REV# 5

Analytical Batch: 2464193

The following samples were analyzed using the above methods and analytical procedure(s).

GEL Sample ID#	Client Sample Identification
630054001	AF68725
630054002	AF68742
630054003	AF68747
630054004	AF68731
630054005	AF68723
630054006	AF68724
630054007	AF68746
630054008	AF68726
630054009	AF68727
630054010	AF68730
630054011	AF68729
630054012	AF68728
1205466430	Method Blank (MB)
1205466431	630054001(AF68725) Sample Duplicate (DUP)
1205466432	Laboratory Control Sample (LCS)

The samples in this SDG were analyzed on an "as received" basis.

Data Summary:

There are no exceptions, anomalies or deviations from the specified methods. All sample data provided in this report met the acceptance criteria specified in the analytical methods and procedures for initial calibration, continuing calibration, instrument controls and process controls where applicable.

<u>Product:</u> Lucas Cell, Ra226, Liquid <u>Analytical Method:</u> EPA 903.1 Modified

Analytical Procedure: GL-RAD-A-008 REV# 15

Analytical Batch: 2464194

The following samples were analyzed using the above methods and analytical procedure(s).

Client Sample Identification
AF68725
AF68742
AF68747
AF68731

Page 17 of 22 SDG: 630054

630054005	AF68723
630054006	AF68724
630054007	AF68746
630054008	AF68726
630054009	AF68727
630054010	AF68730
630054011	AF68729
630054012	AF68728
1205466426	Method Blank (MB)
1205466427	630054001(AF68725) Sample Duplicate (DUP)
1205466428	630054001(AF68725) Matrix Spike (MS)
1205466429	Laboratory Control Sample (LCS)

The samples in this SDG were analyzed on an "as received" basis.

Data Summary:

All sample data provided in this report met the acceptance criteria specified in the analytical methods and procedures for initial calibration, continuing calibration, instrument controls and process controls where applicable, with the following exceptions.

Miscellaneous Information

Additional Comments

The matrix spike, 1205466428 (AF68725MS), aliquot was reduced to conserve sample volume.

Certification Statement

Where the analytical method has been performed under NELAP certification, the analysis has met all of the requirements of the NELAC standard unless otherwise noted in the analytical case narrative.

Page 18 of 22 SDG: 630054

Customer Email/Report Recipient:

Chain of Custody

Date Results Needed by:

1030054

Project/Task/Unit #:

Santee Cooper One Riverwood Drive Moncks Comer, SC 29461 Phone: (843)761-8000 Ext. 5148 Fax: (843)761-4175

Rerun request for any flagged QC LCWILLIA 125915/JM02.09.601.1/36500 @santeecooper.com Yes No **Analysis Group** Labworks ID# Sample Location/ Comments SELO below) Collection Date Collection Time (Internal use Description Total # of containers (Glass (see Method # Sample Collector only) Preservative (below) Grab (G) or Composite (C) Reporting limit 228 Bottle type: (G/Plastic-P) Matrix(see 226 RAP Misc. sample info Any other notes SAP RAP PIT P WIK 2 X AF 68725 7/18/23 P G GW 2 1 1149 WAP-13 1 WAP-25 AF68742 1453 AF68747 WAP-29 7/17/23 1008 31 WAP-15 1115 23 WAP-12 1300 24 1305 WAP-12 DUP WAP-28 46 1424 Sample Receiving (Internal Use Only) Date Time Relinquished by: Employee# Received by: Time Employee # Date TEMP (°C): 5945 SABroan 0945 35594 7/21/23 7/21/23 GEL Correct pH: Yes Relinquished by: Employee# Date Time Received by: Employee # Date Time Preservative Lot#: GEL 121/23 1555 Relinquished by: Date Employee# Received by Employee # Time Date/Time/Init for preservative: ☐ METALS (all) **Nutrients** MISC. Gypsum Coal Oil Flyash □ Ag □ Cu □ Sb □ TOC BTEX Wallboard □ Ultimate Trans. Oil Qual. ☐ Ammonia □ A1 ПFe □ Se DOC □ Naphthalene Gypsum(all ☐ %Moisture ☐ % Moisture LOI □ THM/HAA □ As $\Box K$ □ Sn □ TP/TPO4 below) Color □ Ash 7 % Carbon □ VOC MIA □ NH3-N Acidity $\square B$ □ Li ☐ Sulfur □ Sr □ Mineral □ Oil & Grease TOC Dielectric Strength TF □ BTUs Analysis □ E. Coli □ Ba □Mg □ Ti Total metals IFT DCI ☐ Total Coliform ☐ Volatile Matter □ Sieve Soluble Metals Dissolved Gases □ Be □ Mn □ T1 □ NO2 □pH □ CHN ☐ % Moisture Used Oil Purity (CaSO4) □ Br ☐ Dissolved As Other Tests: $\Box V$ □ % Moisture Flashpoint □ Ca □ Mo □ NO3 □ Dissolved Fe D Sulfites □ XRF Scan Metals in oil **NPDES** □ Cd □ Na □ Zn □ Rad 226 ☐ SO4 □pH □ HGI (As,Cd,Cr,Ni,Pb □ Oil & Grease ☐ Rad 228 □ Chlorides ☐ Fineness Hg) □ Co □ Ni □ Hg □ PCB DAs. ☐ Particle Size ☐ Particulate Matter TX □ Cr □ Pb □ CrVI □ TSS GOFER Sulfur

Customer Email/Report Recipient:

Date Results Needed by:

Project/Task/Unit #

Chain of Custody

Santee Cooper One Riverwood Drive Moncks Corner, SC 29461 Phone: (843)761-8000 Ext. 5148 Fax: (843)761-4175

LCW	LLIA	@santee	cooper.com		/	/		1250	शह	<u>J</u> JM	62.6	9.Gøl.	1 36500	(Ye	No		is Group
Labwor (Interna only)		Sample Locati Description	on/	Collection Date	Collection Time	Sample Collector	Total # of containers	Bottle type: (Glass-G/Plastic-P)	Grab (G) or Composite (C)	Matrix(see below)	Preservative (see	• M • R • M	Commented # eporting limit lise, sample information of the commenter in th		124b 226	RAD 228	TOTAL RAD CALS
AF68	726	WAP-14		7/13/23	1416	WJK	2	P	G	GW	2				1	1	×
AF68	727	WAP-14 D	UP.	1	1421	1	1	1	1	1	1				1	1	1
				-	112	<u> </u>			7	1	7				+	-	H
AF68	130	WAP-14C		+	1001		-				-						
AF68	729	WAP-148			1124												
AF 68	728	WAP- 14A		1	1332		_	Ţ	_		1					1	1
Relingu	ished by:	Employee#	Date	Time	Receiv	ed by:	En	nployee i	# 1	Date		Time	Sample Red	ceiving (Intern	al Use On		
Sprou		35594 Employee#		ogys Time	Receiv			GEL nployee #	7,	/21/2 Date	3 (Time	TEMP (°C	C):	_ Initial No		
All Called	ished by:	GC / Employee#	7.21-23 Date		OLX	lotet	(all	7	121	22	1555	Preservati				
No miqu	ioned by:	Linployeem	Date	Time	Receiv	ed by:	En	nployee f		Date		Time	Date/Time	/Init for prese	ervative:		
red Li	□ ME	TALS (all)	Nutr	ients	MIS	c		GVI	acum	Tuk		C				EL COLO	T 1000
□ Ag	☐ Cu ☐ Fe	☐ Sb	□ тос		□ BTEX	. <u></u>	1	Walibea	osum ard			Coa Ultimate	100.00	Flyash Ammonia	D Trai	Oil	
□ As	□К	□ Sn	□ DOO		☐ Naphthal			Gyps	um(all	1		☐ % Moi		LOI	D %	Moist	
		MARKE REPARED		R-N	□ VOC		1000	below AIN	A Victoria			□ Ash	0	% Carbon	ECC	olor	
□В	□Li	□ Sr			Oil & Gr	ease	1	□ TO€				☐ Sulfur ☐ BTUs		Mineral	₽ Die	lecuie	Strength
□ Ba	□Mg		□ Cl		☐ E. Coli ☐ Total Col	iform	1.5		l metals		HILL .	□ Volatil	e Matter	Analysis Sieve	S IF		d Gases
□ Be	□ Mn		□ NO2	2	□pH			☐ Purit	ty (CaSt	04)	-	□ CHN	To.	% Moisture	Use		
□ Ca	□Мо	□ V	□ Br		☐ Dissolved☐ Dissolved☐		1	⊕% M ⊕ Sulfi	loisture			her Tests			DFL	ishpoi	nt
□ Cd	□Na	□ Zn	□ SO4		Rad 226			□рН			OH	RF Scan		NPDES		etals in	toil Ct.Ni.Pb
□Со	□ Ni	☐ Hg			□ Rad 228 □ PCB			□ Chlo				ineness		Oil & Grease	H	g)	
□ Cr	□РЬ	□ CrVI		20 1 3			13/4/5	Sulfur	cle Size		UP	articulate N	I II II II II II II II II II II II II I	rss	DID	ER	

Client:			SD	G/AR/COC/Work Order: 4000000000000000000000000000000000000
Received By: EG				te Received: 7/21/23 1555
Carrier and Tracking Number				Circle Applicable: FedEx Express FedEx Ground UPS Field Services Courier Other
uspected Hazard Information	Yes	No	*If	Net Counts > 100cpm on samples not marked "radioactive", contact the Radiation Safety Group for further investigation.
s)Shipped as a DOT Hazardous?		Y	Haz	ard Class Shipped: UN#: If UN2910, Is the Radioactive Shipment Survey Compliant? Yes No
Did the client designate the samples are to be eccived as radioactive?		Y	со	C notation or radioactive stickers on containers equal client designation.
?) Did the RSO classify the samples as adioactive?		X	Ma	ximum Net Counts Observed* (Observed Counts - Area Background Counts):CPM/mR/Hr Classified as: Rad 1 Rad 2 Rad 3
Did the client designate samples are hazardous?		X		C notation or bazard labels on containers equal client designation.
) Did the RSO identify possible hazards?		X	II D	or E is yes, select Hazards below. PCB's Flammable Foreign Soil RCRA Asbestos Beryllium Other:
Sample Receipt Criteria	Yes	NA	°Z,	Comments/Qualifiers (Required for Non-Conforming Items)
Shipping containers received intact and sealed?	V			Circle Applicable: Seals broken Damaged container Leaking container Other (describe)
2 Chain of custody documents included with shipment?	1			Circle Applicable: Client contacted and provided COC COC created upon receipt
3 Samples requiring cold preservation within (0 ≤ 6 deg. C)?*	1			Preservation Method: (Wet Ice Jee Packs Dry ice None Other; *all temperatures are recorded in Celsius TEMP:
Daily check performed and passed on IR temperature gun?	1			Temperature Device Serial #: IR5-23 Secondary Temperature Device Serial # (If Applicable):
5 Sample containers intact and sealed?		in .		Circle Applicable: Seals broken Damaged container Leaking container Other (describe)
Samples requiring chemical preservation at proper pH?			1	Sample ID's and Containers Affected: WAP-14 DUP, WAP-15, WAP-14 PH 75 If Preservation added, Lot#:
7 Do any samples require Volatile Analysis?			1	If Yes, are Encores or Soil Kits present for solids? Yes No NA (If yes, take to VOA Freezer) Do liquid VOA vials contain acid preservation? Yes No NA (If unknown, select No) Are liquid VOA vials free of headspace? Yes No NA Sample ID's and containers affected:
8 Samples received within holding time?	1	Market 1		ID's and tests affected:
9 Sample ID's on COC match ID's on bottles?	1			ID's and containers affected:
Date & time on COC match date & time on bottles?	1			Circle Applicable: No dates on containers No times on containers COC missing info Other (describe)
Number of containers received match number indicated on COC?	V	**************************************		Circle Applicable: No container count on COC Other (describe)
Are sample containers identifiable as GEL provided by use of GEL labels? COC form is properly signed in	1			Circle Applicable: Not relinquished Other (describe)
relinquished/received sections?	1	W.		Transition (minute)

GL-CHL-SR-001 Rev 7

List of current GEL Certifications as of 17 August 2023

State	Certification						
Alabama	42200						
Alaska	17-018						
Alaska Drinking Water	SC00012						
Arkansas	88-0651						
CLIA	42D0904046						
California	2940						
Colorado	SC00012						
Connecticut	PH-0169						
DoD ELAP/ ISO17025 A2LA	2567.01						
Florida NELAP	E87156						
Foreign Soils Permit	P330-15-00283, P330-15-00253						
Georgia	SC00012						
Georgia SDWA	967						
Hawaii	SC00012						
Idaho	SC00012 SC00012						
Illinois NELAP	200029						
Indiana	C-SC-01						
Kansas NELAP	E-10332						
Kentucky SDWA	90129						
Kentucky Wastewater	90129						
Louisiana Drinking Water	LA024						
Louisiana NELAP	03046 (AI33904)						
Maine	2019020						
	2019020						
Maryland Massachusetts	M-SC012						
Massachusetts PFAS Approv	Letter						
Michigan Michigan	9976						
Mississippi	SC00012						
Nebraska	NE-OS-26-13						
Nevada	SC000122023-4						
New Hampshire NELAP	2054						
_							
New Jersey NELAP New Mexico	SC002						
New York NELAP	SC00012 11501						
North Carolina	233						
North Carolina SDWA							
	45709						
North Dakota	R-158						
Oklahoma	2022-160						
Pennsylvania NELAP	68-00485						
Puerto Rico	SC00012						
S. Carolina Radiochem	10120002						
Sanitation Districts of L	9255651						
South Carolina Chemistry	10120001						
Tennessee	TN 02934						
Texas NELAP	T104704235-22-20						
Utah NELAP	SC000122022-37						
Vermont	VT87156						
Virginia NELAP	460202						
Washington	C780						

gel.com

September 08, 2023

Ms. Jeanette Gilmetti Santee Cooper P.O. Box 2946101 OCO3 Moncks Corner, South Carolina 29461

Re: ABS Lab Analytical Work Order: 635742

Dear Ms. Gilmetti:

GEL Laboratories, LLC (GEL) appreciates the opportunity to provide the enclosed analytical results for the sample(s) we received on September 01, 2023. This original data report has been prepared and reviewed in accordance with GEL's standard operating procedures.

The samples were delivered with proper chain of custody documentation and signatures. All sample containers arrived without any visible signs of tampering or breakage. There are no additional comments concerning sample receipt.

Test results for NELAP or ISO 17025 accredited tests are verified to meet the requirements of those standards, with any exceptions noted. The results reported relate only to the items tested and to the sample as received by the laboratory. These results may not be reproduced except as full reports without approval by the laboratory. Copies of GEL's accreditations and certifications can be found on our website at www.gel.com.

Our policy is to provide high quality, personalized analytical services to enable you to meet your analytical needs on time every time. We trust that you will find everything in order and to your satisfaction. If you have any questions, please do not hesitate to call me at (843) 556-8171, ext. 4289.

Sincerely,

Julie Robinson Project Manager

Purchase Order: 398684

Enclosures

2040 Savage Road Charleston SC 29407 - (843) 556-8171 - www.gel.com

Certificate of Analysis Report for

SOOP001 Santee Cooper

Client SDG: 635742 GEL Work Order: 635742

The Qualifiers in this report are defined as follows:

- * A quality control analyte recovery is outside of specified acceptance criteria
- ** Analyte is a Tracer compound
- ** Analyte is a surrogate compound
- H Analytical holding time was exceeded
- J Value is estimated
- U Analyte was analyzed for, but not detected above the MDL, MDA, MDC or LOD.

Where the analytical method has been performed under NELAP certification, the analysis has met all of the requirements of the NELAC standard unless qualified on the Certificate of Analysis.

The designation ND, if present, appears in the result column when the analyte concentration is not detected above the limit as defined in the 'U' qualifier above.

This data report has been prepared and reviewed in accordance with GEL Laboratories LLC standard operating procedures. Please direct any questions to your Project Manager, Julie Robinson.

Reviewed by

Page 2 of 13 SDG: 635742

2040 Savage Road Charleston SC 29407 - (843) 556-8171 - www.gel.com

Certificate of Analysis

Project:

Client ID:

Report Date: September 8, 2023

SOOP00119

SOOP001

Company: Santee Cooper Address: P.O. Box 2946101

OCO3

Moncks Corner, South Carolina 29461

Contact: Ms. Jeanette Gilmetti Project: ABS Lab Analytical

Client Sample ID: AF75783 Sample ID: 635742001

Matrix: GW

Collect Date: 23-AUG-23 13:49
Receive Date: 01-SEP-23
Collector: Client

Parameter	Qualifier	Result	DL	RL	Units	PF	DF	Analy	st Date	Time	e Batch	Method
Ion Chromatograp	ohy											
EPA 300.0 Fluorio	de, Liquid "As Rec	eived"										
Chloride		212	3.35	10.0	mg/L		50	JLD1	09/03/23	1326	2486861	1
Sulfate		57.6	6.65	20.0	mg/L		50					
Fluoride	J	0.0685	0.0330	0.100	mg/L		1	JLD1	09/02/23	1419	2486861	2
The following An	nalytical Methods v	vere performed:										
Method	Description	Analyst Comments										

EPA 300.0 EPA 300.0

Notes:

Column headers are defined as follows:

DF: Dilution Factor Lc/LC: Critical Level
DL: Detection Limit PF: Prep Factor
MDA: Minimum Detectable Activity RL: Reporting Limit

MDC: Minimum Detectable Concentration SQL: Sample Quantitation Limit

Page 3 of 13 SDG: 635742

2040 Savage Road Charleston SC 29407 - (843) 556-8171 - www.gel.com

Certificate of Analysis

Project:

Report Date: September 8, 2023

SOOP00119

Company: Santee Cooper P.O. Box 2946101 Address:

OCO3

Moncks Corner, South Carolina 29461

Contact: Ms. Jeanette Gilmetti Project: ABS Lab Analytical

Client Sample ID: AF75784 Sample ID: 635742002

Collect Date: 23-AUG-23 11:09 Receive Date: 01-SEP-23 Collector: Client

Client ID: SOOP001 Matrix: GW

Parameter	Qualifier	Result	DL	RL	Units	PF	DF	Analy	yst Date	Time Batch	Method
Ion Chromatograpl	hy										
EPA 300.0 Fluorid	le, Liquid "As Rec	eived"									
Chloride		354	6.70	20.0	mg/L		100	JLD1	09/03/23	1358 2486861	1
Sulfate		99.8	13.3	40.0	mg/L		100				
Fluoride		0.233	0.0330	0.100	mg/L		1	JLD1	09/02/23	1451 2486861	2
The following Ana	alytical Methods v										
Method	Description	ı	Analyst Comments								
1	EPA 300.0					-					
2	EPA 300.0										

Notes:

Column headers are defined as follows:

DF: Dilution Factor Lc/LC: Critical Level DL: Detection Limit PF: Prep Factor MDA: Minimum Detectable Activity **RL**: Reporting Limit

SQL: Sample Quantitation Limit MDC: Minimum Detectable Concentration

Page 4 of 13 SDG: 635742

2040 Savage Road Charleston SC 29407 - (843) 556-8171 - www.gel.com

Certificate of Analysis

Project:

Client ID:

Report Date: September 8, 2023

SOOP00119

SOOP001

Company: Santee Cooper Address: P.O. Box 2946101

OCO3

Moncks Corner, South Carolina 29461

Contact: Ms. Jeanette Gilmetti Project: ABS Lab Analytical

Client Sample ID: AF75785 Sample ID: 635742003

Matrix: GW

Collect Date: 23-AUG-23 11:14
Receive Date: 01-SEP-23
Collector: Client

Parameter Qualifier Result DL RL Units PF DF Analyst Date Time Batch Method Ion Chromatography EPA 300.0 Fluoride, Liquid "As Received" Fluoride 0.0330 0.100 0.237 mg/L 1 JLD1 09/02/23 1523 2486861 1 Chloride 6.70 20.0 100 JLD1 09/03/23 1430 2486861 mg/L Sulfate 96.0 13.3 40.0 mg/L 100 The following Analytical Methods were performed:

 Method
 Description
 Analyst Comments

 1
 EPA 300.0

 2
 EPA 300.0

Notes:

Column headers are defined as follows:

DF: Dilution Factor Lc/LC: Critical Level
DL: Detection Limit PF: Prep Factor
MDA: Minimum Detectable Activity RL: Reporting Limit

MDC: Minimum Detectable Concentration SQL: Sample Quantitation Limit

Page 5 of 13 SDG: 635742

2040 Savage Road Charleston SC 29407 - (843) 556-8171 - www.gel.com

Certificate of Analysis

Project:

Client ID:

Report Date: September 8, 2023

SOOP00119

SOOP001

Company: Santee Cooper Address: P.O. Box 2946101

OCO3

Moncks Corner, South Carolina 29461

Contact: Ms. Jeanette Gilmetti Project: ABS Lab Analytical

Client Sample ID: AF75786 Sample ID: 635742004

Collect Date: 23-AUG-23 12:35
Receive Date: 01-SEP-23
Collector: Client

Matrix: GW
Collect Date: 23-AUG-23 12:35

Parameter	Qualifier	Result	DL	RL	Units	PF	DF Analyst	Date	Time Batch	Method
Ion Chromatograph	y									
EPA 300.0 Fluoride	e, Liquid "As Rec	eived"								
Chloride		862	13.4	40.0	mg/L		200 JLD1 09	/03/23	1502 2486861	1 1
Sulfate		650	26.6	80.0	mg/L		200			
Fluoride	U	ND	0.0330	0.100	mg/L		1 JLD1 09	/02/23	1554 2486861	1 2
The following Ana	lytical Methods v	vere performed:								
Method	Description				1	Analys	st Comments			

EPA 300.0 2 EPA 300.0

Notes:

Column headers are defined as follows:

DF: Dilution Factor Lc/LC: Critical Level
DL: Detection Limit PF: Prep Factor
MDA: Minimum Detectable Activity RL: Reporting Limit

MDC: Minimum Detectable Concentration SQL: Sample Quantitation Limit

Page 6 of 13 SDG: 635742

2040 Savage Road Charleston, SC 29407 - (843) 556-8171 - www.gel.com

QC Summary

Report Date: September 8, 2023

Page 1 of 2

Santee Cooper P.O. Box 2946101

OCO3

Moncks Corner, South Carolina

Contact: Ms. Jeanette Gilmetti

Workorder: 635742

Parmname	NOM	Sample	Qual	QC	Units	RPD%	REC%	Range Anlst	Date Time
Ion Chromatography Batch 2486861									
QC1205506681 635758008 DUP Chloride	Н	8.12	Н	8.10	mg/L	0.269		(0%-20%) JLD1	09/03/23 02:32
Fluoride	Н	0.123	Н	0.126	mg/L	2.81 ^		(+/-0.100)	
Sulfate	Н	22.7	Н	22.6	mg/L	0.432		(0%-20%)	09/03/23 16:06
QC1205506678 LCS Chloride	5.00			4.70	mg/L		94.1	(90%-110%)	09/03/23 00:56
Fluoride	2.50			2.41	mg/L		96.4	(90%-110%)	
Sulfate	10.0			9.54	mg/L		95.4	(90%-110%)	
QC1205506677 MB Chloride			U	ND	mg/L				09/03/23 00:24
Fluoride			U	ND	mg/L				
Sulfate			U	ND	mg/L				
QC1205506682 635758008 PS Chloride	5.00 H	8.12	Н	13.4	mg/L		105	(90%-110%)	09/03/23 03:04
Fluoride	2.50 Н	0.123	Н	2.43	mg/L		92.2	(90%-110%)	
Sulfate	10.0 Н	11.3	Н	21.1	mg/L		97.4	(90%-110%)	09/03/23 16:38

Notes:

Page 7 of 13 SDG: 635742

2040 Savage Road Charleston, SC 29407 - (843) 556-8171 - www.gel.com

QC Summary

Page 2 of 2 **Parmname** NOM Sample Qual \mathbf{OC} Units RPD% REC% Range Anlst Date Time

The Qualifiers in this report are defined as follows:

635742

- Analyte was analyzed for, but not detected above the MDL, MDA, MDC or LOD. U
- Value is estimated

Workorder:

- X Consult Case Narrative, Data Summary package, or Project Manager concerning this qualifier
- Η Analytical holding time was exceeded
- < Result is less than value reported
- Result is greater than value reported
- Preparation or preservation holding time was exceeded h
- R Sample results are rejected
- Z Paint Filter Test--Particulates passed through the filter, however no free liquids were observed.
- d 5-day BOD--The 2:1 depletion requirement was not met for this sample
- Λ RPD of sample and duplicate evaluated using +/-RL. Concentrations are <5X the RL. Qualifier Not Applicable for Radiochemistry.
- N/A RPD or %Recovery limits do not apply.
- ND Analyte concentration is not detected above the detection limit
- NJ Consult Case Narrative, Data Summary package, or Project Manager concerning this qualifier
- Ε General Chemistry--Concentration of the target analyte exceeds the instrument calibration range
- One or more quality control criteria have not been met. Refer to the applicable narrative or DER. O
- N1See case narrative
- Per section 9.3.4.1 of Method 1664 Revision B, due to matrix spike recovery issues, this result may not be reported or used for regulatory compliance
- В The target analyte was detected in the associated blank.
- 5-day BOD--Test replicates show more than 30% difference between high and low values. The data is qualified per the method and can be used for e reporting purposes
- See case narrative for an explanation

N/A indicates that spike recovery limits do not apply when sample concentration exceeds spike conc. by a factor of 4 or more or %RPD not applicable.

- ^ The Relative Percent Difference (RPD) obtained from the sample duplicate (DUP) is evaluated against the acceptance criteria when the sample is greater than five times (5X) the contract required detection limit (RL). In cases where either the sample or duplicate value is less than 5X the RL, a control limit of +/- the RL is used to evaluate the DUP result.
- * Indicates that a Quality Control parameter was not within specifications.

For PS, PSD, and SDILT results, the values listed are the measured amounts, not final concentrations.

Where the analytical method has been performed under NELAP certification, the analysis has met all of the requirements of the NELAC standard unless qualified on the QC Summary.

Page 8 of 13 SDG: 635742

General Chemistry Technical Case Narrative Santee Cooper SDG #: 635742

Product: Ion Chromatography Analytical Method: EPA 300.0

Analytical Procedure: GL-GC-E-086 REV# 33

Analytical Batch: 2486861

The following samples were analyzed using the above methods and analytical procedure(s).

GEL Sample ID#	Client Sample Identification
635742001	AF75783
635742002	AF75784
635742003	AF75785
635742004	AF75786
1205506677	Method Blank (MB)
1205506678	Laboratory Control Sample (LCS)
1205506681	635758008(AF71297) Sample Duplicate (DUP)
1205506682	635758008(AF71297) Post Spike (PS)

The samples in this SDG were analyzed on an "as received" basis.

Data Summary:

All sample data provided in this report met the acceptance criteria specified in the analytical methods and procedures for initial calibration, continuing calibration, instrument controls and process controls where applicable, with the following exceptions.

Technical Information

Holding Times

Samples (See Below) were received by the laboratory outside of the method specified holding time. The data is qualified.

Sample	Analyte	Value
1205506681 (AF71297DUP)		Received 01-SEP-23, out of holding 30-AUG-23
1205506682 (AF71297PS)		Received 01-SEP-23, out of holding 30-AUG-23

Sample Dilutions

The following samples 1205506681 (AF71297DUP), 1205506682 (AF71297PS), 635742001 (AF75783), 635742002 (AF75784), 635742003 (AF75785) and 635742004 (AF75786) were diluted because target analyte concentrations exceeded the calibration range. Dilutions may be required for many reasons, including to minimize matrix interferences or to bring over range target analyte concentrations into the linear calibration range.

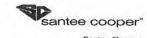
	635742								
Analyte	001	002	003	004					
Chloride	50X	100X	100X	200X					

Page 9 of 13 SDG: 635742

Sulfate 50X 100X 100X 200X

Miscellaneous Information

Manual Integrations


Sample 635742004 (AF75786) was manually integrated to correctly position the baseline as set in the calibration standards.

Certification Statement

Where the analytical method has been performed under NELAP certification, the analysis has met all of the requirements of the NELAC standard unless otherwise noted in the analytical case narrative.

Page 10 of 13 SDG: 635742

Chain of Custody

103	67	42												M Phone:	Ioneks Co (843)761-	Santee Coope liverwood Driv orner, SC 2946 -8000 Ext. 514 : (843)761-417
Customer Email/Report Recipient:			Date Results Needed by: Project/Task/Unit #:									Rerun request for any flagged				
LINDA	. WILL	₩S @santee	cooner com		, ,			125	915	, JM	102.	09.GØI.I	1 3650	× Yes	No	
		@3ance	cooper.com													alysis Group
(Interne		Sample Location Description	on/	Collection Date	Collection Time	Sample Collector	Total # of containers	Bottle type: (Glass- G/Plastic-P)	Grab (G) or Composite (C)	Matrix(see below)	Preservative (see	RepMis	hod # orting lim c. sample	nfo	F, CI, SO4	
AF 75	5783	WAP-27		8/23/23	1349	ZDM BB	ı	P	G	G-W	1				×	
1	84	WAP - 28			1109	1			1						X	
	85	WAP-28 D			1114										×	
1	86	WAP-29		1	1235	1	1	1	1	1	1				×	
											9					
Polis	quished by:	Employee#	Date	Time	Recei	ved by:		Employee	#	Dat	ρ	Time		Receiving (Interna		
1		- 36851		947	1	20		GEL		7/1/5		0017		O (°C):		<u> </u>
Relin	quished by:	1	Date	Time	Recei	ved by:	E	Employee	#	Dat	e	Time		ct pH: Yes N	O	
Keim	quished by:	(E) Employee#	9-1-73 Date	/6/0	Recei	ved by:		OH	#	Dat)3 e	IGIO Time	Presei	vative Lot#:		
													Date/	Time/Init for preser	vative:	
		ETALS (all)	Nut	rients	MI	SC.		Gy	/psui	m		Coa		Flyash		Oil
□ Ag			□ TO	CONTRACTOR OF THE PARTY.	☐ BTEX	□ BTEX □ Naphthalene		Wallb	oard osum(a	all		Ultimate	tura	☐ Ammonia ☐ LOI		ns, Oil Qual. Moisture
□ As	□K	□ Sn	OF CASCAST PARTY AND ADDRESS OF THE PARTY AND THE PARTY AN	TPO4	☐ Naphthalene ☐ THM/HAA ☐ VOC ☐ Oil & Grease			belo	iw)			□ Ash	aure	□ % Carbon	DC	olur
□В	□Li	□ Sr	□NH	13-N				D A				□ Sulfur	4 44	☐ Mineral	Die	cidity electric Strength
□ Ba □ Mg □ Ti □ F □ Be □ Mn □ TI □ NO.			☐ E. Coli			ΟTe	otal met	A CONTRACTOR OF THE PARTY OF TH		☐ BTUs ☐ Volatile	Matter	Analysis ☐ Sieve	and the second	T issolved Gases		
)2	☐ Total C☐ pH	omorm			luble N crity (Ca			□ CHN		□ % Moisture	- Use	d Oil		
□ Ca	□м		□ Br	District Control of the Control of t	☐ Dissolv			□%	Moistu		Section 1	Other Tests: XRF Scan				lashpoint letals in oil
□ Cd	□ N	ACTORISM NO. PERSONALE	LI NO3		□ Rad 22	5			lfites		HO T	HGI	-15-11	NPDES	(2	As,Cd,Cr,Ni,Pb
□Со	□N	191		□ Rad 228 □ PCB			□ Colorides □ Fineness					☐ Oil & Grease	□ Oil & Grease Hg) □ As □ IX			
□ Cr	□ Pt			-	S. CD		3	Sulfur		e Size		. Laineulate iv		□ TSS	□ GO	

			SE	OG/AR/COC/Work Order: 0.55 19 C								
Received By: MVH			Date Received:									
Carrier and Tracking Number				Circle Applicable: FedEx Express FedEx Ground UPS Field Services Courier Other								
Suspected Hazard Information	Yes	No	*If	f Net Counts > 100cpm on samples not marked "radioactive", contact the Radiation Safety Group for further investigation.								
A)Shipped as a DOT Hazardous?		1	Ha	zard Class Shipped: If UN2910, Is the Radioactive Shipment Survey Compliant? Yes No								
Did the client designate the samples are to be eceived as radioactive?		/	CC	OC notation or radioactive stickers on containers equal client designation.								
Did the RSO classify the samples as adioactive?		1	Ma	aximum Net Counts Observed* (Observed Counts - Area Background Counts)CPM/ mR/Hr Classified as: Rad 1 Rad 2 Rad 3								
Did the client designate samples are hazardous?		,	CC	OC notation or hazard labels on containers equal client designation.								
D) Did the client designate samples are hazardous?			ИI	D or E is yes, select Hazards below. PCB's Flammable Foreign Soil RCRA Asbestos Beryllium Other:								
Did the RSO identify possible hazards?	90		L	0/// /design								
Sample Receipt Criteria Shipping containers received intact and	Yes	NA	N.	Comments/Qualifiers (Required for Non-Conforming Items) Circle Applicable: Seals broken Damaged container Leaking container Other (describe)								
sealed?												
2 Chain of custody documents included with shipment?	-			Circle Applicable: Client contacted and provided COC COC created upon receipt								
3 Samples requiring cold preservation within (0 ≤ 6 deg. C)?*	/	-		Preservation Method: Wet Ice Ice Packs Dry ice None Other: *all temperatures are recorded in Celsius TEMP:								
4 Daily check performed and passed on IR temperature gun?	-	7		Temperature Device Serial #: IR2-21 Secondary Temperature Device Serial # (If Applicable):								
5 Sample containers intact and sealed?	/		Circle Applicable: Seals broken Damaged container Leaking container Other (describe)									
Samples requiring chemical preservation at proper pH?	1	X		Sample ID's, and Containers Affected: OUL 9- If Preservation added, Lot#;								
7 Do any samples require Volatile Analysis?			1	If Yes, are Encores or Soil Kits present for solids? YesNoNA(If yes, take to VOA Freezer) Voliquid VOA vials contain acid preservation? YesNoNA(If unknown, select No) Are liquid VOA vials free of headspace? YesNoNA Sample ID's and containers affected:								
8 Samples received within holding time?	-			ID's and tests affected:								
9 Sample ID's on COC match ID's on bottles?	1			ID's and containers affected:								
Date & time on COC match date & time on bottles?	1			Circle Applicable: No dates on containers No times on containers COC missing info Other (describe)								
Number of containers received match number indicated on COC?	/			Circle Applicable: No container count on COC Other (describe)								
2 Are sample containers identifiable as GEL provided by use of GEL labels?			-									
COC form is properly signed in	/			Circle Applicable: Not relinquished Other (describe)								

Page 12 of 13 SDG: 635742

List of current GEL Certifications as of 08 September 2023

State	Certification						
Alabama	42200						
Alaska	17-018						
Alaska Drinking Water	SC00012						
Arkansas	88-0651						
CLIA	42D0904046						
California	2940						
Colorado	SC00012						
Connecticut	PH-0169						
DoD ELAP/ ISO17025 A2LA	2567.01						
Florida NELAP	E87156						
Foreign Soils Permit	P330-15-00283, P330-15-00253						
Georgia	SC00012						
Georgia SDWA	967						
Hawaii	SC00012						
Idaho	SC00012 SC00012						
Illinois NELAP	200012						
Indiana	C-SC-01						
Kansas NELAP	E-10332						
Kentucky SDWA	90129						
Kentucky Wastewater	90129						
Louisiana Drinking Water	LA024						
Louisiana NELAP	03046 (AI33904)						
Maine	2019020						
Maryland	270						
Massachusetts	M-SC012						
Massachusetts PFAS Approv	Letter						
Michigan	9976						
Mississippi	SC00012						
Nebraska	NE-OS-26-13						
Nevada	SC000122023-4						
New Hampshire NELAP	2054						
New Jersey NELAP	SC002						
New Mexico	SC00012						
New York NELAP	11501						
North Carolina	233						
North Carolina SDWA	45709						
North Dakota	R-158						
Oklahoma	2022-160						
Pennsylvania NELAP	68-00485						
Puerto Rico	SC00012						
S. Carolina Radiochem	10120002						
Sanitation Districts of L	9255651						
South Carolina Chemistry	10120001						
Tennessee	TN 02934						
Texas NELAP	T104704235-22-20						
Utah NELAP	SC000122022-37						
Vermont	VT87156						
Virginia NELAP	460202						
Washington	C780						
	1						

11 12

13 14

A

ANALYTICAL REPORT

PREPARED FOR

Attn: Linda Williams
South Carolina Public Service Authority
Santee Cooper
PO BOX 2946101
Moncks Corner, South Carolina 29461-2901

Generated 8/9/2023 8:43:07 AM

JOB DESCRIPTION

125915/JM02.08.G01.1/36500

JOB NUMBER

680-238535-1

Eurofins Savannah 5102 LaRoche Avenue Savannah GA 31404

Eurofins Savannah

Job Notes

This report may not be reproduced except in full, and with written approval from the laboratory. The results relate only to the samples tested. For questions please contact the Project Manager at the e-mail address or telephone number listed on this page.

The test results in this report relate only to the samples as received by the laboratory and will meet all requirements of the methodology, with any exceptions noted. This report shall not be reproduced except in full, without the express written approval of the laboratory. All questions should be directed to the Eurofins Environment Testing Southeast, LLC Project Manager.

Authorization

Generated 8/9/2023 8:43:07 AM

Authorized for release by Jerry Lanier, Project Manager I Jerry.Lanier@et.eurofinsus.com (912)250-0281

Page 2 of 28 8/9/2023

Table of Contents

Cover Page	1
Table of Contents	3
Case Narrative	4
Sample Summary	5
Method Summary	
Definitions	7
Detection Summary	
Client Sample Results	
QC Sample Results	18
QC Association	21
Chronicle	23
Chain of Custody	25
Receipt Checklists	
Certification Summary	28

5

6

8

9

10

Case Narrative

Client: South Carolina Public Service Authority Project/Site: 125915/JM02.08.G01.1/36500

Job ID: 680-238535-1

Job ID: 680-238535-1

Laboratory: Eurofins Savannah

Narrative

Job Narrative 680-238535-1

Receipt

The samples were received on 8/2/2023 10:45 AM. Unless otherwise noted below, the samples arrived in good condition, and, where required, properly preserved and on ice. The temperature of the cooler at receipt time was 4.3°C

Receipt Exceptions

The following samples were listed on the Chain of Custody (COC); however, no samples were received: AF68753 (680-238535-1), AF68759 (680-238535-2), AF68752 (680-238535-3), AF68735 (680-238535-4), AF68756 (680-238535-5), AF68758 (680-238535-6), AF68759 (680-238535-7), AF68736 (680-238535-8) and AF68754 (680-238535-9).

Sample -7 not found in cooler.

Sample 9 not listed on COC.

Metals

No additional analytical or quality issues were noted, other than those described above or in the Definitions/ Glossary page.

20505.4

3

4

5

6

1

8

3

12

13

Sample Summary

Client: South Carolina Public Service Authority Project/Site: 125915/JM02.08.G01.1/36500

Job ID: 680-238535-1

Lab Sample ID	Client Sample ID	Matrix	Collected	Received
680-238535-1	AF68753	Water	07/06/23 13:08	08/02/23 10:45
680-238535-2	AF68759	Water	07/06/23 13:13	08/02/23 10:45
680-238535-3	AF68752	Water	07/06/23 14:09	08/02/23 10:45
680-238535-4	AF68735	Water	07/05/23 09:35	08/02/23 10:45
680-238535-5	AF68756	Water	07/05/23 11:39	08/02/23 10:45
680-238535-6	AF68758	Water	07/06/23 09:47	08/02/23 10:45
680-238535-8	AF68736	Water	07/06/23 11:21	08/02/23 10:45
680-238535-9	AF68754	Water	07/06/23 13:13	08/02/23 10:45

3

4

6

ŏ

10

13

Method Summary

Client: South Carolina Public Service Authority Project/Site: 125915/JM02.08.G01.1/36500

Job ID: 680-238535-1

Method	Method Description	Protocol	Laboratory
6010D	Metals (ICP)	SW846	EET SAV
6020B	Metals (ICP/MS)	SW846	EET SAV
3005A	Preparation, Total Recoverable or Dissolved Metals	SW846	EET SAV

Protocol References:

SW846 = "Test Methods For Evaluating Solid Waste, Physical/Chemical Methods", Third Edition, November 1986 And Its Updates.

Laboratory References:

EET SAV = Eurofins Savannah, 5102 LaRoche Avenue, Savannah, GA 31404, TEL (912)354-7858

Eurofins Savannah

Page 6 of 28 8/9/2023

4

4

5

8

11

14

Definitions/Glossary

Client: South Carolina Public Service Authority

Project/Site: 125915/JM02.08.G01.1/36500

Job ID: 680-238535-1

Qualifiers

Metals

 Qualifier
 Qualifier Description

 U
 Indicates the analyte was analyzed for but not detected.

Glossary

MPN

MQL

NC

ND NEG

POS

PQL

QC

RL RPD

TEF

TEQ

TNTC

RER

PRES

Most Probable Number

Not Calculated

Negative / Absent

Positive / Present

Presumptive

Quality Control

Method Quantitation Limit

Practical Quantitation Limit

Relative Error Ratio (Radiochemistry)

Toxicity Equivalent Factor (Dioxin)

Too Numerous To Count

Toxicity Equivalent Quotient (Dioxin)

Reporting Limit or Requested Limit (Radiochemistry)

Relative Percent Difference, a measure of the relative difference between two points

Not Detected at the reporting limit (or MDL or EDL if shown)

These commonly used abbreviations may or may not be present in this report.
Listed under the "D" column to designate that the result is reported on a dry weight basis
Percent Recovery
Contains Free Liquid
Colony Forming Unit
Contains No Free Liquid
Duplicate Error Ratio (normalized absolute difference)
Dilution Factor
Detection Limit (DoD/DOE)
Indicates a Dilution, Re-analysis, Re-extraction, or additional Initial metals/anion analysis of the sample
Decision Level Concentration (Radiochemistry)
Estimated Detection Limit (Dioxin)
Limit of Detection (DoD/DOE)
Limit of Quantitation (DoD/DOE)
EPA recommended "Maximum Contaminant Level"
Minimum Detectable Activity (Radiochemistry)
Minimum Detectable Concentration (Radiochemistry)
Method Detection Limit
Minimum Level (Dioxin)

Eurofins Savannah

Detection Summary

Client: South Carolina Public Service Authority Project/Site: 125915/JM02.08.G01.1/36500

Client Sample ID: AF68753

Job ID: 680-238535-1

Lab Sample ID: 680-238535-1

•									
Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type
Calcium	90200		500		ug/L	1	_	6010D	Total
									Recoverable
Barium	38.4		5.00		ug/L	1		6020B	Total
									Recoverable

Client Sample ID: AF68759 Lab Sample ID: 680-238535-2

Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type
Calcium	190000		500		ug/L	1		6010D	Total
									Recoverable
Arsenic	4.53		3.00		ug/L	1		6020B	Total
									Recoverable
Barium	41.7		5.00		ug/L	1		6020B	Total
									Recoverable
Iron	433		100		ug/L	1		6020B	Total
									Recoverable

Client Sample ID: AF68752 Lab Sample ID: 680-238535-3

Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type
Calcium	18700		500		ug/L	1		6010D	Total
									Recoverable
Arsenic	10.7		3.00		ug/L	1		6020B	Total
									Recoverable
Barium	32.8		5.00		ug/L	1		6020B	Total
									Recoverable
Cobalt	0.810		0.500		ug/L	1		6020B	Total
									Recoverable
Iron	608		100		ug/L	1		6020B	Total
									Recoverable

Client Sample ID: AF68735 Lab Sample ID: 680-238535-4

Analyte	Result	Qualifier R	L MDL	Unit	Dil Fac	D	Method	Prep Type
Calcium	92600	50	0	ug/L	1		6010D	Total
								Recoverable
Arsenic	216	3.0	ס	ug/L	1		6020B	Total
								Recoverable
Barium	139	5.0	ס	ug/L	1		6020B	Total
								Recoverable
Cobalt	0.780	0.50	ס	ug/L	1		6020B	Total
								Recoverable
Iron	1040	10)	ug/L	1		6020B	Total
								Recoverable

Client Sample ID: AF68756 Lab Sample ID: 680-238535-5

Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type
Calcium	62200		500		ug/L	1		6010D	Total
									Recoverable
Arsenic	77.6		3.00		ug/L	1		6020B	Total
									Recoverable
Barium	33.3		5.00		ug/L	1		6020B	Total
									Recoverable
Cobalt	1.09		0.500		ug/L	1		6020B	Total
									Recoverable

This Detection Summary does not include radiochemical test results.

Eurofins Savannah

8/9/2023

Page 8 of 28

2

3

4

6

9

10

13

14

Detection Summary

Client: South Carolina Public Service Authority Project/Site: 125915/JM02.08.G01.1/36500

Client Sample ID: AF68756 (Continued)

Job ID: 680-238535-1

Lab Sample ID: 6	80-238535-5
------------------	-------------

Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type
Iron	1750		100		ug/L	1		6020B	Total
									Recoverable

Client Sample ID: AF68758 Lab Sample ID: 680-238535-6

Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type
Calcium	193000		500		ug/L	1		6010D	Total
									Recoverable
Arsenic	4.57		3.00		ug/L	1		6020B	Total
									Recoverable
Barium	41.4		5.00		ug/L	1		6020B	Total
									Recoverable
Iron	466		100		ug/L	1		6020B	Total
									Recoverable

Client Sample ID: AF68736 Lab Sample ID: 680-238535-8

Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type
Calcium	639000		500		ug/L	1		6010D	Total
									Recoverable
Arsenic	173		3.00		ug/L	1		6020B	Total
									Recoverable
Barium	104		5.00		ug/L	1		6020B	Total
									Recoverable
Cobalt	0.640		0.500		ug/L	1		6020B	Total
									Recoverable
Iron	2750		100		ug/L	1		6020B	Total
									Recoverable

Client Sample ID: AF68754 Lab Sample ID: 680-238535-9

Analyte	Result Qualifie	r RL	MDL Unit	Dil Fac	D Method	Prep Type
Calcium	88000	500	ug/L	1	6010D	Total
						Recoverable
Barium	38.4	5.00	ug/L	1	6020B	Total
						Recoverable
Iron	3320	100	ug/L	1	6020B	Total
						Recoverable

This Detection Summary does not include radiochemical test results.

Eurofins Savannah

8/9/2023

Client Sample Results

Client: South Carolina Public Service Authority Project/Site: 125915/JM02.08.G01.1/36500

Lab Sample ID: 680-238535-1

Matrix: Water

Job ID: 680-238535-1

Client Sample ID: AF68753

Date Collected: 07/06/23 13:08 Date Received: 08/02/23 10:45

Method: SW846 6010D - Metals (ICI	P) - Total Re	coverable							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Calcium	90200		500		ug/L		08/03/23 06:38	08/04/23 17:33	1
Selenium	20.0	U	20.0		ug/L		08/03/23 06:38	08/04/23 17:33	1

		_			3				•
Method: SW846 6020B -	Metals (ICP/MS) - Total	Recoverable	e						
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Antimony	5.00	U	5.00		ug/L		08/03/23 06:38	08/08/23 15:42	1
Arsenic	3.00	U	3.00		ug/L		08/03/23 06:38	08/08/23 15:42	1
Barium	38.4		5.00		ug/L		08/03/23 06:38	08/08/23 15:42	1
Beryllium	0.500	U	0.500		ug/L		08/03/23 06:38	08/08/23 15:42	1
Cadmium	0.500	U	0.500		ug/L		08/03/23 06:38	08/08/23 15:42	1
Chromium	5.00	U	5.00		ug/L		08/03/23 06:38	08/08/23 15:42	1
Cobalt	0.500	U	0.500		ug/L		08/03/23 06:38	08/08/23 15:42	1
Copper	5.00	U	5.00		ug/L		08/03/23 06:38	08/08/23 15:42	1
Iron	3330		100		ug/L		08/03/23 06:38	08/08/23 15:42	1
Lead	2.50	U	2.50		ug/L		08/03/23 06:38	08/08/23 15:42	1
Nickel	5.00	U	5.00		ug/L		08/03/23 06:38	08/08/23 15:42	1
Thallium	1.00	U	1.00		ug/L		08/03/23 06:38	08/08/23 15:42	1
Zinc	20.0	U	20.0		ug/L		08/03/23 06:38	08/08/23 15:42	1

Δ

6

9

10

12

13

Client Sample Results

Client: South Carolina Public Service Authority

Job ID: 680-238535-1

Project/Site: 125915/JM02.08.G01.1/36500

Lab Sample ID: 680-238535-2

Matrix: Water

Client Sample ID: AF68759

Date Collected: 07/06/23 13:13 Date Received: 08/02/23 10:45

Method: SW846 6010D - Meta	ils (ICP) - Total Recoverable						
Analyte	Result Qualifier	RL	MDL Unit	D	Prepared	Analyzed	Dil Fac
Calcium	190000	500	ug/L		08/03/23 06:38	08/04/23 17:30	1
Selenium	20.0 U	20.0	ug/L		08/03/23 06:38	08/04/23 17:30	1

Selenium	20.0	U	20.0		ug/L		08/03/23 06:38	08/04/23 17:30	1
Method: SW846 6020B	- Metals (ICP/MS) - Tota	l Recoverabl	e						
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Antimony	5.00	U	5.00		ug/L		08/03/23 06:38	08/08/23 15:38	-
Arsenic	4.53		3.00		ug/L		08/03/23 06:38	08/08/23 15:38	,
Barium	41.7		5.00		ug/L		08/03/23 06:38	08/08/23 15:38	
Beryllium	0.500	U	0.500		ug/L		08/03/23 06:38	08/08/23 15:38	
Cadmium	0.500	U	0.500		ug/L		08/03/23 06:38	08/08/23 15:38	
Chromium	5.00	U	5.00		ug/L		08/03/23 06:38	08/08/23 15:38	
Cobalt	0.500	U	0.500		ug/L		08/03/23 06:38	08/08/23 15:38	
Copper	5.00	U	5.00		ug/L		08/03/23 06:38	08/08/23 15:38	
Iron	433		100		ug/L		08/03/23 06:38	08/08/23 15:38	
Lead	2.50	U	2.50		ug/L		08/03/23 06:38	08/08/23 15:38	
Nickel	5.00	U	5.00		ug/L		08/03/23 06:38	08/08/23 15:38	
Thallium	1.00	U	1.00		ug/L		08/03/23 06:38	08/08/23 15:38	
Zinc	20.0	U	20.0		ug/L		08/03/23 06:38	08/08/23 15:38	

Client Sample Results

Client: South Carolina Public Service Authority Project/Site: 125915/JM02.08.G01.1/36500

Job ID: 680-238535-1

Lab Sample ID: 680-238535-3

Date Collected: 07/06/23 14:09 Date Received: 08/02/23 10:45

Client Sample ID: AF68752

Matrix: Water

Method: SW846 6010D - Meta	Is (ICP) - Total Recoverable						
Analyte	Result Qualifier	RL	MDL Unit	D	Prepared	Analyzed	Dil Fac
Calcium	18700	500	ug/L		08/03/23 06:38	08/04/23 17:38	1
Selenium	20.0 U	20.0	ug/L		08/03/23 06:38	08/04/23 17:38	1

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Antimony	5.00	U	5.00		ug/L		08/03/23 06:38	08/08/23 15:50	1
Arsenic	10.7		3.00		ug/L		08/03/23 06:38	08/08/23 15:50	1
Barium	32.8		5.00		ug/L		08/03/23 06:38	08/08/23 15:50	1
Beryllium	0.500	U	0.500		ug/L		08/03/23 06:38	08/08/23 15:50	1
Cadmium	0.500	U	0.500		ug/L		08/03/23 06:38	08/08/23 15:50	1
Chromium	5.00	U	5.00		ug/L		08/03/23 06:38	08/08/23 15:50	1
Cobalt	0.810		0.500		ug/L		08/03/23 06:38	08/08/23 15:50	1
Copper	5.00	U	5.00		ug/L		08/03/23 06:38	08/08/23 15:50	1
Iron	608		100		ug/L		08/03/23 06:38	08/08/23 15:50	1
Lead	2.50	U	2.50		ug/L		08/03/23 06:38	08/08/23 15:50	1
Nickel	5.00	U	5.00		ug/L		08/03/23 06:38	08/08/23 15:50	1
Thallium	1.00	U	1.00		ug/L		08/03/23 06:38	08/08/23 15:50	1
Zinc	20.0	U	20.0		ug/L		08/03/23 06:38	08/08/23 15:50	1

Client: South Carolina Public Service Authority Project/Site: 125915/JM02.08.G01.1/36500

Job ID: 680-238535-1

Lab Sample ID: 680-238535-4

Matrix: Water

Client Sample ID: AF68735

Date Collected: 07/05/23 09:35 Date Received: 08/02/23 10:45

ſ	Method: SW846 6010D - Metals (ICP) - Total Recoverable											
	Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac		
	Calcium	92600		500		ug/L		08/07/23 12:18	08/08/23 14:06	1		
l	Selenium	20.0	U	20.0		ug/L		08/07/23 12:18	08/08/23 14:06	1		

	20.0	Ü	20.0		ug/ L		00/01/20 12:10	00/00/20 11:00	
	· Metals (ICP/MS) - Total	Recoverable	е						
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Antimony	5.00	U	5.00		ug/L		08/07/23 12:18	08/08/23 20:45	1
Arsenic	216		3.00		ug/L		08/07/23 12:18	08/08/23 20:45	1
Barium	139		5.00		ug/L		08/07/23 12:18	08/08/23 20:45	1
Beryllium	0.500	U	0.500		ug/L		08/07/23 12:18	08/08/23 20:45	1
Cadmium	0.500	U	0.500		ug/L		08/07/23 12:18	08/08/23 20:45	1
Chromium	5.00	U	5.00		ug/L		08/07/23 12:18	08/08/23 20:45	1
Cobalt	0.780		0.500		ug/L		08/07/23 12:18	08/08/23 20:45	1
Copper	5.00	U	5.00		ug/L		08/07/23 12:18	08/08/23 20:45	1
Iron	1040		100		ug/L		08/07/23 12:18	08/08/23 20:45	1
Lead	2.50	U	2.50		ug/L		08/07/23 12:18	08/08/23 20:45	1
Nickel	5.00	U	5.00		ug/L		08/07/23 12:18	08/08/23 20:45	1
Thallium	1.00	U	1.00		ug/L		08/07/23 12:18	08/08/23 20:45	1
Zinc	20.0	U	20.0		ug/L		08/07/23 12:18	08/08/23 20:45	1

_

Λ

5

7

0

10

46

Client: South Carolina Public Service Authority Project/Site: 125915/JM02.08.G01.1/36500

Method: SW846 6010D - Metals (ICP) - Total Recoverable

Lab Sample ID: 680-238535-5

Job ID: 680-238535-1

Client Sample ID: AF68756

Date Collected: 07/05/23 11:39 Date Received: 08/02/23 10:45 Matrix: Water

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Calcium	62200		500		ug/L		08/07/23 12:18	08/08/23 14:04	1
Selenium	20.0	U	20.0		ug/L		08/07/23 12:18	08/08/23 14:04	1
- Method: SW846 6020B -	Metals (ICP/MS) - Total	Recoverabl	le						
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Antimony	5.00	U	5.00		ug/L		08/07/23 12:18	08/08/23 20:41	1
Arsenic	77.6		3.00		ug/L		08/07/23 12:18	08/08/23 20:41	1
Barium	33.3		5.00		ug/L		08/07/23 12:18	08/08/23 20:41	1
Beryllium	0.500	U	0.500		ug/L		08/07/23 12:18	08/08/23 20:41	1
Cadmium	0.500	U	0.500		ug/L		08/07/23 12:18	08/08/23 20:41	1
Chromium	5.00	U	5.00		ug/L		08/07/23 12:18	08/08/23 20:41	1
Cobalt	1.09		0.500		ug/L		08/07/23 12:18	08/08/23 20:41	1
Copper	5.00	U	5.00		ug/L		08/07/23 12:18	08/08/23 20:41	1
Iron	1750		100		ug/L		08/07/23 12:18	08/08/23 20:41	1
Lead	2.50	U	2.50		ug/L		08/07/23 12:18	08/08/23 20:41	1
Nickel	5.00	U	5.00		ug/L		08/07/23 12:18	08/08/23 20:41	1
Thallium	1.00	U	1.00		ug/L		08/07/23 12:18	08/08/23 20:41	1
Zinc	20.0	U	20.0		ug/L		08/07/23 12:18	08/08/23 20:41	1

Client: South Carolina Public Service Authority Project/Site: 125915/JM02.08.G01.1/36500

Job ID: 680-238535-1

Lab Sample ID: 680-238535-6

Matrix: Water

Client Sample ID: AF68758

Date Collected: 07/06/23 09:47 Date Received: 08/02/23 10:45

Method: SW846 6010D - Metals (ICP) - Total Recoverable											
Analyte	Result Qualifier	RL	MDL Uni	: D	Prepared	Analyzed	Dil Fac				
Calcium	193000	500	ug/l		08/03/23 06:38	08/04/23 17:43	1				
Selenium	20.0 U	20.0	ug/l	=	08/03/23 06:38	08/04/23 17:43	1				

Selenium	20.0	U	20.0		ug/L		00/03/23 00:30	06/04/23 17:43	I
Method: SW846 6020B	- Metals (ICP/MS) - Total	Recoverable	9						
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Antimony	5.00	U	5.00		ug/L		08/03/23 06:38	08/08/23 15:54	1
Arsenic	4.57		3.00		ug/L		08/03/23 06:38	08/08/23 15:54	1
Barium	41.4		5.00		ug/L		08/03/23 06:38	08/08/23 15:54	1
Beryllium	0.500	U	0.500		ug/L		08/03/23 06:38	08/08/23 15:54	1
Cadmium	0.500	U	0.500		ug/L		08/03/23 06:38	08/08/23 15:54	1
Chromium	5.00	U	5.00		ug/L		08/03/23 06:38	08/08/23 15:54	1
Cobalt	0.500	U	0.500		ug/L		08/03/23 06:38	08/08/23 15:54	1
Copper	5.00	U	5.00		ug/L		08/03/23 06:38	08/08/23 15:54	1
Iron	466		100		ug/L		08/03/23 06:38	08/08/23 15:54	1
Lead	2.50	U	2.50		ug/L		08/03/23 06:38	08/08/23 15:54	1
Nickel	5.00	U	5.00		ug/L		08/03/23 06:38	08/08/23 15:54	1
Thallium	1.00	U	1.00		ug/L		08/03/23 06:38	08/08/23 15:54	1
Zinc	20.0	U	20.0		ug/L		08/03/23 06:38	08/08/23 15:54	1

8/9/2023

_

1

5

Q

9

11

Client: South Carolina Public Service Authority Project/Site: 125915/JM02.08.G01.1/36500

Lab Sample ID: 680-238535-8

Matrix: Water

Job ID: 680-238535-1

ab Sample ID. 000-230333-0

Date Collected: 07/06/23 11:21 Date Received: 08/02/23 10:45

Client Sample ID: AF68736

Method: SW846 6010D - Metals (ICP) - Total Recoverable											
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac		
Calcium	639000		500		ug/L		08/03/23 06:38	08/04/23 17:55	1		
Selenium	20.0	U	20.0		ug/L		08/03/23 06:38	08/04/23 17:55	1		

	20.0	Ü	20.0		ug/L		00/00/20 00.00	00/04/20 17:00	'
Method: SW846 6020B -	· Metals (ICP/MS) - Total	Recoverable	e						
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Antimony	5.00	U	5.00		ug/L		08/03/23 06:38	08/08/23 16:02	1
Arsenic	173		3.00		ug/L		08/03/23 06:38	08/08/23 16:02	1
Barium	104		5.00		ug/L		08/03/23 06:38	08/08/23 16:02	1
Beryllium	0.500	U	0.500		ug/L		08/03/23 06:38	08/08/23 16:02	1
Cadmium	0.500	U	0.500		ug/L		08/03/23 06:38	08/08/23 16:02	1
Chromium	5.00	U	5.00		ug/L		08/03/23 06:38	08/08/23 16:02	1
Cobalt	0.640		0.500		ug/L		08/03/23 06:38	08/08/23 16:02	1
Copper	5.00	U	5.00		ug/L		08/03/23 06:38	08/08/23 16:02	1
Iron	2750		100		ug/L		08/03/23 06:38	08/08/23 16:02	1
Lead	2.50	U	2.50		ug/L		08/03/23 06:38	08/08/23 16:02	1
Nickel	5.00	U	5.00		ug/L		08/03/23 06:38	08/08/23 16:02	1
Thallium	1.00	U	1.00		ug/L		08/03/23 06:38	08/08/23 16:02	1
Zinc	20.0	U	20.0		ug/L		08/03/23 06:38	08/08/23 16:02	1

8/9/2023

A

5

0

9

10

12

Client: South Carolina Public Service Authority Project/Site: 125915/JM02.08.G01.1/36500

Client Sample ID: AF68754

Lab Sample ID: 680-238535-9

Matrix: Water

Job ID: 680-238535-1

Date Collected: 07/06/23 13:13 Date Received: 08/02/23 10:45

Method: SW846 6010D - Metals (ICP) - Total Recoverable											
	Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac	
	Calcium	88000		500		ug/L		08/03/23 06:38	08/04/23 17:35	1	
	Selenium	20.0	U	20.0		ug/L		08/03/23 06:38	08/04/23 17:35	1	

Selenium 20	0 U	20.0		ug/L		08/03/23 06:38	08/04/23 17:35	1
Method: SW846 6020B - Metals (ICP/MS) - To	al Recoverat	ole						
Analyte Resu	lt Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Antimony 5.0	0 U	5.00		ug/L		08/03/23 06:38	08/08/23 15:46	1
Arsenic 3.0	0 U	3.00		ug/L		08/03/23 06:38	08/08/23 15:46	1
Barium 38	4	5.00		ug/L		08/03/23 06:38	08/08/23 15:46	1
Beryllium 0.50	0 U	0.500		ug/L		08/03/23 06:38	08/08/23 15:46	1
Cadmium 0.50	0 U	0.500		ug/L		08/03/23 06:38	08/08/23 15:46	1
Chromium 5.0	0 U	5.00		ug/L		08/03/23 06:38	08/08/23 15:46	1
Cobalt 0.50	0 U	0.500		ug/L		08/03/23 06:38	08/08/23 15:46	1
Copper 5.0	0 U	5.00		ug/L		08/03/23 06:38	08/08/23 15:46	1
Iron 332	0	100		ug/L		08/03/23 06:38	08/08/23 15:46	1
Lead 2.5	0 U	2.50		ug/L		08/03/23 06:38	08/08/23 15:46	1
Nickel 5.0	0 U	5.00		ug/L		08/03/23 06:38	08/08/23 15:46	1
Thallium 1.0	0 U	1.00		ug/L		08/03/23 06:38	08/08/23 15:46	1
Zinc 20	0 U	20.0		ug/L		08/03/23 06:38	08/08/23 15:46	1

QC Sample Results

Client: South Carolina Public Service Authority Project/Site: 125915/JM02.08.G01.1/36500

Job ID: 680-238535-1

Method: 6010D - Metals (ICP)

Lab Sample ID: MB 680-791519/1-A

Matrix: Water

Analysis Batch: 791897

Client Sample ID: Method Blank
Prep Type: Total Recoverable

Prep Batch: 791519

MB MB Analyte Result Qualifier RL MDL Unit D Prepared Analyzed Dil Fac Calcium 500 U 500 ug/L 08/03/23 06:38 08/04/23 16:50 Selenium 20.0 U 20.0 ug/L 08/03/23 06:38 08/04/23 16:50

Lab Sample ID: LCS 680-791519/2-A

Matrix: Water

Analysis Batch: 791897

Client Sample ID: Lab Control Sample Prep Type: Total Recoverable

Prep Batch: 791519

Spike LCS LCS %Rec Analyte Added Result Qualifier Unit %Rec Limits Calcium 5000 4801 96 80 - 120 ug/L Selenium 100 99.73 ug/L 100 80 _ 120

Lab Sample ID: MB 680-792124/1-A

Matrix: Water

Analysis Batch: 792466

Client Sample ID: Method Blank Prep Type: Total Recoverable

Prep Batch: 792124

мв мв **Analyte** Result Qualifier RL MDL Unit D Prepared Analyzed Dil Fac 500 U 500 Calcium ug/L 08/07/23 12:18 08/08/23 13:37 20.0 Selenium 20.0 U ug/L 08/07/23 12:18 08/08/23 13:37

Lab Sample ID: LCS 680-792124/2-A

Matrix: Water

Analysis Batch: 792466

Client Sample ID: Lab Control Sample Prep Type: Total Recoverable

Prep Batch: 792124

		Spike	LCS	LCS				%Rec	
A	nalyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
C	alcium	5000	4954		ug/L		99	80 _ 120	
S	elenium	100	93.06		ug/L		93	80 _ 120	

Method: 6020B - Metals (ICP/MS)

Lab Sample ID: MB 680-791518/1-A

Matrix: Water

Analysis Batch: 792490

Client Sample ID: Method Blank Prep Type: Total Recoverable

Prep Batch: 791518

							Fieb Dateii.	191310
MB	MB							
Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
5.00	U	5.00		ug/L		08/03/23 06:38	08/08/23 14:41	1
3.00	U	3.00		ug/L		08/03/23 06:38	08/08/23 14:41	1
5.00	U	5.00		ug/L		08/03/23 06:38	08/08/23 14:41	1
0.500	U	0.500		ug/L		08/03/23 06:38	08/08/23 14:41	1
0.500	U	0.500		ug/L		08/03/23 06:38	08/08/23 14:41	1
5.00	U	5.00		ug/L		08/03/23 06:38	08/08/23 14:41	1
0.500	U	0.500		ug/L		08/03/23 06:38	08/08/23 14:41	1
5.00	U	5.00		ug/L		08/03/23 06:38	08/08/23 14:41	1
100	U	100		ug/L		08/03/23 06:38	08/08/23 14:41	1
2.50	U	2.50		ug/L		08/03/23 06:38	08/08/23 14:41	1
5.00	U	5.00		ug/L		08/03/23 06:38	08/08/23 14:41	1
1.00	U	1.00		ug/L		08/03/23 06:38	08/08/23 14:41	1
20.0	U	20.0		ug/L		08/03/23 06:38	08/08/23 14:41	1
	Result 5.00 3.00 5.00 0.500 0.500 5.00 0.500 2.500 5.00 100 2.50	MB MB Result Qualifier 5.00 U 3.00 U 5.00 U 0.500 U 0.500 U 5.00 U 0.500 U 5.00 U 100 U 2.50 U 1.00 U 2.50 U 2.50 U	Result Qualifier RL 5.00 U 5.00 3.00 U 3.00 5.00 U 5.00 0.500 U 0.500 5.00 U 5.00 0.500 U 5.00 5.00 U 5.00 100 U 100 2.50 U 2.50 5.00 U 5.00 1.00 U 1.00	Result Qualifier RL MDL 5.00 U 5.00 3.00 U 3.00 5.00 U 5.00 0.500 U 0.500 5.00 U 5.00 0.500 U 0.500 5.00 U 5.00 100 U 100 2.50 U 5.00 5.00 U 5.00 1.00 U 1.00	Result Qualifier RL MDL Unit 5.00 U 5.00 ug/L 3.00 U 3.00 ug/L 5.00 U 5.00 ug/L 0.500 U 0.500 ug/L 0.500 U 0.500 ug/L 5.00 U 0.500 ug/L 5.00 U 5.00 ug/L 100 U 100 ug/L 2.50 U 2.50 ug/L 5.00 U 5.00 ug/L 1.00 U 1.00 ug/L	Result Qualifier RL MDL Unit D 5.00 U 5.00 ug/L ug/L 3.00 U 3.00 ug/L ug/L 5.00 U 5.00 ug/L ug/L 0.500 U 0.500 ug/L ug/L 5.00 U 5.00 ug/L ug/L 5.00 U 5.00 ug/L ug/L 100 U 100 ug/L ug/L 5.00 U 5.00 ug/L 1.00 U 1.00 ug/L	Result Qualifier RL MDL Unit D Prepared 5.00 U 5.00 ug/L 08/03/23 06:38 3.00 U 3.00 ug/L 08/03/23 06:38 5.00 U 5.00 ug/L 08/03/23 06:38 0.500 U 0.500 ug/L 08/03/23 06:38 5.00 U 5.00 ug/L 08/03/23 06:38 100 U 100 ug/L 08/03/23 06:38 2.50 U 2.50 ug/L 08/03/23 06:38 5.00 U 5.00 ug/L 08/03/23 06:38 5.00 U 5.00 ug/L 08/03/23 06:38 6.00 U 5.00 ug/L 08/03/23 06:38 7.00 U 5.00 ug/L	Result Qualifier RL MDL Unit D Prepared Analyzed 5.00 U 5.00 ug/L 08/03/23 06:38 08/08/23 14:41 3.00 U 3.00 ug/L 08/03/23 06:38 08/08/23 14:41 5.00 U 5.00 ug/L 08/03/23 06:38 08/08/23 14:41 0.500 U 0.500 ug/L 08/03/23 06:38 08/08/23 14:41 5.00 U 5.00 ug/L 08/03/23 06:38 08/08/23 14:41 2.50 U 2.50 ug/L 08/03/23 06:38 08/08/23 14:41 5.00 U 5.00 ug/L 08/03/23 06:38 08/08/23 14:41 </td

Eurofins Savannah

2

5

7

8

10

111

13

Client: South Carolina Public Service Authority

Job ID: 680-238535-1

Project/Site: 125915/JM02.08.G01.1/36500

Lab Sample ID: LCS 680-791518/2-A

Method: 6020B - Metals (ICP/MS) (Continued)

Matrix: Water						Prep	Type: Total Re	ecoverable
Analysis Batch: 792490							Prep Bate	ch: 791518
	Spike	LCS	LCS				%Rec	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Antimony	50.0	46.52		ug/L		93	80 _ 120	
Arsenic	100	97.80		ug/L		98	80 _ 120	
Barium	100	95.86		ug/L		96	80 _ 120	
Beryllium	50.0	48.56		ug/L		97	80 _ 120	
Cadmium	50.0	46.20		ug/L		92	80 _ 120	
Chromium	100	100.4		ug/L		100	80 _ 120	
Cobalt	50.0	47.54		ug/L		95	80 _ 120	
Copper	100	102.8		ug/L		103	80 _ 120	
Iron	4990	5052		ug/L		101	80 _ 120	
Lead	500	485.1		ug/L		97	80 _ 120	
Nickel	100	98.89		ug/L		99	80 - 120	

50.0

100

46.82

101.9

ug/L

ug/L

Lab Sample ID: MB 680-792127/1-A

Matrix: Water

Thallium

Zinc

Analysis Batch: 792446

Client Sample ID: Method Blank Prep Type: Total Recoverable Prep Batch: 792127

80 _ 120

80 - 120

94

102

Client Sample ID: Lab Control Sample

MB MB Analyte Result Qualifier RL MDL Unit D Prepared Analyzed Dil Fac Antimony 5.00 U 5.00 ug/L 08/07/23 12:18 08/08/23 19:49 Arsenic 3.00 U 3.00 ug/L 08/07/23 12:18 08/08/23 19:49 Barium 5.00 U 5.00 ug/L 08/07/23 12:18 08/08/23 19:49 Beryllium 0.500 U 0.500 ug/L 08/07/23 12:18 08/08/23 19:49 0.500 U 0.500 08/08/23 19:49 Cadmium ug/L 08/07/23 12:18 Chromium 5.00 U 5.00 ug/L 08/07/23 12:18 08/08/23 19:49 Cobalt 0.500 U ug/L 08/07/23 12:18 08/08/23 19:49 0.500 Copper 5.00 U 5.00 ug/L 08/07/23 12:18 08/08/23 19:49 ug/L 100 U 100 08/07/23 12:18 08/08/23 19:49 Iron Lead 2.50 U 2.50 ug/L 08/07/23 12:18 08/08/23 19:49 Nickel 5.00 U 5.00 ug/L 08/07/23 12:18 08/08/23 19:49 Thallium 1.00 U 1.00 08/07/23 12:18 ug/L 08/08/23 19:49 Zinc 20.0 U 20.0 08/07/23 12:18 08/08/23 19:49 ug/L

Lab Sample ID: LCS 680-792127/2-A

Matrix: Water

Analysis Batch: 792446

Client Sample ID: Lab Control Sample
Prep Type: Total Recoverable
Prep Batch: 792127

Antimony 50.0 45.43 ug/L 91 80 - 120 Arsenic 100 96.81 ug/L 97 80 - 120 Barium 100 94.51 ug/L 95 80 - 120 Beryllium 50.0 47.73 ug/L 95 80 - 120 Cadmium 50.0 45.92 ug/L 92 80 - 120 Chromium 100 96.26 ug/L 96 80 - 120 Cobalt 50.0 45.66 ug/L 91 80 - 120 Copper 100 98.43 ug/L 98 80 - 120 Iron 4990 4813 ug/L 96 80 - 120	Analysis Buton. 132440							1 1cp Date	11. 152121
Antimony 50.0 45.43 ug/L 91 80 - 120 Arsenic 100 96.81 ug/L 97 80 - 120 Barium 100 94.51 ug/L 95 80 - 120 Beryllium 50.0 47.73 ug/L 95 80 - 120 Cadmium 50.0 45.92 ug/L 92 80 - 120 Chromium 100 96.26 ug/L 96 80 - 120 Cobalt 50.0 45.66 ug/L 91 80 - 120 Copper 100 98.43 ug/L 98 80 - 120 Iron 4990 4813 ug/L 96 80 - 120		Spike	LCS	LCS				%Rec	
Arsenic 100 96.81 ug/L 97 80 - 120 Barium 100 94.51 ug/L 95 80 - 120 Beryllium 50.0 47.73 ug/L 95 80 - 120 Cadmium 50.0 45.92 ug/L 92 80 - 120 Chromium 100 96.26 ug/L 96 80 - 120 Cobalt 50.0 45.66 ug/L 91 80 - 120 Copper 100 98.43 ug/L 98 80 - 120 Iron 4990 4813 ug/L 96 80 - 120	Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Barium 100 94.51 ug/L 95 80 - 120 Beryllium 50.0 47.73 ug/L 95 80 - 120 Cadmium 50.0 45.92 ug/L 92 80 - 120 Chromium 100 96.26 ug/L 96 80 - 120 Cobalt 50.0 45.66 ug/L 91 80 - 120 Copper 100 98.43 ug/L 98 80 - 120 Iron 4990 4813 ug/L 96 80 - 120	Antimony	50.0	45.43		ug/L		91	80 _ 120	
Beryllium 50.0 47.73 ug/L 95 80 - 120 Cadmium 50.0 45.92 ug/L 92 80 - 120 Chromium 100 96.26 ug/L 96 80 - 120 Cobalt 50.0 45.66 ug/L 91 80 - 120 Copper 100 98.43 ug/L 98 80 - 120 Iron 4990 4813 ug/L 96 80 - 120	Arsenic	100	96.81		ug/L		97	80 _ 120	
Cadmium 50.0 45.92 ug/L 92 80 - 120 Chromium 100 96.26 ug/L 96 80 - 120 Cobalt 50.0 45.66 ug/L 91 80 - 120 Copper 100 98.43 ug/L 98 80 - 120 Iron 4990 4813 ug/L 96 80 - 120	Barium	100	94.51		ug/L		95	80 _ 120	
Chromium 100 96.26 ug/L 96 80 - 120 Cobalt 50.0 45.66 ug/L 91 80 - 120 Copper 100 98.43 ug/L 98 80 - 120 Iron 4990 4813 ug/L 96 80 - 120	Beryllium	50.0	47.73		ug/L		95	80 ₋ 120	
Cobalt 50.0 45.66 ug/L 91 80 - 120 Copper 100 98.43 ug/L 98 80 - 120 Iron 4990 4813 ug/L 96 80 - 120	Cadmium	50.0	45.92		ug/L		92	80 _ 120	
Copper 100 98.43 ug/L 98 80 - 120 Iron 4990 4813 ug/L 96 80 - 120	Chromium	100	96.26		ug/L		96	80 _ 120	
Iron 4990 4813 ug/L 96 80 - 120	Cobalt	50.0	45.66		ug/L		91	80 _ 120	
	Copper	100	98.43		ug/L		98	80 _ 120	
Lead 500 453.3 ug/L 91 80 - 120	Iron	4990	4813		ug/L		96	80 _ 120	
	Lead	500	453.3		ug/L		91	80 _ 120	
Nickel 100 96.32 ug/L 96 80 - 120	Nickel	100	96.32		ug/L		96	80 - 120	

Eurofins Savannah

Page 19 of 28 8/9/2023

2

3

4

6

8

10

11

13

QC Sample Results

Client: South Carolina Public Service Authority Project/Site: 125915/JM02.08.G01.1/36500

Job ID: 680-238535-1

Method: 6020B - Metals (ICP/MS) (Continued)

Lab Sample ID: LCS 680-792127/2-A Client Sample ID: Lab Control Sample **Matrix: Water Prep Type: Total Recoverable** Analysis Batch: 792446 **Prep Batch: 792127**

-	Spike	LCS	LCS				%Rec	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Thallium	50.0	44.90		ug/L		90	80 _ 120	
Zinc	100	97.52		ug/L		98	80 _ 120	

QC Association Summary

Client: South Carolina Public Service Authority Project/Site: 125915/JM02.08.G01.1/36500

Job ID: 680-238535-1

Metals

Prep Batch: 791518

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
680-238535-1	AF68753	Total Recoverable	Water	3005A	
680-238535-2	AF68759	Total Recoverable	Water	3005A	
680-238535-3	AF68752	Total Recoverable	Water	3005A	
680-238535-6	AF68758	Total Recoverable	Water	3005A	
680-238535-8	AF68736	Total Recoverable	Water	3005A	
680-238535-9	AF68754	Total Recoverable	Water	3005A	
MB 680-791518/1-A	Method Blank	Total Recoverable	Water	3005A	
LCS 680-791518/2-A	Lab Control Sample	Total Recoverable	Water	3005A	

Prep Batch: 791519

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
680-238535-1	AF68753	Total Recoverable	Water	3005A	
680-238535-2	AF68759	Total Recoverable	Water	3005A	
680-238535-3	AF68752	Total Recoverable	Water	3005A	
680-238535-6	AF68758	Total Recoverable	Water	3005A	
680-238535-8	AF68736	Total Recoverable	Water	3005A	
680-238535-9	AF68754	Total Recoverable	Water	3005A	
MB 680-791519/1-A	Method Blank	Total Recoverable	Water	3005A	
LCS 680-791519/2-A	Lab Control Sample	Total Recoverable	Water	3005A	

Analysis Batch: 791897

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
680-238535-1	AF68753	Total Recoverable	Water	6010D	791519
680-238535-2	AF68759	Total Recoverable	Water	6010D	791519
680-238535-3	AF68752	Total Recoverable	Water	6010D	791519
680-238535-6	AF68758	Total Recoverable	Water	6010D	791519
680-238535-8	AF68736	Total Recoverable	Water	6010D	791519
680-238535-9	AF68754	Total Recoverable	Water	6010D	791519
MB 680-791519/1-A	Method Blank	Total Recoverable	Water	6010D	791519
LCS 680-791519/2-A	Lab Control Sample	Total Recoverable	Water	6010D	791519

Prep Batch: 792124

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method Prep I	Batch
680-238535-4	AF68735	Total Recoverable	Water	3005A	
680-238535-5	AF68756	Total Recoverable	Water	3005A	
MB 680-792124/1-A	Method Blank	Total Recoverable	Water	3005A	
LCS 680-792124/2-A	Lab Control Sample	Total Recoverable	Water	3005A	

Prep Batch: 792127

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
680-238535-4	AF68735	Total Recoverable	Water	3005A	
680-238535-5	AF68756	Total Recoverable	Water	3005A	
MB 680-792127/1-A	Method Blank	Total Recoverable	Water	3005A	
LCS 680-792127/2-A	Lab Control Sample	Total Recoverable	Water	3005A	

Analysis Batch: 792446

ı	_ab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
6	880-238535-4	AF68735	Total Recoverable	Water	6020B	792127
6	880-238535-5	AF68756	Total Recoverable	Water	6020B	792127
1	MB 680-792127/1-A	Method Blank	Total Recoverable	Water	6020B	792127
l	CS 680-792127/2-A	Lab Control Sample	Total Recoverable	Water	6020B	792127

Eurofins Savannah

8/9/2023

Page 21 of 28

5

7

10

11

12

13

QC Association Summary

Client: South Carolina Public Service Authority Project/Site: 125915/JM02.08.G01.1/36500

Job ID: 680-238535-1

Metals

Analysis Batch: 792466

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
680-238535-4	AF68735	Total Recoverable	Water	6010D	792124
680-238535-5	AF68756	Total Recoverable	Water	6010D	792124
MB 680-792124/1-A	Method Blank	Total Recoverable	Water	6010D	792124
LCS 680-792124/2-A	Lab Control Sample	Total Recoverable	Water	6010D	792124

Analysis Batch: 792490

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
680-238535-1	AF68753	Total Recoverable	Water	6020B	791518
680-238535-2	AF68759	Total Recoverable	Water	6020B	791518
680-238535-3	AF68752	Total Recoverable	Water	6020B	791518
680-238535-6	AF68758	Total Recoverable	Water	6020B	791518
680-238535-8	AF68736	Total Recoverable	Water	6020B	791518
680-238535-9	AF68754	Total Recoverable	Water	6020B	791518
MB 680-791518/1-A	Method Blank	Total Recoverable	Water	6020B	791518
LCS 680-791518/2-A	Lab Control Sample	Total Recoverable	Water	6020B	791518

10

11

Job ID: 680-238535-1

Client: South Carolina Public Service Authority Project/Site: 125915/JM02.08.G01.1/36500

Client Sample ID: AF68753

Date Collected: 07/06/23 13:08 Date Received: 08/02/23 10:45 Lab Sample ID: 680-238535-1

Matrix: Water

	Batch	Batch		Dilution	Batch			Prepared
Prep Type	Type	Method	Run	Factor	Number	Analyst	Lab	or Analyzed
Total Recoverable	Prep	3005A			791519	RR	EET SAV	08/03/23 06:38
Total Recoverable	Analysis	6010D		1	791897	BJB	EET SAV	08/04/23 17:33
Total Recoverable	Prep	3005A			791518	RR	EET SAV	08/03/23 06:38
Total Recoverable	Analysis	6020B		1	792490	BWR	EET SAV	08/08/23 15:42

Client Sample ID: AF68759

Date Collected: 07/06/23 13:13

Date Received: 08/02/23 10:45

Matrix: Water

	Batch	Batch		Dilution	Batch			Prepared
Prep Type	Туре	Method	Run	Factor	Number	Analyst	Lab	or Analyzed
Total Recoverable	Prep	3005A			791519	RR	EET SAV	08/03/23 06:38
Total Recoverable	Analysis	6010D		1	791897	BJB	EET SAV	08/04/23 17:30
Total Recoverable	Prep	3005A			791518	RR	EET SAV	08/03/23 06:38
Total Recoverable	Analysis	6020B		1	792490	BWR	EET SAV	08/08/23 15:38

Client Sample ID: AF68752

Date Collected: 07/06/23 14:09

Date Received: 08/02/23 10:45

Lab Sample ID: 680-238535-3

Matrix: Water

	Batch	Batch		Dilution	Batch			Prepared
Prep Type	Type	Method	Run	Factor	Number	Analyst	Lab	or Analyzed
Total Recoverable	Prep	3005A			791519	RR	EET SAV	08/03/23 06:38
Total Recoverable	Analysis	6010D		1	791897	BJB	EET SAV	08/04/23 17:38
Total Recoverable	Prep	3005A			791518	RR	EET SAV	08/03/23 06:38
Total Recoverable	Analysis	6020B		1	792490	BWR	EET SAV	08/08/23 15:50

Client Sample ID: AF68735

Date Collected: 07/05/23 09:35

Date Received: 08/02/23 10:45

Lab	Samp	le I	D:	680-2	238	535-4
-----	------	------	----	-------	-----	-------

Matrix: Water

	Batch	Batch		Dilution	Batch			Prepared
Prep Type	Type	Method	Run	Factor	Number	Analyst	Lab	or Analyzed
Total Recoverable	Prep	3005A			792124	RR	EET SAV	08/07/23 12:18
Total Recoverable	Analysis	6010D		1	792466	BJB	EET SAV	08/08/23 14:06
Total Recoverable	Prep	3005A			792127	RR	EET SAV	08/07/23 12:18
Total Recoverable	Analysis	6020B		1	792446	BWR	EET SAV	08/08/23 20:45

Client Sample ID: AF68756

Date Collected: 07/05/23 11:39

Date Received: 08/02/23 10:45

Lab Samı	ole ID:	680-238	3535-5
Lab Saiiii	טוכ וט.	000-230	JJJJ-J

Matrix: Water

	Batch	Batch		Dilution	Batch			Prepared
Prep Type	Type	Method	Run	Factor	Number	Analyst	Lab	or Analyzed
Total Recoverable	Prep	3005A			792124	RR	EET SAV	08/07/23 12:18
Total Recoverable	Analysis	6010D		1	792466	BJB	EET SAV	08/08/23 14:04
Total Recoverable	Prep	3005A			792127	RR	EET SAV	08/07/23 12:18
Total Recoverable	Analysis	6020B		1	792446	BWR	EET SAV	08/08/23 20:41

Page 23 of 28

Lab Chronicle

Client: South Carolina Public Service Authority Project/Site: 125915/JM02.08.G01.1/36500

Job ID: 680-238535-1

Lab Sample ID: 680-238535-6

Matrix: Water

Date Collected: 07/06/23 09:47 Date Received: 08/02/23 10:45

Client Sample ID: AF68758

	Batch	Batch		Dilution	Batch			Prepared
Prep Type	Туре	Method	Run	Factor	Number	Analyst	Lab	or Analyzed
Total Recoverable	Prep	3005A			791519	RR	EET SAV	08/03/23 06:38
Total Recoverable	Analysis	6010D		1	791897	BJB	EET SAV	08/04/23 17:43
Total Recoverable	Prep	3005A			791518	RR	EET SAV	08/03/23 06:38
Total Recoverable	Analysis	6020B		1	792490	BWR	EET SAV	08/08/23 15:54

Client Sample ID: AF68736

Lab Sample ID: 680-238535-8

Matrix: Water

Date Collected: 07/06/23 11:21 Date Received: 08/02/23 10:45

	Batch	Batch		Dilution	Batch			Prepared
Prep Type	Type	Method	Run	Factor	Number	Analyst	Lab	or Analyzed
Total Recoverable	Prep	3005A			791519	RR	EET SAV	08/03/23 06:38
Total Recoverable	Analysis	6010D		1	791897	BJB	EET SAV	08/04/23 17:55
Total Recoverable	Prep	3005A			791518	RR	EET SAV	08/03/23 06:38
Total Recoverable	Analysis	6020B		1	792490	BWR	EET SAV	08/08/23 16:02

Client Sample ID: AF68754

Lab Sample ID: 680-238535-9

Matrix: Water

Date Collected: 07/06/23 13:13 Date Received: 08/02/23 10:45

	Batch	Batch		Dilution	Batch			Prepared
Prep Type	Туре	Method	Run	Factor	Number	Analyst	Lab	or Analyzed
Total Recoverable	Prep	3005A			791519	RR	EET SAV	08/03/23 06:38
Total Recoverable	Analysis	6010D		1	791897	BJB	EET SAV	08/04/23 17:35
Total Recoverable	Prep	3005A			791518	RR	EET SAV	08/03/23 06:38
Total Recoverable	Analysis	6020B		1	792490	BWR	EET SAV	08/08/23 15:46

Laboratory References:

EET SAV = Eurofins Savannah, 5102 LaRoche Avenue, Savannah, GA 31404, TEL (912)354-7858

Eurofins Savannah

Chain of Custody

10

Santee Cooper One Riverwood Drive Moneks Comer, SC 29461 Phone (843)761-8000 Ext 5148 Fax (843)761-4175

Customer	Email	Report Recipi	ent:	Date	Results Ne	eded b	y:		Pr	oject/	Task/I	Unit #:	Reru	n request	for any	flagged (QC
LCWILL	AL	@santeed	cooper.com		<i></i>			125	7/5	/ JTM	02.0	8. G-Ø1.	1/36500	(Yes	No		
												***)		ılysis Group	:
Labworks I (Internal us only)		Sample Location Description	on/	Collection Date	Collection Time	Sample Collector	Total # of containers	Bottle type: (Glass- G/Plastic-P)	Grab (G) or Composite (C)	Matrix(see below)	Preservative (see below)	• M • Re • M • A	Comments ethod # eporting limit use sample info ny other notes		TOTAL METALS SEE BELOW		
AF6875	53	WLF-AI-4	 -	7/6/23	1308	WJK	1	Р	૯	GW	2	6020			×		
AF6875	59	WLF-AI-	f DUP		(313				1			- SEE	SHEET FOR RL	.5			
A=6875	52	WLF-A1-3		1	1409	1				1							
AF 6873	35	WAP-18		7/5/23	0935							PLEAS	F RETURN UP	-av			
AF-6875	56	WLF-A2-1		<u> </u>	1139	<u> </u>						COMP	ETION.				
AF6875	58	WLF - A2-6	>	7/6/23	0947												
AF6875	59	WLF-A2-6	DUP		0952												
AF6873	36	WAP-19			1121		1	1		1							
												_	680-238535 Chain o	of Custody			
Relinquish	ned by:	Employee#	Date	Time	Receiv	ed by:	Er	nployee	#	Date		Time	Sample Receiving				
Moroun		35594	8/2/23	0756	GNA	OCK,		URIE		3/2/23	1	6756	TEMP (°C): <u>4</u>	2/2 3	initial:_		
Relinquish		Employee#	Date	Time	Receiv	ed by:		nployee		Date		Time	Correct pH: \	es No			
2Hode	30	Courier	8/2/23	(७५५	011			M	8.	2-2	? /	1045	Preservative Lot	#:			
Relinquish	red by:	Employee#	Date	Time	Receiv	ed by:	Er	nployee	#	Date		Time					
											200		Date/Time/Init fo	or preserva	tive:		
		TALS (all)	Nut	rients	MIS	SC.		Gv	psun	1		Coa	<u> </u>	ch		<u>Oil</u>	
□Ag	∠ Cu ∠ Fe	ØSb ØSe		Section 19	□ BTEX		l a	Wallbo				Ultimate				Oil Qual.	
□ Al Ø As	□ K	□ Sn	DC		☐ Naphthal ☐ THM/H/				sum(a)	4		□ % Moi	sture 🛛 LOI		0.968	loisture	
□ B	□Li	□ Sn		TP04 3-N	□ VOC			belov				☐ Ash ☐ Sulfur	☐ % Car ☐ Minen		2 Cole	lify	
☑Ba			——□F		□ Oil & Gr □ E. Coli	ease		D TO	C al metal			☐ BTUs		alysis	Dielo HT	etric Strength	
⊿ Ба Д∕Ве	□Mg		D CI		☐ Total Co	liform		□ Solı	uble Me	tals	1 ~	☐ Volatil	e Matter ☐ Sieve		: Diss	olved Gases	
⊿ве Д∕Са	□Mn	/	□ NO □ Br	4	□ pH □ Dissolve	d As			ity (CaS Aoisture		01	□ CHN ther Tests	□ % Mo	sture	Used Flas	Oil lipoint	
⊅ Ca ⊅ Cd	□ Mo □ Na	□ V	DNO	ALCONOMICS (1994) 70 (49)	☐ Dissolve			□ Sulf	fites		D 2	XRF Scan	NPD	ES	□ Met	ils in oil Cd.Cr.Ni.Pl	
2			□ SO		☐ Rad 228			□ pH □ Chi			l or	IGI ineness	0.000		Hg)		
ÆCo ℤCr	Ø Ni Ø Pb	☐ Hg		• 1	□РСВ			☐ Part	ticle Siz	e		Particulate N	fatter ☐ As ☐ TSS		GOFI	R	
ا د در	0 د بر	1					_	Sulfar				-					

Chain of Custody

santee cooper*

Sentes Cooper One Riverwood Drive Moncks Corner, SC 29461 Phone (843)761-8000 Ext 5148 Fax (843)761-4175

Customer Email/Report Recipient: Date Results Needed by: Project/Task/Unit #: Rerun request for any flagged QC LCWILLIA 125915 / JM02.08. G-01.1/ 36500 @santeecooper.com (Yes No **Analysis Group** Labworks ID# Sample Location/ Comments BELOW Preservative (see below) Collection Date Matrix(see below) (internal use Description Collection Time Sample Collecto Method # Bottle type: (Glas G/Plastic-P) only) Total # of contail Reporting limit Ū Grab (G) or Composite (C Misc sample info JEE B Any other notes WJK 7/6/23 P GW 2 AF68753 WLF - A1-4 1308 G 6020 X AF68754 9 - SEE SHEET FOR RLS WLF- 41-4 AF68759 DUP (313 A+68752 WLF- A1-3 1409 7/5/23 AF 68735 0935 WAP-18 PLEASE RETURN UPON COMPLETION. WLF-42-1 AF-68756 1139 AF68758 WLF - A2-6 7/6/23 0947 AF 68759 WLF-A2-6 DUP 0952 AF68736 WAP-19 1121 680-238535 Chain of Custody Sample Receiving (Internal Use Only) Relinguished by: Received by: Employee# Date Time Employee# Date Time TEMP (°C):42 Hodge Initial: Sylproun 35594 8/2/23 0756 6756 COURIER 8/2/23 Relinquished by: Correct pH: No **Employee#** Date Received by: Yes Employee # Date Time 8Hodge Preservative Lot#: Councr 8/2/23 TM 8.2-23 (644 1045 Relinquished by: **Employee#** Date Time Received by: Employee # Date Time Date/Time/Init for preservative: ☐ METALS (all) Nutrients MISC. GYPSUTH Coal Flyash Z Sb DAg Z Cu D. FOC DBTEX Cyptomator D Official Co D Ammonia DAL Z Fe 1) DOC U Naphthalene D'LOL of the Melstone O TP/TPO4 Z As DK □ Sn D THM/HAA and. D % Carbon O VOC UB NH3-N I ARE D Sr DLi IJ Seller O Minural c DOIL & Grease Z Ba BTUS Applicati DMg OTI DE. Coli 0.0 O Volatile Matter Il Total Coliform D Store Д∕Be ATI D Mn DpH DOHN OB: Dissolved As D'Ca Other Tests: □ Mo DV NOS-☐ Dissolved Fe DXRF.Scm Z Cd ZZn O Na D Rad 226 E1804 UHCI ☐ Rad 228 TOTA DESAN O Fineness d Co ØNi DHg D PCB MAE D Particulate Matter Z Cr ☑ Pb O CrVI 11 155

Login Sample Receipt Checklist

Client: South Carolina Public Service Authority

Job Number: 680-238535-1

Login Number: 238535 List Source: Eurofins Savannah

List Number: 1

Creator: Sims, Robert D

Creator. Sillis, Robert D		
Question	Answer	Comment
Radioactivity wasn't checked or is = background as measured by a survey meter.</td <td>N/A</td> <td></td>	N/A	
The cooler's custody seal, if present, is intact.	True	
Sample custody seals, if present, are intact.	True	
The cooler or samples do not appear to have been compromised or tampered with.	True	
Samples were received on ice.	True	
Cooler Temperature is acceptable.	True	
Cooler Temperature is recorded.	True	
COC is present.	True	
COC is filled out in ink and legible.	True	
COC is filled out with all pertinent information.	True	
Is the Field Sampler's name present on COC?	True	
There are no discrepancies between the containers received and the COC.	False	Refer to Job Narrative for details.
Samples are received within Holding Time (excluding tests with immediate HTs)	True	
Sample containers have legible labels.	True	
Containers are not broken or leaking.	True	
Sample collection date/times are provided.	True	
Appropriate sample containers are used.	True	
Sample bottles are completely filled.	True	
Sample Preservation Verified.	N/A	
There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs	True	
Containers requiring zero headspace have no headspace or bubble is <6mm (1/4").	N/A	
Multiphasic samples are not present.	True	
Samples do not require splitting or compositing.	True	
Residual Chlorine Checked.	N/A	

3

4

6

8

10

11

13

Accreditation/Certification Summary

Client: South Carolina Public Service Authority Job ID: 680-238535-1 Project/Site: 125915/JM02.08.G01.1/36500

Laboratory: Eurofins Savannah

The accreditations/certifications listed below are applicable to this report.

Authority	Program	Identification Number	Expiration Date
South Carolina	State	98001	06-30-23 *

 $^{^{\}star} \ \text{Accreditation/Certification renewal pending - accreditation/certification considered valid.}$

12

13

ANALYTICAL REPORT

PREPARED FOR

Attn: Linda Williams South Carolina Public Service Authority Santee Cooper PO BOX 2946101

Moncks Corner, South Carolina 29461-2901

Generated 8/9/2023 8:32:53 AM

JOB DESCRIPTION

125915/JM02.08.G01.3/36500

JOB NUMBER

680-238533-1

Eurofins Savannah 5102 LaRoche Avenue Savannah GA 31404

Eurofins Savannah

Job Notes

This report may not be reproduced except in full, and with written approval from the laboratory. The results relate only to the samples tested. For questions please contact the Project Manager at the e-mail address or telephone number listed on this page.

The test results in this report relate only to the samples as received by the laboratory and will meet all requirements of the methodology, with any exceptions noted. This report shall not be reproduced except in full, without the express written approval of the laboratory. All questions should be directed to the Eurofins Environment Testing Southeast, LLC Project Manager.

Authorization

Generated 8/9/2023 8:32:53 AM

Authorized for release by Jerry Lanier, Project Manager I <u>Jerry.Lanier@et.eurofinsus.com</u> (912)250-0281

Table of Contents

Cover Page	1
Table of Contents	3
Case Narrative	4
Sample Summary	5
	6
Definitions	7
Detection Summary	8
Client Sample Results	9
	14
QC Association	16
Chronicle	18
Chain of Custody	20
Receipt Checklists	21
Certification Summary	22

6

8

9

11

12

13

Case Narrative

Client: South Carolina Public Service Authority Project/Site: 125915/JM02.08.G01.3/36500

Job ID: 680-238533-1

Job ID: 680-238533-1

Laboratory: Eurofins Savannah

Narrative

Job Narrative 680-238533-1

Receipt

The samples were received on 8/2/2023 10:45 AM. Unless otherwise noted below, the samples arrived in good condition, and, where required, properly preserved and on ice. The temperature of the cooler at receipt time was 4.3°C

Metals

No additional analytical or quality issues were noted, other than those described above or in the Definitions/ Glossary page.

3

5

6

7

8

10

12

13

Sample Summary

Client: South Carolina Public Service Authority Project/Site: 125915/JM02.08.G01.3/36500

Job ID: 680-238533-1

Lab Sample ID	Client Sample ID	Matrix	Collected	Received
680-238533-1	AF68718	Water	06/27/23 13:07	08/02/23 10:45
680-238533-2	AF68716	Water	06/28/23 10:32	08/02/23 10:45
680-238533-3	AF69285	Water	06/28/23 12:36	08/02/23 10:45
680-238533-4	AF68715	Water	06/29/23 09:47	08/02/23 10:45
680-238533-5	AF68722	Water	06/29/23 14:53	08/02/23 10:45

3

4

_

6

0

9

10

12

13

Method Summary

Client: South Carolina Public Service Authority Project/Site: 125915/JM02.08.G01.3/36500

Job ID: 680-238533-1

Method	Method Description	Protocol	Laboratory
6010D	Metals (ICP)	SW846	EET SAV
6020B	Metals (ICP/MS)	SW846	EET SAV
3005A	Preparation, Total Recoverable or Dissolved Metals	SW846	EET SAV

Protocol References:

SW846 = "Test Methods For Evaluating Solid Waste, Physical/Chemical Methods", Third Edition, November 1986 And Its Updates.

Laboratory References:

EET SAV = Eurofins Savannah, 5102 LaRoche Avenue, Savannah, GA 31404, TEL (912)354-7858

4

5

7

8

40

11

40

Definitions/Glossary

Client: South Carolina Public Service Authority Job ID: 680-238533-1 Project/Site: 125915/JM02.08.G01.3/36500

Qualifiers

M	eta	ls
IVI	Cla	13

Qualifier **Qualifier Description**

Indicates the analyte was analyzed for but not detected.

Glossary

Abbreviation	These commonly used abbreviations may or may not be present in this report.
¤	Listed under the "D" column to designate that the result is reported on a dry weight basis
%R	Percent Recovery
CFL	Contains Free Liquid
CFU	Colony Forming Unit
CNF	Contains No Free Liquid
DER	Duplicate Error Ratio (normalized absolute difference)
Dil Fac	Dilution Factor
DL	Detection Limit (DoD/DOE)

DL, RA, RE, IN Indicates a Dilution, Re-analysis, Re-extraction, or additional Initial metals/anion analysis of the sample DLC Decision Level Concentration (Radiochemistry) Estimated Detection Limit (Dioxin)

EDL LOD Limit of Detection (DoD/DOE) Limit of Quantitation (DoD/DOE) LOQ

MCL EPA recommended "Maximum Contaminant Level" MDA Minimum Detectable Activity (Radiochemistry) MDC Minimum Detectable Concentration (Radiochemistry)

MDL Method Detection Limit Minimum Level (Dioxin) MPN Most Probable Number MQL Method Quantitation Limit

NC Not Calculated

ND Not Detected at the reporting limit (or MDL or EDL if shown)

NEG Negative / Absent POS Positive / Present

PQL Practical Quantitation Limit

PRES Presumptive QC **Quality Control**

RER Relative Error Ratio (Radiochemistry)

RL Reporting Limit or Requested Limit (Radiochemistry)

RPD Relative Percent Difference, a measure of the relative difference between two points

TEF Toxicity Equivalent Factor (Dioxin) TEQ Toxicity Equivalent Quotient (Dioxin)

TNTC Too Numerous To Count

Eurofins Savannah

Page 7 of 22 8/9/2023 Client: South Carolina Public Service Authority
Project/Site: 125915/JM02.08.G01.3/36500

Client Sample ID: AF68718

Job ID: 680-238533-1

Lab Sample ID: 680-238533-1

4

6

8

10

12

13

Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type
Calcium	487000		500		ug/L	1		6010D	Total
									Recoverable
Arsenic	253		3.00		ug/L	1		6020B	Total
									Recoverabl
Barium	214		5.00		ug/L	1		6020B	Total
									Recoverabl
Iron	6310		100		ug/L	1		6020B	Total
									Recoverabl
Magnesium	93200		250		ug/L	1		6020B	Total
-									Recoverabl
Client Sample ID: AF68716						Lak	s S	ample ID:	680-238533
- Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type
Calcium	100000		500		ug/L	1	_	6010D	Total
									Recoverabl
Aluminum	1580		100		ug/L	1		6020B	Total
									Recoverable
Barium	60.1		5.00		ug/L	1		6020B	Total
									Recoverabl
Iron	4140		100		ug/L	1		6020B	Total
									Recoverable
Magnesium	2340		250		ug/L	1		6020B	Total
-									Recoverable
Client Sample ID: AF69285						Lat	s S	ample ID:	680-238533
- Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type
Calcium	49000		500		ug/L	1	_	6010D	Total
					Ü				Recoverabl
Iron	130		100		ug/L	1		6020B	Total
									Recoverable
Magnesium	3000		250		ug/L	1		6020B	Total
									Recoverable
Client Sample ID: AF68715						Lak	s S	ample ID:	680-238533
- Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type
Calcium	63600		500		ug/L	1	_	6010D	Total
					-				Recoverabl
Barium	9.33		5.00		ug/L	1		6020B	Total
					_				Recoverab
Magnesium	5390		250		ug/L	1		6020B	Total
									Recoverabl
Client Sample ID: AF68722						Lak	s S	ample ID:	680-238533
Analyte	Pacult	Qualifier	RL	MDL	Unit	Dil Fac	Р	Method	Prep Type
				MDL		1	_		
Calcium	235000		500		ug/L	1		6010D	Total
Barium	77.3		5.00		ug/L	1		6020B	Recoverabl Total
Danum	11.3		3.00		ug/L	I		00200	าบเลา

This Detection Summary does not include radiochemical test results.

Iron

Magnesium

8390

9610

Eurofins Savannah

Recoverable

Total Recoverable

Total Recoverable

6020B

6020B

100

250

ug/L

ug/L

Client: South Carolina Public Service Authority Project/Site: 125915/JM02.08.G01.3/36500

Job ID: 680-238533-1

Lab Sample ID: 680-238533-1

Matrix: Water

Client Sample ID: AF68718 Date Collected: 06/27/23 13:07

Date Received: 08/02/23 10:45

Method: SW846 6010D -	Metals (ICP) - Total Red	coverable							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Calcium	487000		500		ug/L		08/03/23 05:51	08/03/23 15:22	1
Selenium	20.0	U	20.0		ug/L		08/03/23 05:51	08/03/23 15:22	1

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Aluminum	100	U	100		ug/L		08/03/23 05:51	08/07/23 16:55	1
Arsenic	253		3.00		ug/L		08/03/23 05:51	08/07/23 16:55	1
Barium	214		5.00		ug/L		08/03/23 05:51	08/07/23 16:55	1
Cadmium	0.500	U	0.500		ug/L		08/03/23 05:51	08/07/23 16:55	1
Chromium	5.00	U	5.00		ug/L		08/03/23 05:51	08/07/23 16:55	1
Copper	5.00	U	5.00		ug/L		08/03/23 05:51	08/07/23 16:55	1
Iron	6310		100		ug/L		08/03/23 05:51	08/07/23 16:55	1
Lead	2.50	U	2.50		ug/L		08/03/23 05:51	08/07/23 16:55	1
Magnesium	93200		250		ug/L		08/03/23 05:51	08/07/23 16:55	1
Zinc	20.0	U	20.0		ug/L		08/03/23 05:51	08/07/23 16:55	1

2

3

4

6

8

9

10

13

Client: South Carolina Public Service Authority Project/Site: 125915/JM02.08.G01.3/36500

Job ID: 680-238533-1

Lab Sample ID: 680-238533-2

Matrix: Water

Client Sample ID: AF68716 Date Collected: 06/28/23 10:32

Date Received: 08/02/23 10:45

Method: SW846 6010D - Me	etals (ICP) - Total Rec	coverable							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Calcium	100000		500		ug/L		08/03/23 05:51	08/03/23 15:08	1
Selenium	20.0	U	20.0		ug/L		08/03/23 05:51	08/03/23 15:08	1

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Aluminum	1580		100		ug/L		08/03/23 05:51	08/07/23 16:18	1
Arsenic	3.00	U	3.00		ug/L		08/03/23 05:51	08/07/23 16:18	1
Barium	60.1		5.00		ug/L		08/03/23 05:51	08/07/23 16:18	1
Cadmium	0.500	U	0.500		ug/L		08/03/23 05:51	08/07/23 16:18	1
Chromium	5.00	U	5.00		ug/L		08/03/23 05:51	08/07/23 16:18	1
Copper	5.00	U	5.00		ug/L		08/03/23 05:51	08/07/23 16:18	1
Iron	4140		100		ug/L		08/03/23 05:51	08/07/23 16:18	1
Lead	2.50	U	2.50		ug/L		08/03/23 05:51	08/07/23 16:18	1
Magnesium	2340		250		ug/L		08/03/23 05:51	08/07/23 16:18	1
Zinc	20.0	U	20.0		ug/L		08/03/23 05:51	08/07/23 16:18	1

8/9/2023

3

4

6

8

9

10

12

Client: South Carolina Public Service Authority Project/Site: 125915/JM02.08.G01.3/36500

Job ID: 680-238533-1

Client Sample ID: AF69285 Lab Sample ID: 680-238533-3

Matrix: Water

Date Collected: 06/28/23 12:36 Date Received: 08/02/23 10:45

Method: SW846 6010D - Metals	(ICP) - Total Red	overable							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Calcium	49000		500		ug/L		08/03/23 06:38	08/04/23 17:25	1
Selenium	20.0	U	20.0		ug/L		08/03/23 06:38	08/04/23 17:25	1

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Aluminum	100	U	100		ug/L		08/03/23 06:38	08/08/23 15:30	1
Arsenic	3.00	U	3.00		ug/L		08/03/23 06:38	08/08/23 15:30	1
Barium	5.00	U	5.00		ug/L		08/03/23 06:38	08/08/23 15:30	1
Cadmium	0.500	U	0.500		ug/L		08/03/23 06:38	08/08/23 15:30	1
Chromium	5.00	U	5.00		ug/L		08/03/23 06:38	08/08/23 15:30	1
Copper	5.00	U	5.00		ug/L		08/03/23 06:38	08/08/23 15:30	1
Iron	130		100		ug/L		08/03/23 06:38	08/08/23 15:30	1
Lead	2.50	U	2.50		ug/L		08/03/23 06:38	08/08/23 15:30	1
Magnesium	3000		250		ug/L		08/03/23 06:38	08/08/23 15:30	1
Zinc	20.0	U	20.0		ug/L		08/03/23 06:38	08/08/23 15:30	1

Eurofins Savannah

5

5

0

8

40

11

14

Client: South Carolina Public Service Authority Project/Site: 125915/JM02.08.G01.3/36500

Job ID: 680-238533-1

Client Sample ID: AF68715

Lab Sample ID: 680-238533-4 Date Collected: 06/29/23 09:47

Matrix: Water

Date Received: 08/02/23 10:45

Method: SW846 6010D - Metals (ICP) - To	otal Re	coverable							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Calcium	63600		500		ug/L		08/03/23 05:51	08/03/23 15:20	1
Selenium	20.0	U	20.0		ug/L		08/03/23 05:51	08/03/23 15:20	1
Method: SW846 6020B - Metals (ICP/MS) Analyte		Recoverable Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Aluminum	100	U	100		ug/L		08/03/23 05:51	08/07/23 16:46	1

Method: SW846 6020B - N	Metals (ICP/MS) - Total	Recoverable	е						
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Aluminum	100	U	100		ug/L		08/03/23 05:51	08/07/23 16:46	1
Arsenic	3.00	U	3.00		ug/L		08/03/23 05:51	08/07/23 16:46	1
Barium	9.33		5.00		ug/L		08/03/23 05:51	08/07/23 16:46	1
Cadmium	0.500	U	0.500		ug/L		08/03/23 05:51	08/07/23 16:46	1
Chromium	5.00	U	5.00		ug/L		08/03/23 05:51	08/07/23 16:46	1
Copper	5.00	U	5.00		ug/L		08/03/23 05:51	08/07/23 16:46	1
Iron	100	U	100		ug/L		08/03/23 05:51	08/07/23 16:46	1
Lead	2.50	U	2.50		ug/L		08/03/23 05:51	08/07/23 16:46	1
Magnesium	5390		250		ug/L		08/03/23 05:51	08/07/23 16:46	1
Zinc	20.0	U	20.0		ug/L		08/03/23 05:51	08/07/23 16:46	1

Client: South Carolina Public Service Authority Project/Site: 125915/JM02.08.G01.3/36500

Job ID: 680-238533-1

Lab Sample ID: 680-238533-5

Matrix: Water

Client Sample ID: AF68722 Date Collected: 06/29/23 14:53

Date Received: 08/02/23 10:45

Method: SW846 6010D - Metals (ICP) - Total Recoverable											
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac		
Calcium	235000		500		ug/L		08/03/23 06:38	08/04/23 17:28	1		
Selenium	20.0	U	20.0		ug/L		08/03/23 06:38	08/04/23 17:28	1		

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Aluminum	100	U	100		ug/L		08/03/23 06:38	08/08/23 15:34	1
Arsenic	3.00	U	3.00		ug/L		08/03/23 06:38	08/08/23 15:34	1
Barium	77.3		5.00		ug/L		08/03/23 06:38	08/08/23 15:34	1
Cadmium	0.500	U	0.500		ug/L		08/03/23 06:38	08/08/23 15:34	1
Chromium	5.00	U	5.00		ug/L		08/03/23 06:38	08/08/23 15:34	1
Copper	5.00	U	5.00		ug/L		08/03/23 06:38	08/08/23 15:34	1
Iron	8390		100		ug/L		08/03/23 06:38	08/08/23 15:34	1
Lead	2.50	U	2.50		ug/L		08/03/23 06:38	08/08/23 15:34	1
Magnesium	9610		250		ug/L		08/03/23 06:38	08/08/23 15:34	1
Zinc	20.0	U	20.0		ug/L		08/03/23 06:38	08/08/23 15:34	1

QC Sample Results

Client: South Carolina Public Service Authority Project/Site: 125915/JM02.08.G01.3/36500

Job ID: 680-238533-1

Method: 6010D - Metals (ICP)

Lab Sample ID: MB 680-791516/1-A

Matrix: Water

Analysis Batch: 791719

Client Sample ID: Method Blank **Prep Type: Total Recoverable**

Prep Batch: 791516

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Calcium	500	U	500		ug/L		08/03/23 05:51	08/03/23 14:52	1
Selenium	20.0	U	20.0		ug/L		08/03/23 05:51	08/03/23 14:52	1

MB MB

Lab Sample ID: LCS 680-791516/2-A

Matrix: Water

Analysis Batch: 791719

Client Sample ID: Lab Control Sample **Prep Type: Total Recoverable Prep Batch: 791516**

	Spike	LCS	LCS				%Rec	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Calcium	5000	4950		ug/L		99	80 _ 120	
Selenium	100	94.39		ug/L		94	80 _ 120	

Lab Sample ID: MB 680-791519/1-A

Matrix: Water

Analysis Batch: 791897

Client Sample ID: Method Blank **Prep Type: Total Recoverable**

Prep Batch: 791519

	IVID	INID							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Calcium	500	U	500		ug/L		08/03/23 06:38	08/04/23 16:50	1
Selenium	20.0	U	20.0		ug/L		08/03/23 06:38	08/04/23 16:50	1

Lab Sample ID: LCS 680-791519/2-A

Matrix: Water

Analysis Batch: 791897

Client Sample ID: Lab Control Sample **Prep Type: Total Recoverable** Prep Batch: 791519

	Spike	LCS	LCS			%Rec	
Analyte	Added	Result	Qualifier Unit	D	%Rec	Limits	
Calcium	5000	4801	ug/L		96	80 _ 120	
Selenium	100	99.73	ug/L		100	80 _ 120	

Method: 6020B - Metals (ICP/MS)

Lab Sample ID: MB 680-791513/1-A

Matrix: Water

Analysis Batch: 792230

Client Sample ID: Method Blank **Prep Type: Total Recoverable**

MB MB Analyte Result Qualifier RL MDL Unit Prepared Analyzed Dil Fac Aluminum 100 U 100 08/03/23 05:51 08/07/23 15:57 ug/L 08/03/23 05:51 Arsenic 3.00 U 3.00 ug/L 08/07/23 15:57 Barium 5.00 U 5.00 ug/L 08/03/23 05:51 08/07/23 15:57 08/03/23 05:51 Cadmium 0.500 U 0.500 08/07/23 15:57 ug/L 5.00 08/03/23 05:51 08/07/23 15:57 Chromium 5.00 U ug/L 5.00 U 5.00 08/03/23 05:51 08/07/23 15:57 Copper ug/L Iron 100 U 100 ug/L 08/03/23 05:51 08/07/23 15:57 2.50 U 2.50 08/03/23 05:51 08/07/23 15:57 Lead ug/L Magnesium 250 U 250 ug/L 08/03/23 05:51 08/07/23 15:57 Zinc 20.0 U 20.0 ug/L 08/03/23 05:51 08/07/23 15:57

Eurofins Savannah

Prep Batch: 791513

QC Sample Results

Client: South Carolina Public Service Authority Project/Site: 125915/JM02.08.G01.3/36500

Job ID: 680-238533-1

Method: 6020B - Metals (ICP/MS) (Continued)

Lab Sample ID: LCS 680-791513/2-A Client Sample ID: Lab Control Sample **Matrix: Water Prep Type: Total Recoverable** Analysis Batch: 792230 **Prep Batch: 791513**

Spike LCS LCS Analyte Added Result Qualifier %Rec Limits Unit Aluminum 5050 5120 ug/L 101 80 _ 120 Arsenic 100 106.4 ug/L 106 80 _ 120 102.9 Barium 100 ug/L 103 80 _ 120 50.92 Cadmium 50.0 ug/L 102 80 _ 120 Chromium 100 109.3 109 80 _ 120 ug/L 100 113.2 113 80 _ 120 Copper ug/L Iron 4990 5167 ug/L 104 80 _ 120 Lead 500 530.5 ug/L 106 80 - 120 Magnesium 5000 4977 100 80 _ 120 ug/L Zinc 100 110.4 ug/L 110 80 _ 120

Lab Sample ID: MB 680-791518/1-A Client Sample ID: Method Blank

Matrix: Water

Prep Type: Total Recoverable Analysis Batch: 792490 **Prep Batch: 791518**

MB MB Analyte Result Qualifier RL MDL Unit Prepared Analyzed Dil Fac 100 U 100 08/03/23 06:38 08/08/23 14:41 Aluminum ug/L 3.00 3.00 08/03/23 06:38 08/08/23 14:41 Arsenic U ug/L 5.00 5.00 08/03/23 06:38 08/08/23 14:41 Barium ug/L Cadmium 0.500 U 0.500 ug/L 08/03/23 06:38 08/08/23 14:41 Chromium 5.00 U 5.00 ug/L 08/03/23 06:38 08/08/23 14:41 Copper 5.00 08/08/23 14:41 5.00 U ug/L 08/03/23 06:38 Iron 100 U 100 ug/L 08/03/23 06:38 08/08/23 14:41 2.50 U 2.50 08/08/23 14:41 ug/L 08/03/23 06:38 Lead Magnesium 250 U 250 ug/L 08/03/23 06:38 08/08/23 14:41 Zinc 20.0 U 20.0 ug/L 08/03/23 06:38 08/08/23 14:41

Lab Sample ID: LCS 680-791518/2-A Client Sample ID: Lab Control Sample **Matrix: Water Prep Type: Total Recoverable**

Analysis Batch: 792490 **Prep Batch: 791518**

Alialysis Datoll. 192490							i iep bate	11. 131310
	Spike	LCS	LCS				%Rec	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Aluminum	5050	4652		ug/L		92	80 _ 120	
Arsenic	100	97.80		ug/L		98	80 _ 120	
Barium	100	95.86		ug/L		96	80 _ 120	
Cadmium	50.0	46.20		ug/L		92	80 _ 120	
Chromium	100	100.4		ug/L		100	80 _ 120	
Copper	100	102.8		ug/L		103	80 _ 120	
Iron	4990	5052		ug/L		101	80 _ 120	
Lead	500	485.1		ug/L		97	80 _ 120	
Magnesium	5000	4591		ug/L		92	80 _ 120	
Zinc	100	101.9		ua/L		102	80 _ 120	

QC Association Summary

Client: South Carolina Public Service Authority Project/Site: 125915/JM02.08.G01.3/36500

Job ID: 680-238533-1

Metals

Prep Batch: 791513

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
680-238533-1	AF68718	Total Recoverable	Water	3005A	
680-238533-2	AF68716	Total Recoverable	Water	3005A	
680-238533-4	AF68715	Total Recoverable	Water	3005A	
MB 680-791513/1-A	Method Blank	Total Recoverable	Water	3005A	
LCS 680-791513/2-A	Lab Control Sample	Total Recoverable	Water	3005A	

Prep Batch: 791516

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Bato
680-238533-1	AF68718	Total Recoverable	Water	3005A	
680-238533-2	AF68716	Total Recoverable	Water	3005A	
680-238533-4	AF68715	Total Recoverable	Water	3005A	
MB 680-791516/1-A	Method Blank	Total Recoverable	Water	3005A	
LCS 680-791516/2-A	Lab Control Sample	Total Recoverable	Water	3005A	

Prep Batch: 791518

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
680-238533-3	AF69285	Total Recoverable	Water	3005A	
680-238533-5	AF68722	Total Recoverable	Water	3005A	
MB 680-791518/1-A	Method Blank	Total Recoverable	Water	3005A	
LCS 680-791518/2-A	Lab Control Sample	Total Recoverable	Water	3005A	

Prep Batch: 791519

Lab Sample ID 680-238533-3	Client Sample ID AF69285	Prep Type Total Recoverable	Matrix Water	Method Prep Batch 3005A
680-238533-5	AF68722	Total Recoverable	Water	3005A
MB 680-791519/1-A	Method Blank	Total Recoverable	Water	3005A
LCS 680-791519/2-A	Lab Control Sample	Total Recoverable	Water	3005A

Analysis Batch: 791719

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
680-238533-1	AF68718	Total Recoverable	Water	6010D	791516
680-238533-2	AF68716	Total Recoverable	Water	6010D	791516
680-238533-4	AF68715	Total Recoverable	Water	6010D	791516
MB 680-791516/1-A	Method Blank	Total Recoverable	Water	6010D	791516
LCS 680-791516/2-A	Lab Control Sample	Total Recoverable	Water	6010D	791516

Analysis Batch: 791897

Lab Sample ID 680-238533-3	Client Sample ID AF69285	Prep Type Total Recoverable	Matrix Water	Method 6010D	Prep Batch 791519
680-238533-5	AF68722	Total Recoverable	Water	6010D	791519
MB 680-791519/1-A	Method Blank	Total Recoverable	Water	6010D	791519
LCS 680-791519/2-A	Lab Control Sample	Total Recoverable	Water	6010D	791519

Analysis Batch: 792230

					
Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
680-238533-1	AF68718	Total Recoverable	Water	6020B	791513
680-238533-2	AF68716	Total Recoverable	Water	6020B	791513
680-238533-4	AF68715	Total Recoverable	Water	6020B	791513
MB 680-791513/1-A	Method Blank	Total Recoverable	Water	6020B	791513
LCS 680-791513/2-A	Lab Control Sample	Total Recoverable	Water	6020B	791513

Page 16 of 22

QC Association Summary

Client: South Carolina Public Service Authority Project/Site: 125915/JM02.08.G01.3/36500

Job ID: 680-238533-1

Metals

Analysis Batch: 792490

ı	Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
6	680-238533-3	AF69285	Total Recoverable	Water	6020B	791518
6	680-238533-5	AF68722	Total Recoverable	Water	6020B	791518
1	MB 680-791518/1-A	Method Blank	Total Recoverable	Water	6020B	791518
L	_CS 680-791518/2-A	Lab Control Sample	Total Recoverable	Water	6020B	791518

3

1

6

a

10

11

13

Job ID: 680-238533-1

Client: South Carolina Public Service Authority Project/Site: 125915/JM02.08.G01.3/36500

Client Sample ID: AF68718 Lab Sample ID: 680-238533-1 Date Collected: 06/27/23 13:07

Matrix: Water

Date Received: 08/02/23 10:45

	Batch	Batch		Dilution	Batch			Prepared
Prep Type	Type	Method	Run	Factor	Number	Analyst	Lab	or Analyzed
Total Recoverable	Prep	3005A			791516	RR	EET SAV	08/03/23 05:51
Total Recoverable	Analysis	6010D		1	791719	BJB	EET SAV	08/03/23 15:22
Total Recoverable	Prep	3005A			791513	RR	EET SAV	08/03/23 05:51
Total Recoverable	Analysis	6020B		1	792230	BWR	EET SAV	08/07/23 16:55

Client Sample ID: AF68716 Date Collected: 06/28/23 10:32

Lab Sample ID: 680-238533-2

Matrix: Water

Matrix: Water

Date Received: 08/02/23 10:45

	Batch	Batch		Dilution	Batch			Prepared
Prep Type	Type	Method	Run	Factor	Number	Analyst	Lab	or Analyzed
Total Recoverable	Prep	3005A			791516	RR	EET SAV	08/03/23 05:51
Total Recoverable	Analysis	6010D		1	791719	BJB	EET SAV	08/03/23 15:08
Total Recoverable	Prep	3005A			791513	RR	EET SAV	08/03/23 05:51
Total Recoverable	Analysis	6020B		1	792230	BWR	EET SAV	08/07/23 16:18

Lab Sample ID: 680-238533-3 **Client Sample ID: AF69285** Date Collected: 06/28/23 12:36

Matrix: Water

Date Received: 08/02/23 10:45

	Batch	Batch		Dilution	Batch			Prepared
Prep Type	Туре	Method	Run	Factor	Number	Analyst	Lab	or Analyzed
Total Recoverable	Prep	3005A			791519	RR	EET SAV	08/03/23 06:38
Total Recoverable	Analysis	6010D		1	791897	BJB	EET SAV	08/04/23 17:25
Total Recoverable	Prep	3005A			791518	RR	EET SAV	08/03/23 06:38
Total Recoverable	Analysis	6020B		1	792490	BWR	EET SAV	08/08/23 15:30

Lab Sample ID: 680-238533-4 **Client Sample ID: AF68715**

Date Collected: 06/29/23 09:47

Date Received: 08/02/23 10:45

	Batch	Batch		Dilution	Batch			Prepared
Prep Type	Type	Method	Run	Factor	Number	Analyst	Lab	or Analyzed
Total Recoverable	Prep	3005A			791516	RR	EET SAV	08/03/23 05:51
Total Recoverable	Analysis	6010D		1	791719	BJB	EET SAV	08/03/23 15:20
Total Recoverable	Prep	3005A			791513	RR	EET SAV	08/03/23 05:51
Total Recoverable	Analysis	6020B		1	792230	BWR	EET SAV	08/07/23 16:46

Client Sample ID: AF68722 Lab Sample ID: 680-238533-5

Date Collected: 06/29/23 14:53 **Matrix: Water**

Date Received: 08/02/23 10:45

	Batch	Batch		Dilution	Batch			Prepared
Prep Type	Type	Method	Run	Factor	Number	Analyst	Lab	or Analyzed
Total Recoverable	Prep	3005A			791519	RR	EET SAV	08/03/23 06:38
Total Recoverable	Analysis	6010D		1	791897	BJB	EET SAV	08/04/23 17:28
Total Recoverable	Prep	3005A			791518	RR	EET SAV	08/03/23 06:38
Total Recoverable	Analysis	6020B		1	792490	BWR	EET SAV	08/08/23 15:34

Eurofins Savannah

Page 18 of 22

Lab Chronicle

Client: South Carolina Public Service Authority Project/Site: 125915/JM02.08.G01.3/36500

Job ID: 680-238533-1

Laboratory References:

EET SAV = Eurofins Savannah, 5102 LaRoche Avenue, Savannah, GA 31404, TEL (912)354-7858

4

5

7

8

3

11

13

Chain of Custody

Car noo cooper	
Santee Cooper	
One Riverwood Drive	
Moncks Corner, SC 29461	
one (843)761-8000 Ext 5148	
For (843)761-4176	

Customer Email/Report Recipient: Project/Task/Unit #: Date Results Needed by: Rerun request for any flagged QC 125915 / JM02.08.GO1.3/ 36500 LCWILLIA _@santeecooper.com Yes No **Analysis Group** Labworks ID# Sample Location/ Comments METALS Matrix(see below) Collection Date Collection Time Total # of containers Preservative (see below) (Internal use Description Method# Sample Collector only) Reporting limit Grab (G) or Composite (C) Bottle type: (G/Plastic-P) Misc. sample info TOTAL 1 Any other notes WJK X 6/27/23 1307 6 GW METHOD 6020 AF68718 WAP-8 -SEE SHEET FOR RLS. WAP-6 6/28/23 1032 AF 68 716 PPZW-6D 1236 *PLEASE RETURN SAMPLES A-F69285 UPON COMPLETION. 6/29/23 AF68715 WAP-5 0947 1453 AF68722 WAP-11

Relinquished by:	Employee#	Date	Time	Received by:	Employee #	Date	Time
Albrown	35594	8/2/23	0756	SHOOCE	COURTER	8/2/23	0756
Relinquished by:	Employee#	Date	Time	Received by:	Employee #	Date	Time
EHODGU	Courier	8/2/23	1044	de	TA	8-2-23	1045
Relinquished by:	Employee#	Date	Time	Received by:	Employee #	Date	Time

Sample Receiving (Internal Use Only) TEMP (°C): 42/43 Initial:

Correct pH: Yes

Preservative Lot#:

680-238533 Chain of Custody

Date/Time/Init for preservative:

	-								
☐ METALS (all)		Nutrients	MISC.	Gypsum	Coal	Flyash	Oil		
□Ag	⊅ Cu	□ Sb	TOC	□ BTEX	□ Wallboard	SE CONTRACTOR OF THE PROPERTY		The second secon	
⊿ Al	⊿ Fe	,⊠ Se	I DOC	☐ Naphthalene	Gypsum(all	☐ Ultimate ☐ % Moisture	□ Ammonia □ LOI	Trans. Oil Qual.	
Ø⁄As	□К	□ Sn	☐ TP/TPO4	□ TĤM/HAA	below)	□ Ash	□ % Carbon	Li Color	
□В	□Li	□ Sr	□ NH3-N	□ VOC □ Oil & Grease	C AIM	□ Sulfur	☐ Mineral	Acidity Dielectric Strength	
Ç∕Ba	Ø Mg	□ Ti	→ D.F FICI	☐ E. Coli ☐ Total Coliform	☐ Total metals	☐ BTUs ☐ Volatile Matter	Analysis D Sieve	OIFT Dissolved Gases	
□Ве	□Mn	O TI	□ NO2 □ Br □ NO3	☐ PH☐ Dissolved As☐ Dissolved Fe	☐ Soluble Metals ☐ Purity (CaSO4) ☐ % Moisture ☐ Sulfites	□ CHN Other Tests: □ XRF Scan	☐ % Moisture	Used Oil	
∠ Ca	□ Mo	□V						∴ Flashpoint Metals in oil	
`\ Cq	□ Na	⊅ Zn	□ SO4	□ Rad 226	DpH	⊢□HGI	NPDES Oil & Grease	(As,Cd,CrNi,Pb	
□ Co	□ Ni	□ Hg		☐ Rad 228 ☐ PCB	☐ Chlorides ☐ Particle Size	☐ Fineness ☐ Particulate Matter	D As	Hg) ⊕TX	
⊅í Cr	∠ Pb	□ CrVI			□ Sulfur	becate we did not the state of	□ TSS	D GOFER	

Login Sample Receipt Checklist

Client: South Carolina Public Service Authority

Job Number: 680-238533-1

Login Number: 238533 List Source: Eurofins Savannah

List Number: 1

Creator: Sims, Robert D

Creator: Sims, Robert D		
Question	Answer	Comment
Radioactivity wasn't checked or is = background as measured by a survey meter.</td <td>N/A</td> <td></td>	N/A	
The cooler's custody seal, if present, is intact.	True	
Sample custody seals, if present, are intact.	True	
The cooler or samples do not appear to have been compromised or tampered with.	True	
Samples were received on ice.	True	
Cooler Temperature is acceptable.	True	
Cooler Temperature is recorded.	True	
COC is present.	True	
COC is filled out in ink and legible.	True	
COC is filled out with all pertinent information.	True	
Is the Field Sampler's name present on COC?	True	
There are no discrepancies between the containers received and the COC.	True	
Samples are received within Holding Time (excluding tests with immediate HTs)	True	
Sample containers have legible labels.	True	
Containers are not broken or leaking.	True	
Sample collection date/times are provided.	True	
Appropriate sample containers are used.	True	
Sample bottles are completely filled.	True	
Sample Preservation Verified.	N/A	
There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs	True	
Containers requiring zero headspace have no headspace or bubble is <6mm (1/4").	N/A	
Multiphasic samples are not present.	True	
Samples do not require splitting or compositing.	True	
Residual Chlorine Checked.	N/A	

3

1

6

8

11

12

13

Accreditation/Certification Summary

Client: South Carolina Public Service Authority
Project/Site: 125915/JM02.08.G01.3/36500

Job ID: 680-238533-1

Laboratory: Eurofins Savannah

The accreditations/certifications listed below are applicable to this report.

Authority	Program	Identification Number	Expiration Date
South Carolina	State	98001	06-30-23 *

4

_

0

9

44

12

 $^{^{\}star} \ \text{Accreditation/Certification renewal pending - accreditation/certification considered valid}.$

12

13

ANALYTICAL REPORT

PREPARED FOR

Attn: Linda Williams
South Carolina Public Service Authority
Santee Cooper
PO BOX 2946101
Moncks Corner, South Carolina 29461-2901

Generated 1/9/2024 10:02:26 AM Revision 1

JOB DESCRIPTION

125915/JM02 09 G011/36500

JOB NUMBER

680-244376-1

Eurofins Savannah 5102 LaRoche Avenue Savannah GA 31404

Eurofins Savannah

Job Notes

This report may not be reproduced except in full, and with written approval from the laboratory. The results relate only to the samples tested. For questions please contact the Project Manager at the e-mail address or telephone number listed on this page.

The test results in this report relate only to the samples as received by the laboratory and will meet all requirements of the methodology, with any exceptions noted. This report shall not be reproduced except in full, without the express written approval of the laboratory. All questions should be directed to the Eurofins Environment Testing Southeast, LLC Project Manager.

Authorization

Generated 1/9/2024 10:02:26 AM Revision 1

Authorized for release by Jerry Lanier, Project Manager I <u>Jerry.Lanier@et.eurofinsus.com</u> (912)250-0281

Table of Contents

Cover Page	1
Table of Contents	3
Case Narrative	4
Sample Summary	5
	6
Definitions	7
Detection Summary	8
Client Sample Results	9
QC Sample Results	13
QC Association	14
Chronicle	15
Chain of Custody	16
Receipt Checklists	17
Certification Summary	18

5

6

8

9

10

12

13

Case Narrative

Client: South Carolina Public Service Authority

Project: 125915/JM02 09 G011/36500

Job ID: 680-244376-1 Eurofins Savannah

Job Narrative 680-244376-1

REVISION

The report being provided is a revision of the original report sent on 12/15/2023. The report (revision 1) is being revised due to Client is requesting batch QC to be reported..

Analytical test results meet all requirements of the associated regulatory program listed on the Accreditation/Certification Summary Page unless otherwise noted under the individual analysis. Data qualifiers are applied to indicate exceptions. Noncompliant quality control (QC) is further explained in narrative comments.

- Matrix QC may not be reported if insufficient sample or site-specific QC samples were not submitted. In these situations, to demonstrate precision and accuracy at a batch level, a LCS/LCSD may be performed, unless otherwise specified in the method.
- · Surrogate and/or isotope dilution analyte recoveries (if applicable) which are outside of the QC window are confirmed unless attributed to a dilution or otherwise noted in the narrative.

Regulated compliance samples (e.g. SDWA, NPDES) must comply with the associated agency requirements/permits.

Receipt

The samples were received on 12/14/2023 10:32 AM. Unless otherwise noted below, the samples arrived in good condition, and, where required, properly preserved and on ice. The temperature of the cooler at receipt time was 13.6°C

Metals

No additional analytical or quality issues were noted, other than those described above or in the Definitions/ Glossary page.

2

Job ID: 680-244376-1

3

4

6

9

10

12

13

Sample Summary

Client: South Carolina Public Service Authority Project/Site: 125915/JM02 09 G011/36500

Job ID: 680-244376-1

Lab Sample ID Client Sample ID Matrix Collected Receiv 680-244376-1 AF85222 Water 12/11/23 13:19 12/14/23 680-244376-2 AF85223 Water 12/11/23 10:24 12/14/23 680-244376-3 AF85224 Water 12/11/23 10:29 12/14/23 10:32 680-244376-4 AF85225 Water 12/11/23 11:50 12/14/23 10:32

b

8

9

1 0

12

13

Method Summary

Client: South Carolina Public Service Authority Project/Site: 125915/JM02 09 G011/36500

Method Description

Preparation, Mercury

Mercury (CVAA)

Job ID: 680-244376-1

EET SAV

Protocol	Laboratory
SW846	EET SAV

SW846

Protocol References:

Method

7470A

7470A

SW846 = "Test Methods For Evaluating Solid Waste, Physical/Chemical Methods", Third Edition, November 1986 And Its Updates.

Laboratory References:

EET SAV = Eurofins Savannah, 5102 LaRoche Avenue, Savannah, GA 31404, TEL (912)354-7858

E

7

8

9

11

13

Definitions/Glossary

Client: South Carolina Public Service Authority

Job ID: 680-244376-1

Project/Site: 125915/JM02 09 G011/36500

Qualifiers

N	ı	e	ta	ı	S
HV.	ш	◡	La	ш	3

Qualifier Qualifier Description

F1 MS and/or MSD recovery exceeds control limits.
U Indicates the analyte was analyzed for but not detected.

Glossary

Abbreviation	These commonly	y used abbreviations may	y or may not be	present in this report.
/ IDDI C VIGITOTI	These commission	y abea abbievianello llia	y or may mor be	prosent in this report

Example 2 Listed under the "D" column to designate that the result is reported on a dry weight basis

%R Percent Recovery
CFL Contains Free Liquid
CFU Colony Forming Unit
CNF Contains No Free Liquid

DER Duplicate Error Ratio (normalized absolute difference)

Dil Fac Dilution Factor

DL Detection Limit (DoD/DOE)

DL, RA, RE, IN Indicates a Dilution, Re-analysis, Re-extraction, or additional Initial metals/anion analysis of the sample

DLC Decision Level Concentration (Radiochemistry)

EDL Estimated Detection Limit (Dioxin)

LOD Limit of Detection (DoD/DOE)

LOQ Limit of Quantitation (DoD/DOE)

MCL EPA recommended "Maximum Contaminant Level"

MDA Minimum Detectable Activity (Radiochemistry)

MDC Minimum Detectable Concentration (Radiochemistry)

MDL Method Detection Limit
ML Minimum Level (Dioxin)
MPN Most Probable Number
MQL Method Quantitation Limit

NC Not Calculated

ND Not Detected at the reporting limit (or MDL or EDL if shown)

NEG Negative / Absent POS Positive / Present

PQL Practical Quantitation Limit

PRES Presumptive
QC Quality Control

RER Relative Error Ratio (Radiochemistry)

RL Reporting Limit or Requested Limit (Radiochemistry)

RPD Relative Percent Difference, a measure of the relative difference between two points

TEF Toxicity Equivalent Factor (Dioxin)
TEQ Toxicity Equivalent Quotient (Dioxin)

TNTC Too Numerous To Count

3

Λ

4

6

7

8

40

11

14

14

Eurofins Savannah

Detection Summary

 Project/Site: 125915/JM02 09 G011/36500

 Client Sample ID: AF85222
 Lab Sample ID: 680-244376-1

 No Detections.

 Client Sample ID: AF85223
 Lab Sample ID: 680-244376-2

 No Detections.

 Client Sample ID: AF85224
 Lab Sample ID: 680-244376-3

 No Detections.

 Client Sample ID: AF85225
 Lab Sample ID: 680-244376-4

2

Job ID: 680-244376-1

3

4

5

7

9

11

12

14

Client: South Carolina Public Service Authority

No Detections.

Client: South Carolina Public Service Authority

Project/Site: 125915/JM02 09 G011/36500

Job ID: 680-244376-1

Client Sample ID: AF85222 Lab Sample ID: 680-244376-1

Date Collected: 12/11/23 13:19

Matrix: Water

Date Received: 12/14/23 10:32

Method: SW846 7470A - Mercury (CVAA)

Analyte	Result	Qualifier	RL	MDL	Unit	D)	Prepared	Analyzed	Dil Fac
Mercury	0.200	U	0.200		ua/l			12/15/23 09:10	12/15/23 16:02	1

Н

4

_

6

8

9

11

40

Client: South Carolina Public Service Authority

Project/Site: 125915/JM02 09 G011/36500

Job ID: 680-244376-1

Client Sample ID: AF85223 Lab Sample ID: 680-244376-2

Date Collected: 12/11/23 10:24 Matrix: Water

Date Received: 12/14/23 10:32

Method: SW846 7470A - Mercury (CVAA)

Analyte Result Qualifier RL MDL Unit D Prepared Analyzed Dil Fac

Mercury 0.200 U 0.200 ug/L 12/15/23 09:10 12/15/23 16:04 1

2

1

4

J

0

10

11

13

Client: South Carolina Public Service Authority

Project/Site: 125915/JM02 09 G011/36500

Job ID: 680-244376-1

Client Sample ID: AF85224 Lab Sample ID: 680-244376-3

Date Collected: 12/11/23 10:29 Matrix: Water

Date Received: 12/14/23 10:32

Method: SW846 7470A - Mercury (CVAA)

Analyte Result Qualifier RL MDL Unit D Prepared Analyzed Dil Fac

Mercury 0.200 U 0.200 ug/L 12/15/23 09:10 12/15/23 16:06 1

Eurofins Savannah

Client: South Carolina Public Service Authority

Project/Site: 125915/JM02 09 G011/36500

Job ID: 680-244376-1

Client Sample ID: AF85225 Lab Sample ID: 680-244376-4

Date Collected: 12/11/23 11:50 Matrix: Water

Date Received: 12/14/23 10:32

Method: SW846 7470A - Mercury (CVAA)
Analyte Result Qualifier RL MDL Unit D Prepared Analyzed Dil Fac

Mercury 0.200 U 0.200 ug/L 12/15/23 09:10 12/15/23 16:08 1

2

5

4

5

6

8

9

11

12

QC Sample Results

Client: South Carolina Public Service Authority Project/Site: 125915/JM02 09 G011/36500

Job ID: 680-244376-1

Prep Type: Total/NA

Method: 7470A - Mercury (CVAA)

Lab Sample ID: MB 680-813640/1-A **Client Sample ID: Method Blank**

Matrix: Water

Analysis Batch: 813777

Prep Type: Total/NA MB MB

Prep Batch: 813640

Analyte Result Qualifier RL **MDL** Unit Analyzed Dil Fac **Prepared** 0.200 12/15/23 09:10 12/15/23 12:50 Mercury 0.200 U ug/L

Lab Sample ID: LCS 680-813640/2-A Client Sample ID: Lab Control Sample **Matrix: Water** Prep Type: Total/NA **Prep Batch: 813640**

Analysis Batch: 813777 Spike LCS LCS %Rec

Analyte Added Result Qualifier Unit D %Rec Limits 2.50 80 - 120 Mercury 2.453 ug/L 98

Lab Sample ID: 680-244329-G-1-D MS **Client Sample ID: Matrix Spike**

Matrix: Water

Analysis Batch: 813777 Prep Batch: 813640

Sample Sample Spike MS MS %Rec

Analyte Result Qualifier Added Limits Result Qualifier Unit %Rec Mercury 0.200 UF1 1.00 0.8064 80 - 120 ug/L 81

Lab Sample ID: 680-244329-G-1-E MSD **Client Sample ID: Matrix Spike Duplicate**

Matrix: Water

Prep Type: Total/NA

Analysis Batch: 813777 Prep Batch: 813640 MSD MSD %Rec

RPD Spike Sample Sample **Analyte** Result Qualifier Added Result Qualifier Unit D %Rec Limits **RPD** Limit Mercury 0.200 UF1 1.00 0.7930 F1 79 80 - 120 2 20 ug/L

QC Association Summary

Job ID: 680-244376-1 Client: South Carolina Public Service Authority Project/Site: 125915/JM02 09 G011/36500

Metals

Prep Batch: 813640

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
680-244376-1	AF85222	Total/NA	Water	7470A	
680-244376-2	AF85223	Total/NA	Water	7470A	
680-244376-3	AF85224	Total/NA	Water	7470A	
680-244376-4	AF85225	Total/NA	Water	7470A	
MB 680-813640/1-A	Method Blank	Total/NA	Water	7470A	
LCS 680-813640/2-A	Lab Control Sample	Total/NA	Water	7470A	
680-244329-G-1-D MS	Matrix Spike	Total/NA	Water	7470A	
680-244329-G-1-E MSD	Matrix Spike Duplicate	Total/NA	Water	7470A	

Analysis Batch: 813777

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
680-244376-1	AF85222	Total/NA	Water	7470A	813640
680-244376-2	AF85223	Total/NA	Water	7470A	813640
680-244376-3	AF85224	Total/NA	Water	7470A	813640
680-244376-4	AF85225	Total/NA	Water	7470A	813640
MB 680-813640/1-A	Method Blank	Total/NA	Water	7470A	813640
LCS 680-813640/2-A	Lab Control Sample	Total/NA	Water	7470A	813640
680-244329-G-1-D N	/IS Matrix Spike	Total/NA	Water	7470A	813640
680-244329-G-1-E M	MSD Matrix Spike Duplicate	Total/NA	Water	7470A	813640

Lab Chronicle

Client: South Carolina Public Service Authority Project/Site: 125915/JM02 09 G011/36500

Job ID: 680-244376-1

Lab Sample ID: 680-244376-1

Matrix: Water

Dilution Batch **Batch Batch Prepared** Method **Factor** Number Analyst or Analyzed **Prep Type** Type Run Lab 12/15/23 09:10 Total/NA Prep 7470A 813640 DW EET SAV 12/15/23 16:02 Total/NA Analysis 7470A 813777 DW **EET SAV** 1

Lab Sample ID: 680-244376-2 Client Sample ID: AF85223

Matrix: Water

Date Collected: 12/11/23 10:24 Date Received: 12/14/23 10:32

Client Sample ID: AF85222 Date Collected: 12/11/23 13:19

Date Received: 12/14/23 10:32

	Batch	Batch		Dilution	Batch			Prepared
Prep Type	Туре	Method	Run	Factor	Number	Analyst	Lab	or Analyzed
Total/NA	Prep	7470A			813640	DW	EET SAV	12/15/23 09:10
Total/NA	Analysis	7470A		1	813777	DW	EET SAV	12/15/23 16:04

Client Sample ID: AF85224 Lab Sample ID: 680-244376-3

Date Collected: 12/11/23 10:29 **Matrix: Water** Date Received: 12/14/23 10:32

Batch Batch **Dilution** Batch **Prepared** Method or Analyzed **Prep Type** Type Run **Factor Number Analyst** Lab 12/15/23 09:10 Total/NA Prep 7470A 813640 DW **EET SAV** Total/NA Analysis 7470A 813777 DW **EET SAV** 12/15/23 16:06 1

Client Sample ID: AF85225 Lab Sample ID: 680-244376-4

Date Collected: 12/11/23 11:50 **Matrix: Water**

Date Received: 12/14/23 10:32

	Batch	Batch		Dilution	Batch			Prepared
Prep Type	Type	Method	Run	Factor	Number	Analyst	Lab	or Analyzed
Total/NA	Prep	7470A			813640	DW	EET SAV	12/15/23 09:10
Total/NA	Analysis	7470A		1	813777	DW	EET SAV	12/15/23 16:08

Laboratory References:

EET SAV = Eurofins Savannah, 5102 LaRoche Avenue, Savannah, GA 31404, TEL (912)354-7858

Eurofins Savannah

esuree coober.

Suntee Cooper One Riverwood Dulve Moneks Comer, SC 29461 Phone: (843)761-8000 Ext. 5148 Fax: (843)761-4175

Chain of Custody

															0/
		\$31.0			۰	rië eleb	anging (O ICB	2 de la companya de l	- Indiana	ECM	94 🗅	J9 🗉
		SAU SAU SAU	esanani/ Particulate Ma	10		марио	WЭ 🛭			D Rad 228		⊁OS ∩	uZ□ sH□	PN□	© C9 □ C9
ORBITESTEST CONTROL		SECON	KRE Sean	(0)		89))]	182 () Mg ()		a Pe	□ Dissolve □ Rad 226		EONEI 💳	۸۵	oM □	to □
encino Trost		autriold & U	Her Lesie: E ČHN	10	(10)	ena) (en Ameiok	mau			Hq □ □ Dissolve	-	THE DE	11.0	-u∭ []	пВе
sarge) pealing			□ BLOs □ Roletite			leton <u>te</u> eta aldu				□ L°(2) C0 □ L° C0 -		100	110	3M 🗆	es o
gowy, w.s. Ann		Jenemité 🗆	milias 🗆				01.0 NV 81		- asba	□ VOC □	N.	EHN O	- 4S D	-110	8 0-
joj joj	0012	1010 m	nsioM ‰ ⊟ □ %sh		,	6) دەس(رىرا	tojag AKm			eihiqevi 🗆 THMHT 🗅	10d	DOCI []	uS 🖸	OK.	I V □
24000000 2006-0002		sinemmA []	ətamitil			pau	odilleVV	o _		D BLEX	lin.	oora	9S □ - □ 2P	—☐ Cu □Fe	2A E
		deeyle	Coal		1	Ulasio.	NS)		, ()	IM	stna	Hann	(118) ST	ATOM (
	:9vij	Date/Time/Init for preserva													
			əmiT	13	əteU		pjokee	u3	eq på:	VisosA	əmiT	9180	Employees	ed by:	delinguish
		Preservative Lot#:													
		Correct pH: Yes No	ami1	tes- Excession	etsU	<u> </u>	pjokee	<u>ua</u>	eq pk:	Receiv	71me	12/21/23 12/23	#aakojdwa 322dr	ed by:	ysinbullay PriveXS
	:lsitin	TEMP (*C): 13.3/18.61	560	/ E	2 61/	U	ployee	S = C	GO PA:	Alecent	Time	9180 Ec/ 51/ 51	Employee#	: Ag pa	AsiupnilaA 12.22
(/	(luO əs	Sample Receiving (Internal U	311	31 <u>311</u>				57 . K.			and the same of the state of th	and Carethele State When the inner			(7) (9) (5) (1) (5) (1) (1) (1) (1) (1) (1) (1) (1) (1) (1
		12.00	ā												_
		80-244376 Chain of Custody	Ĭ			 	-								7
-			<u></u>		 		ļ					:			9
		oo 344376 Chain of Custody	 		ļ										, , , , , , , , , , , , , , , , , , ,
		All the state of t													Ö
								<u> </u>							
	ļ		·				-								
	<u> </u>														7758 1 4
	T			Ī	ΙĪ	ī	Ī	Ī		0511			PS-94	W	6620 4 4
	+			\sqcap						LZ01		ah	45-28 B	M h	75897A
	+			\vdash		+		\vdash		4501			82 - dv	M ε	7758 JV
	1	-16				\ 		'	אר		-7/11 h				ZZS84 V
	×	7/6177	, KT CO	2	CHM	9	d	١	WZ	ble!	EZ/11/21		TS-9A	14) 2	,2020Av
	走		· France	Preserv below)	Matu	Grab (G) or Composite (C)	Bottl G/Pla	Total	Samj	8	<u>@</u>			ř	
		sample info other notes	• Misc	Preservative (see below)	Matrix(see below)	osite (Bottle type: (Glass: G/Plastic-P)	Total # of containers	Sample Collector	Collection Time	Collection Date				Horse
		# bo Jimil gain		/e (se	belo	9	(Glas	ntaine	ecto	3	Date		noliption	ĐQ i	(internal use
		sjuawwoj	one of the second		3		L *			ID.		<u> </u>	nple Location	ies # (rapmorks it
quore sizyla	nA.														
	oN	\$75 mg 98	1 (B)	50 Z	awc .	51	LSU	-		-/		moərədo	osauteeco_	SWALL	UNDA MIL
ah naggan i	Aup in	t teaupar muraß	,# 100	ask) u	T\tɔəl̞ı	o14			aded by	sults Ne	en eseu	31	ort Recipien	mail/Rep	Customer E
JO Poppell		A AAALIMON MIINOG	-U sies	17-10-0	-1!			•	4 15 7 15 7	14 . 15	a, 1:10			-,	

Login Sample Receipt Checklist

Client: South Carolina Public Service Authority

Job Number: 680-244376-1

Login Number: 244376 List Source: Eurofins Savannah

List Number: 1

Creator: Stewart, Rendaisha

Creator. Stewart, Rendaisha		
Question	Answer	Comment
Radioactivity wasn't checked or is = background as measured by a survey meter.</td <td>N/A</td> <td></td>	N/A	
The cooler's custody seal, if present, is intact.	True	
Sample custody seals, if present, are intact.	True	
The cooler or samples do not appear to have been compromised or tampered with.	True	
Samples were received on ice.	True	
Cooler Temperature is acceptable.	True	
Cooler Temperature is recorded.	True	
COC is present.	True	
COC is filled out in ink and legible.	True	
COC is filled out with all pertinent information.	True	
Is the Field Sampler's name present on COC?	True	
There are no discrepancies between the containers received and the COC.	True	
Samples are received within Holding Time (excluding tests with immediate HTs)	True	
Sample containers have legible labels.	True	
Containers are not broken or leaking.	True	
Sample collection date/times are provided.	True	
Appropriate sample containers are used.	True	
Sample bottles are completely filled.	True	
Sample Preservation Verified.	N/A	
There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs	True	
Containers requiring zero headspace have no headspace or bubble is <6mm (1/4").	N/A	
Multiphasic samples are not present.	True	
Samples do not require splitting or compositing.	True	
Residual Chlorine Checked.	N/A	

6

8

10

Accreditation/Certification Summary

Client: South Carolina Public Service Authority Project/Site: 125915/JM02 09 G011/36500

Job ID: 680-244376-1

Laboratory: Eurofins Savannah

The accreditations/certifications listed below are applicable to this report.

Authority	Program	Identification Number		
South Carolina	State	98001	06-30-24	

3

4

C

8

9

11

12

11

13

ANALYTICAL REPORT

PREPARED FOR

Attn: Linda Williams South Carolina Public Service Authority Santee Cooper PO BOX 2946101

Moncks Corner, South Carolina 29461-2901

Generated 8/25/2023 9:18:19 AM

JOB DESCRIPTION

125915/JM02-08-G01.1/36500

JOB NUMBER

680-237959-2

Eurofins Savannah 5102 LaRoche Avenue Savannah GA 31404

Eurofins Savannah

Job Notes

This report may not be reproduced except in full, and with written approval from the laboratory. The results relate only to the samples tested. For questions please contact the Project Manager at the e-mail address or telephone number listed on this page.

The test results in this report relate only to the samples as received by the laboratory and will meet all requirements of the methodology, with any exceptions noted. This report shall not be reproduced except in full, without the express written approval of the laboratory. All questions should be directed to the Eurofins Environment Testing Southeast, LLC Project Manager.

Authorization

Generated 8/25/2023 9:18:19 AM

Authorized for release by Jerry Lanier, Project Manager I Jerry.Lanier@et.eurofinsus.com (912)250-0281

Client: South Carolina Public Service Authority Project/Site: 125915/JM02-08-G01.1/36500

Laboratory Job ID: 680-237959-2

Table of Contents

Cover Page	1
Table of Contents	3
Case Narrative	4
Sample Summary	5
	6
Definitions	7
Detection Summary	8
Client Sample Results	11
	28
QC Association	30
Chronicle	32
Chain of Custody	36
Receipt Checklists	39
	40

6

Q

9

10

12

13

Case Narrative

Client: South Carolina Public Service Authority Project/Site: 125915/JM02-08-G01.1/36500

Job ID: 680-237959-2

Job ID: 680-237959-2

Laboratory: Eurofins Savannah

Narrative

Job Narrative 680-237959-2

Receipt

The samples were received on 7/20/2023 9:45 AM. Unless otherwise noted below, the samples arrived in good condition, and, where required, properly preserved and on ice. The temperature of the cooler at receipt time was 21.7°C

Metals

No additional analytical or quality issues were noted, other than those described above or in the Definitions/ Glossary page.

3

5

6

7

8

40

11

12

Sample Summary

Client: South Carolina Public Service Authority Project/Site: 125915/JM02-08-G01.1/36500

Job ID: 680-237959-2

Lab Sample ID	Client Sample ID	Matrix	Collected	Received
680-237959-1	AF68738	Water	07/12/23 12:28	07/20/23 09:45
680-237959-2	AF68732	Water	07/12/23 14:32	07/20/23 09:45
680-237959-3	AF68740	Water	07/12/23 11:01	07/20/23 09:45
680-237959-4	AF68743	Water	07/12/23 13:23	07/20/23 09:45
680-237959-5	AF68744	Water	07/12/23 13:28	07/20/23 09:45
680-237959-8	AF68725	Water	07/18/23 11:49	07/20/23 09:45
680-237959-9	AF68742	Water	07/18/23 14:53	07/20/23 09:45
680-237959-10	AF68747	Water	07/17/23 10:08	07/20/23 09:45
80-237959-11	AF68731	Water	07/17/23 11:15	07/20/23 09:45
80-237959-12	AF68723	Water	07/17/23 13:00	07/20/23 09:45
80-237959-13	AF68724	Water	07/17/23 13:05	07/20/23 09:45
80-237959-14	AF68746	Water	07/17/23 14:24	07/20/23 09:45
80-237959-15	AF68726	Water	07/13/23 14:16	07/20/23 09:45
880-237959-16	AF68727	Water	07/13/23 14:21	07/20/23 09:45
680-237959-17	AF68730	Water	07/13/23 10:01	07/20/23 09:45
80-237959-18	AF68729	Water	07/13/23 11:24	07/20/23 09:45
680-237959-19	AF68728	Water	07/13/23 13:32	07/20/23 09:45

Method Summary

Client: South Carolina Public Service Authority Project/Site: 125915/JM02-08-G01.1/36500

Job ID: 680-237959-2

Method	Method Description	Protocol	Laboratory
6010D	Metals (ICP)	SW846	EET SAV
6020B	Metals (ICP/MS)	SW846	EET SAV
3005A	Preparation, Total Recoverable or Dissolved Metals	SW846	EET SAV

Protocol References:

SW846 = "Test Methods For Evaluating Solid Waste, Physical/Chemical Methods", Third Edition, November 1986 And Its Updates.

Laboratory References:

EET SAV = Eurofins Savannah, 5102 LaRoche Avenue, Savannah, GA 31404, TEL (912)354-7858

9

4

5

8

11

12

Definitions/Glossary

Client: South Carolina Public Service Authority

Project/Site: 125915/JM02-08-G01.1/36500

Job ID: 680-237959-2

Qualifiers

NC

ND

NEG

POS

PQL

QC

RL RPD

TEF

TEQ

TNTC

RER

PRES

Not Calculated

Negative / Absent

Positive / Present

Presumptive

Quality Control

Practical Quantitation Limit

Relative Error Ratio (Radiochemistry)

Toxicity Equivalent Factor (Dioxin)

Too Numerous To Count

Toxicity Equivalent Quotient (Dioxin)

Reporting Limit or Requested Limit (Radiochemistry)

Relative Percent Difference, a measure of the relative difference between two points

Not Detected at the reporting limit (or MDL or EDL if shown)

Metals	
Qualifier	Qualifier Description
4	MS, MSD: The analyte present in the original sample is greater than 4 times the matrix spike concentration; therefore, control limits are not
	applicable.
U	Indicates the analyte was analyzed for but not detected.

Glossary	
Abbreviation	These commonly used abbreviations may or may not be present in this report.
¤	Listed under the "D" column to designate that the result is reported on a dry weight basis
%R	Percent Recovery
CFL	Contains Free Liquid
CFU	Colony Forming Unit
CNF	Contains No Free Liquid
DER	Duplicate Error Ratio (normalized absolute difference)
Dil Fac	Dilution Factor
DL	Detection Limit (DoD/DOE)
DL, RA, RE, IN	Indicates a Dilution, Re-analysis, Re-extraction, or additional Initial metals/anion analysis of the sample
DLC	Decision Level Concentration (Radiochemistry)
EDL	Estimated Detection Limit (Dioxin)
LOD	Limit of Detection (DoD/DOE)
LOQ	Limit of Quantitation (DoD/DOE)
MCL	EPA recommended "Maximum Contaminant Level"
MDA	Minimum Detectable Activity (Radiochemistry)
MDC	Minimum Detectable Concentration (Radiochemistry)
MDL	Method Detection Limit
ML	Minimum Level (Dioxin)
MPN	Most Probable Number
MQL	Method Quantitation Limit

Eurofins Savannah

Job ID: 680-237959-2

Client: South Carolina Public Service Authority Project/Site: 125915/JM02-08-G01.1/36500

Client Sample ID: AF68738						Lal	b S	sample ID:	680-237959-
Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type
Calcium	97000		500		ug/L	1	_	6010D	Total
									Recoverable
Arsenic	5.72		3.00		ug/L	1		6020B	Total
									Recoverable
Barium	79.2		5.00		ug/L	1		6020B	Total
Chromium	29.6		5.00		ua/l	1		6020B	Recoverable Total
Cilionium	29.0		5.00		ug/L	'		00200	Recoverable
Cobalt	2.31		0.500		ug/L	1		6020B	Total
					0				Recoverable
Lead	11.0		2.50		ug/L	1		6020B	Total
_									Recoverable
Client Sample ID: AF68732						Lal	b S	ample ID:	680-237959-
Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type
Calcium	220000		500		ug/L		_	6010D	Total
					-9	•			Recoverable
Barium	94.3		5.00		ug/L	1		6020B	Total
_									Recoverable
Client Sample ID: AF68740						Lal	b S	ample ID:	680-237959-
 Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type
Calcium	348000		500		ug/L	1	_	6010D	Total
					_				Recoverable
Arsenic	443		3.00		ug/L	1		6020B	Total
									Recoverable
Barium	186		5.00		ug/L	1		6020B	Total
_									Recoverable
Client Sample ID: AF68743						La	b S	Sample ID:	680-237959
Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type
Calcium	19200		500		ug/L	1		6010D	Total
									Recoverable
Barium	35.1		5.00		ug/L	1		6020B	Total
_									Recoverable
Client Sample ID: AF68744						Lal	b S	Sample ID:	680-237959-
Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type
Calcium	20300		500		ug/L	1	_	6010D	Total
									Recoverable
Barium	36.9		5.00		ug/L	1		6020B	Total
_									Recoverable
Client Sample ID: AF68725						Lal	b S	ample ID:	680-237959-
Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type
Calcium	400000		500		ug/L	1	_	6010D	Total
									Recoverable
Barium	270		5.00		ug/L	1		6020B	Total
									Recoverable

This Detection Summary does not include radiochemical test results.

Cobalt

0.500

Eurofins Savannah

8/25/2023

Recoverable

Total Recoverable

6020B

0.500

ug/L

Client: South Carolina Public Service Authority
Project/Site: 125915/JM02-08-G01.1/36500

Client Sample ID: AF68742

Job ID: 680-237959-2

Lab Sample ID: 680-237959-9

3

4

5

7

9

11

13

Н

Prep Type Total Recoverable Total Recoverable 580-237959-10 Prep Type Total Recoverable Total Recoverable Total Recoverable Total Recoverable Recoverable
Recoverable Total Recoverable 680-237959-10 Prep Type Total Recoverable Total Recoverable Total Recoverable Total
Total Recoverable 680-237959-10 Prep Type Total Recoverable Total Recoverable Total Recoverable Total
Recoverable 680-237959-10 Prep Type Total Recoverable Total Recoverable Total Total
Prep Type Total Recoverable Total Recoverable Total Recoverable Total
Prep Type Total Recoverable Total Recoverable Total
Total Recoverable Total Recoverable Total
Total Recoverable Total Recoverable Total
Recoverable Total Recoverable Total
Recoverable Total
Total
Recoverable
680-237959-11
Prep Type
Total
Recoverable
Total
Recoverable
880-237959-12
Prep Type
Total
Recoverable
Total
Recoverable
Total
Recoverable
880-237959-13
Prep Type
Total
Recoverable
Total
Recoverable
Total
Recoverable
880-237959-14
Prep Type
Total
Recoverable
Total
Recoverable
Total
iotai
Recoverable

This Detection Summary does not include radiochemical test results.

Eurofins Savannah

Recoverable

Detection Summary

Client: South Carolina Public Service Authority Project/Site: 125915/JM02-08-G01.1/36500

Job ID: 680-237959-2

4

6

8

10

12

13

Client Sample ID: AF68726	Lab Sample ID: 680-237959-1

Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type
Calcium	1160000		5000		ug/L	10		6010D	Total
									Recoverable
Arsenic	22.3		3.00		ug/L	1		6020B	Total
									Recoverable
Barium	49.8		5.00		ug/L	1		6020B	Total
									Recoverable

Client Sample ID: AF68727 Lab Sample ID: 680-237959-16

Analyte	Result	Qualifier I	L MDL	. Unit	Dil Fac	D	Method	Prep Type
Calcium	1230000	50	00	ug/L	10		6010D	Total
								Recoverable
Arsenic	18.2	3.	00	ug/L	1		6020B	Total
								Recoverable
Barium	46.7	5.	00	ug/L	1		6020B	Total
								Recoverable

Client Sample ID: AF68730 Lab Sample ID: 680-237959-17

Analyte	Result (Qualifier R	L MDL	Unit	Dil Fac	D	Method	Prep Type
Calcium	165000	50	0	ug/L	1		6010D	Total
								Recoverable
Barium	85.4	5.0	0	ug/L	1		6020B	Total
								Recoverable
Cobalt	0.735	0.50	0	ug/L	1		6020B	Total
								Recoverable

Client Sample ID: AF68729 Lab Sample ID: 680-237959-18

Analyte Calcium	Result 688000	Qualifier I	MDL	Unit ug/L	Dil Fac	_	Method 6010D	Prep Type Total
Arsenic	7.80	3.	0	ug/L	1		6020B	Recoverable Total Recoverable
Barium	133	5.	0	ug/L	1		6020B	Total Recoverable

Client Sample ID: AF68728 Lab Sample ID: 680-237959-19

Analyte	Result	Qualifier RL	MDL Unit	Dil Fac	D	Method	Prep Type
Calcium	832000	5000	ug/L	10		6010D	Total
							Recoverable
Arsenic	6.75	3.00	ug/L	1		6020B	Total
							Recoverable
Barium	82.3	5.00	ug/L	1		6020B	Total
							Recoverable

Client: South Carolina Public Service Authority Project/Site: 125915/JM02-08-G01.1/36500

Job ID: 680-237959-2

Lab Sample ID: 680-237959-1

Matrix: Water

Client Sample ID: AF68738 Date Collected: 07/12/23 12:28

Date Received: 07/20/23 09:45

Method: SW846 6010D - Metals (Id	CP) - Total Re	coverable							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Calcium	97000		500		ug/L		08/24/23 05:25	08/24/23 10:28	1
Selenium	20.0	U	20.0		ug/L		08/24/23 05:25	08/24/23 10:28	1

Method: SW846 6020B - N	letals (ICP/MS) - Total	Recoverable	е						
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Antimony	5.00	U	5.00		ug/L		08/24/23 05:25	08/24/23 11:15	1
Arsenic	5.72		3.00		ug/L		08/24/23 05:25	08/24/23 11:15	1
Barium	79.2		5.00		ug/L		08/24/23 05:25	08/24/23 11:15	1
Beryllium	0.500	U	0.500		ug/L		08/24/23 05:25	08/24/23 11:15	1
Cadmium	0.500	U	0.500		ug/L		08/24/23 05:25	08/24/23 11:15	1
Chromium	29.6		5.00		ug/L		08/24/23 05:25	08/24/23 11:15	1
Cobalt	2.31		0.500		ug/L		08/24/23 05:25	08/24/23 11:15	1
Lead	11.0		2.50		ug/L		08/24/23 05:25	08/24/23 11:15	1
Thallium	1.00	U	1.00		ug/L		08/24/23 05:25	08/24/23 11:15	1

Client: South Carolina Public Service Authority Project/Site: 125915/JM02-08-G01.1/36500

Lab Sample ID: 680-237959-2

Job ID: 680-237959-2

Matrix: Water

Client Sample ID: AF68732 Date Collected: 07/12/23 14:32

Date Received: 07/20/23 09:45

Method: SW846 6010D -	Metals (ICP) - Total Re	coverable							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Calcium	220000		500		ug/L		08/24/23 05:25	08/24/23 10:21	1
Selenium	20.0	U	20.0		ug/L		08/24/23 05:25	08/24/23 10:21	1

Method: SW846 6020B - Analyte	,	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Antimony	5.00		5.00		ug/L	<u>-</u>	08/24/23 05:25	08/24/23 11:02	1
Arsenic	3.00	U	3.00		ug/L		08/24/23 05:25	08/24/23 11:02	1
Barium	94.3		5.00		ug/L		08/24/23 05:25	08/24/23 11:02	1
Beryllium	0.500	U	0.500		ug/L		08/24/23 05:25	08/24/23 11:02	1
Cadmium	0.500	U	0.500		ug/L		08/24/23 05:25	08/24/23 11:02	1
Chromium	5.00	U	5.00		ug/L		08/24/23 05:25	08/24/23 11:02	1
Cobalt	0.500	U	0.500		ug/L		08/24/23 05:25	08/24/23 11:02	1
Lead	2.50	U	2.50		ug/L		08/24/23 05:25	08/24/23 11:02	1
Thallium	1.00	U	1.00		ua/L		08/24/23 05:25	08/24/23 11:02	1

2

4

6

8

9

10

10

13

Client: South Carolina Public Service Authority Project/Site: 125915/JM02-08-G01.1/36500

Job ID: 680-237959-2

Lab Sample ID: 680-237959-3

Matrix: Water

Client Sample ID: AF68740

Date Collected: 07/12/23 11:01 Date Received: 07/20/23 09:45

Method: SW846 6010D - Meta	als (ICP) - Total Red	coverable							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Calcium	348000		500		ug/L		08/24/23 05:25	08/24/23 10:30	1
Selenium	20.0	U	20.0		ug/L		08/24/23 05:25	08/24/23 10:30	1

Method: SW846 6020B -	Metals (ICP/MS) - Total	Recoverable	е						
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Antimony	5.00	U	5.00		ug/L		08/24/23 05:25	08/24/23 11:19	1
Arsenic	443		3.00		ug/L		08/24/23 05:25	08/24/23 11:19	1
Barium	186		5.00		ug/L		08/24/23 05:25	08/24/23 11:19	1
Beryllium	0.500	U	0.500		ug/L		08/24/23 05:25	08/24/23 11:19	1
Cadmium	0.500	U	0.500		ug/L		08/24/23 05:25	08/24/23 11:19	1
Chromium	5.00	U	5.00		ug/L		08/24/23 05:25	08/24/23 11:19	1
Cobalt	0.500	U	0.500		ug/L		08/24/23 05:25	08/24/23 11:19	1
Lead	2.50	U	2.50		ug/L		08/24/23 05:25	08/24/23 11:19	1
Thallium	1.00	U	1.00		ug/L		08/24/23 05:25	08/24/23 11:19	1

Client: South Carolina Public Service Authority Project/Site: 125915/JM02-08-G01.1/36500

Lab Sample ID: 680-237959-4

Matrix: Water

Job ID: 680-237959-2

Client Sample ID: AF68743
Date Collected: 07/12/23 13:23

Date Received: 07/20/23 09:45

Method: SW846 6010D - Metals (ICP) - Total Recoverable RL Dil Fac Result Qualifier MDL Unit Prepared Analyzed 19200 500 ug/L 08/24/23 05:25 08/24/23 10:33 Calcium 20.0 20.0 U 08/24/23 05:25 08/24/23 10:33 Selenium ug/L

Method: SW846 6020B - Met	als (ICP/MS) - Total	Recoverabl	е						
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Antimony	5.00	U	5.00		ug/L		08/24/23 05:25	08/24/23 11:23	1
Arsenic	3.00	U	3.00		ug/L		08/24/23 05:25	08/24/23 11:23	1
Barium	35.1		5.00		ug/L		08/24/23 05:25	08/24/23 11:23	1
Beryllium	0.500	U	0.500		ug/L		08/24/23 05:25	08/24/23 11:23	1
Cadmium	0.500	U	0.500		ug/L		08/24/23 05:25	08/24/23 11:23	1
Chromium	5.00	U	5.00		ug/L		08/24/23 05:25	08/24/23 11:23	1
Cobalt	0.500	U	0.500		ug/L		08/24/23 05:25	08/24/23 11:23	1
Lead	2.50	U	2.50		ug/L		08/24/23 05:25	08/24/23 11:23	1
Thallium	1.00	U	1.00		ug/L		08/24/23 05:25	08/24/23 11:23	1

5

7

8

9

11

Client: South Carolina Public Service Authority Project/Site: 125915/JM02-08-G01.1/36500

Client Sample ID: AF68744 Lab Sample ID: 680-237959-5

Matrix: Water

Job ID: 680-237959-2

Date Collected: 07/12/23 13:28 Date Received: 07/20/23 09:45

Method: SW846 6010	D - Metals (ICP) - Total Red	coverable							
Analyte	Result	Qualifier	RL	MDL U	nit	D	Prepared	Analyzed	Dil Fac
Calcium	20300		500	ug	g/L		08/24/23 05:25	08/24/23 10:35	1
Selenium	20.0	U	20.0	ug	g/L		08/24/23 05:25	08/24/23 10:35	1

Method: SW846 6020B - Metals (ICP/MS) - Total Recoverable										
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac	
Antimony	5.00	U	5.00		ug/L		08/24/23 05:25	08/24/23 11:27	1	
Arsenic	3.00	U	3.00		ug/L		08/24/23 05:25	08/24/23 11:27	1	
Barium	36.9		5.00		ug/L		08/24/23 05:25	08/24/23 11:27	1	
Beryllium	0.500	U	0.500		ug/L		08/24/23 05:25	08/24/23 11:27	1	
Cadmium	0.500	U	0.500		ug/L		08/24/23 05:25	08/24/23 11:27	1	
Chromium	5.00	U	5.00		ug/L		08/24/23 05:25	08/24/23 11:27	1	
Cobalt	0.500	U	0.500		ug/L		08/24/23 05:25	08/24/23 11:27	1	
Lead	2.50	U	2.50		ug/L		08/24/23 05:25	08/24/23 11:27	1	
Thallium	1.00	U	1.00		ug/L		08/24/23 05:25	08/24/23 11:27	1	

3

_ _

6

8

46

11

12

Client: South Carolina Public Service Authority Project/Site: 125915/JM02-08-G01.1/36500

Job ID: 680-237959-2

Lab Sample ID: 680-237959-8

Matrix: Water

Client Sample ID: AF68725 Date Collected: 07/18/23 11:49

Date Received: 07/20/23 09:45

Method: SW846 6010D - Metals (ICP) - Total Recoverable									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Calcium	400000		500		ug/L		08/24/23 05:25	08/24/23 10:47	1
Selenium	20.0	U	20.0		ug/L		08/24/23 05:25	08/24/23 10:47	1

Method: SW846 6020B - Metals (ICP/MS) - Total Recoverable									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Antimony	5.00	U	5.00		ug/L		08/24/23 05:25	08/24/23 11:47	1
Arsenic	3.00	U	3.00		ug/L		08/24/23 05:25	08/24/23 11:47	1
Barium	270		5.00		ug/L		08/24/23 05:25	08/24/23 11:47	1
Beryllium	0.500	U	0.500		ug/L		08/24/23 05:25	08/24/23 11:47	1
Cadmium	0.500	U	0.500		ug/L		08/24/23 05:25	08/24/23 11:47	1
Chromium	5.00	U	5.00		ug/L		08/24/23 05:25	08/24/23 11:47	1
Cobalt	0.500		0.500		ug/L		08/24/23 05:25	08/24/23 11:47	1
Lead	2.50	U	2.50		ug/L		08/24/23 05:25	08/24/23 11:47	1
Thallium	1.00	U	1.00		ug/L		08/24/23 05:25	08/24/23 11:47	1

9

5

7

8

9

10

12

13

14

8/25/2023

Client: South Carolina Public Service Authority

Project/Site: 125915/JM02-08-G01.1/36500

Client Sample ID: AF68742 Lab Sample ID: 680-237959-9

Date Collected: 07/18/23 14:53

Matrix: Water

Date Received: 07/20/23 09:45

Method: SW846 6010D - Metals (ICP) - Total Recoverable										
	Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
	Calcium	61400		500		ug/L		08/24/23 05:25	08/24/23 10:49	1
	Selenium	20.0	U	20.0		ug/L		08/24/23 05:25	08/24/23 10:49	1

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Antimony	5.00	U	5.00		ug/L		08/24/23 05:25	08/24/23 11:51	1
Arsenic	3.00	U	3.00		ug/L		08/24/23 05:25	08/24/23 11:51	1
Barium	8.14		5.00		ug/L		08/24/23 05:25	08/24/23 11:51	1
Beryllium	0.500	U	0.500		ug/L		08/24/23 05:25	08/24/23 11:51	1
Cadmium	0.500	U	0.500		ug/L		08/24/23 05:25	08/24/23 11:51	1
Chromium	5.00	U	5.00		ug/L		08/24/23 05:25	08/24/23 11:51	1
Cobalt	0.500	U	0.500		ug/L		08/24/23 05:25	08/24/23 11:51	1
Lead	2.50	U	2.50		ug/L		08/24/23 05:25	08/24/23 11:51	1
Thallium	1.00	U	1.00		ug/L		08/24/23 05:25	08/24/23 11:51	1

Job ID: 680-237959-2

3

4

5

7

Ö

46

11

12

Client: South Carolina Public Service Authority Project/Site: 125915/JM02-08-G01.1/36500

Job ID: 680-237959-2

Client Sample ID: AF68747 Lab Sample ID: 680-237959-10 Date Collected: 07/17/23 10:08

Matrix: Water

Date Received: 07/20/23 09:45

Method: SW846 6010D - N	Metals (ICP) - Total Re	coverable							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Calcium	519000		500		ug/L		08/24/23 05:25	08/24/23 10:51	1
Selenium	20.0	U	20.0		ug/L		08/24/23 05:25	08/24/23 10:51	1

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Antimony	5.00	U	5.00		ug/L		08/24/23 05:25	08/24/23 11:55	1
Arsenic	3.00	U	3.00		ug/L		08/24/23 05:25	08/24/23 11:55	1
Barium	36.3		5.00		ug/L		08/24/23 05:25	08/24/23 11:55	1
Beryllium	0.500	U	0.500		ug/L		08/24/23 05:25	08/24/23 11:55	1
Cadmium	0.500	U	0.500		ug/L		08/24/23 05:25	08/24/23 11:55	1
Chromium	5.00	U	5.00		ug/L		08/24/23 05:25	08/24/23 11:55	1
Cobalt	4.31		0.500		ug/L		08/24/23 05:25	08/24/23 11:55	1
Lead	2.50	U	2.50		ug/L		08/24/23 05:25	08/24/23 11:55	1
Thallium	1.00	U	1.00		ug/L		08/24/23 05:25	08/24/23 11:55	1

Client: South Carolina Public Service Authority Project/Site: 125915/JM02-08-G01.1/36500

Lab Sample ID: 680-237959-11

Matrix: Water

Job ID: 680-237959-2

Client Sample ID: AF68731 Date Collected: 07/17/23 11:15

Date Received: 07/20/23 09:45

Method: SW846 6010D - Metals (ICP) - Total Recoverable										
Analyte	Result Qualifier	RL	MDL Unit	D	Prepared	Analyzed	Dil Fac			
Calcium	176000	500	ug/L		08/24/23 05:25	08/24/23 10:54	1			
Selenium	20.0 U	20.0	ug/L		08/24/23 05:25	08/24/23 10:54	1			

Method: SW846 6020B - Me	,								
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Antimony	5.00	U	5.00		ug/L		08/24/23 05:25	08/24/23 11:59	1
Arsenic	3.00	U	3.00		ug/L		08/24/23 05:25	08/24/23 11:59	1
Barium	153		5.00		ug/L		08/24/23 05:25	08/24/23 11:59	1
Beryllium	0.500	U	0.500		ug/L		08/24/23 05:25	08/24/23 11:59	1
Cadmium	0.500	U	0.500		ug/L		08/24/23 05:25	08/24/23 11:59	1
Chromium	5.00	U	5.00		ug/L		08/24/23 05:25	08/24/23 11:59	1
Cobalt	0.500	U	0.500		ug/L		08/24/23 05:25	08/24/23 11:59	1
Lead	2.50	U	2.50		ug/L		08/24/23 05:25	08/24/23 11:59	1
Thallium	1.00	U	1.00		ug/L		08/24/23 05:25	08/24/23 11:59	1

8/25/2023

2

1

5

7

ð

10

11

13

Client: South Carolina Public Service Authority Project/Site: 125915/JM02-08-G01.1/36500

Lab Sample ID: 680-237959-12

Matrix: Water

Job ID: 680-237959-2

Client Sample ID: AF68723

Date Collected: 07/17/23 13:00 Date Received: 07/20/23 09:45

Method: SW846 6010D - Metals (ICP) - Total Recoverable Dil Fac Result Qualifier RLMDL Unit Prepared Analyzed 500 ug/L 08/24/23 05:25 08/24/23 10:56 Calcium 139000 20.0 20.0 U 08/24/23 05:25 08/24/23 10:56 Selenium ug/L

Method: SW846 6020B -	Metals (ICP/MS) - Total	Recoverable	е						
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Antimony	5.00	U	5.00		ug/L		08/24/23 05:25	08/24/23 12:03	1
Arsenic	3.00	U	3.00		ug/L		08/24/23 05:25	08/24/23 12:03	1
Barium	21.6		5.00		ug/L		08/24/23 05:25	08/24/23 12:03	1
Beryllium	0.500	U	0.500		ug/L		08/24/23 05:25	08/24/23 12:03	1
Cadmium	0.500	U	0.500		ug/L		08/24/23 05:25	08/24/23 12:03	1
Chromium	5.00	U	5.00		ug/L		08/24/23 05:25	08/24/23 12:03	1
Cobalt	0.925		0.500		ug/L		08/24/23 05:25	08/24/23 12:03	1
Lead	2.50	U	2.50		ug/L		08/24/23 05:25	08/24/23 12:03	1
Thallium	1.00	U	1.00		ug/L		08/24/23 05:25	08/24/23 12:03	1

2

5

7

8

3

11

Client: South Carolina Public Service Authority Project/Site: 125915/JM02-08-G01.1/36500

Job ID: 680-237959-2

Lab Sample ID: 680-237959-13

Matrix: Water

Client Sample ID: AF68724 Date Collected: 07/17/23 13:05

Date Received: 07/20/23 09:45

Method: SW846 6010D - Metals	(ICP) - Total Red	coverable							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Calcium	139000		500		ug/L		08/24/23 05:25	08/24/23 10:58	1
Selenium	20.0	U	20.0		ug/L		08/24/23 05:25	08/24/23 10:58	1

Method: SW846 6020B -	Metals (ICP/MS) - Total	Recoverable	е						
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Antimony	5.00	U	5.00		ug/L		08/24/23 05:25	08/24/23 12:07	1
Arsenic	3.00	U	3.00		ug/L		08/24/23 05:25	08/24/23 12:07	1
Barium	22.9		5.00		ug/L		08/24/23 05:25	08/24/23 12:07	1
Beryllium	0.500	U	0.500		ug/L		08/24/23 05:25	08/24/23 12:07	1
Cadmium	0.500	U	0.500		ug/L		08/24/23 05:25	08/24/23 12:07	1
Chromium	5.00	U	5.00		ug/L		08/24/23 05:25	08/24/23 12:07	1
Cobalt	0.975		0.500		ug/L		08/24/23 05:25	08/24/23 12:07	1
Lead	2.50	U	2.50		ug/L		08/24/23 05:25	08/24/23 12:07	1
Thallium	1.00	U	1.00		ug/L		08/24/23 05:25	08/24/23 12:07	1

2

3

6

8

9

10

12

Client: South Carolina Public Service Authority Project/Site: 125915/JM02-08-G01.1/36500

Job ID: 680-237959-2

Lab Sample ID: 680-237959-14 **Client Sample ID: AF68746** Date Collected: 07/17/23 14:24

Matrix: Water

Date Received: 07/20/23 09:45

Method: SW846 6010D - Metals (ICP) - Total Recoverable											
Analyte	Result Qualifier	RL	MDL Unit	D	Prepared	Analyzed	Dil Fac				
Calcium	97500	500	ug/L		08/24/23 05:25	08/24/23 11:01	1				
Selenium	20.0 U	20.0	ug/L		08/24/23 05:25	08/24/23 11:01	1				

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Antimony	5.00	U	5.00		ug/L		08/24/23 05:25	08/24/23 12:11	1
Arsenic	3.00	U	3.00		ug/L		08/24/23 05:25	08/24/23 12:11	1
Barium	191		5.00		ug/L		08/24/23 05:25	08/24/23 12:11	1
Beryllium	0.695		0.500		ug/L		08/24/23 05:25	08/24/23 12:11	1
Cadmium	0.500	U	0.500		ug/L		08/24/23 05:25	08/24/23 12:11	1
Chromium	5.00	U	5.00		ug/L		08/24/23 05:25	08/24/23 12:11	1
Cobalt	18.8		0.500		ug/L		08/24/23 05:25	08/24/23 12:11	1
Lead	2.50	U	2.50		ug/L		08/24/23 05:25	08/24/23 12:11	1
Thallium	1.00	U	1.00		ug/L		08/24/23 05:25	08/24/23 12:11	1

Client: South Carolina Public Service Authority Project/Site: 125915/JM02-08-G01.1/36500

Job ID: 680-237959-2

Lab Sample ID: 680-237959-15

Matrix: Water

Client Sample ID: AF68726

Date Collected: 07/13/23 14:16 Date Received: 07/20/23 09:45

Method: SW846 6010D - Metals (ICP) - Total Recoverable											
	Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac	
	Calcium	1160000		5000		ug/L		08/24/23 05:25	08/25/23 09:25	10	
	Selenium	20.0	U	20.0		ug/L		08/24/23 05:25	08/24/23 11:03	1	

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Antimony	5.00	U	5.00		ug/L		08/24/23 05:25	08/24/23 12:15	1
Arsenic	22.3		3.00		ug/L		08/24/23 05:25	08/24/23 12:15	1
Barium	49.8		5.00		ug/L		08/24/23 05:25	08/24/23 12:15	1
Beryllium	0.500	U	0.500		ug/L		08/24/23 05:25	08/24/23 12:15	1
Cadmium	0.500	U	0.500		ug/L		08/24/23 05:25	08/24/23 12:15	1
Chromium	5.00	U	5.00		ug/L		08/24/23 05:25	08/24/23 12:15	1
Cobalt	0.500	U	0.500		ug/L		08/24/23 05:25	08/24/23 12:15	1
Lead	2.50	U	2.50		ug/L		08/24/23 05:25	08/24/23 12:15	1
Thallium	1.00	U	1.00		ug/L		08/24/23 05:25	08/24/23 12:15	1

4

5

7

8

10

11

13

Client: South Carolina Public Service Authority Project/Site: 125915/JM02-08-G01.1/36500

Job ID: 680-237959-2

Client Sample ID: AF68727

Date Received: 07/20/23 09:45

Lab Sample ID: 680-237959-16 Date Collected: 07/13/23 14:21

Matrix: Water

Method: SW846 6010D - M	etals (ICP) - Total Recovera	able					
Analyte	Result Qualifi	er RL	MDL Un	it D	Prepared	Analyzed	Dil Fac
Calcium	1230000	5000	ug/	L	08/24/23 05:25	08/25/23 09:27	10
Selenium	20.0 U	20.0	ug/	L	08/24/23 05:25	08/24/23 11:05	1

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Antimony	5.00	U	5.00		ug/L		08/24/23 05:25	08/24/23 12:19	1
Arsenic	18.2		3.00		ug/L		08/24/23 05:25	08/24/23 12:19	1
Barium	46.7		5.00		ug/L		08/24/23 05:25	08/24/23 12:19	1
Beryllium	0.500	U	0.500		ug/L		08/24/23 05:25	08/24/23 12:19	1
Cadmium	0.500	U	0.500		ug/L		08/24/23 05:25	08/24/23 12:19	1
Chromium	5.00	U	5.00		ug/L		08/24/23 05:25	08/24/23 12:19	1
Cobalt	0.500	U	0.500		ug/L		08/24/23 05:25	08/24/23 12:19	1
Lead	2.50	U	2.50		ug/L		08/24/23 05:25	08/24/23 12:19	1
Thallium	1.00	U	1.00		ug/L		08/24/23 05:25	08/24/23 12:19	1

Client: South Carolina Public Service Authority Project/Site: 125915/JM02-08-G01.1/36500

Job ID: 680-237959-2

Lab Sample ID: 680-237959-17

Matrix: Water

Client Sample ID: AF68730

Date Collected: 07/13/23 10:01 Date Received: 07/20/23 09:45

Method: SW846 6010D - Met	als (ICP) - Total Recov	erable						
Analyte	Result Qu	alifier RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Calcium	165000	500		ug/L		08/24/23 05:25	08/24/23 11:12	1
Selenium	20.0 U	20.0		ug/L		08/24/23 05:25	08/24/23 11:12	1

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Antimony	5.00	U	5.00		ug/L		08/24/23 05:25	08/24/23 12:31	1
Arsenic	3.00	U	3.00		ug/L		08/24/23 05:25	08/24/23 12:31	1
Barium	85.4		5.00		ug/L		08/24/23 05:25	08/24/23 12:31	1
Beryllium	0.500	U	0.500		ug/L		08/24/23 05:25	08/24/23 12:31	1
Cadmium	0.500	U	0.500		ug/L		08/24/23 05:25	08/24/23 12:31	1
Chromium	5.00	U	5.00		ug/L		08/24/23 05:25	08/24/23 12:31	1
Cobalt	0.735		0.500		ug/L		08/24/23 05:25	08/24/23 12:31	1
Lead	2.50	U	2.50		ug/L		08/24/23 05:25	08/24/23 12:31	1
Thallium	1.00	U	1.00		ug/L		08/24/23 05:25	08/24/23 12:31	1

3

4

6

8

9

10

11

13

Client: South Carolina Public Service Authority Project/Site: 125915/JM02-08-G01.1/36500

Lab Sample ID: 680-237959-18

Matrix: Water

Job ID: 680-237959-2

Client Sample ID: AF68729 Date Collected: 07/13/23 11:24

Date Received: 07/20/23 09:45

Method: SW846 6010D - Analyte	. ,	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Calcium	688000		500		ug/L		08/24/23 05:25	08/24/23 11:15	1
Selenium	20.0	U	20.0		ug/L		08/24/23 05:25	08/24/23 11:15	1
Method: SW846 6020B -	,	Recoverable Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac

Method: SW846 6020B - Analyte	,	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Antimony	5.00	U	5.00		ug/L		08/24/23 05:25	08/24/23 12:36	1
Arsenic	7.80		3.00		ug/L		08/24/23 05:25	08/24/23 12:36	1
Barium	133		5.00		ug/L		08/24/23 05:25	08/24/23 12:36	1
Beryllium	0.500	U	0.500		ug/L		08/24/23 05:25	08/24/23 12:36	1
Cadmium	0.500	U	0.500		ug/L		08/24/23 05:25	08/24/23 12:36	1
Chromium	5.00	U	5.00		ug/L		08/24/23 05:25	08/24/23 12:36	1
Cobalt	0.500	U	0.500		ug/L		08/24/23 05:25	08/24/23 12:36	1
Lead	2.50	U	2.50		ug/L		08/24/23 05:25	08/24/23 12:36	1
Thallium	1.00	U	1.00		ug/L		08/24/23 05:25	08/24/23 12:36	1

Client: South Carolina Public Service Authority Project/Site: 125915/JM02-08-G01.1/36500

08/24/23 12:40

08/24/23 12:40

08/24/23 12:40

Job ID: 680-237959-2

Lab Sample ID: 680-237959-19

08/24/23 05:25

08/24/23 05:25

08/24/23 05:25

Matrix: Water

Client Sample ID: AF68728 Date Collected: 07/13/23 13:32

Date Received: 07/20/23 09:45

Cobalt

Lead Thallium

Method: SW846 6010D - N	letals (ICP) - Total Re	coverable							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Calcium	832000		5000		ug/L		08/24/23 05:25	08/25/23 09:30	10
Selenium	20.0	U	20.0		ug/L		08/24/23 05:25	08/24/23 11:17	1
- Method: SW846 6020B - N	/letals (ICP/MS) - Total	l Recoverable	е						
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Antimony	5.00	U	5.00		ug/L		08/24/23 05:25	08/24/23 12:40	1
Arsenic	6.75		3.00		ug/L		08/24/23 05:25	08/24/23 12:40	1
Barium	82.3		5.00		ug/L		08/24/23 05:25	08/24/23 12:40	1
Beryllium	0.500	U	0.500		ug/L		08/24/23 05:25	08/24/23 12:40	1
Cadmium	0.500	U	0.500		ug/L		08/24/23 05:25	08/24/23 12:40	1
Chromium	5.00	U	5.00		ug/L		08/24/23 05:25	08/24/23 12:40	1

0.500

2.50

1.00

ug/L

ug/L

ug/L

0.500 U

2.50 U

1.00 U

2

3

5

6

8

9

10

19

13

Client: South Carolina Public Service Authority Project/Site: 125915/JM02-08-G01.1/36500

Job ID: 680-237959-2

Method: 6010D - Metals (ICP)

Lab Sample ID: MB 680-794834/1-A

Matrix: Water

Analysis Batch: 795099

Lab Sample ID: LCS 680-794834/2-A

Matrix: Water

Selenium

Selenium

Client Sample ID: Method Blank **Prep Type: Total Recoverable**

Prep Batch: 794834

Analyte Result Qualifier RL MDL Unit D Prepared Analyzed Dil Fac Calcium 500 U 500 ug/L 08/24/23 05:25 08/24/23 10:16 Selenium 20.0 U 20.0 ug/L 08/24/23 05:25 08/24/23 10:16

MB MB

20.0 U

Client Sample ID: Lab Control Sample **Prep Type: Total Recoverable**

80 _ 120

75 _ 125

94

97

Analysis Batch: 795099 Prep Batch: 794834 Spike LCS LCS %Rec Analyte Added Result Qualifier Unit %Rec Limits Calcium 5000 4816 96 80 - 120 ug/L

Lab Sample ID: 680-237959-2 MS Client Sample ID: AF68732 **Matrix: Water Prep Type: Total Recoverable** Analysis Batch: 795099 **Prep Batch: 794834**

93.62

96.81

ug/L

ug/L

MS MS Sample Sample Spike %Rec **Analyte** Result Qualifier Added Result Qualifier Unit D %Rec Limits Calcium 220000 5000 215400 4 ug/L -88 75 - 125

100

100

Lab Sample ID: 680-237959-2 MSD Client Sample ID: AF68732 Matrix: Water **Prep Type: Total Recoverable** Analysis Batch: 795099 Prep Batch: 794834

Sample Sample Spike MSD MSD Result Qualifier Added Limits RPD Limit Analyte Result Qualifier %Rec Unit Calcium 220000 5000 215500 4 ug/L -86 75 - 125 0 20 Selenium 20.0 U 100 95.16 95 75 _ 125 2 20 ug/L

Method: 6020B - Metals (ICP/MS)

Lab Sample ID: MB 680-794835/1-A Client Sample ID: Method Blank **Matrix: Water Prep Type: Total Recoverable** Analysis Batch: 795151 Prep Batch: 794835

	MB	MB							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Antimony	5.00	U	5.00		ug/L		08/24/23 05:25	08/24/23 10:54	1
Arsenic	3.00	U	3.00		ug/L		08/24/23 05:25	08/24/23 10:54	1
Barium	5.00	U	5.00		ug/L		08/24/23 05:25	08/24/23 10:54	1
Beryllium	0.500	U	0.500		ug/L		08/24/23 05:25	08/24/23 10:54	1
Cadmium	0.500	U	0.500		ug/L		08/24/23 05:25	08/24/23 10:54	1
Chromium	5.00	U	5.00		ug/L		08/24/23 05:25	08/24/23 10:54	1
Cobalt	0.500	U	0.500		ug/L		08/24/23 05:25	08/24/23 10:54	1
Lead	2.50	U	2.50		ug/L		08/24/23 05:25	08/24/23 10:54	1
Thallium	1.00	U	1.00		ug/L		08/24/23 05:25	08/24/23 10:54	1

Lab Sample ID: LCS 680-794835/2-A Client Sample ID: Lab Control Sample

Matrix: Water Prep Type: Total Recoverable Analysis Batch: 795151 Prep Batch: 794835

LCS LCS %Rec Spike Analyte Added Result Qualifier Unit %Rec Limits 50.0 Antimony 49.39 ug/L 99 80 _ 120

Eurofins Savannah

QC Sample Results

Client: South Carolina Public Service Authority Project/Site: 125915/JM02-08-G01.1/36500

Job ID: 680-237959-2

Method: 6020B - Metals (ICP/MS) (Continued)

Client Sample ID: Lab Control Sample Lab Sample ID: LCS 680-794835/2-A **Matrix: Water Prep Type: Total Recoverable** Analysis Batch: 795151 **Prep Batch: 794835**

	Spike	LCS	LCS				%Rec	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Arsenic	100	105.6		ug/L		106	80 _ 120	
Barium	100	100.0		ug/L		100	80 _ 120	
Beryllium	50.0	50.74		ug/L		101	80 _ 120	
Cadmium	50.0	48.95		ug/L		98	80 _ 120	
Chromium	100	106.9		ug/L		107	80 _ 120	
Cobalt	50.0	54.47		ug/L		109	80 _ 120	
Lead	500	504.3		ug/L		101	80 _ 120	
Thallium	50.0	48.11		ug/L		96	80 _ 120	

Lab Sample ID: 680-237959-2 MS Client Sample ID: AF68732 **Prep Type: Total Recoverable Matrix: Water** Analysis Batch: 795151 **Prep Batch: 794835**

Sample Sample Spike MS MS %Rec Analyte Result Qualifier Added Limits Result Qualifier Unit %Rec Antimony 5.00 U 50.0 50.20 100 75 _ 125 ug/L 3.00 U 100 103.6 Arsenic 104 75 _ 125 ug/L Barium 94.3 100 179.3 ug/L 85 75 _ 125 50.0 51.30 75 _ 125 Beryllium 0.500 U ug/L 103 Cadmium 0.500 U 50.0 49.86 ug/L 100 75 _ 125 Chromium 5.00 U 100 105.6 ug/L 104 75 _ 125 Cobalt 0.500 U 50.0 53.02 ug/L 106 75 _ 125 500 503.2 75 _ 125 Lead 2.50 U ug/L 101 Thallium 1.00 U 50.0 48.43 ug/L 75 _ 125 97

Lab Sample ID: 680-237959-2 MSD Client Sample ID: AF68732 **Matrix: Water Prep Type: Total Recoverable**

Analysis Batch: 795151 Prep Batch: 794835

	Sample	Sample	Spike	MSD	MSD				%Rec		RPD
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Antimony	5.00	U	50.0	54.09		ug/L		108	75 _ 125	7	20
Arsenic	3.00	U	100	109.0		ug/L		109	75 - 125	5	20
Barium	94.3		100	192.8		ug/L		98	75 _ 125	7	20
Beryllium	0.500	U	50.0	51.49		ug/L		103	75 ₋ 125	0	20
Cadmium	0.500	U	50.0	52.76		ug/L		106	75 - 125	6	20
Chromium	5.00	U	100	110.4		ug/L		109	75 _ 125	5	20
Cobalt	0.500	U	50.0	56.07		ug/L		112	75 ₋ 125	6	20
Lead	2.50	U	500	525.7		ug/L		105	75 _ 125	4	20
Thallium	1.00	U	50.0	51.37		ug/L		103	75 _ 125	6	20

QC Association Summary

Client: South Carolina Public Service Authority Project/Site: 125915/JM02-08-G01.1/36500

Job ID: 680-237959-2

Metals

Prep Batch: 794834

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batc
680-237959-1	AF68738	Total Recoverable	Water	3005A	
680-237959-2	AF68732	Total Recoverable	Water	3005A	
680-237959-3	AF68740	Total Recoverable	Water	3005A	
680-237959-4	AF68743	Total Recoverable	Water	3005A	
680-237959-5	AF68744	Total Recoverable	Water	3005A	
680-237959-8	AF68725	Total Recoverable	Water	3005A	
680-237959-9	AF68742	Total Recoverable	Water	3005A	
680-237959-10	AF68747	Total Recoverable	Water	3005A	
680-237959-11	AF68731	Total Recoverable	Water	3005A	
680-237959-12	AF68723	Total Recoverable	Water	3005A	
680-237959-13	AF68724	Total Recoverable	Water	3005A	
680-237959-14	AF68746	Total Recoverable	Water	3005A	
680-237959-15	AF68726	Total Recoverable	Water	3005A	
680-237959-16	AF68727	Total Recoverable	Water	3005A	
680-237959-17	AF68730	Total Recoverable	Water	3005A	
680-237959-18	AF68729	Total Recoverable	Water	3005A	
680-237959-19	AF68728	Total Recoverable	Water	3005A	
MB 680-794834/1-A	Method Blank	Total Recoverable	Water	3005A	
LCS 680-794834/2-A	Lab Control Sample	Total Recoverable	Water	3005A	
680-237959-2 MS	AF68732	Total Recoverable	Water	3005A	
680-237959-2 MSD	AF68732	Total Recoverable	Water	3005A	

Prep Batch: 794835

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Bato
680-237959-1	AF68738	Total Recoverable	Water	3005A	
680-237959-2	AF68732	Total Recoverable	Water	3005A	
680-237959-3	AF68740	Total Recoverable	Water	3005A	
680-237959-4	AF68743	Total Recoverable	Water	3005A	
680-237959-5	AF68744	Total Recoverable	Water	3005A	
680-237959-8	AF68725	Total Recoverable	Water	3005A	
80-237959-9	AF68742	Total Recoverable	Water	3005A	
680-237959-10	AF68747	Total Recoverable	Water	3005A	
80-237959-11	AF68731	Total Recoverable	Water	3005A	
80-237959-12	AF68723	Total Recoverable	Water	3005A	
880-237959-13	AF68724	Total Recoverable	Water	3005A	
880-237959-14	AF68746	Total Recoverable	Water	3005A	
880-237959-15	AF68726	Total Recoverable	Water	3005A	
880-237959-16	AF68727	Total Recoverable	Water	3005A	
80-237959-17	AF68730	Total Recoverable	Water	3005A	
880-237959-18	AF68729	Total Recoverable	Water	3005A	
80-237959-19	AF68728	Total Recoverable	Water	3005A	
MB 680-794835/1-A	Method Blank	Total Recoverable	Water	3005A	
CS 680-794835/2-A	Lab Control Sample	Total Recoverable	Water	3005A	
880-237959-2 MS	AF68732	Total Recoverable	Water	3005A	
680-237959-2 MSD	AF68732	Total Recoverable	Water	3005A	

Analysis Batch: 795099

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
680-237959-1	AF68738	Total Recoverable	Water	6010D	794834
680-237959-2	AF68732	Total Recoverable	Water	6010D	794834
680-237959-3	AF68740	Total Recoverable	Water	6010D	794834

Eurofins Savannah

Page 30 of 40

QC Association Summary

Client: South Carolina Public Service Authority

Project/Site: 125915/JM02-08-G01.1/36500

Job ID: 680-237959-2

Metals (Continued)

Analysis Batch: 795099 (Continued)

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
680-237959-4	AF68743	Total Recoverable	Water	6010D	794834
680-237959-5	AF68744	Total Recoverable	Water	6010D	794834
680-237959-8	AF68725	Total Recoverable	Water	6010D	794834
680-237959-9	AF68742	Total Recoverable	Water	6010D	794834
680-237959-10	AF68747	Total Recoverable	Water	6010D	794834
680-237959-11	AF68731	Total Recoverable	Water	6010D	794834
680-237959-12	AF68723	Total Recoverable	Water	6010D	794834
680-237959-13	AF68724	Total Recoverable	Water	6010D	794834
680-237959-14	AF68746	Total Recoverable	Water	6010D	794834
680-237959-15	AF68726	Total Recoverable	Water	6010D	794834
680-237959-16	AF68727	Total Recoverable	Water	6010D	794834
680-237959-17	AF68730	Total Recoverable	Water	6010D	794834
680-237959-18	AF68729	Total Recoverable	Water	6010D	794834
680-237959-19	AF68728	Total Recoverable	Water	6010D	794834
MB 680-794834/1-A	Method Blank	Total Recoverable	Water	6010D	794834
LCS 680-794834/2-A	Lab Control Sample	Total Recoverable	Water	6010D	794834
680-237959-2 MS	AF68732	Total Recoverable	Water	6010D	794834
680-237959-2 MSD	AF68732	Total Recoverable	Water	6010D	794834

Analysis Batch: 795151

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
680-237959-1	AF68738	Total Recoverable	Water	6020B	794835
680-237959-2	AF68732	Total Recoverable	Water	6020B	794835
680-237959-3	AF68740	Total Recoverable	Water	6020B	794835
680-237959-4	AF68743	Total Recoverable	Water	6020B	794835
680-237959-5	AF68744	Total Recoverable	Water	6020B	794835
680-237959-8	AF68725	Total Recoverable	Water	6020B	794835
680-237959-9	AF68742	Total Recoverable	Water	6020B	794835
680-237959-10	AF68747	Total Recoverable	Water	6020B	794835
680-237959-11	AF68731	Total Recoverable	Water	6020B	794835
680-237959-12	AF68723	Total Recoverable	Water	6020B	794835
680-237959-13	AF68724	Total Recoverable	Water	6020B	794835
680-237959-14	AF68746	Total Recoverable	Water	6020B	794835
680-237959-15	AF68726	Total Recoverable	Water	6020B	794835
680-237959-16	AF68727	Total Recoverable	Water	6020B	794835
680-237959-17	AF68730	Total Recoverable	Water	6020B	794835
680-237959-18	AF68729	Total Recoverable	Water	6020B	794835
680-237959-19	AF68728	Total Recoverable	Water	6020B	794835
MB 680-794835/1-A	Method Blank	Total Recoverable	Water	6020B	794835
LCS 680-794835/2-A	Lab Control Sample	Total Recoverable	Water	6020B	794835
680-237959-2 MS	AF68732	Total Recoverable	Water	6020B	794835
680-237959-2 MSD	AF68732	Total Recoverable	Water	6020B	794835

Analysis Batch: 795156

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
680-237959-15	AF68726	Total Recoverable	Water	6010D	794834
680-237959-16	AF68727	Total Recoverable	Water	6010D	794834
680-237959-19	AF68728	Total Recoverable	Water	6010D	794834

Eurofins Savannah

8/25/2023

3

7

8

4.0

10

12

13

Job ID: 680-237959-2

Client: South Carolina Public Service Authority Project/Site: 125915/JM02-08-G01.1/36500

Lab Sample ID: 680-237959-1

Matrix: Water

Client Sample ID: AF68738

Date Collected: 07/12/23 12:28 Date Received: 07/20/23 09:45

	Batch	Batch		Dilution	Batch			Prepared
Prep Type	Type	Method	Run	Factor	Number	Analyst	Lab	or Analyzed
Total Recoverable	Prep	3005A			794834	RR	EET SAV	08/24/23 05:25
Total Recoverable	Analysis	6010D		1	795099	BJB	EET SAV	08/24/23 10:28
Total Recoverable	Prep	3005A			794835	RR	EET SAV	08/24/23 05:25
Total Recoverable	Analysis	6020B		1	795151	BWR	EET SAV	08/24/23 11:15

Client Sample ID: AF68732 Lab Sample ID: 680-237959-2 Date Collected: 07/12/23 14:32

Matrix: Water

Date Received: 07/20/23 09:45

Batch Batch Dilution Batch Prepared Prep Type Туре Method Run Factor Number Analyst Lab or Analyzed 3005A 794834 RR EET SAV 08/24/23 05:25 Total Recoverable Prep Total Recoverable Analysis 6010D 795099 BJB 08/24/23 10:21 1 EET SAV Total Recoverable Prep 3005A 794835 RR EET SAV 08/24/23 05:25 Total Recoverable 6020B 795151 BWR EET SAV 08/24/23 11:02 Analysis 1

Client Sample ID: AF68740 Lab Sample ID: 680-237959-3

Date Collected: 07/12/23 11:01 **Matrix: Water**

Date Received: 07/20/23 09:45

	Batch	Batch		Dilution	Batch			Prepared
Prep Type	Type	Method	Run	Factor	Number	Analyst	Lab	or Analyzed
Total Recoverable	Prep	3005A			794834	RR	EET SAV	08/24/23 05:25
Total Recoverable	Analysis	6010D		1	795099	BJB	EET SAV	08/24/23 10:30
Total Recoverable	Prep	3005A			794835	RR	EET SAV	08/24/23 05:25
Total Recoverable	Analysis	6020B		1	795151	BWR	EET SAV	08/24/23 11:19

Client Sample ID: AF68743 Lab Sample ID: 680-237959-4 Date Collected: 07/12/23 13:23 **Matrix: Water**

Date Received: 07/20/23 09:45

	Batch	Batch		Dilution	Batch			Prepared
Prep Type	Туре	Method	Run	Factor	Number	Analyst	Lab	or Analyzed
Total Recoverable	Prep	3005A			794834	RR	EET SAV	08/24/23 05:25
Total Recoverable	Analysis	6010D		1	795099	BJB	EET SAV	08/24/23 10:33
Total Recoverable	Prep	3005A			794835	RR	EET SAV	08/24/23 05:25
Total Recoverable	Analysis	6020B		1	795151	BWR	EET SAV	08/24/23 11:23

Client Sample ID: AF68744 Lab Sample ID: 680-237959-5

Date Collected: 07/12/23 13:28 **Matrix: Water**

Date Received: 07/20/23 09:45

	Batch	Batch		Dilution	Batch			Prepared
Prep Type	Type	Method	Run	Factor	Number	Analyst	Lab	or Analyzed
Total Recoverable	Prep	3005A			794834	RR	EET SAV	08/24/23 05:25
Total Recoverable	Analysis	6010D		1	795099	BJB	EET SAV	08/24/23 10:35
Total Recoverable	Prep	3005A			794835	RR	EET SAV	08/24/23 05:25
Total Recoverable	Analysis	6020B		1	795151	BWR	EET SAV	08/24/23 11:27

Eurofins Savannah

Client: South Carolina Public Service Authority Project/Site: 125915/JM02-08-G01.1/36500

Lab Sample ID: 680-237959-8

Lab Sample ID: 680-237959-9

Lab Sample ID: 680-237959-10

Lab Sample ID: 680-237959-12

Matrix: Water

Matrix: Water

Job ID: 680-237959-2

Client Sample ID: AF68725 Date Collected: 07/18/23 11:49

Date Received: 07/20/23 09:45

	Batch	Batch		Dilution	Batch			Prepared
Prep Type	Туре	Method	Run	Factor	Number	Analyst	Lab	or Analyzed
Total Recoverable	Prep	3005A			794834	RR	EET SAV	08/24/23 05:25
Total Recoverable	Analysis	6010D		1	795099	BJB	EET SAV	08/24/23 10:47
Total Recoverable	Prep	3005A			794835	RR	EET SAV	08/24/23 05:25
Total Recoverable	Analysis	6020B		1	795151	BWR	EET SAV	08/24/23 11:47

Client Sample ID: AF68742

Date Collected: 07/18/23 14:53

Date Received: 07/20/23 09:45

_								
	Batch	Batch		Dilution	Batch			Prepared
Prep Type	Type	Method	Run	Factor	Number	Analyst	Lab	or Analyzed
Total Recoverable	Prep	3005A			794834	RR	EET SAV	08/24/23 05:25
Total Recoverable	Analysis	6010D		1	795099	BJB	EET SAV	08/24/23 10:49
Total Recoverable	Prep	3005A			794835	RR	EET SAV	08/24/23 05:25
Total Recoverable	Analysis	6020B		1	795151	BWR	EET SAV	08/24/23 11:51

Client Sample ID: AF68747

Date Collected: 07/17/23 10:08

Date Received: 07/20/23 09:45

	Batch	Batch		Dilution	Batch			Prepared
Prep Type	Туре	Method	Run	Factor	Number	Analyst	Lab	or Analyzed
Total Recoverable	Prep	3005A			794834	RR	EET SAV	08/24/23 05:25
Total Recoverable	Analysis	6010D		1	795099	BJB	EET SAV	08/24/23 10:51
Total Recoverable	Prep	3005A			794835	RR	EET SAV	08/24/23 05:25
Total Recoverable	Analysis	6020B		1	795151	BWR	EET SAV	08/24/23 11:55

Client Sample ID: AF68731

Date Collected: 07/17/23 11:15

Date Received: 07/20/23 09:45

	Batch	Batch		Dilution	Batch			Prepared
Prep Type	Type	Method	Run	Factor	Number	Analyst	Lab	or Analyzed
Total Recoverable	Prep	3005A			794834	RR	EET SAV	08/24/23 05:25
Total Recoverable	Analysis	6010D		1	795099	BJB	EET SAV	08/24/23 10:54
Total Recoverable	Prep	3005A			794835	RR	EET SAV	08/24/23 05:25
Total Recoverable	Analysis	6020B		1	795151	BWR	EET SAV	08/24/23 11:59

Client Sample ID: AF68723

Date Collected: 07/17/23 13:00

Date Received: 07/20/23 09:45

	Batch	Batch		Dilution	Batch			Prepared
Prep Type	Туре	Method	Run	Factor	Number	Analyst	Lab	or Analyzed
Total Recoverable	Prep	3005A			794834	RR	EET SAV	08/24/23 05:25
Total Recoverable	Analysis	6010D		1	795099	BJB	EET SAV	08/24/23 10:56
Total Recoverable	Prep	3005A			794835	RR	EET SAV	08/24/23 05:25
Total Recoverable	Analysis	6020B		1	795151	BWR	EET SAV	08/24/23 12:03

Eurofins Savannah

Lab Sample ID: 680-237959-11

Matrix: Water

Matrix: Water

Matrix: Water

Job ID: 680-237959-2

Client: South Carolina Public Service Authority Project/Site: 125915/JM02-08-G01.1/36500

Client Sample ID: AF68724 Lab Sample ID: 680-237959-13

Matrix: Water

Date Collected: 07/17/23 13:05 Date Received: 07/20/23 09:45

	Batch	Batch		Dilution	Batch			Prepared
Prep Type	Type	Method	Run	Factor	Number	Analyst	Lab	or Analyzed
Total Recoverable	Prep	3005A			794834	RR	EET SAV	08/24/23 05:25
Total Recoverable	Analysis	6010D		1	795099	BJB	EET SAV	08/24/23 10:58
Total Recoverable	Prep	3005A			794835	RR	EET SAV	08/24/23 05:25
Total Recoverable	Analysis	6020B		1	795151	BWR	EET SAV	08/24/23 12:07

Client Sample ID: AF68746

Lab Sample ID: 680-237959-14 Date Collected: 07/17/23 14:24

Matrix: Water

Date Received: 07/20/23 09:45

	Batch	Batch		Dilution	Batch			Prepared
Prep Type	Type	Method	Run	Factor	Number	Analyst	Lab	or Analyzed
Total Recoverable	Prep	3005A			794834	RR	EET SAV	08/24/23 05:25
Total Recoverable	Analysis	6010D		1	795099	BJB	EET SAV	08/24/23 11:01
Total Recoverable	Prep	3005A			794835	RR	EET SAV	08/24/23 05:25
Total Recoverable	Analysis	6020B		1	795151	BWR	EET SAV	08/24/23 12:11

Client Sample ID: AF68726

Lab Sample ID: 680-237959-15 Date Collected: 07/13/23 14:16

Matrix: Water

Date Received: 07/20/23 09:45

	Batch	Batch		Dilution	Batch			Prepared
Prep Type	Type	Method	Run	Factor	Number	Analyst	Lab	or Analyzed
Total Recoverable	Prep	3005A			794834	RR	EET SAV	08/24/23 05:25
Total Recoverable	Analysis	6010D		1	795099	BJB	EET SAV	08/24/23 11:03
Total Recoverable	Prep	3005A			794834	RR	EET SAV	08/24/23 05:25
Total Recoverable	Analysis	6010D		10	795156	BJB	EET SAV	08/25/23 09:25
Total Recoverable	Prep	3005A			794835	RR	EET SAV	08/24/23 05:25
Total Recoverable	Analysis	6020B		1	795151	BWR	EET SAV	08/24/23 12:15

Client Sample ID: AF68727

Lab Sample ID: 680-237959-16 Date Collected: 07/13/23 14:21 **Matrix: Water**

Date Received: 07/20/23 09:45

	Batch	Batch		Dilution	Batch			Prepared
Prep Type	Type	Method	Run	Factor	Number	Analyst	Lab	or Analyzed
Total Recoverable	Prep	3005A			794834	RR	EET SAV	08/24/23 05:25
Total Recoverable	Analysis	6010D		1	795099	BJB	EET SAV	08/24/23 11:05
Total Recoverable	Prep	3005A			794834	RR	EET SAV	08/24/23 05:25
Total Recoverable	Analysis	6010D		10	795156	BJB	EET SAV	08/25/23 09:27
Total Recoverable	Prep	3005A			794835	RR	EET SAV	08/24/23 05:25
Total Recoverable	Analysis	6020B		1	795151	BWR	EET SAV	08/24/23 12:19

Client Sample ID: AF68730

Date Received: 07/20/23 09:45

Lab Sample ID: 680-237959-17 Date Collected: 07/13/23 10:01

Matrix: Water

Batch Batch Dilution Batch **Prepared** Method Factor **Prep Type** Type Run **Number Analyst** Lab or Analyzed Total Recoverable Prep 3005A 794834 RR **EET SAV** 08/24/23 05:25 795099 BJB Total Recoverable Analysis 6010D **EET SAV** 08/24/23 11:12

Page 34 of 40

Lab Chronicle

Client: South Carolina Public Service Authority Project/Site: 125915/JM02-08-G01.1/36500

Job ID: 680-237959-2

Lab Sample ID: 680-237959-17

Lab Sample ID: 680-237959-18

Lab Sample ID: 680-237959-19

Matrix: Water

Matrix: Water

Matrix: Water

Client Sample ID: AF68730 Date Collected: 07/13/23 10:01

Date Received: 07/20/23 09:45

	Batch	Batch		Dilution	Batch			Prepared
Prep Type	Type	Method	Run	Factor	Number	Analyst	Lab	or Analyzed
Total Recoverable	Prep	3005A			794835	RR	EET SAV	08/24/23 05:25
Total Recoverable	Analysis	6020B		1	795151	BWR	EET SAV	08/24/23 12:31

Client Sample ID: AF68729

Date Collected: 07/13/23 11:24

Date Received: 07/20/23 09:45

	Batch	Batch		Dilution	Batch			Prepared
Prep Type	Type	Method	Run	Factor	Number	Analyst	Lab	or Analyzed
Total Recoverable	Prep	3005A			794834	RR	EET SAV	08/24/23 05:25
Total Recoverable	Analysis	6010D		1	795099	BJB	EET SAV	08/24/23 11:15
Total Recoverable	Prep	3005A			794835	RR	EET SAV	08/24/23 05:25
Total Recoverable	Analysis	6020B		1	795151	BWR	EET SAV	08/24/23 12:36

Client Sample ID: AF68728

Date Collected: 07/13/23 13:32

Date Received: 07/20/23 09:45

	Batch	Batch		Dilution	Batch			Prepared
Prep Type	Type	Method	Run	Factor	Number	Analyst	Lab	or Analyzed
Total Recoverable	Prep	3005A			794834	RR	EET SAV	08/24/23 05:25
Total Recoverable	Analysis	6010D		1	795099	BJB	EET SAV	08/24/23 11:17
Total Recoverable	Prep	3005A			794834	RR	EET SAV	08/24/23 05:25
Total Recoverable	Analysis	6010D		10	795156	BJB	EET SAV	08/25/23 09:30
Total Recoverable	Prep	3005A			794835	RR	EET SAV	08/24/23 05:25
Total Recoverable	Analysis	6020B		1	795151	BWR	EET SAV	08/24/23 12:40

Laboratory References:

EET SAV = Eurofins Savannah, 5102 LaRoche Avenue, Savannah, GA 31404, TEL (912)354-7858

Eurofins Savannah

Chain of Custody

Santee Cooper One Riverwood Drive Moncks Corner, SC 29461 Phone: (843)761-8000 Ext. 5148 Fax: (843)761-4175

Customer Email	/Report Recipie	nt:	Date Re	sults Ne	eded by	/ :	Project/Task/Unit #:			Kerun request	IOI all	y IIagg	eu QC			
LEWILLIA	Ocantoor	ooper.com	- /	1			125	115	JM	02.0	1.601.1	36500	Yes	No		
U-WILLIAM.	wsanteec	оорет.сот												A	nalysis G	roup
Labworks ID # (Internal use only)	Sample Location Description	n/	Collection Date	Collection Time	Sample Collector	Total # of containers	Bottle type: (Glass-G/Plastic-P)	Grab (G) or Composite (C)	Matrix(see below)	Preservative (see below)	Metho Report Misc. Any c	Commond # rting limit sample in other notes	fo	TOTAL METALS -SEE BELOIM		
AF 68 726	WAP-14		1/13/23	1416	WJK	1	P	G	GW	2	Cq, Se	- 6010		X		_
AF68727	WAP-14 DU	P	1	1421	1		1			1	ALL OTH	ERS-	6020	1		+
AF68747	WAP-29		7/17/23	[008							-SEE	SHEET	FOR RLS.	1		
AF68731	WAP-15		1	1115												
AF68723	WAP-12			1300											\vdash	-
AF 68724	WAP-12 D	иР		1305				-						+	H	
AF-68746	WAT-28			1424	1	-	1-	-	1	1				1		
AF 68742	WAP-25		7/18/23	1453	1	1	1	1		1				1		+
							-	-							H	-
												Sample	Receiving (Interna	I Use O	nly)	
Relinquished b	y: Employee#	Date	Time	Recei	ved by:		Employe	e#	Dat	е	Time		(°C):			
Sproun	35594	8/23/23	0900								_	Correc	et pH: Yes N	0		
Relinquished b	y: Employee#	Date	Time	Rece	ived by:		Employe	e#	Dat	e	Time	Preser	vative Lot#:			
Relinquished t	y: Employee#	Date	Time	Rece	ived by:		Employe	ee#	Dat	:e	Time	Date/1	Time/Init for prese	rvative	:	
															_	
	METALS (all)	Nu	trients	M	ISC.		G	ypsu	m		Coal		Flyash		Oil rans: Oil	
-	Cu Sb	OT		BTEX			□ Wall	board psum((all	1	☐ Ultimate ☐ % Mois	ture	☐ Ammonia ☐ LOI			
	K Sn	10 0	OC P/TPO4	□ Naphtl			be	low)			☐ Ash		☐ % Carbon			
	Li Sr	1000	H3-N	□ VOC □ Oil &	Greece			AIM			□ Sulfur		Mineral Applyeis	9		
-	Mg □ Ti	OF		☐ E. Col	i		0	Total me			☐ BTUs ☐ Volatile	Matter	Analysis Bieve	- 1		
(Mn T1	DC	02	□ Total (□ pH	Coliform			Soluble ! Purity (C			□ CHN		□ % Moisture			
		B		☐ Dissol		- 1	0	% Moist	nre		Other Tests: XRF Scan	16 15	NDDES			
		The second secon	03	☐ Dissol ☐ Rad 2:				Sulfites pH			□ HGI		NPDES Oil & Grease			
		ii S	04	□ Rad 2			11	Chloride			☐ Fineness ☐ Particulate N	fatter	□ As		TX	
	Ni □ Hg □ Pb □ CrV	71		□ PCB			El Sulf	Particle ur	2174			175	□ TSS	- AX	MITTER	
Cr 2	J. TO LUCIY															

Chain of Custody

Santee Cooper One Riverwood Drive Moneks Corner, SC 29461 Phone: (843)761-8000 Ext. 5148 Fax: (843)761-4175

Custom	er Ema	il/Report Recip	pient:	Dat	e Results N	eeded	by:		Pı	oject/	Task/	Unit #:	Ren		equest	for a	ny fla	igged Q
LCWIL	LIA	@sante	ecooper.com	,			- 1	1.25	5915	J_JM	192,0	9.GØ1.	1/36	500	Yes	No		
Labworl (interna		Sample Locat	tion/	Q.	o o		8	4		5			Con	nments			_	is Group
only)	use	Description	u sanc	Collection Date	Collection Time	Sample Collector	Total # of containers	Bottle type: (Glass-G/Plastic-P)	Grab (G) or Composite (C)	Matrix(see below)	Preservative (see	Re Mi An	ethod # porting lines. sc. sample by other no	info		TOTAL METALS		
AF687	38	WAP-21		7/12/	23 1228	WJK	1	P	G	GW	2	ca, s	ê- 601	0		×		
AF68-	732	WAP-16		1	1432	1	1		1	1	1	ALLO	CHERS	6050		1		
AF687	40	WAP-23			lol	1	1					-SEE	SHEET	FOR RLS				
AF687	43	WAP-26			323													
AF68	144	WAP-26 D	UP	1	1328													
4F6873	30	WAP-140		7/13/2	3 1001													
AF687	29	WAP-148			1124													
AF687	28	WAP-14A		1	1332	1	_		1		1							
AF687	25	WAP-13		7/18/23	8 1149													
Relinqui	shed by:	Employee#	Date	Time	Receive	ed by:	Em	ployee #	‡	Date		Time	Sample	Receiving (Int	ternal Us	e Onl	1)	
Sgmou	n	35594	8/23/23	0900								-	TEMP	(°C):	In	itial:		
Relinquis	shed by:	Employee#	Date	Time	Receive	d by:	Em	ployee #		Date		Time		et pH: Yes	No			
Relinquis	hed by:	Employee#	Date	Time	Receive	d by:	Em	ployee#		Date		Time	Preser	vative Lot#:				
													Date/T	ime/Init for pr	eservati	ve:		
A		TALS (all)	Nutr	ients	MIS	C.		Gyn	sum			Coal		FL. 40				
□ Ag □ Al	☐ Cu ☐ Fe	Sb	DTO	THE RESERVE AND ADDRESS.	□ BTEX		DX	Vallioa				Itimate		Flyash				
As	DK	□ Sn	DO		□ Naphthale			Gypsu	am(all			% Moist	ıre	☐ Ammonia ☐ LOì			Oil Q	
В	O Li		I IPA	FPO4	□ THM/HA	1		D AIM		7118		Ash		2 % Carbon				
Ba	□Mg		D.F.		☐ Oil & Grea	ase		TOC		777		Sulfur BTUs		☐ Mineral				rength
Be			ECI ENG	31° 0 11	☐ Total Coli	form		B Total B Solub		ls		Volatile I	Matter	Analysi Sieve	5			Gases
2 Ca	□ Mn	-	□ NO2	MI HIT	☐ pH ☐ Dissolved.	Ac		D Purity	(CaSO			CHN		1 % Moisture	n			
*Cd	□ Mo	□ V	II NO3		☐ Dissolved			B % Mc				er Tests:		NDDDC	8			
	□ Na	□ Zn	G SO4		□ Rad 226 □ Rad 228		Ha	□pH		3 - 1	⊕ HG	I	171-21	NPDES Oil & Grease				Ni,Ph
Co Cr	□ Ni	□ Hg		THE P	□ PCB		IFE	Chlor.				eness ticulate Mat	ter	As Grease				= 1
2 44	Pb	☐ CrVI					DS							□ TSS				

Table of Reporting Limits for Groundwater Samples-- Metals Only

Analyte	Unit	GWPS/ MCL/ RSL	Reporting Limits best case
Aluminum	mg/L	0.05 to 0.2	
Antimony	ug/L	6	5
Arsenic	ug/L	10	5
Arsenic Dissolved	ug/L		
Barium	ug/L	2000	5
Beryllium	ug/L	4	0.5
Boron	ug/L		10 to 15
Cadmium	ug/L	5	0.5
Calcium	ug/L		0.1
Chromium	ug/L	100	5
Cobalt	ug/L	6	0.5
Copper	mg/L	1	New
Iron	ug/L	300	
Lead	ug/L	15	1
Lithium	ug/L	40	5
Magnesium	ug/L	- 1	
Mercury	ug/L	2	0.2
Molybdenum	ug/L	100	5
Vickel	ug/L		
Potassium	mg/L		
Selenium	ug/L	50	5
Sodium	mg/L		
Γhallium	ug/L	2	1
Zinc	ug/L	5000	7

2

6

- 4

40

11

14

Login Sample Receipt Checklist

Client: South Carolina Public Service Authority

Job Number: 680-237959-2

Login Number: 237959 List Source: Eurofins Savannah

List Number: 1

Creator: Johnson, Corey M

Creator: Johnson, Corey W		
Question	Answer	Comment
Radioactivity wasn't checked or is = background as measured by a survey meter.</td <td>N/A</td> <td></td>	N/A	
The cooler's custody seal, if present, is intact.	True	
Sample custody seals, if present, are intact.	True	
The cooler or samples do not appear to have been compromised or tampered with.	True	
Samples were received on ice.	True	
Cooler Temperature is acceptable.	True	
Cooler Temperature is recorded.	True	
COC is present.	True	
COC is filled out in ink and legible.	True	
COC is filled out with all pertinent information.	True	
Is the Field Sampler's name present on COC?	True	
There are no discrepancies between the containers received and the COC.	True	
Samples are received within Holding Time (excluding tests with immediate HTs)	True	
Sample containers have legible labels.	True	
Containers are not broken or leaking.	True	
Sample collection date/times are provided.	True	
Appropriate sample containers are used.	True	
Sample bottles are completely filled.	True	
Sample Preservation Verified.	N/A	
There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs	True	
Containers requiring zero headspace have no headspace or bubble is <6mm (1/4").	N/A	
Multiphasic samples are not present.	True	
Samples do not require splitting or compositing.	True	
Residual Chlorine Checked.	N/A	

3

4

5

6

8

10

13

Accreditation/Certification Summary

Client: South Carolina Public Service Authority Job ID: 680-237959-2 Project/Site: 125915/JM02-08-G01.1/36500

Laboratory: Eurofins Savannah

The accreditations/certifications listed below are applicable to this report.

Authority	Program	Identification Number	Expiration Date
South Carolina	State	98001	06-30-23 *

 $^{^{\}star} \ \text{Accreditation/Certification renewal pending - accreditation/certification considered valid}.$

gel.com

September 21, 2023

Ms. Jeanette Gilmetti Santee Cooper P.O. Box 2946101 OCO3 Moncks Corner, South Carolina 29461

Re: ABS Lab Analytical Work Order: 634957

Dear Ms. Gilmetti:

GEL Laboratories, LLC (GEL) appreciates the opportunity to provide the enclosed analytical results for the sample(s) we received on August 25, 2023. This original data report has been prepared and reviewed in accordance with GEL's standard operating procedures.

The samples were delivered with proper chain of custody documentation and signatures. All sample containers arrived without any visible signs of tampering or breakage. There are no additional comments concerning sample receipt.

Test results for NELAP or ISO 17025 accredited tests are verified to meet the requirements of those standards, with any exceptions noted. The results reported relate only to the items tested and to the sample as received by the laboratory. These results may not be reproduced except as full reports without approval by the laboratory. Copies of GEL's accreditations and certifications can be found on our website at www.gel.com.

Our policy is to provide high quality, personalized analytical services to enable you to meet your analytical needs on time every time. We trust that you will find everything in order and to your satisfaction. If you have any questions, please do not hesitate to call me at (843) 556-8171, ext. 4289.

Sincerely,

Julie Robinson Project Manager

Purchase Order: 398684

Enclosures

2040 Savage Road Charleston SC 29407 - (843) 556-8171 - www.gel.com

Certificate of Analysis Report for

SOOP001 Santee Cooper

Client SDG: 634957 GEL Work Order: 634957

The Qualifiers in this report are defined as follows:

- * A quality control analyte recovery is outside of specified acceptance criteria
- ** Analyte is a Tracer compound
- ** Analyte is a surrogate compound
- U Analyte was analyzed for, but not detected above the MDL, MDA, MDC or LOD.

Where the analytical method has been performed under NELAP certification, the analysis has met all of the requirements of the NELAC standard unless qualified on the Certificate of Analysis.

The designation ND, if present, appears in the result column when the analyte concentration is not detected above the limit as defined in the 'U' qualifier above.

This data report has been prepared and reviewed in accordance with GEL Laboratories LLC standard operating procedures. Please direct any questions to your Project Manager, Julie Robinson.

	Julie	Kne	
Reviewed by	U		

Page 2 of 13 SDG: 634957

2040 Savage Road Charleston SC 29407 - (843) 556-8171 - www.gel.com

Certificate of Analysis

Project:

Client ID:

Report Date: September 21, 2023

SOOP00119

LXP1 09/20/23 1030 2486922

SOOP001

Company: Santee Cooper Address: P.O. Box 2946101

OCO3

Moncks Corner, South Carolina 29461

Contact: Ms. Jeanette Gilmetti Project: ABS Lab Analytical

Client Sample ID: AF75783 Sample ID: 634957001

Matrix: GW

Collect Date: 23-AUG-23 13:49
Receive Date: 25-AUG-23
Collector: Client

Parameter	Qualifier	Result	Uncertainty	MDC	RL	Units	PF	DF	Analy	st Date	Time Batch	Method
Rad Gas Flow Proportional Counting												
GFPC, Ra228, Liquid "A	As Received"											
Radium-228	U	0.864	+/-0.711	1.13	3.00	pCi/L			JE1	09/21/23	1011 249400) 1
Radium-226+Radium-22	28 Calculatio	n "See Pa	arent Products"									
Radium-226+228 Sum		1.79	+/-0.825			pCi/L		1	LXB3	09/21/23	1536 249273	7 2
Rad Radium-226												

1.00

pCi/L

Analyst Comments

Radium-226 0.923 +/-0.419 The following Analytical Methods were performed:

Description

Lucas Cell, Ra226, Liquid "As Received"

111000	2 000111011011		I III WI J D C C	/IIIIIIIIIIII	
1	EPA 904.0/SW846 9320 Modified		•		
2	Calculation				
3	EPA 903.1 Modified				
Surrogate/T	Fracer Recovery Test	Result	Nominal	Recovery%	Acceptable Limits

Barium-133 Tracer GFPC, Ra228, Liquid "As Received"

99.1 (15%-125%)

0.492

Notes:

Counting Uncertainty is calculated at the 95% confidence level (1.96-sigma).

Column headers are defined as follows:

DF: Dilution Factor Lc/LC: Critical Level
DL: Detection Limit PF: Prep Factor
MDA: Minimum Detectable Activity RL: Reporting Limit

MDC: Minimum Detectable Concentration SQL: Sample Quantitation Limit

Page 3 of 13 SDG: 634957

2040 Savage Road Charleston SC 29407 - (843) 556-8171 - www.gel.com

Certificate of Analysis

Report Date: September 21, 2023

Company: Santee Cooper Address: P.O. Box 2946101

OCO3

Moncks Corner, South Carolina 29461

Contact: Ms. Jeanette Gilmetti Project: ABS Lab Analytical

Client Sample ID: AF75784 Sample ID: 634957002

Matrix: GW

Collect Date: 23-AUG-23 11:09
Receive Date: 25-AUG-23
Collector: Client

Project: SOOP00119 Client ID: SOOP001

Parameter	Qualifier	Result	Uncertainty	MDC	RL	Units	PF	DF	Analy	st Date	Time	Batch	Method
Rad Gas Flow Proportion	nal Counting												
GFPC, Ra228, Liquid "A	As Received"												
Radium-228		1.83	+/-0.906	1.21	3.00	pCi/L			JE1	09/21/23	1011	2494000	1
Radium-226+Radium-2	28 Calculation	n "See Pa	arent Products"										
Radium-226+228 Sum		3.55	+/-1.01			pCi/L		1	LXB3	09/21/23	1536	2492737	2
Rad Radium-226													
Lucas Cell, Ra226, Liqu	iid "As Recei	ved"											
Radium-226		1.72	+/-0.436	0.213	1.00	pCi/L			LXP1	09/20/23	1030	2486922	3
The following Analytic	al Methods w	ere perfo	ormed:										
Method	Description					1	Analys	st Co	mment	S			

1 EF	EPA 904.0/SW846 9320 Modified							
2 Ca	alculation							
3 EI	PA 903.1 Modified							
Surrogate/Tracer Recovery	Test	Result	Nominal	Recovery%	Acceptable Limits			

Barium-133 Tracer GFPC, Ra228, Liquid "As Received" 86.4 (15%-125%)

Notes:

Counting Uncertainty is calculated at the 95% confidence level (1.96-sigma).

Column headers are defined as follows:

DF: Dilution Factor Lc/LC: Critical Level
DL: Detection Limit PF: Prep Factor
MDA: Minimum Detectable Activity RL: Reporting Limit

MDC: Minimum Detectable Concentration SQL: Sample Quantitation Limit

Page 4 of 13 SDG: 634957

2040 Savage Road Charleston SC 29407 - (843) 556-8171 - www.gel.com

Certificate of Analysis

Report Date: September 21, 2023

SOOP00119

Company: Santee Cooper Address: P.O. Box 2946101

OCO3

Moncks Corner, South Carolina 29461

Contact: Ms. Jeanette Gilmetti Project: ABS Lab Analytical

Client Sample ID: AF75785 Sample ID: 634957003

Matrix: GW

Collect Date: 23-AUG-23 11:14
Receive Date: 25-AUG-23
Collector: Client

84957003 Client ID: SOOP001

Project:

Parameter	Qualifier	Result	Uncertainty	MDC	RL	Units	PF	DF	Analy	st Date	Time	e Batch	Method
Rad Gas Flow Proportion													
GFPC, Ra228, Liquid ".	As Received"												
Radium-228		1.70	+/-0.833	1.16	3.00	pCi/L			JE1	09/21/23	1011	2494000	1
Radium-226+Radium-2	28 Calculation	n "See Pa	arent Products"										
Radium-226+228 Sum		4.44	+/-1.08			pCi/L		1	LXB3	09/21/23	1536	2492737	2
Rad Radium-226													
Lucas Cell, Ra226, Liqu	uid "As Recei	ved"											
Radium-226		2.74	+/-0.684	0.591	1.00	pCi/L			LXP1	09/20/23	1030	2486922	3
The following Analytic	al Methods w	ere perfo	ormed:										
Method	Description					A	Analys	t Co	mment	S			
1	EPA 904.0/SW	846 9320 1	Modified										
2	Calculation												

3 EPA 903.1 Modified
Surrogate/Tracer Recovery Test Result Nominal Recovery% Acceptable Limits

Barium-133 Tracer GFPC, Ra228, Liquid "As Received" 95.9 (15%-125%)

Notes:

Counting Uncertainty is calculated at the 95% confidence level (1.96-sigma).

Column headers are defined as follows:

DF: Dilution Factor Lc/LC: Critical Level
DL: Detection Limit PF: Prep Factor
MDA: Minimum Detectable Activity RL: Reporting Limit

MDC: Minimum Detectable Concentration SQL: Sample Quantitation Limit

Page 5 of 13 SDG: 634957

2040 Savage Road Charleston SC 29407 - (843) 556-8171 - www.gel.com

Certificate of Analysis

Project:

Client ID:

Report Date: September 21, 2023

SOOP00119

LXP1 09/20/23 1030 2486922

3

SOOP001

Company: Santee Cooper Address: P.O. Box 2946101

OCO3

Moncks Corner, South Carolina 29461

Contact: Ms. Jeanette Gilmetti Project: ABS Lab Analytical

Client Sample ID: AF75786 Sample ID: 634957004

Matrix: GW

Collect Date: 23-AUG-23 12:35
Receive Date: 25-AUG-23
Collector: Client

Parameter **Oualifier** Result Uncertainty **MDC** RL Units PF DF Analyst Date Time Batch Method Rad Gas Flow Proportional Counting GFPC, Ra228, Liquid "As Received" Radium-228 0.958 $\pm /-0.758$ 1.18 3.00 pCi/L JE1 09/21/23 1011 2494000 1 Radium-226+Radium-228 Calculation "See Parent Products" Radium-226+228 Sum 1.18 +/-0.789 pCi/L LXB3 09/21/23 1536 2492737 2 Rad Radium-226 Lucas Cell, Ra226, Liquid "As Received"

1.00

pCi/L

Radium-226 U 0.226 +/-0.221 The following Analytical Methods were performed:

MethodDescriptionAnalyst Comments1EPA 904.0/SW846 9320 Modified2Calculation3EPA 903.1 Modified

0.347

Surrogate/Tracer Recovery Test Result Nominal Recovery% Acceptable Limits

Barium-133 Tracer GFPC, Ra228, Liquid "As Received"

89.1 (15%-125%)

Notes:

Counting Uncertainty is calculated at the 95% confidence level (1.96-sigma).

Column headers are defined as follows:

DF: Dilution Factor Lc/LC: Critical Level
DL: Detection Limit PF: Prep Factor
MDA: Minimum Detectable Activity RL: Reporting Limit

MDC: Minimum Detectable Concentration SQL: Sample Quantitation Limit

Page 6 of 13 SDG: 634957

2040 Savage Road Charleston, SC 29407 - (843) 556-8171 - www.gel.com

QC Summary

Report Date: September 21, 2023

Santee Cooper P.O. Box 2946101

OCO3

Moncks Corner, South Carolina

Contact: Ms. Jeanette Gilmetti

Workorder: 634957

Parmname			NOM	Sample	Qual	QC	Units	RPD%	REC%	Range A	Anlst	Date Time
Rad Gas Flow Batch 249	94000											
QC1205519879 Radium-228	634957002	DUP	Uncertainty	1.83 +/-0.906	U	0.940 +/-0.764	pCi/L	64.2		(0% - 100%)	JE1	09/21/23 10:11
QC1205519881 Radium-228	LCS		77.6 Uncertainty			69.3 +/-3.77	pCi/L		89.3	(75%-125%)		09/21/23 10:10
QC1205519878 Radium-228	MB		Uncertainty		U	0.0450 +/-0.480	pCi/L					09/21/23 10:11
Rad Ra-226 Batch 248	36922											
QC1205506771 Radium-226	634957001	DUP	Uncertainty	0.923 +/-0.419		1.19 +/-0.525	pCi/L	24.9		(0% - 100%)	LXP1	09/20/23 11:02
QC1205506775 Radium-226	LCS		27.1 Uncertainty			29.1 +/-1.95	pCi/L		107	(75%-125%)		09/20/23 11:03
QC1205506770 Radium-226	MB		Uncertainty		U	0.104 +/-0.264	pCi/L					09/20/23 11:02
QC1205506773 Radium-226	634957001	MS	135 Uncertainty	0.923 +/-0.419		154 +/-9.54	pCi/L		113	(75%-125%)		09/20/23 11:02

Notes:

Counting Uncertainty is calculated at the 95% confidence level (1.96-sigma).

The Qualifiers in this report are defined as follows:

- U Analyte was analyzed for, but not detected above the MDL, MDA, MDC or LOD.
- J Value is estimated
- X Consult Case Narrative, Data Summary package, or Project Manager concerning this qualifier
- H Analytical holding time was exceeded
- < Result is less than value reported

Page 7 of 13 SDG: 634957

Page 1 of 2

2040 Savage Road Charleston, SC 29407 - (843) 556-8171 - www.gel.com

QC Summary

634957 Page 2 of 2 **Parmname NOM** Sample Qual OC Units RPD% REC% Range Anlst Date Time

>	Result	is great	er than	value	reported

- Gamma Spectroscopy--Uncertain identification UI
- BDResults are either below the MDC or tracer recovery is low
- h Preparation or preservation holding time was exceeded
- R Sample results are rejected
- RPD of sample and duplicate evaluated using +/-RL. Concentrations are <5X the RL. Qualifier Not Applicable for Radiochemistry.
- RPD or %Recovery limits do not apply. N/A
- ND Analyte concentration is not detected above the detection limit
- M M if above MDC and less than LLD
- NJ Consult Case Narrative, Data Summary package, or Project Manager concerning this qualifier
- FA Failed analysis.

Workorder:

- UJ Gamma Spectroscopy--Uncertain identification
- Q One or more quality control criteria have not been met. Refer to the applicable narrative or DER.
- K Analyte present. Reported value may be biased high. Actual value is expected to be lower.
- UL Not considered detected. The associated number is the reported concentration, which may be inaccurate due to a low bias.
- Analyte present. Reported value may be biased low. Actual value is expected to be higher. L
- N1See case narrative
- Y Other specific qualifiers were required to properly define the results. Consult case narrative.
- ** Analyte is a Tracer compound
- REMP Result > MDC/CL and < RDL M
- J See case narrative for an explanation

N/A indicates that spike recovery limits do not apply when sample concentration exceeds spike conc. by a factor of 4 or more or %RPD not applicable.

- ^ The Relative Percent Difference (RPD) obtained from the sample duplicate (DUP) is evaluated against the acceptance criteria when the sample is greater than five times (5X) the contract required detection limit (RL). In cases where either the sample or duplicate value is less than 5X the RL, a control limit of +/- the RL is used to evaluate the DUP result.
- * Indicates that a Quality Control parameter was not within specifications.

For PS, PSD, and SDILT results, the values listed are the measured amounts, not final concentrations.

Where the analytical method has been performed under NELAP certification, the analysis has met all of the requirements of the NELAC standard unless qualified on the QC Summary.

Page 8 of 13 SDG: 634957

Radiochemistry Technical Case Narrative Santee Cooper SDG #: 634957

Product: Radium-226+Radium-228 Calculation

Analytical Method: Calculation

Analytical Procedure: GL-RAD-D-003 REV# 45

Analytical Batch: 2492737

The following samples were analyzed using the above methods and analytical procedure(s).

GEL Sample ID#	Client Sample Identification
634957001	AF75783
634957002	AF75784
634957003	AF75785
634957004	AF75786

The samples in this SDG were analyzed on an "as received" basis.

Data Summary:

There are no exceptions, anomalies or deviations from the specified methods. All sample data provided in this report met the acceptance criteria specified in the analytical methods and procedures for initial calibration, continuing calibration, instrument controls and process controls where applicable.

Product: GFPC, Ra228, Liquid

Analytical Method: EPA 904.0/SW846 9320 Modified **Analytical Procedure:** GL-RAD-A-063 REV# 5

Analytical Batch: 2494000

The following samples were analyzed using the above methods and analytical procedure(s).

GEL Sample ID#	Client Sample Identification
634957001	AF75783
634957002	AF75784
634957003	AF75785
634957004	AF75786
1205519878	Method Blank (MB)
1205519879	634957002(AF75784) Sample Duplicate (DUP)
1205519881	Laboratory Control Sample (LCS)

The samples in this SDG were analyzed on an "as received" basis.

Data Summary:

All sample data provided in this report met the acceptance criteria specified in the analytical methods and procedures for initial calibration, continuing calibration, instrument controls and process controls where applicable, with the following exceptions.

Page 9 of 13 SDG: 634957

Technical Information

Sample Re-prep/Re-analysis

Samples were reprepped due to low carrier/tracer yield. The re-analysis is being reported.

<u>Product:</u> Lucas Cell, Ra226, Liquid <u>Analytical Method:</u> EPA 903.1 Modified

Analytical Procedure: GL-RAD-A-008 REV# 15

Analytical Batch: 2486922

The following samples were analyzed using the above methods and analytical procedure(s).

GEL Sample ID#	Client Sample Identification
634957001	AF75783
634957002	AF75784
634957003	AF75785
634957004	AF75786
1205506770	Method Blank (MB)
1205506771	634957001(AF75783) Sample Duplicate (DUP)
1205506773	634957001(AF75783) Matrix Spike (MS)
1205506775	Laboratory Control Sample (LCS)

The samples in this SDG were analyzed on an "as received" basis.

Data Summary:

All sample data provided in this report met the acceptance criteria specified in the analytical methods and procedures for initial calibration, continuing calibration, instrument controls and process controls where applicable, with the following exceptions.

Preparation Information

Aliquot Reduced

1205506773 (AF75783MS) Aliquot was reduced due to limited sample volume.

Certification Statement

Where the analytical method has been performed under NELAP certification, the analysis has met all of the requirements of the NELAC standard unless otherwise noted in the analytical case narrative.

Page 10 of 13 SDG: 634957

Chain of Custody

10341957

Santee Cooper One Riverwood Drive Moneks Comer, SC 29461 Phone: (843)761-8000 Ext. 5148 Fax: (843)761-4175

Customer Email/Report Recipient:			Date R	Project/Task/Unit #:					Rerun request for any flagged QC											
LCWI	MA		@santeec	ooper.com			_		125	915	1 JM	02.0	9.601-1	3650	Yes	No				
																A	nalysis	Grou	2	
Labworks ID # (Internal use only)		Sample Location/ Description			Collection Date	Collection Time	Sample Collector	Total # of containers	Bottle type: (Glass-G/Plastic-P)	Grab (G) or Composite (C)	Matrix(see below)	Preservative (see	• Misc	Commod # orting limit . sample in other notes	ıfo	RAD 226/228	TOTAL RAP CALC.	F, U, SO4		
A=75	183	WA	P-27		8/23/23	1349	2DM 88	3	P	G	GW	2/1				2	×	K 1		
1	84	WAP-28			1	1109	1	1	1	1		1					1	1		
	85	WAP-28 D				1114														
1 86		WAP-29			1	1235	1	1	1		1	1				1	_	1		
											-					-				
																-				
						<u> </u>					ļ.,	<u></u>		C	Description (Indexes)	11 0-	<i>l</i> . A			
Relinquished by: Employee# Date			Time				Employee # Date			2	Time	(°C):	(Internal Use Only) Initial:							
		36158 8/25/23		8/25/23	0990	100					8/25/	125/23 0940		Correct	t pH: Yes No					
Relinquished by:		Employee# Date		Time	Received by:			Employee # Date			i i	Time	Few West	West Committee of the C						
SUD		BK1		8.75.13	15015				GEL 8/25/23		3	1743		ative Lot#:						
Refinquished by:		Employee#		Date	Time	ne Received by:		E	Employee # Date			Time								
														Date/Ti	me/Init for preserv	ative:				
国限处理		METALS (all)		ients MISC.		SC.		Gypsum				Coal		Flyash		Oi	1			
□ Ag		u Sb		□BTEX		1	□ Wallboard □ Ult			Ultimate	Iltimate			Trans. Oil Qual.						
□ As	□ K	SE PARTIE		DO DO		□ Naphthalene □ THM/HAA			Gyp belo		m(all		☐ % Moist ☐ Ash	ure						
□ B	□ Li	□ Sr		3 N □ VOC			1	□ AlM				☐ Ash ☐ % Carbon ☐ Mineral			Acidity Dielectric Strength			th		
□ Ba	A SHEET	-10-23	□ Ti □ F		Negati	☐ Oil & Grease ☐ E. Coli		18	☐ TOC ☐ Total metals				BTUs		Analysis	91	FT			
	□ Ba □ M □ Be □ M		SERVICE VENTOR LINE BUILDING		2	☐ Total Coliform ☐ pH			☐ Soluble Metals				□ Volatile □ CHN	Matter	☐ Sieve ☐ % Moisture		Dissolved Gases Used Oil			
□ Ca		THE RESERVE OF THE PARTY OF THE		□ NO □ Br		□ pri □ Dissolved As □ Dissolved Fe □ Rad 226 □ Rad 228 □ PCB		1	☐ Purity (CaSO4) ☐ % Moisture ☐ Sulfites ☐ pH			100000	ther Tests:		70.1120.011110	111	lashpo	int		
□ Cd		Na 🗆 Zn		□ NO									XRF Scan		NPDES			in oil .Cr.Ni	РЬ	
□ Co	O Ni			30	N. Y. Sand				□ Ch	lorides		D	Fineness	☐ Oil & Grease ☐ As	e Hg)					
□ Cr	□ Pt				347			1	☐ Particle Size ☐ Sulfur				Particulate Ma	□ TSS		FER				
											la seleja	The same		RESERVED TO	Secretary of the second second					

Client: COT		-	SDG/AR/COC/Work Order: 034957					
Received By: MAH - J		_	Date Received: 8.25-23 Circle Applicable:					
Carrier and Tracking Number			FedEx Express FedEx Ground UPS Field Services Couries Other					
Suspected Hazard Information	Yes	ž	*If Net Counts > 100cpm on samples not marked "radioactive", contact the Radiation Safety Group for further investigation.					
A)Shipped as a DOT Hazardous?		1	Hazard Class Shipped: UN#: If UN2910, Is the Radioactive Shipment Survey Compliant? Yes No					
B) Did the client designate the samples are to be received as radioactive?		1	COC notation or radioactive stickers on containers equal client designation.					
C) Did the RSO classify the samples as radioactive?		1	Maximum Net Counts Observed* (Observed Counts - Area Background Counts):CPM / mR/Hr Classified as: Rad 1 Rad 2 Rad 3					
D) Did the client designate samples are hazardous?		1	COC notation or hazard labels on containers equal client designation.					
E) Did the RSO identify possible hazards?		1	f D or E is yes, select Hazards below. PCB's Flammable Foreign Soil RCRA Asbestos Beryllium Other:					
Sample Receipt Criteria	Yes	NA	Comments/Qualifiers (Required for Non-Conforming Items)					
Shipping containers received intact and sealed?	/		Circle Applicable: Seals broken Damaged container Leaking container Other (describe)					
2 Chain of custody documents included with shipment?	1		Circle Applicable: Client contacted and provided COC COC created upon receipt					
3 Samples requiring cold preservation within (0 ≤ 6 deg. C)?*	1		Preservation Method; Wet Ice lee Packs Dry ice None Other: *all temperatures are recorded in Celsius TEMP:					
4 Daily check performed and passed on IR temperature gun?	1	1000	Temperature Device Serial #: <u>IR2-21</u> Secondary Temperature Device Serial # (If Applicable):					
5 Sample containers intact and sealed?	/		Circle Applicable: Seals broken Damaged container Leaking container Other (describe)					
Samples requiring chemical preservation at proper pH?	1		Sample ID's and Containers Aifected: If Preservation added. Lot#:					
			If Yes, are Encores or Soil Kits present for solids? Yes No NA (If yes, take to VOA Freezer)					
7 Do any samples require Volatile Analysis?		建	Do liquid VOA vials contain acid preservation? Yes No NA (If unknown, select No) Are liquid VOA vials free of headspace? Yes No NA Sample ID's and containers affected:					
8 Samples received within holding time?	1		ID's and tests affected:					
9 Sample ID's on COC match ID's on bottles?	1	高者	ID's and containers affected:					
Date & time on COC match date & time on bottles?	1		Circle Applicable: No dates on containers No times on containers COC missing info Other (describe)					
Number of containers received match number indicated on COC?	/		Circle Applicable: No container count on COC Other (describe)					
Are sample containers identifiable as GEL provided by use of GEL labels?	1	7						
COC form is properly signed in relinquished/received sections?	1		Circle Applicable: Not relinquished Other (describe)					
relinquished/received sections? Comments (Use Continuation Form if needed):		IE.						

GL-CHL-SR-001 Rev 7

PM (or PMA) review: Initials

List of current GEL Certifications as of 21 September 2023

State	Certification
Alabama	42200
Alaska	17-018
Alaska Drinking Water	SC00012
Arkansas	88-0651
CLIA	42D0904046
California	2940
Colorado	SC00012
Connecticut	PH-0169
DoD ELAP/ ISO17025 A2LA	2567.01
Florida NELAP	E87156
Foreign Soils Permit	P330-15-00283, P330-15-00253
Georgia	SC00012
Georgia SDWA	967
Hawaii	SC00012
Idaho	SC00012
Illinois NELAP	200029
Indiana	C-SC-01
Kansas NELAP	E-10332
Kentucky SDWA	90129
Kentucky Wastewater	90129
Louisiana Drinking Water	LA024
Louisiana NELAP	03046 (AI33904)
Maine	2019020
Maryland	270
Massachusetts	M-SC012
Massachusetts PFAS Approv	Letter
Michigan	9976
Mississippi	SC00012
Nebraska	NE-OS-26-13
Nevada	SC000122023-4
New Hampshire NELAP	2054
New Jersey NELAP	SC002
New Mexico	SC00012
New York NELAP	11501
North Carolina	233
North Carolina SDWA	45709
North Dakota	R-158
Oklahoma	2022-160
Pennsylvania NELAP	68-00485
Puerto Rico	SC00012
S. Carolina Radiochem	10120002
Sanitation Districts of L	9255651
South Carolina Chemistry	10120001
Tennessee	TN 02934
Texas NELAP	T104704235-23-21
Utah NELAP	SC000122022-37
Vermont	VT87156
Virginia NELAP	460202
Washington	C780
w ashington	C/80

gel.com

August 03, 2023

Ms. Jeanette Gilmetti Santee Cooper P.O. Box 2946101 OCO3 Moncks Corner, South Carolina 29461

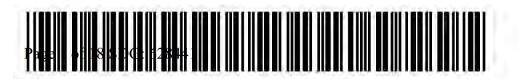
Re: ABS Lab Analytical Work Order: 628441

Dear Ms. Gilmetti:

GEL Laboratories, LLC (GEL) appreciates the opportunity to provide the enclosed analytical results for the sample(s) we received on July 07, 2023. This original data report has been prepared and reviewed in accordance with GEL's standard operating procedures.

The samples were delivered with proper chain of custody documentation and signatures. All sample containers arrived without any visible signs of tampering or breakage. There are no additional comments concerning sample receipt.

Test results for NELAP or ISO 17025 accredited tests are verified to meet the requirements of those standards, with any exceptions noted. The results reported relate only to the items tested and to the sample as received by the laboratory. These results may not be reproduced except as full reports without approval by the laboratory. Copies of GEL's accreditations and certifications can be found on our website at www.gel.com.


Our policy is to provide high quality, personalized analytical services to enable you to meet your analytical needs on time every time. We trust that you will find everything in order and to your satisfaction. If you have any questions, please do not hesitate to call me at (843) 556-8171, ext. 4289.

Sincerely,

Jessica Ward for Julie Robinson Project Manager

Purchase Order: 398684

Enclosures

2040 Savage Road Charleston SC 29407 - (843) 556-8171 - www.gel.com

Certificate of Analysis Report for

SOOP001 Santee Cooper

Client SDG: 628441 GEL Work Order: 628441

The Qualifiers in this report are defined as follows:

- * A quality control analyte recovery is outside of specified acceptance criteria
- ** Analyte is a Tracer compound
- ** Analyte is a surrogate compound
- U Analyte was analyzed for, but not detected above the MDL, MDA, MDC or LOD.

Where the analytical method has been performed under NELAP certification, the analysis has met all of the requirements of the NELAC standard unless qualified on the Certificate of Analysis.

The designation ND, if present, appears in the result column when the analyte concentration is not detected above the limit as defined in the 'U' qualifier above.

This data report has been prepared and reviewed in accordance with GEL Laboratories LLC standard operating procedures. Please direct any questions to your Project Manager, Julie Robinson.

Reviewed by

Page 2 of 18 SDG: 628441

2040 Savage Road Charleston SC 29407 - (843) 556-8171 - www.gel.com

Certificate of Analysis

Report Date: August 3, 2023

SOOP00119

SOOP001

Company: Santee Cooper P.O. Box 2946101 Address:

OCO3

Moncks Corner, South Carolina 29461

Contact: Ms. Jeanette Gilmetti Project: ABS Lab Analytical

Client Sample ID: AF68739 Sample ID: 628441001

Matrix: GW

Collect Date: 05-JUL-23 10:44 Receive Date: 07-JUL-23

Collector: Client

Project:

Client ID:

Parameter	Qualifier	Result	Uncertainty	MDC	RL	Units	PF	DF Analy	yst Date	Time Batch	Method
Rad Gas Flow Proportion	nal Counting										
GFPC, Ra228, Liquid "A	As Received"										
Radium-228		4.57	+/-1.50	1.82	3.00	pCi/L		JE1	07/18/23	0924 2455718	1
Radium-226+Radium-228 Calculation "See Parent Products"											
Radium-226+228 Sum		4.74	+/-1.53			pCi/L		NXL1	08/02/23	0858 2455717	2
Rad Radium-226											
Lucas Cell, Ra226, Liqu	id "As Recei	ved"									
Radium-226	U	0.165	+/-0.281	0.523	1.00	pCi/L		LXP1	08/01/23	0944 2455712	3
The following Analytical Methods were performed:											

Method **Analyst Comments** Description EPA 904.0/SW846 9320 Modified 2 Calculation

EPA 903.1 Modified

Surrogate/Tracer Recovery Nominal Recovery% Acceptable Limits Test Result Barium-133 Tracer GFPC, Ra228, Liquid "As Received" 69.8 (15%-125%)

Notes:

Counting Uncertainty is calculated at the 95% confidence level (1.96-sigma).

Column headers are defined as follows:

DF: Dilution Factor Lc/LC: Critical Level PF: Prep Factor DL: Detection Limit MDA: Minimum Detectable Activity **RL**: Reporting Limit

MDC: Minimum Detectable Concentration SQL: Sample Quantitation Limit

Page 3 of 18 SDG: 628441

2040 Savage Road Charleston SC 29407 - (843) 556-8171 - www.gel.com

Certificate of Analysis

Report Date: August 3, 2023

Company: Santee Cooper Address: P.O. Box 2946101

OCO3

Moncks Corner, South Carolina 29461

Contact: Ms. Jeanette Gilmetti Project: ABS Lab Analytical

Client Sample ID: AF68735 Sample ID: 628441002

Matrix: GW

Collect Date: 05-JUL-23 09:35
Receive Date: 07-JUL-23
Collector: Client

Project: SOOP00119 Client ID: SOOP001

Parameter	Qualifier	Result	Uncertainty	MDC	RL	Units	PF	DF Analy	st Date	Time Batch	Method
Rad Gas Flow Proportion	onal Counting										
GFPC, Ra228, Liquid "	As Received"										
Radium-228		3.43	+/-1.21	1.39	3.00	pCi/L		JE1	07/18/23	0924 2455718	3 1
Radium-226+Radium-2	28 Calculatio	n "See Pa	arent Products"								
Radium-226+228 Sum		4.18	+/-1.28			pCi/L		NXL1	08/02/23	0858 2455717	7 2
Rad Radium-226											
Lucas Cell, Ra226, Liqu	uid "As Recei	ved"									
Radium-226		0.746	+/-0.413	0.408	1.00	pCi/L		LXP1	08/01/23	1005 2455712	2 3
The following Analytic	cal Methods w	ere perfo	ormed:								
Method	Description		Analyst Comments								

1	EPA 904.0/SW846 9320 Modified		•		
2	Calculation				
3	EPA 903.1 Modified				
Surrogate/Tracer Recove	ery Test	Result	Nominal	Recovery%	Acceptable Limits

Barium-133 Tracer GFPC, Ra228, Liquid "As Received" 71.5 (15%-125%)

Notes:

Counting Uncertainty is calculated at the 95% confidence level (1.96-sigma).

Column headers are defined as follows:

DF: Dilution Factor Lc/LC: Critical Level
DL: Detection Limit PF: Prep Factor
MDA: Minimum Detectable Activity RL: Reporting Limit

MDC: Minimum Detectable Concentration SQL: Sample Quantitation Limit

Page 4 of 18 SDG: 628441

2040 Savage Road Charleston SC 29407 - (843) 556-8171 - www.gel.com

Certificate of Analysis

Project:

Client ID:

Analyst Comments

Report Date: August 3, 2023

SOOP00119

SOOP001

Company: Santee Cooper Address: P.O. Box 2946101

OCO3

Moncks Corner, South Carolina 29461

Contact: Ms. Jeanette Gilmetti Project: ABS Lab Analytical

Client Sample ID: AF68756 Sample ID: 628441003

Matrix: GW

Collect Date: 05-JUL-23 11:39
Receive Date: 07-JUL-23
Collector: Client

Parameter	Qualifier	Result	Uncertainty	MDC	RL	Units	PF	DF Analy	yst Date	Time Batch	Method
Rad Gas Flow Propor	tional Counting	;									
GFPC, Ra228, Liquid	"As Received"	1									
Radium-228		3.86	+/-1.36	1.70	3.00	pCi/L		JE1	07/18/23	0924 2455718	1
Radium-226+Radium	-228 Calculatio	n "See Pa	arent Products"								
Radium-226+228 Sum		4.33	+/-1.42			pCi/L		NXL1	08/02/23	0858 2455717	2
Rad Radium-226											
Lucas Cell, Ra226, Li	iquid "As Recei	ved"									
Radium-226	U	0.471	+/-0.397	0.579	1.00	pCi/L		LXP1	08/01/23	1005 2455712	3
The following Analyt	tical Methods w	zere nerfo	rmed:								

Method Description

2	Calculation				
3	EPA 903.1 Modified				
Surrogate/Tracer Reco	verv Test	Result	Nominal	Recovery%	Acceptable Limits

Barium-133 Tracer GFPC, Ra228, Liquid "As Received"

Result Nominal Recovery Acceptable Limit Recovery 75.5 (15%-125%)

Notes:

Counting Uncertainty is calculated at the 95% confidence level (1.96-sigma).

EPA 904.0/SW846 9320 Modified

Column headers are defined as follows:

DF: Dilution Factor Lc/LC: Critical Level
DL: Detection Limit PF: Prep Factor
MDA: Minimum Detectable Activity RL: Reporting Limit

MDC: Minimum Detectable Concentration SQL: Sample Quantitation Limit

Page 5 of 18 SDG: 628441

2040 Savage Road Charleston SC 29407 - (843) 556-8171 - www.gel.com

Certificate of Analysis

Report Date: August 3, 2023

Company: Santee Cooper Address: P.O. Box 2946101

OCO3

Moncks Corner, South Carolina 29461

Contact: Ms. Jeanette Gilmetti Project: ABS Lab Analytical

Client Sample ID: AF68758 Sample ID: 628441004

Matrix: GW

Collect Date: 06-JUL-23 09:47
Receive Date: 07-JUL-23
Collector: Client

Project: SOOP00119 Client ID: SOOP001

Parameter	Qualifier	Result	Uncertainty	MDC	RL	Units	PF	DF Analy	st Date	Time Batch	Method
Rad Gas Flow Proportion	onal Counting										
GFPC, Ra228, Liquid "	As Received"										
Radium-228	U	0.938	+/-1.42	2.44	3.00	pCi/L		JE1	07/18/23	0924 2455718	3 1
Radium-226+Radium-2	28 Calculatio	n "See Pa	arent Products"								
Radium-226+228 Sum		1.48	+/-1.46			pCi/L		NXL1	08/02/23	0858 2455717	7 2
Rad Radium-226											
Lucas Cell, Ra226, Liqu	uid "As Recei	ved"									
Radium-226		0.542	+/-0.339	0.302	1.00	pCi/L		LXP1	08/01/23	1005 2455712	2 3
The following Analytic	al Methods w	ere perfo	ormed:								
Method	Description		Analyst Comments								

1	EPA 904.0/SW846 9320 Modified		•		
2	Calculation				
3	EPA 903.1 Modified				
Surrogate/Tracer Recove	ery Test	Result	Nominal	Recovery%	Acceptable Limits

Barium-133 Tracer GFPC, Ra228, Liquid "As Received" 70.9 (15%-125%)

Notes:

Counting Uncertainty is calculated at the 95% confidence level (1.96-sigma).

Column headers are defined as follows:

DF: Dilution Factor Lc/LC: Critical Level
DL: Detection Limit PF: Prep Factor
MDA: Minimum Detectable Activity RL: Reporting Limit

MDC: Minimum Detectable Concentration SQL: Sample Quantitation Limit

Page 6 of 18 SDG: 628441

2040 Savage Road Charleston SC 29407 - (843) 556-8171 - www.gel.com

Certificate of Analysis

Project:

Client ID:

Report Date: August 3, 2023

SOOP00119

SOOP001

Company: Santee Cooper Address: P.O. Box 2946101

OCO3

Moncks Corner, South Carolina 29461

Contact: Ms. Jeanette Gilmetti Project: ABS Lab Analytical

Client Sample ID: AF68759 Sample ID: 628441005

Matrix: GW

Collect Date: 06-JUL-23 09:52
Receive Date: 07-JUL-23
Collector: Client

Parameter	Qualifier	Result	Uncertainty	MDC	RL	Units	PF	DF Analy	st Date	Time Batch	Method
Rad Gas Flow Propor	tional Counting		-								
GFPC, Ra228, Liquid	l "As Received"										
Radium-228		4.73	+/-1.48	1.61	3.00	pCi/L		JE1	07/18/23	0924 2455718	1
Radium-226+Radium	-228 Calculation	"See Pa	arent Products"								
Radium-226+228 Sum		5.19	+/-1.52			pCi/L		NXL1	08/02/23	0858 2455717	2
Rad Radium-226											
Lucas Cell, Ra226, Li	iquid "As Receiv	ed"									
Radium-226	•	0.462	+/-0.347	0.361	1.00	pCi/L		LXP1	08/01/23	1005 2455712	3
The following Analytical Methods were performed:											
Method	Description		Analyst Comments								

1	EPA 904.0/SW846 9320 Modified				
2	Calculation				
3	EPA 903.1 Modified				
Surrogate/Tracer Recove	erv Test	Result	Nominal	Recovery%	Acceptable Limits

Barium-133 Tracer GFPC, Ra228, Liquid "As Received" 69.5 (15%-125%)

Notes:

Counting Uncertainty is calculated at the 95% confidence level (1.96-sigma).

Column headers are defined as follows:

DF: Dilution Factor Lc/LC: Critical Level
DL: Detection Limit PF: Prep Factor
MDA: Minimum Detectable Activity RL: Reporting Limit

MDC: Minimum Detectable Concentration SQL: Sample Quantitation Limit

Page 7 of 18 SDG: 628441

2040 Savage Road Charleston SC 29407 - (843) 556-8171 - www.gel.com

Certificate of Analysis

Report Date: August 3, 2023

Company: Santee Cooper Address: P.O. Box 2946101

OCO3

Moncks Corner, South Carolina 29461

Contact: Ms. Jeanette Gilmetti Project: ABS Lab Analytical

Client Sample ID: AF68736 Sample ID: 628441006

Matrix: GW

Collect Date: 06-JUL-23 11:21
Receive Date: 07-JUL-23
Collector: Client

F68736 Project: SOOP00119 8441006 Client ID: SOOP001

Parameter	Qualifier	Result	Uncertainty	MDC	RL	Units	PF	DF Analy	st Date	Time Batch	Method
Rad Gas Flow Proportion	onal Counting										
GFPC, Ra228, Liquid ".	As Received"										
Radium-228		4.13	+/-1.65	2.22	3.00	pCi/L		JE1	07/18/23	0924 2455718	1
Radium-226+Radium-2	28 Calculation	n "See Pa	arent Products"								
Radium-226+228 Sum		4.94	+/-1.71			pCi/L		NXL1	08/02/23	0858 2455717	2
Rad Radium-226											
Lucas Cell, Ra226, Liqu	uid "As Recei	ved"									
Radium-226		0.812	+/-0.450	0.518	1.00	pCi/L		LXP1	08/01/23	1005 2455712	3
The following Analytic	al Methods w	ere perfo	ormed:								
Method	Description		Analyst Comments								

1	EPA 904.0/SW846 9320 Modified		•									
2	Calculation	leulation										
3	EPA 903.1 Modified	EPA 903.1 Modified										
Surrogate/Tracer Recove	ery Test	Result	Nominal	Recovery%	Acceptable Limits							

Barium-133 Tracer GFPC, Ra228, Liquid "As Received" 61.2 (15%-125%)

Notes:

Counting Uncertainty is calculated at the 95% confidence level (1.96-sigma).

Column headers are defined as follows:

DF: Dilution Factor Lc/LC: Critical Level
DL: Detection Limit PF: Prep Factor
MDA: Minimum Detectable Activity RL: Reporting Limit

MDC: Minimum Detectable Concentration SQL: Sample Quantitation Limit

Page 8 of 18 SDG: 628441

2040 Savage Road Charleston SC 29407 - (843) 556-8171 - www.gel.com

Certificate of Analysis

Project:

Report Date: August 3, 2023

SOOP00119

Company: Santee Cooper P.O. Box 2946101 Address:

OCO3

Moncks Corner, South Carolina 29461

Contact: Ms. Jeanette Gilmetti Project: ABS Lab Analytical

Client Sample ID: AF68753 Sample ID: 628441007

Collect Date: Receive Date: 07-JUL-23 Collector: Client

Client ID: SOOP001 Matrix: GW06-JUL-23 13:08

Parameter	Qualifier	Result	Uncertainty	MDC	RL	Units	PF	DF Analy	st Date	Time Batch	Method
Rad Gas Flow Proportion	Rad Gas Flow Proportional Counting										
GFPC, Ra228, Liquid "	As Received"										
Radium-228	U	1.28	+/-0.974	1.50	3.00	pCi/L		JE1	07/18/23	0924 2455718	1
Radium-226+Radium-2	28 Calculatio	n "See Pa	arent Products"								
Radium-226+228 Sum		2.34	+/-1.08			pCi/L		NXL1	08/02/23	0858 2455717	2
Rad Radium-226											
Lucas Cell, Ra226, Liqu	uid "As Recei	ved"									
Radium-226		1.05	+/-0.469	0.389	1.00	pCi/L		LXP1	08/01/23	1005 2455712	3
The following Analytic	cal Methods w	ere perfo	rmed:								
							0 00	1201			-

Method	Description	Analys	st Comments
1	EPA 904.0/SW846 9320 Modified	•	

2 Calculation EPA 903.1 Modified

Surrogate/Tracer Recovery Result Nominal Recovery% Acceptable Limits Test Barium-133 Tracer GFPC, Ra228, Liquid "As Received" (15%-125%) 69.4

Notes:

Counting Uncertainty is calculated at the 95% confidence level (1.96-sigma).

Column headers are defined as follows:

DF: Dilution Factor Lc/LC: Critical Level DL: Detection Limit PF: Prep Factor MDA: Minimum Detectable Activity **RL**: Reporting Limit

MDC: Minimum Detectable Concentration SQL: Sample Quantitation Limit

Page 9 of 18 SDG: 628441

2040 Savage Road Charleston SC 29407 - (843) 556-8171 - www.gel.com

Certificate of Analysis

Project:

Client ID:

Report Date: August 3, 2023

SOOP00119

SOOP001

Company: Santee Cooper Address: P.O. Box 2946101

OCO3

Moncks Corner, South Carolina 29461

Contact: Ms. Jeanette Gilmetti Project: ABS Lab Analytical

Client Sample ID: AF68754 Sample ID: 628441008

Matrix: GW

Collect Date: 06-JUL-23 13:13
Receive Date: 07-JUL-23
Collector: Client

Parameter	Qualifier	Result	Uncertainty	MDC	RL	Units	PF	DF Anal	yst Date	Time Batch	Method
Rad Gas Flow Proporti	onal Counting	5									
GFPC, Ra228, Liquid '	'As Received"	•									
Radium-228		2.81	+/-1.24	1.67	3.00	pCi/L		JE1	07/18/23	0924 2455718	1
Radium-226+Radium-2	228 Calculatio	n "See P	arent Products"								
Radium-226+228 Sum		3.13	+/-1.28			pCi/L		NXL1	08/02/23	0858 2455717	2
Rad Radium-226											
Lucas Cell, Ra226, Liq	uid "As Recei	ved"									
Radium-226	U	0.321	+/-0.315	0.466	1.00	pCi/L		LXP1	08/01/23	1005 2455712	3
The following Analytic	cal Methods w	ere perfo	ormed:								

Method	Description	Analyst Comments
1	EPA 904 0/SW846 9320 Modified	•

EPA 904.0/SW846 9320 Modified
Calculation

2 Calculation 3 EPA 903.1 Modified

Surrogate/Tracer Recovery	Test	Result	Nominai	Recovery%	Acceptable Limits
Barium-133 Tracer	GFPC, Ra228, Liquid "As Received"			73.4	(15%-125%)

Notes:

Counting Uncertainty is calculated at the 95% confidence level (1.96-sigma).

Column headers are defined as follows:

DF: Dilution Factor Lc/LC: Critical Level
DL: Detection Limit PF: Prep Factor
MDA: Minimum Detectable Activity RL: Reporting Limit

MDC: Minimum Detectable Concentration SQL: Sample Quantitation Limit

Page 10 of 18 SDG: 628441

2040 Savage Road Charleston SC 29407 - (843) 556-8171 - www.gel.com

Certificate of Analysis

Report Date: August 3, 2023

Company: Santee Cooper Address: P.O. Box 2946101

OCO3

Moncks Corner, South Carolina 29461

Contact: Ms. Jeanette Gilmetti Project: ABS Lab Analytical

Client Sample ID: AF68752 Sample ID: 628441009

Matrix: GW

Collect Date: 06-JUL-23 14:09
Receive Date: 07-JUL-23
Collector: Client

 D: AF68752
 Project:
 SOOP00119

 628441009
 Client ID:
 SOOP001

Parameter	Qualifier	Result	Uncertainty	MDC	RL	Units	PF	DF Analyst D	ate	Time E	Batch	Method
Rad Gas Flow Proportion	nal Counting											
GFPC, Ra228, Liquid "A	As Received"											
Radium-228		3.55	+/-1.26	1.46	3.00	pCi/L		JE1 07/1	8/23	0924 24	455718	1
Radium-226+Radium-22												
Radium-226+228 Sum		3.61	+/-1.28			pCi/L		NXL1 08/0	2/23	0858 24	455717	2
Rad Radium-226												
Lucas Cell, Ra226, Liqu	id "As Recei	ved"										
Radium-226	U	0.0603	+/-0.237	0.525	1.00	pCi/L		LXP1 08/0	1/23	1005 24	455712	3
The following Analytic	al Methods w	ere perfo	ormed:									
Method	Description					A	Analys	st Comments				-
1	EPA 904.0/SW	846 9320 I	Modified									

2	Calculation				
3	EPA 903.1 Modified				
Surrogate/Tracer Recove	ry Test	Result	Nominal	Recovery%	Acceptable Limits
Barium-133 Tracer	GFPC, Ra228, Liquid "As Received"			68.7	(15%-125%)

Notes:

Counting Uncertainty is calculated at the 95% confidence level (1.96-sigma).

Column headers are defined as follows:

DF: Dilution Factor Lc/LC: Critical Level
DL: Detection Limit PF: Prep Factor
MDA: Minimum Detectable Activity RL: Reporting Limit

MDC: Minimum Detectable Concentration SQL: Sample Quantitation Limit

Page 11 of 18 SDG: 628441

2040 Savage Road Charleston, SC 29407 - (843) 556-8171 - www.gel.com

QC Summary

Report Date: August 3, 2023

Santee Cooper P.O. Box 2946101

OCO3

Moncks Corner, South Carolina

Contact: Ms. Jeanette Gilmetti

Workorder: 628441

Parmname	NOM	Sample	Qual	QC	Units	RPD%	REC%	Range	Anlst	Date Time
Rad Gas Flow										
Batch 2455718 ———										
QC1205453175 628441001 DUP										
Radium-228	**	4.57		2.31	pCi/L	65.8		(0% - 100%)	JE1	07/18/23 09:23
	Uncertainty	+/-1.50		+/-1.23						
QC1205453176 LCS										
Radium-228	77.9			79.3	pCi/L		102	(75%-125%)		07/18/23 09:23
	Uncertainty			+/-4.58						
QC1205453174 MB					C1.7					
Radium-228	**		U	1.22	pCi/L					07/18/23 11:01
	Uncertainty			+/-1.25						
Rad Ra-226										
Batch 2455712 ———										
QC1205453161 628343001 DUP										
Radium-226		5.77		4.99	pCi/L	14.5		(0%-20%)	LXP1	08/01/23 10:28
	Uncertainty	+/-1.15		+/-1.05						
QC1205453163 LCS Radium-226	26.3			21.5	C:/T		01.7	(750/ 1250/)		09/01/22 10:29
Radium-226	Uncertainty			21.5 +/-1.96	pCi/L		81.7	(75%-125%)		08/01/23 10:28
	Oncertainty			1/-1.90						
QC1205453160 MB										
Radium-226			U	0.275	pCi/L					08/01/23 10:28
	Uncertainty			+/-0.333						
QC1205453162 628343001 MS Radium-226	131	5 77		150	nC:/I		116	(750/ 1250/)		09/01/22 10:29
Naululli-220	Uncertainty	5.77 +/-1.15		158 +/-13.8	pCi/L		116	(75%-125%)		08/01/23 10:28
	Oncertainty	1/-1.13		1/-13.0						

Notes:

Counting Uncertainty is calculated at the 95% confidence level (1.96-sigma).

The Qualifiers in this report are defined as follows:

U Analyte was analyzed for, but not detected above the MDL, MDA, MDC or LOD.

J Value is estimated

X Consult Case Narrative, Data Summary package, or Project Manager concerning this qualifier

H Analytical holding time was exceeded

< Result is less than value reported

Page 12 of 18 SDG: 628441

Page 1 of 2

2040 Savage Road Charleston, SC 29407 - (843) 556-8171 - www.gel.com

QC Summary

Workorder: 628441

Page 2 of 2

Parmage

NOM Sample Qual OC Units RPD% REC% Range And Date Time

Parmname	NOM	Sample	Qual	QC	Units	RPD%	REC%	Range	Anlst	Date	Time

- Result is greater than value reported
- UI Gamma Spectroscopy--Uncertain identification
- BD Results are either below the MDC or tracer recovery is low
- h Preparation or preservation holding time was exceeded
- R Sample results are rejected
- ^ RPD of sample and duplicate evaluated using +/-RL. Concentrations are <5X the RL. Qualifier Not Applicable for Radiochemistry.
- N/A RPD or %Recovery limits do not apply.
- ND Analyte concentration is not detected above the detection limit
- M if above MDC and less than LLD
- NJ Consult Case Narrative, Data Summary package, or Project Manager concerning this qualifier
- FA Failed analysis.
- UJ Gamma Spectroscopy--Uncertain identification
- Q One or more quality control criteria have not been met. Refer to the applicable narrative or DER.
- K Analyte present. Reported value may be biased high. Actual value is expected to be lower.
- UL Not considered detected. The associated number is the reported concentration, which may be inaccurate due to a low bias.
- L Analyte present. Reported value may be biased low. Actual value is expected to be higher.
- N1 See case narrative
- Y Other specific qualifiers were required to properly define the results. Consult case narrative.
- ** Analyte is a Tracer compound
- M REMP Result > MDC/CL and < RDL
- J See case narrative for an explanation

N/A indicates that spike recovery limits do not apply when sample concentration exceeds spike conc. by a factor of 4 or more or %RPD not applicable.

- ^ The Relative Percent Difference (RPD) obtained from the sample duplicate (DUP) is evaluated against the acceptance criteria when the sample is greater than five times (5X) the contract required detection limit (RL). In cases where either the sample or duplicate value is less than 5X the RL, a control limit of +/- the RL is used to evaluate the DUP result.
- * Indicates that a Quality Control parameter was not within specifications.

For PS, PSD, and SDILT results, the values listed are the measured amounts, not final concentrations.

Where the analytical method has been performed under NELAP certification, the analysis has met all of the requirements of the NELAC standard unless qualified on the QC Summary.

Page 13 of 18 SDG: 628441

Radiochemistry Technical Case Narrative Santee Cooper SDG #: 628441

Product: GFPC, Ra228, Liquid

<u>Analytical Method:</u> EPA 904.0/SW846 9320 Modified <u>Analytical Procedure:</u> GL-RAD-A-063 REV# 5

Analytical Batch: 2455718

The following samples were analyzed using the above methods and analytical procedure(s).

GEL Sample ID#	Client Sample Identification
628441001	AF68739
628441002	AF68735
628441003	AF68756
628441004	AF68758
628441005	AF68759
628441006	AF68736
628441007	AF68753
628441008	AF68754
628441009	AF68752
1205453174	Method Blank (MB)
1205453175	628441001(AF68739) Sample Duplicate (DUP)
1205453176	Laboratory Control Sample (LCS)

The samples in this SDG were analyzed on an "as received" basis.

Data Summary:

All sample data provided in this report met the acceptance criteria specified in the analytical methods and procedures for initial calibration, continuing calibration, instrument controls and process controls where applicable, with the following exceptions.

Technical Information

Recounts

Sample 1205453174 (MB) was recounted due to a suspected blank false positive. The recount is reported.

Product: Lucas Cell, Ra226, Liquid **Analytical Method:** EPA 903.1 Modified

Analytical Procedure: GL-RAD-A-008 REV# 15

Analytical Batch: 2455712

The following samples were analyzed using the above methods and analytical procedure(s).

GEL Sample ID#	Client Sample Identification
628441001	AF68739
628441002	AF68735

Page 14 of 18 SDG: 628441

628441003	AF68756
628441004	AF68758
628441005	AF68759
628441006	AF68736
628441007	AF68753
628441008	AF68754
628441009	AF68752
1205453160	Method Blank (MB)
1205453161	628343001(NonSDG) Sample Duplicate (DUP)
1205453162	628343001(NonSDG) Matrix Spike (MS)
1205453163	Laboratory Control Sample (LCS)

The samples in this SDG were analyzed on an "as received" basis.

Data Summary:

All sample data provided in this report met the acceptance criteria specified in the analytical methods and procedures for initial calibration, continuing calibration, instrument controls and process controls where applicable, with the following exceptions.

Miscellaneous Information

Additional Comments

The matrix spike, 1205453162 (Non SDG 628343001MS), aliquot was reduced to conserve sample volume.

Certification Statement

Where the analytical method has been performed under NELAP certification, the analysis has met all of the requirements of the NELAC standard unless otherwise noted in the analytical case narrative.

Page 15 of 18 SDG: 628441

Chain of Custody

028441

Santee Cooper One Riverwood Drive Moneks Comer, SC 29461 Phone: (843)761-8000 Ext. 5148 Fax: (843)761-4175

	Customer Email/Report Recipient: LCWILLIA @santeecooper.com		Date R	Date Results Needed by:					oject/		1 36200	Rerun request	for ar	y fla	ged QC			
																A	nalysis	Group
Labworks ID (Internal use only)	9.13	Sampl Descri	e Location ption	n/	Collection Date	Collection Time	Sample Collector	Total # of containers	Bottle type: (Glass-G/Plastic-P)	Grab (G) or Composite (C)	Matrix(see below)	Preservative (see	Rep Miss	Comment hod # orting limit c. sample info other notes	ts	RAD 226/228	TOTAL RAD CALC	
AF6873	39	WAT	>-22		7/5/23	1044	WIK	2	P	G	GW	2				*	X	
AF6873	5	WAP				0935	(1					1		
AF6 8 75	56	WLF	-A2-1			[139	1	1	1	1	1	1				1		
AF 68758	3	WLF.	-A2-6		7/6/23	0947		1	1	1	1	1				1	1	
AF6875	9	WLF-	A2-6	DUP		0952					\perp					11-		
AF 68 736	6	WAP	-19		1	1121		1			11	H				4		
AF6875	3	WLF	- AI-4		7/6/23	1368										+		
AF6875	4	WLF-	A-4	DUP	11	1313									#			
AF68752	2	WLF	-AI-3		1	1469	1	1	1	1		Ī				1	1	
						1								6 1 2				
Relinquish	ed by:	Er	mployee#	Date	Time	Recei	ved by:	1	mployee	#	Dat	e	Time		ceiving (Interna C):			
Sgrown		35	5594	7/7/23	1019	MI	1		GEL	- 7	1/7/2	3	1019	Correct p	H: Yes N	0		
Relinquish	ed by:	Er	mployee#	Date	Time	Recei	ved by:		mployee		Dat	100	Time					
Kelinquish	ed by:	Er	mployee#	7.7.27 Date	15the	Recei	ved by:		Employee		7/7/ [©]	-	16/0	1				
			C (-11)		4 3 19 11				1. 1. 1.				No. of Concession,		e/Init for preser	vative:	200	STOP
☐ Ag ☐ Al ☐ As ☐ B ☐ Ba ☐ Be ☐ Ca ☐ Cd ☐ Co ☐ Cr	□ A1 □ Fe □ Se □ As □ K □ Sn □ B □ Li □ Sr □ Ba □ Mg □ Ti □ Be □ Mn □ Tl □ Ca □ Mo □ V □ Cd □ Na □ Zn □ Co □ Ni □ Hg			OC /TPO4 H3-N D2	MI BTEX Naphth THM/H VOC Oil & C E Coli Total C DH Dissolv Brad 220 Rad 220 PCB	IAA Grease oliform ed As ed Fe		Walth Gyl beld A DT4 DS6 BP0 B% B%	psum(pw) LIM OC otal me oluble Marity (C Moista Mittes I hloride article S	tals Metals 'aSO4) ure	0 0	Coal Ultimate '' Mois Ash Sulfur BTUs Volatile CHN Other Tests: XRF Scan HG1 Fineness Particulate M	e Matter	Flyash Ammonia LOI % Carbon Mineral Analysis Sieve % Moisture NPDES Oil & Grease As TSS	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	%Moi Color Acidity Dielecan IFT Dissolv sed O Flashp Metals	d Qual, sture c Strength ed Gases il oint in oil i.Cr.Ni.Ph	

16	3	Laboratories LLC			SAM	PLE RECEIPT & REVIEW FORM						
and the same of th	- Indian	- D	-	10		DC/Work Order: 028441						
ent:	3	700	_	-		. /[[] 45						
- irrad	Rv:	SNS	_	I	ate Rece	FedEx Express FedEx Ground UPS Field Services Courses Other						
		and Tracking Number			CO	oler 1-3c Cooler 2-12c ounts > 100cpm on samples not marked "radioactive", contact the Radiation Safety Group for further investigation.						
		a de dellon	Yes	No	*If Net Co	ounts > 100cpm on samples not marked Tautoucuto 100cpm on samples not marked Not marked Not marked Not marked Not marked Not marked Not marked Not marked						
specte	d H	azard Information	-		A Longred Cl	ass Shipped: UN#: ass Shipped: No No						
		7		X	Plazard C.	ass Shipped: If UN2910, Is the Radioactive Shipment Survey Compliant? YesNo						
Shipp	ed as	a DOT Hazardous?		H		ation or radioactive stickers on containers equal client designation.						
		lient designate the samples are to be	1	X	COC not	ation or radioactive success switches and country (Country): CPM mR/Hr						
i) Did i	the cl	adioactive?	-	1	Maximu	Observed Counts - Area Background Counts,						
		RSO classify the samples as		X		Classified						
C) Did radioac	the h	(30 classif) management	+	1	1	tation or hazard labels on containers equal client designation.						
	-		7	X	COC no							
D) Die	i the	client designate samples are hazardous	1	1	If D or	E is yes, select rimande Foreign Soil RCRA Asbestos Beryman						
			1	P	`	CB3 (Pageired for Non-Conforming Items)						
E) Die	d the	RSO identify possible hazards?	T	X es	N NA	rcle Applicable: Seals broken Damaged container Leaking container Other (describe)						
		Sample Receipt Criteria		1	Ci	rcle Applicable: Seals broken Damaged container						
	Ship	ping containers received intact and	1	X		COC created upon receipt						
1 1	ceals	·d?	-	1	C	ircle Applicable: Client contacted and provided COC COC created upon receipt						
	Cha	in of custody documents included		X		reservation Method: Wet le Ice Packs Dry ice None Other: TEMP See about						
		shipment?	7	1	F	*all temperatures are recorded in Celsius						
12	San	nples requiring cold preservation		X	1	4.1.1.1.1.1.23						
13			TD			Temperature Device Serial #: IR1-23 Secondary Temperature Device Serial # (If Applicable): Temperature Device Serial #: IR1-23 Other (describe)						
1.	Dai	hin $0 \le 0$ deg. Cy.	III	X		Secondary Temperature Device Schall (Cartiful Cartiful	ten	nperature gun?		7		Circle Applicable: Seals broken Dames-
10	100	mple containers intact and sealed?		X		. Afficient						
5				1		Sample ID's and Containers Affected:						
1	. Sa	imples requiring chemical preserva	цоп	1		If Preservation added, Loth: If Yes, are Encores or Soil Kits present for solids? Yes No NA (If yes, take to VOA Freezer) If Yes, are Encores or Soil Kits preservation? Yes No NA (If unknown, select No)						
6	at	proper pH?		1		If Preservation added, the present for solids? Yes No NA (If unknown, select No) Do liquid VOA vials contain acid preservation? Yes No NA (If unknown, select No)						
		Malatile				Land VOA vials free of headspace: 105						
1,	7	Do any samples require Volatile Analysis?	1	1		Sample ID's and containers affected:						
		Allaijas.										
L		A Trade of the second		1	/	ID's and tests affected:						
	8 5	Samples received within holding tir	ne?	V		ID's and containers affected:						
L				1	1	ID's and containers a						
	9	Sample ID's on COC match ID's or bottles?		X		Circle Applicable: No dates on containers No times on containers COC missing info Other (describe)						
1		Date & time on COC match date &	tin	e I	1							
	10	Date & time on COC hatch care on bottles?		1		Circle Applicable: No container count on COC Other (describe)						
	0	Number of containers received ma	tch		1	Clicic Abburgano.						
	11	the indicated on Coci		1								
		- toiners identifiable	as		X	Not relinquished Other (describe)						
	-	Are sample committee to lah	-1-2		/\ E36	Circle Applicable: Not relinquished Other (describe)						
	12		eis:	-	1	Choic Appar						
	12	COC form is properly signed in	C15:		X	Спос / фр						

Page 17 of 18 SDG: 628441

C

Date 1/10/23 Page ____

List of current GEL Certifications as of 03 August 2023

State	Certification
Alabama	42200
Alaska	17-018
Alaska Drinking Water	SC00012
Arkansas	88-0651
CLIA	42D0904046
California	2940
Colorado	SC00012
Connecticut	PH-0169
DoD ELAP/ ISO17025 A2LA	2567.01
Florida NELAP	E87156
Foreign Soils Permit	P330-15-00283, P330-15-00253
Georgia	SC00012
Georgia SDWA	967
Hawaii	SC00012
Idaho	SC00012 SC00012
Illinois NELAP	200012
Indiana	C-SC-01
Kansas NELAP	E-10332
Kentucky SDWA	90129
Kentucky Wastewater	90129
Louisiana Drinking Water	LA024
Louisiana NELAP	03046 (AI33904)
Maine	2019020
Maryland	270
Massachusetts	M-SC012
Massachusetts PFAS Approv	Letter
Michigan	9976
Mississippi	SC00012
Nebraska	NE-OS-26-13
Nevada	SC000122023-4
New Hampshire NELAP	2054
New Jersey NELAP	SC002
New Mexico	SC00012
New York NELAP	11501
North Carolina	233
North Carolina SDWA	45709
North Dakota	R-158
Oklahoma	2022-160
Pennsylvania NELAP	68-00485
Puerto Rico	SC00012
S. Carolina Radiochem	10120002
Sanitation Districts of L	9255651
South Carolina Chemistry	10120001
Tennessee	TN 02934
Texas NELAP	T104704235-22-20
Utah NELAP	SC000122022-37
Vermont	VT87156
Virginia NELAP	460202
Washington	C780
	1

gel.com

October 26, 2023

Ms. Jeanette Gilmetti Santee Cooper P.O. Box 2946101 OCO3 Moncks Corner, South Carolina 29461

Re: ABS Lab Analytical Work Order: 639285

Dear Ms. Gilmetti:

GEL Laboratories, LLC (GEL) appreciates the opportunity to provide the enclosed analytical results for the sample(s) we received on September 29, 2023. This original data report has been prepared and reviewed in accordance with GEL's standard operating procedures.

The samples were delivered with proper chain of custody documentation and signatures. All sample containers arrived without any visible signs of tampering or breakage. There are no additional comments concerning sample receipt.

Test results for NELAP or ISO 17025 accredited tests are verified to meet the requirements of those standards, with any exceptions noted. The results reported relate only to the items tested and to the sample as received by the laboratory. These results may not be reproduced except as full reports without approval by the laboratory. Copies of GEL's accreditations and certifications can be found on our website at www.gel.com.

Our policy is to provide high quality, personalized analytical services to enable you to meet your analytical needs on time every time. We trust that you will find everything in order and to your satisfaction. If you have any questions, please do not hesitate to call me at (843) 556-8171, ext. 4289.

Sincerely,

Jordan Melton for Julie Robinson Project Manager

Purchase Order: 398684

Enclosures

2040 Savage Road Charleston SC 29407 - (843) 556-8171 - www.gel.com

Certificate of Analysis Report for

SOOP001 Santee Cooper

Client SDG: 639285 GEL Work Order: 639285

The Qualifiers in this report are defined as follows:

- * A quality control analyte recovery is outside of specified acceptance criteria
- ** Analyte is a Tracer compound
- ** Analyte is a surrogate compound
- U Analyte was analyzed for, but not detected above the MDL, MDA, MDC or LOD.

Where the analytical method has been performed under NELAP certification, the analysis has met all of the requirements of the NELAC standard unless qualified on the Certificate of Analysis.

The designation ND, if present, appears in the result column when the analyte concentration is not detected above the limit as defined in the 'U' qualifier above.

This data report has been prepared and reviewed in accordance with GEL Laboratories LLC standard operating procedures. Please direct any questions to your Project Manager, Julie Robinson.

Reviewed by Dordon Melton

Page 2 of 13 SDG: 639285

2040 Savage Road Charleston SC 29407 - (843) 556-8171 - www.gel.com

Certificate of Analysis

Report Date: October 26, 2023

SOOP00119

Company: Santee Cooper Address: P.O. Box 2946101

OCO3

Moncks Corner, South Carolina 29461

Contact: Ms. Jeanette Gilmetti Project: ABS Lab Analytical

Client Sample ID: AF79064 Sample ID: 639285001

Matrix: GW

Collect Date: 26-SEP-23 12:13
Receive Date: 29-SEP-23
Collector: Client

c: 639285001 Client ID: SOOP001

Project:

Parameter	Qualifier	Result	Uncertainty	MDC	RL	Units	PF	DF Analy	st Date	Time	Batch	Method
Rad Gas Flow Proportion	onal Counting											
GFPC, Ra228, Liquid "	As Received"											
Radium-228	U	0.698	+/-0.999	1.71	3.00	pCi/L		JE1	10/10/23	1123	2502094	1
Radium-226+Radium-2	228 Calculatio	n "See Pa	arent Products"									
Radium-226+228 Sum		1.46	+/-1.08			pCi/L		NXL1	10/26/23	1206	2511601	2
Rad Radium-226												
Lucas Cell, Ra226, Liq	uid "As Recei	ved"										
Radium-226		0.763	+/-0.411	0.390	1.00	pCi/L		LXP1	10/26/23	0846	2502095	3
The following Analytic	cal Methods w	ere perfo	ormed:									
Method	Description					A	Analys	st Comment	s			-
1	EPA 904.0/SW	846 9320 1	Modified				•					
•												

G . /T D		D 1	XT . 1	D 0/	
Surrogate/Tracer Recov	ery Test	Result	Nominal	Recovery%	Acceptable Limits

Barium-133 Tracer GFPC, Ra228, Liquid "As Received"

Result Nominal Recovery Acceptable Lim
88.3 (15%-125%)

Notes:

Counting Uncertainty is calculated at the 95% confidence level (1.96-sigma).

Column headers are defined as follows:

DF: Dilution Factor Lc/LC: Critical Level
DL: Detection Limit PF: Prep Factor
MDA: Minimum Detectable Activity RL: Reporting Limit

MDC: Minimum Detectable Concentration SQL: Sample Quantitation Limit

Page 3 of 13 SDG: 639285

2040 Savage Road Charleston SC 29407 - (843) 556-8171 - www.gel.com

Certificate of Analysis

Project:

Client ID:

Analyst Comments

Report Date: October 26, 2023

SOOP00119

SOOP001

Company: Santee Cooper Address: P.O. Box 2946101

OCO3

Moncks Corner, South Carolina 29461

Contact: Ms. Jeanette Gilmetti Project: ABS Lab Analytical

Client Sample ID: AF79065 Sample ID: 639285002

Matrix: GW

Collect Date: 27-SEP-23 10:49
Receive Date: 29-SEP-23
Collector: Client

Parameter	Qualifier	Result	Uncertainty	MDC	RL	Units	PF	DF Analy	st Date	Time Batch	Method
Rad Gas Flow Proporti	onal Counting	;									
GFPC, Ra228, Liquid "	'As Received"	1									
Radium-228	U	0.944	+/-1.32	2.25	3.00	pCi/L		JE1	10/10/23	1123 2502094	1
Radium-226+Radium-2	228 Calculatio	n "See Par	rent Products"								
Radium-226+228 Sum		4.29	+/-1.62			pCi/L		NXL1	10/26/23	1206 2511601	2
Rad Radium-226											
Lucas Cell, Ra226, Liq	uid "As Recei	ved"									
Radium-226		3.34	+/-0.934	0.605	1.00	pCi/L		LXP1	10/26/23	0846 2502095	3

The following Analytical Methods were performed:

Description

111000	2 000111011011		I III WI J D C C	/IIIIII OII O	
1	EPA 904.0/SW846 9320 Modified		•		
2	Calculation				
3	EPA 903.1 Modified				
Surrogate/T	Fracer Recovery Test	Result	Nominal	Recovery%	Acceptable Limits

Barium-133 Tracer GFPC, Ra228, Liquid "As Received" 84.6 (15%-125%)

Notes:

Method

Counting Uncertainty is calculated at the 95% confidence level (1.96-sigma).

Column headers are defined as follows:

DF: Dilution Factor Lc/LC: Critical Level
DL: Detection Limit PF: Prep Factor
MDA: Minimum Detectable Activity RL: Reporting Limit

MDC: Minimum Detectable Concentration SQL: Sample Quantitation Limit

Page 4 of 13 SDG: 639285

2040 Savage Road Charleston SC 29407 - (843) 556-8171 - www.gel.com

Certificate of Analysis

Report Date: October 26, 2023

Company: Santee Cooper Address: P.O. Box 2946101

OCO3

Moncks Corner, South Carolina 29461

Contact: Ms. Jeanette Gilmetti Project: ABS Lab Analytical

Client Sample ID: AF79066 Sample ID: 639285003

Matrix: GW

Collect Date: 27-SEP-23 10:54
Receive Date: 29-SEP-23
Collector: Client

Project: SOOP00119 Client ID: SOOP001

Parameter	Qualifier	Result	Uncertainty	MDC	RL	Units	PF	DF Analyst Date	Time Batch	Method			
Rad Gas Flow Proportion	Rad Gas Flow Proportional Counting												
GFPC, Ra228, Liquid ".	As Received"												
Radium-228	U	1.02	+/-0.710	1.06	3.00	pCi/L		JE1 10/10/23	1123 2502094	1			
Radium-226+Radium-2	28 Calculatio	n "See Pa	arent Products"										
Radium-226+228 Sum		2.44	+/-0.887			pCi/L		NXL1 10/26/23	1206 2511601	2			
Rad Radium-226													
Lucas Cell, Ra226, Liqu	Lucas Cell, Ra226, Liquid "As Received"												
Radium-226		1.42	+/-0.531	0.515	1.00	pCi/L		LXP1 10/26/23	0846 2502095	3			
The following Analytic	al Methods w	ere perfo	ormed:										
Method	Description					P	Analys	st Comments					

1	EPA 904.0/SW846 9320 Modified				
2	Calculation				
3	EPA 903.1 Modified				
Surrogate/Tracer Recove	ery Test	Result	Nominal	Recovery%	Acceptable Limits

Barium-133 Tracer GFPC, Ra228, Liquid "As Received" 89.6 (15%-125%)

Notes:

Counting Uncertainty is calculated at the 95% confidence level (1.96-sigma).

Column headers are defined as follows:

DF: Dilution Factor Lc/LC: Critical Level
DL: Detection Limit PF: Prep Factor
MDA: Minimum Detectable Activity RL: Reporting Limit

MDC: Minimum Detectable Concentration SQL: Sample Quantitation Limit

Page 5 of 13 SDG: 639285

2040 Savage Road Charleston SC 29407 - (843) 556-8171 - www.gel.com

Certificate of Analysis

Report Date: October 26, 2023

Company: Santee Cooper Address: P.O. Box 2946101

OCO3

Moncks Corner, South Carolina 29461

Contact: Ms. Jeanette Gilmetti Project: ABS Lab Analytical

Client Sample ID: AF79067 Sample ID: 639285004

Matrix: GW

Collect Date: 27-SEP-23 13:19
Receive Date: 29-SEP-23
Collector: Client

Description

F79067 Project: SOOP00119 9285004 Client ID: SOOP001

Parameter	Qualifier	Result	Uncertainty	MDC	RL	Units	PF	DF Analy	st Date	Time Batch	Method
Rad Gas Flow Proportio	nal Counting										
GFPC, Ra228, Liquid "A	As Received"										
Radium-228		1.70	+/-0.886	1.25	3.00	pCi/L		JE1	10/10/23	1123 2502094	1
Radium-226+Radium-22											
Radium-226+228 Sum		3.33	+/-1.03			pCi/L		NXL1	10/26/23	1206 2511601	2
Rad Radium-226											
Lucas Cell, Ra226, Liqu	id "As Recei	ved"									
Radium-226		1.63	+/-0.519	0.313	1.00	pCi/L		LXP1	10/26/23	0846 2502095	3
The following Analytics	al Methods w	ere perfor	med:								

1	EPA 904.0/SW846 9320 Modified		•		
2	Calculation				
3	EPA 903.1 Modified				
Surrogate/Tracer Recov	erv Test	Result	Nominal	Recoverv%	Acceptable Limits

Analyst Comments

Barium-133 Tracer GFPC, Ra228, Liquid "As Received" 85.3 (15%-125%)

Notes:

Method

Counting Uncertainty is calculated at the 95% confidence level (1.96-sigma).

Column headers are defined as follows:

DF: Dilution Factor Lc/LC: Critical Level
DL: Detection Limit PF: Prep Factor
MDA: Minimum Detectable Activity RL: Reporting Limit

MDC: Minimum Detectable Concentration SQL: Sample Quantitation Limit

Page 6 of 13 SDG: 639285

2040 Savage Road Charleston, SC 29407 - (843) 556-8171 - www.gel.com

QC Summary

Report Date: October 26, 2023

Page 1 of 2

Santee Cooper P.O. Box 2946101

OCO3

Moncks Corner, South Carolina

Contact: Ms. Jeanette Gilmetti

Workorder: 639285

Parmname			NOM	Sample	Qual	QC	Units	RPD%	REC%	Range Anlst	Date Time
Rad Gas Flow Batch 250	02094										
QC1205534749 Radium-228	639285001	DUP	U Uncertainty	0.698 +/ - 0.999	U	0.830 +/-0.775	pCi/L	N/A		N/A JE1	10/10/23 11:22
QC1205534750 Radium-228	LCS		77.3 Uncertainty			77.2 +/-4.08	pCi/L		99.8	(75%-125%)	10/10/23 11:23
QC1205534748 Radium-228	MB		Uncertainty		U	0.205 +/-0.562	pCi/L				10/10/23 11:22
Rad Ra-226 Batch 250	02095										
QC1205534752 Radium-226	639285001	DUP	Uncertainty	0.763 +/-0.411		0.770 +/-0.440	pCi/L	0.836		(0% - 100%) LXP1	10/26/23 08:46
QC1205534754 Radium-226	LCS		27.1 Uncertainty			32.7 +/-2.41	pCi/L		121	(75%-125%)	10/26/23 09:18
QC1205534751 Radium-226	MB		Uncertainty		U	0.390 +/-0.449	pCi/L				10/26/23 08:46
QC1205534753 Radium-226	639285001	MS	109 Uncertainty	0.763 +/-0.411		110 +/-8.53	pCi/L		99.6	(75%-125%)	10/26/23 09:18

Notes:

Counting Uncertainty is calculated at the 95% confidence level (1.96-sigma).

The Qualifiers in this report are defined as follows:

U Analyte was analyzed for, but not detected above the MDL, MDA, MDC or LOD.

J Value is estimated

X Consult Case Narrative, Data Summary package, or Project Manager concerning this qualifier

H Analytical holding time was exceeded

< Result is less than value reported

Page 7 of 13 SDG: 639285

2040 Savage Road Charleston, SC 29407 - (843) 556-8171 - www.gel.com

QC Summary

Workorder: 639285 Page 2 of 2 P

Parmname	NOM	Sample	Qual	QC	Units	RPD%	REC%	Range	Anlst	Date	Time

- Result is greater than value reported
- Gamma Spectroscopy--Uncertain identification UI
- BDResults are either below the MDC or tracer recovery is low
- h Preparation or preservation holding time was exceeded
- R Sample results are rejected
- RPD of sample and duplicate evaluated using +/-RL. Concentrations are <5X the RL. Qualifier Not Applicable for Radiochemistry.
- N/A RPD or %Recovery limits do not apply.
- ND Analyte concentration is not detected above the detection limit
- M M if above MDC and less than LLD
- NJ Consult Case Narrative, Data Summary package, or Project Manager concerning this qualifier
- FA Failed analysis.
- UJ Gamma Spectroscopy--Uncertain identification
- Q One or more quality control criteria have not been met. Refer to the applicable narrative or DER.
- K Analyte present. Reported value may be biased high. Actual value is expected to be lower.
- UL Not considered detected. The associated number is the reported concentration, which may be inaccurate due to a low bias.
- Analyte present. Reported value may be biased low. Actual value is expected to be higher. L
- N1See case narrative
- Y Other specific qualifiers were required to properly define the results. Consult case narrative.
- ** Analyte is a Tracer compound
- REMP Result > MDC/CL and < RDL M
- J See case narrative for an explanation

N/A indicates that spike recovery limits do not apply when sample concentration exceeds spike conc. by a factor of 4 or more or %RPD not applicable.

- ^ The Relative Percent Difference (RPD) obtained from the sample duplicate (DUP) is evaluated against the acceptance criteria when the sample is greater than five times (5X) the contract required detection limit (RL). In cases where either the sample or duplicate value is less than 5X the RL, a control limit of +/- the RL is used to evaluate the DUP result.
- * Indicates that a Quality Control parameter was not within specifications.

For PS, PSD, and SDILT results, the values listed are the measured amounts, not final concentrations.

Where the analytical method has been performed under NELAP certification, the analysis has met all of the requirements of the NELAC standard unless qualified on the QC Summary.

Page 8 of 13 SDG: 639285

Radiochemistry Technical Case Narrative Santee Cooper SDG #: 639285

Product: GFPC, Ra228, Liquid

<u>Analytical Method:</u> EPA 904.0/SW846 9320 Modified <u>Analytical Procedure:</u> GL-RAD-A-063 REV# 5

Analytical Batch: 2502094

The following samples were analyzed using the above methods and analytical procedure(s).

GEL Sample ID#	Client Sample Identification
639285001	AF79064
639285002	AF79065
639285003	AF79066
639285004	AF79067
1205534748	Method Blank (MB)
1205534749	639285001(AF79064) Sample Duplicate (DUP)
1205534750	Laboratory Control Sample (LCS)

The samples in this SDG were analyzed on an "as received" basis.

Data Summary:

There are no exceptions, anomalies or deviations from the specified methods. All sample data provided in this report met the acceptance criteria specified in the analytical methods and procedures for initial calibration, continuing calibration, instrument controls and process controls where applicable.

Product: Lucas Cell, Ra226, Liquid Analytical Method: EPA 903.1 Modified

Analytical Procedure: GL-RAD-A-008 REV# 15

Analytical Batch: 2502095

The following samples were analyzed using the above methods and analytical procedure(s).

GEL Sample ID#	Client Sample Identification
639285001	AF79064
639285002	AF79065
639285003	AF79066
639285004	AF79067
1205534751	Method Blank (MB)
1205534752	639285001(AF79064) Sample Duplicate (DUP)
1205534753	639285001(AF79064) Matrix Spike (MS)
1205534754	Laboratory Control Sample (LCS)

The samples in this SDG were analyzed on an "as received" basis.

Page 9 of 13 SDG: 639285

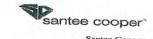
Data Summary:

All sample data provided in this report met the acceptance criteria specified in the analytical methods and procedures for initial calibration, continuing calibration, instrument controls and process controls where applicable, with the following exceptions.

Miscellaneous Information

Additional Comments

The matrix spike, 1205534753 (AF79064MS), aliquot was reduced to conserve sample volume.


Certification Statement

Where the analytical method has been performed under NELAP certification, the analysis has met all of the requirements of the NELAC standard unless otherwise noted in the analytical case narrative.

Page 10 of 13 SDG: 639285

Send report to lcwillia@santeecooper.com sjbrown@santeecooper.com

Chain of Custody

Santee Cooper One Riverwood Drive Moneks Comer, SC 29461 Phone: (843)761-8000 Ext. 5148 Fax: (843)761-4175

Customer Email/Report Recipient:			Date Results Needed by:				Project/Task/Unit #: Reru						Rerun	un request for any flagged Q				Q	
@santeecooper.com							125915 J JM02.09.601.1 J 36500							Yes	No				
					1/										Analysis Group				
Labworl (Interna only)		Sample Locat Description	ion/	Collection Date	Collection Time	Sample Collector	Total # of containers	Bottle type: (Glass-G/Plastic-P)	Grab (G) or Composite (C)	Matrix(see below)	Preservative (see below)	• M • R • M • A	ethod # eporting li isc. sampl ny other n	le info		RAD 226/228	TOTAL RAD CALC	F, C1, SO4	
AF 79	064	WAP-27		9/26/23	1213	20M	3	P	G	GW	2/					2	×	1	-
)	65	WAP -28		9/27/23	1049		1		1	1	1					1	1	1	-
	66	WAP -28	DUP		1054											\top			
1	67	WAP-29		1	1319	1				_	1					_	_	-	
														-					_
																		-	_
																			_
																		-	_
Kelinqui	ished by:	Employee#	Date	Time	Receiv	ed by:	En	nployee #	@. Nov.	Date		Time	Samp	le Receiving (I	nternal U	se On	ly)		-
Jan	h	36851	9/29/23	1936 000				GEL 9/29/23 093/				TEMP (°C): Initial:							
Relinqui	shed by:	Employee#	Date	Time				Employee # Date				fime Correct ph: Yes No				0			
Relinquished by: Employee# Date		Time 2				GEL 9/29/3 Employee # Date			Date Time		1	Preservative Lot#:							
		TALS (all)	Alexander of the second					The same		Tai.	DOM:		Date/	Time/Init for	preservat	ive:			
□ Ag □ Al	□ Cu □ Fe		Nutri TOC		MISC. □ BTEX □ Naphthalene			Gypsum Coal Wallboard Ultimate					Flyash Ammonia				Qual.		
□ As	□K	□ Sn	□ TP/T	PO4	THM/HA		To y	Gypsum(all below)				□ % Mois □ Ash	ture	☐ LOI ☐ % Carbon	1	Co	Moist dor	ure	
□ B	□ Li	□ Sr	□ NH3-		Oil & Gre	ease		D AIM			□ Sulfur			☐ Mineral			idity lectric	Strength	
□ Ba	□ Mg		□ Cl		E. Coli Total Coli	iform		☐ Total metals			The second second	☐ BTUs ☐ Volatile	Matter	Analysis ☐ Sieve		☐ IFT ☐ Dissolved Ga		TO THE STREET	
□ Be	□ Mn	The state of the s	□ NO2 □ Br	0	pH Dissolved			☐ Soluble Metals ☐ Purity (CaSO4) ☐ % Moisture ☐ Sulfites		CaSO4)		□CHN		□ % Moistu	ire	Use	liO b		
□ Ca □ Cd	□ Mo	The second second	□ NO3		Dissolved						er Tests: RF Scan		NDDEC			shpoii etals in			
	□ Na	□ Zn	□ SO4	0.195	Rad 226 Rad 228		W.	□ pH □ Chlor	idea		DH	GI		NPDES □ Oil & Great		(A	s,Cd.C	r.Ni.Pb	
□ Co □ Cr	□ Ni	☐ Hg			PCB			D Partic			D () E.S. (900 N	☐ Particulate Matter ☐ As				H ₂			
		1 2 01 11	100000					Sulfur				15 1		□ TSS		GOF	ER		

7205 Ourier Other
urier Other
up for further investigation
M+mR/Hr
arr morre
ns)
TEMP: 3 C
A Freezer) No)
er (describe)
r (describe)

GL-CHL-SR-001 Rev 7

List of current GEL Certifications as of 26 October 2023

State	Certification
Alabama	42200
Alaska	17-018
Alaska Drinking Water	SC00012
Arkansas	88-00651
CLIA	42D0904046
California	2940
Colorado	SC00012
Connecticut	PH-0169
DoD ELAP/ ISO17025 A2LA	2567.01
Florida NELAP	E87156
Foreign Soils Permit	P330-15-00283, P330-15-00253
Georgia	SC00012
Georgia SDWA	967
Hawaii	SC00012
Idaho	SC00012 SC00012
Illinois NELAP	200029
Indiana Kansas NELAP	C-SC-01
1101101101111	E-10332
Kentucky SDWA	KY90129
Kentucky Wastewater	KY90129
Louisiana Drinking Water	LA024
Louisiana NELAP	03046 (AI33904)
Maine	2023019
Maryland	270
Massachusetts	M-SC012
Massachusetts PFAS Approv	Letter
Michigan	9976
Mississippi	SC00012
Nebraska	NE-OS-26-13
Nevada	SC000122024-04
New Hampshire NELAP	2054
New Jersey NELAP	SC002
New Mexico	SC00012
New York NELAP	11501
North Carolina	233
North Carolina SDWA	45709
North Dakota	R-158
Oklahoma	2023-152
Pennsylvania NELAP	68-00485
Puerto Rico	SC00012
S. Carolina Radiochem	10120002
Sanitation Districts of L	9255651
South Carolina Chemistry	10120001
Tennessee	TN 02934
Texas NELAP	T104704235-23-21
Utah NELAP	SC000122022-37
Vermont	VT87156
Virginia NELAP	460202
Washington	C780
,, admington	2,00

10 44

12

14

ANALYTICAL REPORT

PREPARED FOR

Attn: Linda Williams South Carolina Public Service Authority Santee Cooper PO BOX 2946101

Moncks Corner, South Carolina 29461-2901

Generated 7/14/2023 2:17:57 PM

JOB DESCRIPTION

125915/JM02.08.G01.1/36500

JOB NUMBER

680-237587-1

Eurofins Savannah 5102 LaRoche Avenue Savannah GA 31404

Eurofins Savannah

Job Notes

This report may not be reproduced except in full, and with written approval from the laboratory. The results relate only to the samples tested. For questions please contact the Project Manager at the e-mail address or telephone number listed on this page.

The test results in this report relate only to the samples as received by the laboratory and will meet all requirements of the methodology, with any exceptions noted. This report shall not be reproduced except in full, without the express written approval of the laboratory. All questions should be directed to the Eurofins Environment Testing Southeast, LLC Project Manager.

Authorization

Generated 7/14/2023 2:17:57 PM

Authorized for release by Jerry Lanier, Project Manager I <u>Jerry.Lanier@et.eurofinsus.com</u> (912)250-0281

3

4

6

Q

10

. .

13

14

Table of Contents

Cover Page	1
Table of Contents	3
Case Narrative	4
Sample Summary	5
Method Summary	6
Definitions	7
Detection Summary	8
Client Sample Results	9
QC Sample Results	18
QC Association	19
Chronicle	20
Chain of Custody	22
Receipt Checklists	23
Certification Summary	24

6

1

5

b

8

9

10

12

L

11

Case Narrative

Client: South Carolina Public Service Authority Project/Site: 125915/JM02.08.G01.1/36500

Job ID: 680-237587-1

Job ID: 680-237587-1

Laboratory: Eurofins Savannah

Narrative

Job Narrative 680-237587-1

Receipt

The samples were received on 7/12/2023 10:03 AM. Unless otherwise noted below, the samples arrived in good condition, and, where required, properly preserved and on ice. The temperature of the cooler at receipt time was 24.4°C

Metals

No additional analytical or quality issues were noted, other than those described above or in the Definitions/ Glossary page.

1

3

4

5

7

Q

9

10

12

13

14

Sample Summary

Client: South Carolina Public Service Authority Project/Site: 125915/JM02.08.G01.1/36500

Job ID: 680-237587-1

Lab Sample ID	Client Sample ID	Matrix	Collected	Received
680-237587-1	AF68758	GW	07/06/23 09:47	07/12/23 10:03
680-237587-2	AF68759	GW	07/06/23 09:52	07/12/23 10:03
680-237587-3	AF68736	GW	07/06/23 11:21	07/12/23 10:03
680-237587-4	AF68753	GW	07/06/23 13:08	07/12/23 10:03
680-237587-5	AF68754	GW	07/06/23 13:13	07/12/23 10:03
680-237587-6	AF68752	GW	07/06/23 14:09	07/12/23 10:03
680-237587-7	AF68739	GW	07/05/23 10:44	07/12/23 10:03
680-237587-8	AF68755	GW	07/05/23 09:35	07/12/23 10:03
680-237587-9	AF68756	GW	07/05/23 11:39	07/12/23 10:03

/

4

J

7

8

3

44

12

10

Method Summary

Client: South Carolina Public Service Authority Project/Site: 125915/JM02.08.G01.1/36500

Job ID: 680-237587-1

Method	Method Description	Protocol	Laboratory
7470A	Mercury (CVAA)	SW846	EET SAV
7470A	Preparation, Mercury	SW846	EET SAV

Protocol References:

SW846 = "Test Methods For Evaluating Solid Waste, Physical/Chemical Methods", Third Edition, November 1986 And Its Updates.

Laboratory References:

EET SAV = Eurofins Savannah, 5102 LaRoche Avenue, Savannah, GA 31404, TEL (912)354-7858

4

5

6

9

10

13

Definitions/Glossary

Client: South Carolina Public Service Authority Job ID: 680-237587-1 Project/Site: 125915/JM02.08.G01.1/36500

Qualifiers

Metals

Qualifier **Qualifier Description**

Indicates the analyte was analyzed for but not detected.

Glossary

Abbreviation These commonly used abbreviations may or may not be present in this report. Listed under the "D" column to designate that the result is reported on a dry weight basis

Percent Recovery %R CFL Contains Free Liquid Colony Forming Unit CFU CNF Contains No Free Liquid

DER Duplicate Error Ratio (normalized absolute difference)

Dil Fac Dilution Factor

DL Detection Limit (DoD/DOE)

DL, RA, RE, IN Indicates a Dilution, Re-analysis, Re-extraction, or additional Initial metals/anion analysis of the sample

DLC Decision Level Concentration (Radiochemistry)

Estimated Detection Limit (Dioxin) EDL Limit of Detection (DoD/DOE) LOD LOQ Limit of Quantitation (DoD/DOE)

EPA recommended "Maximum Contaminant Level" MCL MDA Minimum Detectable Activity (Radiochemistry) MDC Minimum Detectable Concentration (Radiochemistry)

MDL Method Detection Limit Minimum Level (Dioxin) MPN Most Probable Number MQL Method Quantitation Limit

NC Not Calculated

ND Not Detected at the reporting limit (or MDL or EDL if shown)

NEG Negative / Absent POS Positive / Present

PQL Practical Quantitation Limit

PRES Presumptive QC **Quality Control**

RER Relative Error Ratio (Radiochemistry)

RL Reporting Limit or Requested Limit (Radiochemistry)

RPD Relative Percent Difference, a measure of the relative difference between two points

TEF Toxicity Equivalent Factor (Dioxin) TEQ Toxicity Equivalent Quotient (Dioxin)

Too Numerous To Count TNTC

Detection Summary

Project/Site: 125915/JM02.08.G01.1/36500	
Client Sample ID: AF68758	Lab Sample ID: 680-237587-1
No Detections.	
Client Sample ID: AF68759	Lab Sample ID: 680-237587-2
No Detections.	
Client Sample ID: AF68736	Lab Sample ID: 680-237587-3
No Detections.	
Client Sample ID: AF68753	Lab Sample ID: 680-237587-4
No Detections.	
Client Sample ID: AF68754	Lab Sample ID: 680-237587-5
No Detections.	
Client Sample ID: AF68752	Lab Sample ID: 680-237587-6
No Detections.	
Client Sample ID: AF68739	Lab Sample ID: 680-237587-7
No Detections.	
Client Sample ID: AF68755	Lab Sample ID: 680-237587-8
No Detections.	
Client Sample ID: AF68756	Lab Sample ID: 680-237587-9
No Detections.	

This Detection Summary does not include radiochemical test results.

Client: South Carolina Public Service Authority

Eurofins Savannah

Job ID: 680-237587-1

Page 8 of 24

Client: South Carolina Public Service Authority

Job ID: 680-237587-1 Project/Site: 125915/JM02.08.G01.1/36500

Client Sample ID: AF68758 Lab Sample ID: 680-237587-1

Date Collected: 07/06/23 09:47 Matrix: GW Date Received: 07/12/23 10:03

Method: SW846 7470A - Mercury (CVAA)								
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Mercury	0.200	U	0.200		ug/L		07/14/23 08:42	07/14/23 14:32	1

Client: South Carolina Public Service Authority Project/Site: 125915/JM02.08.G01.1/36500

Job ID: 680-237587-1

Lab Sample ID: 680-237587-2

Client Sample ID: AF68759 Date Collected: 07/06/23 09:52

Matrix: GW

Date Received: 07/12/23 10:03

Method: SW846 7470A - Mercury (CVAA) RL Dil Fac Result Qualifier MDL Unit Prepared Analyzed Mercury 0.200 U 0.200 ug/L 07/14/23 08:42 07/14/23 14:37

Client: South Carolina Public Service Authority Project/Site: 125915/JM02.08.G01.1/36500

Job ID: 680-237587-1

Lab Sample ID: 680-237587-3

Client Sample ID: AF68736 Date Collected: 07/06/23 11:21

Matrix: GW

Date Received: 07/12/23 10:03

Method: SW846 7470A - Mercury (CVAA)

Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Mercury	0.200	П	0.200	ua/l		07/14/23 08:42	07/14/23 14:38	1

Client: South Carolina Public Service Authority Project/Site: 125915/JM02.08.G01.1/36500

Job ID: 680-237587-1

Lab Sample ID: 680-237587-4

Matrix: GW

Client Sample ID: AF68753 Date Collected: 07/06/23 13:08

Date Received: 07/12/23 10:03

Method: SW846 7470A - Mercury (CVAA) RL

Dil Fac Result Qualifier MDL Unit Prepared Analyzed Mercury 0.200 U 0.200 ug/L 07/14/23 08:42 07/14/23 14:40

Client: South Carolina Public Service Authority Project/Site: 125915/JM02.08.G01.1/36500

Job ID: 680-237587-1

Client Sample ID: AF68754 Lab Sample ID: 680-237587-5 Date Collected: 07/06/23 13:13

Matrix: GW

Date Received: 07/12/23 10:03

Method: SW846 7470A - Mercury (C	(VAA)								
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Mercury	0.200	U	0.200		ug/L		07/14/23 08:42	07/14/23 14:41	1

Client: South Carolina Public Service Authority Project/Site: 125915/JM02.08.G01.1/36500

Job ID: 680-237587-1

Lab Sample ID: 680-237587-6

Date Collected: 07/06/23 14:09 Date Received: 07/12/23 10:03

Client Sample ID: AF68752

Matrix: GW

Method: SW846 7470A - Mercury (CVAA)

RL Dil Fac Result Qualifier MDL Unit Prepared Analyzed Mercury 0.200 U 0.200 ug/L 07/14/23 08:42 07/14/23 14:43

Client: South Carolina Public Service Authority

Project/Site: 125915/JM02.08.G01.1/36500

Lab Sample ID: 680-237587-7

Matrix: GW

Job ID: 680-237587-1

Date Collected: 07/05/23 10:44 Date Received: 07/12/23 10:03

Client Sample ID: AF68739

Method: SW846 7470A - Mercury (CVAA)

Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Mercury	0.200	П	0.200	ua/l		07/14/23 08:42	07/14/23 14:48	1

Client: South Carolina Public Service Authority Project/Site: 125915/JM02.08.G01.1/36500

Job ID: 680-237587-1

Lab Sample ID: 680-237587-8 **Client Sample ID: AF68755** Date Collected: 07/05/23 09:35

Date Received: 07/12/23 10:03

Matrix: GW

Method: SW846 7470A - Mercury (CVAA) RL Dil Fac Result Qualifier MDL Unit Prepared Analyzed Mercury 0.200 U 0.200 ug/L 07/14/23 08:42 07/14/23 14:49

Client: South Carolina Public Service Authority Project/Site: 125915/JM02.08.G01.1/36500

Job ID: 680-237587-1

Lab Sample ID: 680-237587-9 **Client Sample ID: AF68756** Date Collected: 07/05/23 11:39

Date Received: 07/12/23 10:03

Matrix: GW

Method: SW846 7470A - Mercury (CVAA) RL Dil Fac Result Qualifier MDL Unit Prepared Analyzed Mercury 0.200 U 0.200 ug/L 07/14/23 08:42 07/14/23 14:51

QC Sample Results

Client: South Carolina Public Service Authority Project/Site: 125915/JM02.08.G01.1/36500

Job ID: 680-237587-1

Method: 7470A - Mercury (CVAA)

Lab Sample ID: MB 680-788246/1-A

MB MB

Client Sample ID: Method Blank

Matrix: Water Analysis Batch: 788395

Analysis Batch: 788395

Prep Type: Total/NA

Prep Batch: 788246

MDL Unit Dil Fac Analyte Result Qualifier RL Prepared Analyzed 07/14/23 08:42 Mercury 0.200 U 0.200 ug/L 07/14/23 14:29

Lab Sample ID: LCS 680-788246/2-A Client Sample ID: Lab Control Sample **Matrix: Water** Prep Type: Total/NA

Prep Batch: 788246

Prep Type: Total/NA

Spike LCS LCS %Rec Analyte Added Result Qualifier Unit D %Rec Limits Mercury 2.50 2.658 ug/L 106 80 _ 120

Lab Sample ID: 680-237587-1 MS Client Sample ID: AF68758

Matrix: GW

Analysis Batch: 788395 **Prep Batch: 788246**

Sample Sample Spike MS MS %Rec Analyte Result Qualifier Added Result Qualifier Unit %Rec Limits 0.200 U 1.00 Mercury 1.036 104 80 _ 120

Lab Sample ID: 680-237587-1 MSD Client Sample ID: AF68758

ug/L

Matrix: GW

Prep Type: Total/NA Analysis Batch: 788395

Prep Batch: 788246

%Rec Sample Sample **Spike** MSD MSD **RPD** Analyte Result Qualifier Added %Rec Limit Result Qualifier Unit Limits 0.200 U 1.00 1.022 80 - 120 Mercury ug/L 102 20

7/14/2023

QC Association Summary

Client: South Carolina Public Service Authority Project/Site: 125915/JM02.08.G01.1/36500 Job ID: 680-237587-1

Metals

Prep Batch: 788246

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batcl
680-237587-1	AF68758	Total/NA	GW	7470A	
680-237587-2	AF68759	Total/NA	GW	7470A	
680-237587-3	AF68736	Total/NA	GW	7470A	
680-237587-4	AF68753	Total/NA	GW	7470A	
680-237587-5	AF68754	Total/NA	GW	7470A	
680-237587-6	AF68752	Total/NA	GW	7470A	
680-237587-7	AF68739	Total/NA	GW	7470A	
680-237587-8	AF68755	Total/NA	GW	7470A	
680-237587-9	AF68756	Total/NA	GW	7470A	
MB 680-788246/1-A	Method Blank	Total/NA	Water	7470A	
LCS 680-788246/2-A	Lab Control Sample	Total/NA	Water	7470A	
680-237587-1 MS	AF68758	Total/NA	GW	7470A	
680-237587-1 MSD	AF68758	Total/NA	GW	7470A	

Analysis Batch: 788395

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
680-237587-1	AF68758	Total/NA	GW	7470A	788246
680-237587-2	AF68759	Total/NA	GW	7470A	788246
680-237587-3	AF68736	Total/NA	GW	7470A	788246
680-237587-4	AF68753	Total/NA	GW	7470A	788246
680-237587-5	AF68754	Total/NA	GW	7470A	788246
680-237587-6	AF68752	Total/NA	GW	7470A	788246
680-237587-7	AF68739	Total/NA	GW	7470A	788246
680-237587-8	AF68755	Total/NA	GW	7470A	788246
680-237587-9	AF68756	Total/NA	GW	7470A	788246
MB 680-788246/1-A	Method Blank	Total/NA	Water	7470A	788246
LCS 680-788246/2-A	Lab Control Sample	Total/NA	Water	7470A	788246
680-237587-1 MS	AF68758	Total/NA	GW	7470A	788246
680-237587-1 MSD	AF68758	Total/NA	GW	7470A	788246

.

0

9

10

11

13

Job ID: 680-237587-1

Client: South Carolina Public Service Authority Project/Site: 125915/JM02.08.G01.1/36500

Client Sample ID: AF68758

Date Collected: 07/06/23 09:47 Date Received: 07/12/23 10:03 Lab Sample ID: 680-237587-1

Matrix: GW

	Batch	Batch		Dilution	Batch			Prepared
Prep Type	Туре	Method	Run	Factor	Number	Analyst	Lab	or Analyzed
Total/NA	Prep	7470A			788246	DW	EET SAV	07/14/23 08:42
Total/NA	Analysis	7470A		1	788395	ВСВ	EET SAV	07/14/23 14:32

Client Sample ID: AF68759 Lab Sample ID: 680-237587-2

Matrix: GW

Date Collected: 07/06/23 09:52 Date Received: 07/12/23 10:03

	Batch	Batch		Dilution	Batch			Prepared
Prep Type	Туре	Method	Run	Factor	Number	Analyst	Lab	or Analyzed
Total/NA	Prep	7470A			788246	DW	EET SAV	07/14/23 08:42
Total/NA	Analysis	7470A		1	788395	ВСВ	EET SAV	07/14/23 14:37

Client Sample ID: AF68736 Lab Sample ID: 680-237587-3

Date Collected: 07/06/23 11:21 Matrix: GW

Date Received: 07/12/23 10:03

Batch Batch Dilution Batch Prepared Method or Analyzed **Prep Type** Type Run Factor Number Analyst Lab Total/NA 7470A 788246 **EET SAV** 07/14/23 08:42 Prep Total/NA 7470A 07/14/23 14:38 Analysis 788395 BCB **EET SAV** 1

Client Sample ID: AF68753 Lab Sample ID: 680-237587-4

Date Collected: 07/06/23 13:08 **Matrix: GW** Date Received: 07/12/23 10:03

Batch Dilution Batch Batch Prepared

Prep Type	Туре	Method	Run	Factor	Number	Analyst	Lab	or Analyzed
Total/NA	Prep	7470A			788246	DW	EET SAV	07/14/23 08:42
Total/NA	Analysis	7470A		1	788395	ВСВ	EET SAV	07/14/23 14:40

Client Sample ID: AF68754 Lab Sample ID: 680-237587-5

Date Collected: 07/06/23 13:13

Date Received: 07/12/23 10:03

	Batch	Batch		Dilution	Batch			Prepared
Prep Type	Type	Method	Run	Factor	Number	Analyst	Lab	or Analyzed
Total/NA	Prep	7470A			788246	DW	EET SAV	07/14/23 08:42
Total/NA	Analysis	7470A		1	788395	BCB	EET SAV	07/14/23 14:41

Client Sample ID: AF68752 Lab Sample ID: 680-237587-6

Date Collected: 07/06/23 14:09 Matrix: GW

Date Received: 07/12/23 10:03

	Batch	Batch		Dilution	Batch			Prepared
Prep Type	Туре	Method	Run	Factor	Number	Analyst	Lab	or Analyzed
Total/NA	Prep	7470A			788246	DW	EET SAV	07/14/23 08:42
Total/NA	Analysis	7470A		1	788395	BCB	EET SAV	07/14/23 14:43

7/14/2023

Matrix: GW

Lab Chronicle

Client: South Carolina Public Service Authority Project/Site: 125915/JM02.08.G01.1/36500

Job ID: 680-237587-1

Lab Sample ID: 680-237587-7

Matrix: GW

Client Sample ID: AF68739 Date Collected: 07/05/23 10:44

Date Received: 07/12/23 10:03

	Batch	Batch		Dilution	Batch			Prepared
Prep Type	Type	Method	Run	Factor	Number	Analyst	Lab	or Analyzed
Total/NA	Prep	7470A			788246	DW	EET SAV	07/14/23 08:42
Total/NA	Analysis	7470A		1	788395	всв	EET SAV	07/14/23 14:48

Client Sample ID: AF68755 Lab Sample ID: 680-237587-8

Date Collected: 07/05/23 09:35 Matrix: GW

Date Received: 07/12/23 10:03

	Batch	Batch		Dilution	Batch			Prepared
Prep Type	Туре	Method	Run	Factor	Number	Analyst	Lab	or Analyzed
Total/NA	Prep	7470A			788246	DW	EET SAV	07/14/23 08:42
Total/NA	Analysis	7470A		1	788395	ВСВ	EET SAV	07/14/23 14:49

Client Sample ID: AF68756 Lab Sample ID: 680-237587-9

Date Collected: 07/05/23 11:39 Eab Sample 1B. 000-237-307-3

Date Received: 07/12/23 10:03

	Batch	Batch		Dilution	Batch			Prepared
Prep Type	Type	Method	Run	Factor	Number	Analyst	Lab	or Analyzed
Total/NA	Prep	7470A			788246	DW	EET SAV	07/14/23 08:42
Total/NA	Analysis	7470A		1	788395	ВСВ	EET SAV	07/14/23 14:51

Laboratory References:

EET SAV = Eurofins Savannah, 5102 LaRoche Avenue, Savannah, GA 31404, TEL (912)354-7858

4

Ė

6

7

9

10

19

13

Contract Lab Info. TA-SAV

santee cooper

COLER

Chain of Custody

	ΧŢ							4810	O SPA			 □ FCB □ Rad 228 	W 425		gH 🗆	!N□	O C
i) Pegecon				W St.	IOI	io [,		Hq 🖯 🗀			☐ Rad 226		POS 🗇	uZ□	eN □	Cq
no m spa	IA.	9	NADEZ		KRF Scan			Moisture fites	IPS (I)			Dissolve Dissolve	٤	□ D RE	A□	oM □	Ca
raiodys EO F			□ % Moisture		iper Λests: □ CHΝ	"	(FO	ity (Caf	ma 🖰 🗀	- 1	41	H₫□	7	ONG	ЩП	шМ.□] B e
ier) pavjosi			avsi2 □	Matter	olimioV □			st metal atd sidu			mrolil	□ E Coli □ Lotal Co		non .	IL[]	am □	Ba
heerise Singah	[.][20]	9	leibuiM 🛭	11.34	□ Sulfur			c	OT 🗆		esse.	19 & 1i0 🗅	NI-C		ıs □	FI D	B
Appl	0) (0		□ % Cstbon		dsA □				IV L. Iojag		W	□ AOC □ LHW\HY	- CONTRACTOR CONTRACTO	/al []	us 🗆	ΩК	sA l
Moisture			TOT D	enre.	isioM % 🗆		1	(#)ums	eyp.			stiidgeM 🗆			9\$.□	∋4 □	ΙΑ
rato ko .a		E.I	smonnin [344		, U			ndlisW		100	□ BLEX	Sjual	001 G	98 □	n⊃ 🗆	gA [
110			ijse/[3		Coal		,	unsd	vi)		J:	SIV4	Striei	SAIIN	ALS (all)	LHW	
	::	e cive	Time/Init for preserva	Date													
		•-		-	əmil		ətsQ	#	əəkoldu	ua Eu	eq pλ:	vieceЯ	əmiT	ened	Employee#	:peq pA:	siupnilaA
			стуайуе сое#:	11.00													
					5miT		916Q	#	aayolqn	43	eq pA:	Vieceiv	amiT	əted	# з әуоіqm3		Kelinquis
			ect pH: Yes No	Corr	E1:01	8 62	2/2/1	-0	- 10 m on - 10 m on - 10 m on - 10 m on - 10 m on - 10 m on - 10 m on - 10 m on - 10 m on - 10 m on - 10 m on -			W	1200	EZ/11/L	ከ៤៩១៩		norly
		dinl			SmiT	4-	916Q		aekojdu	1 9	eq pa:	Vieceiv	9miT	əteG	Employee#	μeq pλ:	Relinquis
	NIUC) əsr	ole Receiving (Internal L		1.0		_						· · · · · · · · · · · · · · · · · · ·			 r	×
			h-hz	16.h	2/12												
	1	7				T	T	Ī	ī	ī	Ī	LEII	T		1-2A-=11	M 99	T
	+	H		<u></u>			++					2570			81-4V	M 58	=L89=
	+	H				+	++	+				lodit	EZ/5/L		25-9A	M BE	L89-1
	+	H				 -	+	1	T	T	ī	Lah1	T		E-14-3	M 75	
	+					\vdash	\vdash	++	-			દાદો			1 h-l∀-±	M tis	-
	1						-	-							-h-H <u>-</u> -l⊓		L&9=
)	1	- 1	८०६।					
						Ī	T	I	Ī	Ī	Ī	1211	Ī		P1-9A	M 98	T
	T											25Po		And	9 -7¥ -±71	n bs	.
		X	ार्थाता चर्चातास्य स्थापात्रस्य स्थितः स्थापात्रस्य स्थापात्रस्य स्थापात्रस्य स्थापात्रस्य स्थापात्रस्य स्थापा स्थापात्रस्य स्थापात्रस्य स्यापात्रस्य स्थापात्रस्य स्थापात्रस्य स्थापात्रस्य स्थापात्रस्य स्यापात्रस्य स्थापात्रस्य स्थापात्रस्य स्थापात्रस्य स्थापात्रस्य	シュダ	0	7	сm	೨	4	1	MUK	L4P0	E7/9/L		9-7∀-=71	N 85	L89=
		5	im olni s	hod # orting lin c. sample other no	• Repo	Preservative (see below)	Matrix(see below)	Grab (G) or Composite (C)	Bottle type: (Glass- G/Plastic-P)	Total # of containers	Sample Collector	Collection Time	Collection Date		imple Location escription		iternal u
o15 Sizyle	snA		znemn	40)		<u> </u>	1	<u> </u>	1	l	P	<u> </u>	<u> </u>		TO THE RESERVE THE PROPERTY OF	-	
		οN	(9) <u>\</u>	98 /	1.125	80°7	JW0	SI	1524	-	-			тоэлэдо	osaatnae@	4 F	במות
											I				port Recipien	211 /u2000-	12111242
1-222DH	AUE	: 101	Rerun request		"# Tin	11/426]ect\T;	UAG.		.,,	'A hoho	Sults Ne	~a ~+eu	-+1	:-:	-4/1:	

□ Ct

Matrix codes: GW-groundwater, DW-drinking water, SW-surface water, WW-waste water, BW-boiler water, L-limestone, Oil-oil, S-Soil, SL-solid,

680-237587 Chain of Custody

Login Sample Receipt Checklist

Client: South Carolina Public Service Authority

Job Number: 680-237587-1

Login Number: 237587 List Source: Eurofins Savannah

List Number: 1

Creator: Padayao, Abigail

Creator: Padayao, Abigail		
Question	Answer	Comment
Radioactivity wasn't checked or is = background as measured by a survey meter.</td <td>N/A</td> <td></td>	N/A	
The cooler's custody seal, if present, is intact.	True	
Sample custody seals, if present, are intact.	True	
The cooler or samples do not appear to have been compromised or tampered with.	True	
Samples were received on ice.	False	Thermal preservation not required.
Cooler Temperature is acceptable.	True	
Cooler Temperature is recorded.	True	
COC is present.	True	
COC is filled out in ink and legible.	True	
COC is filled out with all pertinent information.	True	
Is the Field Sampler's name present on COC?	True	
There are no discrepancies between the containers received and the COC.	True	
Samples are received within Holding Time (excluding tests with immediate HTs)	True	
Sample containers have legible labels.	True	
Containers are not broken or leaking.	True	
Sample collection date/times are provided.	True	
Appropriate sample containers are used.	True	
Sample bottles are completely filled.	True	
Sample Preservation Verified.	True	
There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs	True	
Containers requiring zero headspace have no headspace or bubble is <6mm (1/4").	True	
Multiphasic samples are not present.	True	
Samples do not require splitting or compositing.	True	
Residual Chlorine Checked.	N/A	

4

6

7

9

44

12

13

Accreditation/Certification Summary

Client: South Carolina Public Service Authority
Project/Site: 125915/JM02.08.G01.1/36500

Job ID: 680-237587-1

Laboratory: Eurofins Savannah

The accreditations/certifications listed below are applicable to this report.

Authority	Program	Identification Number	Expiration Date
South Carolina	State	98001	06-30-23 *

4

5

7

8

10

11

12

 $^{^{\}star} \ \text{Accreditation/Certification renewal pending - accreditation/certification considered valid}.$

ANALYTICAL REPORT

PREPARED FOR

Attn: Linda Williams South Carolina Public Service Authority Santee Cooper PO BOX 2946101

Moncks Corner, South Carolina 29461-2901

Generated 10/6/2023 1:08:33 PM

JOB DESCRIPTION

125915/JM02.09.G01.1/36500

JOB NUMBER

680-241003-1

Eurofins Savannah 5102 LaRoche Avenue Savannah GA 31404

Eurofins Savannah

Job Notes

This report may not be reproduced except in full, and with written approval from the laboratory. The results relate only to the samples tested. For questions please contact the Project Manager at the e-mail address or telephone number listed on this page.

The test results in this report relate only to the samples as received by the laboratory and will meet all requirements of the methodology, with any exceptions noted. This report shall not be reproduced except in full, without the express written approval of the laboratory. All questions should be directed to the Eurofins Environment Testing Southeast, LLC Project Manager.

Authorization

Generated 10/6/2023 1:08:33 PM

Authorized for release by Jerry Lanier, Project Manager I <u>Jerry.Lanier@et.eurofinsus.com</u> (912)250-0281

Table of Contents

Cover Page	1
Table of Contents	3
Case Narrative	4
Sample Summary	5
Method Summary	6
Definitions	7
Detection Summary	8
Client Sample Results	9
QC Sample Results	13
QC Association	14
Chronicle	15
Chain of Custody	16
Receipt Checklists	17
Certification Summary	18

1

5

7

8

9

10

12

13

Case Narrative

Client: South Carolina Public Service Authority Project/Site: 125915/JM02.09.G01.1/36500

Job ID: 680-241003-1

Job ID: 680-241003-1

Laboratory: Eurofins Savannah

Narrative

Job Narrative 680-241003-1

Analytical test results meet all requirements of the associated regulatory program listed on the Accreditation/Certification Summary Page unless otherwise noted under the individual analysis. Data qualifiers are applied to indicate exceptions. Noncompliant quality control (QC) is further explained in narrative comments.

Matrix QC may not be reported if insufficient sample or site-specific QC samples were not submitted. In these situations, to demonstrate precision and accuracy at a batch level, a LCS/LCSD may be performed, unless otherwise specified in the method. Surrogate and/or isotope dilution analyte recoveries (if applicable) which are outside of the QC window are confirmed unless attributed to a dilution or otherwise noted in the narrative.

Regulated compliance samples (e.g. SDWA, NPDES) must comply with the associated agency requirements/permits.

Receipt

The samples were received on 9/29/2023 10:22 AM. Unless otherwise noted below, the samples arrived in good condition, and, where required, properly preserved and on ice. The temperature of the cooler at receipt time was 21.3°C

Metals

No additional analytical or quality issues were noted, other than those described above or in the Definitions/ Glossary page.

Sample Summary

Client: South Carolina Public Service Authority Project/Site: 125915/JM02.09.G01.1/36500

Job ID: 680-241003-1

Lab Sample ID	Client Sample ID	Matrix	Collected	Received
680-241003-1	AF79064	GW	09/26/23 12:13	09/29/23 10:22
680-241003-2	AF79065	GW	09/27/23 10:49	09/29/23 10:22
680-241003-3	AF79066	GW	09/27/23 10:54	09/29/23 10:22
680-241003-4	AF79067	GW	09/27/23 13:19	09/29/23 10:22

Δ

7

8

9

10

11

12

Method Summary

Client: South Carolina Public Service Authority Project/Site: 125915/JM02.09.G01.1/36500

Job ID: 680-241003-1

Method	Method Description	Protocol	Laboratory
7470A	Mercury (CVAA)	SW846	EET SAV
7470A	Preparation, Mercury	SW846	EET SAV

Protocol References:

SW846 = "Test Methods For Evaluating Solid Waste, Physical/Chemical Methods", Third Edition, November 1986 And Its Updates.

Laboratory References:

EET SAV = Eurofins Savannah, 5102 LaRoche Avenue, Savannah, GA 31404, TEL (912)354-7858

5

3

4

5

7

8

40

11

12

Definitions/Glossary

Client: South Carolina Public Service Authority

Project/Site: 125915/JM02.09.G01.1/36500

Job ID: 680-241003-1

Qualifiers

Metals

 Qualifier
 Qualifier Description

 U
 Indicates the analyte was analyzed for but not detected.

Glossary

Abbreviation	These commonly used abbreviations may or may not be present in this report.
¤	Listed under the "D" column to designate that the result is reported on a dry weight basis
%R	Percent Recovery

%R Percent Recovery

CFL Contains Free Liquid

CFU Colony Forming Unit

CNF Contains No Free Liquid

DER Duplicate Error Ratio (normalized absolute difference)

Dil Fac Dilution Factor

DL Detection Limit (DoD/DOE)

DL, RA, RE, IN Indicates a Dilution, Re-analysis, Re-extraction, or additional Initial metals/anion analysis of the sample

DLC Decision Level Concentration (Radiochemistry)

EDL Estimated Detection Limit (Dioxin)

LOD Limit of Detection (DoD/DOE)

LOQ Limit of Quantitation (DoD/DOE)

MCL EPA recommended "Maximum Contaminant Level"

MDA Minimum Detectable Activity (Radiochemistry)

MDC Minimum Detectable Concentration (Radiochemistry)

MDL Method Detection Limit
ML Minimum Level (Dioxin)
MPN Most Probable Number
MQL Method Quantitation Limit

NC Not Calculated

ND Not Detected at the reporting limit (or MDL or EDL if shown)

NEG Negative / Absent
POS Positive / Present

PQL Practical Quantitation Limit

PRES Presumptive
QC Quality Control

RER Relative Error Ratio (Radiochemistry)

RL Reporting Limit or Requested Limit (Radiochemistry)

RPD Relative Percent Difference, a measure of the relative difference between two points

TEF Toxicity Equivalent Factor (Dioxin)
TEQ Toxicity Equivalent Quotient (Dioxin)

TNTC Too Numerous To Count

6

7

10

11

13

Detection Summary

Project/Site: 125915/JM02.09.G01.1/36500

Client Sample ID: AF79064

No Detections.

Client Sample ID: AF79065

No Detections.

Client Sample ID: AF79066

Lab Sample ID: 680-241003-3

No Detections.

Client Sample ID: AF79067

Lab Sample ID: 680-241003-4

Job ID: 680-241003-1

0

10

13

14

Client: South Carolina Public Service Authority

No Detections.

Client: South Carolina Public Service Authority Project/Site: 125915/JM02.09.G01.1/36500

Job ID: 680-241003-1

Lab Sample ID: 680-241003-1

Matrix: GW

Client Sample ID: AF79064 Date Collected: 09/26/23 12:13

Date Received: 09/29/23 10:22

Method: SW846 7470A - Mercury (CVAA)

Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Mercury	0.200	U	0.200	ua/l		10/03/23 12:11	10/03/23 16:36	1

5

7

8

10

10

13

Client: South Carolina Public Service Authority Project/Site: 125915/JM02.09.G01.1/36500

Job ID: 680-241003-1

10/03/23 16:38

Client Sample ID: AF79065 Lab Sample ID: 680-241003-2

0.200

ug/L

10/03/23 12:11

Matrix: GW

Dil Fac

Date Collected: 09/27/23 10:49 Date Received: 09/29/23 10:22

Mercury

Method: SW846 7470A - Mercury (CVAA)

Analyte Result Qualifier RL MDL Unit D Prepared Analyzed

0.200 U

E

9

11

12

Client: South Carolina Public Service Authority Project/Site: 125915/JM02.09.G01.1/36500

Job ID: 680-241003-1

Client Sample ID: AF79066 Lab Sample ID: 680-241003-3 Date Collected: 09/27/23 10:54

Matrix: GW

Date Received: 09/29/23 10:22

Method: SW846 7470A - Mercury (CVAA) Analyte Result Qualifier RL MDL Unit D Prepared A									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Mercury	0.200	U	0.200		ug/L		10/03/23 12:11	10/03/23 16:40	1

Client: South Carolina Public Service Authority

Job ID: 680-241003-1 Project/Site: 125915/JM02.09.G01.1/36500

Lab Sample ID: 680-241003-4 **Client Sample ID: AF79067**

Date Collected: 09/27/23 13:19 Matrix: GW Date Received: 09/29/23 10:22

Method: SW846 7470A - Mercury (CVAA) RL Dil Fac Result Qualifier MDL Unit Prepared Analyzed Mercury 0.200 U 0.200 ug/L 10/03/23 12:11 10/03/23 16:43

QC Sample Results

Client: South Carolina Public Service Authority Project/Site: 125915/JM02.09.G01.1/36500

Job ID: 680-241003-1

Method: 7470A - Mercury (CVAA)

Lab Sample ID: MB 680-800807/1-A **Client Sample ID: Method Blank**

Matrix: Water

Prep Type: Total/NA Analysis Batch: 800852

Prep Batch: 800807

Dil Fac Analyte Result Qualifier RLMDL Unit **Prepared** Analyzed 10/03/23 12:11 Mercury 0.200 U 0.200 ug/L 10/03/23 16:32

Lab Sample ID: LCS 680-800807/2-A **Client Sample ID: Lab Control Sample Matrix: Water** Prep Type: Total/NA Analysis Batch: 800852

Prep Batch: 800807 %Rec

Spike LCS LCS Analyte Added Result Qualifier Unit %Rec Limits Mercury 2.50 2.613 ug/L 105 80 _ 120

MB MB

QC Association Summary

Client: South Carolina Public Service Authority
Project/Site: 125915/JM02.09.G01.1/36500

Job ID: 680-241003-1

Metals

Prep Batch: 800807

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
680-241003-1	AF79064	Total/NA	GW	7470A	
680-241003-2	AF79065	Total/NA	GW	7470A	
680-241003-3	AF79066	Total/NA	GW	7470A	
680-241003-4	AF79067	Total/NA	GW	7470A	
MB 680-800807/1-A	Method Blank	Total/NA	Water	7470A	
LCS 680-800807/2-A	Lab Control Sample	Total/NA	Water	7470A	

Analysis Batch: 800852

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
680-241003-1	AF79064	Total/NA	GW	7470A	800807
680-241003-2	AF79065	Total/NA	GW	7470A	800807
680-241003-3	AF79066	Total/NA	GW	7470A	800807
680-241003-4	AF79067	Total/NA	GW	7470A	800807
MB 680-800807/1-A	Method Blank	Total/NA	Water	7470A	800807
LCS 680-800807/2-A	Lab Control Sample	Total/NA	Water	7470A	800807

3

4

6

7

8

10

13

4 /

Lab Chronicle

Client: South Carolina Public Service Authority Project/Site: 125915/JM02.09.G01.1/36500

Job ID: 680-241003-1

Lab Sample ID: 680-241003-1

Matrix: GW

Client Sample ID: AF79064 Date Collected: 09/26/23 12:13

Date Received: 09/29/23 10:22

	Batch	Batch		Dilution	Batch			Prepared
Prep Type	Type	Method	Run	Factor	Number	Analyst	Lab	or Analyzed
Total/NA	Prep	7470A			800807	DW	EET SAV	10/03/23 12:11
Total/NA	Analysis	7470A		1	800852	DW	EET SAV	10/03/23 16:36

Client Sample ID: AF79065 Lab Sample ID: 680-241003-2

Matrix: GW

Date Collected: 09/27/23 10:49 Date Received: 09/29/23 10:22

Batch Batch Dilution Batch Prepared **Prep Type** Туре Method Run Factor Number Analyst Lab or Analyzed Total/NA 7470A 800807 DW EET SAV 10/03/23 12:11 Prep 10/03/23 16:38 Total/NA 7470A 800852 DW Analysis **EET SAV**

Client Sample ID: AF79066 Lab Sample ID: 680-241003-3

Date Collected: 09/27/23 10:54 Matrix: GW

Date Received: 09/29/23 10:22

Batch Batch Dilution Batch Prepared Method or Analyzed **Prep Type** Type Run Factor Number **Analyst** Lab Total/NA 7470A 800807 **EET SAV** 10/03/23 12:11 Prep Total/NA 10/03/23 16:40 Analysis 7470A 800852 DW **EET SAV** 1

Client Sample ID: AF79067 Lab Sample ID: 680-241003-4

Date Collected: 09/27/23 13:19 **Matrix: GW**

Date Received: 09/29/23 10:22

	Batch	Batch		Dilution	Batch			Prepared
Prep Type	Type	Method	Run	Factor	Number	Analyst	Lab	or Analyzed
Total/NA	Prep	7470A			800807	DW	EET SAV	10/03/23 12:11
Total/NA	Analysis	7470A		1	800852	DW	EET SAV	10/03/23 16:43

Laboratory References:

EET SAV = Eurofins Savannah, 5102 LaRoche Avenue, Savannah, GA 31404, TEL (912)354-7858

Eurofins Savannah

Chain of Custody

Santee Coope One Riverwood Driv Monelks Corner, SC 2946: Phone: (843)761-8000 Ext. 514! Fax: (843)761-417:

Customer Email/Report Recipient: Project/Task/Unit #: **Date Results Needed by:** Rerun request for any flagged QC LOWILLIA 125915 / JM02.09.601.1 / 36500 (Yes) @santeecooper.com No **Analysis Group** Labworks ID# Sample Location/ Comments Collection Time Matrix(see below) Preservative (see below) (Glass-Collection Date (Internal use Description Total # of container Method# Sample Collector only) Reporting limit Grab (G) or Composite (C) Bottle type: (G/Plastic-P) Misc. sample info Any other notes 五 ZDM 2 9/26/23 1 P G GW 7470 RL < 0.2 49/L X WAP-27 AF79064 1213 BSB X 1049 AF79065 WAP-28 7/27/23 X 1054 AF79066 WAP-28 DUP X AF79067 1319 WAP - 29 680-241003 Chain of Custody Sample Receiving (Internal Use Only) Time Relinquished by: Employee# Time Received by: Employee # Date TEMP (°C): Initial: 9/28/23 Moun 35594 1200 Correct pH: Yes Time Relinquished by: Employee# Date Time Received by: **Employee #** Date Preservative Lot#: Time Date Time Relinquished by: Employee# Date Received by: Employee # Date/Time/Init for preservative: 1022 ☐ METALS (all) MISC. **Gypsum** Coal in and Oil □ Ag □ Cu □ Sb Trans. Oil Qual. □ TOC BTEX □ Wallboard □ Ultimate □ Al □ Fe □ Se □ Naphthalene **■** DOC Gypsum(all ☐ % Moisture □ LOI □ As □ Sn ☐ THM/HAA $\Box K$ below) TP/TPO4 ☐ Ash ☐ % Carbon □ VOC Acidity O AIM □ NH3-N ☐ Sulfur □ Mineral OB □ Li □ Sr □ Oil & Grease DTOC OF □ BTUs Analysis E E. Coli □ Ba □ Ti O Total metals □ Mg □ CI □ Volatile Matter ☐ Sieve □ Total Coliform ☐ Soluble Metals □ Be □ NO2 Used Oil □ Mn OTI □ CHN ☐ % Moisture □pH D Purity (CaSO4) ☐ Dissolved As Other Tests: □ Br ☐ % Moisture Flashpoint □ Ca UV □ Mo ☐ Dissolved Fe ☐ XRF Scan □ NO3 □ Sulfites **NPDES** (As.Cd,Cr,Ni.Pb □ Cd □ Rad 226 □ HGI □ Na □ Zn DpH □ SO4 □ Oil & Grease ☐ Rad 228 ☐ Fineness ☐ Chlorides □Со □ Ni □ Hg □ As
□ TSS □ PCB □ Particulate Matter ☐ Particle Size GOFER □ Cr □ Pb □ CrVI □ Sulfur

2

3

4

5

8

10

12

Login Sample Receipt Checklist

Client: South Carolina Public Service Authority

Job Number: 680-241003-1

Login Number: 241003 List Source: Eurofins Savannah

List Number: 1

Creator: Johnson, Corey M

Creator. Johnson, Corey M		
Question	Answer	Comment
Radioactivity wasn't checked or is = background as measured by a survey meter.</td <td>N/A</td> <td></td>	N/A	
The cooler's custody seal, if present, is intact.	True	
Sample custody seals, if present, are intact.	True	
The cooler or samples do not appear to have been compromised or tampered with.	True	
Samples were received on ice.	False	Thermal preservation not required.
Cooler Temperature is acceptable.	True	
Cooler Temperature is recorded.	True	
COC is present.	True	
COC is filled out in ink and legible.	True	
COC is filled out with all pertinent information.	True	
Is the Field Sampler's name present on COC?	True	
There are no discrepancies between the containers received and the COC.	True	
Samples are received within Holding Time (excluding tests with immediate HTs)	True	
Sample containers have legible labels.	True	
Containers are not broken or leaking.	True	
Sample collection date/times are provided.	True	
Appropriate sample containers are used.	True	
Sample bottles are completely filled.	True	
Sample Preservation Verified.	N/A	
There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs	True	
Containers requiring zero headspace have no headspace or bubble is <6mm (1/4").	N/A	
Multiphasic samples are not present.	True	
Samples do not require splitting or compositing.	True	
Residual Chlorine Checked.	N/A	

<u>5</u>

4

_

9

11

12

13

Accreditation/Certification Summary

Client: South Carolina Public Service Authority Project/Site: 125915/JM02.09.G01.1/36500

Laboratory: Eurofins Savannah

The accreditations/certifications listed below are applicable to this report.

Authority	Program	Identification Number	Expiration Date
South Carolina	State	98001	06-30-23 *

Job ID: 680-241003-1

 $^{^{\}star} \ \text{Accreditation/Certification renewal pending - accreditation/certification considered valid.}$

gel.com

July 27, 2023

Ms. Jeanette Gilmetti Santee Cooper P.O. Box 2946101 OCO3 Moncks Corner, South Carolina 29461

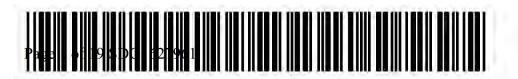
Re: ABS Lab Analytical Work Order: 627961

Dear Ms. Gilmetti:

GEL Laboratories, LLC (GEL) appreciates the opportunity to provide the enclosed analytical results for the sample(s) we received on June 30, 2023. This original data report has been prepared and reviewed in accordance with GEL's standard operating procedures.

Sample containers were not received, client contacted, client stated these were added to COC in error. 627961005(AF68715), 627961006(AF68722). All sample containers arrived without any visible signs of tampering or breakage. There are no additional comments concerning sample receipt.

Test results for NELAP or ISO 17025 accredited tests are verified to meet the requirements of those standards, with any exceptions noted. The results reported relate only to the items tested and to the sample as received by the laboratory. These results may not be reproduced except as full reports without approval by the laboratory. Copies of GEL's accreditations and certifications can be found on our website at www.gel.com.


Our policy is to provide high quality, personalized analytical services to enable you to meet your analytical needs on time every time. We trust that you will find everything in order and to your satisfaction. If you have any questions, please do not hesitate to call me at (843) 556-8171, ext. 4289.

Sincerely,

Julie Robinson Project Manager

Purchase Order: 398684

Enclosures

2040 Savage Road Charleston SC 29407 - (843) 556-8171 - www.gel.com

Certificate of Analysis Report for

SOOP001 Santee Cooper

Client SDG: 627961 GEL Work Order: 627961

The Qualifiers in this report are defined as follows:

- * A quality control analyte recovery is outside of specified acceptance criteria
- ** Analyte is a Tracer compound
- ** Analyte is a surrogate compound
- U Analyte was analyzed for, but not detected above the MDL, MDA, MDC or LOD.

Where the analytical method has been performed under NELAP certification, the analysis has met all of the requirements of the NELAC standard unless qualified on the Certificate of Analysis.

The designation ND, if present, appears in the result column when the analyte concentration is not detected above the limit as defined in the 'U' qualifier above.

This data report has been prepared and reviewed in accordance with GEL Laboratories LLC standard operating procedures. Please direct any questions to your Project Manager, Julie Robinson.

	Julie	Kne	
Reviewed by	U		

Page 2 of 19 SDG: 627961

2040 Savage Road Charleston SC 29407 - (843) 556-8171 - www.gel.com

Certificate of Analysis

Report Date: July 27, 2023

SOOP00119

Company: Santee Cooper Address: P.O. Box 2946101

OCO3

Moncks Corner, South Carolina 29461

Contact: Ms. Jeanette Gilmetti Project: ABS Lab Analytical

Client Sample ID: AF68719 Sample ID: 627961001

Matrix: GW

Collect Date: 29-JUN-23 10:48
Receive Date: 30-JUN-23
Collector: Client

627961001 Client ID: SOOP001 GW

Project:

Parameter	Qualifier	Result	Uncertainty	MDC	RL	Units	PF	DF Analyst	Date	Time	Batch	Method
Rad Gas Flow Proport	ional Counting											
GFPC, Ra228, Liquid	"As Received"											
Radium-228		3.47	+/-1.34	1.77	3.00	pCi/L		JE1 0	7/17/23	1510	2454081	1
Radium-226+Radium-	228 Calculatio	n "See Pa	arent Products"									
Radium-226+228 Sum		5.06	+/-1.49			pCi/L		NXL1 0	7/24/23	1519	2462863	2
Rad Radium-226												
Lucas Cell, Ra226, Lic	quid "As Recei	ved"										
Radium-226		1.59	+/-0.659	0.553	1.00	pCi/L		LXP1 0	7/24/23	0755 2	2454082	3
The following Analyt	ical Methods w	ere perfo	ormed:									
Method	Description					I	Analys	st Comments				
1	EPA 904 0/SW	/846 9320 1	Modified									

2 Calculation
3 EPA 903.1 Modified

Surrogate/Tracer RecoveryTestResultNominalRecovery%Acceptable LimitsBarium-133 TracerGFPC, Ra228, Liquid "As Received"72.3(15%-125%)

Notes:

Counting Uncertainty is calculated at the 95% confidence level (1.96-sigma).

Column headers are defined as follows:

DF: Dilution Factor Lc/LC: Critical Level
DL: Detection Limit PF: Prep Factor
MDA: Minimum Detectable Activity RL: Reporting Limit

MDC: Minimum Detectable Concentration SQL: Sample Quantitation Limit

Page 3 of 19 SDG: 627961

2040 Savage Road Charleston SC 29407 - (843) 556-8171 - www.gel.com

Certificate of Analysis

Report Date: July 27, 2023

SOOP00119

Company: Santee Cooper Address: P.O. Box 2946101

OCO3

Moncks Corner, South Carolina 29461

Contact: Ms. Jeanette Gilmetti Project: ABS Lab Analytical

Client Sample ID: AF68720 Sample ID: 627961002

Matrix: GW

Collect Date: 29-JUN-23 11:40
Receive Date: 30-JUN-23
Collector: Client

627961002 Client ID: SOOP001

Project:

Parameter	Qualifier	Result	Uncertainty	MDC	RL	Units	PF	DF Analy	st Date	Time Batch	Method
Rad Gas Flow Proporti	onal Counting										
GFPC, Ra228, Liquid	"As Received"										
Radium-228		2.79	+/-1.53	2.25	3.00	pCi/L		JE1	07/19/23	1027 2454081	1
Radium-226+Radium-	228 Calculation	n "See Pa	arent Products"								
Radium-226+228 Sum		5.75	+/-1.77			pCi/L		NXL1	07/24/23	1519 2462863	2
Rad Radium-226											
Lucas Cell, Ra226, Lic	juid "As Recei	ved"									
Radium-226		2.96	+/-0.886	0.398	1.00	pCi/L		LXP1	07/24/23	0755 2454082	3
The following Analyti	The following Analytical Methods were performed:										
Method	Description					1	Analys	st Comment	S		
1	EDA 004 0/GW	1046 0220 1	V 4 1'C' 1								

1	EPA 904.0/SW846 9320 Modified				
2	Calculation				
3	EPA 903.1 Modified				
Surrogate/Tracer Recov	ery Test	Result	Nominal	Recovery%	Acceptable Limits

Barium-133 Tracer GFPC, Ra228, Liquid "As Received" 69.2 (15%-125%)

Notes:

Counting Uncertainty is calculated at the 95% confidence level (1.96-sigma).

Column headers are defined as follows:

DF: Dilution Factor Lc/LC: Critical Level
DL: Detection Limit PF: Prep Factor
MDA: Minimum Detectable Activity RL: Reporting Limit

MDC: Minimum Detectable Concentration SQL: Sample Quantitation Limit

Page 4 of 19 SDG: 627961

2040 Savage Road Charleston SC 29407 - (843) 556-8171 - www.gel.com

Certificate of Analysis

Project:

Client ID:

Report Date: July 27, 2023

LXP1 07/24/23 0844 2454082

3

SOOP00119

SOOP001

Company: Santee Cooper Address: P.O. Box 2946101

OCO3

Moncks Corner, South Carolina 29461

Contact: Ms. Jeanette Gilmetti Project: ABS Lab Analytical

Client Sample ID: AF68721 Sample ID: 627961003

Matrix: GW

Collect Date: 29-JUN-23 11:45
Receive Date: 30-JUN-23
Collector: Client

Parameter **Oualifier** Result Uncertainty **MDC** RL Units PF DF Analyst Date Time Batch Method Rad Gas Flow Proportional Counting GFPC, Ra228, Liquid "As Received" Radium-228 2.71 +/-1.47 2.21 3.00 pCi/L JE1 07/17/23 1511 2454081 Radium-226+Radium-228 Calculation "See Parent Products" Radium-226+228 Sum 8.64 +/-1.94 pCi/L NXL1 07/24/23 1519 2463279 2 Rad Radium-226 Lucas Cell, Ra226, Liquid "As Received"

1.00

pCi/L

Radium-226 5.93
The following Analytical Methods were performed:

MethodDescriptionAnalyst Comments1EPA 904.0/SW846 9320 Modified

+/-1.26

2 Calculation 3 EPA 903.1 Modified

Surrogate/Tracer Recovery Test Result Nominal Recovery% Acceptable Limits

Barium-133 Tracer GFPC, Ra228, Liquid "As Received"

71.3 (15%-125%)

0.485

Notes:

Counting Uncertainty is calculated at the 95% confidence level (1.96-sigma).

Column headers are defined as follows:

DF: Dilution Factor Lc/LC: Critical Level
DL: Detection Limit PF: Prep Factor
MDA: Minimum Detectable Activity RL: Reporting Limit

MDC: Minimum Detectable Concentration SQL: Sample Quantitation Limit

Page 5 of 19 SDG: 627961

2040 Savage Road Charleston SC 29407 - (843) 556-8171 - www.gel.com

Certificate of Analysis

Report Date: July 27, 2023

SOOP00119

Company: Santee Cooper Address: P.O. Box 2946101

OCO3

Moncks Corner, South Carolina 29461

Contact: Ms. Jeanette Gilmetti Project: ABS Lab Analytical

Client Sample ID: AF68713 Sample ID: 627961004

Matrix: GW

Collect Date: 29-JUN-23 13:51
Receive Date: 30-JUN-23
Collector: Client

627961004 Client ID: SOOP001 GW

Project:

Parameter	Qualifier	Result	Uncertainty	MDC	RL	Units	PF	DF Analys	st Date	Time	Batch	Method
Rad Gas Flow Proport	ional Counting											
GFPC, Ra228, Liquid	"As Received"											
Radium-228		3.09	+/-1.46	2.09	3.00	pCi/L		JE1	07/17/23	1511	2454081	1
Radium-226+Radium-	228 Calculatio	n "See Pa	arent Products"									
Radium-226+228 Sum		4.34	+/-1.58			pCi/L		NXL1	07/24/23	1519	2463279	2
Rad Radium-226												
Lucas Cell, Ra226, Lic	quid "As Recei	ved"										
Radium-226		1.25	+/-0.604	0.599	1.00	pCi/L		LXP1	07/24/23	0844	2454082	3
The following Analyt	ical Methods w	ere perfo	ormed:									
Method	Description					I	Analys	st Comments				-
1	EPA 904 0/SW	/846 9320 1	Modified			•						

2 Calculation
3 EPA 903.1 Modified

Surrogate/Tracer Recovery Test Result Nominal Recovery% Acceptable Limits

Barium-133 Tracer GFPC, Ra228, Liquid "As Received" 68.9 (15%-125%)

Notes:

Counting Uncertainty is calculated at the 95% confidence level (1.96-sigma).

Column headers are defined as follows:

DF: Dilution Factor Lc/LC: Critical Level
DL: Detection Limit PF: Prep Factor
MDA: Minimum Detectable Activity RL: Reporting Limit

MDC: Minimum Detectable Concentration SQL: Sample Quantitation Limit

Page 6 of 19 SDG: 627961

2040 Savage Road Charleston SC 29407 - (843) 556-8171 - www.gel.com

Certificate of Analysis

Report Date: July 27, 2023

SOOP00119

SOOP001

Company: Santee Cooper P.O. Box 2946101 Address:

OCO3

Moncks Corner, South Carolina 29461

Contact: Ms. Jeanette Gilmetti Project: ABS Lab Analytical

Client Sample ID: AF68714 Sample ID: 627961007

Matrix: GW

Collect Date: Receive Date: 30-JUN-23 Collector: Client

28-JUN-23 14:09

Project:

Client ID:

Analyst Comments

Parameter	Qualifier	Result	Uncertainty	MDC	RL	Units	PF	DF Anal	yst Date	Time Batch	Method
Rad Gas Flow Proportion	onal Counting										
GFPC, Ra228, Liquid "A	As Received"										
Radium-228	U	1.04	+/-1.00	1.64	3.00	pCi/L		JE1	07/17/23	1511 2454081	1
Radium-226+Radium-228 Calculation "See Parent Products"											
Radium-226+228 Sum		2.57	+/-1.22			pCi/L		NXL1	07/24/23	1519 2463279	2
Rad Radium-226											
Lucas Cell, Ra226, Liquid "As Received"											
Radium-226		1.53	+/-0.701	0.635	1.00	pCi/L		LXP1	07/24/23	0844 2454082	3
The following Analytic	al Methods w	ere perfo	rmed:								

Method

Description EPA 904.0/SW846 9320 Modified Calculation

EPA 903.1 Modified

Surrogate/Tracer Recovery Nominal Acceptable Limits Test Result Recovery% Barium-133 Tracer 71.1 GFPC, Ra228, Liquid "As Received" (15%-125%)

Notes:

Counting Uncertainty is calculated at the 95% confidence level (1.96-sigma).

Column headers are defined as follows:

DF: Dilution Factor Lc/LC: Critical Level PF: Prep Factor DL: Detection Limit MDA: Minimum Detectable Activity **RL**: Reporting Limit

MDC: Minimum Detectable Concentration SQL: Sample Quantitation Limit

Page 7 of 19 SDG: 627961

2040 Savage Road Charleston SC 29407 - (843) 556-8171 - www.gel.com

Certificate of Analysis

Report Date: July 27, 2023

SOOP00119

Company: Santee Cooper Address: P.O. Box 2946101

OCO3

Moncks Corner, South Carolina 29461

Contact: Ms. Jeanette Gilmetti Project: ABS Lab Analytical

Client Sample ID: AF68712 Sample ID: 627961008

Matrix: GW

Collect Date: 28-JUN-23 15:20 Receive Date: 30-JUN-23 Collector: Client

627961008 Client ID: SOOP001 GW

Project:

Parameter	Qualifier	Result	Uncertainty	MDC	RL	Units	PF	DF Analyst Date	Time Batch	Method
Rad Gas Flow Proportion	onal Counting									
GFPC, Ra228, Liquid ".	As Received"									
Radium-228	U	1.17	+/-1.12	1.85	3.00	pCi/L		JE1 07/17/2	3 1511 2454081	1
Radium-226+Radium-2	28 Calculatio	n "See Pa	arent Products"							
Radium-226+228 Sum		3.01	+/-1.31			pCi/L		NXL1 07/24/2	3 1519 2462863	2
Rad Radium-226										
Lucas Cell, Ra226, Liqu	uid "As Recei	ved"								
Radium-226		1.83	+/-0.674	0.477	1.00	pCi/L		LXP1 07/24/2	3 0844 2454082	3
The following Analytic	The following Analytical Methods were performed:									
Method	Description					A	Analys	st Comments		
1	EPA 904.0/SW	846 9320 1	Modified							

2	Calculation				
3	EPA 903.1 Modified				
Surrogate/Tracer Recov	ery Test	Result	Nominal	Recovery%	Acceptable Limits

Barium-133 Tracer GFPC, Ra228, Liquid "As Received" 70.5 (15%-125%)

Notes:

Counting Uncertainty is calculated at the 95% confidence level (1.96-sigma).

Column headers are defined as follows:

DF: Dilution Factor Lc/LC: Critical Level
DL: Detection Limit PF: Prep Factor
MDA: Minimum Detectable Activity RL: Reporting Limit

MDC: Minimum Detectable Concentration SQL: Sample Quantitation Limit

Page 8 of 19 SDG: 627961

2040 Savage Road Charleston SC 29407 - (843) 556-8171 - www.gel.com

Certificate of Analysis

Project:

Client ID:

Report Date: July 27, 2023

SOOP00119

SOOP001

Company: Santee Cooper Address: P.O. Box 2946101

OCO3

Moncks Corner, South Carolina 29461

Contact: Ms. Jeanette Gilmetti Project: ABS Lab Analytical

Client Sample ID: AF68748 Sample ID: 627961009

Matrix: GW

Collect Date: 27-JUN-23 10:15
Receive Date: 30-JUN-23
Collector: Client

Parameter	Qualifier	Result	Uncertainty	MDC	RL	Units	PF	DF Analy	st Date	Time Batch	Method
Rad Gas Flow Proportiona	al Counting										
GFPC, Ra228, Liquid "As	Received"										
Radium-228		3.93	+/-1.52	1.92	3.00	pCi/L		JE1	07/19/23	1027 2454081	1
Radium-226+Radium-228	Calculation	ı "See Pa	arent Products"								
Radium-226+228 Sum		4 32	+/-1 56			pCi/L		NXL1	07/24/23	1519 2462863	2

Radium-226+228 Sum 4.32 +/-1.56
Rad Radium-226

Lucas Cell, Ra226, Liquid "As Received"

Radium-226 U 0.388 +/-0.369 0.553 1.00 pCi/L LXP1 07/24/23 0844 2454082

The following Analytical Methods were performed:

MethodDescriptionAnalyst Comments1EPA 904.0/SW846 9320 Modified

2 Calculation 3 EPA 903.1 Modified

Surrogate/Tracer Recovery Test Result Nominal Recovery% Acceptable Limits

Barium-133 Tracer GFPC, Ra228, Liquid "As Received"

70.2 (15%-125%)

Notes:

Counting Uncertainty is calculated at the 95% confidence level (1.96-sigma).

Column headers are defined as follows:

DF: Dilution Factor Lc/LC: Critical Level
DL: Detection Limit PF: Prep Factor
MDA: Minimum Detectable Activity RL: Reporting Limit

MDC: Minimum Detectable Concentration SQL: Sample Quantitation Limit

Page 9 of 19 SDG: 627961

2040 Savage Road Charleston SC 29407 - (843) 556-8171 - www.gel.com

Certificate of Analysis

Report Date: July 27, 2023

2

3

SOOP00119

SOOP001

Santee Cooper Company: P.O. Box 2946101 Address:

OCO₃

Moncks Corner, South Carolina 29461

Contact: Ms. Jeanette Gilmetti Project: ABS Lab Analytical

Client Sample ID: AF68711 Sample ID: 627961010

Matrix: GW

Collect Date: 27-JUN-23 11:26 Receive Date: 30-JUN-23 Collector: Client

Parameter	Qualifier	Result	Uncertainty	MDC	RL	Units	PF	DF Analyst Date	Time Batch	Method
Rad Gas Flow Pro	oportional Counting	<u> </u>	·							
GFPC, Ra228, Liquid "As Received"										

Project:

Client ID:

Analyst Comments

Radium-228 U -0.145+/-1.35 2.52 3.00 pCi/L JE1 07/17/23 1511 2454081 Radium-226+Radium-228 Calculation "See Parent Products" Radium-226+228 Sum +/-1.54 pCi/L NXL1 07/24/23 1519 2462863

Rad Radium-226

Description

Lucas Cell, Ra226, Liquid "As Received" Radium-226 1.85 +/-0.737 1.00 0.659 pCi/L LXP1 07/24/23 0844 2454082

The following Analytical Methods were performed:

EPA 904.0/SW846 9320 Modified 2 Calculation EPA 903.1 Modified Surrogate/Tracer Recovery Test Result Nominal Recovery% Acceptable Limits

Barium-133 Tracer GFPC, Ra228, Liquid "As Received" 72.3 (15%-125%)

Notes:

Method

Counting Uncertainty is calculated at the 95% confidence level (1.96-sigma).

Column headers are defined as follows:

DF: Dilution Factor Lc/LC: Critical Level PF: Prep Factor DL: Detection Limit MDA: Minimum Detectable Activity **RL**: Reporting Limit

MDC: Minimum Detectable Concentration SQL: Sample Quantitation Limit

Page 10 of 19 SDG: 627961

2040 Savage Road Charleston SC 29407 - (843) 556-8171 - www.gel.com

Certificate of Analysis

Report Date: July 27, 2023

SOOP00119

Company: Santee Cooper P.O. Box 2946101 Address:

OCO3

Moncks Corner, South Carolina 29461

Contact: Ms. Jeanette Gilmetti Project: ABS Lab Analytical

Client Sample ID: AF68717 Sample ID: 627961011

Matrix: GW

Collect Date: 27-JUN-23 13:57 Receive Date: 30-JUN-23 Collector: Client

Client ID: SOOP001

Project:

Parameter	Qualifier	Result	Uncertainty	MDC	RL	Units	PF	DF Analy	st Date	Time Batch	Method
Rad Gas Flow Proportion	onal Counting										
GFPC, Ra228, Liquid "A	As Received"										
Radium-228	U	2.51	+/-1.64	2.55	3.00	pCi/L		JE1	07/17/23	1511 2454081	1
Radium-226+Radium-2	28 Calculation	n "See Pa	arent Products"								
Radium-226+228 Sum		2.96	+/-1.69			pCi/L		NXL1	07/24/23	1519 2462863	2
Rad Radium-226											
Lucas Cell, Ra226, Liqu	iid "As Recei	ved"									
Radium-226	U	0.446	+/-0.395	0.554	1.00	pCi/L		LXP1	07/24/23	0844 2454082	3
The following Analytic	he following Analytical Methods were performed:										
Method	Description					1	Analys	st Comment	s		

1 E	PA 904.0/SW846 9320 Modified		•							
2 C	lation									
3 E	PA 903.1 Modified									
Surrogate/Tracer Recovery	y Test	Result	Nominal	Recovery%	Acceptable Limits					

Barium-133 Tracer GFPC, Ra228, Liquid "As Received" 63.3 (15%-125%)

Notes:

Counting Uncertainty is calculated at the 95% confidence level (1.96-sigma).

Column headers are defined as follows:

DF: Dilution Factor Lc/LC: Critical Level PF: Prep Factor DL: Detection Limit MDA: Minimum Detectable Activity **RL**: Reporting Limit

MDC: Minimum Detectable Concentration SQL: Sample Quantitation Limit

Page 11 of 19 SDG: 627961

2040 Savage Road Charleston, SC 29407 - (843) 556-8171 - www.gel.com

QC Summary

Report Date: July 27, 2023

Santee Cooper P.O. Box 2946101

OCO3

Moncks Corner, South Carolina

Contact: Ms. Jeanette Gilmetti

Workorder: 627961

Parmname	NOM	Sample	Qual	QC	Units	RPD%	REC%	Range Anl	st Date Time
Rad Gas Flow									
Batch 2454081 ———									
QC1205450523 627961001 DUP									
Radium-228		3.47	U	1.53	pCi/L	77.9		(0% - 100%)	JE1 07/17/23 15:10
	Uncertainty	+/-1.34		+/-1.36					
QC1205450524 LCS									
Radium-228	78.2			67.7	pCi/L		86.6	(75%-125%)	07/17/23 15:10
	Uncertainty			+/-4.40					
QC1205450522 MB									
Radium-228			U	1.44	pCi/L				07/17/23 15:10
	Uncertainty			+/-1.05					
Rad Ra-226									
Batch 2454082									
QC1205450526 627961001 DUP									
Radium-226		1.59		1.22	pCi/L	26.5		(0% - 100%) LX	XP1 07/24/23 10:06
	Uncertainty	+/-0.659		+/-0.539					
QC1205450528 LCS									
Radium-226	52.9			55.4	pCi/L		105	(75%-125%)	07/24/23 10:06
	Uncertainty			+/-3.58					
QC1205450525 MB									
Radium-226			U	0.282	pCi/L				07/24/23 09:22
	Uncertainty			+/-0.403					
QC1205450527 627961001 MS									
Radium-226	132	1.59		136	pCi/L		101	(75%-125%)	07/24/23 10:06
	Uncertainty	+/-0.659		+/-13.5					

Notes:

Counting Uncertainty is calculated at the 95% confidence level (1.96-sigma).

The Qualifiers in this report are defined as follows:

U Analyte was analyzed for, but not detected above the MDL, MDA, MDC or LOD.

J Value is estimated

X Consult Case Narrative, Data Summary package, or Project Manager concerning this qualifier

H Analytical holding time was exceeded

< Result is less than value reported

Page 12 of 19 SDG: 627961

Page 1 of 2

2040 Savage Road Charleston, SC 29407 - (843) 556-8171 - www.gel.com

QC Summary

Workorder: 627961

Page 2 of 2

Parmage

NOM Sample Qual OC Units RPD% REC% Range And Date Time

Parmname	NOM	Sample	Qual	QC	Units	RPD%	REC%	Range	Anlst	Date	Time

- Result is greater than value reported
- UI Gamma Spectroscopy--Uncertain identification
- BD Results are either below the MDC or tracer recovery is low
- h Preparation or preservation holding time was exceeded
- R Sample results are rejected
- ^ RPD of sample and duplicate evaluated using +/-RL. Concentrations are <5X the RL. Qualifier Not Applicable for Radiochemistry.
- N/A RPD or %Recovery limits do not apply.
- ND Analyte concentration is not detected above the detection limit
- M if above MDC and less than LLD
- NJ Consult Case Narrative, Data Summary package, or Project Manager concerning this qualifier
- FA Failed analysis.
- UJ Gamma Spectroscopy--Uncertain identification
- Q One or more quality control criteria have not been met. Refer to the applicable narrative or DER.
- K Analyte present. Reported value may be biased high. Actual value is expected to be lower.
- UL Not considered detected. The associated number is the reported concentration, which may be inaccurate due to a low bias.
- L Analyte present. Reported value may be biased low. Actual value is expected to be higher.
- N1 See case narrative
- Y Other specific qualifiers were required to properly define the results. Consult case narrative.
- ** Analyte is a Tracer compound
- M REMP Result > MDC/CL and < RDL
- J See case narrative for an explanation

N/A indicates that spike recovery limits do not apply when sample concentration exceeds spike conc. by a factor of 4 or more or %RPD not applicable.

- ^ The Relative Percent Difference (RPD) obtained from the sample duplicate (DUP) is evaluated against the acceptance criteria when the sample is greater than five times (5X) the contract required detection limit (RL). In cases where either the sample or duplicate value is less than 5X the RL, a control limit of +/- the RL is used to evaluate the DUP result.
- * Indicates that a Quality Control parameter was not within specifications.

For PS, PSD, and SDILT results, the values listed are the measured amounts, not final concentrations.

Where the analytical method has been performed under NELAP certification, the analysis has met all of the requirements of the NELAC standard unless qualified on the QC Summary.

Page 13 of 19 SDG: 627961

Radiochemistry Technical Case Narrative Santee Cooper SDG #: 627961

Product: GFPC, Ra228, Liquid

<u>Analytical Method:</u> EPA 904.0/SW846 9320 Modified <u>Analytical Procedure:</u> GL-RAD-A-063 REV# 5

Analytical Batch: 2454081

The following samples were analyzed using the above methods and analytical procedure(s).

GEL Sample ID#	Client Sample Identification
627961001	AF68719
627961002	AF68720
627961003	AF68721
627961004	AF68713
627961007	AF68714
627961008	AF68712
627961009	AF68748
627961010	AF68711
627961011	AF68717
1205450522	Method Blank (MB)
1205450523	627961001(AF68719) Sample Duplicate (DUP)
1205450524	Laboratory Control Sample (LCS)

The samples in this SDG were analyzed on an "as received" basis.

Data Summary:

All sample data provided in this report met the acceptance criteria specified in the analytical methods and procedures for initial calibration, continuing calibration, instrument controls and process controls where applicable, with the following exceptions.

Technical Information

Recounts

Samples 627961002 (AF68720) and 627961009 (AF68748) were re-eluted and recounted to verify sample results. The recounts are reported.

<u>Product:</u> Lucas Cell, Ra226, Liquid <u>Analytical Method:</u> EPA 903.1 Modified

Analytical Procedure: GL-RAD-A-008 REV# 15

Analytical Batch: 2454082

The following samples were analyzed using the above methods and analytical procedure(s).

GEL Sample ID# Client Sample Identification

627961001 AF68719

Page 14 of 19 SDG: 627961

627961002 627961003	AF68720 AF68721
627961004	AF68713
627961007	AF68714
627961008	AF68712
627961009	AF68748
627961010	AF68711
627961011	AF68717
1205450525	Method Blank (MB)
1205450526	627961001(AF68719) Sample Duplicate (DUP)
1205450527	627961001(AF68719) Matrix Spike (MS)
1205450528	Laboratory Control Sample (LCS)

The samples in this SDG were analyzed on an "as received" basis.

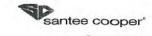
Data Summary:

All sample data provided in this report met the acceptance criteria specified in the analytical methods and procedures for initial calibration, continuing calibration, instrument controls and process controls where applicable, with the following exceptions.

Preparation Information

Aliquot Reduced

1205450527 (AF68719MS) Aliquot was reduced due to limited sample volume.


Certification Statement

Where the analytical method has been performed under NELAP certification, the analysis has met all of the requirements of the NELAC standard unless otherwise noted in the analytical case narrative.

Page 15 of 19 SDG: 627961

627961

Chain of Custody

Santee Coope One Riverwood Drive Moncks Corner, SC 2946 Phone: (843)761-8000 Ext. 5148

Customer Emai	stomer Email/Report Recipient:			Date Results Needed by:				Project/Task/Unit #:						t for an	y flag	gged	QC
LCWILLIA	@santee	cooper.com					125	115	JMC	02.0	8.6Ø1.3	13650	© Yes	No			
														A	nalysis	Group	2
Labworks ID # (Internal use only)	Sample Locati Description	on/	Collection Date	Collection Time	Sample Collector	Total # of containers	Bottle type: (Glass-G/Plastic-P)	Grab (G) or	Matrix(see below)	Preservative (see	Rep Miss	Commod # orting limit c. sample in other notes	nfo	RAD 226	RAD 228	TOTAL RAD CALC	
AF68719	WAP-9		6/29/23	1048	WJK	2	P	6	GW	2				1	1	X	
AF68720	WAP-10			(140		1		1	1					1			
AF68721	WAP - 10 D	P		1145													
AF68,713	WAP-3			1351													
AF68715	WAP-5			0947													
AF68722	WAP-11		1	1453	1	1	1	-	1	_					1	1	
													361				
Relinquished by	: Employee#	Date	Time	Recei	ved by:		mployee	#	Date		Time	Sample TEMP	Receiving (Interna	l Use Or Initia			
Soproun	35594	6/30/23	1035	101.16	los		GEL		L 6/30/23		1035						
Relinquished by			Time		ved by:	E	Employee	nployee # Date			Time	Correc	t pH: Yes N	0			
M.A.	GEL	6.30.23	1235	20	~	+	GEL Wisd		13	1235	Preserv	vative Lot#:					
Relinquished by		Date	Time	Recei	ved by:		mployee		Date	_	Time						
												Date/T	ime/Init for preser	vative:			
□ Ag □ C		Nut		MI □ BTEX	ISC.	1	Wallbe	/DSU			Coal Ultimate		Flyash Ammonia LOI		Oi ans. Oi	il Qual	
□ As □ F	∑ □ Sn		TPO4	□ THM/H			belo	w)			□ Ash	tine	🗆 % Carbon	0000	Color		
□ B □ I	Li □ Sr	□NH□F	13-N	□ VOC □ Oil & C		100	D A				□ Sulfur □ BTUs	180	☐ Mineral	E		c Streng	th
□ Ba □ N	Mg □ Ti		Plant	☐ E. Coli ☐ Total C			O To	tal me			□ Volatile	Matter	Analysis □ Sieve		FT Dissolv	ed Gas	ses
□ Be □ N	∕In □ Tl	DNO		□pH		3	□ Pu	rity (C	Metals 'aSO4)	-	□ CHN	-	□ % Moisture	. Li Us	ed Oi	il	
□ Ca □ N	Mo □ V	□ Br	A STATE OF THE PARTY OF THE PAR	☐ Dissolv				Moist littes	ure		Other Tests: XRF Scan	3-5	NIDDEC		Flashpo Metals	in oil	
□ Cd □ N	Ja □ Zn	□SO		☐ Rad 22	6		□pH	1		I	HGI	1	NPDES Oil & Grease			LCr,Ni	
□Co □N	li □ Hg		Service Division	□ Rad 22	8			loride rticle !		German .	Fineness Particulate M	atter	□As	51	ΓX		
□ Cr □ F	b □ CrV	I .	THE STATE OF				□ Sulfur					7.1	□ TSS	□ GC	DFER		

Chain of Custody

Santes Cooper One Riverwood Drive Moneks Corner, SC 29461 Phone: (843)761-8000 Ext. 5148 Fax: (843)761-4175

Customer Email	ustomer Email/Report Recipient: NDA - WILLIAMS @santeecooper.com		Date R	Date Results Needed by:				Pr	oject/	Task/	Project/Task/Unit #:					Rerun request for any flagged QC		
HWDA - WILLIA	MS @santee	cooper.com			·		125	915	<u>/ JM</u>	02.6	8.Gø 1.3	<u> </u>	No					
													I	<u>inalys</u>	is Grou	p		
Labworks ID # (Internal use only)	Sample Location Description	on/	Collection Date	Collection Time	Sample Collector	Total # of containers	Bottle type: (Glass- G/Plastic-P)	Grab (G) or Composite (C)	Matrix(see below)	Preservative (see	• Rep	Comments hod # orting limit c. sample info other notes	RAD 726	KAD 728	TOTAL RAD CALC.			
AF68714	WAP-4		6/28/23	140न	MZK ML	2	P	G	ew	2			Ţ	ι	Х			
AF-68712	WARP-2		1	1520				1		1			1	1				
AF68748	wsw-l		6/27/23	1015														
AF68711	WAP-1			1126														
AF-68717	WAIP-7			1857	1	_	1	_										
										<u> </u>			-					
						,												
				!														
		N BERNEY ANN E STARRE I	**************************************		none in order	600 800 m	20 N 100 E (100)	Transport Laboration	75-A52-NJ-Vistor 2	fra co sul s	2000 - 2000 - 1	Sample Receiving (Interna	l Use Or	lv)				
Relinquished by: By Drown Relinquished by:	35594	6/30/23	1636	36 M.A.				GEL 6/30/23 1034			TEMP (°C): Initial: Correct pH: Yes No			-				
M A.	Employee#	Date 6・30・23	Time. 1235 /	2	ed by:	25 B. B. B. B. B. B. B. B. B. B. B. B. B.	Employee# Date Time GF- USC/21 (235 Employee# Date Time			Preservative Lot#:								
Relinquished by:		Date	Time	Receiv	ed by:		nployee	***	Date	الحداد	Time							
												Date/Time/Init for presei	vative:					
METALS (all				MIS DETEX Naphtha THM/H VC Oil & Gi Coil Total Co pH Dissolve Rad 226 Rad 228	ene AA ease liform		(CV VEIII) (CV) Lette (F) (F) (Soft (F) (Soft (F) (F) (Cit	citettere Si al misse dir (Cas donate Des orides lele-Sir	! ! s.i.e :621	0 33	Codl Offinial Con- FIF Most FIF Asia ELSTIPES FIF OF THE FIF OF TH	Maile Service						

Cli	ent: COP	_		SAMPLE RECEIPT & REVIEW FORM SDG/AR/COC/Work Order: 1277 (2)
-	ceived By: QG			Date Received: 434 123
N.C.	Carrier and Tracking Number			Circle Applicable: FedEx Express FedEx Ground UPS Field Services Courier Other
Sus	spected Hazard Information	Yes	No	*If Ney Counts > 100cpm on samples not marked "radioactive", contact the Radiation Safety Group for further investigation.
A)5	Shipped as a DOT Hazardous?		c	hizard Class Shipped: If UN2910, Is the Radioactive Shipment Survey Compliant? Yes No
B)	Did the client designate the samples are to be		1	COC hotation or radioactive stickers on containers equal client designation.
C)	Did the RSO classify the samples as oactive?		~	Maximum Net Counts Observed* (Observed Counts - Area Background Counts): CPM_mR/Hr Classified as: Rad 1 Rad 2 Rad 3
D)	Did the client designate samples are hazardous?		1	COC notation or hazard labels on containers equal client designation. If D or E is yes, select Hazards below.
E) I	Did the RSO identify possible hazards?			PCB's Flammable Foreign Soil RCRA Asbestos Beryllium Other:
	Sample Receipt Criteria	Yes	2/	Z Comments/Qualifiers (Required for Non-Conforming Items)
1	Shipping containers received intact and sealed?	L		Circle Applicable: Seals broken Damaged container Leaking container Other (describe)
2	Chain of custody documents included with shipment?	V		Cipile Applicable: Client contacted and provided COC COC created upon receipt
3	Samples requiring cold preservation within (0 ≤ 6 deg. C)?*	V	y	Preservation Method: Wet Ice Packs Dry ice None Other: *all temperatures be-recorded in Celsius TEMP:
4	Daily check performed and passed on IR temperature gun?	1	9	Temperature Device Serial #: IR4-23 Secondary Temperature Device Serial # (If Applicable):
5	Sample containers intact and sealed?	1		Circle Applicable: Seals broken Damaged container Leaking container Other (describe)
6	Samples requiring chemical preservation at proper pH?	1		Sample ID's and Containers Affected: If Preservation added, Lot#:
7	Do any samples require Volatile Analysis?			Do liquid VOA vials contain acid present for solids? YesNoNA(If yes, take to VOA Freezer) Do liquid VOA vials contain acid preservation? Yes No NA(If unknown, select No) Are liquid VOA vials free of headspace? Yes No NA Sample ID's and containers affected:
8	Samples received within holding time?	V		ID's and tests affected:
9	Sample ID's on COC match ID's on bottles?	1		ID's and containers affected:
10	Date & time on COC match date & time on bottles?	V		Circle Applicable: No dates on containers No times on containers COC missing info Other (describe)
11	Number of containers received match number indicated on COC?		•	Mussing AF68 115 and AF68122
12	Are sample containers identifiable as GEL provided by use of GEL labels?	/		
13	COC form is properly signed in relinquished/received sections?	/		Circle Applicable: Not relinquished Other (describe)
Con	nments (Use Continuation Form if needed):			

GL-CHL-SR-001 Rev 7

List of current GEL Certifications as of 27 July 2023

State	Certification
Alabama	42200
Alaska	17-018
Alaska Drinking Water	SC00012
Arkansas	88-0651
CLIA	42D0904046
California	2940
Colorado	SC00012
Connecticut	PH-0169
DoD ELAP/ ISO17025 A2LA	2567.01
Florida NELAP	E87156
Foreign Soils Permit	P330-15-00283, P330-15-00253
Georgia	SC00012
Georgia SDWA	967
Hawaii	SC00012
Idaho	SC00012 SC00012
Illinois NELAP	200012
Indiana	C-SC-01
Kansas NELAP	E-10332
Kentucky SDWA	90129
Kentucky Wastewater	90129
Louisiana Drinking Water	LA024
Louisiana NELAP	03046 (AI33904)
Maine	2019020
Maryland	270
Massachusetts	M-SC012
Massachusetts PFAS Approv	Letter
Michigan	9976
Mississippi	SC00012
Nebraska	NE-OS-26-13
Nevada	SC000122023-4
New Hampshire NELAP	2054
New Jersey NELAP	SC002
New Mexico	SC00012
New York NELAP	11501
North Carolina	233
North Carolina SDWA	45709
North Dakota	R-158
Oklahoma	2022-160
Pennsylvania NELAP	68-00485
Puerto Rico	SC00012
S. Carolina Radiochem	10120002
Sanitation Districts of L	9255651
South Carolina Chemistry	10120001
Tennessee	TN 02934
Texas NELAP	T104704235-22-20
Utah NELAP	SC000122022-37
Vermont	VT87156
Virginia NELAP	460202
Washington	C780
	1

gel.com

October 11, 2023

Ms. Jeanette Gilmetti Santee Cooper P.O. Box 2946101 OCO3 Moncks Corner, South Carolina 29461

Re: ABS Lab Analytical Work Order: 640498

Dear Ms. Gilmetti:

GEL Laboratories, LLC (GEL) appreciates the opportunity to provide the enclosed analytical results for the sample(s) we received on September 29, 2023. This original data report has been prepared and reviewed in accordance with GEL's standard operating procedures.

The samples were delivered with proper chain of custody documentation and signatures. All sample containers arrived without any visible signs of tampering or breakage. There are no additional comments concerning sample receipt.

Test results for NELAP or ISO 17025 accredited tests are verified to meet the requirements of those standards, with any exceptions noted. The results reported relate only to the items tested and to the sample as received by the laboratory. These results may not be reproduced except as full reports without approval by the laboratory. Copies of GEL's accreditations and certifications can be found on our website at www.gel.com.

Our policy is to provide high quality, personalized analytical services to enable you to meet your analytical needs on time every time. We trust that you will find everything in order and to your satisfaction. If you have any questions, please do not hesitate to call me at (843) 556-8171, ext. 4289.

Sincerely,

Jordan Melton for Julie Robinson

Project Manager

Purchase Order: 398684

Enclosures

2040 Savage Road Charleston SC 29407 - (843) 556-8171 - www.gel.com

Certificate of Analysis Report for

SOOP001 Santee Cooper

Client SDG: 640498 GEL Work Order: 640498

The Qualifiers in this report are defined as follows:

- * A quality control analyte recovery is outside of specified acceptance criteria
- ** Analyte is a Tracer compound
- ** Analyte is a surrogate compound
- J Value is estimated
- U Analyte was analyzed for, but not detected above the MDL, MDA, MDC or LOD.

Where the analytical method has been performed under NELAP certification, the analysis has met all of the requirements of the NELAC standard unless qualified on the Certificate of Analysis.

The designation ND, if present, appears in the result column when the analyte concentration is not detected above the limit as defined in the 'U' qualifier above.

This data report has been prepared and reviewed in accordance with GEL Laboratories LLC standard operating procedures. Please direct any questions to your Project Manager, Julie Robinson.

Reviewed by Dordon Melton

Page 2 of 13 SDG: 640498

2040 Savage Road Charleston SC 29407 - (843) 556-8171 - www.gel.com

Certificate of Analysis

Report Date: October 11, 2023

Company: Santee Cooper Address: P.O. Box 2946101

OCO3

Moncks Corner, South Carolina 29461

Contact: Ms. Jeanette Gilmetti Project: ABS Lab Analytical

Client Sample ID: AF79064 Sample ID: 640498001

Matrix: GW

Collect Date: 26-SEP-23 12:13
Receive Date: 29-SEP-23
Collector: Client

F79064 Project: SOOP00119 .0498001 Client ID: SOOP001

Parameter	Qualifier	Result	DL	RL	Units	PF	DF Analyst Date Time Batch Metho
Ion Chromatography	y						
EPA 300.0 Chloride	, Liquid "As Red	ceived"					
Chloride		211	3.35	10.0	mg/L		50 LXA2 10/10/23 0438 2505683 1
Sulfate		36.0	6.65	20.0	mg/L		50
The following Anal	ytical Methods v	vere performed:					
Method	Description	Į.			F	Analys	st Comments
1	EPA 300.0					•	

Notes:

Column headers are defined as follows:

DF: Dilution Factor Lc/LC: Critical Level
DL: Detection Limit PF: Prep Factor
MDA: Minimum Detectable Activity RL: Reporting Limit

MDC: Minimum Detectable Concentration SQL: Sample Quantitation Limit

Page 3 of 13 SDG: 640498

2040 Savage Road Charleston SC 29407 - (843) 556-8171 - www.gel.com

Certificate of Analysis

Report Date: October 11, 2023

Company: Santee Cooper Address: P.O. Box 2946101

OCO3

Moncks Corner, South Carolina 29461

Contact: Ms. Jeanette Gilmetti Project: ABS Lab Analytical

Client Sample ID: AF79065 Sample ID: 640498002

Matrix: GW

Collect Date: 27-SEP-23 10:49
Receive Date: 29-SEP-23
Collector: Client

79065 Project: SOOP00119 0498002 Client ID: SOOP001

Parameter	Qualifier	Result	DL	RL	Units	PF	DF Analyst Date	Time Batch	Method
Ion Chromatography									
EPA 300.0 Chloride, I	iquid "As Red	ceived"							
Chloride		342	6.70	20.0	mg/L		100 LXA2 10/10/23	0610 2505683	1
Sulfate		84.5	13.3	40.0	mg/L		100		
The following Analyt	ical Methods v	vere performed:							
Method	Description				1	Analys	st Comments		
1	EPA 300.0								

Notes:

Column headers are defined as follows:

DF: Dilution Factor Lc/LC: Critical Level
DL: Detection Limit PF: Prep Factor
MDA: Minimum Detectable Activity RL: Reporting Limit

MDC: Minimum Detectable Concentration SQL: Sample Quantitation Limit

Page 4 of 13 SDG: 640498

2040 Savage Road Charleston SC 29407 - (843) 556-8171 - www.gel.com

Certificate of Analysis

Project:

Client ID:

Report Date: October 11, 2023

SOOP00119

SOOP001

Company: Santee Cooper P.O. Box 2946101 Address:

OCO₃

Moncks Corner, South Carolina 29461

Contact: Ms. Jeanette Gilmetti Project: ABS Lab Analytical

Client Sample ID: AF79066 Sample ID: 640498003

Matrix: GW

Collect Date: 27-SEP-23 10:54 Receive Date: 29-SEP-23 Collector: Client

RLParameter Qualifier Result DL Units PF DF Analyst Date Time Batch Method Ion Chromatography EPA 300.0 Chloride, Liquid "As Received" Chloride 345 6.70 20.0 mg/L 100 LXA2 10/10/23 0641 2505683 mg/L Sulfate 13.3 40.0 The following Analytical Methods were performed: **Analyst Comments**

Description Method EPA 300.0

Notes:

Column headers are defined as follows:

DF: Dilution Factor Lc/LC: Critical Level DL: Detection Limit PF: Prep Factor MDA: Minimum Detectable Activity **RL**: Reporting Limit

MDC: Minimum Detectable Concentration **SQL**: Sample Quantitation Limit

Page 5 of 13 SDG: 640498

2040 Savage Road Charleston SC 29407 - (843) 556-8171 - www.gel.com

Certificate of Analysis

Report Date: October 11, 2023

Company: Santee Cooper Address: P.O. Box 2946101

OCO3

Moncks Corner, South Carolina 29461

Contact: Ms. Jeanette Gilmetti Project: ABS Lab Analytical

Client Sample ID: AF79067 Sample ID: 640498004

Matrix: GW

Collect Date: 27-SEP-23 13:19
Receive Date: 29-SEP-23
Collector: Client

779067 Project: SOOP00119 0498004 Client ID: SOOP001

Parameter	Qualifier	Result	DL	RL	Units	PF	DF Analyst Date	Time Batch	Method
Ion Chromatograph	у								
EPA 300.0 Chloride	e, Liquid "As Rec	eived"							
Chloride		939	13.4	40.0	mg/L		200 LXA2 10/10/23	0712 2505683	1
Sulfate		699	26.6	80.0	mg/L		200		
The following Ana	lytical Methods w	vere performed:							
Method	Description				A	Analys	st Comments		
1	EPA 300.0								

Notes:

Column headers are defined as follows:

DF: Dilution Factor Lc/LC: Critical Level
DL: Detection Limit PF: Prep Factor
MDA: Minimum Detectable Activity RL: Reporting Limit

MDC: Minimum Detectable Concentration SQL: Sample Quantitation Limit

Page 6 of 13 SDG: 640498

2040 Savage Road Charleston, SC 29407 - (843) 556-8171 - www.gel.com

QC Summary

Report Date: October 11, 2023

Santee Cooper P.O. Box 2946101

OCO3

Moncks Corner, South Carolina

Contact: Ms. Jeanette Gilmetti

Workorder: 640498

Parmname	NOM	Sample Qual	QC	Units	RPD%	REC%	Range Anlst	Date Time
Ion Chromatography Batch 2505683								
QC1205541104 640498001 DUP Chloride		211	212	mg/L	0.534		(0%-20%) LXA2	10/10/23 05:09
Sulfate		36.0	38.8	mg/L	7.48 ^		(+/-20.0)	
QC1205541102 LCS Chloride	5.00		4.59	mg/L		91.9	(90%-110%)	10/09/23 16:48
Sulfate	10.0		9.45	mg/L		94.5	(90%-110%)	
QC1205541101 MB Chloride		U	ND	mg/L				10/09/23 16:17
Sulfate		J	0.183	mg/L				
QC1205541106 640498001 PS Chloride	5.00	4.22	9.76	mg/L		111*	(90%-110%)	10/10/23 05:40
Sulfate	10.0	0.721	10.4	mg/L		97.1	(90%-110%)	

Notes:

The Qualifiers in this report are defined as follows:

- U Analyte was analyzed for, but not detected above the MDL, MDA, MDC or LOD.
- J Value is estimated
- X Consult Case Narrative, Data Summary package, or Project Manager concerning this qualifier
- H Analytical holding time was exceeded
- < Result is less than value reported
- > Result is greater than value reported
- h Preparation or preservation holding time was exceeded
- R Sample results are rejected

Page 7 of 13 SDG: 640498

Page 1 of 2

2040 Savage Road Charleston, SC 29407 - (843) 556-8171 - www.gel.com

QC Summary

640498 Page 2 of 2 **Parmname NOM** Sample Qual \mathbf{OC} Units RPD% REC% Range Anlst Date Time

- \mathbf{Z} Paint Filter Test--Particulates passed through the filter, however no free liquids were observed.
- d 5-day BOD--The 2:1 depletion requirement was not met for this sample
- ٨ RPD of sample and duplicate evaluated using +/-RL. Concentrations are <5X the RL. Qualifier Not Applicable for Radiochemistry.
- N/A RPD or %Recovery limits do not apply.
- ND Analyte concentration is not detected above the detection limit
- NJ Consult Case Narrative, Data Summary package, or Project Manager concerning this qualifier
- E General Chemistry--Concentration of the target analyte exceeds the instrument calibration range
- Q One or more quality control criteria have not been met. Refer to the applicable narrative or DER.
- N1See case narrative

Workorder:

- R Per section 9.3.4.1 of Method 1664 Revision B, due to matrix spike recovery issues, this result may not be reported or used for regulatory compliance purposes.
- В The target analyte was detected in the associated blank.
- 5-day BOD--Test replicates show more than 30% difference between high and low values. The data is qualified per the method and can be used for reporting purposes
- J See case narrative for an explanation

N/A indicates that spike recovery limits do not apply when sample concentration exceeds spike conc. by a factor of 4 or more or %RPD not applicable.

- ^ The Relative Percent Difference (RPD) obtained from the sample duplicate (DUP) is evaluated against the acceptance criteria when the sample is greater than five times (5X) the contract required detection limit (RL). In cases where either the sample or duplicate value is less than 5X the RL, a control limit of +/- the RL is used to evaluate the DUP result.
- * Indicates that a Quality Control parameter was not within specifications.

For PS, PSD, and SDILT results, the values listed are the measured amounts, not final concentrations.

Where the analytical method has been performed under NELAP certification, the analysis has met all of the requirements of the NELAC standard unless qualified on the QC Summary.

Page 8 of 13 SDG: 640498

General Chemistry Technical Case Narrative Santee Cooper SDG #: 640498

Product: Ion Chromatography **Analytical Method:** EPA 300.0

Analytical Procedure: GL-GC-E-086 REV# 33

Analytical Batch: 2505683

The following samples were analyzed using the above methods and analytical procedure(s).

GEL Sample ID#	Client Sample Identification
640498001	AF79064
640498002	AF79065
640498003	AF79066
640498004	AF79067
1205541101	Method Blank (MB)
1205541102	Laboratory Control Sample (LCS)
1205541104	640498001(AF79064) Sample Duplicate (DUP)
1205541106	640498001(AF79064) Post Spike (PS)

The samples in this SDG were analyzed on an "as received" basis.

Data Summary:

All sample data provided in this report met the acceptance criteria specified in the analytical methods and procedures for initial calibration, continuing calibration, instrument controls and process controls where applicable, with the following exceptions.

Quality Control (QC) Information

Matrix Spike (MS)/Post Spike (PS) Recovery Statement

The percent recoveries (%R) obtained from the spike analyses are evaluated when the sample concentration is less than four times (4X) the spike concentration added. The matrix spike recovered outside of the established acceptance limits due to matrix interference and/or non-homogeneity.

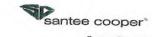
Analyte	Sample	Value
Chloride	1205541106 (AF79064PS)	111* (90%-110%)

Technical Information

Sample Dilutions

The following samples 1205541104 (AF79064DUP), 1205541106 (AF79064PS), 640498001 (AF79064), 640498002 (AF79065), 640498003 (AF79066) and 640498004 (AF79067) were diluted because target analyte concentrations exceeded the calibration range. Samples 1205541104 (AF79064DUP), 1205541106 (AF79064PS), 640498001 (AF79064), 640498002 (AF79065), 640498003 (AF79066) and 640498004 (AF79067) were diluted based on historical data. Dilutions may be required for many reasons, including to minimize matrix interferences or to bring over range target analyte concentrations into the linear calibration range.

Page 9 of 13 SDG: 640498


A1+-	640498									
Analyte	001	002	003	004						
Chloride	50X	100X	100X	200X						
Sulfate	50X	100X	100X	200X						

Certification Statement

Where the analytical method has been performed under NELAP certification, the analysis has met all of the requirements of the NELAC standard unless otherwise noted in the analytical case narrative.

Page 10 of 13 SDG: 640498

Chain of Custody

Santee Cooper One Riverwood Drive Moneks Comer, SC 29461 Phone: (843)761-8000 Ext. 5148 Fax: (843)761-4175

Custor	ner Email	I/Report Reci	pient:	Da	te R	Results N	eeded b	oy:		Pi	roject/	Task/	Unit #:		Rerun	request	for a	ny fla	gged Q
LCW	ILIA	@sante	ecooper.coi	m	/	//		.)1	125	115	J_TN	102.0	9.GØ1.1	J_36	500	Yes	No		
Labwo (Intern	rks ID#	Sample Loca Description	tion/	ate	144	a e	Į,	ners	-SSE		(wo	99	• Me	Cor	mments			_	s Group
only)			A PERMIT OF SECTION	Collection Date	T1	Collection Time	Sample Collector	Total # of containers	Bottle type: (Glass-G/Plastic-P)	Grab (G) or Composite (C)	Matrix(see below)	Preservative (see	Re Mi	porting lisse, sampley other no	e info		RAD 226/228	TOTAL RAD COLL	F, C1, SO4
A=7	7064	WAP-27		9/26	/23	1213	20M 858	3	P	G	G-W	2/	Bankler en	410	Large (Annual Large Control		2	X	1
)	65	WAP -28		9/27	13	1049	1	1	1	1	1	1					1	1	1
				1/21	10-			\vdash	+			\vdash					\vdash	+	+-
	66	WAP-28	DUP			1054	\vdash		H	-							1		
	67	WAP-29		1		1319	1		1	1	1	1					1	1	1
						7.7													-
-			11-	-															
																			+
					!										6				
Reling	uished by:	Employee#		Time		Receiv	ed by:	Er	nployee	#	Date		Time	Samp TEM	le Receiving (I P (°C):	nternal U 1	<i>lse On</i> Initial	ly) :	
Reling	uished by:	36851 Employee#	1 1/-	743	5	Receiv			SEL		/29/2	2	9936	-	ect pH: Yes				
	20	o harmon	A CONTRACTOR	rinte		1 1	ed by:	UP BOR	nployee	102	Date	TOTAL A	Time		ervative Lot#:				
Reling	uished by:	Employee#	Date	Time	2 1	Receiv	ed by:	_	nployee :		Date	23	Time		THE TO LIGHT.				
pro High	Maria (Alah)	Sin Maria Angl							iipioyee		Date		Time I	Date	Time/Init for		*****		
/~y ==		TALS (all)							4				150/100	Date	Time/mit for	preserva	tive:		
□ Ag	□ Cu		INU	trients		MIS	C.	1	ALC: NAME OF THE OWNER, WHEN	psum	1		Coal		Flyasi	h		Oil	
	☐ Fe		□ T(□ BTEX □ Naphthal 	ene.	Ð	Wallbo	ard sum(<i>al</i>	7		Ultimate		☐ Ammoni	a			Qual.
□ As	□K	□ Sn		P/TPO4	1	□ THM/HA			belon			是	☐ % Moist ☐ Ash	ure	☐ LOI ☐ % Carbo			Moist olor	ure
□В	□ Li	□ Sr		H3-N		□ VOC □ Oil & Gr	ease	T PAN	D AIN			N CONTRACTOR	□ Sulfur		☐ Mineral	11		cidity	Strength
□ Ba	□ Mg	g 🗆 🏻 Ti				E. Coli		2	13 Tota	al metal			□ BTUs		Analy	/sis	III IF	T	
□Ве	□ Mn	□ TI		02		□ Total Col □ pH	itorm	THE P		ible Me ty (CaS			☐ Volatile ☐ CHN	Matter	☐ Sieve ☐ % Moist	ure.		issolve d Oil	d Gases
□ Ca	□Мо	SHALLSON AND FAMOUR	□ Br			Dissolved			□%N	10isture	The state of the s	D 000000	her Tests:		10 MOISH	ui C		ashpoi	
□ Cd	□ Na					☐ Dissolved ☐ Rad 226	i Fe		□ Sulf	ites			XRF Scan		NPDE:	5	UM	etals in	
□Со	□ Ni	□ Hg			-	☐ Rad 228			□ Chlo				ineness		□ Oil & Grea	ise	H	g)	Charle
□ Cr	□ Pb				L	PCB		7	O Part	icle Size	е	□ I	Particulate Ma	atter	□ As □ TSS		GO		
															Water Street		-		

Received By: QG			SAMPLE RECEIPT & REVIEW FORM SDG/AR/COC/Work Order:
			Date Received: 9/29/23
Carrier and Tracking Number			FedEx Express FedEx Ground UPS Field Services Courier Other
Suspected Hazard Information	Yes	No.	*If Net Zounts > 100cpm on samples not marked the fi
		-	*If Net Counts > 100cpm on samples not marked "radioactive", contact the Radiation Safety Group for further investigation.
Shipped as a DOT Hazardous?		V	UN#: If UN2910, Is the Radioactive Shipment Survey Compliant? YesNo
) Did the client designate the samples are to be ceived as radioactive?		1	COC notation or radioactive stickers on containers equal client designation.
Did the RSO classify the samples as dioactive?		~	Maximum Net Counts Observed* (Observed Counts - Area Background Counts): CPN+/mR/Hr Classified as: Rad 1 Rad 2 Rad 3
Did the discust of		1	/ Rad 2 Rad 3
Did the client designate samples are hazardous	?		COO notation or hazard labels on containers equal client designation. If D or E is yes, select Hazards below.
Did the RSO identify possible hazards?		1	PCB's Flammable Foreign Soil RCRA Asbestos Beryllium Other:
Sample Receipt Criteria	Yes	NA	at Such
Shipping containers received intact and sealed?	1		Circle Applicable: Seals broken Damaged container Leaking container Other (describe)
Chain of custody documents included with shipment?			Circle Applicable: Client contacted and provided COC COC created upon receipt
Samples requiring cold preservation	1		Preservation Method: Wet Lee Lee Packs Dry ice None Other:
within (0 ≤ 6 deg. C)?* Daily check performed and passed on IR temperature gun?	/		Temperature Device Serial # 193 22
Sample containers intact and sealed?	/	7	Secondary Temperature Device Serial # (If Applicable):
Samples requiring chemical preservation at proper pH?			Sample ID's and Containers Affected: Leaking container Other (describe)
at proper pri:	1		If Preservation added 1 and
Do any samples require Volatile	1 × 5	8	If Yes are Encores or Soil Kits present for solids? Yes No NA (If yes, take to VOA Freezer) De figuid VOA vials contain acid preservation? Yes No NA (If unknown select Yes)
Analysis?	7		Are liquid VOA vials fire of herdromed V.
	A	/	Sumple 1D's and containers affected:
Samples received within holding time?			ID's and tests affected:
Sample ID's on COC match ID's on		1	ID's and containers affected:
ottles?			
Date & time on COC match date & time in bottles?	X,	V	Circle Applicable: No dates on containers No times on containers COC missing info Other (describe)
fumber of containers received match umber indicated on COC?			Circle Applicable: No container count on COC Other (describe)
re sample containers identifiable as	4	1	
Cr it it is identifiable as	1		
EL provided by use of GEL labels? OC form is properly signed in linquished/received sections?			Circle Applicable: Not relinquished Other (describe)

GL-CHL-SR-001 Rev 7

List of current GEL Certifications as of 11 October 2023

State	Certification
Alabama	42200
Alaska	17-018
Alaska Drinking Water	SC00012
Arkansas	88-00651
CLIA	42D0904046
California	2940
Colorado	SC00012
Connecticut	PH-0169
DoD ELAP/ ISO17025 A2LA	2567.01
Florida NELAP	E87156
Foreign Soils Permit	P330-15-00283, P330-15-00253
Georgia	SC00012
Georgia SDWA	967
Hawaii	SC00012
Idaho	SC00012 SC00012
Illinois NELAP	200029
Indiana	C-SC-01
Kansas NELAP	E-10332
Kentucky SDWA	KY90129
	KY90129 KY90129
Kentucky Wastewater	LA024
Louisiana Drinking Water Louisiana NELAP	03046 (AI33904)
	` /
Maine	2023019
Maryland	270
Massachusetts	M-SC012
Massachusetts PFAS Approv	Letter
Michigan	9976
Mississippi	SC00012
Nebraska	NE-OS-26-13
Nevada	SC000122024-04
New Hampshire NELAP	2054
New Jersey NELAP	SC002
New Mexico	SC00012
New York NELAP	11501
North Carolina	233
North Carolina SDWA	45709
North Dakota	R-158
Oklahoma	2022-160
Pennsylvania NELAP	68-00485
Puerto Rico	SC00012
S. Carolina Radiochem	10120002
Sanitation Districts of L	9255651
South Carolina Chemistry	10120001
Tennessee	TN 02934
Texas NELAP	T104704235-23-21
Utah NELAP	SC000122022-37
Vermont	VT87156
Virginia NELAP	460202
Washington	C780

11 12

13

ANALYTICAL REPORT

PREPARED FOR

Attn: Linda Williams
South Carolina Public Service Authority
Santee Cooper
PO BOX 2946101
Moncks Corner, South Carolina 29461-2901

Generated 7/14/2023 8:56:55 AM Revision 1

JOB DESCRIPTION

Santee Cooper / 125915

JOB NUMBER

680-237317-1

Eurofins Savannah 5102 LaRoche Avenue Savannah GA 31404

Eurofins Savannah

Job Notes

This report may not be reproduced except in full, and with written approval from the laboratory. The results relate only to the samples tested. For questions please contact the Project Manager at the e-mail address or telephone number listed on this page.

The test results in this report relate only to the samples as received by the laboratory and will meet all requirements of the methodology, with any exceptions noted. This report shall not be reproduced except in full, without the express written approval of the laboratory. All questions should be directed to the Eurofins Environment Testing Southeast, LLC Project Manager.

Authorization

Generated 7/14/2023 8:56:55 AM Revision 1

Authorized for release by
Heather Trotter, Project Manager
Heather.Trotter@et.eurofinsus.com
Designee for
Jerry Lanier, Project Manager I
Jerry.Lanier@et.eurofinsus.com
(912)250-0281

Table of Contents

Cover Page	1
Table of Contents	3
Case Narrative	4
Sample Summary	5
Method Summary	6
Definitions	7
Detection Summary	8
Client Sample Results	9
QC Sample Results	18
QC Association	19
Chronicle	20
Chain of Custody	22
Receipt Checklists	23
Certification Summary	24

4

5

6

8

3

11

12

Case Narrative

Client: South Carolina Public Service Authority

Project/Site: Santee Cooper / 125915

Job ID: 680-237317-1

Job ID: 680-237317-1

Laboratory: Eurofins Savannah

Narrative

Job Narrative 680-237317-1

Comments

No additional comments.

Revision

The report being provided is a revision of the original report sent on 7/11/2023. The report (revision 1) is being revised due to: Client needs the Mercury associated with failed QC to be ran again for verification.

Receipt

The samples were received on 7/6/2023 9:40 AM. Unless otherwise noted below, the samples arrived in good condition, and where required, properly preserved and on ice. The temperature of the cooler at receipt was 21.2° C.

Metals

No analytical or quality issues were noted, other than those described in the Definitions/Glossary page.

•

3

-

4

5

7

8

9

10

13

1/2

Sample Summary

Client: South Carolina Public Service Authority

Project/Site: Santee Cooper / 125915

Job ID: 680-237317-1

Lab Sample ID	Client Sample ID	Matrix	Collected	Received
680-237317-1	AF68719	Water	06/29/23 10:48	07/06/23 09:40
680-237317-2	AF68720	Water	06/29/23 11:40	07/06/23 09:40
680-237317-3	AF68721	Water	06/29/23 11:45	07/06/23 09:40
680-237317-4	AF68713	Water	06/29/23 13:51	07/06/23 09:40
680-237317-5	AF68714	Water	06/28/23 14:09	07/06/23 09:40
680-237317-6	AF68712	Water	06/28/23 15:20	07/06/23 09:40
680-237317-7	AF68748	Water	06/27/23 10:15	07/06/23 09:40
680-237317-8	AF68711	Water	06/27/23 11:26	07/06/23 09:40
680-237317-9	AF68717	Water	06/27/23 13:57	07/06/23 09:40

3

4

-

6

0

10

11

12

Method Summary

Client: South Carolina Public Service Authority

Project/Site: Santee Cooper / 125915

Job ID: 680-237317-1

Method	Method Description	Protocol	Laboratory
7470A	Mercury (CVAA)	SW846	EET SAV
7470A	Preparation, Mercury	SW846	EET SAV

Protocol References:

SW846 = "Test Methods For Evaluating Solid Waste, Physical/Chemical Methods", Third Edition, November 1986 And Its Updates.

Laboratory References:

EET SAV = Eurofins Savannah, 5102 LaRoche Avenue, Savannah, GA 31404, TEL (912)354-7858

3

4

5

7

8

9

11

13

Definitions/Glossary

Client: South Carolina Public Service Authority

Job ID: 680-237317-1

Project/Site: Santee Cooper / 125915

Qualifiers

Metals
Qualifier

 Qualifier
 Qualifier Description

 F1
 MS and/or MSD recovery exceeds control limits.

F2 MS/MSD RPD exceeds control limits

U Indicates the analyte was analyzed for but not detected.

Glossary

Appreviation	These commonly used appreviations may or may not be present in this report.
¤	Listed under the "D" column to designate that the result is reported on a dry weight basis

Listed under the Dicolumn to designate that the result is reported on a dry weight basis

%R Percent Recovery
CFL Contains Free Liquid
CFU Colony Forming Unit
CNF Contains No Free Liquid

DER Duplicate Error Ratio (normalized absolute difference)

Dil Fac Dilution Factor

DL Detection Limit (DoD/DOE)

DL, RA, RE, IN Indicates a Dilution, Re-analysis, Re-extraction, or additional Initial metals/anion analysis of the sample

DLC Decision Level Concentration (Radiochemistry)

EDL Estimated Detection Limit (Dioxin)

LOD Limit of Detection (DoD/DOE)

LOQ Limit of Quantitation (DoD/DOE)

MCL EPA recommended "Maximum Contaminant Level"

MDA Minimum Detectable Activity (Radiochemistry)

MDC Minimum Detectable Concentration (Radiochemistry)

MDL Method Detection Limit
ML Minimum Level (Dioxin)
MPN Most Probable Number
MQL Method Quantitation Limit

NC Not Calculated

ND Not Detected at the reporting limit (or MDL or EDL if shown)

NEG Negative / Absent POS Positive / Present

PQL Practical Quantitation Limit

PRES Presumptive
QC Quality Control

RER Relative Error Ratio (Radiochemistry)

RL Reporting Limit or Requested Limit (Radiochemistry)

RPD Relative Percent Difference, a measure of the relative difference between two points

TEF Toxicity Equivalent Factor (Dioxin)
TEQ Toxicity Equivalent Quotient (Dioxin)

TNTC Too Numerous To Count

J-23/31/-1

3

1

E

6

7

8

4 4

12

13

Detection Summary

Project/Site: Santee Cooper / 125915	
Client Sample ID: AF68719	Lab Sample ID: 680-237317-1
No Detections.	
Client Sample ID: AF68720	Lab Sample ID: 680-237317-2
No Detections.	
Client Sample ID: AF68721	Lab Sample ID: 680-237317-3
No Detections.	
Client Sample ID: AF68713	Lab Sample ID: 680-237317-4
No Detections.	
Client Sample ID: AF68714	Lab Sample ID: 680-237317-5
No Detections.	
Client Sample ID: AF68712	Lab Sample ID: 680-237317-6
No Detections.	
Client Sample ID: AF68748	Lab Sample ID: 680-237317-7
No Detections.	
Client Sample ID: AF68711	Lab Sample ID: 680-237317-8
No Detections.	
Client Sample ID: AF68717	Lab Sample ID: 680-237317-9

This Detection Summary does not include radiochemical test results.

Client: South Carolina Public Service Authority

No Detections.

Job ID: 680-237317-1

Client: South Carolina Public Service Authority

Job ID: 680-237317-1

Project/Site: Santee Cooper / 125915

Client Sample ID: AF68719 Lab Sample ID: 680-237317-1

Date Collected: 06/29/23 10:48

Matrix: Water

Date Received: 07/06/23 09:40

Method: SW846 7470A - Mercury (CVAA)

 Analyte
 Result
 Qualifier
 RL
 MDL
 Unit
 D
 Prepared
 Analyzed
 Dil Fac

 Mercury
 0.200
 U
 0.200
 ug/L
 07/10/23 12:38
 07/11/23 14:29
 1

viercury 0.200 0 0.200 ug/L 07/10/23 12.36 07/11/23 14.29 1

Л

6

_

9

10

40

13

Client: South Carolina Public Service Authority

Job ID: 680-237317-1

Project/Site: Santee Cooper / 125915

Client Sample ID: AF68720 Lab Sample ID: 680-237317-2

Date Collected: 06/29/23 11:40 Matrix: Water

Date Received: 07/06/23 09:40

Method: SW846 7470A - Mercury (CVAA)

momount officers in the									
Analyte	Result	Qualifier	RL	MDL U	Jnit	D	Prepared	Analyzed	Dil Fac
Mercury	0.200	U F1 F2	0.200	ι	ıg/L		07/10/23 12:38	07/11/23 14:30	1
Mercury	0.200	U	0.200	ι	ıg/L		07/13/23 09:39	07/13/23 13:38	1

3

4

6

0

9

11

12

Client: South Carolina Public Service Authority

Job ID: 680-237317-1

Project/Site: Santee Cooper / 125915

Client Sample ID: AF68721 Lab Sample ID: 680-237317-3

Date Collected: 06/29/23 11:45 Matrix: Water

Date Received: 07/06/23 09:40

Method: SW846 7470A - Mercury (CVAA)

Analyte Result Qualifier RL MDL Unit D Prepared Analyzed Dil Fac

Mercury 0.200 U 0.200 ug/L 07/10/23 12:38 07/11/23 14:35 1

_

4

5

6

Ω

Q

10

13

Client: South Carolina Public Service Authority

Job ID: 680-237317-1

Project/Site: Santee Cooper / 125915

Client Sample ID: AF68713 Lab Sample ID: 680-237317-4

Date Collected: 06/29/23 13:51 Matrix: Water

Date Collected: 06/29/23 13:51 Matrix: Water Date Received: 07/06/23 09:40

Method: SW846 7470A - Mercury (CVAA)

Analyte Result Qualifier RL MDL Unit D Prepared Analyzed Dil Fac

Mercury 0.200 U 0.200 ug/L 07/10/23 12:38 07/11/23 14:36 1

Eurofins Savannah

Client: South Carolina Public Service Authority

Job ID: 680-237317-1

Project/Site: Santee Cooper / 125915

Client Sample ID: AF68714 Lab Sample ID: 680-237317-5

Date Collected: 06/28/23 14:09 Matrix: Water

Date Received: 07/06/23 09:40

Method: SW846 7470A - Mercury (CVAA)

 Analyte
 Result
 Qualifier
 RL
 MDL
 Unit
 D
 Prepared
 Analyzed
 Dil Fac

 Mercury
 0.200
 U
 0.200
 ug/L
 07/10/23 12:38
 07/11/23 14:38
 1

.....

3

4

5

6

8

9

44

40

13

Client: South Carolina Public Service Authority

Job ID: 680-237317-1

Project/Site: Santee Cooper / 125915

Client Sample ID: AF68712 Lab Sample ID: 680-237317-6

Date Collected: 06/28/23 15:20 Matrix: Water

Date Received: 07/06/23 09:40

Method: SW846 7470A - Mercury (CVAA)

 Analyte
 Result
 Qualifier
 RL
 MDL
 Unit
 D
 Prepared
 Analyzed
 Dil Fac

 Mercury
 0.200
 U
 0.200
 ug/L
 07/10/23 12:38
 07/11/23 14:39
 1

vieloury 0.200 0 0.200 ug/L 07/10/25/12.50 07/11/25/14.59

4

5

6

8

9

11

12

Client: South Carolina Public Service Authority Job ID: 680-237317-1

Project/Site: Santee Cooper / 125915

Lab Sample ID: 680-237317-7 **Client Sample ID: AF68748**

Date Collected: 06/27/23 10:15 **Matrix: Water**

Date Received: 07/06/23 09:40

Method: SW846 7470A - Mercury (CVAA)

Analyte Result Qualifier RL MDL Unit **Prepared** Analyzed Dil Fac 0.200 U 07/10/23 12:38 07/11/23 13:19 Mercury 0.200

ug/L

Eurofins Savannah

Client: South Carolina Public Service Authority

Job ID: 680-237317-1

Project/Site: Santee Cooper / 125915

Client Sample ID: AF68711 Lab Sample ID: 680-237317-8

Date Collected: 06/27/23 11:26 Matrix: Water

Date Received: 07/06/23 09:40

Method: SW846 7470A - Mercury (CVAA)

 Analyte
 Result
 Qualifier
 RL
 MDL
 Unit
 D
 Prepared
 Analyzed
 Dil Fac

 Mercury
 0.200
 U
 0.200
 ug/L
 07/10/23 12:38
 07/11/23 13:20
 1

0.200 0 0.200 ug/L 07/10/25 12:30 07/11/25 13:20 1

3

4

5

6

8

9

10

111

13

Client: South Carolina Public Service Authority

Job ID: 680-237317-1

Project/Site: Santee Cooper / 125915

Client Sample ID: AF68717 Lab Sample ID: 680-237317-9

Date Collected: 06/27/23 13:57 Matrix: Water

Date Received: 07/06/23 09:40

Method: SW846 7470A - Mercury (CVAA)

Analyte Result Qualifier RL MDL Unit D Prepared Analyzed Dil Fac

Mercury 0.200 U 0.200 ug/L 07/10/23 12:38 07/11/23 13:22 1

4

5

6

8

9

10

13

Job ID: 680-237317-1

Prep Type: Total/NA

Prep Batch: 787520

Prep Type: Total/NA

Prep Batch: 787520

Prep Type: Total/NA

Prep Batch: 788105

80 - 120

Client Sample ID: Method Blank

94

Client: South Carolina Public Service Authority

Project/Site: Santee Cooper / 125915

Method: 7470A - Mercury (CVAA)

Lab Sample ID: MB 680-787520/1-A **Client Sample ID: Method Blank**

Matrix: Water

Analysis Batch: 787762

MB MB

Result Qualifier RL **MDL** Unit Analyzed Dil Fac Analyte Prepared 0.200 0.200 U 07/10/23 12:38 07/11/23 14:26 Mercury ug/L

Lab Sample ID: LCS 680-787520/2-A Client Sample ID: Lab Control Sample **Matrix: Water** Prep Type: Total/NA **Prep Batch: 787520**

Analysis Batch: 787762

Spike LCS LCS

%Rec Analyte Added Result Qualifier Unit D %Rec Limits

Lab Sample ID: 680-237317-2 MS Client Sample ID: AF68720

2.357

ug/L

Matrix: Water

Mercury

Analysis Batch: 787762

Sample Sample Spike MS MS %Rec Analyte Result Qualifier Added Limits Result Qualifier Unit %Rec Mercury 0.200 U F1 F2 1.00 0.2587 F1 80 - 120 ug/L 26

2.50

Lab Sample ID: 680-237317-2 MSD Client Sample ID: AF68720 Prep Type: Total/NA

Matrix: Water

Analysis Batch: 787762

Prep Batch: 787520 Spike MSD MSD %Rec **RPD** Sample Sample **Analyte** Result Qualifier Added Result Qualifier Unit %Rec Limits **RPD** Limit

Mercury 0.200 U F1 F2 1.00 0.200 UF1F2 17 80 - 120 40 20 ug/L

Lab Sample ID: MB 680-788105/1-A

Matrix: Water

Analysis Batch: 788196

MB MB

Analyte RL **MDL** Unit Result Qualifier **Prepared** Analyzed Dil Fac 0.200 U 0.200 07/13/23 09:39 07/13/23 13:24 Mercury ug/L

Lab Sample ID: LCS 680-788105/2-A

Matrix: Water

Analysis Batch: 788196

Client Sample ID: Lab Control Sample Prep Type: Total/NA **Prep Batch: 788105**

Spike LCS LCS %Rec Added Result Qualifier Unit %Rec Limits Analyte Mercury 2.50 2.716 ug/L 109 80 - 120

QC Association Summary

Client: South Carolina Public Service Authority

Project/Site: Santee Cooper / 125915

Job ID: 680-237317-1

Metals

Prep Batch: 787520

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
680-237317-1	AF68719	Total/NA	Water	7470A	
680-237317-2	AF68720	Total/NA	Water	7470A	
680-237317-3	AF68721	Total/NA	Water	7470A	
680-237317-4	AF68713	Total/NA	Water	7470A	
680-237317-5	AF68714	Total/NA	Water	7470A	
680-237317-6	AF68712	Total/NA	Water	7470A	
680-237317-7	AF68748	Total/NA	Water	7470A	
680-237317-8	AF68711	Total/NA	Water	7470A	
680-237317-9	AF68717	Total/NA	Water	7470A	
MB 680-787520/1-A	Method Blank	Total/NA	Water	7470A	
LCS 680-787520/2-A	Lab Control Sample	Total/NA	Water	7470A	
680-237317-2 MS	AF68720	Total/NA	Water	7470A	
680-237317-2 MSD	AF68720	Total/NA	Water	7470A	

Analysis Batch: 787762

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
680-237317-1	AF68719	Total/NA	Water	7470A	787520
680-237317-2	AF68720	Total/NA	Water	7470A	787520
680-237317-3	AF68721	Total/NA	Water	7470A	787520
680-237317-4	AF68713	Total/NA	Water	7470A	787520
680-237317-5	AF68714	Total/NA	Water	7470A	787520
680-237317-6	AF68712	Total/NA	Water	7470A	787520
680-237317-7	AF68748	Total/NA	Water	7470A	787520
680-237317-8	AF68711	Total/NA	Water	7470A	787520
680-237317-9	AF68717	Total/NA	Water	7470A	787520
MB 680-787520/1-A	Method Blank	Total/NA	Water	7470A	787520
LCS 680-787520/2-A	Lab Control Sample	Total/NA	Water	7470A	787520
680-237317-2 MS	AF68720	Total/NA	Water	7470A	787520
680-237317-2 MSD	AF68720	Total/NA	Water	7470A	787520

Prep Batch: 788105

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
680-237317-2	AF68720	Total/NA	Water	7470A	
MB 680-788105/1-A	Method Blank	Total/NA	Water	7470A	
LCS 680-788105/2-A	Lab Control Sample	Total/NA	Water	7470A	

Analysis Batch: 788196

Lab Sample ID 680-237317-2	Client Sample ID AF68720	Prep Type Total/NA	Matrix Water	Method 7470A	Prep Batch 788105
MB 680-788105/1-A	Method Blank	Total/NA	Water	7470A	788105
LCS 680-788105/2-A	Lab Control Sample	Total/NA	Water	7470A	788105

Eurofins Savannah

Job ID: 680-237317-1

Client: South Carolina Public Service Authority Project/Site: Santee Cooper / 125915

Client Sample ID: AF68719

Lab Sample ID: 680-237317-1 Date Collected: 06/29/23 10:48

Matrix: Water

Date Received: 07/06/23 09:40

		Batch	Batch		Dilution	Batch			Prepared
Р	rep Type	Туре	Method	Run	Factor	Number	Analyst	Lab	or Analyzed
Т	otal/NA	Prep	7470A			787520	DW	EET SAV	07/10/23 12:38
LT	otal/NA	Analysis	7470A		1	787762	BJB	EET SAV	07/11/23 14:29

Lab Sample ID: 680-237317-2 Client Sample ID: AF68720

Date Collected: 06/29/23 11:40 **Matrix: Water**

Date Received: 07/06/23 09:40

	Batch	Batch		Dilution	Batch			Prepared
Prep Type	Type	Method	Run	Factor	Number	Analyst	Lab	or Analyzed
Total/NA	Prep	7470A			787520	DW	EET SAV	07/10/23 12:38
Total/NA	Analysis	7470A		1	787762	BJB	EET SAV	07/11/23 14:30
Total/NA	Prep	7470A			788105	DW	EET SAV	07/13/23 09:39
Total/NA	Analysis	7470A		1	788196	BCB	EET SAV	07/13/23 13:38

Client Sample ID: AF68721 Lab Sample ID: 680-237317-3

Date Collected: 06/29/23 11:45 **Matrix: Water** Date Received: 07/06/23 09:40

	Batch	Batch		Dilution	Batch			Prepared
Prep Type	Type	Method	Run	Factor	Number	Analyst	Lab	or Analyzed
Total/NA	Prep	7470A			787520	DW	EET SAV	07/10/23 12:38
Total/NA	Analysis	7470A		1	787762	BJB	EET SAV	07/11/23 14:35

Client Sample ID: AF68713 Lab Sample ID: 680-237317-4 **Matrix: Water**

Date Collected: 06/29/23 13:51 Date Received: 07/06/23 09:40

	Batch	Batch		Dilution	Batch			Prepared
Prep Type	Type	Method	Run	Factor	Number	Analyst	Lab	or Analyzed
Total/NA	Prep	7470A			787520	DW	EET SAV	07/10/23 12:38
Total/NA	Analysis	7470A		1	787762	BJB	EET SAV	07/11/23 14:36

Client Sample ID: AF68714 Lab Sample ID: 680-237317-5

Date Collected: 06/28/23 14:09 Date Received: 07/06/23 09:40

	Batch	Batch		Dilution	Batch			Prepared
Prep Type	Type	Method	Run	Factor	Number	Analyst	Lab	or Analyzed
Total/NA	Prep	7470A			787520	DW	EET SAV	07/10/23 12:38
Total/NA	Analysis	7470A		1	787762	BJB	EET SAV	07/11/23 14:38

Client Sample ID: AF68712 Lab Sample ID: 680-237317-6

Date Collected: 06/28/23 15:20 Date Received: 07/06/23 09:40

_	Batch	Batch		Dilution	Batch			Prepared
Prep Type	Type	Method	Run	Factor	Number	Analyst	Lab	or Analyzed
Total/NA	Prep	7470A			787520	DW	EET SAV	07/10/23 12:38
Total/NA	Analysis	7470A		1	787762	BJB	EET SAV	07/11/23 14:39

Eurofins Savannah

Matrix: Water

Matrix: Water

Lab Chronicle

Client: South Carolina Public Service Authority

Project/Site: Santee Cooper / 125915

Lab Sample ID: 680-237317-7

ab Sample ID. 000-237317-7

Matrix: Water

Job ID: 680-237317-1

Date Collected: 06/27/23 10:15 Date Received: 07/06/23 09:40

Client Sample ID: AF68748

	Batch	Batch		Dilution	Batch		Prepared
Prep Type	Type	Method	Run	Factor	Number Analyst	Lab	or Analyzed
Total/NA	Prep	7470A			787520 DW	EET SAV	07/10/23 12:38
Total/NA	Analysis	7470A		1	787762 BJB	EET SAV	07/11/23 13:19

Client Sample ID: AF68711 Lab Sample ID: 680-237317-8

Matrix: Water

Date Collected: 06/27/23 11:26 Date Received: 07/06/23 09:40

	Batch	Batch		Dilution	Batch			Prepared
Prep Type	Type	Method	Run	Factor	Number	Analyst	Lab	or Analyzed
Total/NA	Prep	7470A			787520	DW	EET SAV	07/10/23 12:38
Total/NA	Analysis	7470A		1	787762	BJB	EET SAV	07/11/23 13:20

Client Sample ID: AF68717 Lab Sample ID: 680-237317-9

ate O-Heat de 00/07/00 40-57

Date Collected: 06/27/23 13:57

Date Received: 07/06/23 09:40

Matrix: Water

Batch Batch **Dilution** Batch Prepared Method Number Analyst or Analyzed **Prep Type** Type Run **Factor** Lab 7470A 07/10/23 12:38 Total/NA Prep 787520 DW **EET SAV** Total/NA Analysis 7470A 787762 BJB **EET SAV** 07/11/23 13:22 1

Laboratory References:

EET SAV = Eurofins Savannah, 5102 LaRoche Avenue, Savannah, GA 31404, TEL (912)354-7858

5

7

ŏ

11

14

santee cooper

Chain of Custody Santee Cooper One Riverwood Drive Moneks Comer, SC 29461 Phone (843)761-8000 Ext. 5148 Fax. (843)761-4175

Customer	ustomer Email/Report Recipient:		D	ate R	esults Ne	eded	by:			Pr	oject/	Task/	Unit #:	Re	run request	for ar	ny fla	gged	QC		
LCWILL	A		@santeec	ooper.com		/	/				1259	15	/ JIM	02.0	8. GØ1. 3	36500	Yes	No			
			-	•	_													A	nalysi	s Grou	īD
Labworks I (Internal us only)			ple Locatio cription	n/	Collection Date		Collection Time	Sample Collector		Total # of containers	Bottle type: (Glass-G/Plastic-P)	Grab (G) or Composite (C)	Matrix(see below)	Preservative (see	Rep Miss	Comments had # orting limit c. sample info other notes		F			
AF6871	9	WAH	p - 9		6/2	9/23	1048	WJK ML		1	P	G	GW	2	7470	RL= 0.2. 49	1/L	×			
AF6872	.0	WAF	- 10				1140														
AF6872	.1	WAF	- 10 Du	P			1145														
AF68713	1	WAI	>-3		_		1351	1		<u>{</u>	1		1								
AF68714	-	WA-I	>-4		6/2	8/23	1409	1		1											
AF68712	2	WA	P-2		<u> </u>	<u> </u>	1520	1		<u> </u>		<u> </u>	1	<u> </u>							
AF 6874	8	WBV	v - I		6/2	7/23	1015			1		1									
AF-68711	l	WA	P-1				1126		-												
AF6871	7	WA	P-7		_		1357	1	1		1		1	1			· · · · · · · · · · · · · · · · · · ·	-			
																Γ					
Relinquish	ed by:		mployee#	Date	Tin	e	Receiv	ed by:	desi	E	mployee	#	Date		Time	Sample Receive TEMP (°C):	ving (Internal L	<i>lse On</i> Initial			
Mowan		3	5594	7/5/23	1400	>	CM	m	>			17	166	13	0740	_				· /	-
Relinquish	red by:		imployee#	Date	Tim	e	Receiv	ed by:		E	mployee	#	Date		Time	Correct pH:	Yes No	2	al constants		
																Preservative	Lot#:		$\overline{}$	ic	<u>)</u>
Relinquish	red by:	4	mployee#	Date	Tim	e	Receiv	ed by:		Er	mployee	#	Date	2	Time				Carrie	l U	
																Date/Time/In	it for preserva	itive:			
l j	□ ME	TAI	S (all)	Nutr	ion		MIS	·	ų.		/GV	esur	n.		Coal	6	unah I		(a)		
□Ag	□ Cı		□Sb	□ TO	17 Sept. 18 Co.		□ BTEX	<u> </u>		١,	Wallbi			1 .	Ultimate		wash omonia	ri Tre	500 minutes	Qud	
□ Al	□Fe		□Se	DO	C		□ Naphtha		1		Gyp	sum(a	4		☐ % Moist	ure 🛮 🗓 🖺 🕻	1		dMais	ture	
□ As	□K		□Sn	□ TP/ □ NHL			□ THM/H/ □ VOC		1		belo [] Al				□ Ash □ Sulfur	□ %·	Carbon	n A	olar Cidity	Strang	
□ B □ Ba	□Li	- transported by	□ Sr □ Ti	OF.			☐ Oil & Gr	ease			9,70		le .		☐ BTUs		Analysis	OAF	electric T	Streng	Uh .
	OM.	-		□ CI	,		☐ Total Co	lıform			□ Sal	uble Mi	ctals		☐ Volatile					ed Cas	æs
□ Be				□ NO:			□ pH □ Dissolve	d As				ity (Cal Moistur		О	☐ CHN ther Tests:	D %	Moisture	F		int .	
□ Ca □ Cd	-□ Mo		□ Zn	D NO:			☐ Dissolve ☐ Rad 226		. 1		- O Sul	fites -		i o.	XRF Scan HGI	N	PDES			obil Cr.Si.	
				* □ SO4			□ Rad 228					orides		10	Fineness		& Grease		g)		
□ Co □ Cr	□ Ni □ Pb		□ Hg □ CrVI				□ PCB			,	☐ Par ∃ Sulfür	ticle Siz	26	01	Particulate Ma	tter GAS		°⊕ I. ⊕G0	e Per		
			1						الــــــ							la de servicio					

Login Sample Receipt Checklist

Client: South Carolina Public Service Authority

Job Number: 680-237317-1

Login Number: 237317 List Source: Eurofins Savannah

List Number: 1

Creator: Munro, Caroline

ordator: maino, caronno		
Question	Answer	Comment
Radioactivity wasn't checked or is = background as measured by a survey meter.</td <td>N/A</td> <td></td>	N/A	
The cooler's custody seal, if present, is intact.	True	
Sample custody seals, if present, are intact.	True	
The cooler or samples do not appear to have been compromised or tampered with.	True	
Samples were received on ice.	True	
Cooler Temperature is acceptable.	True	
Cooler Temperature is recorded.	True	
COC is present.	True	
COC is filled out in ink and legible.	True	
COC is filled out with all pertinent information.	True	
Is the Field Sampler's name present on COC?	True	
There are no discrepancies between the containers received and the COC.	True	
Samples are received within Holding Time (excluding tests with immediate HTs)	True	
Sample containers have legible labels.	True	
Containers are not broken or leaking.	True	
Sample collection date/times are provided.	True	
Appropriate sample containers are used.	True	
Sample bottles are completely filled.	True	
Sample Preservation Verified.	N/A	
There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs	True	
Containers requiring zero headspace have no headspace or bubble is <6mm (1/4").	N/A	
Multiphasic samples are not present.	True	
Samples do not require splitting or compositing.	True	
Residual Chlorine Checked.	N/A	

3

4

5

6

8

9

10

12

13

Accreditation/Certification Summary

Client: South Carolina Public Service Authority

Project/Site: Santee Cooper / 125915

Job ID: 680-237317-1

Laboratory: Eurofins Savannah

The accreditations/certifications listed below are applicable to this report.

Authority	Program	Identification Number	Expiration Date
South Carolina	State	98001	06-30-23 *

Δ

4

O O

7

a

10

40

13

 $^{^{\}star} \ \text{Accreditation/Certification renewal pending - accreditation/certification considered valid}.$

13

М

ANALYTICAL REPORT

PREPARED FOR

Attn: Linda Williams South Carolina Public Service Authority Santee Cooper PO BOX 2946101

Moncks Corner, South Carolina 29461-2901

Generated 8/9/2023 8:32:53 AM

JOB DESCRIPTION

125915/JM02.08.G01.3/36500

JOB NUMBER

680-238532-1

Eurofins Savannah 5102 LaRoche Avenue Savannah GA 31404

Eurofins Savannah

Job Notes

This report may not be reproduced except in full, and with written approval from the laboratory. The results relate only to the samples tested. For questions please contact the Project Manager at the e-mail address or telephone number listed on this page.

The test results in this report relate only to the samples as received by the laboratory and will meet all requirements of the methodology, with any exceptions noted. This report shall not be reproduced except in full, without the express written approval of the laboratory. All questions should be directed to the Eurofins Environment Testing Southeast, LLC Project Manager.

Authorization

Generated 8/9/2023 8:32:53 AM

Authorized for release by Jerry Lanier, Project Manager I <u>Jerry.Lanier@et.eurofinsus.com</u> (912)250-0281

Eurofins Savannah is a laboratory within Eurofins Environment Testing Southeast, LLC, a company within Eurofins Environment Testing Group of Companies

Page 2 of 25

8/9/2023

2

3

4

5

6

R

9

10

12

13

Table of Contents

Cover Page	1
Table of Contents	3
Case Narrative	4
Sample Summary	5
Method Summary	6
Definitions	7
Detection Summary	8
Client Sample Results	10
	16
QC Association	19
Chronicle	21
Chain of Custody	23
	24
Certification Summary	25

Case Narrative

Client: South Carolina Public Service Authority Project/Site: 125915/JM02.08.G01.3/36500

Job ID: 680-238532-1

Job ID: 680-238532-1

Laboratory: Eurofins Savannah

Narrative

Job Narrative 680-238532-1

Receipt

The samples were received on 8/2/2023 10:45 AM. Unless otherwise noted below, the samples arrived in good condition, and, where required, properly preserved and on ice. The temperature of the cooler at receipt time was 4.3°C

Metals

No additional analytical or quality issues were noted, other than those described above or in the Definitions/ Glossary page.

3

5

b

_/

ŏ

10

11

12

13

Sample Summary

Client: South Carolina Public Service Authority Project/Site: 125915/JM02.08.G01.3/36500

Job ID: 680-238532-1

Lab Sample ID	Client Sample ID	Matrix	Collected	Received
680-238532-1	AF68719	Water	06/29/23 10:48	08/02/23 10:45
680-238532-2	AF68720	Water	06/29/23 11:40	08/02/23 10:45
680-238532-3	AF68721	Water	06/29/23 11:45	08/02/23 10:45
680-238532-4	AF68713	Water	06/29/23 13:51	08/02/23 10:45
680-238532-5	AF68714	Water	06/28/23 14:09	08/02/23 10:45
680-238532-6	AF68712	Water	06/28/23 15:20	08/02/23 10:45

3

4

6

10

11

13

Method Summary

Client: South Carolina Public Service Authority Project/Site: 125915/JM02.08.G01.3/36500

Job ID: 680-238532-1

Method	Method Description	Protocol	Laboratory
6010D	Metals (ICP)	SW846	EET SAV
6020B	Metals (ICP/MS)	SW846	EET SAV
3005A	Preparation, Total Recoverable or Dissolved Metals	SW846	EET SAV

Protocol References:

SW846 = "Test Methods For Evaluating Solid Waste, Physical/Chemical Methods", Third Edition, November 1986 And Its Updates.

Laboratory References:

EET SAV = Eurofins Savannah, 5102 LaRoche Avenue, Savannah, GA 31404, TEL (912)354-7858

8/9/2023

Definitions/Glossary

Client: South Carolina Public Service Authority Job ID: 680-238532-1 Project/Site: 125915/JM02.08.G01.3/36500

Qualifiers

Metals

Qualifier **Qualifier Description**

Indicates the analyte was analyzed for but not detected.

Glossary

Abbreviation These commonly used abbreviations may or may not be present in this report. Listed under the "D" column to designate that the result is reported on a dry weight basis

Percent Recovery %R CFL Contains Free Liquid Colony Forming Unit CFU CNF Contains No Free Liquid

DER Duplicate Error Ratio (normalized absolute difference)

Dil Fac Dilution Factor

DL Detection Limit (DoD/DOE)

DL, RA, RE, IN Indicates a Dilution, Re-analysis, Re-extraction, or additional Initial metals/anion analysis of the sample

DLC Decision Level Concentration (Radiochemistry)

Estimated Detection Limit (Dioxin) EDL Limit of Detection (DoD/DOE) LOD LOQ Limit of Quantitation (DoD/DOE)

EPA recommended "Maximum Contaminant Level" MCL MDA Minimum Detectable Activity (Radiochemistry) MDC Minimum Detectable Concentration (Radiochemistry)

MDL Method Detection Limit Minimum Level (Dioxin) MPN Most Probable Number MQL Method Quantitation Limit

NC Not Calculated

ND Not Detected at the reporting limit (or MDL or EDL if shown)

NEG Negative / Absent POS Positive / Present

PQL Practical Quantitation Limit

PRES Presumptive QC **Quality Control**

RER Relative Error Ratio (Radiochemistry)

RL Reporting Limit or Requested Limit (Radiochemistry)

RPD Relative Percent Difference, a measure of the relative difference between two points

TEF Toxicity Equivalent Factor (Dioxin) TEQ Toxicity Equivalent Quotient (Dioxin)

Too Numerous To Count TNTC

Eurofins Savannah

Page 7 of 25 8/9/2023 Client: South Carolina Public Service Authority Project/Site: 125915/JM02.08.G01.3/36500

Job ID: 680-238532-1

Lab Sample ID: 680-238532-1

Lab Sample ID: 680-238532-3

Lab Sample ID: 680-238532-4

Lab Sample ID: 680-238532-5

Analyte	Result	Qualifier RL	MDL	Unit	Dil Fac	D	Method	Prep Type
Calcium	232000	500		ug/L	1		6010D	Total
								Recoverable
Aluminum	547	100		ug/L	1		6020B	Total
								Recoverable
Arsenic	38.1	3.00		ug/L	1		6020B	Total
								Recoverable
Barium	99.1	5.00		ug/L	1		6020B	Total
								Recoverable
Cobalt	0.660	0.500		ug/L	1		6020B	Total
								Recoverable
Iron	28500	100		ug/L	1		6020B	Total
								Recoverable
Magnesium	30200	250		ug/L	1		6020B	Total
<u></u>								Recoverable

Client Sample ID: AF68720

Client Sample ID: AF68719

Client Sample ID: AF68720						Lab Sample ID: 68	0-238532-2
Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac D Method	Prep Type

Allalyte	Result	Qualifiei	KL	MDL	Ollit	Direc	_	Method	riep type
Calcium	613000		500		ug/L	1		6010D	Total
									Recoverable
Barium	270		5.00		ug/L	1		6020B	Total
									Recoverable
Iron	23800		100		ug/L	1		6020B	Total
									Recoverable
Magnesium	82200		250		ug/L	1		6020B	Total
									Recoverable

Client Sample ID: AF68721

Analyte	Result Qualifier	RL	MDL Unit	Dil Fac) Method	Prep Type
Calcium	642000	500	ug/L		6010D	Total
						Recoverable
Barium	304	5.00	ug/L	1	6020B	Total
						Recoverable
Iron	25200	100	ug/L	1	6020B	Total
						Recoverable
Magnesium	97700	250	ug/L	1	6020B	Total
						Recoverable

Client Sample ID: AF68713

Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type
Calcium	266000		500		ug/L	1		6010D	Total
									Recoverable
Barium	200		5.00		ug/L	1		6020B	Total
									Recoverable
Iron	18600		100		ug/L	1		6020B	Total
									Recoverable
Magnesium	13800		250		ug/L	1		6020B	Total
									Recoverable

Client Sample ID: AF68714

Analyte	Result Qualifier	RL	MDL Unit	Dil Fac	D Method	Prep Type
Calcium	50800	500	ug/L	1	6010D	Total
						Recoverable
Barium	36.5	5.00	ug/L	1	6020B	Total
						Recoverable

This Detection Summary does not include radiochemical test results.

Eurofins Savannah

Page 8 of 25

Detection Summary

Client: South Carolina Public Service Authority Project/Site: 125915/JM02.08.G01.3/36500

Client Sample ID: AF68714 (Continued)

Job ID: 680-238532-1

Lab Sample ID: 680-238532-5

Analyte Iron		Qualifier RL	MDL	Unit ug/L	Dil Fac	D	Method 6020B	Prep Type Total
				9				Recoverable
Magnesium	4000	250		ug/L	1		6020B	Total Recoverable

Client Sample ID: AF68712 Lab Sample ID: 680-238532-6

Analyte	Result	Qualifier RL	MDL	Unit	Dil Fac	D	Method	Prep Type
Calcium	212000	500		ug/L	1		6010D	Total
								Recoverable
Aluminum	103	100		ug/L	1		6020B	Total
								Recoverable
Arsenic	45.7	3.00		ug/L	1		6020B	Total
								Recoverable
Barium	179	5.00		ug/L	1		6020B	Total
								Recoverable
Beryllium	0.570	0.500		ug/L	1		6020B	Total
								Recoverable
Cobalt	4.70	0.500	i	ug/L	1		6020B	Total
								Recoverable
Iron	17800	100	1	ug/L	1		6020B	Total
								Recoverable
Magnesium	26900	250		ug/L	1		6020B	Total
								Recoverable

This Detection Summary does not include radiochemical test results.

Eurofins Savannah

Page 9 of 25 8/9/2023

Client: South Carolina Public Service Authority Project/Site: 125915/JM02.08.G01.3/36500

Job ID: 680-238532-1

Lab Sample ID: 680-238532-1

Matrix: Water

Client Sample ID: AF68719

Date Collected: 06/29/23 10:48 Date Received: 08/02/23 10:45

Method: SW846 6010D - Metals (IC	P) - Total Red	coverable							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Calcium	232000		500		ug/L		08/03/23 06:38	08/04/23 17:50	1
Selenium	20.0	U	20.0		ug/L		08/03/23 06:38	08/04/23 17:50	1

Selenium	20.0	U	20.0		ug/L		08/03/23 06:38	08/04/23 17:50	1
Method: SW846 6020B - N	Metals (ICP/MS) - Total	Recoverabl	e						
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Aluminum	547		100		ug/L		08/03/23 06:38	08/08/23 15:58	1
Antimony	5.00	U	5.00		ug/L		08/03/23 06:38	08/08/23 15:58	1
Arsenic	38.1		3.00		ug/L		08/03/23 06:38	08/08/23 15:58	1
Barium	99.1		5.00		ug/L		08/03/23 06:38	08/08/23 15:58	1
Beryllium	0.500	U	0.500		ug/L		08/03/23 06:38	08/08/23 15:58	1
Cadmium	0.500	U	0.500		ug/L		08/03/23 06:38	08/08/23 15:58	1
Chromium	5.00	U	5.00		ug/L		08/03/23 06:38	08/08/23 15:58	1
Cobalt	0.660		0.500		ug/L		08/03/23 06:38	08/08/23 15:58	1
Copper	5.00	U	5.00		ug/L		08/03/23 06:38	08/08/23 15:58	1
Iron	28500		100		ug/L		08/03/23 06:38	08/08/23 15:58	1
Lead	2.50	U	2.50		ug/L		08/03/23 06:38	08/08/23 15:58	1
Magnesium	30200		250		ug/L		08/03/23 06:38	08/08/23 15:58	1
Thallium	1.00	U	1.00		ug/L		08/03/23 06:38	08/08/23 15:58	1
Zinc	20.0	U	20.0		ug/L		08/03/23 06:38	08/08/23 15:58	1

5

6

8

10

11

13

Client: South Carolina Public Service Authority Project/Site: 125915/JM02.08.G01.3/36500

Job ID: 680-238532-1

Lab Sample ID: 680-238532-2

Matrix: Water

Client Sample ID: AF68720

Date Collected: 06/29/23 11:40 Date Received: 08/02/23 10:45

	Method: SW846 6010D - Metals (I	CP) - Total Red	coverable							
	Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
	Calcium	613000		500		ug/L		08/03/23 06:38	08/04/23 17:23	1
L	Selenium	20.0	U	20.0		ug/L		08/03/23 06:38	08/04/23 17:23	1

Selenium	20.0	U	20.0		ug/L		08/03/23 06:38	08/04/23 17:23	1
Method: SW846 6020B - Metals (ICP/MS) - Total	Recoverable	е						
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Aluminum	100	U	100		ug/L		08/03/23 06:38	08/08/23 15:17	1
Antimony	5.00	U	5.00		ug/L		08/03/23 06:38	08/08/23 15:17	1
Arsenic	3.00	U	3.00		ug/L		08/03/23 06:38	08/08/23 15:17	1
Barium	270		5.00		ug/L		08/03/23 06:38	08/08/23 15:17	1
Beryllium	0.500	U	0.500		ug/L		08/03/23 06:38	08/08/23 15:17	1
Cadmium	0.500	U	0.500		ug/L		08/03/23 06:38	08/08/23 15:17	1
Chromium	5.00	U	5.00		ug/L		08/03/23 06:38	08/08/23 15:17	1
Cobalt	0.500	U	0.500		ug/L		08/03/23 06:38	08/08/23 15:17	1
Copper	5.00	U	5.00		ug/L		08/03/23 06:38	08/08/23 15:17	1
Iron	23800		100		ug/L		08/03/23 06:38	08/08/23 15:17	1
Lead	2.50	U	2.50		ug/L		08/03/23 06:38	08/08/23 15:17	1
Magnesium	82200		250		ug/L		08/03/23 06:38	08/08/23 15:17	1
Thallium	1.00	U	1.00		ug/L		08/03/23 06:38	08/08/23 15:17	1
Zinc	20.0	U	20.0		ug/L		08/03/23 06:38	08/08/23 15:17	1

Client: South Carolina Public Service Authority Project/Site: 125915/JM02.08.G01.3/36500

Lab Sample ID: 680-238532-3

Matrix: Water

Job ID: 680-238532-1

Client Sample ID: AF68721

Date Collected: 06/29/23 11:45 Date Received: 08/02/23 10:45

Method: SW846 6010D - Met	als (ICP) - Total Recoverable						
Analyte	Result Qualifier	RL	MDL Unit	D	Prepared	Analyzed	Dil Fac
Calcium	642000	500	ug/L		08/03/23 05:51	08/03/23 15:15	1
Selenium	20.0 U	20.0	ug/L		08/03/23 05:51	08/03/23 15:15	1

Selenium	20.0	U	20.0		ug/L		08/03/23 05:51	08/03/23 15:15	1
Method: SW846 6020B - Metals (IC	P/MS) - Total	Recoverable	е						
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Aluminum	100	U	100		ug/L		08/03/23 05:51	08/07/23 16:30	1
Antimony	5.00	U	5.00		ug/L		08/03/23 05:51	08/07/23 16:30	1
Arsenic	3.00	U	3.00		ug/L		08/03/23 05:51	08/07/23 16:30	1
Barium	304		5.00		ug/L		08/03/23 05:51	08/07/23 16:30	1
Beryllium	0.500	U	0.500		ug/L		08/03/23 05:51	08/07/23 16:30	1
Cadmium	0.500	U	0.500		ug/L		08/03/23 05:51	08/07/23 16:30	1
Chromium	5.00	U	5.00		ug/L		08/03/23 05:51	08/07/23 16:30	1
Cobalt	0.500	U	0.500		ug/L		08/03/23 05:51	08/07/23 16:30	1
Copper	5.00	U	5.00		ug/L		08/03/23 05:51	08/07/23 16:30	1
Iron	25200		100		ug/L		08/03/23 05:51	08/07/23 16:30	1
Lead	2.50	U	2.50		ug/L		08/03/23 05:51	08/07/23 16:30	1
Magnesium	97700		250		ug/L		08/03/23 05:51	08/07/23 16:30	1
Thallium	1.00	U	1.00		ug/L		08/03/23 05:51	08/07/23 16:30	1
Zinc	20.0	U	20.0		ug/L		08/03/23 05:51	08/07/23 16:30	1

Client: South Carolina Public Service Authority Project/Site: 125915/JM02.08.G01.3/36500

Job ID: 680-238532-1

Lab Sample ID: 680-238532-4

Matrix: Water

Client Sample ID: AF68713 Date Collected: 06/29/23 13:51

Date Received: 08/02/23 10:45

Method: SW846 6010D - Me	tals (ICP) - Total Recoverable						
Analyte	Result Qualifier	RL	MDL Unit	D	Prepared	Analyzed	Dil Fac
Calcium	266000	500	ug/L		08/03/23 05:51	08/03/23 15:13	1
Selenium	20.0 U	20.0	ug/L		08/03/23 05:51	08/03/23 15:13	1

Selenium	20.0	U	20.0		ug/L		08/03/23 05:51	08/03/23 15:13	1
Method: SW846 6020B - Metals (ICP/MS) - Total	Recoverable	е						
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Aluminum	100	U	100		ug/L		08/03/23 05:51	08/07/23 16:26	1
Antimony	5.00	U	5.00		ug/L		08/03/23 05:51	08/07/23 16:26	1
Arsenic	3.00	U	3.00		ug/L		08/03/23 05:51	08/07/23 16:26	1
Barium	200		5.00		ug/L		08/03/23 05:51	08/07/23 16:26	1
Beryllium	0.500	U	0.500		ug/L		08/03/23 05:51	08/07/23 16:26	1
Cadmium	0.500	U	0.500		ug/L		08/03/23 05:51	08/07/23 16:26	1
Chromium	5.00	U	5.00		ug/L		08/03/23 05:51	08/07/23 16:26	1
Cobalt	0.500	U	0.500		ug/L		08/03/23 05:51	08/07/23 16:26	1
Copper	5.00	U	5.00		ug/L		08/03/23 05:51	08/07/23 16:26	1
Iron	18600		100		ug/L		08/03/23 05:51	08/07/23 16:26	1
Lead	2.50	U	2.50		ug/L		08/03/23 05:51	08/07/23 16:26	1
Magnesium	13800		250		ug/L		08/03/23 05:51	08/07/23 16:26	1
Thallium	1.00	U	1.00		ug/L		08/03/23 05:51	08/07/23 16:26	1
Zinc	20.0	U	20.0		ug/L		08/03/23 05:51	08/07/23 16:26	1

Δ

5

9

10

12

13

Client: South Carolina Public Service Authority Project/Site: 125915/JM02.08.G01.3/36500

Job ID: 680-238532-1

Lab Sample ID: 680-238532-5

Matrix: Water

Client Sample ID: AF68714

Date Collected: 06/28/23 14:09 Date Received: 08/02/23 10:45

ſ	Method: SW846 6010D - Metals (I	CP) - Total Red	coverable							
	Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
	Calcium	50800		500		ug/L		08/03/23 05:51	08/03/23 15:11	1
	Selenium	20.0	U	20.0		ug/L		08/03/23 05:51	08/03/23 15:11	1

Selenium	20.0	U	20.0		ug/L		08/03/23 05:51	08/03/23 15:11	1
Method: SW846 6020B -	Metals (ICP/MS) - Total	Recoverabl	e						
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Aluminum	100	U	100		ug/L		08/03/23 05:51	08/07/23 16:22	1
Antimony	5.00	U	5.00		ug/L		08/03/23 05:51	08/07/23 16:22	1
Arsenic	3.00	U	3.00		ug/L		08/03/23 05:51	08/07/23 16:22	1
Barium	36.5		5.00		ug/L		08/03/23 05:51	08/07/23 16:22	1
Beryllium	0.500	U	0.500		ug/L		08/03/23 05:51	08/07/23 16:22	1
Cadmium	0.500	U	0.500		ug/L		08/03/23 05:51	08/07/23 16:22	1
Chromium	5.00	U	5.00		ug/L		08/03/23 05:51	08/07/23 16:22	1
Cobalt	0.500	U	0.500		ug/L		08/03/23 05:51	08/07/23 16:22	1
Copper	5.00	U	5.00		ug/L		08/03/23 05:51	08/07/23 16:22	1
Iron	1200		100		ug/L		08/03/23 05:51	08/07/23 16:22	1
Lead	2.50	U	2.50		ug/L		08/03/23 05:51	08/07/23 16:22	1
Magnesium	4000		250		ug/L		08/03/23 05:51	08/07/23 16:22	1
Thallium	1.00	U	1.00		ug/L		08/03/23 05:51	08/07/23 16:22	1
Zinc	20.0	U	20.0		ug/L		08/03/23 05:51	08/07/23 16:22	1

Client: South Carolina Public Service Authority Project/Site: 125915/JM02.08.G01.3/36500

Client Sample ID: AF68712

Date Collected: 06/28/23 15:20

Date Received: 08/02/23 10:45

Lab Sample ID: 680-238532-6

Matrix: Water

Job ID: 680-238532-1

Method: SW846 6010D - Metals (IC	P) - Total Red	coverable							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Calcium	212000		500		ug/L		08/03/23 06:38	08/04/23 17:20	1
Selenium	20.0	U	20.0		ug/L		08/03/23 06:38	08/04/23 17:20	1

Calcium	212000		500	ug/L		08/03/23 06:38	08/04/23 17:20	1	
Selenium	20.0	U	20.0	ug/L		08/03/23 06:38	08/04/23 17:20	1	
 Method: SW846 6020B -	Metals (ICP/MS) - Total	Recoverable							
Analyte	Result	Qualifier	RL	MDL Unit	D	Prepared	Analyzed	Dil Fac	
Aluminum	103		100	ug/L		08/03/23 06:38	08/08/23 15:13	1	
Antimony	5.00	U	5.00	ug/L		08/03/23 06:38	08/08/23 15:13	1	
Arsenic	45.7		3.00	ug/L		08/03/23 06:38	08/08/23 15:13	1	
Barium	179		5.00	ug/L		08/03/23 06:38	08/08/23 15:13	1	
Beryllium	0.570		0.500	ug/L		08/03/23 06:38	08/08/23 15:13	1	
Cadmium	0.500	U	0.500	ug/L		08/03/23 06:38	08/08/23 15:13	1	
Chromium	5.00	U	5.00	ug/L		08/03/23 06:38	08/08/23 15:13	1	
Cobalt	4.70		0.500	ug/L		08/03/23 06:38	08/08/23 15:13	1	
Copper	5.00	U	5.00	ug/L		08/03/23 06:38	08/08/23 15:13	1	
Iron	17800		100	ug/L		08/03/23 06:38	08/08/23 15:13	1	
Lead	2.50	U	2.50	ug/L		08/03/23 06:38	08/08/23 15:13	1	ı
Magnesium	26900		250	ug/L		08/03/23 06:38	08/08/23 15:13	1	
Thallium	1.00	U	1.00	ug/L		08/03/23 06:38	08/08/23 15:13	1	ļ
Zinc	20.0	U	20.0	ug/L		08/03/23 06:38	08/08/23 15:13	1	

QC Sample Results

Client: South Carolina Public Service Authority Project/Site: 125915/JM02.08.G01.3/36500

Job ID: 680-238532-1

Prep Batch: 791516

Prep Batch: 791516

Prep Batch: 791519

Prep Batch: 791519

Prep Batch: 791513

Client Sample ID: Method Blank

Client Sample ID: Lab Control Sample

Prep Type: Total Recoverable

Prep Type: Total Recoverable

Client Sample ID: Method Blank

Client Sample ID: Lab Control Sample

Prep Type: Total Recoverable

Prep Type: Total Recoverable

Client Sample ID: Method Blank

Prep Type: Total Recoverable

Eurofins Savannah

08/07/23 15:57

Method:	6010D	- Metals	(ICP)

Lab Sample ID: MB 680-791516/1-A

Matrix: Water

Analysis Batch: 791719

MB MB Analyte Result Qualifier RL MDL Unit Prepared Analyzed Dil Fac Calcium 500 U 500 ug/L 08/03/23 05:51 08/03/23 14:52 Selenium 20.0 U 20.0 ug/L 08/03/23 05:51 08/03/23 14:52

Lab Sample ID: LCS 680-791516/2-A

Analysis Batch: 791719

Matrix: Water

	Spike	LCS	LCS				%Rec	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Calcium	5000	4950		ug/L		99	80 _ 120	
Selenium	100	94.39		ug/L		94	80 _ 120	

Lab Sample ID: MB 680-791519/1-A

Matrix: Water

Analysis Batch: 791897

	MB	MB							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Calcium	500	U	500		ug/L		08/03/23 06:38	08/04/23 16:50	1
Selenium	20.0	U	20.0		ug/L		08/03/23 06:38	08/04/23 16:50	1

Lab Sample ID: LCS 680-791519/2-A

Matrix: Water

Analysis Batch: 791897

	Spike	LCS LC	cs		%Rec
Analyte	Added	Result Qu	ualifier Unit	D %Rec	Limits
Calcium	5000	4801	ug/L	96	80 - 120
Selenium	100	99.73	ua/L	100	80 _ 120

Method: 6020B - Metals (ICP/MS)

Lab Sample ID: MB 680-791513/1-A

Matrix: Water

Zinc

Analysis Batch: 792230

	MB	MB							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Aluminum	100	U	100		ug/L		08/03/23 05:51	08/07/23 15:57	1
Antimony	5.00	U	5.00		ug/L		08/03/23 05:51	08/07/23 15:57	1
Arsenic	3.00	U	3.00		ug/L		08/03/23 05:51	08/07/23 15:57	1
Barium	5.00	U	5.00		ug/L		08/03/23 05:51	08/07/23 15:57	1
Beryllium	0.500	U	0.500		ug/L		08/03/23 05:51	08/07/23 15:57	1
Cadmium	0.500	U	0.500		ug/L		08/03/23 05:51	08/07/23 15:57	1
Chromium	5.00	U	5.00		ug/L		08/03/23 05:51	08/07/23 15:57	1
Cobalt	0.500	U	0.500		ug/L		08/03/23 05:51	08/07/23 15:57	1
Copper	5.00	U	5.00		ug/L		08/03/23 05:51	08/07/23 15:57	1
Iron	100	U	100		ug/L		08/03/23 05:51	08/07/23 15:57	1
Lead	2.50	U	2.50		ug/L		08/03/23 05:51	08/07/23 15:57	1
Magnesium	250	U	250		ug/L		08/03/23 05:51	08/07/23 15:57	1
Thallium	1.00	U	1.00		ug/L		08/03/23 05:51	08/07/23 15:57	1

20.0

ug/L

08/03/23 05:51

20.0 U

Job ID: 680-238532-1

Client: South Carolina Public Service Authority Project/Site: 125915/JM02.08.G01.3/36500

Method: 6020B - Metals (ICP/MS) (Continued)

Lab Sample ID: LCS 680-791513/2-A **Client Sample ID: Lab Control Sample Matrix: Water Prep Type: Total Recoverable** Analysis Batch: 792230 **Prep Batch: 791513**

	Spike	LCS	LCS				%Rec	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Aluminum	5050	5120		ug/L		101	80 _ 120	
Antimony	50.0	50.97		ug/L		102	80 _ 120	
Arsenic	100	106.4		ug/L		106	80 _ 120	
Barium	100	102.9		ug/L		103	80 _ 120	
Beryllium	50.0	49.97		ug/L		100	80 _ 120	
Cadmium	50.0	50.92		ug/L		102	80 _ 120	
Chromium	100	109.3		ug/L		109	80 _ 120	
Cobalt	50.0	55.15		ug/L		110	80 _ 120	
Copper	100	113.2		ug/L		113	80 _ 120	
Iron	4990	5167		ug/L		104	80 _ 120	
Lead	500	530.5		ug/L		106	80 _ 120	
Magnesium	5000	4977		ug/L		100	80 _ 120	
Thallium	50.0	50.20		ug/L		100	80 _ 120	
Zinc	100	110.4		ug/L		110	80 _ 120	

Lab Sample ID: MB 680-791518/1-A

Matrix: Water

Analysis Batch: 792490

Client Sample ID: Method Blank Prep Type: Total Recoverable

Prep Batch: 791518

Analyzed	Dil Fac
Analyzed	Dil Eac
	Dil Fac
38 08/08/23 14:41	1
38 08/08/23 14:41	1
38 08/08/23 14:41	1
38 08/08/23 14:41	1
38 08/08/23 14:41	1
38 08/08/23 14:41	1
38 08/08/23 14:41	1
38 08/08/23 14:41	1
38 08/08/23 14:41	1
38 08/08/23 14:41	1
38 08/08/23 14:41	1
38 08/08/23 14:41	1
38 08/08/23 14:41	1
38 08/08/23 14:41	1
	:38

Lab Sample ID: LCS 680-791518/2-A

Matrix: Water

Analysis Batch: 792490

Client Sample ID: Lab Control Sample Prep Type: Total Recoverable Prep Batch: 791518

	Spike	LCS	LCS				%Rec
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits
Aluminum	5050	4652		ug/L		92	80 _ 120
Antimony	50.0	46.52		ug/L		93	80 _ 120
Arsenic	100	97.80		ug/L		98	80 _ 120
Barium	100	95.86		ug/L		96	80 _ 120
Beryllium	50.0	48.56		ug/L		97	80 _ 120
Cadmium	50.0	46.20		ug/L		92	80 _ 120
Chromium	100	100.4		ug/L		100	80 - 120
Cobalt	50.0	47.54		ug/L		95	80 _ 120
Copper	100	102.8		ug/L		103	80 - 120

Eurofins Savannah

8/9/2023

Page 17 of 25

QC Sample Results

Client: South Carolina Public Service Authority Project/Site: 125915/JM02.08.G01.3/36500

Job ID: 680-238532-1

Method: 6020B - Metals (ICP/MS) (Continued)

Lab Sample ID: LCS 680-791518/2-A

Matrix: Water

Analysis Batch: 792490

Client Sample ID: Lab Control Sample
Prep Type: Total Recoverable
Prep Batch: 791518

	Spike	LCS	LCS				%Rec
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits
Iron	4990	5052		ug/L		101	80 _ 120
Lead	500	485.1		ug/L		97	80 - 120
Magnesium	5000	4591		ug/L		92	80 _ 120
Thallium	50.0	46.82		ug/L		94	80 _ 120
Zinc	100	101.9		ug/L		102	80 _ 120

4

6

Ω

9

10

12

13

QC Association Summary

Client: South Carolina Public Service Authority Project/Site: 125915/JM02.08.G01.3/36500

Job ID: 680-238532-1

Metals

Prep Batch: 791513

Lab Sample ID 680-238532-3	Client Sample ID AF68721	Prep Type Total Recoverable	Matrix Water	Method Prep Batch 3005A
680-238532-4	AF68713	Total Recoverable	Water	3005A 3005A
680-238532-5	AF68714	Total Recoverable	Water	3005A
MB 680-791513/1-A	Method Blank	Total Recoverable	Water	3005A
LCS 680-791513/2-A	Lab Control Sample	Total Recoverable	Water	3005A

Prep Batch: 791516

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batc
680-238532-3	AF68721	Total Recoverable	Water	3005A	
680-238532-4	AF68713	Total Recoverable	Water	3005A	
680-238532-5	AF68714	Total Recoverable	Water	3005A	
MB 680-791516/1-A	Method Blank	Total Recoverable	Water	3005A	
LCS 680-791516/2-A	Lab Control Sample	Total Recoverable	Water	3005A	

Prep Batch: 791518

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
680-238532-1	AF68719	Total Recoverable	Water	3005A	
680-238532-2	AF68720	Total Recoverable	Water	3005A	
680-238532-6	AF68712	Total Recoverable	Water	3005A	
MB 680-791518/1-A	Method Blank	Total Recoverable	Water	3005A	
LCS 680-791518/2-A	Lab Control Sample	Total Recoverable	Water	3005A	

Prep Batch: 791519

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
680-238532-1	AF68719	Total Recoverable	Water	3005A	
680-238532-2	AF68720	Total Recoverable	Water	3005A	
680-238532-6	AF68712	Total Recoverable	Water	3005A	
MB 680-791519/1-A	Method Blank	Total Recoverable	Water	3005A	
LCS 680-791519/2-A	Lab Control Sample	Total Recoverable	Water	3005A	

Analysis Batch: 791719

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
680-238532-3	AF68721	Total Recoverable	Water	6010D	791516
680-238532-4	AF68713	Total Recoverable	Water	6010D	791516
680-238532-5	AF68714	Total Recoverable	Water	6010D	791516
MB 680-791516/1-A	Method Blank	Total Recoverable	Water	6010D	791516
LCS 680-791516/2-A	Lab Control Sample	Total Recoverable	Water	6010D	791516

Analysis Batch: 791897

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
680-238532-1	AF68719	Total Recoverable	Water	6010D	791519
680-238532-2	AF68720	Total Recoverable	Water	6010D	791519
680-238532-6	AF68712	Total Recoverable	Water	6010D	791519
MB 680-791519/1-A	Method Blank	Total Recoverable	Water	6010D	791519
LCS 680-791519/2-A	Lab Control Sample	Total Recoverable	Water	6010D	791519

Analysis Batch: 792230

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
680-238532-3	AF68721	Total Recoverable	Water	6020B	791513
680-238532-4	AF68713	Total Recoverable	Water	6020B	791513
680-238532-5	AF68714	Total Recoverable	Water	6020B	791513

Eurofins Savannah

Page 19 of 25

QC Association Summary

Client: South Carolina Public Service Authority Project/Site: 125915/JM02.08.G01.3/36500

Job ID: 680-238532-1

Metals (Continued)

Analysis Batch: 792230 (Continued)

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
MB 680-791513/1-A	Method Blank	Total Recoverable	Water	6020B	791513
LCS 680-791513/2-A	Lab Control Sample	Total Recoverable	Water	6020B	791513

Analysis Batch: 792490

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
680-238532-1	AF68719	Total Recoverable	Water	6020B	791518
680-238532-2	AF68720	Total Recoverable	Water	6020B	791518
680-238532-6	AF68712	Total Recoverable	Water	6020B	791518
MB 680-791518/1-A	Method Blank	Total Recoverable	Water	6020B	791518
LCS 680-791518/2-A	Lab Control Sample	Total Recoverable	Water	6020B	791518

/

4

7

8

10

Ш

13

Job ID: 680-238532-1

Client: South Carolina Public Service Authority Project/Site: 125915/JM02.08.G01.3/36500

Lab Sample ID: 680-238532-1

Matrix: Water

Client Sample ID: AF68719

Date Collected: 06/29/23 10:48 Date Received: 08/02/23 10:45

Client Sample ID: AF68720

	Batch	Batch		Dilution	Batch			Prepared
Prep Type	Type	Method	Run	Factor	Number	Analyst	Lab	or Analyzed
Total Recoverable	Prep	3005A			791519	RR	EET SAV	08/03/23 06:38
Total Recoverable	Analysis	6010D		1	791897	BJB	EET SAV	08/04/23 17:50
Total Recoverable	Prep	3005A			791518	RR	EET SAV	08/03/23 06:38
Total Recoverable	Analysis	6020B		1	792490	BWR	EET SAV	08/08/23 15:58

Lab Sample ID: 680-238532-2

Date Collected: 06/29/23 11:40 **Matrix: Water** Date Received: 08/02/23 10:45

	Batch	Batch		Dilution	Batch			Prepared
Prep Type	Type	Method	Run	Factor	Number	Analyst	Lab	or Analyzed
Total Recoverable	Prep	3005A			791519	RR	EET SAV	08/03/23 06:38
Total Recoverable	Analysis	6010D		1	791897	BJB	EET SAV	08/04/23 17:23
Total Recoverable	Prep	3005A			791518	RR	EET SAV	08/03/23 06:38
Total Recoverable	Analysis	6020B		1	792490	BWR	EET SAV	08/08/23 15:17

Lab Sample ID: 680-238532-3 **Client Sample ID: AF68721**

Date Collected: 06/29/23 11:45 **Matrix: Water**

Date Received: 08/02/23 10:45

	Batch	Batch		Dilution	Batch			Prepared
Prep Type	Туре	Method	Run	Factor	Number	Analyst	Lab	or Analyzed
Total Recoverable	Prep	3005A			791516	RR	EET SAV	08/03/23 05:51
Total Recoverable	Analysis	6010D		1	791719	BJB	EET SAV	08/03/23 15:15
Total Recoverable	Prep	3005A			791513	RR	EET SAV	08/03/23 05:51
Total Recoverable	Analysis	6020B		1	792230	BWR	EET SAV	08/07/23 16:30

Lab Sample ID: 680-238532-4 **Client Sample ID: AF68713**

Date Collected: 06/29/23 13:51 **Matrix: Water** Date Received: 08/02/23 10:45

	Batch	Batch		Dilution	Batch			Prepared
Prep Type	Type	Method	Run	Factor	Number	Analyst	Lab	or Analyzed
Total Recoverable	Prep	3005A			791516	RR	EET SAV	08/03/23 05:51
Total Recoverable	Analysis	6010D		1	791719	BJB	EET SAV	08/03/23 15:13
Total Recoverable	Prep	3005A			791513	RR	EET SAV	08/03/23 05:51
Total Recoverable	Analysis	6020B		1	792230	BWR	EET SAV	08/07/23 16:26

Client Sample ID: AF68714 Lab Sample ID: 680-238532-5

Date Collected: 06/28/23 14:09

Date Received: 08/02/23 10:45

	Batch	Batch		Dilution	Batch			Prepared
Prep Type	Type	Method	Run	Factor	Number	Analyst	Lab	or Analyzed
Total Recoverable	Prep	3005A			791516	RR	EET SAV	08/03/23 05:51
Total Recoverable	Analysis	6010D		1	791719	BJB	EET SAV	08/03/23 15:11
Total Recoverable	Prep	3005A			791513	RR	EET SAV	08/03/23 05:51
Total Recoverable	Analysis	6020B		1	792230	BWR	EET SAV	08/07/23 16:22

Eurofins Savannah

Lab Chronicle

Client: South Carolina Public Service Authority

Job ID: 680-238532-1

Project/Site: 125915/JM02.08.G01.3/36500

Lab Sample ID: 680-238532-6

Matrix: Water

Client Sample ID: AF68712 Date Collected: 06/28/23 15:20

Date Received: 08/02/23 10:45

	Batch	Batch		Dilution	Batch			Prepared
Prep Type	Туре	Method	Run	Factor	Number	Analyst	Lab	or Analyzed
Total Recoverable	Prep	3005A			791519	RR	EET SAV	08/03/23 06:38
Total Recoverable	Analysis	6010D		1	791897	BJB	EET SAV	08/04/23 17:20
Total Recoverable	Prep	3005A			791518	RR	EET SAV	08/03/23 06:38
Total Recoverable	Analysis	6020B		1	792490	BWR	EET SAV	08/08/23 15:13

Laboratory References:

EET SAV = Eurofins Savannah, 5102 LaRoche Avenue, Savannah, GA 31404, TEL (912)354-7858

3

4

5

10

12

13

Chain of Custody

santee cooper

Santee Cooper One Riverwood Drive Moneks Corner, SC 29461 Phone (843)761-8000 Est 5148 Fax. (843)761-4175

Customer Email/Report Recipient: Date Results Needed by: Project/Task/Unit #: Rerun request for any flagged QC 125915 /JM02.08,G01.3 / 36500 LCWILLIA (Yes) _@santeecooper.com No **Analysis Group** Labworks ID# Sample Location/ Comments METALS Bottle type: (Glass-G/Plastic-P) Preservative (see below) Matrix(see below) Collection Date Collection Time Description Total # of container (Internal use Method# Sample Collector only) Reporting limit . Grab (G) or Composite (C Misc sample info DIR. Any other notes WK 1 P G 2 Х GW WAP-9 6/29/23 1048 6020 AF-68719 - SEE SHEET FOR KLS. AFG 8720 WA-P- 10 1140 WAP-10 DUP 1145 AF68721 135 WAP-3 AF68713 *PLEASE RETURN SAMPLES UPON COMPLETION. 6/28/23 AF68714 WAR-4 1407 WAP-2 1520 AF68712 680-238532 Chain of Custody Sample Receiving (Internal Use Only) Time Relinquished by: Employee# Date Time Received by: Employee# Date TEMP (°C): 42/43 Initial: 9HODG 35594 8/2/23 0756 COURTER 8/2/23 Sproan 0756 Correct pH: Yes Relinquished by: Received by: Employee# Date Time Employee # Time Date Preservative Lot#: 1245 courses 8/2/23 1044 M Q .2-23 Relinquished by: Employee# Date Time Received by: Employee # Date Time Date/Time/Init for preservative: ☐ METALS (all) **Nutrients** MISC. <u>Gypsum</u> Coal Flyash Oil □ Ag ℤ Cu Z Sb □ TOC □ BTEX □ Wallboard ☐ Ultimate Trans, Oil Qual. ☐ Ammonia ZAI **⊿Fe** ∠ Se %Moisture DDOC □ Naphthalene Gypsum(all □ % Moisture □ LOI Ø As $\square K$ □ Sn □ THM/HAA below) Color ☐ TP/TPO4 □ Ash □ % Carbon I VOC □ AIM Acidity □ NH3-N ☐ Sulfur \square B ☐ Mineral □ Li □ Sr Dielectric Strength ☐ Oil & Grease DITOC n F □ BTUs Analysis □ E. Coli IFT. Ø Ba Z-Mg □ Ti ☐ Total metals ୍ର ୯ୀ ☐ Volatile Matter ☐ Total Coliform ☐ Sieve Dissolved Gases ☐ Soluble Metals Z TI **⊿**Be □ Mn □ NO2 ☐ CHN □pH ☐ % Moisture Used Oil □ Purity (CaSO4) □ Br Other Tests: ☐ Dissolved As ☐ % Moisture C Flashpoint [Z∕Ca $\square V$ □Мо □ NO3 ☐ Dissolved Fe ☐ XRF Scan Metals in oil □ Sulfites **NPDES** ℤZn (As.Cd,Cr.Ni.Pb D/Cd □ Na ☐ Rad 226 □ HGI □pH □ SO4 ☐ Oil & Grease ☐ Rad 228 Chlorides Hg) ☐ Fineness Z Co □Ni □Hg O As □ PCB ☐ Particulate Matter ☐ Particle Size □ TSS Z Pb □ CrVI GOFER Z Cr

Login Sample Receipt Checklist

Client: South Carolina Public Service Authority

Job Number: 680-238532-1

Login Number: 238532 List Source: Eurofins Savannah

List Number: 1

Creator: Sims, Robert D

oreator. Office, reserve	
Question	Answer Comment
Radioactivity wasn't checked or is = background as measured by a survey meter.</td <td>N/A</td>	N/A
The cooler's custody seal, if present, is intact.	True
Sample custody seals, if present, are intact.	True
The cooler or samples do not appear to have been compromised or tampered with.	True
Samples were received on ice.	True
Cooler Temperature is acceptable.	True
Cooler Temperature is recorded.	True
COC is present.	True
COC is filled out in ink and legible.	True
COC is filled out with all pertinent information.	True
Is the Field Sampler's name present on COC?	True
There are no discrepancies between the containers received and the COC.	True
Samples are received within Holding Time (excluding tests with immediate HTs)	True
Sample containers have legible labels.	True
Containers are not broken or leaking.	True
Sample collection date/times are provided.	True
Appropriate sample containers are used.	True
Sample bottles are completely filled.	True
Sample Preservation Verified.	N/A
There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs	True
Containers requiring zero headspace have no headspace or bubble is <6mm (1/4").	N/A
Multiphasic samples are not present.	True
Samples do not require splitting or compositing.	True
Residual Chlorine Checked.	N/A

А

6

8

10

11

13

Accreditation/Certification Summary

Client: South Carolina Public Service Authority Project/Site: 125915/JM02.08.G01.3/36500

Job ID: 680-238532-1

Laboratory: Eurofins Savannah

The accreditations/certifications listed below are applicable to this report.

Authority	Program	Identification Number	Expiration Date
South Carolina	State	98001	06-30-23 *

3

4

9

10

13

 $^{^{\}star} \ \text{Accreditation/Certification renewal pending - accreditation/certification considered valid}.$

12

14

ANALYTICAL REPORT

PREPARED FOR

Attn: Linda Williams
South Carolina Public Service Authority
Santee Cooper
PO BOX 2946101
Moncks Corner, South Carolina 29461-2901

Generated 8/3/2023 6:06:42 PM Revision 1

JOB DESCRIPTION

125915/JM02-08-G01.1/36500

JOB NUMBER

680-237959-1

Eurofins Savannah 5102 LaRoche Avenue Savannah GA 31404

Eurofins Savannah

Job Notes

This report may not be reproduced except in full, and with written approval from the laboratory. The results relate only to the samples tested. For questions please contact the Project Manager at the e-mail address or telephone number listed on this page.

The test results in this report relate only to the samples as received by the laboratory and will meet all requirements of the methodology, with any exceptions noted. This report shall not be reproduced except in full, without the express written approval of the laboratory. All questions should be directed to the Eurofins Environment Testing Southeast, LLC Project Manager.

Authorization

Generated 8/3/2023 6:06:42 PM Revision 1

Authorized for release by Jerry Lanier, Project Manager I <u>Jerry.Lanier@et.eurofinsus.com</u> (912)250-0281

Table of Contents

Cover Page	1
Table of Contents	3
Case Narrative	4
Sample Summary	5
Method Summary	6
Definitions	7
Detection Summary	8
Client Sample Results	10
QC Sample Results	36
QC Association	38
Chronicle	40
Chain of Custody	45
Receipt Checklists	48
Certification Summary	49

Case Narrative

Client: South Carolina Public Service Authority Project/Site: 125915/JM02-08-G01.1/36500

Job ID: 680-237959-1

Job ID: 680-237959-1

Laboratory: Eurofins Savannah

Narrative

Job Narrative 680-237959-1

Receipt

The samples were received on 7/20/2023 9:45 AM. Unless otherwise noted below, the samples arrived in good condition, and, where required, properly preserved and on ice. The temperature of the cooler at receipt time was 21.7°C

Revision

The final report was revised to include the re-prepped data for samples which failed MS/MSD. Both sets of data have been reported.

Metals

No additional analytical or quality issues were noted, other than those described above or in the Definitions/ Glossary page.

3

...

J

0

10

4 4

12

13

Sample Summary

Client: South Carolina Public Service Authority Project/Site: 125915/JM02-08-G01.1/36500

Job ID: 680-237959-1

Lab Sample ID	Client Sample ID	Matrix	Collected	Received
680-237959-1	AF68738	Water	07/12/23 12:28	07/20/23 09:45
680-237959-2	AF68732	Water	07/12/23 14:32	07/20/23 09:45
680-237959-3	AF68740	Water	07/12/23 11:01	07/20/23 09:45
680-237959-4	AF68743	Water	07/12/23 13:23	07/20/23 09:45
680-237959-5	AF68744	Water	07/12/23 13:28	07/20/23 09:45
680-237959-6	AF68745	Water	07/11/23 15:21	07/20/23 09:45
680-237959-7	AF68741	Water	07/11/23 12:51	07/20/23 09:45
680-237959-8	AF68725	Water	07/18/23 11:49	07/20/23 09:45
680-237959-9	AF68742	Water	07/18/23 14:53	07/20/23 09:45
680-237959-10	AF68747	Water	07/17/23 10:08	07/20/23 09:45
680-237959-11	AF68731	Water	07/17/23 11:15	07/20/23 09:45
680-237959-12	AF68723	Water	07/17/23 13:00	07/20/23 09:45
680-237959-13	AF68724	Water	07/17/23 13:05	07/20/23 09:45
680-237959-14	AF68746	Water	07/17/23 14:24	07/20/23 09:45
680-237959-15	AF68726	Water	07/13/23 14:16	07/20/23 09:45
680-237959-16	AF68725	Water	07/13/23 14:21	07/20/23 09:45
680-237959-17	AF68730	Water	07/13/23 10:01	07/20/23 09:45
680-237959-18	AF68729	Water	07/13/23 11:24	07/20/23 09:45
680-237959-19	AF68728	Water	07/13/23 13:32	07/20/23 09:45
680-237959-20	AF68751	Water	07/10/23 10:00	07/20/23 09:45
680-237959-21	AF68750	Water	07/10/23 11:18	07/20/23 09:45
680-237959-22	AF68755	Water	07/10/23 12:59	07/20/23 09:45
680-237959-23	AF68733	Water	07/10/23 14:10	07/20/23 09:45
680-237959-24	AF68734	Water	07/10/23 14:15	07/20/23 09:45
680-237959-25	AF68757	Water	07/11/23 09:51	07/20/23 09:45
680-237959-26	AF68749	Water		07/20/23 09:45
000-201909-20	AI 00173	vvalei	01/11/20 10.02	01120123 03.43

Method Summary

Client: South Carolina Public Service Authority Project/Site: 125915/JM02-08-G01.1/36500

Job ID: 680-237959-1

Method	Method Description	Protocol	Laboratory
7470A	Mercury (CVAA)	SW846	EET SAV
7470A	Preparation, Mercury	SW846	EET SAV

Protocol References:

SW846 = "Test Methods For Evaluating Solid Waste, Physical/Chemical Methods", Third Edition, November 1986 And Its Updates.

Laboratory References:

EET SAV = Eurofins Savannah, 5102 LaRoche Avenue, Savannah, GA 31404, TEL (912)354-7858

4

5

6

8

9

11

12

Definitions/Glossary

Client: South Carolina Public Service Authority Job ID: 680-237959-1 Project/Site: 125915/JM02-08-G01.1/36500

Qualifiers

Metals

Qualifier **Qualifier Description** F1 MS and/or MSD recovery exceeds control limits.

MS/MSD RPD exceeds control limits F2

U Indicates the analyte was analyzed for but not detected.

Glossary

Abbreviation These commonly used abbreviations may or may not be present in this report.

¤ Listed under the "D" column to designate that the result is reported on a dry weight basis

%R Percent Recovery CFL Contains Free Liquid CFU Colony Forming Unit CNF Contains No Free Liquid

Duplicate Error Ratio (normalized absolute difference) DER

Dil Fac **Dilution Factor**

Detection Limit (DoD/DOE) DL

DL, RA, RE, IN Indicates a Dilution, Re-analysis, Re-extraction, or additional Initial metals/anion analysis of the sample

DLC Decision Level Concentration (Radiochemistry)

Estimated Detection Limit (Dioxin) **EDL** LOD Limit of Detection (DoD/DOE) LOQ Limit of Quantitation (DoD/DOE)

MCL EPA recommended "Maximum Contaminant Level" MDA Minimum Detectable Activity (Radiochemistry) Minimum Detectable Concentration (Radiochemistry) MDC

Method Detection Limit MDL ML Minimum Level (Dioxin) MPN Most Probable Number Method Quantitation Limit MOI

NC Not Calculated

ND Not Detected at the reporting limit (or MDL or EDL if shown)

NEG Negative / Absent POS Positive / Present

Practical Quantitation Limit PQL

PRES Presumptive **Quality Control** QC

RER Relative Error Ratio (Radiochemistry)

RL Reporting Limit or Requested Limit (Radiochemistry)

RPD Relative Percent Difference, a measure of the relative difference between two points

TEF Toxicity Equivalent Factor (Dioxin) **TEQ** Toxicity Equivalent Quotient (Dioxin)

TNTC Too Numerous To Count

Detection Summary

	Detection Juninary
Client: South Carolina Public Service Authority Project/Site: 125915/JM02-08-G01.1/36500	Job ID: 680-237959-1
Client Sample ID: AF68738	Lab Sample ID: 680-237959-1
No Detections.	
Client Sample ID: AF68732	Lab Sample ID: 680-237959-2
No Detections.	
Client Sample ID: AF68740	Lab Sample ID: 680-237959-3
No Detections.	
Client Sample ID: AF68743	Lab Sample ID: 680-237959-4
No Detections.	
Client Sample ID: AF68744	Lab Sample ID: 680-237959-5
No Detections.	
Client Sample ID: AF68745	Lab Sample ID: 680-237959-6
No Detections.	
Client Sample ID: AF68741	Lab Sample ID: 680-237959-7
No Detections.	
Client Sample ID: AF68725	Lab Sample ID: 680-237959-8
No Detections.	
Client Sample ID: AF68742	Lab Sample ID: 680-237959-9
No Detections.	
Client Sample ID: AF68747	Lab Sample ID: 680-237959-10
No Detections.	
Client Sample ID: AF68731	Lab Sample ID: 680-237959-11
No Detections.	
Client Sample ID: AF68723	Lab Sample ID: 680-237959-12
No Detections.	
Client Sample ID: AF68724	Lab Sample ID: 680-237959-13
No Detections.	
Client Sample ID: AF68746	Lab Sample ID: 680-237959-14
No Detections.	
Client Sample ID: AF68726	Lab Sample ID: 680-237959-15
No Detections.	
Client Sample ID: AF68725	Lab Sample ID: 680-237959-16
No Detections.	

This Detection Summary does not include radiochemical test results.

Eurofins Savannah

Detection Summary

Project/Site: 125915/JM02-08-G01.1/36500	005 IB. 000 207000 T
Client Sample ID: AF68730	Lab Sample ID: 680-237959-17
No Detections.	
Client Sample ID: AF68729	Lab Sample ID: 680-237959-18
No Detections.	
Client Sample ID: AF68728	Lab Sample ID: 680-237959-19
No Detections.	
Client Sample ID: AF68751	Lab Sample ID: 680-237959-20
No Detections.	
Client Sample ID: AF68750	Lab Sample ID: 680-237959-21
No Detections.	
Client Sample ID: AF68755	Lab Sample ID: 680-237959-22
No Detections.	
Client Sample ID: AF68733	Lab Sample ID: 680-237959-23
No Detections.	
Client Sample ID: AF68734	Lab Sample ID: 680-237959-24
No Detections.	
Client Sample ID: AF68757	Lab Sample ID: 680-237959-25
No Detections.	
Client Sample ID: AF68749	Lab Sample ID: 680-237959-26

This Detection Summary does not include radiochemical test results.

No Detections.

Client: South Carolina Public Service Authority

Job ID: 680-237959-1

Client: South Carolina Public Service Authority

Project/Site: 125915/JM02-08-G01.1/36500

Job ID: 680-237959-1

Client Sample ID: AF68738 Lab Sample ID: 680-237959-1

Date Collected: 07/12/23 12:28 Matrix: Water

Date Received: 07/20/23 09:45

Method: SW846 7470A - Mercury (CVAA)

Analyte Result Qualifier RL MDL Unit D Prepared Analyzed Dil Fac

Mercury 0.200 U 0.200 ug/L 07/21/23 10:52 07/21/23 16:36 1

8

10

11

13

Client: South Carolina Public Service Authority

Project/Site: 125915/JM02-08-G01.1/36500

Job ID: 680-237959-1

Client Sample ID: AF68732 Lab Sample ID: 680-237959-2

Date Collected: 07/12/23 14:32 Matrix: Water

Date Received: 07/20/23 09:45

Method: SW846 7470A - Mercury (CVAA)
Analyte Result Qualifier RL MDL Unit D Prepared Analyzed

 Analyte
 Result Mercury
 Qualifier Qualifier
 RL O.200
 MDL Unit Ug/L
 D Prepared O7/21/23 10:52
 Analyzed O7/21/23 16:40
 Dil Fac O7/21/23 16:40

8

40

11

10

Client: South Carolina Public Service Authority

Project/Site: 125915/JM02-08-G01.1/36500

Job ID: 680-237959-1

Client Sample ID: AF68740 Lab Sample ID: 680-237959-3

Date Collected: 07/12/23 11:01 Matrix: Water

Date Received: 07/20/23 09:45

Method: SW846 7470A - Mercury (CVAA)
Analyte Result Qualifier RL MDL Unit D Prepared Analyzed

 Analyte
 Result
 Qualifier
 RL
 MDL
 Unit
 D
 Prepared
 Analyzed
 Dil Fac

 Mercury
 0.200
 U
 0.200
 ug/L
 07/21/23 10:52
 07/21/23 16:42
 1

O

46

11

13

Client: South Carolina Public Service Authority

Project/Site: 125915/JM02-08-G01.1/36500

Job ID: 680-237959-1

Client Sample ID: AF68743 Lab Sample ID: 680-237959-4

Date Collected: 07/12/23 13:23 Matrix: Water

Date Received: 07/20/23 09:45

Method: SW846 7470A - Mercury (CVAA)
Analyte Result Qualifier RL MDL Unit D Prepared Analyzed Dil Fac

Mercury 0.200 U 0.200 ug/L 07/21/23 10:52 07/21/23 16:43 1

8

9

4 4

12

13

Client: South Carolina Public Service Authority Job ID: 680-237959-1 Project/Site: 125915/JM02-08-G01.1/36500

Lab Sample ID: 680-237959-5 **Client Sample ID: AF68744**

Date Collected: 07/12/23 13:28 **Matrix: Water**

Date Received: 07/20/23 09:45

Method: SW846 7470A - Mercury (CVAA)

Analyte Result Qualifier RL MDL Unit Prepared Analyzed Dil Fac 0.200 U 07/21/23 10:52 07/21/23 16:45 Mercury 0.200 ug/L

Eurofins Savannah

Client: South Carolina Public Service Authority

Project/Site: 125915/JM02-08-G01.1/36500

Job ID: 680-237959-1

Client Sample ID: AF68745 Lab Sample ID: 680-237959-6

Date Collected: 07/11/23 15:21 Matrix: Water

Date Received: 07/20/23 09:45

Method: SW846 7470A - Mercury (CVAA)

Analyte Result Qualifier RL MDL Unit D Prepared Analyzed Dil Fac

Mercury 0.200 U 0.200 ug/L 07/21/23 10:52 07/21/23 16:46 1

1

5

10

11

13

Client: South Carolina Public Service Authority Job ID: 680-237959-1 Project/Site: 125915/JM02-08-G01.1/36500

Lab Sample ID: 680-237959-7 **Client Sample ID: AF68741**

Date Collected: 07/11/23 12:51 **Matrix: Water**

Date Received: 07/20/23 09:45

Method: SW846 7470A - Mercury (CVAA)

Analyte Result Qualifier RL MDL Unit Prepared Analyzed Dil Fac 0.200 U 07/21/23 10:52 07/21/23 16:51 Mercury 0.200 ug/L

Client: South Carolina Public Service Authority

Project/Site: 125915/JM02-08-G01.1/36500

Job ID: 680-237959-1

Client Sample ID: AF68725 Lab Sample ID: 680-237959-8

Date Collected: 07/18/23 11:49 Matrix: Water

Date Received: 07/20/23 09:45

Method: SW846 7470A - Mercury (CVAA)

Analyte Result Qualifier RL MDL Unit D Prepared Analyzed Dil Fac

Mercury 0.200 U 0.200 ug/L 07/21/23 10:52 07/21/23 16:53 1

8

10

13

Client: South Carolina Public Service Authority

Project/Site: 125915/JM02-08-G01.1/36500

Job ID: 680-237959-1

Client Sample ID: AF68742 Lab Sample ID: 680-237959-9

Date Collected: 07/18/23 14:53 Matrix: Water

Date Received: 07/20/23 09:45

Method: SW846 7470A - Mercury (CVAA)
Analyte Result Qualifier RL MDL Unit D Prepared Analyze

 Analyte
 Result
 Qualifier
 RL
 MDL
 Unit
 D
 Prepared
 Analyzed
 Dil Fac

 Mercury
 0.200
 U
 0.200
 ug/L
 07/21/23 10:52
 07/21/23 16:54
 1

7

8

9

11

10

Client: South Carolina Public Service Authority

Project/Site: 125915/JM02-08-G01.1/36500

Job ID: 680-237959-1

Client Sample ID: AF68747 Lab Sample ID: 680-237959-10

Date Collected: 07/17/23 10:08 Matrix: Water Date Received: 07/20/23 09:45

Method: SW846 7470A - Mercury (CVAA)

metriod: Office (Tarion - Mercury (Office)								
	Analyte	Result Qualifier	RL	MDL Unit	D	Prepared	Analyzed	Dil Fac
	Mercury	0 200 U	0.200	ua/l		07/21/23 10:52	07/21/23 16:56	1

Δ

4

6

8

9

11

13

Client: South Carolina Public Service Authority

Project/Site: 125915/JM02-08-G01.1/36500

Job ID: 680-237959-1

Client Sample ID: AF68731 Lab Sample ID: 680-237959-11

Date Collected: 07/17/23 11:15 Matrix: Water

Date Received: 07/20/23 09:45

Method: SW846 7470A - Mercury (CVAA)

Analyte Result Qualifier RL MDL Unit D Prepared Analyzed Dil Fac

Mercury 0.200 U 0.200 ug/L 07/21/23 10:52 07/21/23 16:57 1

Eurofins Savannah

3

4

5

7

8

10

13

Client: South Carolina Public Service Authority

Project/Site: 125915/JM02-08-G01.1/36500

Job ID: 680-237959-1

Client Sample ID: AF68723 Lab Sample ID: 680-237959-12

Date Collected: 07/17/23 13:00 Matrix: Water

Date Received: 07/20/23 09:45

Method: SW846 7470A - Mercury (CVAA)

 Analyte
 Result
 Qualifier
 RL
 MDL
 Unit
 D
 Prepared
 Analyzed
 Dil Fac

 Mercury
 0.200
 U
 0.200
 ug/L
 07/21/23 10:52
 07/21/23 16:59
 1

10.200 0 0.200 dg/L 07/21/25 10.52 07/21/25 16.59 1

__

4

5

6

Ω

9

10

12

13

Client: South Carolina Public Service Authority

Project/Site: 125915/JM02-08-G01.1/36500

Job ID: 680-237959-1

Client Sample ID: AF68724 Lab Sample ID: 680-237959-13

Date Collected: 07/17/23 13:05 Matrix: Water

Date Received: 07/20/23 09:45

Method: SW846 7470A - Mercury (CVAA)
Analyte Result Qualifier RL MDL Unit D Prepared Analyzed Dil Fac

Mercury 0.200 U 0.200 ug/L 07/21/23 10:52 07/21/23 17:00 1

0

10

12

13

Client: South Carolina Public Service Authority Job ID: 680-237959-1

Project/Site: 125915/JM02-08-G01.1/36500

Lab Sample ID: 680-237959-14 Client Sample ID: AF68746 Date Collected: 07/17/23 14:24

Matrix: Water

Date Received: 07/20/23 09:45

Method: SW846 7470A - Mercເ	ıry (CVAA)							
Analyte	Result	Qualifier	RL	MDL Unit	D	Prepared	Analyzed	Dil Fac
Mercury	0.200	U F1 F2	0.200	ug/L		07/25/23 12:25	07/26/23 10:29	1
Mercury	0.200	U	0.200	ua/L		08/02/23 10:19	08/03/23 10:19	1

Client: South Carolina Public Service Authority

Job ID: 680-237959-1

Project/Site: 125915/JM02-08-G01.1/36500

. Matrix: Water

Date Collected: 07/13/23 14:16 Date Received: 07/20/23 09:45

Method: SW846 7470A - Mercury (CVAA)									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Mercury	0.200	U F1	0.200		ug/L		07/25/23 12:39	07/26/23 10:37	1
Mercury	0.200	U	0.200		ug/L		08/02/23 10:19	08/03/23 10:20	1

-

5

7

Ō

10

12

13

Client: South Carolina Public Service Authority

Project/Site: 125915/JM02-08-G01.1/36500

Job ID: 680-237959-1

Client Sample ID: AF68725 Lab Sample ID: 680-237959-16

Date Collected: 07/13/23 14:21 Matrix: Water

Date Received: 07/20/23 09:45

Method: SW846 7470A - Mercury (CVAA)
Analyte Result Qualifier RL MDL Unit D Prepared Analyzed Dil Fac

Mercury 0.200 U 0.200 ug/L 07/25/23 12:39 07/26/23 10:45 1

Δ

5

6

8

Q

10

10

13

Client: South Carolina Public Service Authority Job ID: 680-237959-1 Project/Site: 125915/JM02-08-G01.1/36500

Lab Sample ID: 680-237959-17 **Client Sample ID: AF68730**

Matrix: Water

Date Collected: 07/13/23 10:01 Date Received: 07/20/23 09:45

Method: SW846 7470A - Mercury (CVAA)

Analyte Result Qualifier RL MDL Unit **Prepared** Analyzed Dil Fac 0.200 U 07/25/23 12:39 07/26/23 10:46 Mercury

0.200 ug/L

Client: South Carolina Public Service Authority

Project/Site: 125915/JM02-08-G01.1/36500

Job ID: 680-237959-1

Client Sample ID: AF68729 Lab Sample ID: 680-237959-18

Date Collected: 07/13/23 11:24 Matrix: Water

Date Received: 07/20/23 09:45

Method: SW846 7470A - Mercury (CVAA)
Analyte Result Qualifier RL MDL Unit D Prepared Analyzed

 Analyte
 Result
 Qualifier
 RL
 MDL
 Unit
 D
 Prepared
 Analyzed
 Dil Fac

 Mercury
 0.200
 U
 0.200
 ug/L
 07/25/23 12:39
 07/26/23 10:48
 1

C

5

7

8

4.0

11

13

Client: South Carolina Public Service Authority

Project/Site: 125915/JM02-08-G01.1/36500

Job ID: 680-237959-1

Client Sample ID: AF68728 Lab Sample ID: 680-237959-19

Date Collected: 07/13/23 13:32 Matrix: Water

Date Received: 07/20/23 09:45

Method: SW846 7470A - Mercury (CVAA)
Analyte Result Qualifier RL MDL Unit D Prepared Analyzed

 Analyte
 Result Mercury
 Qualifier Qualifier
 RL NDL Unit QUAL
 Unit QUAL
 D Prepared D7/25/23 12:39
 Analyzed O7/26/23 10:49
 Dil Fac O7/25/23 12:39

8

10

11

13

Client: South Carolina Public Service Authority

Project/Site: 125915/JM02-08-G01.1/36500

Job ID: 680-237959-1

Client Sample ID: AF68751 Lab Sample ID: 680-237959-20

Date Collected: 07/10/23 10:00 Matrix: Water Date Received: 07/20/23 09:45

Method: SW846 7470A - Mercury (CVAA)

Analyte Result Qualifier RL MDL Unit D Prepared Analyzed Dil Fa

 Analyte
 Result Mercury
 Qualifier
 RL
 MDL Unit ug/L
 D Prepared 07/25/23 12:39
 Analyzed 77/26/23 10:51
 Dil Fac 07/25/23 12:39

7

8

10

11

13

Client: South Carolina Public Service Authority Job ID: 680-237959-1

Project/Site: 125915/JM02-08-G01.1/36500

Lab Sample ID: 680-237959-21 **Client Sample ID: AF68750** Date Collected: 07/10/23 11:18

Matrix: Water

Date Received: 07/20/23 09:45

Method: SW846 7470A - Mercury (CVAA) Analyte Result Qualifier RL MDL Unit **Prepared** Analyzed

Dil Fac 0.200 U 07/25/23 12:39 07/26/23 10:52 Mercury 0.200 ug/L

Client: South Carolina Public Service Authority Job ID: 680-237959-1 Project/Site: 125915/JM02-08-G01.1/36500

Lab Sample ID: 680-237959-22 **Client Sample ID: AF68755**

Date Collected: 07/10/23 12:59 **Matrix: Water**

Date Received: 07/20/23 09:45

Method: SW846 7470A - Mercury (CVAA) Analyte Result Qualifier RL MDL Unit **Prepared** Analyzed

Dil Fac

0.200 U 07/25/23 12:39 07/26/23 10:54 Mercury 0.200 ug/L

Eurofins Savannah

Client: South Carolina Public Service Authority

Project/Site: 125915/JM02-08-G01.1/36500

Job ID: 680-237959-1

Client Sample ID: AF68733 Lab Sample ID: 680-237959-23

Date Received: 07/20/23 09:45

Method: SW846 7470A - Mercury (CVAA)
Analyte Result Qualifier RL MDL Unit D Prepared Analyzed Dil Fac

Mercury 0.200 U 0.200 ug/L 07/25/23 12:39 07/26/23 10:55 1

Eurofins Savannah

Client: South Carolina Public Service Authority

Job ID: 680-237959-1

Project/Site: 125915/JM02-08-G01.1/36500

Client Sample ID: AF68734 Lab Sample ID: 680-237959-24

Matrix: Water

Date Collected: 07/10/23 14:15 Date Received: 07/20/23 09:45

Method: SW846 7470A - Mercury (CVAA)

Analyte Result Qualifier RL MDL Unit D Prepared Analyzed Dil Fac

Mercury 0.200 U 0.200 ug/L 07/25/23 12:39 07/26/23 10:57 1

4

5

J

7

8

9

11

10

Client: South Carolina Public Service Authority

Project/Site: 125915/JM02-08-G01.1/36500

Job ID: 680-237959-1

Client Sample ID: AF68757 Lab Sample ID: 680-237959-25

Date Collected: 07/11/23 09:51 Matrix: Water

Date Received: 07/20/23 09:45

Method: SW846 7470A - Mercury (CVAA)

 Analyte
 Result
 Qualifier
 RL
 MDL
 Unit
 D
 Prepared
 Analyzed
 Dil Fac

 Mercury
 0.200
 U
 0.200
 ug/L
 07/25/23 12:39
 07/26/23 11:02
 1

viercury 0.200 0 0.200 ug/L 07/25/25 12.59 07/26/25 11.02 1

3

4

5

6

8

9

12

13

Client: South Carolina Public Service Authority

Project/Site: 125915/JM02-08-G01.1/36500

Job ID: 680-237959-1

Client Sample ID: AF68749 Lab Sample ID: 680-237959-26

Date Collected: 07/11/23 10:52 Matrix: Water

Date Received: 07/20/23 09:45

Method: SW846 7470A - Mercury (CVAA)

Analyte Result Qualifier RL MDL Unit D Prepared Analyzed Dil Fac

Mercury 0.200 U 0.200 ug/L 07/25/23 12:39 07/26/23 11:03 1

4

5

7

0

10

11

13

Client: South Carolina Public Service Authority Project/Site: 125915/JM02-08-G01.1/36500

Job ID: 680-237959-1

Method: 7470A - Mercury (CVAA)

Lab Sample ID: MB 680-789400/1-A **Matrix: Water**

Client Sample ID: Method Blank Prep Type: Total/NA

Prep Batch: 789400

Prep Type: Total/NA

Prep Batch: 789957

Prep Type: Total/NA

Prep Batch: 789957

Prep Type: Total/NA

Prep Batch: 789957

Client Sample ID: Method Blank

Client Sample ID: Lab Control Sample

Analysis Batch: 789621

MB MB

Prep Batch: 789400

Result Qualifier RL **MDL** Unit Analyzed Dil Fac Analyte Prepared 0.200 07/21/23 10:52 07/21/23 16:32 Mercury 0.200 U ug/L

Lab Sample ID: LCS 680-789400/2-A Client Sample ID: Lab Control Sample **Matrix: Water** Prep Type: Total/NA **Prep Batch: 789400 Analysis Batch: 789621**

Spike LCS LCS %Rec Added

Result Qualifier Unit D %Rec Limits Analyte 2.50 80 - 120 Mercury 2.592 ug/L 104

Lab Sample ID: 680-237959-1 MS Client Sample ID: AF68738 Prep Type: Total/NA

Matrix: Water

Analysis Batch: 789621

Sample Sample Spike MS MS %Rec Result Qualifier Added Limits **Analyte** Result Qualifier Unit %Rec 0.200 U 1.00 80 - 120 Mercury 1.059 ug/L

Lab Sample ID: 680-237959-1 MSD Client Sample ID: AF68738 Prep Type: Total/NA

Matrix: Water

Analysis Batch: 789621

Prep Batch: 789400 Spike MSD MSD %Rec **RPD** Sample Sample

Analyte Result Qualifier Added Result Qualifier Unit %Rec Limits **RPD** Limit Mercury 0.200 U 1.00 1.032 80 - 120 20 ug/L

Lab Sample ID: MB 680-789957/12-A

Matrix: Water

Analysis Batch: 790193

MR MR

RL **MDL** Unit **Analyte** Result Qualifier **Prepared** Analyzed Dil Fac 0.200 U 0.200 07/25/23 12:25 07/26/23 10:26 Mercury ug/L

Lab Sample ID: LCS 680-789957/13-A

Matrix: Water

Analysis Batch: 790193

Spike LCS LCS %Rec Added Result Qualifier Unit %Rec Limits Analyte

2.50 80 - 120 Mercury 2.644 ug/L 106

Lab Sample ID: 680-237959-14 MS Client Sample ID: AF68746

Matrix: Water Analysis Batch: 790193

Sample Sample Spike MS MS %Rec Added Result Qualifier %Rec Result Qualifier Limits **Analyte** Unit D

80 - 120 0.200 U F1 F2 1.00 Mercury 0.2046 F1 ug/L 20

Lab Sample ID: 680-237959-14 MSD

Matrix: Water

Analysis Batch: 790193 Prep Batch: 789957 %Rec Sample Sample Spike MSD MSD **RPD** Analyte Result Qualifier Added Limits **RPD** Limit Result Qualifier Unit %Rec Mercury 0.200 U F1 F2 1.00 0.200 U F1 F2 16 80 - 120 27 20

Eurofins Savannah

Job ID: 680-237959-1

Client: South Carolina Public Service Authority Project/Site: 125915/JM02-08-G01.1/36500

Prep Type: Total/NA

Method: 7470A - Mercury (CVAA)

Lab Sample ID: MB 680-789960/1-A **Client Sample ID: Method Blank**

Matrix: Water

Prep Type: Total/NA **Analysis Batch: 790193 Prep Batch: 789960**

MB MB

Analyte Result Qualifier RL **MDL** Unit Analyzed Dil Fac Prepared 0.200 0.200 U 07/25/23 12:39 07/26/23 10:34 Mercury ug/L

Lab Sample ID: LCS 680-789960/2-A Client Sample ID: Lab Control Sample **Matrix: Water** Prep Type: Total/NA **Prep Batch: 789960**

Analysis Batch: 790193

Spike LCS LCS %Rec

Analyte Added Result Qualifier Unit D %Rec Limits 2.50 80 - 120 Mercury 2.631 ug/L 105

Lab Sample ID: 680-237959-15 MS Client Sample ID: AF68726

Matrix: Water

Analysis Batch: 790193 Prep Batch: 789960

Sample Sample Spike MS MS %Rec Analyte Result Qualifier Added Limits Result Qualifier Unit %Rec Mercury 0.200 UF1 1.00 80 - 120

Lab Sample ID: 680-237959-15 MSD Client Sample ID: AF68726 Prep Type: Total/NA

0.2226 F1

ug/L

22

Client Sample ID: Method Blank

Prep Type: Total/NA

Prep Batch: 791340

Matrix: Water

Analysis Batch: 790193

Prep Batch: 789960 MSD MSD %Rec Spike **RPD** Sample Sample

Analyte Result Qualifier Added Result Qualifier Unit D %Rec Limits **RPD** Limit Mercury 0.200 UF1 1.00 0.2316 F1 23 80 - 120 20 ug/L

Lab Sample ID: MB 680-791340/12-A

Matrix: Water

Analysis Batch: 791612

MB MB Analyte RL **MDL** Unit Result Qualifier **Prepared** Analyzed Dil Fac 0.200 U 0.200 08/02/23 10:17 08/03/23 10:11 Mercury ug/L

Lab Sample ID: LCS 680-791340/13-A Client Sample ID: Lab Control Sample

Matrix: Water

Prep Type: Total/NA Analysis Batch: 791612 **Prep Batch: 791340**

Spike LCS LCS %Rec Added Result Qualifier Unit %Rec Limits Analyte

Mercury 2.50 2.769 ug/L 111 80 - 120

QC Association Summary

Client: South Carolina Public Service Authority Project/Site: 125915/JM02-08-G01.1/36500

Metals

Prep Batch: 789400

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
680-237959-1	AF68738	Total/NA	Water	7470A	
680-237959-2	AF68732	Total/NA	Water	7470A	
680-237959-3	AF68740	Total/NA	Water	7470A	
680-237959-4	AF68743	Total/NA	Water	7470A	
680-237959-5	AF68744	Total/NA	Water	7470A	
680-237959-6	AF68745	Total/NA	Water	7470A	
680-237959-7	AF68741	Total/NA	Water	7470A	
680-237959-8	AF68725	Total/NA	Water	7470A	
680-237959-9	AF68742	Total/NA	Water	7470A	
680-237959-10	AF68747	Total/NA	Water	7470A	
680-237959-11	AF68731	Total/NA	Water	7470A	
680-237959-12	AF68723	Total/NA	Water	7470A	
680-237959-13	AF68724	Total/NA	Water	7470A	
MB 680-789400/1-A	Method Blank	Total/NA	Water	7470A	
LCS 680-789400/2-A	Lab Control Sample	Total/NA	Water	7470A	
680-237959-1 MS	AF68738	Total/NA	Water	7470A	
680-237959-1 MSD	AF68738	Total/NA	Water	7470A	

Analysis Batch: 789621

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
680-237959-1	AF68738	Total/NA	Water	7470A	789400
680-237959-2	AF68732	Total/NA	Water	7470A	789400
680-237959-3	AF68740	Total/NA	Water	7470A	789400
680-237959-4	AF68743	Total/NA	Water	7470A	789400
680-237959-5	AF68744	Total/NA	Water	7470A	789400
680-237959-6	AF68745	Total/NA	Water	7470A	789400
680-237959-7	AF68741	Total/NA	Water	7470A	789400
680-237959-8	AF68725	Total/NA	Water	7470A	789400
680-237959-9	AF68742	Total/NA	Water	7470A	789400
680-237959-10	AF68747	Total/NA	Water	7470A	789400
680-237959-11	AF68731	Total/NA	Water	7470A	789400
680-237959-12	AF68723	Total/NA	Water	7470A	789400
680-237959-13	AF68724	Total/NA	Water	7470A	789400
MB 680-789400/1-A	Method Blank	Total/NA	Water	7470A	789400
LCS 680-789400/2-A	Lab Control Sample	Total/NA	Water	7470A	789400
680-237959-1 MS	AF68738	Total/NA	Water	7470A	789400
680-237959-1 MSD	AF68738	Total/NA	Water	7470A	789400

Prep Batch: 789957

Lab Sample ID 680-237959-14	Client Sample ID AF68746	Prep Type Total/NA	Matrix Water	Method 7470A	Prep Batch
MB 680-789957/12-A	Method Blank	Total/NA	Water	7470A	
LCS 680-789957/13-A	Lab Control Sample	Total/NA	Water	7470A	
680-237959-14 MS	AF68746	Total/NA	Water	7470A	
680-237959-14 MSD	AF68746	Total/NA	Water	7470A	

Prep Batch: 789960

Lab Sample ID 680-237959-15	Client Sample ID AF68726	Prep Type Total/NA	Matrix Water	Method 7470A	Prep Batch
680-237959-16	AF68725	Total/NA	Water	7470A	
680-237959-17	AF68730	Total/NA	Water	7470A	

Eurofins Savannah

Job ID: 680-237959-1

QC Association Summary

Client: South Carolina Public Service Authority Project/Site: 125915/JM02-08-G01.1/36500

Job ID: 680-237959-1

Metals (Continued)

Prep Batch: 789960 (Continued)

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
680-237959-18	AF68729	Total/NA	Water	7470A	
680-237959-19	AF68728	Total/NA	Water	7470A	
680-237959-20	AF68751	Total/NA	Water	7470A	
680-237959-21	AF68750	Total/NA	Water	7470A	
680-237959-22	AF68755	Total/NA	Water	7470A	
680-237959-23	AF68733	Total/NA	Water	7470A	
680-237959-24	AF68734	Total/NA	Water	7470A	
680-237959-25	AF68757	Total/NA	Water	7470A	
680-237959-26	AF68749	Total/NA	Water	7470A	
MB 680-789960/1-A	Method Blank	Total/NA	Water	7470A	
LCS 680-789960/2-A	Lab Control Sample	Total/NA	Water	7470A	
680-237959-15 MS	AF68726	Total/NA	Water	7470A	
680-237959-15 MSD	AF68726	Total/NA	Water	7470A	

Analysis Batch: 790193

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
680-237959-14	AF68746	Total/NA	Water	7470A	789957
680-237959-15	AF68726	Total/NA	Water	7470A	789960
680-237959-16	AF68725	Total/NA	Water	7470A	789960
680-237959-17	AF68730	Total/NA	Water	7470A	789960
680-237959-18	AF68729	Total/NA	Water	7470A	789960
680-237959-19	AF68728	Total/NA	Water	7470A	789960
680-237959-20	AF68751	Total/NA	Water	7470A	789960
680-237959-21	AF68750	Total/NA	Water	7470A	789960
680-237959-22	AF68755	Total/NA	Water	7470A	789960
680-237959-23	AF68733	Total/NA	Water	7470A	789960
680-237959-24	AF68734	Total/NA	Water	7470A	789960
680-237959-25	AF68757	Total/NA	Water	7470A	789960
680-237959-26	AF68749	Total/NA	Water	7470A	789960
MB 680-789957/12-A	Method Blank	Total/NA	Water	7470A	789957
MB 680-789960/1-A	Method Blank	Total/NA	Water	7470A	789960
LCS 680-789957/13-A	Lab Control Sample	Total/NA	Water	7470A	789957
LCS 680-789960/2-A	Lab Control Sample	Total/NA	Water	7470A	789960
680-237959-14 MS	AF68746	Total/NA	Water	7470A	789957
680-237959-14 MSD	AF68746	Total/NA	Water	7470A	789957
680-237959-15 MS	AF68726	Total/NA	Water	7470A	789960
680-237959-15 MSD	AF68726	Total/NA	Water	7470A	789960

Prep Batch: 791340

Lab Sample ID 680-237959-14	Client Sample ID AF68746	Prep Type Total/NA	Matrix Water	Method 7470A	Prep Batch
680-237959-15	AF68726	Total/NA	Water	7470A	
MB 680-791340/12-A	Method Blank	Total/NA	Water	7470A	
LCS 680-791340/13-A	Lab Control Sample	Total/NA	Water	7470A	

Analysis Batch: 791612

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
680-237959-14	AF68746	Total/NA	Water	7470A	791340
680-237959-15	AF68726	Total/NA	Water	7470A	791340
MB 680-791340/12-A	Method Blank	Total/NA	Water	7470A	791340
LCS 680-791340/13-A	Lab Control Sample	Total/NA	Water	7470A	791340

Eurofins Savannah

Page 39 of 49

2

3

6

8

4.0

44

Lab Chronicle

Client: South Carolina Public Service Authority Project/Site: 125915/JM02-08-G01.1/36500

Client Sample ID: AF68738

Date Collected: 07/12/23 12:28

Job ID: 680-237959-1

Lab Sample ID: 680-237959-1

Prepared

Matrix: Water

Date Receive	Date Received: 07/20/23 09:45									
	Batch	Batch		Dilution	Batch					
Prep Type	Type	Method	Run	Factor	Number	Analyst	Lab			
Total/NIA	Dron	74704			780400	DW	EET SAV			

or Analyzed 07/21/23 10:52 Total/NA Prep 7470A 07/21/23 16:36 Total/NA 7470A 789621 BJB **EET SAV** Analysis

Client Sample ID: AF68732 Lab Sample ID: 680-237959-2

Date Collected: 07/12/23 14:32 **Matrix: Water** Date Received: 07/20/23 09:45

	Batch	Batch		Dilution	Batch			Prepared
Prep Type	Type	Method	Run	Factor	Number	Analyst	Lab	or Analyzed
Total/NA	Prep	7470A			789400	DW	EET SAV	07/21/23 10:52
Total/NA	Analysis	7470A		1	789621	BJB	EET SAV	07/21/23 16:40

Client Sample ID: AF68740 Lab Sample ID: 680-237959-3

Date Collected: 07/12/23 11:01 **Matrix: Water**

Date Received: 07/20/23 09:45

	Batch	Batch		Dilution	Batch			Prepared
Prep Type	Type	Method	Run	Factor	Number	Analyst	Lab	or Analyzed
Total/NA	Prep	7470A			789400	DW	EET SAV	07/21/23 10:52
Total/NA	Analysis	7470A		1	789621	BJB	EET SAV	07/21/23 16:42

Client Sample ID: AF68743 Lab Sample ID: 680-237959-4

Date Collected: 07/12/23 13:23 **Matrix: Water** Date Received: 07/20/23 09:45

	Batch	Batch		Dilution	Batch			Prepared
Prep Type	Туре	Method	Run	Factor	Number	Analyst	Lab	or Analyzed
Total/NA	Prep	7470A			789400	DW	EET SAV	07/21/23 10:52
Total/NA	Analysis	7470A		1	789621	BJB	EET SAV	07/21/23 16:43

Lab Sample ID: 680-237959-5 Client Sample ID: AF68744

Date Collected: 07/12/23 13:28 **Matrix: Water**

Date Received: 07/20/23 09:45

	Batch	Batch		Dilution	Batch			Prepared
Prep Type	Type	Method	Run	Factor	Number	Analyst	Lab	or Analyzed
Total/NA	Prep	7470A			789400	DW	EET SAV	07/21/23 10:52
Total/NA	Analysis	7470A		1	789621	BJB	EET SAV	07/21/23 16:45

Client Sample ID: AF68745 Lab Sample ID: 680-237959-6

Date Collected: 07/11/23 15:21 **Matrix: Water**

Date Received: 07/20/23 09:45

	Batch	Batch		Dilution	Batch			Prepared
Prep Type	Type	Method	Run	Factor	Number	Analyst	Lab	or Analyzed
Total/NA	Prep	7470A			789400	DW	EET SAV	07/21/23 10:52
Total/NA	Analysis	7470A		1	789621	BJB	EET SAV	07/21/23 16:46

Eurofins Savannah

Lab Chronicle

Client: South Carolina Public Service Authority Project/Site: 125915/JM02-08-G01.1/36500

Job ID: 680-237959-1

Lab Sample ID: 680-237959-7

Matrix: Water

Date Collected: 07/11/23 12:51 Date Received: 07/20/23 09:45

Client Sample ID: AF68741

	Batch	Batch		Dilution	Batch		Prepared
Prep Type	Type	Method	Run	Factor	Number Analy	st Lab	or Analyzed
Total/NA	Prep	7470A			789400 DW	EET SAV	07/21/23 10:52
Total/NA	Analysis	7470A		1	789621 BJB	EET SAV	07/21/23 16:51

Client Sample ID: AF68725 Lab Sample ID: 680-237959-8

Matrix: Water

Date Collected: 07/18/23 11:49 Date Received: 07/20/23 09:45

	Batch	Batch		Dilution	Batch			Prepared
Prep Type	Type	Method	Run	Factor	Number	Analyst	Lab	or Analyzed
Total/NA	Prep	7470A			789400	DW	EET SAV	07/21/23 10:52
Total/NA	Analysis	7470A		1	789621	BJB	EET SAV	07/21/23 16:53

Client Sample ID: AF68742 Lab Sample ID: 680-237959-9

Date Collected: 07/18/23 14:53 **Matrix: Water** Date Received: 07/20/23 09:45

Batch Batch Dilution Batch **Prepared** Method or Analyzed **Prep Type** Type Run **Factor** Number Analyst Lab 07/21/23 10:52 Total/NA Prep 7470A 789400 DW EET SAV Total/NA Analysis 7470A 789621 BJB **EET SAV** 07/21/23 16:54 1

Client Sample ID: AF68747 Lab Sample ID: 680-237959-10

Date Collected: 07/17/23 10:08 **Matrix: Water** Date Received: 07/20/23 09:45

Batch **Batch Dilution Batch** Prepared Method or Analyzed **Prep Type** Type Run Factor Number Analyst Lab 07/21/23 10:52 Total/NA 7470A DW Prep 789400 **EET SAV** Total/NA 789621 BJB 07/21/23 16:56 Analysis 7470A **EET SAV**

Client Sample ID: AF68731 Lab Sample ID: 680-237959-11

Date Collected: 07/17/23 11:15 **Matrix: Water**

Date Received: 07/20/23 09:45

	Batch	Batch		Dilution	Batch			Prepared
Prep Type	Type	Method	Run	Factor	Number	Analyst	Lab	or Analyzed
Total/NA	Prep	7470A			789400	DW	EET SAV	07/21/23 10:52
Total/NA	Analysis	7470A		1	789621	BJB	EET SAV	07/21/23 16:57

Client Sample ID: AF68723 Lab Sample ID: 680-237959-12

Date Collected: 07/17/23 13:00 **Matrix: Water**

Date Received: 07/20/23 09:45

	Batch	Batch		Dilution	Batch			Prepared
Prep Type	Туре	Method	Run	Factor	Number	Analyst	Lab	or Analyzed
Total/NA	Prep	7470A			789400	DW	EET SAV	07/21/23 10:52
Total/NA	Analysis	7470A		1	789621	BJB	EET SAV	07/21/23 16:59

Eurofins Savannah

Job ID: 680-237959-1

Client: South Carolina Public Service Authority Project/Site: 125915/JM02-08-G01.1/36500

Client Sample ID: AF68724 Lab Sample ID: 680-237959-13 Date Collected: 07/17/23 13:05

Matrix: Water

Date Received: 07/20/23 09:45

Dilution Batch Batch **Batch Prepared** Method **Factor** Number Analyst or Analyzed **Prep Type** Type Run Lab 07/21/23 10:52 Total/NA 7470A 789400 DW EET SAV Prep Total/NA 7470A 789621 BJB **EET SAV** 07/21/23 17:00 Analysis 1

Client Sample ID: AF68746 Lab Sample ID: 680-237959-14

Date Collected: 07/17/23 14:24 **Matrix: Water**

Date Received: 07/20/23 09:45

	Batch	Batch		Dilution	Batch			Prepared
Prep Type	Type	Method	Run	Factor	Number	Analyst	Lab	or Analyzed
Total/NA	Prep	7470A			789957	DW	EET SAV	07/25/23 12:25
Total/NA	Analysis	7470A		1	790193	BJB	EET SAV	07/26/23 10:29
Total/NA	Prep	7470A			791340	DW	EET SAV	08/02/23 10:19
Total/NA	Analysis	7470A		1	791612	BJB	EET SAV	08/03/23 10:19

Client Sample ID: AF68726 Lab Sample ID: 680-237959-15

Date Collected: 07/13/23 14:16 **Matrix: Water**

Date Received: 07/20/23 09:45

	Batch	Batch		Dilution	Batch			Prepared
Prep Type	Type	Method	Run	Factor	Number	Analyst	Lab	or Analyzed
Total/NA	Prep	7470A			789960	DW	EET SAV	07/25/23 12:39
Total/NA	Analysis	7470A		1	790193	BJB	EET SAV	07/26/23 10:37
Total/NA	Prep	7470A			791340	DW	EET SAV	08/02/23 10:19
Total/NA	Analysis	7470A		1	791612	BJB	EET SAV	08/03/23 10:20

Client Sample ID: AF68725 Lab Sample ID: 680-237959-16

Date Collected: 07/13/23 14:21 Date Received: 07/20/23 09:45

Batch Batch Dilution **Batch Prepared** Method or Analyzed **Prep Type** Type Run **Factor Number Analyst** Lab 07/25/23 12:39 Total/NA Prep 7470A 789960 DW **EET SAV**

1 Client Sample ID: AF68730 Lab Sample ID: 680-237959-17

790193 BJB

Date Collected: 07/13/23 10:01 **Matrix: Water**

Date Received: 07/20/23 09:45

Analysis

7470A

Total/NA

	Batch	Batch		Dilution	Batch			Prepared
Prep Type	Туре	Method	Run	Factor	Number	Analyst	Lab	or Analyzed
Total/NA	Prep	7470A			789960	DW	EET SAV	07/25/23 12:39
Total/NA	Analysis	7470A		1	790193	BJB	EET SAV	07/26/23 10:46

Client Sample ID: AF68729 Lab Sample ID: 680-237959-18

Date Collected: 07/13/23 11:24 **Matrix: Water** Date Received: 07/20/23 09:45

Batch Batch **Dilution Batch Prepared Prep Type** Type Method Run Factor **Number Analyst** or Analyzed Lab Total/NA 7470A 789960 DW 07/25/23 12:39 Prep **EET SAV** Total/NA Analysis 7470A 790193 BJB **EET SAV** 07/26/23 10:48

Eurofins Savannah

Matrix: Water

07/26/23 10:45

EET SAV

Job ID: 680-237959-1

Client: South Carolina Public Service Authority Project/Site: 125915/JM02-08-G01.1/36500

Client Sample ID: AF68728 Lab Sample ID: 680-237959-19 Date Collected: 07/13/23 13:32

Matrix: Water

Date Received: 07/20/23 09:45

	Batch	Batch		Dilution	Batch			Prepared
Prep Type	Type	Method	Run	Factor	Number	Analyst	Lab	or Analyzed
Total/NA	Prep	7470A			789960	DW	EET SAV	07/25/23 12:39
Total/NA	Analysis	7470A		1	790193	BJB	EET SAV	07/26/23 10:49

Lab Sample ID: 680-237959-20 Client Sample ID: AF68751

Date Collected: 07/10/23 10:00 **Matrix: Water**

Date Received: 07/20/23 09:45

	Batch	Batch		Dilution	Batch			Prepared
Prep Type	Type	Method	Run	Factor	Number	Analyst	Lab	or Analyzed
Total/NA	Prep	7470A			789960	DW	EET SAV	07/25/23 12:39
Total/NA	Analysis	7470A		1	790193	BJB	EET SAV	07/26/23 10:51

Client Sample ID: AF68750 Lab Sample ID: 680-237959-21

Date Collected: 07/10/23 11:18 **Matrix: Water**

Date Received: 07/20/23 09:45

	Batch	Batch		Dilution	Batch			Prepared
Prep Type	Type	Method	Run	Factor	Number	Analyst	Lab	or Analyzed
Total/NA	Prep	7470A			789960	DW	EET SAV	07/25/23 12:39
Total/NA	Analysis	7470A		1	790193	BJB	EET SAV	07/26/23 10:52

Client Sample ID: AF68755 Lab Sample ID: 680-237959-22 Date Collected: 07/10/23 12:59 **Matrix: Water**

Date Received: 07/20/23 09:45

	Batch	Batch		Dilution	Batch			Prepared
Prep Type	Type	Method	Run	Factor	Number	Analyst	Lab	or Analyzed
Total/NA	Prep	7470A			789960	DW	EET SAV	07/25/23 12:39
Total/NA	Analysis	7470A		1	790193	BJB	EET SAV	07/26/23 10:54

Client Sample ID: AF68733 Lab Sample ID: 680-237959-23

Date Collected: 07/10/23 14:10

Date Received: 07/20/23 09:45

	Batch	Batch		Dilution	Batch			Prepared
Prep Type	Type	Method	Run	Factor	Number	Analyst	Lab	or Analyzed
Total/NA	Prep	7470A			789960	DW	EET SAV	07/25/23 12:39
Total/NA	Analysis	7470A		1	790193	BJB	EET SAV	07/26/23 10:55

Client Sample ID: AF68734 Lab Sample ID: 680-237959-24

Date Collected: 07/10/23 14:15 **Matrix: Water**

Date Received: 07/20/23 09:45

	Batch	Batch		Dilution	Batch			Prepared
Prep Type	Type	Method	Run	Factor	Number	Analyst	Lab	or Analyzed
Total/NA	Prep	7470A			789960	DW	EET SAV	07/25/23 12:39
Total/NA	Analysis	7470A		1	790193	BJB	EET SAV	07/26/23 10:57

Eurofins Savannah

Matrix: Water

Lab Chronicle

Client: South Carolina Public Service Authority Project/Site: 125915/JM02-08-G01.1/36500

Job ID: 680-237959-1

Lab Sample ID: 680-237959-25

Matrix: Water

Client Sample ID: AF68757 Date Collected: 07/11/23 09:51 Date Received: 07/20/23 09:45

Dilution Batch **Batch Batch Prepared Prep Type** Method Run **Factor** Number Analyst or Analyzed Type Lab 07/25/23 12:39 Total/NA Prep 7470A 789960 DW EET SAV Total/NA 7470A 790193 BJB **EET SAV** 07/26/23 11:02 Analysis 1

Client Sample ID: AF68749 Lab Sample ID: 680-237959-26

Date Collected: 07/11/23 10:52 **Matrix: Water**

Date Received: 07/20/23 09:45

	Batch	Batch		Dilution	Batch			Prepared
Prep Type	Type	Method	Run	Factor	Number	Analyst	Lab	or Analyzed
Total/NA	Prep	7470A			789960	DW	EET SAV	07/25/23 12:39
Total/NA	Analysis	7470A		1	790193	BJB	EET SAV	07/26/23 11:03

Laboratory References:

EET SAV = Eurofins Savannah, 5102 LaRoche Avenue, Savannah, GA 31404, TEL (912)354-7858

assurate cooper

Chain of Custody

Santee Cooper
One Riverwood Drive
Monels Comer, SC 29461
Phone: (843)761-8000 Ext. 5148
Fax: (843)761-4175

Customer Email/Report Recipient:

Analysis Group Ves No @santeecooper.com 125915 JM02.69.681.1 36500 ALLIMOL Date Results Needed by: Project/Task/Unit #: Rerun request for any flagged QC

sa q	juj 1 cq (192 2 gante 1 gante 1 Gang	(a) (b) (b) (c) (c) (c) (c) (d		an sis	Carbon Appes Appes Motsus Motsus Motsus	100	Coal Mah Sultur Sultur Sultur Volatile Ma Tests: Tests: Tests: Sean ness	Eme Hel The D	10 10 0 90	(treat rates) s	inni(ori	PID COMPANY CONTRACTOR		ene esse liform d As d Fe	MIS BTEX Waphthal Waphthal THM/HA U VOC Oil & Gr O Dissolve D Dissolve D Red 228 Red 228	3 3-M 11-Od 11-Od C	TINN TO SOLUTION T	CtAI CtAI	O LP O MS O MS O MS O LS O LS O CS O CS WHELL	C0 Cq Cq Cq Cq Cq Cq Cq
			:9viti	oreserva	nit for p	\əmiT\əteQ		飘響			- 400			a Winner	Marion attackers					yeninguishec
			Ł	-) ($C/^{\prime 0}$	1710	əmi	<u> </u>	in the state of	əseQ	Lotter #	ployee	ma em	syd be	visosA	awiī	sted	Employee#	saq j	adzinnila8
						Preservativ	əmi	1		ered.	1 1	ployee	m3	:Aq pa	Medeivi	əmiT	aned	Employees	; pA:	padziupnilaЯ
_				•N		Hq toerred	Sh	60	ર્ઇ	युष्टा	Ł			1	1/1/	००हा	87/bl/L	+655E		unorals
			nO 921 [nitin]			LEWB (°C) Samble Rece	ami			ated ,		ployee	m3	:Aq pa	MACEIN	9miT	ested	Employee#	t by:	Relinquished
												T								49
					_ @ =	***************************************			-	-	+	1	7	 _	65차1	ET/21/2		57-4 4	M	いたる手
_					680-237959					- -			\vdash		bhll	EZ/81/L		El-47	m	25 T 800 = 1/2
										ì	1	'-	ļ ,			7				H-L 80 →
			T		Chain				Ī	Ī		Ī			[57]			42-9A		
					으										IZSI	EZ/11/L		12-9A	η	S+F 89 1∧
					Custody						11		$\dagger \dagger$	T	9781	Ī	41	19 97- JY	W	hhL894V
-			+		-				\vdash						EZ हो			97 - d¥	W.	84L8944
			-		-					-	\vdash	++	+		1011			£2 - J ∀	'M	0hL89=1V
					- =						1	11			<u> </u>					JEL89-14
			}												78+11	T		91-4∀		
			×		7/61	7 Z.O -7) OLH	1_	7	AHĐ	ව	4	1	MIK MIK	8221	EZ/ZI/1		IS-9A	W 8	EL89-17
			F			Comments # ng limit simple info ser notes	Misc. s	•	Preservative (see below)	Matrix(see below)	Grab (G) or Composite (C)	Bottle type: (Glass- G/Plastic-P)	Total # of containers	Sample Collector	Collection Time	Collection Date	1	noitesod elocation noitqftss		Labworks ID 4 (Internol use only)

santee cooper

Chain of Custody

Pax: (843)761-8000 Ext. 5148
Monels Comet, SC 29461
Phone: (843)761-4175
Sance Cooper

Customer Email/Report Recipient:

Description (juternal use Sample Location/ Labworks ID# Comments **Quo1D sizylenA** @santeecooper.com (Yes 125915 JM02.09.681.1 36500 TOMINT Date Results Needed by: Project/Task/Unit #: Rerun request for any flagged QC

PiO Pione Service Ser	13 1 26 1 36 1 36 1 37 1 37 1 37 1 37 1 37 1 37 1 37 1 37	(1 % Carbon Mineral Analysis	CO2 Ultimate We Moisn Suifu Suifu U Volatile U Volatile U Volatile		(FOX	P(/# /####\$	Wallboomen		lene AA rease Miform	Dissolve Dissolve Dissolve Dissolve Dissolve Dissolve Dissolve Dissolve Dissolve Dissolve Dissolve Dissolve Dissolve	oc TPO4 TPO4 OC	or 2	(IIB) S.I.V d2 (II e2 (II m2 (II iT (II IT (II V (II	We	0 C9 0 B9 0 B9 0 B9 0 P2 0 P7 0 P7
		Date/Time/Init for preserve			garanta anggar				eq på:	appending to the second	awn	916Q	Employeest	-lan-	usiupaileA
	t	Preservative Loth:	अता।		steO	- #	ээүоідп	5	sad ba	Meneli	- amil	ateu	, #00/10/07	3.4 00	450 <u>5-356</u>
		Correct pH: Yes No	əmiT	Standard Colored	area	Second State 1993	əəyolqn	9	eq p\c	Receiv	əwi <u>r</u>	ated	Employee#	eq px:	y w w e le
	lsitin1		Shbo		32		nployee	P	eq pA:	Naccon	(3cc)	EZ/bl/L	S22d#	eq pA:	Azinpniles Neorente
(4)	InO 921	Sample Receiving (Internal L	amiT		acu .	1.2			Edward was			<u> </u>	<u> </u>		
	Ī			7	T	Ī	<u>-</u>	-	T	7.ESI	Īl		A41-40	/M 3	0 2 2
										HZII			ध-। - ५ ४	M P	718944
										1001			241-9A	M O	6 5 5 6 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5
										1541		d	na ti-dy	/M S	ST887A
										9141	EZ/E1/L		41-9A	'M 97	2L89 →
										ተሪትነ	T		87-47	AW 3	HL8944
				\top						<u> 508]</u>			NG 21-9A	'M +	12L897A
										୦୦ ଆ			71-15	M E	AF6872
	+			H						SIII			sı - d	m 1	EL89 1V
	*	7/6×2.0=78	oLthL	7	M-S	9	d	١	MIK	8001	EZ/L1/L		6Z-47	m L	-hL89-±¥
	#g	timit gnitt oini əlqmes əston rədic	osiM •	Preservative (s	Matrix(see bel	Grab (G) or Composite (C)	Bottle type: (Gla G/Plastic-P)	Total # of contain	Sample Collect	Collection Tir	Collection Da		aran danc		(Vino

□ bp

!N 🗆

en 🗆

FOS [

3H □

uz 🗆

Tultus 🗆

Particle Sinc

CPlondes

und

s¥ 🗆

O OH & Grease

☐ Particulate Matter

☐ Emeness

19H 🗆

 \square **b**CB

□ Kad 228

© Rad 226

D Ct

□ Co

 \Box Cq

Project/Task/Unit #:

Customer Email/Report Recipient:

Date Results Needed by:

Chain of Custody

Santee Cooper
One Riverwood Drive
Monela Conzer, SC 29461
Phone: (843)761-8000 Exr. 5148
Fax. (843)761-4175 santee cooper*

Rerun request for any flagged QC

	8.8	100	SSLO						udlu?	3						ga □	□ Ct
		XL O	a¥ □	atter	ineness articulate M			neje 2ja jougea				□ FCB □ Rad 228			gH 🗆	iN□	□ C•
SATING		ф ү)	Our of Cheston		ICI	ום			Alq (J			□ Kad 226	t	os 🗆 📗	uZ []	₽N□	□Cq
	ui sitti		Sadan		her Tests: GGF Scan	ACCEPTAGE STATE		Moistur Part	MS () % ()	- 1		əvlossiQ 🗆 əvlossiQ 🛭		D PP	Δ□	oM □	□ Ca
		iasa T	= simisioM % ()		CHIN			علد (رع				Hq□	7	OND	ЩП	μM □	98 □
1914) J		40) LH (Sta Central	Matter	□ Volatile		100000000000000000000000000000000000000	icaom le My olde		- 1	molif	□ E. Colí □ Total Co		DD -	iro	gM □	□ Ba
цина		PRI S	Mineral Salvets		□ Sulfar □ BTUs				OLD B/ D		esse	□ O!I & G	\$14,000 BAYNUN 80 A SHARE	HNO	- 18 □	រា០	80
		0V 0.30	□ % Cπpou		ılsA □			4	apag			□ AOC □ LHW/H/	PO41	SOURCE STATE OF TH	πS □	O.K	s∀□
A CONTRACTOR OF THE SAME			E FOI	рис	otemit[U sioM % □		1	(e)mans nas	day) Hijifaa	- 1	əuə	□ RIEX □ BIEX		D D D	9S □	D Fe	IA□
- tales	110)	mert 1	HZEVIT		reon		ī	unsd		71	·)(SIM	stnai		9S 🗆		3A 🗆
100	12.74		1 7 7											- Constitute	TS (all)	ATSIV	<u>J</u>
		:ive:	evieserya for preserva	T\əteU													
					Jime		ered	- 4	aayoldr	ua	εα ρλ:	Receiv	Jime Time	ered	Employee#	ελg p	ədziupniləA
		-	t12/9/12		Andrea Williams	1 X 3 BH	-00-7-00-4			2000		Diff					TW STR.
			vative Lot#:	Preser	[***		, and a 1960 of			K. V.			Market Mark	, <u>110</u>		الله الله الله الله الله الله الله الله	· · · · · · · · · · · · · · · · · · ·
			et pH: Yes No	Correc	əmiī	+	Date	#	aayolqı	U3	:Ad ba	Receiv	amil	EZ/PI/T	Employee#		ansinprilasi
		:lsitin	.(2.)	LEWL	Shbe	8	I = I	1			1.	~//	~El			l	
			Receiving (Internal U	ejdwos	9miT		ated)	#	poloyee	<u> </u>	:Aq pa	vigosą	əmiT	eteQ	Employee#	and b	ədəiupniləA
	T	1							T		I						
																	49
																	of
	-	-					ļ	-									4
																	P# 788 44
	+	†-				 -	7	-	_	-	-	7501	T		1-1- ME	ME	bh L 802 - 17
												1569	27/11/1		Z-Z¥-±	ו איר	_SL89±¥
_	┿	++				\vdash	\vdash		\vdash			કાના	・		ing LI-da	·M	4EL894
												١٠٠٠٠			41101-1-2-0	""	
	1											ol h l			LI-d	M E	EL8944
		$\bot \bot$				<u> </u>	'	<u> </u>	<u> </u>			11		·····		_	
						IT	Ī	IT	IT	Ī	T	P21	T		S-14-7	7M S	isl89 1∀
+	+	++				\vdash	++	\vdash	\vdash	\vdash		8111			Z-1 V -±	ım c	SL89+V
		1									l		ĺ		2		
		X	7/6m	Z.0 =1	A OTHT	7	M-9	9	ل	1	MIK	<u>တ</u> ား၊	EZ/01/L		Z-14-5	JW I	SL89 1∀
	\perp	_	E	Surpay of the first of the same of the sam	and the second second				Chine manage						-V		
		五		******	¥	Preservative (see below)	Mat	Grab (G) or Composite (C)	G/PI	Total	Sample Collector	8	8				
				c. sample i v other note		w. erva	rlx(s	(G) o	e typ	**	ple C	ectic	ectic				
ļ				imil gnino	 Kep 	ive (Matrix(see below)	ຣີ	P ::	Total#of containers	ollec	Collection Time	Collection Date				(Ajuo
			guan	# poq	• Met	see	low)		Bottle type: (Glass- G/Plastic-P)	ners	Ş Ş	me	at	1	nple Location scription		Labworks ID (Internal use
			sJn9n	-20	***************************************	<u> </u>	Lannenne	k	L,	t	<u> </u>		k			<u> </u>	
dnoug) sisyle	<u>nA</u>															
		ON	59) a	598	1-10-5-	80.20	1W6	SI	657 1	-				орет.сот	_@santeeco		LCWILLIA
		-				•			- •								

Login Sample Receipt Checklist

Client: South Carolina Public Service Authority

Job Number: 680-237959-1

Login Number: 237959 List Source: Eurofins Savannah

List Number: 1

Creator: Johnson, Corey M

QuestionAnswerCommentRadioactivity wasn't checked or is = background as measured by a survey meter.</td N/AThe cooler's custody seal, if present, is intact.TrueSample custody seals, if present, are intact.TrueThe cooler or samples do not appear to have been compromised or tampered with.TrueSamples were received on ice.TrueCooler Temperature is acceptable.TrueCooler Temperature is recorded.TrueCOC is present.TrueCOC is filled out in ink and legible.TrueCOC is filled out with all pertinent information.TrueIs the Field Sampler's name present on COC?TrueThere are no discrepancies between the containers received and the COC.TrueSamples are received within Holding Time (excluding tests with immediateTrue
meter. The cooler's custody seal, if present, is intact. Sample custody seals, if present, are intact. True The cooler or samples do not appear to have been compromised or tampered with. Samples were received on ice. True Cooler Temperature is acceptable. True Cooler Temperature is recorded. True COC is present. True COC is filled out in ink and legible. True COC is filled out with all pertinent information. Is the Field Sampler's name present on COC? There are no discrepancies between the containers received and the COC. True Samples are received within Holding Time (excluding tests with immediate True
Sample custody seals, if present, are intact. True The cooler or samples do not appear to have been compromised or tampered with. Samples were received on ice. True Cooler Temperature is acceptable. True Cooler Temperature is recorded. True COC is present. True COC is filled out in ink and legible. True COC is filled out with all pertinent information. Is the Field Sampler's name present on COC? There are no discrepancies between the containers received and the COC. Samples are received within Holding Time (excluding tests with immediate True
The cooler or samples do not appear to have been compromised or tampered with. Samples were received on ice. Cooler Temperature is acceptable. Cooler Temperature is recorded. True COC is present. True COC is filled out in ink and legible. COC is filled out with all pertinent information. Is the Field Sampler's name present on COC? There are no discrepancies between the containers received and the COC. Samples are received within Holding Time (excluding tests with immediate True
tampered with. Samples were received on ice. Cooler Temperature is acceptable. True Cooler Temperature is recorded. True COC is present. COC is filled out in ink and legible. True COC is filled out with all pertinent information. Is the Field Sampler's name present on COC? True There are no discrepancies between the containers received and the COC. Samples are received within Holding Time (excluding tests with immediate True
Cooler Temperature is acceptable. Cooler Temperature is recorded. COC is present. COC is filled out in ink and legible. COC is filled out with all pertinent information. Is the Field Sampler's name present on COC? There are no discrepancies between the containers received and the COC. Samples are received within Holding Time (excluding tests with immediate True
Cooler Temperature is recorded. COC is present. COC is filled out in ink and legible. COC is filled out with all pertinent information. Is the Field Sampler's name present on COC? There are no discrepancies between the containers received and the COC. Samples are received within Holding Time (excluding tests with immediate True
COC is present. COC is filled out in ink and legible. COC is filled out with all pertinent information. True COC is filled out with all pertinent information. True Is the Field Sampler's name present on COC? True There are no discrepancies between the containers received and the COC. Samples are received within Holding Time (excluding tests with immediate True
COC is filled out in ink and legible. COC is filled out with all pertinent information. Is the Field Sampler's name present on COC? There are no discrepancies between the containers received and the COC. Samples are received within Holding Time (excluding tests with immediate True
COC is filled out with all pertinent information. Is the Field Sampler's name present on COC? There are no discrepancies between the containers received and the COC. True Samples are received within Holding Time (excluding tests with immediate True
Is the Field Sampler's name present on COC? True There are no discrepancies between the containers received and the COC. Samples are received within Holding Time (excluding tests with immediate True
There are no discrepancies between the containers received and the COC. True Samples are received within Holding Time (excluding tests with immediate True
Samples are received within Holding Time (excluding tests with immediate True
HTs)
Sample containers have legible labels.
Containers are not broken or leaking.
Sample collection date/times are provided.
Appropriate sample containers are used.
Sample bottles are completely filled. True
Sample Preservation Verified. N/A
There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs True
Containers requiring zero headspace have no headspace or bubble is N/A <6mm (1/4").
Multiphasic samples are not present. True
Samples do not require splitting or compositing.
Residual Chlorine Checked.

4

7

9

44

12

13

Accreditation/Certification Summary

Client: South Carolina Public Service Authority Project/Site: 125915/JM02-08-G01.1/36500

Job ID: 680-237959-1

Laboratory: Eurofins Savannah

The accreditations/certifications listed below are applicable to this report.

Authority	Program	Identification Number	Expiration Date
South Carolina	State	98001	06-30-23 *

O

9

10

12

13

 $^{^*\} Accreditation/Certification\ renewal\ pending\ -\ accreditation/certification\ considered\ valid.$

(Note: color coding is to assist with s	Field Data Sheets stabilization of the field paran	neters prior to sample collection)

Well ID	TOC	GW	Screen	Sample	Sample	Total
	Elevation	Depth	Intervals	Date	Time	Well
	(feet)	(feet)	(ft, bgs)			Depth
WAP - 1	29.44	6.36	4- 24	2/14/2023	1233	25.17

Drawdown: 6.44 depth to GW (ft)

Ferric Iron: 2.83 mg/L Ferrous Iron: 2.71 mg/L

Time	Temp	pН	Eh	Spec Cond	Turbidity	Dissolved
	round 1	round 1	ORP	round 1		Oxygen
	(celcius)	(units)	(mV)	(uS/cm)	(NTU)	(ppm)
1159	24.37	4.31	114	173	0	3.36
1204	20.78	4.08	108	153	0	1.2
1209	20.97	4.17	94	146	0	1.08
1214	20.99	4.23	84	143	0	0.88
1219	21.08	4.23	79	141	0	0.83
1224	21.14	4.31	71	139	0	0.81
1227	21.06	4.41	64	138	0	0.78
1230	20.95	4.38	64	137	0	0.75
1233	21.01	4.43	60	136	0	0.72

Comments/Conditions:

Well ID	TOC	GW	Screen	Sample	Sample	Total
	Elevation	Depth	Intervals	Date	Time	Well
	(feet)	(feet)	(ft, bgs)			Depth
WBW - 1	31.97	9.04	7- 17	2/14/2023	1351	19.81

Drawdown: 9.09 depth to GW (ft)

Ferric Iron: 0.63 mg/L Ferrous Iron: 0.09 mg/L

rerrous fron:	0.09	mg/L				
Time	Temp	pН	Eh	Spec Cond	Turbidity	Dissolved
	round 1	round 1	ORP	round 1		Oxygen
	(celcius)	(units)	(mV)	(uS/cm)	(NTU)	(ppm)
1314	22	4.46	111	56	37.2	4.97
1319	20.8	4.08	138	57	26.6	3.91
1324	20.45	3.96	151	57	28.3	3.78
1329	20.45	3.96	155	57	32.1	3.61
1334	20.35	3.97	161	56	25.2	3.39
1339	20.31	3.95	167	57	13.6	3.4
1342	20.26	3.96	170	57	15.8	3.4
1345	20.23	3.95	173	56	13.1	3.46
1348	20.16	3.96	176	56	14.2	3.42
1351	20.07	3.92	181	56	16.5	3.48

Comments/Conditions:

Well ID	TOC	GW	Screen	Sample	Sample	Total
	Elevation	Depth	Intervals	Date	Time	Well
	(feet)	(feet)	(ft, bgs)			Depth
WAP - 2	23.69	8.62	4- 24	2/15/2023	1136	26.96

Drawdown: 8.79 depth to GW (ft)

Time	Temp	pН	Eh	Spec Cond	Turbidity	Dissolved
	round 1	round 1	ORP	round 1	•	Oxygen
	(celcius)	(units)	(mV)	(uS/cm)	(NTU)	(ppm)
1050	19.75	5.77	130	2510	270	2.43
1055	20.19	5.77	112	2390	124	1.57
1100	20.19	5.81	108	2370	42.9	1.27
1105	20.29	5.83	109	2360	37.3	1.12
1110	20.4	5.83	111	2350	35.2	1.07
1115	20.46	5.84	112	2340	29.3	1
1118	20.52	5.84	113	2340	28.5	0.96
1121	20.51	5.84	113	2340	24.1	0.95
1124	20.56	5.85	114	2340	20.1	0.94
1127	20.62	5.84	114	2340	20.7	0.95
1130	20.6	5.85	114	2340	16.1	0.94
1133	20.62	5.85	115	2340	16.1	0.95
1136	20.65	5.86	115	2340	16.6	0.94

Comments/Conditions:

Well ID	TOC	GW	Screen	Sample	Sample	Total
	Elevation	Depth	Intervals	Date	Time	Well
	(feet)	(feet)	(ft, bgs)			Depth
WAP - 3	19.43	6.79	4- 24	2/15/2023	1321	24.94

Drawdown: 7.03 depth to GW (ft)

Ferric Iron: +++ mg/L Ferrous Iron: +++ mg/L

Terrous from.	_	mg/L				- · ·
Time	Temp	pН	Eh	Spec Cond	Turbidity	Dissolved
	round 1	round 1	ORP	round 1		Oxygen
	(celcius)	(units)	(mV)	(uS/cm)	(NTU)	(ppm)
1235	22.84	6.07	65	1040	800	2.5
1240	22.32	5.99	45	1140	800	1.1
1245	22.26	6.12	31	1130	800	0.88
1250	22.16	6.23	21	1180	748	0.8
1255	22.63	6.23	18	1180	581	0.78
1300	22.69	6.26	14	1190	502	0.69
1303	22.73	6.26	13	1180	470	0.68
1306	22.85	6.25	12	1180	434	0.68
1309	23.06	6.25	10	1170	351	0.64
1312	23.12	6.26	8	1170	337	0.62
1315	23.24	6.28	6	1170	299	0.62
1318	23.33	6.27	6	1160	288	0.62
1321	23.31	6.27	6	1170	273	0.61
		`				

Comments/Conditions:

Well ID	TOC	GW	Screen	Sample	Sample	Total
	Elevation	Depth	Intervals	Date	Time	Well
	(feet)	(feet)	(ft, bgs)			Depth
WAP - 12	30.84	10.23	9- 19	3/9/2023	1029	21.81
Drawdown:	10.56		depth to GV	V (ft)		
Ferric Iron:	1.35	mg/L				
Ferrous Iron:	1.32	mg/L				
Time	Temp	pН	Eh	Spec Cond	Turbidity	Dissolved
	round 1	round 1	ORP	round 1		Oxygen
	(celcius)	(units)	(mV)	(uS/cm)	(NTU)	(ppm)
916	19.71	4.93	237	325	54	3.5
921	19.43	4.79	264	320	43.2	1.52
926	19.42	4.68	274	303	40	1.5
931	19.59	4.55	274	300	27.6	1.29
936	19.73	4.51	270	302	21	1.23
941	19.87	4.52	264	309	16.5	1.14
944	20.04	4.49	254	320	17.1	1.04
947	20.12	4.5	243	388	13.6	0.99
950	20.21	4.53	231	465	8.6	0.95
953	20.26	4.55	212	499	5.9	0.91
956	20.34	4.56	200	560	4.6	0.9
959	20.5	4.57	184	624	1.5	0.88
1002	20.57	4.59	174	689	0	0.85

165

156

145

137

130

126

125

123

123

4.6

4.64

4.64

4.68

4.7

4.71

4.7

4.74

4.75

723

754

784

820

884

932

975

1000

1030

0

0

0

0

0

0

0

0

0

0.8

0.79

0.75

0.740.72

0.69

0.68

0.65

0.64

Comments/Conditions:

DUP at 1034

1005

1008

1011

1014

1017

1020

1023

1026

1029

Samples were collected by Zach McHenry and Marvin Lewis

20.64

20.72

20.8

20.98

21

21.04

21.14

21.3

21.25

Winyah Generating Station

Well ID	TOC	GW	Screen	Sample	Sample	Total
	Elevation	Depth	Intervals	Date	Time	Well
	(feet)	(feet)	(ft, bgs)			Depth
WAP - 13	21.97	7.08	8- 18	3/8/2023	1338	21.64

Drawdown: 8.16 depth to GW (ft)

Terrous from.		mg/L				
Time	Temp	pН	Eh	Spec Cond	Turbidity	Dissolved
	round 1	round 1	ORP	round 1		Oxygen
	(celcius)	(units)	(mV)	(uS/cm)	(NTU)	(ppm)
1301	20.84	6.45	-83	2490	17.1	1.77
1306	20.25	6.45	-91	2510	7.1	1.09
1311	20.16	6.35	-85	2500	9.7	0.87
1316	20.18	6.32	-83	2500	11.1	0.86
1321	20.18	6.32	-82	2500	10.1	0.88
1326	20.05	6.33	-83	2510	11.3	0.71
1329	20.15	6.35	-85	2640	11.2	0.67
1332	20.13	6.38	-88	2870	11.7	0.68
1335	20.08	6.39	-89	2910	11.9	0.69
1338	20.09	6.39	-90	2930	11.9	0.68

Comments/Conditions:

Well ID	TOC	GW	Screen	Sample	Sample	Total
	Elevation	Depth	Intervals	Date	Time	Well
	(feet)	(feet)	(ft, bgs)			Depth
WAP - 28	23.09	10.7	8'-18'	3/8/2023	1212	21.31

Drawdown: 10.83 depth to GW (ft)

Ferric Iron: +++ mg/L Ferrous Iron: +++ mg/L

Time	Temp	pН	Eh	Spec Cond	Turbidity	Dissolved
	round 1	round 1	ORP	round 1		Oxygen
	(celcius)	(units)	(mV)	(uS/cm)	(NTU)	(ppm)
1135	20.02	4.28	158	1500	37.8	3.45
1140	19.92	4.23	191	1500	26.3	1.47
1145	20	4.26	197	1500	28.4	1.2
1150	20.12	4.27	196	1490	31.1	1.09
1155	20.46	4.32	192	1490	26.6	1.06
1200	20.67	4.39	189	1490	21.4	0.96
1203	20.69	4.49	183	1490	19.8	0.94
1206	20.69	4.64	175	1490	19.5	0.9
1209	20.63	4.63	176	1490	19.5	0.92
1212	20.49	4.62	177	1490	18.8	0.86

Comments/Conditions:

Well ID	TOC	GW	Screen	Sample	Sample	Total
	Elevation	Depth	Intervals	Date	Time	Well
	(feet)	(feet)	(ft, bgs)			Depth
WAP - 28	23.09	10.71	8'-18'	4/10/2023	958	21.4

Drawdown: 10.84 depth to GW (ft)

Ferric Iron: +++ mg/L Ferrous Iron: +++ mg/L

Time	Temp	pН	Eh	Spec Cond	Turbidity	Dissolved
	round 1	round 1	ORP	round 1		Oxygen
	(celcius)	(units)	(mV)	(uS/cm)	(NTU)	(ppm)
927	19.72	4.44	123	1090	0	1.76
932	19.59	4.48	151	1070	0	0.83
937	19.59	4.48	176	1070	0	0.6
942	19.7	4.46	186	1080	0	0.52
947	19.83	4.48	193	1070	0	0.49
952	19.9	4.47	198	1070	0	0.44
955	19.96	4.47	199	1070	0	0.43
958	20.04	4.5	198	1070	0	0.42
						-

Comments/Conditions:

Samples were collected by Zach McHenry and Brad McCray

Well ID	TOC	GW	Screen	Sample	Sample	Total
	Elevation	Depth	Intervals	Date	Time	Well
	(feet)	(feet)	(ft, bgs)			Depth
WAP - 1	29.44	6.93	4- 24	6/27/2023	1126	25.12

Drawdown: 7.03 depth to GW (ft)

Ferric Iron: 2.05 mg/L Ferrous Iron: 2.05 mg/L

Time	Temp	pН	Eh	Spec Cond	Turbidity	Dissolved
	round 1	round 1	ORP	round 1		Oxygen
	(celcius)	(units)	(mV)	(uS/cm)	(NTU)	(ppm)
1053	30.75	4.35	185	103	4.3	1.62
1058	30.14	4.34	118	106	0	0.97
1103	29.81	4.41	93	104	0	0.87
1108	29.84	4.43	81	105	0	0.82
1113	29.98	4.45	71	104	0	0.78
1118	30.07	4.47	65	104	0	0.74
1123	30.26	4.5	59	104	0	0.72
1126	30.4	4.51	56	103	0.1	0.7

Comments/Conditions:

Well ID	TOC	GW	Screen	Sample	Sample	Total
	Elevation	Depth	Intervals	Date	Time	Well
	(feet)	(feet)	(ft, bgs)			Depth
WBW - 1	31.97	9.13	7- 17	6/27/2023	1015	19.8

Drawdown: 9.25 depth to GW (ft)

Ferric Iron: 0.1 mg/L Ferrous Iron: 0.06 mg/L

Ferrous Iron:	0.06	mg/L				
Time	Temp	pН	Eh	Spec Cond	Turbidity	Dissolved
	round 1	round 1	ORP	round 1		Oxygen
	(celcius)	(units)	(mV)	(uS/cm)	(NTU)	(ppm)
939	22.69	4.05	231	73	19.1	6.24
944	23.27	3.98	273	74	17.3	5.36
949	23.85	3.96	289	76	3.2	4.84
954	24.45	3.96	301	76	0	4.51
959	24.95	3.96	308	75	0	4.3
1004	25.49	3.96	315	75	0	4.13
1009	25.99	3.93	324	73	0	3.89
1012	26.26	3.93	328	74	0	3.78
1015	26.51	3.94	331	73	0	3.76
			•			

Comments/Conditions:

Well ID	TOC	GW	Screen	Sample	Sample	Total
	Elevation	Depth	Intervals	Date	Time	Well
	(feet)	(feet)	(ft, bgs)			Depth
WAP - 2	23.69	9.01	4- 24	6/28/2023	1520	26.92

Drawdown: 9.27 depth to GW (ft)

Tr.	Tr.	IIIg/L	T-1	G G 1	7D 1 1 114	T): 1 1
Time	Temp	pН	Eh	Spec Cond	Turbidity	Dissolved
	round 1	round 1	ORP	round 1		Oxygen
	(celcius)	(units)	(mV)	(uS/cm)	(NTU)	(ppm)
1500	28.98	6.29	-14	1520	498	1.02
1505	27.38	6.31	-25	1580	78.8	0.8
1510	27.42	6.32	-28	1590	58.4	0.74
1515	27.15	6.33	-29	1610	55.9	0.71
1520	27.68	6.33	-29	1600	51.3	0.7

Comments/Conditions:

Well ID	TOC	GW	Screen	Sample	Sample	Total
	Elevation	Depth	Intervals	Date	Time	Well
	(feet)	(feet)	(ft, bgs)			Depth
WAP - 3	19.43	8.26	4- 24	6/29/2023	1351	25.03

Drawdown: 8.57 depth to GW (ft)

Ferric Iron: +++ mg/L Ferrous Iron: +++ mg/L

remous from.		mg/L				
Time	Temp	pН	Eh	Spec Cond	Turbidity	Dissolved
	round 1	round 1	ORP	round 1		Oxygen
	(celcius)	(units)	(mV)	(uS/cm)	(NTU)	(ppm)
1309	28.2	5.98	-3	1040	40.3	1.11
1314	26.78	6.14	-21	1150	27.7	0.83
1319	26.48	6.24	-35	1380	71.5	0.77
1324	26.47	6.29	-41	1480	77.1	0.75
1329	26.6	6.31	-44	1540	70.9	0.74
1334	26.65	6.34	-46	1590	59.7	0.72
1339	26.8	6.35	-46	1600	42.3	0.7
1342	27.02	6.35	-45	1620	29.9	0.72
1345	26.98	6.36	-46	1620	24.6	0.71
1348	27.08	6.37	-46	1620	22.2	0.71
1351	26.83	6.35	-43	1620	20	0.71
		•				
					_	

Comments/Conditions:

Well ID	TOC	GW	Screen	Sample	Sample	Total
	Elevation	Depth	Intervals	Date	Time	Well
	(feet)	(feet)	(ft, bgs)			Depth
WAP - 12	30.84	10.6	9- 19	7/17/2023	1300	21.81

Drawdown: 11.02 depth to GW (ft)

Ferric Iron: mg/L Ferrous Iron: mg/L

	mg/L				
Temp	рН	Eh	Spec Cond	Turbidity	Dissolved
round 1	round 1	ORP	round 1		Oxygen
(celcius)	(units)	(mV)	(uS/cm)	(NTU)	(ppm)
32.1	4.55	142	739	1.6	1.21
32.06	4.54	138	814	7.3	0.95
31.96	4.53	124	843	5.9	0.81
32.42	4.51	115	912	2.1	0.76
32.48	4.5	107	930	4.7	0.73
32.5	4.49	103	953	0	0.71
32.53	4.49	101	970	0	0.7
_		_		_	
					_
	round 1 (celcius) 32.1 32.06 31.96 32.42 32.48 32.5	Temp pH round 1 (celcius) (units) 32.1 4.55 32.06 4.54 31.96 4.53 32.42 4.51 32.48 4.5 32.5 4.49	Temp round 1 round 1 (celcius) pH round 1 (mV) Eh (mV) 32.1 4.55 142 32.06 4.54 138 31.96 4.53 124 32.42 4.51 115 32.48 4.5 107 32.5 4.49 103	Temp round 1 round 1 (celcius) pH round 1 (mV) Eh round 1 (uS/cm) Spec Cond round 1 (uS/cm) 32.1 4.55 142 739 32.06 4.54 138 814 31.96 4.53 124 843 32.42 4.51 115 912 32.48 4.5 107 930 32.5 4.49 103 953	Temp round 1 round 1 (celcius) pH round 1 (mV) Eh (mV) (uS/cm) Spec Cond round 1 (uS/cm) Turbidity (NTU) 32.1 4.55 142 739 1.6 32.06 4.54 138 814 7.3 31.96 4.53 124 843 5.9 32.42 4.51 115 912 2.1 32.48 4.5 107 930 4.7 32.5 4.49 103 953 0

		Conditions
- 1	i ammente/	Longitions

DUP at 1305

Winyah Generating Station

Well ID	TOC	GW	Screen	Sample	Sample	Total
	Elevation	Depth	Intervals	Date	Time	Well
	(feet)	(feet)	(ft, bgs)			Depth
WAP - 13	21.97	7.99	8- 18	7/18/2023	1149	21.62

Drawdown: 9.31 depth to GW (ft)

Ferric Iron: mg/L Ferrous Iron: mg/L

Time	Temp	pН	Eh	Spec Cond	Turbidity	Dissolved
Time	round 1	round 1	ORP	round 1	Tarolany	Oxygen
					0.1711	
	(celcius)	(units)	(mV)	(uS/cm)	(NTU)	(ppm)
1119	27.1	6.13	-48	1630	0	1.96
1124	25.83	6.14	-79	2150	0	1.03
1129	25.35	6.17	-9 1	2460	0	0.86
1134	25.16	6.28	-99	2650	0	0.79
1139	24.86	6.4	-101	2990	0	0.78
1144	24.9	6.44	-101	2990	0	0.75
1149	24.79	6.46	-101	3050	0	0.75
		_	_			

Comments/Conditions:

Well ID	TOC	GW	Screen	Sample	Sample	Total
	Elevation	Depth	Intervals	Date	Time	Well
	(feet)	(feet)	(ft, bgs)			Depth
WAP - 28	23.09	11.29	8'-18'	7/17/2023	1424	21.33

Drawdown: 11.54 depth to GW (ft)

Ferric Iron: mg/L Ferrous Iron: mg/L

Time	Temp	pН	Eh	Spec Cond	Turbidity	Dissolved
	round 1	round 1	ORP	round 1		Oxygen
	(celcius)	(units)	(mV)	(uS/cm)	(NTU)	(ppm)
1348	29.3	4.31	207	1320	0	1.19
1353	25.58	4.29	200	1420	0	0.97
1358	25.3	4.39	191	1430	0	0.49
1403	25.09	4.76	160	1450	0	0.85
1408	24.81	4.96	137	1480	0	0.81
1413	24.82	5.05	124	1490	0	0.78
1418	24.56	5.11	116	1500	2.4	0.77
1421	24.52	5.14	112	1510	0	0.76
1424	24.41	5.17	108	1520	0	0.75

Comments/Conditions:

Well ID	TOC	GW	Screen	Sample	Sample	Total
	Elevation	Depth	Intervals	Date	Time	Well
	(feet)	(feet)	(ft, bgs)			Depth
WAP - 2	23.69	9.14	4- 24	8/24/2023	1202	26.92

Drawdown: 9.3 depth to GW (ft)

Timo	Tomn	ng L	Eh	Spac Cond	Turbidity	Dissolved
Time	Temp	pН		Spec Cond	Turbianty	
	round 1	round 1	ORP	round 1		Oxygen
	(celcius)	(units)	(mV)	(uS/cm)	(NTU)	(ppm)
1107	29.07	5.98	-31	1420	490	0.59
1112	29.06	6.02	-58	1490	173	0.49
1117	29.32	6.04	-64	1480	109	0.41
1122	29.4	6.06	-64	1490	72.2	0.36
1127	29.58	6.08	-65	1500	55.4	0.35
1132	29.89	6.09	-65	1510	42.8	0.32
1135	30.09	6.1	-64	1500	52.2	0.31
1138	30.22	6.11	-64	1500	36.3	0.29
1141	30.36	6.11	-64	1510	42.1	0.29
1144	30.56	6.12	-63	1510	29.3	0.29
1147	30.79	6.13	-64	1530	32.9	0.3
1150	31.11	6.13	-64	1540	41.2	0.31
1153	31.38	6.14	-63	1510	37.3	0.29
1156	31.62	6.15	-63	1500	22.6	0.28
1159	31.76	6.15	-62	1510	23	0.29
1202	31.91	6.15	-62	1520	24.1	0.29

Comments/Conditions:

Samples were collected by Zach McHenry and Brian Brase

Well ID	TOC	GW	Screen	Sample	Sample	Total
	Elevation	Depth	Intervals	Date	Time	Well
	(feet)	(feet)	(ft, bgs)			Depth
WAP - 28	23.09	11.31	8'-18'	8/23/2023	1109	21.29

Drawdown: 11.52 depth to GW (ft)

Ferric Iron: +++ mg/L Ferrous Iron: +++ mg/L

Time	Temp	pН	Eh	Spec Cond	Turbidity	Dissolved
	round 1	round 1	ORP	round 1		Oxygen
	(celcius)	(units)	(mV)	(uS/cm)	(NTU)	(ppm)
1014	25.19	4.19	141	950	20.4	1.5
1019	25.5	4.13	158	958	14.6	1.33
1024	25.47	4.13	167	1030	15.2	0.8
1029	25.39	4.08	172	1220	7.4	1.01
1034	25.5	4.1	171	1230	0.6	0.91
1039	25.1	4.15	168	1230	0	0.66
1042	25.02	4.21	163	1230	0.1	0.41
1045	24.99	4.33	154	1230	0	0.43
1048	25.03	4.45	146	1240	0	0.36
1051	25.11	4.59	137	1250	0	0.35
1054	25.26	4.68	128	1260	0.1	0.33
1057	25.39	4.75	122	1270	0.2	0.33
1100	25.52	4.79	117	1260	0.5	0.31
1103	25.42	4.83	113	1300	1	0.32
1106	25.4	4.88	108	1300	1.1	0.32
1109	25.35	4.89	105	1310	1	0.33

Comments/Conditions:

DUP @ 1114

Samples were collected by Zach McHenry and Brian Brase

Well ID	TOC	GW	Screen	Sample	Sample	Total
	Elevation	Depth	Intervals	Date	Time	Well
	(feet)	(feet)	(ft, bgs)			Depth
WAP - 28	23.09	11.04	8'-18'	9/27/2023	1049	21.5

Drawdown: 11.19 depth to GW (ft)

Ferric Iron: +++ mg/L Ferrous Iron: +++ mg/L

Time	Temp	pН	Eh	Spec Cond	Turbidity	Dissolved
	round 1	round 1	ORP	round 1		Oxygen
	(celcius)	(units)	(mV)	(uS/cm)	(NTU)	(ppm)
1000	23.34	4.07	182	952	3.3	0.89
1005	23.21	4	193	1190	22.8	0.84
1010	22.62	3.92	201	1240	24.6	0.59
1015	22.54	4	198	1250	26.8	0.54
1020	22.63	4.05	194	1250	25	0.47
1025	22.76	4.06	193	1240	20.8	0.49
1028	22.83	4.13	186	1240	19.8	0.43
1031	22.89	4.17	182	1250	19.4	0.41
1034	22.98	4.26	173	1240	19.2	0.39
1037	23.06	4.33	163	1250	17.6	0.38
1040	23.14	4.43	152	1260	17.9	0.37
1043	23.21	4.49	144	1260	18	0.37
1046	23.29	4.58	134	1260	17.3	0.38
1049	23.33	4.55	134	1260	16.4	0.4

Comments/Conditions:

DUP @ 1054

Samples were collected by Zach McHenry and Brian Brase

Well ID	TOC	GW	Screen	Sample	Sample	Total
	Elevation	Depth	Intervals	Date	Time	Well
	(feet)	(feet)	(ft, bgs)			Depth
WAP - 28	23.09	11.35	8'-18'	12/11/2023	1024	21.39

Drawdown: 11.55 depth to GW (ft)

Ferric Iron: 2.97 mg/L Ferrous Iron: +++ mg/L

Time	Temp	pН	Eh	Spec Cond	Turbidity	Dissolved
	round 1	round 1	ORP	round 1		Oxygen
	(celcius)	(units)	(mV)	(uS/cm)	(NTU)	(ppm)
956	20.57	4.5	107	1360	14.4	2.04
1001	20.4	4.6	97	1340	10.5	1.6
1006	20.37	4.63	98	1340	13.1	1.43
1011	20.54	4.7	89	1350	11.5	1.32
1016	20.54	4.83	96	1370	8.7	1.22
1021	20.7	4.93	101	1380	6.1	1.13
1024	20.7	4.96	106	1390	4.1	1.08

Comments/Conditions:

DUP @ 1029

Appendix C – Well Construction Records

Water Well Record Bureau of Water

2600 Bull Street, Columbia, SC 29201-1708; (803) 898-4300

1. WELL OWNER INFORMATION:		7. PERMIT NUMBER:
Name: WINYAH GENERATING STATIONAN	TEE COOPER	
(last)	(first)	8. USE:
Address: 661 STEAM PLANT DR.	100000000000	
	200	☐ Residential ☐ Public Supply ☐ Process ☐ Irrigation ☐ Air Conditioning ☐ Emergency
City: GEORGETOWN State: S.C.	Zip: 29440	☐ Test Well ☐ Replacement
Telephone: Work: 843-761-8000 Home		CONTROL OF CONTROL SERVICE SER
2. LOCATION OF WELL: COUNT	Y: GEORGETOWN	ft. Date Completed: 12-6-2023
Name: Santee Cooper - Winyah Ger	nerating Station	10. CASING: ☑ Threaded ☐ Welded
Street Address: 661 Steam Plant Dr.	•	Diam.: 2" Height: Above/Selow
City: Georgetown Zip:	29440	Type: 🛛 PVC 🗆 Galvanized Surface ft.
		Steel Other Weight — Ib./ft.
Latitude: Longitude:		in. to 10 ft. depth
		in. to ft. depth
3. PUBLIC SYSTEM NAME: PUBLIC	SYSTEM NUMBER:	11. SCREEN:
WAP-2 WAP-2	2	Type: PVC Diam.: 2"
4 ADANDONMENT. III V. III N.		Slot/Gauge:010 Length:10 '
4. ABANDONMENT: ☐ Yes ☒ No		Set Between: 10 ft. and 20 ft. NOTE: MULTIPLE SCREENS
Give Details Below		ft. and ft. USE SECOND SHEET
Grouted Depth: from ft. to _		Sieve Analysis ☐ Yes (please enclose) ☒ No
THE PARTY OF THE P	ckness Depth to	12. STATIC WATER LEVEL 6 ft. below land surface after 24 hours
	of Bottom of Stratum	13. PUMPING LEVEL Below Land Surface.
CLAY 0	8	ft. after hrs. Pumping G.P.M.
CHAI	0	Pumping Test: ☐ Yes (please enclose) ☒ No
		Yield:
SAND 8	20'	
		14. WATER QUALITY
		Chemical Analysis ☐ Yes ☒No Bacterial Analysis ☐ Yes ☒No
		Please enclose lab results.
		15. ARTIFICIAL FILTER (filter pack) ☑ Yes □ No
		Installed from 8 ft. to 20 ft.
		Effective size #2 Uniformity Coefficient SAND
		16. WELL GROUTED? Yes □ No
		■ Neat Cement □ Bentonite □ Bentonite/Cement □ Other □
		Depth: From 0 ft. to 6 ft.
		17. NEAREST SOURCE OF POSSIBLE CONTAMINATION: ft direction
		Type
		Well Disinfected ☐ Yes ☒ No Type: Amount:
		49 DUMP. Data installed:
		18. PUMP: Date installed: Not installed ☒ Mfr. Name: Model No.:
		H.P Volts Length of drop pipe ft. Capacity gpm
		TYPE: Submersible Jet (shallow) Turbine
		☐ Jet (deep) ☐ Reciprocating ☐ Centrifugal
		19. WELL DRILLER: Rich Lemire CERT. NO.: 1423
+		Address: (Print) SAEDACCO Level: A B C D (circle one)
		9088 Northfield Drive
*Indicate Water Bearing Zones		Fort Mill, SC 29707
malcate water bearing zones		Telephone No.: (803) 548-2180 Fax No.: (803) 548-2181 20. WATER WELL DRILLER'S CERTIFICATION: This well was drilled under
(Use a 2nd sheet if needed)		my direction and this report is true to the best of my knowledge and belief.
5. REMARKS:		my direction and this report is true to the best of my knowledge and belief.
BENTONITE FROM 6' TO 8'.		
DENIGHTED INOT U TO U .		Kuly Lemine
		Signed: Date: 12/9/2023
		Well Driller
6. TYPE: ☐ Mud Rotary ☐ Jetted ☒ Bored		If D Lovel Driller, provide eupopiping drillede name:
□ Dug □ Air Rotary	☐ Driven	If D Level Driller, provide supervising driller's name:
☐ Cable tool ☐ Other	Differ	
_ out to _ out o		

Water Well Record Bureau of Water

2600 Bull Street, Columbia, SC 29201-1708; (803) 898-4300

1. WELL OWNER INFORMATION:			7. PERMIT NUMBER:
Name: WINYAH GENERATING STATIONANTEE COOPER			
(last) (first)			8. USE:
Address: 661 STEAM PLANT DR.	11.4.55500		
			☐ Residential ☐ Public Supply ☐ Process ☐ Irrigation ☐ Air Conditioning ☐ Emergency
City: GEORGETOWN State: S.C	. Zip: 29	440	아프리아 아들아 아들아 아들아 아들아 아들아 아들아 아들아 아들아 아들아 아
			☐ Test Well
Telephone: Work: 843-761-8000 Home: 843-303-1639			9. WELL DEPTH (completed) Date Started: 12-6-2023
2. LOCATION OF WELL: COUNTY: GEORGETOWN			ft. Date Completed: 12-6-2023
Name: Santee Cooper - Winyah Generating Station			10. CASING: ☑ Threaded ☐ Welded
Street Address: 661 Steam Plant Dr.			Diam.: 2" Height: Above/Celow
City: Georgetown Zip: 29440			Type: 🛛 PVC 🗆 Galvanized Surface ft.
			☐ Steel ☐ Other Weight — lb./ft.
Latitude: Longitude:			0 in. to 10 ft. depth Drive Shoe? ☐ Yes 🖾 No
Landac. Longitude.			in. to ft. depth
3. PUBLIC SYSTEM NAME: PU	BLIC SYSTE	M NUMBER:	11. SCREEN:
	AP-28		Type: PVC Diam.: 2"
	***		Slot/Gauge:010 Length:10 '
4. ABANDONMENT: ☐ Yes ☒ No			Set Between: 10 ft. and 20 ft. NOTE: MULTIPLE SCREENS
Give Details Below			ft. and ft. USE SECOND SHEET
Grouted Depth: fromf			Sieve Analysis ☐ Yes (please enclose) 🛛 No
THE PARTY NAMED IN THE PARTY NAM	*Thickness		12. STATIC WATER LEVEL 6 ft. below land surface after 24 hours
Formation Description	of	Bottom of	13. PUMPING LEVEL Below Land Surface.
a	Stratum 0	Stratum	ft. after hrs. Pumping G.P.M.
CLAY	0	8	Pumping Test: Yes (please enclose) No
			Yield:
SAND	8	20'	
			14. WATER QUALITY
			Chemical Analysis ☐ Yes ☒No Bacterial Analysis ☐ Yes ☒No
			Please enclose lab results.
			15. ARTIFICIAL FILTER (filter pack) ☑ Yes □ No
			Installed from 8 ft. to 20 ft.
			Effective size #2 Uniformity Coefficient SAND
			16. WELL GROUTED? Yes □ No
			☑ Neat Cement ☐ Bentonite ☐ Bentonite/Cement ☐ Other
			Depth: From 0 ft. to 6 ft.
			17. NEAREST SOURCE OF POSSIBLE CONTAMINATION: ft direction
			Type
			Well Disinfected ☐ Yes ☒ No Type: Amount:
			Properties and Control of the Contro
			18. PUMP: Date installed: Not installed X
			Mfr. Name: Model No.: ft. Capacity gpm H.P Volts Length of drop pipe ft. Capacity gpm
	1		
			TYPE: ☐ Submersible ☐ Jet (shallow) ☐ Turbine ☐ Jet (deep) ☐ Reciprocating ☐ Centrifugal
			19. WELL DRILLER: Rich Lemire CERT. NO.: 1423
			Address: (Print) SAEDACCO Level: A B C D (circle one)
			9088 Northfield Drive
*Indicate Water Paging 7-2-2			Fort Mill, SC 29707
*Indicate Water Bearing Zones			Telephone No.: (803) 548-2180 Fax No.: (803) 548-2181
(Use a 2nd sheet if needed)			20. WATER WELL DRILLER'S CERTIFICATION: This well was drilled under my direction and this report is true to the best of my knowledge and belief.
5. REMARKS:			my direction and this report is true to the best of my knowledge and belief.
BENTONITE FROM 6' TO 8'.			200-de 100 0 de
			Kuly Lemine
			Signed: Date: 12/9/2023
			Well Driller
6. TYPE: ☐ Mud Rotary ☐ Jetted Bored			If D Level Driller, provide supervising driller's name:
☐ Dug ☐ Air Rotary ☐ Driven			If D Level Driller, provide supervising driller's name:
☐ Cable tool ☐ Other			
_ 525.5 .501			